1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 Before life analysis, the mode of each insn is set based on whether
77 or not any stack registers are mentioned within that insn. VOIDmode
78 means that no regs are mentioned anyway, and QImode means that at
79 least one pattern within the insn mentions stack registers. This
80 information is valid until after reg_to_stack returns, and is used
85 There are several rules on the usage of stack-like regs in
86 asm_operands insns. These rules apply only to the operands that are
89 1. Given a set of input regs that die in an asm_operands, it is
90 necessary to know which are implicitly popped by the asm, and
91 which must be explicitly popped by gcc.
93 An input reg that is implicitly popped by the asm must be
94 explicitly clobbered, unless it is constrained to match an
97 2. For any input reg that is implicitly popped by an asm, it is
98 necessary to know how to adjust the stack to compensate for the pop.
99 If any non-popped input is closer to the top of the reg-stack than
100 the implicitly popped reg, it would not be possible to know what the
101 stack looked like - it's not clear how the rest of the stack "slides
104 All implicitly popped input regs must be closer to the top of
105 the reg-stack than any input that is not implicitly popped.
107 3. It is possible that if an input dies in an insn, reload might
108 use the input reg for an output reload. Consider this example:
110 asm ("foo" : "=t" (a) : "f" (b));
112 This asm says that input B is not popped by the asm, and that
113 the asm pushes a result onto the reg-stack, ie, the stack is one
114 deeper after the asm than it was before. But, it is possible that
115 reload will think that it can use the same reg for both the input and
116 the output, if input B dies in this insn.
118 If any input operand uses the "f" constraint, all output reg
119 constraints must use the "&" earlyclobber.
121 The asm above would be written as
123 asm ("foo" : "=&t" (a) : "f" (b));
125 4. Some operands need to be in particular places on the stack. All
126 output operands fall in this category - there is no other way to
127 know which regs the outputs appear in unless the user indicates
128 this in the constraints.
130 Output operands must specifically indicate which reg an output
131 appears in after an asm. "=f" is not allowed: the operand
132 constraints must select a class with a single reg.
134 5. Output operands may not be "inserted" between existing stack regs.
135 Since no 387 opcode uses a read/write operand, all output operands
136 are dead before the asm_operands, and are pushed by the asm_operands.
137 It makes no sense to push anywhere but the top of the reg-stack.
139 Output operands must start at the top of the reg-stack: output
140 operands may not "skip" a reg.
142 6. Some asm statements may need extra stack space for internal
143 calculations. This can be guaranteed by clobbering stack registers
144 unrelated to the inputs and outputs.
146 Here are a couple of reasonable asms to want to write. This asm
147 takes one input, which is internally popped, and produces two outputs.
149 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
151 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
152 and replaces them with one output. The user must code the "st(1)"
153 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
155 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
163 #include "insn-config.h"
165 #include "hard-reg-set.h"
170 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
172 /* True if the current function returns a real value. */
173 static int current_function_returns_real
;
175 /* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
182 REG_SET indicates which registers are live. */
184 typedef struct stack_def
186 int top
; /* index to top stack element */
187 HARD_REG_SET reg_set
; /* set of live registers */
188 char reg
[REG_STACK_SIZE
]; /* register - stack mapping */
191 /* highest instruction uid */
192 static int max_uid
= 0;
194 /* Number of basic blocks in the current function. */
197 /* Element N is first insn in basic block N.
198 This info lasts until we finish compiling the function. */
199 static rtx
*block_begin
;
201 /* Element N is last insn in basic block N.
202 This info lasts until we finish compiling the function. */
203 static rtx
*block_end
;
205 /* Element N is nonzero if control can drop into basic block N */
206 static char *block_drops_in
;
208 /* Element N says all about the stack at entry block N */
209 static stack block_stack_in
;
211 /* Element N says all about the stack life at the end of block N */
212 static HARD_REG_SET
*block_out_reg_set
;
214 /* This is where the BLOCK_NUM values are really stored. This is set
215 up by find_blocks and used there and in life_analysis. It can be used
216 later, but only to look up an insn that is the head or tail of some
217 block. life_analysis and the stack register conversion process can
218 add insns within a block. */
219 static int *block_number
;
221 /* This is the register file for all register after conversion */
222 static rtx FP_mode_reg
[FIRST_PSEUDO_REGISTER
][(int) MAX_MACHINE_MODE
];
224 /* Get the basic block number of an insn. See note at block_number
225 definition are validity of this information. */
227 #define BLOCK_NUM(INSN) \
228 (((INSN_UID (INSN) > max_uid) \
229 ? (int *)(abort() , 0) \
230 : block_number)[INSN_UID (INSN)])
232 extern rtx forced_labels
;
233 extern rtx
gen_jump ();
234 extern rtx
gen_movdf (), gen_movxf ();
235 extern rtx
find_regno_note ();
236 extern rtx
emit_jump_insn_before ();
237 extern rtx
emit_label_after ();
239 /* Forward declarations */
241 static void find_blocks ();
242 static uses_reg_or_mem ();
243 static void stack_reg_life_analysis ();
244 static void change_stack ();
245 static void convert_regs ();
246 static void dump_stack_info ();
248 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
251 stack_regs_mentioned_p (pat
)
257 if (STACK_REG_P (pat
))
260 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
261 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
267 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
268 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
271 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
278 /* Convert register usage from "flat" register file usage to a "stack
279 register file. FIRST is the first insn in the function, FILE is the
282 First compute the beginning and end of each basic block. Do a
283 register life analysis on the stack registers, recording the result
284 for the head and tail of each basic block. The convert each insn one
285 by one. Run a last jump_optimize() pass, if optimizing, to eliminate
286 any cross-jumping created when the converter inserts pop insns.*/
289 reg_to_stack (first
, file
)
295 int stack_reg_seen
= 0;
296 enum machine_mode mode
;
298 current_function_returns_real
299 = TREE_CODE (TREE_TYPE (DECL_RESULT (current_function_decl
))) == REAL_TYPE
;
301 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
302 mode
= GET_MODE_WIDER_MODE (mode
))
303 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
304 FP_mode_reg
[i
][(int) mode
] = gen_rtx (REG
, mode
, i
);
306 /* Count the basic blocks. Also find maximum insn uid. */
308 register RTX_CODE prev_code
= BARRIER
;
309 register RTX_CODE code
;
313 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
315 /* Note that this loop must select the same block boundaries
316 as code in find_blocks. Also note that this code is not the
317 same as that used in flow.c. */
319 if (INSN_UID (insn
) > max_uid
)
320 max_uid
= INSN_UID (insn
);
322 code
= GET_CODE (insn
);
324 if (code
== CODE_LABEL
325 || (prev_code
!= INSN
326 && prev_code
!= CALL_INSN
327 && prev_code
!= CODE_LABEL
328 && GET_RTX_CLASS (code
) == 'i'))
331 /* Remember whether or not this insn mentions an FP regs.
332 Check JUMP_INSNs too, in case someone creates a funny PARALLEL. */
334 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
335 && stack_regs_mentioned_p (PATTERN (insn
)))
338 PUT_MODE (insn
, QImode
);
341 PUT_MODE (insn
, VOIDmode
);
343 if (code
== CODE_LABEL
)
344 LABEL_REFS (insn
) = insn
; /* delete old chain */
351 /* If no stack register reference exists in this insn, there isn't
352 anything to convert. */
354 if (! stack_reg_seen
)
357 /* If there are stack registers, there must be at least one block. */
362 /* Allocate some tables that last till end of compiling this function
363 and some needed only in find_blocks and life_analysis. */
365 block_begin
= (rtx
*) alloca (blocks
* sizeof (rtx
));
366 block_end
= (rtx
*) alloca (blocks
* sizeof (rtx
));
367 block_drops_in
= (char *) alloca (blocks
);
369 block_stack_in
= (stack
) alloca (blocks
* sizeof (struct stack_def
));
370 block_out_reg_set
= (HARD_REG_SET
*) alloca (blocks
* sizeof (HARD_REG_SET
));
371 bzero (block_stack_in
, blocks
* sizeof (struct stack_def
));
372 bzero (block_out_reg_set
, blocks
* sizeof (HARD_REG_SET
));
374 block_number
= (int *) alloca ((max_uid
+ 1) * sizeof (int));
377 stack_reg_life_analysis (first
);
379 /* Dump the life analysis debug information before jump
380 optimization, as that will destroy the LABEL_REFS we keep the
384 dump_stack_info (file
);
389 jump_optimize (first
, 2, 0, 0);
392 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
393 label's chain of references, and note which insn contains each
397 record_label_references (insn
, pat
)
400 register enum rtx_code code
= GET_CODE (pat
);
404 if (code
== LABEL_REF
)
406 register rtx label
= XEXP (pat
, 0);
409 if (GET_CODE (label
) != CODE_LABEL
)
412 /* Don't make a duplicate in the code_label's chain. */
414 for (ref
= LABEL_REFS (label
);
416 ref
= LABEL_NEXTREF (ref
))
417 if (CONTAINING_INSN (ref
) == insn
)
420 CONTAINING_INSN (pat
) = insn
;
421 LABEL_NEXTREF (pat
) = LABEL_REFS (label
);
422 LABEL_REFS (label
) = pat
;
427 fmt
= GET_RTX_FORMAT (code
);
428 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
431 record_label_references (insn
, XEXP (pat
, i
));
435 for (j
= 0; j
< XVECLEN (pat
, i
); j
++)
436 record_label_references (insn
, XVECEXP (pat
, i
, j
));
441 /* Return a pointer to the REG expression within PAT. If PAT is not a
442 REG, possible enclosed by a conversion rtx, return the inner part of
443 PAT that stopped the search. */
449 while (GET_CODE (*pat
) == SUBREG
450 || GET_CODE (*pat
) == FLOAT
451 || GET_CODE (*pat
) == FIX
452 || GET_CODE (*pat
) == FLOAT_EXTEND
)
453 pat
= & XEXP (*pat
, 0);
458 /* Scan the OPERANDS and OPERAND_CONSTRAINTS of an asm_operands.
