gdbinit.in: add "break-on-diagnostic" command
[official-gcc.git] / gcc / var-tracking.c
blob16327bd43f331420dcc3e14d71feffe8f0b0c48f
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "params.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
119 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
120 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 struct micro_operation
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
247 /* Pointer to next member of the list. */
248 attrs *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
260 /* Structure for chaining the locations. */
261 struct location_chain
263 /* Next element in the chain. */
264 location_chain *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 struct variable_part
333 /* Chain of locations of the part. */
334 location_chain *loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
366 /* Structure describing where the variable is located. */
367 struct variable
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
393 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
395 static inline HOST_WIDE_INT
396 int_mem_offset (const_rtx mem)
398 if (MEM_OFFSET_KNOWN_P (mem))
399 return MEM_OFFSET (mem);
400 return 0;
403 #if CHECKING_P && (GCC_VERSION >= 2007)
405 /* Access VAR's Ith part's offset, checking that it's not a one-part
406 variable. */
407 #define VAR_PART_OFFSET(var, i) __extension__ \
408 (*({ variable *const __v = (var); \
409 gcc_checking_assert (!__v->onepart); \
410 &__v->var_part[(i)].aux.offset; }))
412 /* Access VAR's one-part auxiliary data, checking that it is a
413 one-part variable. */
414 #define VAR_LOC_1PAUX(var) __extension__ \
415 (*({ variable *const __v = (var); \
416 gcc_checking_assert (__v->onepart); \
417 &__v->var_part[0].aux.onepaux; }))
419 #else
420 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
421 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
422 #endif
424 /* These are accessor macros for the one-part auxiliary data. When
425 convenient for users, they're guarded by tests that the data was
426 allocated. */
427 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
428 ? VAR_LOC_1PAUX (var)->backlinks \
429 : NULL)
430 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
431 ? &VAR_LOC_1PAUX (var)->backlinks \
432 : NULL)
433 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
434 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
435 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
436 ? &VAR_LOC_1PAUX (var)->deps \
437 : NULL)
441 typedef unsigned int dvuid;
443 /* Return the uid of DV. */
445 static inline dvuid
446 dv_uid (decl_or_value dv)
448 if (dv_is_value_p (dv))
449 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
450 else
451 return DECL_UID (dv_as_decl (dv));
454 /* Compute the hash from the uid. */
456 static inline hashval_t
457 dv_uid2hash (dvuid uid)
459 return uid;
462 /* The hash function for a mask table in a shared_htab chain. */
464 static inline hashval_t
465 dv_htab_hash (decl_or_value dv)
467 return dv_uid2hash (dv_uid (dv));
470 static void variable_htab_free (void *);
472 /* Variable hashtable helpers. */
474 struct variable_hasher : pointer_hash <variable>
476 typedef void *compare_type;
477 static inline hashval_t hash (const variable *);
478 static inline bool equal (const variable *, const void *);
479 static inline void remove (variable *);
482 /* The hash function for variable_htab, computes the hash value
483 from the declaration of variable X. */
485 inline hashval_t
486 variable_hasher::hash (const variable *v)
488 return dv_htab_hash (v->dv);
491 /* Compare the declaration of variable X with declaration Y. */
493 inline bool
494 variable_hasher::equal (const variable *v, const void *y)
496 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
498 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
501 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
503 inline void
504 variable_hasher::remove (variable *var)
506 variable_htab_free (var);
509 typedef hash_table<variable_hasher> variable_table_type;
510 typedef variable_table_type::iterator variable_iterator_type;
512 /* Structure for passing some other parameters to function
513 emit_note_insn_var_location. */
514 struct emit_note_data
516 /* The instruction which the note will be emitted before/after. */
517 rtx_insn *insn;
519 /* Where the note will be emitted (before/after insn)? */
520 enum emit_note_where where;
522 /* The variables and values active at this point. */
523 variable_table_type *vars;
526 /* Structure holding a refcounted hash table. If refcount > 1,
527 it must be first unshared before modified. */
528 struct shared_hash
530 /* Reference count. */
531 int refcount;
533 /* Actual hash table. */
534 variable_table_type *htab;
537 /* Structure holding the IN or OUT set for a basic block. */
538 struct dataflow_set
540 /* Adjustment of stack offset. */
541 HOST_WIDE_INT stack_adjust;
543 /* Attributes for registers (lists of attrs). */
544 attrs *regs[FIRST_PSEUDO_REGISTER];
546 /* Variable locations. */
547 shared_hash *vars;
549 /* Vars that is being traversed. */
550 shared_hash *traversed_vars;
553 /* The structure (one for each basic block) containing the information
554 needed for variable tracking. */
555 struct variable_tracking_info
557 /* The vector of micro operations. */
558 vec<micro_operation> mos;
560 /* The IN and OUT set for dataflow analysis. */
561 dataflow_set in;
562 dataflow_set out;
564 /* The permanent-in dataflow set for this block. This is used to
565 hold values for which we had to compute entry values. ??? This
566 should probably be dynamically allocated, to avoid using more
567 memory in non-debug builds. */
568 dataflow_set *permp;
570 /* Has the block been visited in DFS? */
571 bool visited;
573 /* Has the block been flooded in VTA? */
574 bool flooded;
578 /* Alloc pool for struct attrs_def. */
579 object_allocator<attrs> attrs_pool ("attrs pool");
581 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
583 static pool_allocator var_pool
584 ("variable_def pool", sizeof (variable) +
585 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
587 /* Alloc pool for struct variable_def with a single var_part entry. */
588 static pool_allocator valvar_pool
589 ("small variable_def pool", sizeof (variable));
591 /* Alloc pool for struct location_chain. */
592 static object_allocator<location_chain> location_chain_pool
593 ("location_chain pool");
595 /* Alloc pool for struct shared_hash. */
596 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
598 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
599 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
601 /* Changed variables, notes will be emitted for them. */
602 static variable_table_type *changed_variables;
604 /* Shall notes be emitted? */
605 static bool emit_notes;
607 /* Values whose dynamic location lists have gone empty, but whose
608 cselib location lists are still usable. Use this to hold the
609 current location, the backlinks, etc, during emit_notes. */
610 static variable_table_type *dropped_values;
612 /* Empty shared hashtable. */
613 static shared_hash *empty_shared_hash;
615 /* Scratch register bitmap used by cselib_expand_value_rtx. */
616 static bitmap scratch_regs = NULL;
618 #ifdef HAVE_window_save
619 struct GTY(()) parm_reg {
620 rtx outgoing;
621 rtx incoming;
625 /* Vector of windowed parameter registers, if any. */
626 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
627 #endif
629 /* Variable used to tell whether cselib_process_insn called our hook. */
630 static bool cselib_hook_called;
632 /* Local function prototypes. */
633 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
634 HOST_WIDE_INT *);
635 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
636 HOST_WIDE_INT *);
637 static bool vt_stack_adjustments (void);
639 static void init_attrs_list_set (attrs **);
640 static void attrs_list_clear (attrs **);
641 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
642 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
643 static void attrs_list_copy (attrs **, attrs *);
644 static void attrs_list_union (attrs **, attrs *);
646 static variable **unshare_variable (dataflow_set *set, variable **slot,
647 variable *var, enum var_init_status);
648 static void vars_copy (variable_table_type *, variable_table_type *);
649 static tree var_debug_decl (tree);
650 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
651 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
652 enum var_init_status, rtx);
653 static void var_reg_delete (dataflow_set *, rtx, bool);
654 static void var_regno_delete (dataflow_set *, int);
655 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
656 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
657 enum var_init_status, rtx);
658 static void var_mem_delete (dataflow_set *, rtx, bool);
660 static void dataflow_set_init (dataflow_set *);
661 static void dataflow_set_clear (dataflow_set *);
662 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
663 static int variable_union_info_cmp_pos (const void *, const void *);
664 static void dataflow_set_union (dataflow_set *, dataflow_set *);
665 static location_chain *find_loc_in_1pdv (rtx, variable *,
666 variable_table_type *);
667 static bool canon_value_cmp (rtx, rtx);
668 static int loc_cmp (rtx, rtx);
669 static bool variable_part_different_p (variable_part *, variable_part *);
670 static bool onepart_variable_different_p (variable *, variable *);
671 static bool variable_different_p (variable *, variable *);
672 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
673 static void dataflow_set_destroy (dataflow_set *);
675 static bool track_expr_p (tree, bool);
676 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
677 static void add_uses_1 (rtx *, void *);
678 static void add_stores (rtx, const_rtx, void *);
679 static bool compute_bb_dataflow (basic_block);
680 static bool vt_find_locations (void);
682 static void dump_attrs_list (attrs *);
683 static void dump_var (variable *);
684 static void dump_vars (variable_table_type *);
685 static void dump_dataflow_set (dataflow_set *);
686 static void dump_dataflow_sets (void);
688 static void set_dv_changed (decl_or_value, bool);
689 static void variable_was_changed (variable *, dataflow_set *);
690 static variable **set_slot_part (dataflow_set *, rtx, variable **,
691 decl_or_value, HOST_WIDE_INT,
692 enum var_init_status, rtx);
693 static void set_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT,
695 enum var_init_status, rtx, enum insert_option);
696 static variable **clobber_slot_part (dataflow_set *, rtx,
697 variable **, HOST_WIDE_INT, rtx);
698 static void clobber_variable_part (dataflow_set *, rtx,
699 decl_or_value, HOST_WIDE_INT, rtx);
700 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
701 HOST_WIDE_INT);
702 static void delete_variable_part (dataflow_set *, rtx,
703 decl_or_value, HOST_WIDE_INT);
704 static void emit_notes_in_bb (basic_block, dataflow_set *);
705 static void vt_emit_notes (void);
707 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
714 static int
715 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
716 void *arg)
718 if (dest != stack_pointer_rtx)
719 return 0;
721 switch (GET_CODE (op))
723 case PRE_INC:
724 case PRE_DEC:
725 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
726 return 0;
727 case POST_INC:
728 case POST_DEC:
729 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
730 return 0;
731 case PRE_MODIFY:
732 case POST_MODIFY:
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src) == PLUS
735 && CONST_INT_P (XEXP (src, 1))
736 && XEXP (src, 0) == stack_pointer_rtx);
737 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
738 -= INTVAL (XEXP (src, 1));
739 return 0;
740 default:
741 gcc_unreachable ();
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
749 static void
750 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
751 HOST_WIDE_INT *post)
753 rtx src = SET_SRC (pattern);
754 rtx dest = SET_DEST (pattern);
755 enum rtx_code code;
757 if (dest == stack_pointer_rtx)
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code = GET_CODE (src);
761 if (! (code == PLUS || code == MINUS)
762 || XEXP (src, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src, 1)))
764 return;
766 if (code == MINUS)
767 *post += INTVAL (XEXP (src, 1));
768 else
769 *post -= INTVAL (XEXP (src, 1));
770 return;
772 HOST_WIDE_INT res[2] = { 0, 0 };
773 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
774 *pre += res[0];
775 *post += res[1];
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
781 static void
782 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
783 HOST_WIDE_INT *post)
785 rtx pattern;
787 *pre = 0;
788 *post = 0;
790 pattern = PATTERN (insn);
791 if (RTX_FRAME_RELATED_P (insn))
793 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
794 if (expr)
795 pattern = XEXP (expr, 0);
798 if (GET_CODE (pattern) == SET)
799 stack_adjust_offset_pre_post (pattern, pre, post);
800 else if (GET_CODE (pattern) == PARALLEL
801 || GET_CODE (pattern) == SEQUENCE)
803 int i;
805 /* There may be stack adjustments inside compound insns. Search
806 for them. */
807 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
808 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
809 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
817 static bool
818 vt_stack_adjustments (void)
820 edge_iterator *stack;
821 int sp;
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET;
830 /* Allocate stack for back-tracking up CFG. */
831 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
832 sp = 0;
834 /* Push the first edge on to the stack. */
835 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
837 while (sp)
839 edge_iterator ei;
840 basic_block src;
841 basic_block dest;
843 /* Look at the edge on the top of the stack. */
844 ei = stack[sp - 1];
845 src = ei_edge (ei)->src;
846 dest = ei_edge (ei)->dest;
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest)->visited)
851 rtx_insn *insn;
852 HOST_WIDE_INT pre, post, offset;
853 VTI (dest)->visited = true;
854 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
856 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
857 for (insn = BB_HEAD (dest);
858 insn != NEXT_INSN (BB_END (dest));
859 insn = NEXT_INSN (insn))
860 if (INSN_P (insn))
862 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
863 offset += pre + post;
866 VTI (dest)->out.stack_adjust = offset;
868 if (EDGE_COUNT (dest->succs) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack[sp++] = ei_start (dest->succs);
873 else
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
890 We must check whether the adjustments on other edges are
891 the same though. */
892 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
893 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
895 free (stack);
896 return false;
899 if (! ei_one_before_end_p (ei))
900 /* Go to the next edge. */
901 ei_next (&stack[sp - 1]);
902 else
903 /* Return to previous level if there are no more edges. */
904 sp--;
908 free (stack);
909 return true;
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx;
915 static HOST_WIDE_INT cfa_base_offset;
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
920 static inline rtx
921 compute_cfa_pointer (HOST_WIDE_INT adjustment)
923 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
930 /* Data for adjust_mems callback. */
932 struct adjust_mem_data
934 bool store;
935 machine_mode mem_mode;
936 HOST_WIDE_INT stack_adjust;
937 auto_vec<rtx> side_effects;
940 /* Helper for adjust_mems. Return true if X is suitable for
941 transformation of wider mode arithmetics to narrower mode. */
943 static bool
944 use_narrower_mode_test (rtx x, const_rtx subreg)
946 subrtx_var_iterator::array_type array;
947 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
949 rtx x = *iter;
950 if (CONSTANT_P (x))
951 iter.skip_subrtxes ();
952 else
953 switch (GET_CODE (x))
955 case REG:
956 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
957 return false;
958 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
959 subreg_lowpart_offset (GET_MODE (subreg),
960 GET_MODE (x))))
961 return false;
962 break;
963 case PLUS:
964 case MINUS:
965 case MULT:
966 break;
967 case ASHIFT:
968 iter.substitute (XEXP (x, 0));
969 break;
970 default:
971 return false;
974 return true;
977 /* Transform X into narrower mode MODE from wider mode WMODE. */
979 static rtx
980 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
982 rtx op0, op1;
983 if (CONSTANT_P (x))
984 return lowpart_subreg (mode, x, wmode);
985 switch (GET_CODE (x))
987 case REG:
988 return lowpart_subreg (mode, x, wmode);
989 case PLUS:
990 case MINUS:
991 case MULT:
992 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
993 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
994 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
995 case ASHIFT:
996 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
997 op1 = XEXP (x, 1);
998 /* Ensure shift amount is not wider than mode. */
999 if (GET_MODE (op1) == VOIDmode)
1000 op1 = lowpart_subreg (mode, op1, wmode);
1001 else if (GET_MODE_PRECISION (mode)
1002 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1003 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1004 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1005 default:
1006 gcc_unreachable ();
1010 /* Helper function for adjusting used MEMs. */
1012 static rtx
1013 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1015 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1016 rtx mem, addr = loc, tem;
1017 machine_mode mem_mode_save;
1018 bool store_save;
1019 scalar_int_mode tem_mode, tem_subreg_mode;
1020 switch (GET_CODE (loc))
1022 case REG:
1023 /* Don't do any sp or fp replacements outside of MEM addresses
1024 on the LHS. */
1025 if (amd->mem_mode == VOIDmode && amd->store)
1026 return loc;
1027 if (loc == stack_pointer_rtx
1028 && !frame_pointer_needed
1029 && cfa_base_rtx)
1030 return compute_cfa_pointer (amd->stack_adjust);
1031 else if (loc == hard_frame_pointer_rtx
1032 && frame_pointer_needed
1033 && hard_frame_pointer_adjustment != -1
1034 && cfa_base_rtx)
1035 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1036 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1037 return loc;
1038 case MEM:
1039 mem = loc;
1040 if (!amd->store)
1042 mem = targetm.delegitimize_address (mem);
1043 if (mem != loc && !MEM_P (mem))
1044 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1047 addr = XEXP (mem, 0);
1048 mem_mode_save = amd->mem_mode;
1049 amd->mem_mode = GET_MODE (mem);
1050 store_save = amd->store;
1051 amd->store = false;
1052 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1053 amd->store = store_save;
1054 amd->mem_mode = mem_mode_save;
1055 if (mem == loc)
1056 addr = targetm.delegitimize_address (addr);
1057 if (addr != XEXP (mem, 0))
1058 mem = replace_equiv_address_nv (mem, addr);
1059 if (!amd->store)
1060 mem = avoid_constant_pool_reference (mem);
1061 return mem;
1062 case PRE_INC:
1063 case PRE_DEC:
1064 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1065 gen_int_mode (GET_CODE (loc) == PRE_INC
1066 ? GET_MODE_SIZE (amd->mem_mode)
1067 : -GET_MODE_SIZE (amd->mem_mode),
1068 GET_MODE (loc)));
1069 /* FALLTHRU */
1070 case POST_INC:
1071 case POST_DEC:
1072 if (addr == loc)
1073 addr = XEXP (loc, 0);
1074 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1075 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1076 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1077 gen_int_mode ((GET_CODE (loc) == PRE_INC
1078 || GET_CODE (loc) == POST_INC)
1079 ? GET_MODE_SIZE (amd->mem_mode)
1080 : -GET_MODE_SIZE (amd->mem_mode),
1081 GET_MODE (loc)));
1082 store_save = amd->store;
1083 amd->store = false;
1084 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1085 amd->store = store_save;
1086 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1087 return addr;
1088 case PRE_MODIFY:
1089 addr = XEXP (loc, 1);
1090 /* FALLTHRU */
1091 case POST_MODIFY:
1092 if (addr == loc)
1093 addr = XEXP (loc, 0);
1094 gcc_assert (amd->mem_mode != VOIDmode);
1095 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1096 store_save = amd->store;
1097 amd->store = false;
1098 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1099 adjust_mems, data);
1100 amd->store = store_save;
1101 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1102 return addr;
1103 case SUBREG:
1104 /* First try without delegitimization of whole MEMs and
1105 avoid_constant_pool_reference, which is more likely to succeed. */
1106 store_save = amd->store;
1107 amd->store = true;
1108 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1109 data);
1110 amd->store = store_save;
1111 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112 if (mem == SUBREG_REG (loc))
1114 tem = loc;
1115 goto finish_subreg;
1117 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1118 GET_MODE (SUBREG_REG (loc)),
1119 SUBREG_BYTE (loc));
1120 if (tem)
1121 goto finish_subreg;
1122 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1123 GET_MODE (SUBREG_REG (loc)),
1124 SUBREG_BYTE (loc));
1125 if (tem == NULL_RTX)
1126 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1127 finish_subreg:
1128 if (MAY_HAVE_DEBUG_INSNS
1129 && GET_CODE (tem) == SUBREG
1130 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1131 || GET_CODE (SUBREG_REG (tem)) == MINUS
1132 || GET_CODE (SUBREG_REG (tem)) == MULT
1133 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1134 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1135 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1136 &tem_subreg_mode)
1137 && (GET_MODE_PRECISION (tem_mode)
1138 < GET_MODE_PRECISION (tem_subreg_mode))
1139 && subreg_lowpart_p (tem)
1140 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1141 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1142 return tem;
1143 case ASM_OPERANDS:
1144 /* Don't do any replacements in second and following
1145 ASM_OPERANDS of inline-asm with multiple sets.
1146 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1147 and ASM_OPERANDS_LABEL_VEC need to be equal between
1148 all the ASM_OPERANDs in the insn and adjust_insn will
1149 fix this up. */
1150 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1151 return loc;
1152 break;
1153 default:
1154 break;
1156 return NULL_RTX;
1159 /* Helper function for replacement of uses. */
1161 static void
1162 adjust_mem_uses (rtx *x, void *data)
1164 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1165 if (new_x != *x)
1166 validate_change (NULL_RTX, x, new_x, true);
1169 /* Helper function for replacement of stores. */
1171 static void
1172 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1174 if (MEM_P (loc))
1176 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1177 adjust_mems, data);
1178 if (new_dest != SET_DEST (expr))
1180 rtx xexpr = CONST_CAST_RTX (expr);
1181 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1186 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1187 replace them with their value in the insn and add the side-effects
1188 as other sets to the insn. */
1190 static void
1191 adjust_insn (basic_block bb, rtx_insn *insn)
1193 rtx set;
1195 #ifdef HAVE_window_save
1196 /* If the target machine has an explicit window save instruction, the
1197 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1198 if (RTX_FRAME_RELATED_P (insn)
1199 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1201 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1202 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1203 parm_reg *p;
1205 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1207 XVECEXP (rtl, 0, i * 2)
1208 = gen_rtx_SET (p->incoming, p->outgoing);
1209 /* Do not clobber the attached DECL, but only the REG. */
1210 XVECEXP (rtl, 0, i * 2 + 1)
1211 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1212 gen_raw_REG (GET_MODE (p->outgoing),
1213 REGNO (p->outgoing)));
1216 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1217 return;
1219 #endif
1221 adjust_mem_data amd;
1222 amd.mem_mode = VOIDmode;
1223 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1225 amd.store = true;
1226 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1228 amd.store = false;
1229 if (GET_CODE (PATTERN (insn)) == PARALLEL
1230 && asm_noperands (PATTERN (insn)) > 0
1231 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1233 rtx body, set0;
1234 int i;
1236 /* inline-asm with multiple sets is tiny bit more complicated,
1237 because the 3 vectors in ASM_OPERANDS need to be shared between
1238 all ASM_OPERANDS in the instruction. adjust_mems will
1239 not touch ASM_OPERANDS other than the first one, asm_noperands
1240 test above needs to be called before that (otherwise it would fail)
1241 and afterwards this code fixes it up. */
1242 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1243 body = PATTERN (insn);
1244 set0 = XVECEXP (body, 0, 0);
1245 gcc_checking_assert (GET_CODE (set0) == SET
1246 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1247 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1248 for (i = 1; i < XVECLEN (body, 0); i++)
1249 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1250 break;
1251 else
1253 set = XVECEXP (body, 0, i);
1254 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1255 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1256 == i);
1257 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1258 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1259 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1260 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1261 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1262 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1264 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1265 ASM_OPERANDS_INPUT_VEC (newsrc)
1266 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1267 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1268 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1269 ASM_OPERANDS_LABEL_VEC (newsrc)
1270 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1271 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1275 else
1276 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1278 /* For read-only MEMs containing some constant, prefer those
1279 constants. */
1280 set = single_set (insn);
1281 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1283 rtx note = find_reg_equal_equiv_note (insn);
1285 if (note && CONSTANT_P (XEXP (note, 0)))
1286 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1289 if (!amd.side_effects.is_empty ())
1291 rtx *pat, new_pat;
1292 int i, oldn;
1294 pat = &PATTERN (insn);
1295 if (GET_CODE (*pat) == COND_EXEC)
1296 pat = &COND_EXEC_CODE (*pat);
1297 if (GET_CODE (*pat) == PARALLEL)
1298 oldn = XVECLEN (*pat, 0);
1299 else
1300 oldn = 1;
1301 unsigned int newn = amd.side_effects.length ();
1302 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1303 if (GET_CODE (*pat) == PARALLEL)
1304 for (i = 0; i < oldn; i++)
1305 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1306 else
1307 XVECEXP (new_pat, 0, 0) = *pat;
1309 rtx effect;
1310 unsigned int j;
1311 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1312 XVECEXP (new_pat, 0, j + oldn) = effect;
1313 validate_change (NULL_RTX, pat, new_pat, true);
1317 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1318 static inline rtx
1319 dv_as_rtx (decl_or_value dv)
1321 tree decl;
1323 if (dv_is_value_p (dv))
1324 return dv_as_value (dv);
1326 decl = dv_as_decl (dv);
1328 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1329 return DECL_RTL_KNOWN_SET (decl);
1332 /* Return nonzero if a decl_or_value must not have more than one
1333 variable part. The returned value discriminates among various
1334 kinds of one-part DVs ccording to enum onepart_enum. */
1335 static inline onepart_enum
1336 dv_onepart_p (decl_or_value dv)
1338 tree decl;
1340 if (!MAY_HAVE_DEBUG_INSNS)
1341 return NOT_ONEPART;
1343 if (dv_is_value_p (dv))
1344 return ONEPART_VALUE;
1346 decl = dv_as_decl (dv);
1348 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1349 return ONEPART_DEXPR;
1351 if (target_for_debug_bind (decl) != NULL_TREE)
1352 return ONEPART_VDECL;
1354 return NOT_ONEPART;
1357 /* Return the variable pool to be used for a dv of type ONEPART. */
1358 static inline pool_allocator &
1359 onepart_pool (onepart_enum onepart)
1361 return onepart ? valvar_pool : var_pool;
1364 /* Allocate a variable_def from the corresponding variable pool. */
1365 static inline variable *
1366 onepart_pool_allocate (onepart_enum onepart)
1368 return (variable*) onepart_pool (onepart).allocate ();
1371 /* Build a decl_or_value out of a decl. */
1372 static inline decl_or_value
1373 dv_from_decl (tree decl)
1375 decl_or_value dv;
1376 dv = decl;
1377 gcc_checking_assert (dv_is_decl_p (dv));
1378 return dv;
1381 /* Build a decl_or_value out of a value. */
1382 static inline decl_or_value
1383 dv_from_value (rtx value)
1385 decl_or_value dv;
1386 dv = value;
1387 gcc_checking_assert (dv_is_value_p (dv));
1388 return dv;
1391 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1392 static inline decl_or_value
1393 dv_from_rtx (rtx x)
1395 decl_or_value dv;
1397 switch (GET_CODE (x))
1399 case DEBUG_EXPR:
1400 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1401 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1402 break;
1404 case VALUE:
1405 dv = dv_from_value (x);
1406 break;
1408 default:
1409 gcc_unreachable ();
1412 return dv;
1415 extern void debug_dv (decl_or_value dv);
1417 DEBUG_FUNCTION void
1418 debug_dv (decl_or_value dv)
1420 if (dv_is_value_p (dv))
1421 debug_rtx (dv_as_value (dv));
1422 else
1423 debug_generic_stmt (dv_as_decl (dv));
1426 static void loc_exp_dep_clear (variable *var);
1428 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1430 static void
1431 variable_htab_free (void *elem)
1433 int i;
1434 variable *var = (variable *) elem;
1435 location_chain *node, *next;
1437 gcc_checking_assert (var->refcount > 0);
1439 var->refcount--;
1440 if (var->refcount > 0)
1441 return;
1443 for (i = 0; i < var->n_var_parts; i++)
1445 for (node = var->var_part[i].loc_chain; node; node = next)
1447 next = node->next;
1448 delete node;
1450 var->var_part[i].loc_chain = NULL;
1452 if (var->onepart && VAR_LOC_1PAUX (var))
1454 loc_exp_dep_clear (var);
1455 if (VAR_LOC_DEP_LST (var))
1456 VAR_LOC_DEP_LST (var)->pprev = NULL;
1457 XDELETE (VAR_LOC_1PAUX (var));
1458 /* These may be reused across functions, so reset
1459 e.g. NO_LOC_P. */
1460 if (var->onepart == ONEPART_DEXPR)
1461 set_dv_changed (var->dv, true);
1463 onepart_pool (var->onepart).remove (var);
1466 /* Initialize the set (array) SET of attrs to empty lists. */
1468 static void
1469 init_attrs_list_set (attrs **set)
1471 int i;
1473 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1474 set[i] = NULL;
1477 /* Make the list *LISTP empty. */
1479 static void
1480 attrs_list_clear (attrs **listp)
1482 attrs *list, *next;
1484 for (list = *listp; list; list = next)
1486 next = list->next;
1487 delete list;
1489 *listp = NULL;
1492 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1494 static attrs *
1495 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1497 for (; list; list = list->next)
1498 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1499 return list;
1500 return NULL;
1503 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1505 static void
1506 attrs_list_insert (attrs **listp, decl_or_value dv,
1507 HOST_WIDE_INT offset, rtx loc)
1509 attrs *list = new attrs;
1510 list->loc = loc;
1511 list->dv = dv;
1512 list->offset = offset;
1513 list->next = *listp;
1514 *listp = list;
1517 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1519 static void
1520 attrs_list_copy (attrs **dstp, attrs *src)
1522 attrs_list_clear (dstp);
1523 for (; src; src = src->next)
1525 attrs *n = new attrs;
1526 n->loc = src->loc;
1527 n->dv = src->dv;
1528 n->offset = src->offset;
1529 n->next = *dstp;
1530 *dstp = n;
1534 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1536 static void
1537 attrs_list_union (attrs **dstp, attrs *src)
1539 for (; src; src = src->next)
1541 if (!attrs_list_member (*dstp, src->dv, src->offset))
1542 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1546 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1547 *DSTP. */
1549 static void
1550 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1552 gcc_assert (!*dstp);
1553 for (; src; src = src->next)
1555 if (!dv_onepart_p (src->dv))
1556 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1558 for (src = src2; src; src = src->next)
1560 if (!dv_onepart_p (src->dv)
1561 && !attrs_list_member (*dstp, src->dv, src->offset))
1562 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1566 /* Shared hashtable support. */
1568 /* Return true if VARS is shared. */
1570 static inline bool
1571 shared_hash_shared (shared_hash *vars)
1573 return vars->refcount > 1;
1576 /* Return the hash table for VARS. */
1578 static inline variable_table_type *
1579 shared_hash_htab (shared_hash *vars)
1581 return vars->htab;
1584 /* Return true if VAR is shared, or maybe because VARS is shared. */
1586 static inline bool
1587 shared_var_p (variable *var, shared_hash *vars)
1589 /* Don't count an entry in the changed_variables table as a duplicate. */
1590 return ((var->refcount > 1 + (int) var->in_changed_variables)
1591 || shared_hash_shared (vars));
1594 /* Copy variables into a new hash table. */
1596 static shared_hash *
1597 shared_hash_unshare (shared_hash *vars)
1599 shared_hash *new_vars = new shared_hash;
1600 gcc_assert (vars->refcount > 1);
1601 new_vars->refcount = 1;
1602 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1603 vars_copy (new_vars->htab, vars->htab);
1604 vars->refcount--;
1605 return new_vars;
1608 /* Increment reference counter on VARS and return it. */
1610 static inline shared_hash *
1611 shared_hash_copy (shared_hash *vars)
1613 vars->refcount++;
1614 return vars;
1617 /* Decrement reference counter and destroy hash table if not shared
1618 anymore. */
1620 static void
1621 shared_hash_destroy (shared_hash *vars)
1623 gcc_checking_assert (vars->refcount > 0);
1624 if (--vars->refcount == 0)
1626 delete vars->htab;
1627 delete vars;
1631 /* Unshare *PVARS if shared and return slot for DV. If INS is
1632 INSERT, insert it if not already present. */
1634 static inline variable **
1635 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1636 hashval_t dvhash, enum insert_option ins)
1638 if (shared_hash_shared (*pvars))
1639 *pvars = shared_hash_unshare (*pvars);
1640 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1643 static inline variable **
1644 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1645 enum insert_option ins)
1647 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1650 /* Return slot for DV, if it is already present in the hash table.