459 N_OPERANDS is the total number of operands. Return which alternative
460 matched, or -1 is no alternative matches.
462 OPERAND_MATCHES is an array which indicates which operand this
463 operand matches due to the constraints, or -1 if no match is required.
464 If two operands match by coincidence, but are not required to match by
465 the constraints, -1 is returned.
467 OPERAND_CLASS is an array which indicates the smallest class
468 required by the constraints. If the alternative that matches calls
469 for some class `class', and the operand matches a subclass of `class',
470 OPERAND_CLASS is set to `class' as required by the constraints, not to
471 the subclass. If an alternative allows more than one class,
472 OPERAND_CLASS is set to the smallest class that is a union of the
476 constrain_asm_operands (n_operands
, operands
, operand_constraints
,
477 operand_matches
, operand_class
)
480 char **operand_constraints
;
481 int *operand_matches
;
482 enum reg_class
*operand_class
;
484 char **constraints
= (char **) alloca (n_operands
* sizeof (char *));
486 int this_alternative
, this_operand
;
490 for (j
= 0; j
< n_operands
; j
++)
491 constraints
[j
] = operand_constraints
[j
];
493 /* Compute the number of alternatives in the operands. reload has
494 already guaranteed that all operands have the same number of
498 for (q
= constraints
[0]; *q
; q
++)
499 n_alternatives
+= (*q
== ',');
501 this_alternative
= 0;
502 while (this_alternative
< n_alternatives
)
507 /* No operands match, no narrow class requirements yet. */
508 for (i
= 0; i
< n_operands
; i
++)
510 operand_matches
[i
] = -1;
511 operand_class
[i
] = NO_REGS
;
514 for (this_operand
= 0; this_operand
< n_operands
; this_operand
++)
516 rtx op
= operands
[this_operand
];
517 enum machine_mode mode
= GET_MODE (op
);
518 char *p
= constraints
[this_operand
];
523 if (GET_CODE (op
) == SUBREG
)
525 if (GET_CODE (SUBREG_REG (op
)) == REG
526 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
527 offset
= SUBREG_WORD (op
);
528 op
= SUBREG_REG (op
);
531 /* An empty constraint or empty alternative
532 allows anything which matched the pattern. */
533 if (*p
== 0 || *p
== ',')
536 while (*p
&& (c
= *p
++) != ',')
550 /* Ignore rest of this alternative. */
551 while (*p
&& *p
!= ',') p
++;
560 /* This operand must be the same as a previous one.
561 This kind of constraint is used for instructions such
562 as add when they take only two operands.
564 Note that the lower-numbered operand is passed first. */
566 if (operands_match_p (operands
[c
- '0'],
567 operands
[this_operand
]))
569 operand_matches
[this_operand
] = c
- '0';
575 /* p is used for address_operands. Since this is an asm,
576 just to make sure that the operand is valid for Pmode. */
578 if (strict_memory_address_p (Pmode
, op
))
583 /* Anything goes unless it is a REG and really has a hard reg
584 but the hard reg is not in the class GENERAL_REGS. */
585 if (GENERAL_REGS
== ALL_REGS
586 || GET_CODE (op
) != REG
587 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
589 if (GET_CODE (op
) == REG
)
590 operand_class
[this_operand
]
591 = reg_class_subunion
[(int) operand_class
[this_operand
]][(int) GENERAL_REGS
];
597 if (GET_CODE (op
) == REG
598 && (GENERAL_REGS
== ALL_REGS
599 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
)))
601 operand_class
[this_operand
]
602 = reg_class_subunion
[(int) operand_class
[this_operand
]][(int) GENERAL_REGS
];
608 /* This is used for a MATCH_SCRATCH in the cases when we
609 don't actually need anything. So anything goes any time. */
614 if (GET_CODE (op
) == MEM
)
619 if (GET_CODE (op
) == MEM
620 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
621 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
626 if (GET_CODE (op
) == MEM
627 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
628 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
633 /* Match any CONST_DOUBLE, but only if
634 we can examine the bits of it reliably. */
635 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
636 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
637 && GET_CODE (op
) != VOIDmode
&& ! flag_pretend_float
)
639 if (GET_CODE (op
) == CONST_DOUBLE
)
644 if (GET_CODE (op
) == CONST_DOUBLE
)
650 if (GET_CODE (op
) == CONST_DOUBLE
651 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, c
))
656 if (GET_CODE (op
) == CONST_INT
657 || (GET_CODE (op
) == CONST_DOUBLE
658 && GET_MODE (op
) == VOIDmode
))
667 if (GET_CODE (op
) == CONST_INT
668 || (GET_CODE (op
) == CONST_DOUBLE
669 && GET_MODE (op
) == VOIDmode
))
681 if (GET_CODE (op
) == CONST_INT
682 && CONST_OK_FOR_LETTER_P (INTVAL (op
), c
))
686 #ifdef EXTRA_CONSTRAINT
692 if (EXTRA_CONSTRAINT (op
, c
))
698 if (GET_CODE (op
) == MEM
&& ! offsettable_memref_p (op
))
703 if (offsettable_memref_p (op
))
708 if (GET_CODE (op
) == REG
709 && reg_fits_class_p (op
, REG_CLASS_FROM_LETTER (c
),
712 operand_class
[this_operand
]
713 = reg_class_subunion
[(int)operand_class
[this_operand
]][(int) REG_CLASS_FROM_LETTER (c
)];
718 constraints
[this_operand
] = p
;
719 /* If this operand did not win somehow,
720 this alternative loses. */
724 /* This alternative won; the operands are ok.
725 Change whichever operands this alternative says to change. */
732 /* For operands constrained to match another operand, copy the other
733 operand's class to this operand's class. */
734 for (j
= 0; j
< n_operands
; j
++)
735 if (operand_matches
[j
] >= 0)
736 operand_class
[j
] = operand_class
[operand_matches
[j
]];
738 return this_alternative
== n_alternatives
? -1 : this_alternative
;
741 /* Record the life info of each stack reg in INSN, updating REGSTACK.
742 N_INPUTS is the number of inputs; N_OUTPUTS the outputs. CONSTRAINTS
743 is an array of the constraint strings used in the asm statement.
744 OPERANDS is an array of all operands for the insn, and is assumed to
745 contain all output operands, then all inputs operands.
747 There are many rules that an asm statement for stack-like regs must
748 follow. Those rules are explained at the top of this file: the rule
749 numbers below refer to that explanation. */
752 record_asm_reg_life (insn
, regstack
, operands
, constraints
,
758 int n_inputs
, n_outputs
;
761 int n_operands
= n_inputs
+ n_outputs
;
762 int first_input
= n_outputs
;
764 int malformed_asm
= 0;
765 rtx body
= PATTERN (insn
);
767 int *operand_matches
= (int *) alloca (n_operands
* sizeof (int *));
769 enum reg_class
*operand_class
770 = (enum reg_class
*) alloca (n_operands
* sizeof (enum reg_class
*));
772 int reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
773 int implicitly_dies
[FIRST_PSEUDO_REGISTER
];
777 /* Find out what the constraints require. If no constraint
778 alternative matches, this asm is malformed. */
779 i
= constrain_asm_operands (n_operands
, operands
, constraints
,
780 operand_matches
, operand_class
);
784 /* Strip SUBREGs here to make the following code simpler. */
785 for (i
= 0; i
< n_operands
; i
++)
786 if (GET_CODE (operands
[i
]) == SUBREG
787 && GET_CODE (SUBREG_REG (operands
[i
])) == REG
)
788 operands
[i
] = SUBREG_REG (operands
[i
]);
790 /* Set up CLOBBER_REG. */
794 if (GET_CODE (body
) == PARALLEL
)
796 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
*));
798 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
799 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
801 rtx clobber
= XVECEXP (body
, 0, i
);
802 rtx reg
= XEXP (clobber
, 0);
804 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
805 reg
= SUBREG_REG (reg
);
807 if (STACK_REG_P (reg
))
809 clobber_reg
[n_clobbers
] = reg
;
815 /* Enforce rule #4: Output operands must specifically indicate which
816 reg an output appears in after an asm. "=f" is not allowed: the
817 operand constraints must select a class with a single reg.
819 Also enforce rule #5: Output operands must start at the top of
820 the reg-stack: output operands may not "skip" a reg. */
822 bzero (reg_used_as_output
, sizeof (reg_used_as_output
));
823 for (i
= 0; i
< n_outputs
; i
++)
824 if (STACK_REG_P (operands
[i
]))
825 if (reg_class_size
[(int) operand_class
[i
]] != 1)
828 (insn
, "Output constraint %d must specify a single register", i
);
832 reg_used_as_output
[REGNO (operands
[i
])] = 1;
835 /* Search for first non-popped reg. */
836 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
837 if (! reg_used_as_output
[i
])
840 /* If there are any other popped regs, that's an error. */
841 for (; i
< LAST_STACK_REG
+ 1; i
++)
842 if (reg_used_as_output
[i
])
845 if (i
!= LAST_STACK_REG
+ 1)
847 error_for_asm (insn
, "Output regs must be grouped at top of stack");
851 /* Enforce rule #2: All implicitly popped input regs must be closer
852 to the top of the reg-stack than any input that is not implicitly
855 bzero (implicitly_dies
, sizeof (implicitly_dies
));
856 for (i
= first_input
; i
< first_input
+ n_inputs
; i
++)
857 if (STACK_REG_P (operands
[i
]))
859 /* An input reg is implicitly popped if it is tied to an
860 output, or if there is a CLOBBER for it. */
863 for (j
= 0; j
< n_clobbers
; j
++)
864 if (operands_match_p (clobber_reg
[j
], operands
[i
]))
867 if (j
< n_clobbers
|| operand_matches
[i
] >= 0)
868 implicitly_dies
[REGNO (operands
[i
])] = 1;
871 /* Search for first non-popped reg. */
872 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
873 if (! implicitly_dies
[i
])
876 /* If there are any other popped regs, that's an error. */
877 for (; i
< LAST_STACK_REG
+ 1; i
++)
878 if (implicitly_dies
[i
])
881 if (i
!= LAST_STACK_REG
+ 1)
884 "Implicitly popped regs must be grouped at top of stack");
888 /* Enfore rule #3: If any input operand uses the "f" constraint, all
889 output constraints must use the "&" earlyclobber.