1651 If it is not present, insert it only VARS is not shared, otherwise
1652 return NULL. */
1654 static inline variable **
1655 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1657 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1658 shared_hash_shared (vars)
1659 ? NO_INSERT : INSERT);
1662 static inline variable **
1663 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1665 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1668 /* Return slot for DV only if it is already present in the hash table. */
1670 static inline variable **
1671 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1672 hashval_t dvhash)
1674 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1677 static inline variable **
1678 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1680 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1683 /* Return variable for DV or NULL if not already present in the hash
1684 table. */
1686 static inline variable *
1687 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1689 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1692 static inline variable *
1693 shared_hash_find (shared_hash *vars, decl_or_value dv)
1695 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1698 /* Return true if TVAL is better than CVAL as a canonival value. We
1699 choose lowest-numbered VALUEs, using the RTX address as a
1700 tie-breaker. The idea is to arrange them into a star topology,
1701 such that all of them are at most one step away from the canonical
1702 value, and the canonical value has backlinks to all of them, in
1703 addition to all the actual locations. We don't enforce this
1704 topology throughout the entire dataflow analysis, though.
1707 static inline bool
1708 canon_value_cmp (rtx tval, rtx cval)
1710 return !cval
1711 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1714 static bool dst_can_be_shared;
1716 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1718 static variable **
1719 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1720 enum var_init_status initialized)
1722 variable *new_var;
1723 int i;
1725 new_var = onepart_pool_allocate (var->onepart);
1726 new_var->dv = var->dv;
1727 new_var->refcount = 1;
1728 var->refcount--;
1729 new_var->n_var_parts = var->n_var_parts;
1730 new_var->onepart = var->onepart;
1731 new_var->in_changed_variables = false;
1733 if (! flag_var_tracking_uninit)
1734 initialized = VAR_INIT_STATUS_INITIALIZED;
1736 for (i = 0; i < var->n_var_parts; i++)
1738 location_chain *node;
1739 location_chain **nextp;
1741 if (i == 0 && var->onepart)
1743 /* One-part auxiliary data is only used while emitting
1744 notes, so propagate it to the new variable in the active
1745 dataflow set. If we're not emitting notes, this will be
1746 a no-op. */
1747 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1748 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1749 VAR_LOC_1PAUX (var) = NULL;
1751 else
1752 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1753 nextp = &new_var->var_part[i].loc_chain;
1754 for (node = var->var_part[i].loc_chain; node; node = node->next)
1756 location_chain *new_lc;
1758 new_lc = new location_chain;
1759 new_lc->next = NULL;
1760 if (node->init > initialized)
1761 new_lc->init = node->init;
1762 else
1763 new_lc->init = initialized;
1764 if (node->set_src && !(MEM_P (node->set_src)))
1765 new_lc->set_src = node->set_src;
1766 else
1767 new_lc->set_src = NULL;
1768 new_lc->loc = node->loc;
1770 *nextp = new_lc;
1771 nextp = &new_lc->next;
1774 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1777 dst_can_be_shared = false;
1778 if (shared_hash_shared (set->vars))
1779 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1780 else if (set->traversed_vars && set->vars != set->traversed_vars)
1781 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1782 *slot = new_var;
1783 if (var->in_changed_variables)
1785 variable **cslot
1786 = changed_variables->find_slot_with_hash (var->dv,
1787 dv_htab_hash (var->dv),
1788 NO_INSERT);
1789 gcc_assert (*cslot == (void *) var);
1790 var->in_changed_variables = false;
1791 variable_htab_free (var);
1792 *cslot = new_var;
1793 new_var->in_changed_variables = true;
1795 return slot;
1798 /* Copy all variables from hash table SRC to hash table DST. */
1800 static void
1801 vars_copy (variable_table_type *dst, variable_table_type *src)
1803 variable_iterator_type hi;
1804 variable *var;
1806 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1808 variable **dstp;
1809 var->refcount++;
1810 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1811 INSERT);
1812 *dstp = var;
1816 /* Map a decl to its main debug decl. */
1818 static inline tree
1819 var_debug_decl (tree decl)
1821 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1823 tree debugdecl = DECL_DEBUG_EXPR (decl);
1824 if (DECL_P (debugdecl))
1825 decl = debugdecl;
1828 return decl;
1831 /* Set the register LOC to contain DV, OFFSET. */
1833 static void
1834 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1835 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1836 enum insert_option iopt)
1838 attrs *node;
1839 bool decl_p = dv_is_decl_p (dv);
1841 if (decl_p)
1842 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1844 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1845 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1846 && node->offset == offset)
1847 break;
1848 if (!node)
1849 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1850 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1853 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1855 static void
1856 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1857 rtx set_src)
1859 tree decl = REG_EXPR (loc);
1860 HOST_WIDE_INT offset = REG_OFFSET (loc);
1862 var_reg_decl_set (set, loc, initialized,
1863 dv_from_decl (decl), offset, set_src, INSERT);
1866 static enum var_init_status
1867 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1869 variable *var;
1870 int i;
1871 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1873 if (! flag_var_tracking_uninit)
1874 return VAR_INIT_STATUS_INITIALIZED;
1876 var = shared_hash_find (set->vars, dv);
1877 if (var)
1879 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1881 location_chain *nextp;
1882 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1883 if (rtx_equal_p (nextp->loc, loc))
1885 ret_val = nextp->init;
1886 break;
1891 return ret_val;
1894 /* Delete current content of register LOC in dataflow set SET and set
1895 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1896 MODIFY is true, any other live copies of the same variable part are
1897 also deleted from the dataflow set, otherwise the variable part is
1898 assumed to be copied from another location holding the same
1899 part. */
1901 static void
1902 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1903 enum var_init_status initialized, rtx set_src)
1905 tree decl = REG_EXPR (loc);
1906 HOST_WIDE_INT offset = REG_OFFSET (loc);
1907 attrs *node, *next;
1908 attrs **nextp;
1910 decl = var_debug_decl (decl);
1912 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1913 initialized = get_init_value (set, loc, dv_from_decl (decl));
1915 nextp = &set->regs[REGNO (loc)];
1916 for (node = *nextp; node; node = next)
1918 next = node->next;
1919 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1921 delete_variable_part (set, node->loc, node->dv, node->offset);
1922 delete node;
1923 *nextp = next;
1925 else
1927 node->loc = loc;
1928 nextp = &node->next;
1931 if (modify)
1932 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1933 var_reg_set (set, loc, initialized, set_src);
1936 /* Delete the association of register LOC in dataflow set SET with any
1937 variables that aren't onepart. If CLOBBER is true, also delete any
1938 other live copies of the same variable part, and delete the
1939 association with onepart dvs too. */
1941 static void
1942 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1944 attrs **nextp = &set->regs[REGNO (loc)];
1945 attrs *node, *next;
1947 if (clobber)
1949 tree decl = REG_EXPR (loc);
1950 HOST_WIDE_INT offset = REG_OFFSET (loc);
1952 decl = var_debug_decl (decl);
1954 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1957 for (node = *nextp; node; node = next)
1959 next = node->next;
1960 if (clobber || !dv_onepart_p (node->dv))
1962 delete_variable_part (set, node->loc, node->dv, node->offset);
1963 delete node;
1964 *nextp = next;
1966 else
1967 nextp = &node->next;
1971 /* Delete content of register with number REGNO in dataflow set SET. */
1973 static void
1974 var_regno_delete (dataflow_set *set, int regno)
1976 attrs **reg = &set->regs[regno];
1977 attrs *node, *next;
1979 for (node = *reg; node; node = next)
1981 next = node->next;
1982 delete_variable_part (set, node->loc, node->dv, node->offset);
1983 delete node;
1985 *reg = NULL;
1988 /* Return true if I is the negated value of a power of two. */
1989 static bool
1990 negative_power_of_two_p (HOST_WIDE_INT i)
1992 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1993 return pow2_or_zerop (x);
1996 /* Strip constant offsets and alignments off of LOC. Return the base
1997 expression. */
1999 static rtx
2000 vt_get_canonicalize_base (rtx loc)
2002 while ((GET_CODE (loc) == PLUS
2003 || GET_CODE (loc) == AND)
2004 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2005 && (GET_CODE (loc) != AND
2006 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2007 loc = XEXP (loc, 0);
2009 return loc;
2012 /* This caches canonicalized addresses for VALUEs, computed using
2013 information in the global cselib table. */
2014 static hash_map<rtx, rtx> *global_get_addr_cache;
2016 /* This caches canonicalized addresses for VALUEs, computed using
2017 information from the global cache and information pertaining to a
2018 basic block being analyzed. */
2019 static hash_map<rtx, rtx> *local_get_addr_cache;
2021 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2023 /* Return the canonical address for LOC, that must be a VALUE, using a
2024 cached global equivalence or computing it and storing it in the
2025 global cache. */
2027 static rtx
2028 get_addr_from_global_cache (rtx const loc)
2030 rtx x;
2032 gcc_checking_assert (GET_CODE (loc) == VALUE);
2034 bool existed;
2035 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2036 if (existed)
2037 return *slot;
2039 x = canon_rtx (get_addr (loc));
2041 /* Tentative, avoiding infinite recursion. */
2042 *slot = x;
2044 if (x != loc)
2046 rtx nx = vt_canonicalize_addr (NULL, x);
2047 if (nx != x)
2049 /* The table may have moved during recursion, recompute
2050 SLOT. */
2051 *global_get_addr_cache->get (loc) = x = nx;
2055 return x;
2058 /* Return the canonical address for LOC, that must be a VALUE, using a
2059 cached local equivalence or computing it and storing it in the
2060 local cache. */
2062 static rtx
2063 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2065 rtx x;
2066 decl_or_value dv;
2067 variable *var;
2068 location_chain *l;
2070 gcc_checking_assert (GET_CODE (loc) == VALUE);
2072 bool existed;
2073 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2074 if (existed)
2075 return *slot;
2077 x = get_addr_from_global_cache (loc);
2079 /* Tentative, avoiding infinite recursion. */
2080 *slot = x;
2082 /* Recurse to cache local expansion of X, or if we need to search
2083 for a VALUE in the expansion. */
2084 if (x != loc)
2086 rtx nx = vt_canonicalize_addr (set, x);
2087 if (nx != x)
2089 slot = local_get_addr_cache->get (loc);
2090 *slot = x = nx;
2092 return x;
2095 dv = dv_from_rtx (x);
2096 var = shared_hash_find (set->vars, dv);
2097 if (!var)
2098 return x;
2100 /* Look for an improved equivalent expression. */
2101 for (l = var->var_part[0].loc_chain; l; l = l->next)
2103 rtx base = vt_get_canonicalize_base (l->loc);
2104 if (GET_CODE (base) == VALUE
2105 && canon_value_cmp (base, loc))
2107 rtx nx = vt_canonicalize_addr (set, l->loc);
2108 if (x != nx)
2110 slot = local_get_addr_cache->get (loc);
2111 *slot = x = nx;
2113 break;
2117 return x;
2120 /* Canonicalize LOC using equivalences from SET in addition to those
2121 in the cselib static table. It expects a VALUE-based expression,
2122 and it will only substitute VALUEs with other VALUEs or
2123 function-global equivalences, so that, if two addresses have base
2124 VALUEs that are locally or globally related in ways that
2125 memrefs_conflict_p cares about, they will both canonicalize to
2126 expressions that have the same base VALUE.
2128 The use of VALUEs as canonical base addresses enables the canonical
2129 RTXs to remain unchanged globally, if they resolve to a constant,
2130 or throughout a basic block otherwise, so that they can be cached
2131 and the cache needs not be invalidated when REGs, MEMs or such
2132 change. */
2134 static rtx
2135 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2137 HOST_WIDE_INT ofst = 0;
2138 machine_mode mode = GET_MODE (oloc);
2139 rtx loc = oloc;
2140 rtx x;
2141 bool retry = true;
2143 while (retry)
2145 while (GET_CODE (loc) == PLUS
2146 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2148 ofst += INTVAL (XEXP (loc, 1));
2149 loc = XEXP (loc, 0);
2152 /* Alignment operations can't normally be combined, so just
2153 canonicalize the base and we're done. We'll normally have
2154 only one stack alignment anyway. */
2155 if (GET_CODE (loc) == AND
2156 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2157 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2159 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2160 if (x != XEXP (loc, 0))
2161 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2162 retry = false;
2165 if (GET_CODE (loc) == VALUE)
2167 if (set)
2168 loc = get_addr_from_local_cache (set, loc);
2169 else
2170 loc = get_addr_from_global_cache (loc);
2172 /* Consolidate plus_constants. */
2173 while (ofst && GET_CODE (loc) == PLUS
2174 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2176 ofst += INTVAL (XEXP (loc, 1));
2177 loc = XEXP (loc, 0);
2180 retry = false;
2182 else
2184 x = canon_rtx (loc);
2185 if (retry)
2186 retry = (x != loc);
2187 loc = x;
2191 /* Add OFST back in. */
2192 if (ofst)
2194 /* Don't build new RTL if we can help it. */
2195 if (GET_CODE (oloc) == PLUS
2196 && XEXP (oloc, 0) == loc
2197 && INTVAL (XEXP (oloc, 1)) == ofst)
2198 return oloc;
2200 loc = plus_constant (mode, loc, ofst);
2203 return loc;
2206 /* Return true iff there's a true dependence between MLOC and LOC.
2207 MADDR must be a canonicalized version of MLOC's address. */
2209 static inline bool
2210 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2212 if (GET_CODE (loc) != MEM)
2213 return false;
2215 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2216 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2217 return false;
2219 return true;
2222 /* Hold parameters for the hashtab traversal function
2223 drop_overlapping_mem_locs, see below. */
2225 struct overlapping_mems
2227 dataflow_set *set;
2228 rtx loc, addr;
2231 /* Remove all MEMs that overlap with COMS->LOC from the location list
2232 of a hash table entry for a onepart variable. COMS->ADDR must be a
2233 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2234 canonicalized itself. */
2237 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2239 dataflow_set *set = coms->set;
2240 rtx mloc = coms->loc, addr = coms->addr;
2241 variable *var = *slot;
2243 if (var->onepart != NOT_ONEPART)
2245 location_chain *loc, **locp;
2246 bool changed = false;
2247 rtx cur_loc;
2249 gcc_assert (var->n_var_parts == 1);
2251 if (shared_var_p (var, set->vars))
2253 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2254 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2255 break;
2257 if (!loc)
2258 return 1;
2260 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2261 var = *slot;
2262 gcc_assert (var->n_var_parts == 1);
2265 if (VAR_LOC_1PAUX (var))
2266 cur_loc = VAR_LOC_FROM (var);
2267 else
2268 cur_loc = var->var_part[0].cur_loc;
2270 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2271 loc; loc = *locp)
2273 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2275 locp = &loc->next;
2276 continue;
2279 *locp = loc->next;
2280 /* If we have deleted the location which was last emitted
2281 we have to emit new location so add the variable to set
2282 of changed variables. */
2283 if (cur_loc == loc->loc)
2285 changed = true;
2286 var->var_part[0].cur_loc = NULL;
2287 if (VAR_LOC_1PAUX (var))
2288 VAR_LOC_FROM (var) = NULL;
2290 delete loc;
2293 if (!var->var_part[0].loc_chain)
2295 var->n_var_parts--;
2296 changed = true;
2298 if (changed)
2299 variable_was_changed (var, set);
2302 return 1;
2305 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2307 static void
2308 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2310 struct overlapping_mems coms;
2312 gcc_checking_assert (GET_CODE (loc) == MEM);
2314 coms.set = set;
2315 coms.loc = canon_rtx (loc);
2316 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2318 set->traversed_vars = set->vars;
2319 shared_hash_htab (set->vars)
2320 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2321 set->traversed_vars = NULL;
2324 /* Set the location of DV, OFFSET as the MEM LOC. */
2326 static void
2327 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2328 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2329 enum insert_option iopt)
2331 if (dv_is_decl_p (dv))
2332 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2334 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2337 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2338 SET to LOC.
2339 Adjust the address first if it is stack pointer based. */
2341 static void
2342 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2343 rtx set_src)
2345 tree decl = MEM_EXPR (loc);
2346 HOST_WIDE_INT offset = int_mem_offset (loc);
2348 var_mem_decl_set (set, loc, initialized,
2349 dv_from_decl (decl), offset, set_src, INSERT);
2352 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2353 dataflow set SET to LOC. If MODIFY is true, any other live copies
2354 of the same variable part are also deleted from the dataflow set,
2355 otherwise the variable part is assumed to be copied from another
2356 location holding the same part.
2357 Adjust the address first if it is stack pointer based. */
2359 static void
2360 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2361 enum var_init_status initialized, rtx set_src)
2363 tree decl = MEM_EXPR (loc);
2364 HOST_WIDE_INT offset = int_mem_offset (loc);
2366 clobber_overlapping_mems (set, loc);
2367 decl = var_debug_decl (decl);
2369 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2370 initialized = get_init_value (set, loc, dv_from_decl (decl));
2372 if (modify)
2373 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2374 var_mem_set (set, loc, initialized, set_src);
2377 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2378 true, also delete any other live copies of the same variable part.
2379 Adjust the address first if it is stack pointer based. */
2381 static void
2382 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2384 tree decl = MEM_EXPR (loc);
2385 HOST_WIDE_INT offset = int_mem_offset (loc);
2387 clobber_overlapping_mems (set, loc);
2388 decl = var_debug_decl (decl);
2389 if (clobber)
2390 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2391 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2394 /* Return true if LOC should not be expanded for location expressions,
2395 or used in them. */
2397 static inline bool
2398 unsuitable_loc (rtx loc)
2400 switch (GET_CODE (loc))
2402 case PC:
2403 case SCRATCH:
2404 case CC0:
2405 case ASM_INPUT:
2406 case ASM_OPERANDS:
2407 return true;
2409 default:
2410 return false;
2414 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2415 bound to it. */
2417 static inline void
2418 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2420 if (REG_P (loc))
2422 if (modified)
2423 var_regno_delete (set, REGNO (loc));
2424 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2425 dv_from_value (val), 0, NULL_RTX, INSERT);
2427 else if (MEM_P (loc))
2429 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2431 if (modified)
2432 clobber_overlapping_mems (set, loc);
2434 if (l && GET_CODE (l->loc) == VALUE)
2435 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2437 /* If this MEM is a global constant, we don't need it in the
2438 dynamic tables. ??? We should test this before emitting the
2439 micro-op in the first place. */
2440 while (l)
2441 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2442 break;
2443 else
2444 l = l->next;
2446 if (!l)
2447 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2448 dv_from_value (val), 0, NULL_RTX, INSERT);
2450 else
2452 /* Other kinds of equivalences are necessarily static, at least
2453 so long as we do not perform substitutions while merging
2454 expressions. */
2455 gcc_unreachable ();
2456 set_variable_part (set, loc, dv_from_value (val), 0,
2457 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2461 /* Bind a value to a location it was just stored in. If MODIFIED
2462 holds, assume the location was modified, detaching it from any
2463 values bound to it. */
2465 static void
2466 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2467 bool modified)
2469 cselib_val *v = CSELIB_VAL_PTR (val);
2471 gcc_assert (cselib_preserved_value_p (v));
2473 if (dump_file)
2475 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2476 print_inline_rtx (dump_file, loc, 0);
2477 fprintf (dump_file, " evaluates to ");
2478 print_inline_rtx (dump_file, val, 0);
2479 if (v->locs)
2481 struct elt_loc_list *l;
2482 for (l = v->locs; l; l = l->next)
2484 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2485 print_inline_rtx (dump_file, l->loc, 0);
2488 fprintf (dump_file, "\n");
2491 gcc_checking_assert (!unsuitable_loc (loc));
2493 val_bind (set, val, loc, modified);
2496 /* Clear (canonical address) slots that reference X. */
2498 bool
2499 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2501 if (vt_get_canonicalize_base (*slot) == x)
2502 *slot = NULL;
2503 return true;
2506 /* Reset this node, detaching all its equivalences. Return the slot
2507 in the variable hash table that holds dv, if there is one. */
2509 static void
2510 val_reset (dataflow_set *set, decl_or_value dv)
2512 variable *var = shared_hash_find (set->vars, dv) ;
2513 location_chain *node;
2514 rtx cval;
2516 if (!var || !var->n_var_parts)
2517 return;
2519 gcc_assert (var->n_var_parts == 1);
2521 if (var->onepart == ONEPART_VALUE)
2523 rtx x = dv_as_value (dv);
2525 /* Relationships in the global cache don't change, so reset the
2526 local cache entry only. */
2527 rtx *slot = local_get_addr_cache->get (x);
2528 if (slot)
2530 /* If the value resolved back to itself, odds are that other
2531 values may have cached it too. These entries now refer
2532 to the old X, so detach them too. Entries that used the
2533 old X but resolved to something else remain ok as long as
2534 that something else isn't also reset. */
2535 if (*slot == x)
2536 local_get_addr_cache
2537 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2538 *slot = NULL;
2542 cval = NULL;
2543 for (node = var->var_part[0].loc_chain; node; node = node->next)
2544 if (GET_CODE (node->loc) == VALUE
2545 && canon_value_cmp (node->loc, cval))
2546 cval = node->loc;
2548 for (node = var->var_part[0].loc_chain; node; node = node->next)
2549 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2551 /* Redirect the equivalence link to the new canonical
2552 value, or simply remove it if it would point at
2553 itself. */
2554 if (cval)
2555 set_variable_part (set, cval, dv_from_value (node->loc),
2556 0, node->init, node->set_src, NO_INSERT);
2557 delete_variable_part (set, dv_as_value (dv),
2558 dv_from_value (node->loc), 0);
2561 if (cval)
2563 decl_or_value cdv = dv_from_value (cval);
2565 /* Keep the remaining values connected, accumulating links
2566 in the canonical value. */
2567 for (node = var->var_part[0].loc_chain; node; node = node->next)
2569 if (node->loc == cval)
2570 continue;
2571 else if (GET_CODE (node->loc) == REG)
2572 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2573 node->set_src, NO_INSERT);
2574 else if (GET_CODE (node->loc) == MEM)
2575 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2576 node->set_src, NO_INSERT);
2577 else
2578 set_variable_part (set, node->loc, cdv, 0,
2579 node->init, node->set_src, NO_INSERT);
2583 /* We remove this last, to make sure that the canonical value is not
2584 removed to the point of requiring reinsertion. */
2585 if (cval)
2586 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2588 clobber_variable_part (set, NULL, dv, 0, NULL);
2591 /* Find the values in a given location and map the val to another
2592 value, if it is unique, or add the location as one holding the
2593 value. */
2595 static void
2596 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2598 decl_or_value dv = dv_from_value (val);
2600 if (dump_file && (dump_flags & TDF_DETAILS))
2602 if (insn)
2603 fprintf (dump_file, "%i: ", INSN_UID (insn));
2604 else
2605 fprintf (dump_file, "head: ");
2606 print_inline_rtx (dump_file, val, 0);
2607 fputs (" is at ", dump_file);
2608 print_inline_rtx (dump_file, loc, 0);
2609 fputc ('\n', dump_file);
2612 val_reset (set, dv);
2614 gcc_checking_assert (!unsuitable_loc (loc));
2616 if (REG_P (loc))
2618 attrs *node, *found = NULL;
2620 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2621 if (dv_is_value_p (node->dv)
2622 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2624 found = node;
2626 /* Map incoming equivalences. ??? Wouldn't it be nice if
2627 we just started sharing the location lists? Maybe a
2628 circular list ending at the value itself or some
2629 such. */
2630 set_variable_part (set, dv_as_value (node->dv),
2631 dv_from_value (val), node->offset,
2632 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2633 set_variable_part (set, val, node->dv, node->offset,
2634 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2637 /* If we didn't find any equivalence, we need to remember that
2638 this value is held in the named register. */
2639 if (found)
2640 return;
2642 /* ??? Attempt to find and merge equivalent MEMs or other
2643 expressions too. */
2645 val_bind (set, val, loc, false);
2648 /* Initialize dataflow set SET to be empty.
2649 VARS_SIZE is the initial size of hash table VARS. */
2651 static void
2652 dataflow_set_init (dataflow_set *set)
2654 init_attrs_list_set (set->regs);
2655 set->vars = shared_hash_copy (empty_shared_hash);
2656 set->stack_adjust = 0;
2657 set->traversed_vars = NULL;
2660 /* Delete the contents of dataflow set SET. */
2662 static void
2663 dataflow_set_clear (dataflow_set *set)
2665 int i;
2667 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2668 attrs_list_clear (&set->regs[i]);
2670 shared_hash_destroy (set->vars);
2671 set->vars = shared_hash_copy (empty_shared_hash);
2674 /* Copy the contents of dataflow set SRC to DST. */
2676 static void
2677 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2679 int i;
2681 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2682 attrs_list_copy (&dst->regs[i], src->regs[i]);
2684 shared_hash_destroy (dst->vars);
2685 dst->vars = shared_hash_copy (src->vars);
2686 dst->stack_adjust = src->stack_adjust;
2689 /* Information for merging lists of locations for a given offset of variable.
2691 struct variable_union_info
2693 /* Node of the location chain. */
2694 location_chain *lc;
2696 /* The sum of positions in the input chains. */
2697 int pos;
2699 /* The position in the chain of DST dataflow set. */
2700 int pos_dst;
2703 /* Buffer for location list sorting and its allocated size. */
2704 static struct variable_union_info *vui_vec;
2705 static int vui_allocated;
2707 /* Compare function for qsort, order the structures by POS element. */
2709 static int
2710 variable_union_info_cmp_pos (const void *n1, const void *n2)
2712 const struct variable_union_info *const i1 =
2713 (const struct variable_union_info *) n1;
2714 const struct variable_union_info *const i2 =
2715 ( const struct variable_union_info *) n2;
2717 if (i1->pos != i2->pos)
2718 return i1->pos - i2->pos;
2720 return (i1->pos_dst - i2->pos_dst);
2723 /* Compute union of location parts of variable *SLOT and the same variable
2724 from hash table DATA. Compute "sorted" union of the location chains
2725 for common offsets, i.e. the locations of a variable part are sorted by
2726 a priority where the priority is the sum of the positions in the 2 chains
2727 (if a location is only in one list the position in the second list is
2728 defined to be larger than the length of the chains).