891 ??? Detect this more deterministically by having constraint_asm_operands
892 record any earlyclobber. */
894 for (i
= first_input
; i
< first_input
+ n_inputs
; i
++)
895 if (operand_matches
[i
] == -1)
899 for (j
= 0; j
< n_outputs
; j
++)
900 if (operands_match_p (operands
[j
], operands
[i
]))
903 "Output operand %d must use `&' constraint", j
);
910 /* Avoid further trouble with this insn. */
911 PATTERN (insn
) = gen_rtx (USE
, VOIDmode
, const0_rtx
);
912 PUT_MODE (insn
, VOIDmode
);
916 /* Process all outputs */
917 for (i
= 0; i
< n_outputs
; i
++)
919 rtx op
= operands
[i
];
921 if (! STACK_REG_P (op
))
922 if (stack_regs_mentioned_p (op
))
927 /* Each destination is dead before this insn. If the
928 destination is not used after this insn, record this with
931 if (! TEST_HARD_REG_BIT (regstack
->reg_set
, REGNO (op
)))
932 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_UNUSED
, op
,
935 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (op
));
938 /* Process all inputs */
939 for (i
= first_input
; i
< first_input
+ n_inputs
; i
++)
941 if (! STACK_REG_P (operands
[i
]))
942 if (stack_regs_mentioned_p (operands
[i
]))
947 /* If an input is dead after the insn, record a death note.
948 But don't record a death note if there is already a death note,
949 or if the input is also an output. */
951 if (! TEST_HARD_REG_BIT (regstack
->reg_set
, REGNO (operands
[i
]))
952 && operand_matches
[i
] == -1
953 && find_regno_note (insn
, REG_DEAD
, REGNO (operands
[i
])) == NULL_RTX
)
954 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_DEAD
, operands
[i
],
957 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (operands
[i
]));
961 /* Scan PAT, which is part of INSN, and record registers appearing in
962 a SET_DEST in DEST, and other registers in SRC.
964 This function does not know about SET_DESTs that are both input and
965 output (such as ZERO_EXTRACT) - this cannot happen on a 387. */
968 record_reg_life_pat (pat
, src
, dest
)
970 HARD_REG_SET
*src
, *dest
;
975 if (STACK_REG_P (pat
))
978 SET_HARD_REG_BIT (*src
, REGNO (pat
));
981 SET_HARD_REG_BIT (*dest
, REGNO (pat
));
986 if (GET_CODE (pat
) == SET
)
988 record_reg_life_pat (XEXP (pat
, 0), NULL_PTR
, dest
);
989 record_reg_life_pat (XEXP (pat
, 1), src
, NULL_PTR
);
993 /* We don't need to consider either of these cases. */
994 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
997 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
998 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1004 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1005 record_reg_life_pat (XVECEXP (pat
, i
, j
), src
, dest
);
1007 else if (fmt
[i
] == 'e')
1008 record_reg_life_pat (XEXP (pat
, i
), src
, dest
);
1012 /* Calculate the number of inputs and outputs in BODY, an
1013 asm_operands. N_OPERANDS is the total number of operands, and
1014 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
1018 get_asm_operand_lengths (body
, n_operands
, n_inputs
, n_outputs
)
1021 int *n_inputs
, *n_outputs
;
1023 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1024 *n_inputs
= ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
));
1026 else if (GET_CODE (body
) == ASM_OPERANDS
)
1027 *n_inputs
= ASM_OPERANDS_INPUT_LENGTH (body
);
1029 else if (GET_CODE (body
) == PARALLEL
1030 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1031 *n_inputs
= ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)));
1033 else if (GET_CODE (body
) == PARALLEL
1034 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1035 *n_inputs
= ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1039 *n_outputs
= n_operands
- *n_inputs
;
1042 /* Scan INSN, which is in BLOCK, and record the life & death of stack
1043 registers in REGSTACK. This function is called to process insns from
1044 the last insn in a block to the first. The actual scanning is done in
1045 record_reg_life_pat.
1047 If a register is live after a CALL_INSN, but is not a value return
1048 register for that CALL_INSN, then code is emitted to initialize that
1049 register. The block_end[] data is kept accurate.
1051 Existing death and unset notes for stack registers are deleted
1052 before processing the insn. */
1055 record_reg_life (insn
, block
, regstack
)
1060 rtx note
, *note_link
;
1063 if ((GET_CODE (insn
) != INSN
&& GET_CODE (insn
) != CALL_INSN
)
1064 || INSN_DELETED_P (insn
))
1067 /* Strip death notes for stack regs from this insn */
1069 note_link
= ®_NOTES(insn
);
1070 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
1071 if (STACK_REG_P (XEXP (note
, 0))
1072 && (REG_NOTE_KIND (note
) == REG_DEAD
1073 || REG_NOTE_KIND (note
) == REG_UNUSED
))
1074 *note_link
= XEXP (note
, 1);
1076 note_link
= &XEXP (note
, 1);
1078 /* Process all patterns in the insn. */
1080 n_operands
= asm_noperands (PATTERN (insn
));
1081 if (n_operands
>= 0)
1083 /* This insn is an `asm' with operands. Decode the operands,
1084 decide how many are inputs, and record the life information. */
1086 rtx operands
[MAX_RECOG_OPERANDS
];
1087 rtx body
= PATTERN (insn
);
1088 int n_inputs
, n_outputs
;
1089 char **constraints
= (char **) alloca (n_operands
* sizeof (char *));
1091 decode_asm_operands (body
, operands
, NULL_PTR
, constraints
, NULL_PTR
);
1092 get_asm_operand_lengths (body
, n_operands
, &n_inputs
, &n_outputs
);
1093 record_asm_reg_life (insn
, regstack
, operands
, constraints
,
1094 n_inputs
, n_outputs
);
1098 /* An insn referencing a stack reg has a mode of QImode. */
1099 if (GET_MODE (insn
) == QImode
)
1101 HARD_REG_SET src
, dest
;
1104 CLEAR_HARD_REG_SET (src
);
1105 CLEAR_HARD_REG_SET (dest
);
1106 record_reg_life_pat (PATTERN (insn
), &src
, &dest
);
1108 for (regno
= FIRST_STACK_REG
; regno
<= LAST_STACK_REG
; regno
++)
1109 if (! TEST_HARD_REG_BIT (regstack
->reg_set
, regno
))
1111 if (TEST_HARD_REG_BIT (src
, regno
)
1112 && ! TEST_HARD_REG_BIT (dest
, regno
))
1113 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_DEAD
,
1114 FP_mode_reg
[regno
][(int) DFmode
],
1116 else if (TEST_HARD_REG_BIT (dest
, regno
))
1117 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_UNUSED
,
1118 FP_mode_reg
[regno
][(int) DFmode
],
1122 AND_COMPL_HARD_REG_SET (regstack
->reg_set
, dest
);
1123 IOR_HARD_REG_SET (regstack
->reg_set
, src
);
1126 /* There might be a reg that is live after a function call.
1127 Initialize it to zero so that the program does not crash. See comment
1128 towards the end of stack_reg_life_analysis(). */
1130 if (GET_CODE (insn
) == CALL_INSN
)
1132 int reg
= FIRST_FLOAT_REG
;
1134 /* If a stack reg is mentioned in a CALL_INSN, it must be as the
1137 if (stack_regs_mentioned_p (PATTERN (insn
)))
1140 for (; reg
<= LAST_STACK_REG
; reg
++)
1141 if (TEST_HARD_REG_BIT (regstack
->reg_set
, reg
))
1145 /* The insn will use virtual register numbers, and so
1146 convert_regs is expected to process these. But BLOCK_NUM
1147 cannot be used on these insns, because they do not appear in
1150 pat
= gen_rtx (SET
, VOIDmode
, FP_mode_reg
[reg
][(int) DFmode
],
1151 CONST0_RTX (DFmode
));
1152 init
= emit_insn_after (pat
, insn
);
1153 PUT_MODE (init
, QImode
);
1155 CLEAR_HARD_REG_BIT (regstack
->reg_set
, reg
);
1157 /* If the CALL_INSN was the end of a block, move the
1158 block_end to point to the new insn. */
1160 if (block_end
[block
] == insn
)
1161 block_end
[block
] = init
;
1164 /* Some regs do not survive a CALL */
1166 AND_COMPL_HARD_REG_SET (regstack
->reg_set
, call_used_reg_set
);
1170 /* Find all basic blocks of the function, which starts with FIRST.
1171 For each JUMP_INSN, build the chain of LABEL_REFS on each CODE_LABEL. */
1179 register RTX_CODE prev_code
= BARRIER
;
1180 register RTX_CODE code
;
1181 rtx label_value_list
= 0;
1183 /* Record where all the blocks start and end.