2729 When we are updating the location parts the newest location is in the
2730 beginning of the chain, so when we do the described "sorted" union
2731 we keep the newest locations in the beginning. */
2733 static int
2734 variable_union (variable *src, dataflow_set *set)
2736 variable *dst;
2737 variable **dstp;
2738 int i, j, k;
2740 dstp = shared_hash_find_slot (set->vars, src->dv);
2741 if (!dstp || !*dstp)
2743 src->refcount++;
2745 dst_can_be_shared = false;
2746 if (!dstp)
2747 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2749 *dstp = src;
2751 /* Continue traversing the hash table. */
2752 return 1;
2754 else
2755 dst = *dstp;
2757 gcc_assert (src->n_var_parts);
2758 gcc_checking_assert (src->onepart == dst->onepart);
2760 /* We can combine one-part variables very efficiently, because their
2761 entries are in canonical order. */
2762 if (src->onepart)
2764 location_chain **nodep, *dnode, *snode;
2766 gcc_assert (src->n_var_parts == 1
2767 && dst->n_var_parts == 1);
2769 snode = src->var_part[0].loc_chain;
2770 gcc_assert (snode);
2772 restart_onepart_unshared:
2773 nodep = &dst->var_part[0].loc_chain;
2774 dnode = *nodep;
2775 gcc_assert (dnode);
2777 while (snode)
2779 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2781 if (r > 0)
2783 location_chain *nnode;
2785 if (shared_var_p (dst, set->vars))
2787 dstp = unshare_variable (set, dstp, dst,
2788 VAR_INIT_STATUS_INITIALIZED);
2789 dst = *dstp;
2790 goto restart_onepart_unshared;
2793 *nodep = nnode = new location_chain;
2794 nnode->loc = snode->loc;
2795 nnode->init = snode->init;
2796 if (!snode->set_src || MEM_P (snode->set_src))
2797 nnode->set_src = NULL;
2798 else
2799 nnode->set_src = snode->set_src;
2800 nnode->next = dnode;
2801 dnode = nnode;
2803 else if (r == 0)
2804 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2806 if (r >= 0)
2807 snode = snode->next;
2809 nodep = &dnode->next;
2810 dnode = *nodep;
2813 return 1;
2816 gcc_checking_assert (!src->onepart);
2818 /* Count the number of location parts, result is K. */
2819 for (i = 0, j = 0, k = 0;
2820 i < src->n_var_parts && j < dst->n_var_parts; k++)
2822 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2824 i++;
2825 j++;
2827 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2828 i++;
2829 else
2830 j++;
2832 k += src->n_var_parts - i;
2833 k += dst->n_var_parts - j;
2835 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2836 thus there are at most MAX_VAR_PARTS different offsets. */
2837 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2839 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2841 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2842 dst = *dstp;
2845 i = src->n_var_parts - 1;
2846 j = dst->n_var_parts - 1;
2847 dst->n_var_parts = k;
2849 for (k--; k >= 0; k--)
2851 location_chain *node, *node2;
2853 if (i >= 0 && j >= 0
2854 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2856 /* Compute the "sorted" union of the chains, i.e. the locations which
2857 are in both chains go first, they are sorted by the sum of
2858 positions in the chains. */
2859 int dst_l, src_l;
2860 int ii, jj, n;
2861 struct variable_union_info *vui;
2863 /* If DST is shared compare the location chains.
2864 If they are different we will modify the chain in DST with
2865 high probability so make a copy of DST. */
2866 if (shared_var_p (dst, set->vars))
2868 for (node = src->var_part[i].loc_chain,
2869 node2 = dst->var_part[j].loc_chain; node && node2;
2870 node = node->next, node2 = node2->next)
2872 if (!((REG_P (node2->loc)
2873 && REG_P (node->loc)
2874 && REGNO (node2->loc) == REGNO (node->loc))
2875 || rtx_equal_p (node2->loc, node->loc)))
2877 if (node2->init < node->init)
2878 node2->init = node->init;
2879 break;
2882 if (node || node2)
2884 dstp = unshare_variable (set, dstp, dst,
2885 VAR_INIT_STATUS_UNKNOWN);
2886 dst = (variable *)*dstp;
2890 src_l = 0;
2891 for (node = src->var_part[i].loc_chain; node; node = node->next)
2892 src_l++;
2893 dst_l = 0;
2894 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2895 dst_l++;
2897 if (dst_l == 1)
2899 /* The most common case, much simpler, no qsort is needed. */
2900 location_chain *dstnode = dst->var_part[j].loc_chain;
2901 dst->var_part[k].loc_chain = dstnode;
2902 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2903 node2 = dstnode;
2904 for (node = src->var_part[i].loc_chain; node; node = node->next)
2905 if (!((REG_P (dstnode->loc)
2906 && REG_P (node->loc)
2907 && REGNO (dstnode->loc) == REGNO (node->loc))
2908 || rtx_equal_p (dstnode->loc, node->loc)))
2910 location_chain *new_node;
2912 /* Copy the location from SRC. */
2913 new_node = new location_chain;
2914 new_node->loc = node->loc;
2915 new_node->init = node->init;
2916 if (!node->set_src || MEM_P (node->set_src))
2917 new_node->set_src = NULL;
2918 else
2919 new_node->set_src = node->set_src;
2920 node2->next = new_node;
2921 node2 = new_node;
2923 node2->next = NULL;
2925 else
2927 if (src_l + dst_l > vui_allocated)
2929 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2930 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2931 vui_allocated);
2933 vui = vui_vec;
2935 /* Fill in the locations from DST. */
2936 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2937 node = node->next, jj++)
2939 vui[jj].lc = node;
2940 vui[jj].pos_dst = jj;
2942 /* Pos plus value larger than a sum of 2 valid positions. */
2943 vui[jj].pos = jj + src_l + dst_l;
2946 /* Fill in the locations from SRC. */
2947 n = dst_l;
2948 for (node = src->var_part[i].loc_chain, ii = 0; node;
2949 node = node->next, ii++)
2951 /* Find location from NODE. */
2952 for (jj = 0; jj < dst_l; jj++)
2954 if ((REG_P (vui[jj].lc->loc)
2955 && REG_P (node->loc)
2956 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2957 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2959 vui[jj].pos = jj + ii;
2960 break;
2963 if (jj >= dst_l) /* The location has not been found. */
2965 location_chain *new_node;
2967 /* Copy the location from SRC. */
2968 new_node = new location_chain;
2969 new_node->loc = node->loc;
2970 new_node->init = node->init;
2971 if (!node->set_src || MEM_P (node->set_src))
2972 new_node->set_src = NULL;
2973 else
2974 new_node->set_src = node->set_src;
2975 vui[n].lc = new_node;
2976 vui[n].pos_dst = src_l + dst_l;
2977 vui[n].pos = ii + src_l + dst_l;
2978 n++;
2982 if (dst_l == 2)
2984 /* Special case still very common case. For dst_l == 2
2985 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2986 vui[i].pos == i + src_l + dst_l. */
2987 if (vui[0].pos > vui[1].pos)
2989 /* Order should be 1, 0, 2... */
2990 dst->var_part[k].loc_chain = vui[1].lc;
2991 vui[1].lc->next = vui[0].lc;
2992 if (n >= 3)
2994 vui[0].lc->next = vui[2].lc;
2995 vui[n - 1].lc->next = NULL;
2997 else
2998 vui[0].lc->next = NULL;
2999 ii = 3;
3001 else
3003 dst->var_part[k].loc_chain = vui[0].lc;
3004 if (n >= 3 && vui[2].pos < vui[1].pos)
3006 /* Order should be 0, 2, 1, 3... */
3007 vui[0].lc->next = vui[2].lc;
3008 vui[2].lc->next = vui[1].lc;
3009 if (n >= 4)
3011 vui[1].lc->next = vui[3].lc;
3012 vui[n - 1].lc->next = NULL;
3014 else
3015 vui[1].lc->next = NULL;
3016 ii = 4;
3018 else
3020 /* Order should be 0, 1, 2... */
3021 ii = 1;
3022 vui[n - 1].lc->next = NULL;
3025 for (; ii < n; ii++)
3026 vui[ii - 1].lc->next = vui[ii].lc;
3028 else
3030 qsort (vui, n, sizeof (struct variable_union_info),
3031 variable_union_info_cmp_pos);
3033 /* Reconnect the nodes in sorted order. */
3034 for (ii = 1; ii < n; ii++)
3035 vui[ii - 1].lc->next = vui[ii].lc;
3036 vui[n - 1].lc->next = NULL;
3037 dst->var_part[k].loc_chain = vui[0].lc;
3040 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3042 i--;
3043 j--;
3045 else if ((i >= 0 && j >= 0
3046 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3047 || i < 0)
3049 dst->var_part[k] = dst->var_part[j];
3050 j--;
3052 else if ((i >= 0 && j >= 0
3053 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3054 || j < 0)
3056 location_chain **nextp;
3058 /* Copy the chain from SRC. */
3059 nextp = &dst->var_part[k].loc_chain;
3060 for (node = src->var_part[i].loc_chain; node; node = node->next)
3062 location_chain *new_lc;
3064 new_lc = new location_chain;
3065 new_lc->next = NULL;
3066 new_lc->init = node->init;
3067 if (!node->set_src || MEM_P (node->set_src))
3068 new_lc->set_src = NULL;
3069 else
3070 new_lc->set_src = node->set_src;
3071 new_lc->loc = node->loc;
3073 *nextp = new_lc;
3074 nextp = &new_lc->next;
3077 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3078 i--;
3080 dst->var_part[k].cur_loc = NULL;
3083 if (flag_var_tracking_uninit)
3084 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3086 location_chain *node, *node2;
3087 for (node = src->var_part[i].loc_chain; node; node = node->next)
3088 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3089 if (rtx_equal_p (node->loc, node2->loc))
3091 if (node->init > node2->init)
3092 node2->init = node->init;
3096 /* Continue traversing the hash table. */
3097 return 1;
3100 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3102 static void
3103 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3105 int i;
3107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3108 attrs_list_union (&dst->regs[i], src->regs[i]);
3110 if (dst->vars == empty_shared_hash)
3112 shared_hash_destroy (dst->vars);
3113 dst->vars = shared_hash_copy (src->vars);
3115 else
3117 variable_iterator_type hi;
3118 variable *var;
3120 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3121 var, variable, hi)
3122 variable_union (var, dst);
3126 /* Whether the value is currently being expanded. */
3127 #define VALUE_RECURSED_INTO(x) \
3128 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3130 /* Whether no expansion was found, saving useless lookups.
3131 It must only be set when VALUE_CHANGED is clear. */
3132 #define NO_LOC_P(x) \
3133 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3135 /* Whether cur_loc in the value needs to be (re)computed. */
3136 #define VALUE_CHANGED(x) \
3137 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3138 /* Whether cur_loc in the decl needs to be (re)computed. */
3139 #define DECL_CHANGED(x) TREE_VISITED (x)
3141 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3142 user DECLs, this means they're in changed_variables. Values and
3143 debug exprs may be left with this flag set if no user variable
3144 requires them to be evaluated. */
3146 static inline void
3147 set_dv_changed (decl_or_value dv, bool newv)
3149 switch (dv_onepart_p (dv))
3151 case ONEPART_VALUE:
3152 if (newv)
3153 NO_LOC_P (dv_as_value (dv)) = false;
3154 VALUE_CHANGED (dv_as_value (dv)) = newv;
3155 break;
3157 case ONEPART_DEXPR:
3158 if (newv)
3159 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3160 /* Fall through. */
3162 default:
3163 DECL_CHANGED (dv_as_decl (dv)) = newv;
3164 break;
3168 /* Return true if DV needs to have its cur_loc recomputed. */
3170 static inline bool
3171 dv_changed_p (decl_or_value dv)
3173 return (dv_is_value_p (dv)
3174 ? VALUE_CHANGED (dv_as_value (dv))
3175 : DECL_CHANGED (dv_as_decl (dv)));
3178 /* Return a location list node whose loc is rtx_equal to LOC, in the
3179 location list of a one-part variable or value VAR, or in that of
3180 any values recursively mentioned in the location lists. VARS must
3181 be in star-canonical form. */
3183 static location_chain *
3184 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3186 location_chain *node;
3187 enum rtx_code loc_code;
3189 if (!var)
3190 return NULL;
3192 gcc_checking_assert (var->onepart);
3194 if (!var->n_var_parts)
3195 return NULL;
3197 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3199 loc_code = GET_CODE (loc);
3200 for (node = var->var_part[0].loc_chain; node; node = node->next)
3202 decl_or_value dv;
3203 variable *rvar;
3205 if (GET_CODE (node->loc) != loc_code)
3207 if (GET_CODE (node->loc) != VALUE)
3208 continue;
3210 else if (loc == node->loc)
3211 return node;
3212 else if (loc_code != VALUE)
3214 if (rtx_equal_p (loc, node->loc))
3215 return node;
3216 continue;
3219 /* Since we're in star-canonical form, we don't need to visit
3220 non-canonical nodes: one-part variables and non-canonical
3221 values would only point back to the canonical node. */
3222 if (dv_is_value_p (var->dv)
3223 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3225 /* Skip all subsequent VALUEs. */
3226 while (node->next && GET_CODE (node->next->loc) == VALUE)
3228 node = node->next;
3229 gcc_checking_assert (!canon_value_cmp (node->loc,
3230 dv_as_value (var->dv)));
3231 if (loc == node->loc)
3232 return node;
3234 continue;
3237 gcc_checking_assert (node == var->var_part[0].loc_chain);
3238 gcc_checking_assert (!node->next);
3240 dv = dv_from_value (node->loc);
3241 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3242 return find_loc_in_1pdv (loc, rvar, vars);
3245 /* ??? Gotta look in cselib_val locations too. */
3247 return NULL;
3250 /* Hash table iteration argument passed to variable_merge. */
3251 struct dfset_merge
3253 /* The set in which the merge is to be inserted. */
3254 dataflow_set *dst;
3255 /* The set that we're iterating in. */
3256 dataflow_set *cur;
3257 /* The set that may contain the other dv we are to merge with. */
3258 dataflow_set *src;
3259 /* Number of onepart dvs in src. */
3260 int src_onepart_cnt;
3263 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3264 loc_cmp order, and it is maintained as such. */
3266 static void
3267 insert_into_intersection (location_chain **nodep, rtx loc,
3268 enum var_init_status status)
3270 location_chain *node;
3271 int r;
3273 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3274 if ((r = loc_cmp (node->loc, loc)) == 0)
3276 node->init = MIN (node->init, status);
3277 return;
3279 else if (r > 0)
3280 break;
3282 node = new location_chain;
3284 node->loc = loc;
3285 node->set_src = NULL;
3286 node->init = status;
3287 node->next = *nodep;
3288 *nodep = node;
3291 /* Insert in DEST the intersection of the locations present in both
3292 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3293 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3294 DSM->dst. */
3296 static void
3297 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3298 location_chain *s1node, variable *s2var)
3300 dataflow_set *s1set = dsm->cur;
3301 dataflow_set *s2set = dsm->src;
3302 location_chain *found;
3304 if (s2var)
3306 location_chain *s2node;
3308 gcc_checking_assert (s2var->onepart);
3310 if (s2var->n_var_parts)
3312 s2node = s2var->var_part[0].loc_chain;
3314 for (; s1node && s2node;
3315 s1node = s1node->next, s2node = s2node->next)
3316 if (s1node->loc != s2node->loc)
3317 break;
3318 else if (s1node->loc == val)
3319 continue;
3320 else
3321 insert_into_intersection (dest, s1node->loc,
3322 MIN (s1node->init, s2node->init));
3326 for (; s1node; s1node = s1node->next)
3328 if (s1node->loc == val)
3329 continue;
3331 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3332 shared_hash_htab (s2set->vars))))
3334 insert_into_intersection (dest, s1node->loc,
3335 MIN (s1node->init, found->init));
3336 continue;
3339 if (GET_CODE (s1node->loc) == VALUE
3340 && !VALUE_RECURSED_INTO (s1node->loc))
3342 decl_or_value dv = dv_from_value (s1node->loc);
3343 variable *svar = shared_hash_find (s1set->vars, dv);
3344 if (svar)
3346 if (svar->n_var_parts == 1)
3348 VALUE_RECURSED_INTO (s1node->loc) = true;
3349 intersect_loc_chains (val, dest, dsm,
3350 svar->var_part[0].loc_chain,
3351 s2var);
3352 VALUE_RECURSED_INTO (s1node->loc) = false;
3357 /* ??? gotta look in cselib_val locations too. */
3359 /* ??? if the location is equivalent to any location in src,
3360 searched recursively
3362 add to dst the values needed to represent the equivalence
3364 telling whether locations S is equivalent to another dv's
3365 location list:
3367 for each location D in the list
3369 if S and D satisfy rtx_equal_p, then it is present
3371 else if D is a value, recurse without cycles
3373 else if S and D have the same CODE and MODE
3375 for each operand oS and the corresponding oD
3377 if oS and oD are not equivalent, then S an D are not equivalent
3379 else if they are RTX vectors
3381 if any vector oS element is not equivalent to its respective oD,
3382 then S and D are not equivalent
3390 /* Return -1 if X should be before Y in a location list for a 1-part
3391 variable, 1 if Y should be before X, and 0 if they're equivalent
3392 and should not appear in the list. */
3394 static int
3395 loc_cmp (rtx x, rtx y)
3397 int i, j, r;
3398 RTX_CODE code = GET_CODE (x);
3399 const char *fmt;
3401 if (x == y)
3402 return 0;
3404 if (REG_P (x))
3406 if (!REG_P (y))
3407 return -1;
3408 gcc_assert (GET_MODE (x) == GET_MODE (y));
3409 if (REGNO (x) == REGNO (y))
3410 return 0;
3411 else if (REGNO (x) < REGNO (y))
3412 return -1;
3413 else
3414 return 1;
3417 if (REG_P (y))
3418 return 1;
3420 if (MEM_P (x))
3422 if (!MEM_P (y))
3423 return -1;
3424 gcc_assert (GET_MODE (x) == GET_MODE (y));
3425 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3428 if (MEM_P (y))
3429 return 1;
3431 if (GET_CODE (x) == VALUE)
3433 if (GET_CODE (y) != VALUE)
3434 return -1;
3435 /* Don't assert the modes are the same, that is true only
3436 when not recursing. (subreg:QI (value:SI 1:1) 0)
3437 and (subreg:QI (value:DI 2:2) 0) can be compared,
3438 even when the modes are different. */
3439 if (canon_value_cmp (x, y))
3440 return -1;
3441 else
3442 return 1;
3445 if (GET_CODE (y) == VALUE)
3446 return 1;
3448 /* Entry value is the least preferable kind of expression. */
3449 if (GET_CODE (x) == ENTRY_VALUE)
3451 if (GET_CODE (y) != ENTRY_VALUE)
3452 return 1;
3453 gcc_assert (GET_MODE (x) == GET_MODE (y));
3454 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3457 if (GET_CODE (y) == ENTRY_VALUE)
3458 return -1;
3460 if (GET_CODE (x) == GET_CODE (y))
3461 /* Compare operands below. */;
3462 else if (GET_CODE (x) < GET_CODE (y))
3463 return -1;
3464 else
3465 return 1;
3467 gcc_assert (GET_MODE (x) == GET_MODE (y));
3469 if (GET_CODE (x) == DEBUG_EXPR)
3471 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3472 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3473 return -1;
3474 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3475 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3476 return 1;
3479 fmt = GET_RTX_FORMAT (code);
3480 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3481 switch (fmt[i])
3483 case 'w':
3484 if (XWINT (x, i) == XWINT (y, i))
3485 break;
3486 else if (XWINT (x, i) < XWINT (y, i))
3487 return -1;
3488 else
3489 return 1;
3491 case 'n':
3492 case 'i':
3493 if (XINT (x, i) == XINT (y, i))
3494 break;
3495 else if (XINT (x, i) < XINT (y, i))
3496 return -1;
3497 else
3498 return 1;
3500 case 'V':
3501 case 'E':
3502 /* Compare the vector length first. */
3503 if (XVECLEN (x, i) == XVECLEN (y, i))
3504 /* Compare the vectors elements. */;
3505 else if (XVECLEN (x, i) < XVECLEN (y, i))
3506 return -1;
3507 else
3508 return 1;
3510 for (j = 0; j < XVECLEN (x, i); j++)
3511 if ((r = loc_cmp (XVECEXP (x, i, j),
3512 XVECEXP (y, i, j))))
3513 return r;
3514 break;
3516 case 'e':
3517 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3518 return r;
3519 break;
3521 case 'S':
3522 case 's':
3523 if (XSTR (x, i) == XSTR (y, i))
3524 break;
3525 if (!XSTR (x, i))
3526 return -1;
3527 if (!XSTR (y, i))
3528 return 1;
3529 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3530 break;
3531 else if (r < 0)
3532 return -1;
3533 else
3534 return 1;
3536 case 'u':
3537 /* These are just backpointers, so they don't matter. */
3538 break;
3540 case '0':
3541 case 't':
3542 break;
3544 /* It is believed that rtx's at this level will never
3545 contain anything but integers and other rtx's,
3546 except for within LABEL_REFs and SYMBOL_REFs. */
3547 default:
3548 gcc_unreachable ();
3550 if (CONST_WIDE_INT_P (x))
3552 /* Compare the vector length first. */
3553 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3554 return 1;
3555 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3556 return -1;
3558 /* Compare the vectors elements. */;
3559 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3561 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3562 return -1;
3563 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3564 return 1;
3568 return 0;
3571 /* Check the order of entries in one-part variables. */
3574 canonicalize_loc_order_check (variable **slot,
3575 dataflow_set *data ATTRIBUTE_UNUSED)
3577 variable *var = *slot;
3578 location_chain *node, *next;
3580 #ifdef ENABLE_RTL_CHECKING
3581 int i;
3582 for (i = 0; i < var->n_var_parts; i++)
3583 gcc_assert (var->var_part[0].cur_loc == NULL);
3584 gcc_assert (!var->in_changed_variables);
3585 #endif
3587 if (!var->onepart)
3588 return 1;
3590 gcc_assert (var->n_var_parts == 1);
3591 node = var->var_part[0].loc_chain;
3592 gcc_assert (node);
3594 while ((next = node->next))
3596 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3597 node = next;
3600 return 1;
3603 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3604 more likely to be chosen as canonical for an equivalence set.
3605 Ensure less likely values can reach more likely neighbors, making
3606 the connections bidirectional. */
3609 canonicalize_values_mark (variable **slot, dataflow_set *set)
3611 variable *var = *slot;
3612 decl_or_value dv = var->dv;
3613 rtx val;
3614 location_chain *node;
3616 if (!dv_is_value_p (dv))
3617 return 1;
3619 gcc_checking_assert (var->n_var_parts == 1);
3621 val = dv_as_value (dv);
3623 for (node = var->var_part[0].loc_chain; node; node = node->next)
3624 if (GET_CODE (node->loc) == VALUE)
3626 if (canon_value_cmp (node->loc, val))
3627 VALUE_RECURSED_INTO (val) = true;
3628 else
3630 decl_or_value odv = dv_from_value (node->loc);
3631 variable **oslot;
3632 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3634 set_slot_part (set, val, oslot, odv, 0,
3635 node->init, NULL_RTX);
3637 VALUE_RECURSED_INTO (node->loc) = true;
3641 return 1;
3644 /* Remove redundant entries from equivalence lists in onepart
3645 variables, canonicalizing equivalence sets into star shapes. */
3648 canonicalize_values_star (variable **slot, dataflow_set *set)
3650 variable *var = *slot;
3651 decl_or_value dv = var->dv;
3652 location_chain *node;
3653 decl_or_value cdv;
3654 rtx val, cval;
3655 variable **cslot;
3656 bool has_value;
3657 bool has_marks;
3659 if (!var->onepart)
3660 return 1;
3662 gcc_checking_assert (var->n_var_parts == 1);
3664 if (dv_is_value_p (dv))
3666 cval = dv_as_value (dv);
3667 if (!VALUE_RECURSED_INTO (cval))
3668 return 1;
3669 VALUE_RECURSED_INTO (cval) = false;
3671 else
3672 cval = NULL_RTX;
3674 restart:
3675 val = cval;
3676 has_value = false;
3677 has_marks = false;
3679 gcc_assert (var->n_var_parts == 1);
3681 for (node = var->var_part[0].loc_chain; node; node = node->next)
3682 if (GET_CODE (node->loc) == VALUE)
3684 has_value = true;
3685 if (VALUE_RECURSED_INTO (node->loc))
3686 has_marks = true;
3687 if (canon_value_cmp (node->loc, cval))
3688 cval = node->loc;
3691 if (!has_value)
3692 return 1;
3694 if (cval == val)
3696 if (!has_marks || dv_is_decl_p (dv))
3697 return 1;
3699 /* Keep it marked so that we revisit it, either after visiting a
3700 child node, or after visiting a new parent that might be
3701 found out. */
3702 VALUE_RECURSED_INTO (val) = true;
3704 for (node = var->var_part[0].loc_chain; node; node = node->next)
3705 if (GET_CODE (node->loc) == VALUE
3706 && VALUE_RECURSED_INTO (node->loc))
3708 cval = node->loc;
3709 restart_with_cval:
3710 VALUE_RECURSED_INTO (cval) = false;
3711 dv = dv_from_value (cval);
3712 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3713 if (!slot)
3715 gcc_assert (dv_is_decl_p (var->dv));
3716 /* The canonical value was reset and dropped.