1184 Record which basic blocks control can drop in to. */
1187 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1189 /* Note that this loop must select the same block boundaries
1190 as code in reg_to_stack, but that these are not the same
1191 as those selected in flow.c. */
1193 code
= GET_CODE (insn
);
1195 if (code
== CODE_LABEL
1196 || (prev_code
!= INSN
1197 && prev_code
!= CALL_INSN
1198 && prev_code
!= CODE_LABEL
1199 && GET_RTX_CLASS (code
) == 'i'))
1201 block_begin
[++block
] = insn
;
1202 block_end
[block
] = insn
;
1203 block_drops_in
[block
] = prev_code
!= BARRIER
;
1205 else if (GET_RTX_CLASS (code
) == 'i')
1206 block_end
[block
] = insn
;
1208 if (GET_RTX_CLASS (code
) == 'i')
1212 /* Make a list of all labels referred to other than by jumps. */
1213 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1214 if (REG_NOTE_KIND (note
) == REG_LABEL
)
1215 label_value_list
= gen_rtx (EXPR_LIST
, VOIDmode
, XEXP (note
, 0),
1219 BLOCK_NUM (insn
) = block
;
1225 if (block
+ 1 != blocks
)
1228 /* generate all label references to the corresponding jump insn */
1229 for (block
= 0; block
< blocks
; block
++)
1231 insn
= block_end
[block
];
1233 if (GET_CODE (insn
) == JUMP_INSN
)
1235 rtx pat
= PATTERN (insn
);
1236 int computed_jump
= 0;
1239 if (GET_CODE (pat
) == PARALLEL
)
1241 int len
= XVECLEN (pat
, 0);
1242 int has_use_labelref
= 0;
1245 for (i
= len
- 1; i
>= 0; i
--)
1246 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
1247 && GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0)) == LABEL_REF
)
1248 has_use_labelref
= 1;
1250 if (! has_use_labelref
)
1251 for (i
= len
- 1; i
>= 0; i
--)
1252 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
1253 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
1254 && uses_reg_or_mem (SET_SRC (XVECEXP (pat
, 0, i
))))
1257 else if (GET_CODE (pat
) == SET
1258 && SET_DEST (pat
) == pc_rtx
1259 && uses_reg_or_mem (SET_SRC (pat
)))
1264 for (x
= label_value_list
; x
; x
= XEXP (x
, 1))
1265 record_label_references (insn
,
1266 gen_rtx (LABEL_REF
, VOIDmode
,
1269 for (x
= forced_labels
; x
; x
= XEXP (x
, 1))
1270 record_label_references (insn
,
1271 gen_rtx (LABEL_REF
, VOIDmode
,
1275 record_label_references (insn
, pat
);
1280 /* Return 1 if X contain a REG or MEM that is not in the constant pool. */
1286 enum rtx_code code
= GET_CODE (x
);
1292 && ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
1293 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))))
1296 fmt
= GET_RTX_FORMAT (code
);
1297 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1300 && uses_reg_or_mem (XEXP (x
, i
)))
1304 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1305 if (uses_reg_or_mem (XVECEXP (x
, i
, j
)))
1312 /* If current function returns its result in an fp stack register,
1313 return the register number. Otherwise return -1. */
1316 stack_result_p (decl
)
1319 rtx result
= DECL_RTL (DECL_RESULT (decl
));
1322 && !(GET_CODE (result
) == REG
1323 && REGNO (result
) < FIRST_PSEUDO_REGISTER
))
1325 #ifdef FUNCTION_OUTGOING_VALUE
1327 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
1329 result
= FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
1333 return STACK_REG_P (result
) ? REGNO (result
) : -1;
1336 /* Determine the which registers are live at the start of each basic
1337 block of the function whose first insn is FIRST.
1339 First, if the function returns a real_type, mark the function
1340 return type as live at each return point, as the RTL may not give any
1341 hint that the register is live.
1343 Then, start with the last block and work back to the first block.
1344 Similarly, work backwards within each block, insn by insn, recording
1345 which regs are die and which are used (and therefore live) in the
1346 hard reg set of block_stack_in[].
1348 After processing each basic block, if there is a label at the start
1349 of the block, propagate the live registers to all jumps to this block.
1351 As a special case, if there are regs live in this block, that are
1352 not live in a block containing a jump to this label, and the block
1353 containing the jump has already been processed, we must propagate this
1354 block's entry register life back to the block containing the jump, and
1355 restart life analysis from there.
1357 In the worst case, this function may traverse the insns
1358 REG_STACK_SIZE times. This is necessary, since a jump towards the end
1359 of the insns may not know that a reg is live at a target that is early
1360 in the insns. So we back up and start over with the new reg live.
1362 If there are registers that are live at the start of the function,
1363 insns are emitted to initialize these registers. Something similar is
1364 done after CALL_INSNs in record_reg_life. */
1367 stack_reg_life_analysis (first
)
1371 struct stack_def regstack
;
1373 if (current_function_returns_real
1374 && stack_result_p (current_function_decl
) >= 0)
1376 /* Find all RETURN insns and mark them. */
1378 int value_regno
= stack_result_p (current_function_decl
);
1380 for (block
= blocks
- 1; block
>= 0; block
--)
1381 if (GET_CODE (block_end
[block
]) == JUMP_INSN
1382 && GET_CODE (PATTERN (block_end
[block
])) == RETURN
)
1383 SET_HARD_REG_BIT (block_out_reg_set
[block
], value_regno
);
1385 /* Mark of the end of last block if we "fall off" the end of the
1386 function into the epilogue. */
1388 if (GET_CODE (block_end
[blocks
-1]) != JUMP_INSN
1389 || GET_CODE (PATTERN (block_end
[blocks
-1])) == RETURN
)
1390 SET_HARD_REG_BIT (block_out_reg_set
[blocks
-1], value_regno
);
1393 /* now scan all blocks backward for stack register use */
1398 register rtx insn
, prev
;
1400 /* current register status at last instruction */
1402 COPY_HARD_REG_SET (regstack
.reg_set
, block_out_reg_set
[block
]);
1404 prev
= block_end
[block
];
1408 prev
= PREV_INSN (insn
);
1410 /* If the insn is a CALL_INSN, we need to ensure that
1411 everything dies. But otherwise don't process unless there
1412 are some stack regs present. */
1414 if (GET_MODE (insn
) == QImode
|| GET_CODE (insn
) == CALL_INSN
)
1415 record_reg_life (insn
, block
, ®stack
);
1417 } while (insn
!= block_begin
[block
]);
1419 /* Set the state at the start of the block. Mark that no
1420 register mapping information known yet. */
1422 COPY_HARD_REG_SET (block_stack_in
[block
].reg_set
, regstack
.reg_set
);
1423 block_stack_in
[block
].top
= -2;
1425 /* If there is a label, propagate our register life to all jumps
1428 if (GET_CODE (insn
) == CODE_LABEL
)
1431 int must_restart
= 0;
1433 for (label
= LABEL_REFS (insn
); label
!= insn
;
1434 label
= LABEL_NEXTREF (label
))
1436 int jump_block
= BLOCK_NUM (CONTAINING_INSN (label
));
1438 if (jump_block
< block
)
1439 IOR_HARD_REG_SET (block_out_reg_set
[jump_block
],
1440 block_stack_in
[block
].reg_set
);
1443 /* The block containing the jump has already been
1444 processed. If there are registers that were not known
1445 to be live then, but are live now, we must back up
1446 and restart life analysis from that point with the new
1447 life information. */
1449 GO_IF_HARD_REG_SUBSET (block_stack_in
[block
].reg_set
,
1450 block_out_reg_set
[jump_block
],
1453 IOR_HARD_REG_SET (block_out_reg_set
[jump_block
],
1454 block_stack_in
[block
].reg_set
);
1467 if (block_drops_in
[block
])
1468 IOR_HARD_REG_SET (block_out_reg_set
[block
-1],
1469 block_stack_in
[block
].reg_set
);
1475 /* If any reg is live at the start of the first block of a
1476 function, then we must guarantee that the reg holds some value by
1477 generating our own "load" of that register. Otherwise a 387 would
1478 fault trying to access an empty register. */
1480 HARD_REG_SET empty_regs
;
1481 CLEAR_HARD_REG_SET (empty_regs
);
1482 GO_IF_HARD_REG_SUBSET (block_stack_in
[0].reg_set
, empty_regs
,
1486 /* Load zero into each live register. The fact that a register
1487 appears live at the function start does not necessarily imply an error
1488 in the user program: it merely means that we could not determine that
1489 there wasn't such an error, just as -Wunused sometimes gives
1490 "incorrect" warnings. In those cases, these initializations will do
1493 Note that we are inserting virtual register references here:
1494 these insns must be processed by convert_regs later. Also, these
1495 insns will not be in block_number, so BLOCK_NUM() will fail for them. */
1497 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; reg
--)
1498 if (TEST_HARD_REG_BIT (block_stack_in
[0].reg_set
, reg
))
1502 init_rtx
= gen_rtx (SET
, VOIDmode
, FP_mode_reg
[reg
][(int) DFmode
],
1503 CONST0_RTX (DFmode
));
1504 block_begin
[0] = emit_insn_after (init_rtx
, first
);
1505 PUT_MODE (block_begin
[0], QImode
);
1507 CLEAR_HARD_REG_BIT (block_stack_in
[0].reg_set
, reg
);
1514 /*****************************************************************************
1515 This section deals with stack register substitution, and forms the second
1517 *****************************************************************************/
1519 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
1520 the desired hard REGNO. */
1523 replace_reg (reg
, regno
)
1527 if (regno
< FIRST_STACK_REG
|| regno
> LAST_STACK_REG
1528 || ! STACK_REG_P (*reg
))
1531 if (GET_MODE_CLASS (GET_MODE (*reg
)) != MODE_FLOAT
)
1534 *reg
= FP_mode_reg
[regno
][(int) GET_MODE (*reg
)];
1537 /* Remove a note of type NOTE, which must be found, for register
1538 number REGNO from INSN. Remove only one such note. */
1541 remove_regno_note (insn
, note
, regno
)
1546 register rtx
*note_link
, this;
1548 note_link
= ®_NOTES(insn
);
1549 for (this = *note_link
; this; this = XEXP (this, 1))
1550 if (REG_NOTE_KIND (this) == note
1551 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno
)
1553 *note_link
= XEXP (this, 1);
1557 note_link
= &XEXP (this, 1);
1562 /* Find the hard register number of virtual register REG in REGSTACK.
1563 The hard register number is relative to the top of the stack. -1 is
1564 returned if the register is not found. */
1567 get_hard_regnum (regstack
, reg
)
1573 if (! STACK_REG_P (reg
))
1576 for (i
= regstack
->top
; i
>= 0; i
--)
1577 if (regstack
->reg
[i
] == REGNO (reg
))
1580 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
1583 /* Delete INSN from the RTL. Mark the insn, but don't remove it from
1584 the chain of insns. Doing so could confuse block_begin and block_end
1585 if this were the only insn in the block. */
1588 delete_insn_for_stacker (insn
)
1591 PUT_CODE (insn
, NOTE
);
1592 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1593 NOTE_SOURCE_FILE (insn
) = 0;
1596 /* Emit an insn to pop virtual register REG before or after INSN.
1597 REGSTACK is the stack state after INSN and is updated to reflect this
1598 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
1599 is represented as a SET whose destination is the register to be popped
1600 and source is the top of stack. A death note for the top of stack
1601 cases the movdf pattern to pop. */
1604 emit_pop_insn (insn
, regstack
, reg
, when
)
1610 rtx pop_insn
, pop_rtx
;
1613 hard_regno
= get_hard_regnum (regstack
, reg
);
1615 if (hard_regno
< FIRST_STACK_REG
)
1618 pop_rtx
= gen_rtx (SET
, VOIDmode
, FP_mode_reg
[hard_regno
][(int) DFmode
],
1619 FP_mode_reg
[FIRST_STACK_REG
][(int) DFmode
]);
1621 pop_insn
= (*when
) (pop_rtx
, insn
);
1622 /* ??? This used to be VOIDmode, but that seems wrong. */
1623 PUT_MODE (pop_insn
, QImode
);
1625 REG_NOTES (pop_insn
) = gen_rtx (EXPR_LIST
, REG_DEAD
,
1626 FP_mode_reg
[FIRST_STACK_REG
][(int) DFmode
],
1627 REG_NOTES (pop_insn
));
1629 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
1630 = regstack
->reg
[regstack
->top
];
1632 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
1637 /* Emit an insn before or after INSN to swap virtual register REG with the
1638 top of stack. WHEN should be `emit_insn_before' or `emit_insn_before'
1639 REGSTACK is the stack state before the swap, and is updated to reflect
1640 the swap. A swap insn is represented as a PARALLEL of two patterns:
1641 each pattern moves one reg to the other.
1643 If REG is already at the top of the stack, no insn is emitted. */
1646 emit_swap_insn (insn
, regstack
, reg
)
1653 rtx swap_rtx
, swap_insn
;
1654 int tmp
, other_reg
; /* swap regno temps */
1655 rtx i1
; /* the stack-reg insn prior to INSN */
1656 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
1658 hard_regno
= get_hard_regnum (regstack
, reg
);
1660 if (hard_regno
< FIRST_STACK_REG
)
1662 if (hard_regno
== FIRST_STACK_REG
)
1665 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
1667 tmp
= regstack
->reg
[other_reg
];
1668 regstack
->reg
[other_reg
] = regstack
->reg
[regstack
->top
];
1669 regstack
->reg
[regstack
->top
] = tmp
;
1671 /* Find the previous insn involving stack regs, but don't go past
1672 any labels, calls or jumps. */
1673 i1
= prev_nonnote_insn (insn
);
1674 while (i1
&& GET_CODE (i1
) == INSN
&& GET_MODE (i1
) != QImode
)
1675 i1
= prev_nonnote_insn (i1
);
1678 i1set
= single_set (i1
);
1682 rtx i2
; /* the stack-reg insn prior to I1 */
1683 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
1684 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
1686 /* If the previous register stack push was from the reg we are to
1687 swap with, omit the swap. */
1689 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == FIRST_STACK_REG
1690 && GET_CODE (i1src
) == REG
&& REGNO (i1src
) == hard_regno
- 1
1691 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1694 /* If the previous insn wrote to the reg we are to swap with,
1697 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == hard_regno
1698 && GET_CODE (i1src
) == REG
&& REGNO (i1src
) == FIRST_STACK_REG
1699 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1703 if (GET_RTX_CLASS (GET_CODE (i1
)) == 'i' && sets_cc0_p (PATTERN (i1
)))
1705 i1
= next_nonnote_insn (i1
);
1710 swap_rtx
= gen_swapdf (FP_mode_reg
[hard_regno
][(int) DFmode
],
1711 FP_mode_reg
[FIRST_STACK_REG
][(int) DFmode
]);
1712 swap_insn
= emit_insn_after (swap_rtx
, i1
);
1713 /* ??? This used to be VOIDmode, but that seems wrong. */
1714 PUT_MODE (swap_insn
, QImode
);
1717 /* Handle a move to or from a stack register in PAT, which is in INSN.
1718 REGSTACK is the current stack. */
1721 move_for_stack_reg (insn
, regstack
, pat
)
1726 rtx
*src
= get_true_reg (&SET_SRC (pat
));
1727 rtx
*dest
= get_true_reg (&SET_DEST (pat
));
1730 if (STACK_REG_P (*src
) && STACK_REG_P (*dest
))
1732 /* Write from one stack reg to another. If SRC dies here, then
1733 just change the register mapping and delete the insn. */
1735 note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src
));
1740 /* If this is a no-op move, there must not be a REG_DEAD note. */
1741 if (REGNO (*src
) == REGNO (*dest
))
1744 for (i
= regstack
->top
; i
>= 0; i
--)
1745 if (regstack
->reg
[i
] == REGNO (*src
))
1748 /* The source must be live, and the dest must be dead. */
1749 if (i
< 0 || get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
)
1752 /* It is possible that the dest is unused after this insn.
1753 If so, just pop the src. */
1755 if (find_regno_note (insn
, REG_UNUSED
, REGNO (*dest
)))
1757 emit_pop_insn (insn
, regstack
, *src
, emit_insn_after
);
1759 delete_insn_for_stacker (insn
);
1763 regstack
->reg
[i
] = REGNO (*dest
);
1765 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1766 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src
));
1768 delete_insn_for_stacker (insn
);
1773 /* The source reg does not die. */
1775 /* If this appears to be a no-op move, delete it, or else it
1776 will confuse the machine description output patterns. But if
1777 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1778 for REG_UNUSED will not work for deleted insns. */
1780 if (REGNO (*src
) == REGNO (*dest
))
1782 if (find_regno_note (insn
, REG_UNUSED
, REGNO (*dest
)))
1783 emit_pop_insn (insn
, regstack
, *dest
, emit_insn_after
);
1785 delete_insn_for_stacker (insn
);
1789 /* The destination ought to be dead */
1790 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
)
1793 replace_reg (src
, get_hard_regnum (regstack
, *src
));
1795 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1796 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1797 replace_reg (dest
, FIRST_STACK_REG
);
1799 else if (STACK_REG_P (*src
))
1801 /* Save from a stack reg to MEM, or possibly integer reg. Since
1802 only top of stack may be saved, emit an exchange first if
1805 emit_swap_insn (insn
, regstack
, *src
);
1807 note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src
));
1810 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1812 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src
));
1814 else if (GET_MODE (*src
) == XFmode
&& regstack
->top
!= REG_STACK_SIZE
)
1816 /* A 387 cannot write an XFmode value to a MEM without
1817 clobbering the source reg. The output code can handle
1818 this by reading back the value from the MEM.
1819 But it is more efficient to use a temp register if one is
1820 available. Push the source value here if the register
1821 stack is not full, and then write the value to memory via
1823 rtx push_rtx
, push_insn
;
1824 rtx top_stack_reg
= FP_mode_reg
[FIRST_STACK_REG
][(int) XFmode
];
1826 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1827 push_insn
= emit_insn_before (push_rtx
, insn
);
1828 PUT_MODE (push_insn
, QImode
);
1829 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_DEAD
, top_stack_reg
,
1833 replace_reg (src
, FIRST_STACK_REG
);
1835 else if (STACK_REG_P (*dest
))
1837 /* Load from MEM, or possibly integer REG or constant, into the
1838 stack regs. The actual target is always the top of the
1839 stack. The stack mapping is changed to reflect that DEST is
1840 now at top of stack. */
1842 /* The destination ought to be dead */
1843 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
)
1846 if (regstack
->top
>= REG_STACK_SIZE
)
1849 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1850 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1851 replace_reg (dest
, FIRST_STACK_REG
);
1858 swap_rtx_condition (pat
)
1864 if (GET_RTX_CLASS (GET_CODE (pat
)) == '<')
1866 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1870 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1871 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1877 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1878 swap_rtx_condition (XVECEXP (pat
, i
, j
));
1880 else if (fmt
[i
] == 'e')
1881 swap_rtx_condition (XEXP (pat
, i
));
1885 /* Handle a comparison. Special care needs to be taken to avoid
1886 causing comparisons that a 387 cannot do correctly, such as EQ.