3717 Remove it. */
3718 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3719 return 1;
3721 var = *slot;
3722 gcc_assert (dv_is_value_p (var->dv));
3723 if (var->n_var_parts == 0)
3724 return 1;
3725 gcc_assert (var->n_var_parts == 1);
3726 goto restart;
3729 VALUE_RECURSED_INTO (val) = false;
3731 return 1;
3734 /* Push values to the canonical one. */
3735 cdv = dv_from_value (cval);
3736 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3738 for (node = var->var_part[0].loc_chain; node; node = node->next)
3739 if (node->loc != cval)
3741 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3742 node->init, NULL_RTX);
3743 if (GET_CODE (node->loc) == VALUE)
3745 decl_or_value ndv = dv_from_value (node->loc);
3747 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3748 NO_INSERT);
3750 if (canon_value_cmp (node->loc, val))
3752 /* If it could have been a local minimum, it's not any more,
3753 since it's now neighbor to cval, so it may have to push
3754 to it. Conversely, if it wouldn't have prevailed over
3755 val, then whatever mark it has is fine: if it was to
3756 push, it will now push to a more canonical node, but if
3757 it wasn't, then it has already pushed any values it might
3758 have to. */
3759 VALUE_RECURSED_INTO (node->loc) = true;
3760 /* Make sure we visit node->loc by ensuring we cval is
3761 visited too. */
3762 VALUE_RECURSED_INTO (cval) = true;
3764 else if (!VALUE_RECURSED_INTO (node->loc))
3765 /* If we have no need to "recurse" into this node, it's
3766 already "canonicalized", so drop the link to the old
3767 parent. */
3768 clobber_variable_part (set, cval, ndv, 0, NULL);
3770 else if (GET_CODE (node->loc) == REG)
3772 attrs *list = set->regs[REGNO (node->loc)], **listp;
3774 /* Change an existing attribute referring to dv so that it
3775 refers to cdv, removing any duplicate this might
3776 introduce, and checking that no previous duplicates
3777 existed, all in a single pass. */
3779 while (list)
3781 if (list->offset == 0
3782 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3783 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3784 break;
3786 list = list->next;
3789 gcc_assert (list);
3790 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3792 list->dv = cdv;
3793 for (listp = &list->next; (list = *listp); listp = &list->next)
3795 if (list->offset)
3796 continue;
3798 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3800 *listp = list->next;
3801 delete list;
3802 list = *listp;
3803 break;
3806 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3809 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3811 for (listp = &list->next; (list = *listp); listp = &list->next)
3813 if (list->offset)
3814 continue;
3816 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3818 *listp = list->next;
3819 delete list;
3820 list = *listp;
3821 break;
3824 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3827 else
3828 gcc_unreachable ();
3830 if (flag_checking)
3831 while (list)
3833 if (list->offset == 0
3834 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3835 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3836 gcc_unreachable ();
3838 list = list->next;
3843 if (val)
3844 set_slot_part (set, val, cslot, cdv, 0,
3845 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3847 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3849 /* Variable may have been unshared. */
3850 var = *slot;
3851 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3852 && var->var_part[0].loc_chain->next == NULL);
3854 if (VALUE_RECURSED_INTO (cval))
3855 goto restart_with_cval;
3857 return 1;
3860 /* Bind one-part variables to the canonical value in an equivalence
3861 set. Not doing this causes dataflow convergence failure in rare
3862 circumstances, see PR42873. Unfortunately we can't do this
3863 efficiently as part of canonicalize_values_star, since we may not
3864 have determined or even seen the canonical value of a set when we
3865 get to a variable that references another member of the set. */
3868 canonicalize_vars_star (variable **slot, dataflow_set *set)
3870 variable *var = *slot;
3871 decl_or_value dv = var->dv;
3872 location_chain *node;
3873 rtx cval;
3874 decl_or_value cdv;
3875 variable **cslot;
3876 variable *cvar;
3877 location_chain *cnode;
3879 if (!var->onepart || var->onepart == ONEPART_VALUE)
3880 return 1;
3882 gcc_assert (var->n_var_parts == 1);
3884 node = var->var_part[0].loc_chain;
3886 if (GET_CODE (node->loc) != VALUE)
3887 return 1;
3889 gcc_assert (!node->next);
3890 cval = node->loc;
3892 /* Push values to the canonical one. */
3893 cdv = dv_from_value (cval);
3894 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3895 if (!cslot)
3896 return 1;
3897 cvar = *cslot;
3898 gcc_assert (cvar->n_var_parts == 1);
3900 cnode = cvar->var_part[0].loc_chain;
3902 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3903 that are not “more canonical” than it. */
3904 if (GET_CODE (cnode->loc) != VALUE
3905 || !canon_value_cmp (cnode->loc, cval))
3906 return 1;
3908 /* CVAL was found to be non-canonical. Change the variable to point
3909 to the canonical VALUE. */
3910 gcc_assert (!cnode->next);
3911 cval = cnode->loc;
3913 slot = set_slot_part (set, cval, slot, dv, 0,
3914 node->init, node->set_src);
3915 clobber_slot_part (set, cval, slot, 0, node->set_src);
3917 return 1;
3920 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3921 corresponding entry in DSM->src. Multi-part variables are combined
3922 with variable_union, whereas onepart dvs are combined with
3923 intersection. */
3925 static int
3926 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3928 dataflow_set *dst = dsm->dst;
3929 variable **dstslot;
3930 variable *s2var, *dvar = NULL;
3931 decl_or_value dv = s1var->dv;
3932 onepart_enum onepart = s1var->onepart;
3933 rtx val;
3934 hashval_t dvhash;
3935 location_chain *node, **nodep;
3937 /* If the incoming onepart variable has an empty location list, then
3938 the intersection will be just as empty. For other variables,
3939 it's always union. */
3940 gcc_checking_assert (s1var->n_var_parts
3941 && s1var->var_part[0].loc_chain);
3943 if (!onepart)
3944 return variable_union (s1var, dst);
3946 gcc_checking_assert (s1var->n_var_parts == 1);
3948 dvhash = dv_htab_hash (dv);
3949 if (dv_is_value_p (dv))
3950 val = dv_as_value (dv);
3951 else
3952 val = NULL;
3954 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3955 if (!s2var)
3957 dst_can_be_shared = false;
3958 return 1;
3961 dsm->src_onepart_cnt--;
3962 gcc_assert (s2var->var_part[0].loc_chain
3963 && s2var->onepart == onepart
3964 && s2var->n_var_parts == 1);
3966 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3967 if (dstslot)
3969 dvar = *dstslot;
3970 gcc_assert (dvar->refcount == 1
3971 && dvar->onepart == onepart
3972 && dvar->n_var_parts == 1);
3973 nodep = &dvar->var_part[0].loc_chain;
3975 else
3977 nodep = &node;
3978 node = NULL;
3981 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3983 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3984 dvhash, INSERT);
3985 *dstslot = dvar = s2var;
3986 dvar->refcount++;
3988 else
3990 dst_can_be_shared = false;
3992 intersect_loc_chains (val, nodep, dsm,
3993 s1var->var_part[0].loc_chain, s2var);
3995 if (!dstslot)
3997 if (node)
3999 dvar = onepart_pool_allocate (onepart);
4000 dvar->dv = dv;
4001 dvar->refcount = 1;
4002 dvar->n_var_parts = 1;
4003 dvar->onepart = onepart;
4004 dvar->in_changed_variables = false;
4005 dvar->var_part[0].loc_chain = node;
4006 dvar->var_part[0].cur_loc = NULL;
4007 if (onepart)
4008 VAR_LOC_1PAUX (dvar) = NULL;
4009 else
4010 VAR_PART_OFFSET (dvar, 0) = 0;
4012 dstslot
4013 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4014 INSERT);
4015 gcc_assert (!*dstslot);
4016 *dstslot = dvar;
4018 else
4019 return 1;
4023 nodep = &dvar->var_part[0].loc_chain;
4024 while ((node = *nodep))
4026 location_chain **nextp = &node->next;
4028 if (GET_CODE (node->loc) == REG)
4030 attrs *list;
4032 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4033 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4034 && dv_is_value_p (list->dv))
4035 break;
4037 if (!list)
4038 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4039 dv, 0, node->loc);
4040 /* If this value became canonical for another value that had
4041 this register, we want to leave it alone. */
4042 else if (dv_as_value (list->dv) != val)
4044 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4045 dstslot, dv, 0,
4046 node->init, NULL_RTX);
4047 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4049 /* Since nextp points into the removed node, we can't
4050 use it. The pointer to the next node moved to nodep.
4051 However, if the variable we're walking is unshared
4052 during our walk, we'll keep walking the location list
4053 of the previously-shared variable, in which case the
4054 node won't have been removed, and we'll want to skip
4055 it. That's why we test *nodep here. */
4056 if (*nodep != node)
4057 nextp = nodep;
4060 else
4061 /* Canonicalization puts registers first, so we don't have to
4062 walk it all. */
4063 break;
4064 nodep = nextp;
4067 if (dvar != *dstslot)
4068 dvar = *dstslot;
4069 nodep = &dvar->var_part[0].loc_chain;
4071 if (val)
4073 /* Mark all referenced nodes for canonicalization, and make sure
4074 we have mutual equivalence links. */
4075 VALUE_RECURSED_INTO (val) = true;
4076 for (node = *nodep; node; node = node->next)
4077 if (GET_CODE (node->loc) == VALUE)
4079 VALUE_RECURSED_INTO (node->loc) = true;
4080 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4081 node->init, NULL, INSERT);
4084 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4085 gcc_assert (*dstslot == dvar);
4086 canonicalize_values_star (dstslot, dst);
4087 gcc_checking_assert (dstslot
4088 == shared_hash_find_slot_noinsert_1 (dst->vars,
4089 dv, dvhash));
4090 dvar = *dstslot;
4092 else
4094 bool has_value = false, has_other = false;
4096 /* If we have one value and anything else, we're going to
4097 canonicalize this, so make sure all values have an entry in
4098 the table and are marked for canonicalization. */
4099 for (node = *nodep; node; node = node->next)
4101 if (GET_CODE (node->loc) == VALUE)
4103 /* If this was marked during register canonicalization,
4104 we know we have to canonicalize values. */
4105 if (has_value)
4106 has_other = true;
4107 has_value = true;
4108 if (has_other)
4109 break;
4111 else
4113 has_other = true;
4114 if (has_value)
4115 break;
4119 if (has_value && has_other)
4121 for (node = *nodep; node; node = node->next)
4123 if (GET_CODE (node->loc) == VALUE)
4125 decl_or_value dv = dv_from_value (node->loc);
4126 variable **slot = NULL;
4128 if (shared_hash_shared (dst->vars))
4129 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4130 if (!slot)
4131 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4132 INSERT);
4133 if (!*slot)
4135 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4136 var->dv = dv;
4137 var->refcount = 1;
4138 var->n_var_parts = 1;
4139 var->onepart = ONEPART_VALUE;
4140 var->in_changed_variables = false;
4141 var->var_part[0].loc_chain = NULL;
4142 var->var_part[0].cur_loc = NULL;
4143 VAR_LOC_1PAUX (var) = NULL;
4144 *slot = var;
4147 VALUE_RECURSED_INTO (node->loc) = true;
4151 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4152 gcc_assert (*dstslot == dvar);
4153 canonicalize_values_star (dstslot, dst);
4154 gcc_checking_assert (dstslot
4155 == shared_hash_find_slot_noinsert_1 (dst->vars,
4156 dv, dvhash));
4157 dvar = *dstslot;
4161 if (!onepart_variable_different_p (dvar, s2var))
4163 variable_htab_free (dvar);
4164 *dstslot = dvar = s2var;
4165 dvar->refcount++;
4167 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4169 variable_htab_free (dvar);
4170 *dstslot = dvar = s1var;
4171 dvar->refcount++;
4172 dst_can_be_shared = false;
4174 else
4175 dst_can_be_shared = false;
4177 return 1;
4180 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4181 multi-part variable. Unions of multi-part variables and
4182 intersections of one-part ones will be handled in
4183 variable_merge_over_cur(). */
4185 static int
4186 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4188 dataflow_set *dst = dsm->dst;
4189 decl_or_value dv = s2var->dv;
4191 if (!s2var->onepart)
4193 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4194 *dstp = s2var;
4195 s2var->refcount++;
4196 return 1;
4199 dsm->src_onepart_cnt++;
4200 return 1;
4203 /* Combine dataflow set information from SRC2 into DST, using PDST
4204 to carry over information across passes. */
4206 static void
4207 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4209 dataflow_set cur = *dst;
4210 dataflow_set *src1 = &cur;
4211 struct dfset_merge dsm;
4212 int i;
4213 size_t src1_elems, src2_elems;
4214 variable_iterator_type hi;
4215 variable *var;
4217 src1_elems = shared_hash_htab (src1->vars)->elements ();
4218 src2_elems = shared_hash_htab (src2->vars)->elements ();
4219 dataflow_set_init (dst);
4220 dst->stack_adjust = cur.stack_adjust;
4221 shared_hash_destroy (dst->vars);
4222 dst->vars = new shared_hash;
4223 dst->vars->refcount = 1;
4224 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4227 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4229 dsm.dst = dst;
4230 dsm.src = src2;
4231 dsm.cur = src1;
4232 dsm.src_onepart_cnt = 0;
4234 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4235 var, variable, hi)
4236 variable_merge_over_src (var, &dsm);
4237 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4238 var, variable, hi)
4239 variable_merge_over_cur (var, &dsm);
4241 if (dsm.src_onepart_cnt)
4242 dst_can_be_shared = false;
4244 dataflow_set_destroy (src1);
4247 /* Mark register equivalences. */
4249 static void
4250 dataflow_set_equiv_regs (dataflow_set *set)
4252 int i;
4253 attrs *list, **listp;
4255 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4257 rtx canon[NUM_MACHINE_MODES];
4259 /* If the list is empty or one entry, no need to canonicalize
4260 anything. */
4261 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4262 continue;
4264 memset (canon, 0, sizeof (canon));
4266 for (list = set->regs[i]; list; list = list->next)
4267 if (list->offset == 0 && dv_is_value_p (list->dv))
4269 rtx val = dv_as_value (list->dv);
4270 rtx *cvalp = &canon[(int)GET_MODE (val)];
4271 rtx cval = *cvalp;
4273 if (canon_value_cmp (val, cval))
4274 *cvalp = val;
4277 for (list = set->regs[i]; list; list = list->next)
4278 if (list->offset == 0 && dv_onepart_p (list->dv))
4280 rtx cval = canon[(int)GET_MODE (list->loc)];
4282 if (!cval)
4283 continue;
4285 if (dv_is_value_p (list->dv))
4287 rtx val = dv_as_value (list->dv);
4289 if (val == cval)
4290 continue;
4292 VALUE_RECURSED_INTO (val) = true;
4293 set_variable_part (set, val, dv_from_value (cval), 0,
4294 VAR_INIT_STATUS_INITIALIZED,
4295 NULL, NO_INSERT);
4298 VALUE_RECURSED_INTO (cval) = true;
4299 set_variable_part (set, cval, list->dv, 0,
4300 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4303 for (listp = &set->regs[i]; (list = *listp);
4304 listp = list ? &list->next : listp)
4305 if (list->offset == 0 && dv_onepart_p (list->dv))
4307 rtx cval = canon[(int)GET_MODE (list->loc)];
4308 variable **slot;
4310 if (!cval)
4311 continue;
4313 if (dv_is_value_p (list->dv))
4315 rtx val = dv_as_value (list->dv);
4316 if (!VALUE_RECURSED_INTO (val))
4317 continue;
4320 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4321 canonicalize_values_star (slot, set);
4322 if (*listp != list)
4323 list = NULL;
4328 /* Remove any redundant values in the location list of VAR, which must
4329 be unshared and 1-part. */
4331 static void
4332 remove_duplicate_values (variable *var)
4334 location_chain *node, **nodep;
4336 gcc_assert (var->onepart);
4337 gcc_assert (var->n_var_parts == 1);
4338 gcc_assert (var->refcount == 1);
4340 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4342 if (GET_CODE (node->loc) == VALUE)
4344 if (VALUE_RECURSED_INTO (node->loc))
4346 /* Remove duplicate value node. */
4347 *nodep = node->next;
4348 delete node;
4349 continue;
4351 else
4352 VALUE_RECURSED_INTO (node->loc) = true;
4354 nodep = &node->next;
4357 for (node = var->var_part[0].loc_chain; node; node = node->next)