1888 Also, a pop insn may need to be emitted. The 387 does have an
1889 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1890 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1894 compare_for_stack_reg (insn
, regstack
, pat
)
1900 rtx src1_note
, src2_note
;
1902 src1
= get_true_reg (&XEXP (SET_SRC (pat
), 0));
1903 src2
= get_true_reg (&XEXP (SET_SRC (pat
), 1));
1905 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1906 registers that die in this insn - move those to stack top first. */
1907 if (! STACK_REG_P (*src1
)
1908 || (STACK_REG_P (*src2
)
1909 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1913 temp
= XEXP (SET_SRC (pat
), 0);
1914 XEXP (SET_SRC (pat
), 0) = XEXP (SET_SRC (pat
), 1);
1915 XEXP (SET_SRC (pat
), 1) = temp
;
1917 src1
= get_true_reg (&XEXP (SET_SRC (pat
), 0));
1918 src2
= get_true_reg (&XEXP (SET_SRC (pat
), 1));
1920 next
= next_cc0_user (insn
);
1921 if (next
== NULL_RTX
)
1924 swap_rtx_condition (PATTERN (next
));
1925 INSN_CODE (next
) = -1;
1926 INSN_CODE (insn
) = -1;
1929 /* We will fix any death note later. */
1931 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1933 if (STACK_REG_P (*src2
))
1934 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1936 src2_note
= NULL_RTX
;
1938 emit_swap_insn (insn
, regstack
, *src1
);
1940 replace_reg (src1
, FIRST_STACK_REG
);
1942 if (STACK_REG_P (*src2
))
1943 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1947 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (XEXP (src1_note
, 0)));
1948 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1952 /* If the second operand dies, handle that. But if the operands are
1953 the same stack register, don't bother, because only one death is
1954 needed, and it was just handled. */
1957 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1958 && REGNO (*src1
) == REGNO (*src2
)))
1960 /* As a special case, two regs may die in this insn if src2 is
1961 next to top of stack and the top of stack also dies. Since
1962 we have already popped src1, "next to top of stack" is really
1963 at top (FIRST_STACK_REG) now. */
1965 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1968 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (XEXP (src2_note
, 0)));
1969 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1974 /* The 386 can only represent death of the first operand in
1975 the case handled above. In all other cases, emit a separate
1976 pop and remove the death note from here. */
1978 link_cc0_insns (insn
);
1980 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1982 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1988 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1989 is the current register layout. */
1992 subst_stack_regs_pat (insn
, regstack
, pat
)
1998 rtx
*src1
= (rtx
*) NULL_PTR
, *src2
;
1999 rtx src1_note
, src2_note
;
2001 if (GET_CODE (pat
) != SET
)
2004 dest
= get_true_reg (&SET_DEST (pat
));
2005 src
= get_true_reg (&SET_SRC (pat
));
2007 /* See if this is a `movM' pattern, and handle elsewhere if so. */
2009 if (*dest
!= cc0_rtx
2010 && (STACK_REG_P (*src
)
2011 || (STACK_REG_P (*dest
)
2012 && (GET_CODE (*src
) == REG
|| GET_CODE (*src
) == MEM
2013 || GET_CODE (*src
) == CONST_DOUBLE
))))
2014 move_for_stack_reg (insn
, regstack
, pat
);
2016 switch (GET_CODE (SET_SRC (pat
)))
2019 compare_for_stack_reg (insn
, regstack
, pat
);
2023 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
2024 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
2025 replace_reg (dest
, FIRST_STACK_REG
);
2029 /* This is a `tstM2' case. */
2030 if (*dest
!= cc0_rtx
)
2037 case FLOAT_TRUNCATE
:
2041 /* These insns only operate on the top of the stack. DEST might
2042 be cc0_rtx if we're processing a tstM pattern. Also, it's
2043 possible that the tstM case results in a REG_DEAD note on the
2047 src1
= get_true_reg (&XEXP (SET_SRC (pat
), 0));
2049 emit_swap_insn (insn
, regstack
, *src1
);
2051 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
2053 if (STACK_REG_P (*dest
))
2054 replace_reg (dest
, FIRST_STACK_REG
);
2058 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
2060 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
2063 replace_reg (src1
, FIRST_STACK_REG
);
2069 /* On i386, reversed forms of subM3 and divM3 exist for
2070 MODE_FLOAT, so the same code that works for addM3 and mulM3
2074 /* These insns can accept the top of stack as a destination
2075 from a stack reg or mem, or can use the top of stack as a
2076 source and some other stack register (possibly top of stack)
2077 as a destination. */
2079 src1
= get_true_reg (&XEXP (SET_SRC (pat
), 0));
2080 src2
= get_true_reg (&XEXP (SET_SRC (pat
), 1));
2082 /* We will fix any death note later. */
2084 if (STACK_REG_P (*src1
))
2085 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
2087 src1_note
= NULL_RTX
;
2088 if (STACK_REG_P (*src2
))
2089 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
2091 src2_note
= NULL_RTX
;
2093 /* If either operand is not a stack register, then the dest
2094 must be top of stack. */
2096 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
2097 emit_swap_insn (insn
, regstack
, *dest
);
2100 /* Both operands are REG. If neither operand is already
2101 at the top of stack, choose to make the one that is the dest
2102 the new top of stack. */
2104 int src1_hard_regnum
, src2_hard_regnum
;
2106 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
2107 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
2108 if (src1_hard_regnum
== -1 || src2_hard_regnum
== -1)
2111 if (src1_hard_regnum
!= FIRST_STACK_REG
2112 && src2_hard_regnum
!= FIRST_STACK_REG
)
2113 emit_swap_insn (insn
, regstack
, *dest
);
2116 if (STACK_REG_P (*src1
))
2117 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
2118 if (STACK_REG_P (*src2
))
2119 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
2123 /* If the register that dies is at the top of stack, then
2124 the destination is somewhere else - merely substitute it.
2125 But if the reg that dies is not at top of stack, then
2126 move the top of stack to the dead reg, as though we had
2127 done the insn and then a store-with-pop. */
2129 if (REGNO (XEXP (src1_note
, 0)) == regstack
->reg
[regstack
->top
])
2131 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
2132 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
2136 int regno
= get_hard_regnum (regstack
, XEXP (src1_note
, 0));
2138 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
2139 replace_reg (dest
, regno
);
2141 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
2142 = regstack
->reg
[regstack
->top
];
2145 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2146 REGNO (XEXP (src1_note
, 0)));
2147 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
2152 if (REGNO (XEXP (src2_note
, 0)) == regstack
->reg
[regstack
->top
])
2154 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
2155 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
2159 int regno
= get_hard_regnum (regstack
, XEXP (src2_note
, 0));
2161 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
2162 replace_reg (dest
, regno
);
2164 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
2165 = regstack
->reg
[regstack
->top
];
2168 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2169 REGNO (XEXP (src2_note
, 0)));
2170 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
2175 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
2176 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
2182 switch (XINT (SET_SRC (pat
), 1))
2186 /* These insns only operate on the top of the stack. */
2188 src1
= get_true_reg (&XVECEXP (SET_SRC (pat
), 0, 0));
2190 emit_swap_insn (insn
, regstack
, *src1
);
2192 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
2194 if (STACK_REG_P (*dest
))
2195 replace_reg (dest
, FIRST_STACK_REG
);
2199 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
2201 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
2204 replace_reg (src1
, FIRST_STACK_REG
);
2218 /* Substitute hard regnums for any stack regs in INSN, which has
2219 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2220 before the insn, and is updated with changes made here. CONSTRAINTS is
2221 an array of the constraint strings used in the asm statement.
2223 OPERANDS is an array of the operands, and OPERANDS_LOC is a
2224 parallel array of where the operands were found. The output operands
2225 all precede the input operands.
2227 There are several requirements and assumptions about the use of
2228 stack-like regs in asm statements. These rules are enforced by
2229 record_asm_stack_regs; see comments there for details. Any
2230 asm_operands left in the RTL at this point may be assume to meet the
2231 requirements, since record_asm_stack_regs removes any problem asm. */
2234 subst_asm_stack_regs (insn
, regstack
, operands
, operands_loc
, constraints
,
2235 n_inputs
, n_outputs
)
2238 rtx
*operands
, **operands_loc
;
2240 int n_inputs
, n_outputs
;
2242 int n_operands
= n_inputs
+ n_outputs
;
2243 int first_input
= n_outputs
;
2244 rtx body
= PATTERN (insn
);
2246 int *operand_matches
= (int *) alloca (n_operands
* sizeof (int *));
2247 enum reg_class
*operand_class
2248 = (enum reg_class
*) alloca (n_operands
* sizeof (enum reg_class
*));
2250 rtx
*note_reg
; /* Array of note contents */
2251 rtx
**note_loc
; /* Address of REG field of each note */
2252 enum reg_note
*note_kind
; /* The type of each note */
2257 struct stack_def temp_stack
;
2263 /* Find out what the constraints required. If no constraint
2264 alternative matches, that is a compiler bug: we should have caught
2265 such an insn during the life analysis pass (and reload should have
2266 caught it regardless). */
2268 i
= constrain_asm_operands (n_operands
, operands
, constraints
,
2269 operand_matches
, operand_class
);
2273 /* Strip SUBREGs here to make the following code simpler. */
2274 for (i
= 0; i
< n_operands
; i
++)
2275 if (GET_CODE (operands
[i
]) == SUBREG
2276 && GET_CODE (SUBREG_REG (operands
[i
])) == REG
)
2278 operands_loc
[i
] = & SUBREG_REG (operands
[i
]);
2279 operands
[i
] = SUBREG_REG (operands
[i
]);
2282 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2284 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2287 note_reg
= (rtx
*) alloca (i
* sizeof (rtx
));
2288 note_loc
= (rtx
**) alloca (i
* sizeof (rtx
*));
2289 note_kind
= (enum reg_note
*) alloca (i
* sizeof (enum reg_note
));
2292 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2294 rtx reg
= XEXP (note
, 0);
2295 rtx
*loc
= & XEXP (note
, 0);
2297 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
2299 loc
= & SUBREG_REG (reg
);
2300 reg
= SUBREG_REG (reg
);
2303 if (STACK_REG_P (reg
)
2304 && (REG_NOTE_KIND (note
) == REG_DEAD
2305 || REG_NOTE_KIND (note
) == REG_UNUSED
))
2307 note_reg
[n_notes
] = reg
;
2308 note_loc
[n_notes
] = loc
;
2309 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
2314 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2318 if (GET_CODE (body
) == PARALLEL
)
2320 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
*));
2321 clobber_loc
= (rtx
**) alloca (XVECLEN (body
, 0) * sizeof (rtx
**));
2323 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2324 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2326 rtx clobber
= XVECEXP (body
, 0, i
);
2327 rtx reg
= XEXP (clobber
, 0);
2328 rtx
*loc
= & XEXP (clobber
, 0);
2330 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
2332 loc
= & SUBREG_REG (reg
);
2333 reg
= SUBREG_REG (reg
);
2336 if (STACK_REG_P (reg
))
2338 clobber_reg
[n_clobbers
] = reg
;
2339 clobber_loc
[n_clobbers
] = loc
;
2345 bcopy (regstack
, &temp_stack
, sizeof (temp_stack
));
2347 /* Put the input regs into the desired place in TEMP_STACK. */
2349 for (i
= first_input
; i
< first_input
+ n_inputs
; i
++)
2350 if (STACK_REG_P (operands
[i
])
2351 && reg_class_subset_p (operand_class
[i
], FLOAT_REGS
)
2352 && operand_class
[i
] != FLOAT_REGS
)
2354 /* If an operand needs to be in a particular reg in
2355 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2356 these constraints are for single register classes, and reload
2357 guaranteed that operand[i] is already in that class, we can
2358 just use REGNO (operands[i]) to know which actual reg this
2359 operand needs to be in. */
2361 int regno
= get_hard_regnum (&temp_stack
, operands
[i
]);
2366 if (regno
!= REGNO (operands
[i
]))
2368 /* operands[i] is not in the right place. Find it
2369 and swap it with whatever is already in I's place.
2370 K is where operands[i] is now. J is where it should
2374 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2376 - (REGNO (operands
[i
]) - FIRST_STACK_REG
));
2378 temp
= temp_stack
.reg
[k
];
2379 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
2380 temp_stack
.reg
[j
] = temp
;
2384 /* emit insns before INSN to make sure the reg-stack is in the right
2387 change_stack (insn
, regstack
, &temp_stack
, emit_insn_before
);
2389 /* Make the needed input register substitutions. Do death notes and
2390 clobbers too, because these are for inputs, not outputs. */
2392 for (i
= first_input
; i
< first_input
+ n_inputs
; i
++)
2393 if (STACK_REG_P (operands
[i
]))
2395 int regnum
= get_hard_regnum (regstack
, operands
[i
]);
2400 replace_reg (operands_loc
[i
], regnum
);
2403 for (i
= 0; i
< n_notes
; i
++)
2404 if (note_kind
[i
] == REG_DEAD
)
2406 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2411 replace_reg (note_loc
[i
], regnum
);
2414 for (i
= 0; i
< n_clobbers
; i
++)
2416 /* It's OK for a CLOBBER to reference a reg that is not live.
2417 Don't try to replace it in that case. */
2418 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2422 /* Sigh - clobbers always have QImode. But replace_reg knows
2423 that these regs can't be MODE_INT and will abort. Just put
2424 the right reg there without calling replace_reg. */
2426 *clobber_loc
[i
] = FP_mode_reg
[regnum
][(int) DFmode
];
2430 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2432 for (i
= first_input
; i
< first_input
+ n_inputs
; i
++)
2433 if (STACK_REG_P (operands
[i
]))
2435 /* An input reg is implicitly popped if it is tied to an
2436 output, or if there is a CLOBBER for it. */
2439 for (j
= 0; j
< n_clobbers
; j
++)
2440 if (operands_match_p (clobber_reg
[j
], operands
[i
]))
2443 if (j
< n_clobbers
|| operand_matches
[i
] >= 0)
2445 /* operands[i] might not be at the top of stack. But that's OK,
2446 because all we need to do is pop the right number of regs
2447 off of the top of the reg-stack. record_asm_stack_regs
2448 guaranteed that all implicitly popped regs were grouped
2449 at the top of the reg-stack. */
2451 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2452 regstack
->reg
[regstack
->top
]);
2457 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2458 Note that there isn't any need to substitute register numbers.
2459 ??? Explain why this is true. */
2461 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2463 /* See if there is an output for this hard reg. */
2466 for (j
= 0; j
< n_outputs
; j
++)
2467 if (STACK_REG_P (operands
[j
]) && REGNO (operands
[j
]) == i
)
2469 regstack
->reg
[++regstack
->top
] = i
;
2470 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2475 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2476 input that the asm didn't implicitly pop. If the asm didn't
2477 implicitly pop an input reg, that reg will still be live.
2479 Note that we can't use find_regno_note here: the register numbers
2480 in the death notes have already been substituted. */
2482 for (i
= 0; i
< n_outputs
; i
++)
2483 if (STACK_REG_P (operands
[i
]))
2487 for (j
= 0; j
< n_notes
; j
++)
2488 if (REGNO (operands
[i
]) == REGNO (note_reg
[j
])
2489 && note_kind
[j
] == REG_UNUSED
)
2491 insn
= emit_pop_insn (insn
, regstack
, operands
[i
],
2497 for (i
= first_input
; i
< first_input
+ n_inputs
; i
++)
2498 if (STACK_REG_P (operands
[i
]))
2502 for (j
= 0; j
< n_notes
; j
++)
2503 if (REGNO (operands
[i
]) == REGNO (note_reg
[j
])
2504 && note_kind
[j
] == REG_DEAD
2505 && TEST_HARD_REG_BIT (regstack
->reg_set
, REGNO (operands
[i
])))
2507 insn
= emit_pop_insn (insn
, regstack
, operands
[i
],
2514 /* Substitute stack hard reg numbers for stack virtual registers in
2515 INSN. Non-stack register numbers are not changed. REGSTACK is the
2516 current stack content. Insns may be emitted as needed to arrange the
2517 stack for the 387 based on the contents of the insn. */
2520 subst_stack_regs (insn
, regstack
)
2524 register rtx
*note_link
, note
;
2528 if ((GET_CODE (insn
) != INSN
&& GET_CODE (insn
) != CALL_INSN
)
2529 || INSN_DELETED_P (insn
))
2532 /* The stack should be empty at a call. */
2534 if (GET_CODE (insn
) == CALL_INSN
)
2535 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
2536 if (TEST_HARD_REG_BIT (regstack
->reg_set
, i
))
2539 /* Do the actual substitution if any stack regs are mentioned.
2540 Since we only record whether entire insn mentions stack regs, and
2541 subst_stack_regs_pat only works for patterns that contain stack regs,
2542 we must check each pattern in a parallel here. A call_value_pop could
2545 if (GET_MODE (insn
) == QImode
)
2547 n_operands
= asm_noperands (PATTERN (insn
));
2548 if (n_operands
>= 0)
2550 /* This insn is an `asm' with operands. Decode the operands,
2551 decide how many are inputs, and do register substitution.
2552 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2554 rtx operands
[MAX_RECOG_OPERANDS
];
2555 rtx
*operands_loc
[MAX_RECOG_OPERANDS
];
2556 rtx body
= PATTERN (insn
);
2557 int n_inputs
, n_outputs
;
2559 = (char **) alloca (n_operands
* sizeof (char *));
2561 decode_asm_operands (body
, operands
, operands_loc
,
2562 constraints
, NULL_PTR
);
2563 get_asm_operand_lengths (body
, n_operands
, &n_inputs
, &n_outputs
);
2564 subst_asm_stack_regs (insn
, regstack
, operands
, operands_loc
,
2565 constraints
, n_inputs
, n_outputs
);
2569 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2570 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2572 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2573 subst_stack_regs_pat (insn
, regstack
,
2574 XVECEXP (PATTERN (insn
), 0, i
));
2577 subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2580 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2581 REG_UNUSED will already have been dealt with, so just return. */
2583 if (GET_CODE (insn
) == NOTE
)
2586 /* If there is a REG_UNUSED note on a stack register on this insn,
2587 the indicated reg must be popped. The REG_UNUSED note is removed,
2588 since the form of the newly emitted pop insn references the reg,
2589 making it no longer `unset'. */
2591 note_link
= ®_NOTES(insn
);
2592 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2593 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2595 *note_link
= XEXP (note
, 1);
2596 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), emit_insn_after
);
2599 note_link
= &XEXP (note
, 1);
2602 /* Change the organization of the stack so that it fits a new basic
2603 block. Some registers might have to be popped, but there can never be
2604 a register live in the new block that is not now live.
2606 Insert any needed insns before or after INSN. WHEN is emit_insn_before
2607 or emit_insn_after. OLD is the original stack layout, and NEW is
2608 the desired form. OLD is updated to reflect the code emitted, ie, it
2609 will be the same as NEW upon return.
2611 This function will not preserve block_end[]. But that information
2612 is no longer needed once this has executed. */
2615 change_stack (insn
, old
, new, when
)
2623 /* We will be inserting new insns "backwards", by calling emit_insn_before.
2624 If we are to insert after INSN, find the next insn, and insert before
2627 if (when
== emit_insn_after
)
2628 insn
= NEXT_INSN (insn
);
2630 /* Pop any registers that are not needed in the new block. */
2632 for (reg
= old
->top
; reg
>= 0; reg
--)
2633 if (! TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]))
2634 emit_pop_insn (insn
, old
, FP_mode_reg
[old
->reg
[reg
]][(int) DFmode
],
2639 /* If the new block has never been processed, then it can inherit
2640 the old stack order. */
2642 new->top
= old
->top
;
2643 bcopy (old
->reg
, new->reg
, sizeof (new->reg
));
2647 /* This block has been entered before, and we must match the
2648 previously selected stack order. */
2650 /* By now, the only difference should be the order of the stack,
2651 not their depth or liveliness. */
2653 GO_IF_HARD_REG_EQUAL (old
->reg_set
, new->reg_set
, win
);
2659 if (old
->top
!= new->top
)
2662 /* Loop here emitting swaps until the stack is correct. The
2663 worst case number of swaps emitted is N + 2, where N is the
2664 depth of the stack. In some cases, the reg at the top of
2665 stack may be correct, but swapped anyway in order to fix
2666 other regs. But since we never swap any other reg away from
2667 its correct slot, this algorithm will converge. */
2671 /* Swap the reg at top of stack into the position it is
2672 supposed to be in, until the correct top of stack appears. */
2674 while (old
->reg
[old
->top
] != new->reg
[new->top
])
2676 for (reg
= new->top
; reg
>= 0; reg
--)
2677 if (new->reg
[reg
] == old
->reg
[old
->top
])
2683 emit_swap_insn (insn
, old
,
2684 FP_mode_reg
[old
->reg
[reg
]][(int) DFmode
]);
2687 /* See if any regs remain incorrect. If so, bring an
2688 incorrect reg to the top of stack, and let the while loop
2691 for (reg
= new->top
; reg
>= 0; reg
--)
2692 if (new->reg
[reg
] != old
->reg
[reg
])
2694 emit_swap_insn (insn
, old
,
2695 FP_mode_reg
[old
->reg
[reg
]][(int) DFmode
]);
2700 /* At this point there must be no differences. */
2702 for (reg
= old
->top
; reg
>= 0; reg
--)
2703 if (old
->reg
[reg
] != new->reg
[reg
])
2708 /* Check PAT, which points to RTL in INSN, for a LABEL_REF. If it is
2709 found, ensure that a jump from INSN to the code_label to which the
2710 label_ref points ends up with the same stack as that at the
2711 code_label. Do this by inserting insns just before the code_label to
2712 pop and rotate the stack until it is in the correct order. REGSTACK
2713 is the order of the register stack in INSN.
2715 Any code that is emitted here must not be later processed as part
2716 of any block, as it will already contain hard register numbers. */
2719 goto_block_pat (insn
, regstack
, pat
)
2725 rtx new_jump
, new_label
, new_barrier
;
2728 struct stack_def temp_stack
;
2731 if (GET_CODE (pat
) != LABEL_REF
)
2734 char *fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
2736 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
2739 goto_block_pat (insn
, regstack
, XEXP (pat
, i
));
2741 for (j
= 0; j
< XVECLEN (pat
, i
); j
++)
2742 goto_block_pat (insn
, regstack
, XVECEXP (pat
, i
, j
));
2747 label
= XEXP (pat
, 0);
2748 if (GET_CODE (label
) != CODE_LABEL
)
2751 /* First, see if in fact anything needs to be done to the stack at all. */
2752 if (INSN_UID (label
) <= 0)
2755 label_stack
= &block_stack_in
[BLOCK_NUM (label
)];
2757 if (label_stack
->top
== -2)
2759 /* If the target block hasn't had a stack order selected, then
2760 we need merely ensure that no pops are needed. */
2762 for (reg
= regstack
->top
; reg
>= 0; reg
--)
2763 if (! TEST_HARD_REG_BIT (label_stack
->reg_set
, regstack
->reg
[reg
]))
2768 /* change_stack will not emit any code in this case. */
2770 change_stack (label
, regstack
, label_stack
, emit_insn_after
);
2774 else if (label_stack
->top
== regstack
->top
)
2776 for (reg
= label_stack
->top
; reg
>= 0; reg
--)
2777 if (label_stack
->reg
[reg
] != regstack
->reg
[reg
])
2784 /* At least one insn will need to be inserted before label. Insert
2785 a jump around the code we are about to emit. Emit a label for the new
2786 code, and point the original insn at this new label. We can't use
2787 redirect_jump here, because we're using fld[4] of the code labels as
2788 LABEL_REF chains, no NUSES counters. */
2790 new_jump
= emit_jump_insn_before (gen_jump (label
), label
);
2791 record_label_references (new_jump
, PATTERN (new_jump
));
2792 JUMP_LABEL (new_jump
) = label
;
2794 new_barrier
= emit_barrier_after (new_jump
);
2796 new_label
= gen_label_rtx ();
2797 emit_label_after (new_label
, new_barrier
);
2798 LABEL_REFS (new_label
) = new_label
;
2800 /* The old label_ref will no longer point to the code_label if now uses,
2801 so strip the label_ref from the code_label's chain of references. */
2803 for (ref
= &LABEL_REFS (label
); *ref
!= label
; ref
= &LABEL_NEXTREF (*ref
))
2810 *ref
= LABEL_NEXTREF (*ref
);
2812 XEXP (pat
, 0) = new_label
;
2813 record_label_references (insn
, PATTERN (insn
));
2815 if (JUMP_LABEL (insn
) == label
)
2816 JUMP_LABEL (insn
) = new_label
;
2818 /* Now emit the needed code. */
2820 temp_stack
= *regstack
;
2822 change_stack (new_label
, &temp_stack
, label_stack
, emit_insn_after
);
2825 /* Traverse all basic blocks in a function, converting the register
2826 references in each insn from the "flat" register file that gcc uses, to
2827 the stack-like registers the 387 uses. */
2832 register int block
, reg
;
2833 register rtx insn
, next
;
2834 struct stack_def regstack
;
2836 for (block
= 0; block
< blocks
; block
++)
2838 if (block_stack_in
[block
].top
== -2)
2840 /* This block has not been previously encountered. Choose a
2841 default mapping for any stack regs live on entry */
2843 block_stack_in
[block
].top
= -1;
2845 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; reg
--)
2846 if (TEST_HARD_REG_BIT (block_stack_in
[block
].reg_set
, reg
))
2847 block_stack_in
[block
].reg
[++block_stack_in
[block
].top
] = reg
;
2850 /* Process all insns in this block. Keep track of `next' here,
2851 so that we don't process any insns emitted while making
2852 substitutions in INSN. */
2854 next
= block_begin
[block
];
2855 regstack
= block_stack_in
[block
];
2859 next
= NEXT_INSN (insn
);
2861 /* Don't bother processing unless there is a stack reg
2864 ??? For now, process CALL_INSNs too to make sure that the
2865 stack regs are dead after a call. Remove this eventually. */
2867 if (GET_MODE (insn
) == QImode
|| GET_CODE (insn
) == CALL_INSN
)
2868 subst_stack_regs (insn
, ®stack
);
2870 } while (insn
!= block_end
[block
]);
2872 /* Something failed if the stack life doesn't match. */
2874 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, block_out_reg_set
[block
], win
);
2880 /* Adjust the stack of this block on exit to match the stack of
2881 the target block, or copy stack information into stack of
2882 jump target if the target block's stack order hasn't been set
2885 if (GET_CODE (insn
) == JUMP_INSN
)
2886 goto_block_pat (insn
, ®stack
, PATTERN (insn
));
2888 /* Likewise handle the case where we fall into the next block. */
2890 if ((block
< blocks
- 1) && block_drops_in
[block
+1])
2891 change_stack (insn
, ®stack
, &block_stack_in
[block
+1],
2895 /* If the last basic block is the end of a loop, and that loop has
2896 regs live at its start, then the last basic block will have regs live
2897 at its end that need to be popped before the function returns. */
2899 for (reg
= regstack
.top
; reg
>= 0; reg
--)
2900 if (! current_function_returns_real
2901 || regstack
.reg
[reg
] != FIRST_STACK_REG
)
2902 insn
= emit_pop_insn (insn
, ®stack
,
2903 FP_mode_reg
[regstack
.reg
[reg
]][(int) DFmode
],
2907 /* Check expression PAT, which is in INSN, for label references. if
2908 one is found, print the block number of destination to FILE. */
2911 print_blocks (file
, insn
, pat
)
2915 register RTX_CODE code
= GET_CODE (pat
);
2919 if (code
== LABEL_REF
)
2921 register rtx label
= XEXP (pat
, 0);
2923 if (GET_CODE (label
) != CODE_LABEL
)
2926 fprintf (file
, " %d", BLOCK_NUM (label
));
2931 fmt
= GET_RTX_FORMAT (code
);
2932 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2935 print_blocks (file
, insn
, XEXP (pat
, i
));
2939 for (j
= 0; j
< XVECLEN (pat
, i
); j
++)
2940 print_blocks (file
, insn
, XVECEXP (pat
, i
, j
));
2945 /* Write information about stack registers and stack blocks into FILE.
2946 This is part of making a debugging dump. */
2948 dump_stack_info (file
)
2953 fprintf (file
, "\n%d stack blocks.\n", blocks
);
2954 for (block
= 0; block
< blocks
; block
++)
2956 register rtx head
, jump
, end
;
2959 fprintf (file
, "\nStack block %d: first insn %d, last %d.\n",
2960 block
, INSN_UID (block_begin
[block
]),
2961 INSN_UID (block_end
[block
]));
2963 head
= block_begin
[block
];
2965 fprintf (file
, "Reached from blocks: ");
2966 if (GET_CODE (head
) == CODE_LABEL
)
2967 for (jump
= LABEL_REFS (head
);
2969 jump
= LABEL_NEXTREF (jump
))
2971 register int from_block
= BLOCK_NUM (CONTAINING_INSN (jump
));
2972 fprintf (file
, " %d", from_block
);
2974 if (block_drops_in
[block
])
2975 fprintf (file
, " previous");
2977 fprintf (file
, "\nlive stack registers on block entry: ");
2978 for (regno
= FIRST_STACK_REG
; regno
<= LAST_STACK_REG
; regno
++)
2980 if (TEST_HARD_REG_BIT (block_stack_in
[block
].reg_set
, regno
))
2981 fprintf (file
, "%d ", regno
);
2984 fprintf (file
, "\nlive stack registers on block exit: ");
2985 for (regno
= FIRST_STACK_REG
; regno
<= LAST_STACK_REG
; regno
++)
2987 if (TEST_HARD_REG_BIT (block_out_reg_set
[block
], regno
))
2988 fprintf (file
, "%d ", regno
);
2991 end
= block_end
[block
];
2993 fprintf (file
, "\nJumps to blocks: ");
2994 if (GET_CODE (end
) == JUMP_INSN
)
2995 print_blocks (file
, end
, PATTERN (end
));
2997 if (block
+ 1 < blocks
&& block_drops_in
[block
+1])
2998 fprintf (file
, " next");
2999 else if (block
+ 1 == blocks
3000 || (GET_CODE (end
) == JUMP_INSN
3001 && GET_CODE (PATTERN (end
)) == RETURN
))
3002 fprintf (file
, " return");
3004 fprintf (file
, "\n");
3007 #endif /* STACK_REGS */