4358 if (GET_CODE (node->loc) == VALUE)
4360 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4361 VALUE_RECURSED_INTO (node->loc) = false;
4366 /* Hash table iteration argument passed to variable_post_merge. */
4367 struct dfset_post_merge
4369 /* The new input set for the current block. */
4370 dataflow_set *set;
4371 /* Pointer to the permanent input set for the current block, or
4372 NULL. */
4373 dataflow_set **permp;
4376 /* Create values for incoming expressions associated with one-part
4377 variables that don't have value numbers for them. */
4380 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4382 dataflow_set *set = dfpm->set;
4383 variable *var = *slot;
4384 location_chain *node;
4386 if (!var->onepart || !var->n_var_parts)
4387 return 1;
4389 gcc_assert (var->n_var_parts == 1);
4391 if (dv_is_decl_p (var->dv))
4393 bool check_dupes = false;
4395 restart:
4396 for (node = var->var_part[0].loc_chain; node; node = node->next)
4398 if (GET_CODE (node->loc) == VALUE)
4399 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4400 else if (GET_CODE (node->loc) == REG)
4402 attrs *att, **attp, **curp = NULL;
4404 if (var->refcount != 1)
4406 slot = unshare_variable (set, slot, var,
4407 VAR_INIT_STATUS_INITIALIZED);
4408 var = *slot;
4409 goto restart;
4412 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4413 attp = &att->next)
4414 if (att->offset == 0
4415 && GET_MODE (att->loc) == GET_MODE (node->loc))
4417 if (dv_is_value_p (att->dv))
4419 rtx cval = dv_as_value (att->dv);
4420 node->loc = cval;
4421 check_dupes = true;
4422 break;
4424 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4425 curp = attp;
4428 if (!curp)
4430 curp = attp;
4431 while (*curp)
4432 if ((*curp)->offset == 0
4433 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4434 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4435 break;
4436 else
4437 curp = &(*curp)->next;
4438 gcc_assert (*curp);
4441 if (!att)
4443 decl_or_value cdv;
4444 rtx cval;
4446 if (!*dfpm->permp)
4448 *dfpm->permp = XNEW (dataflow_set);
4449 dataflow_set_init (*dfpm->permp);
4452 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4453 att; att = att->next)
4454 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4456 gcc_assert (att->offset == 0
4457 && dv_is_value_p (att->dv));
4458 val_reset (set, att->dv);
4459 break;
4462 if (att)
4464 cdv = att->dv;
4465 cval = dv_as_value (cdv);
4467 else
4469 /* Create a unique value to hold this register,
4470 that ought to be found and reused in
4471 subsequent rounds. */
4472 cselib_val *v;
4473 gcc_assert (!cselib_lookup (node->loc,
4474 GET_MODE (node->loc), 0,
4475 VOIDmode));
4476 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4477 VOIDmode);
4478 cselib_preserve_value (v);
4479 cselib_invalidate_rtx (node->loc);
4480 cval = v->val_rtx;
4481 cdv = dv_from_value (cval);
4482 if (dump_file)
4483 fprintf (dump_file,
4484 "Created new value %u:%u for reg %i\n",
4485 v->uid, v->hash, REGNO (node->loc));
4488 var_reg_decl_set (*dfpm->permp, node->loc,
4489 VAR_INIT_STATUS_INITIALIZED,
4490 cdv, 0, NULL, INSERT);
4492 node->loc = cval;
4493 check_dupes = true;
4496 /* Remove attribute referring to the decl, which now
4497 uses the value for the register, already existing or
4498 to be added when we bring perm in. */
4499 att = *curp;
4500 *curp = att->next;
4501 delete att;
4505 if (check_dupes)
4506 remove_duplicate_values (var);
4509 return 1;
4512 /* Reset values in the permanent set that are not associated with the
4513 chosen expression. */
4516 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4518 dataflow_set *set = dfpm->set;
4519 variable *pvar = *pslot, *var;
4520 location_chain *pnode;
4521 decl_or_value dv;
4522 attrs *att;
4524 gcc_assert (dv_is_value_p (pvar->dv)
4525 && pvar->n_var_parts == 1);
4526 pnode = pvar->var_part[0].loc_chain;
4527 gcc_assert (pnode
4528 && !pnode->next
4529 && REG_P (pnode->loc));
4531 dv = pvar->dv;
4533 var = shared_hash_find (set->vars, dv);
4534 if (var)
4536 /* Although variable_post_merge_new_vals may have made decls
4537 non-star-canonical, values that pre-existed in canonical form
4538 remain canonical, and newly-created values reference a single
4539 REG, so they are canonical as well. Since VAR has the
4540 location list for a VALUE, using find_loc_in_1pdv for it is
4541 fine, since VALUEs don't map back to DECLs. */
4542 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4543 return 1;
4544 val_reset (set, dv);
4547 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4548 if (att->offset == 0
4549 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4550 && dv_is_value_p (att->dv))
4551 break;
4553 /* If there is a value associated with this register already, create
4554 an equivalence. */
4555 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4557 rtx cval = dv_as_value (att->dv);
4558 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4559 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4560 NULL, INSERT);
4562 else if (!att)
4564 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4565 dv, 0, pnode->loc);
4566 variable_union (pvar, set);
4569 return 1;
4572 /* Just checking stuff and registering register attributes for
4573 now. */
4575 static void
4576 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4578 struct dfset_post_merge dfpm;
4580 dfpm.set = set;
4581 dfpm.permp = permp;
4583 shared_hash_htab (set->vars)
4584 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4585 if (*permp)
4586 shared_hash_htab ((*permp)->vars)
4587 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4588 shared_hash_htab (set->vars)
4589 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4590 shared_hash_htab (set->vars)
4591 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4594 /* Return a node whose loc is a MEM that refers to EXPR in the
4595 location list of a one-part variable or value VAR, or in that of
4596 any values recursively mentioned in the location lists. */
4598 static location_chain *
4599 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4601 location_chain *node;
4602 decl_or_value dv;
4603 variable *var;
4604 location_chain *where = NULL;
4606 if (!val)
4607 return NULL;
4609 gcc_assert (GET_CODE (val) == VALUE
4610 && !VALUE_RECURSED_INTO (val));
4612 dv = dv_from_value (val);
4613 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4615 if (!var)
4616 return NULL;
4618 gcc_assert (var->onepart);
4620 if (!var->n_var_parts)
4621 return NULL;
4623 VALUE_RECURSED_INTO (val) = true;
4625 for (node = var->var_part[0].loc_chain; node; node = node->next)
4626 if (MEM_P (node->loc)
4627 && MEM_EXPR (node->loc) == expr
4628 && int_mem_offset (node->loc) == 0)
4630 where = node;
4631 break;
4633 else if (GET_CODE (node->loc) == VALUE
4634 && !VALUE_RECURSED_INTO (node->loc)
4635 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4636 break;
4638 VALUE_RECURSED_INTO (val) = false;
4640 return where;
4643 /* Return TRUE if the value of MEM may vary across a call. */
4645 static bool
4646 mem_dies_at_call (rtx mem)
4648 tree expr = MEM_EXPR (mem);
4649 tree decl;
4651 if (!expr)
4652 return true;
4654 decl = get_base_address (expr);
4656 if (!decl)
4657 return true;
4659 if (!DECL_P (decl))
4660 return true;
4662 return (may_be_aliased (decl)
4663 || (!TREE_READONLY (decl) && is_global_var (decl)));
4666 /* Remove all MEMs from the location list of a hash table entry for a
4667 one-part variable, except those whose MEM attributes map back to
4668 the variable itself, directly or within a VALUE. */
4671 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4673 variable *var = *slot;
4675 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4677 tree decl = dv_as_decl (var->dv);
4678 location_chain *loc, **locp;
4679 bool changed = false;
4681 if (!var->n_var_parts)
4682 return 1;
4684 gcc_assert (var->n_var_parts == 1);
4686 if (shared_var_p (var, set->vars))
4688 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4690 /* We want to remove dying MEMs that don't refer to DECL. */
4691 if (GET_CODE (loc->loc) == MEM
4692 && (MEM_EXPR (loc->loc) != decl
4693 || int_mem_offset (loc->loc) != 0)
4694 && mem_dies_at_call (loc->loc))
4695 break;
4696 /* We want to move here MEMs that do refer to DECL. */
4697 else if (GET_CODE (loc->loc) == VALUE
4698 && find_mem_expr_in_1pdv (decl, loc->loc,
4699 shared_hash_htab (set->vars)))
4700 break;
4703 if (!loc)
4704 return 1;
4706 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4707 var = *slot;
4708 gcc_assert (var->n_var_parts == 1);
4711 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4712 loc; loc = *locp)
4714 rtx old_loc = loc->loc;
4715 if (GET_CODE (old_loc) == VALUE)
4717 location_chain *mem_node
4718 = find_mem_expr_in_1pdv (decl, loc->loc,
4719 shared_hash_htab (set->vars));
4721 /* ??? This picks up only one out of multiple MEMs that
4722 refer to the same variable. Do we ever need to be
4723 concerned about dealing with more than one, or, given
4724 that they should all map to the same variable
4725 location, their addresses will have been merged and
4726 they will be regarded as equivalent? */
4727 if (mem_node)
4729 loc->loc = mem_node->loc;
4730 loc->set_src = mem_node->set_src;
4731 loc->init = MIN (loc->init, mem_node->init);
4735 if (GET_CODE (loc->loc) != MEM
4736 || (MEM_EXPR (loc->loc) == decl
4737 && int_mem_offset (loc->loc) == 0)
4738 || !mem_dies_at_call (loc->loc))
4740 if (old_loc != loc->loc && emit_notes)
4742 if (old_loc == var->var_part[0].cur_loc)
4744 changed = true;
4745 var->var_part[0].cur_loc = NULL;
4748 locp = &loc->next;
4749 continue;
4752 if (emit_notes)
4754 if (old_loc == var->var_part[0].cur_loc)
4756 changed = true;
4757 var->var_part[0].cur_loc = NULL;
4760 *locp = loc->next;
4761 delete loc;
4764 if (!var->var_part[0].loc_chain)
4766 var->n_var_parts--;
4767 changed = true;
4769 if (changed)
4770 variable_was_changed (var, set);
4773 return 1;
4776 /* Remove all MEMs from the location list of a hash table entry for a
4777 onepart variable. */
4780 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4782 variable *var = *slot;
4784 if (var->onepart != NOT_ONEPART)
4786 location_chain *loc, **locp;
4787 bool changed = false;
4788 rtx cur_loc;
4790 gcc_assert (var->n_var_parts == 1);
4792 if (shared_var_p (var, set->vars))
4794 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4795 if (GET_CODE (loc->loc) == MEM
4796 && mem_dies_at_call (loc->loc))
4797 break;
4799 if (!loc)
4800 return 1;
4802 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4803 var = *slot;
4804 gcc_assert (var->n_var_parts == 1);
4807 if (VAR_LOC_1PAUX (var))
4808 cur_loc = VAR_LOC_FROM (var);
4809 else
4810 cur_loc = var->var_part[0].cur_loc;
4812 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4813 loc; loc = *locp)
4815 if (GET_CODE (loc->loc) != MEM
4816 || !mem_dies_at_call (loc->loc))
4818 locp = &loc->next;
4819 continue;
4822 *locp = loc->next;
4823 /* If we have deleted the location which was last emitted
4824 we have to emit new location so add the variable to set
4825 of changed variables. */
4826 if (cur_loc == loc->loc)
4828 changed = true;
4829 var->var_part[0].cur_loc = NULL;
4830 if (VAR_LOC_1PAUX (var))
4831 VAR_LOC_FROM (var) = NULL;
4833 delete loc;
4836 if (!var->var_part[0].loc_chain)
4838 var->n_var_parts--;
4839 changed = true;
4841 if (changed)
4842 variable_was_changed (var, set);
4845 return 1;
4848 /* Remove all variable-location information about call-clobbered
4849 registers, as well as associations between MEMs and VALUEs. */
4851 static void
4852 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4854 unsigned int r;
4855 hard_reg_set_iterator hrsi;
4856 HARD_REG_SET invalidated_regs;
4858 get_call_reg_set_usage (call_insn, &invalidated_regs,
4859 regs_invalidated_by_call);
4861 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4862 var_regno_delete (set, r);
4864 if (MAY_HAVE_DEBUG_INSNS)
4866 set->traversed_vars = set->vars;
4867 shared_hash_htab (set->vars)
4868 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4869 set->traversed_vars = set->vars;
4870 shared_hash_htab (set->vars)
4871 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4872 set->traversed_vars = NULL;
4876 static bool
4877 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4879 location_chain *lc1, *lc2;
4881 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4883 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4885 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4887 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4888 break;
4890 if (rtx_equal_p (lc1->loc, lc2->loc))
4891 break;
4893 if (!lc2)
4894 return true;
4896 return false;
4899 /* Return true if one-part variables VAR1 and VAR2 are different.
4900 They must be in canonical order. */
4902 static bool
4903 onepart_variable_different_p (variable *var1, variable *var2)
4905 location_chain *lc1, *lc2;
4907 if (var1 == var2)
4908 return false;
4910 gcc_assert (var1->n_var_parts == 1
4911 && var2->n_var_parts == 1);
4913 lc1 = var1->var_part[0].loc_chain;
4914 lc2 = var2->var_part[0].loc_chain;
4916 gcc_assert (lc1 && lc2);
4918 while (lc1 && lc2)
4920 if (loc_cmp (lc1->loc, lc2->loc))
4921 return true;
4922 lc1 = lc1->next;
4923 lc2 = lc2->next;
4926 return lc1 != lc2;
4929 /* Return true if one-part variables VAR1 and VAR2 are different.
4930 They must be in canonical order. */
4932 static void
4933 dump_onepart_variable_differences (variable *var1, variable *var2)
4935 location_chain *lc1, *lc2;
4937 gcc_assert (var1 != var2);
4938 gcc_assert (dump_file);
4939 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4940 gcc_assert (var1->n_var_parts == 1
4941 && var2->n_var_parts == 1);
4943 lc1 = var1->var_part[0].loc_chain;
4944 lc2 = var2->var_part[0].loc_chain;
4946 gcc_assert (lc1 && lc2);
4948 while (lc1 && lc2)
4950 switch (loc_cmp (lc1->loc, lc2->loc))
4952 case -1:
4953 fprintf (dump_file, "removed: ");
4954 print_rtl_single (dump_file, lc1->loc);
4955 lc1 = lc1->next;
4956 continue;
4957 case 0:
4958 break;
4959 case 1:
4960 fprintf (dump_file, "added: ");
4961 print_rtl_single (dump_file, lc2->loc);
4962 lc2 = lc2->next;
4963 continue;
4964 default:
4965 gcc_unreachable ();
4967 lc1 = lc1->next;
4968 lc2 = lc2->next;
4971 while (lc1)
4973 fprintf (dump_file, "removed: ");
4974 print_rtl_single (dump_file, lc1->loc);
4975 lc1 = lc1->next;
4978 while (lc2)
4980 fprintf (dump_file, "added: ");
4981 print_rtl_single (dump_file, lc2->loc);
4982 lc2 = lc2->next;
4986 /* Return true if variables VAR1 and VAR2 are different. */
4988 static bool
4989 variable_different_p (variable *var1, variable *var2)
4991 int i;
4993 if (var1 == var2)
4994 return false;
4996 if (var1->onepart != var2->onepart)
4997 return true;
4999 if (var1->n_var_parts != var2->n_var_parts)
5000 return true;
5002 if (var1->onepart && var1->n_var_parts)
5004 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5005 && var1->n_var_parts == 1);
5006 /* One-part values have locations in a canonical order. */
5007 return onepart_variable_different_p (var1, var2);
5010 for (i = 0; i < var1->n_var_parts; i++)
5012 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5013 return true;
5014 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5015 return true;
5016 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5017 return true;
5019 return false;
5022 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5024 static bool
5025 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5027 variable_iterator_type hi;
5028 variable *var1;
5029 bool diffound = false;
5030 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5032 #define RETRUE \
5033 do \
5035 if (!details) \
5036 return true; \
5037 else \
5038 diffound = true; \
5040 while (0)
5042 if (old_set->vars == new_set->vars)
5043 return false;
5045 if (shared_hash_htab (old_set->vars)->elements ()
5046 != shared_hash_htab (new_set->vars)->elements ())
5047 RETRUE;
5049 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5050 var1, variable, hi)
5052 variable_table_type *htab = shared_hash_htab (new_set->vars);
5053 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5055 if (!var2)
5057 if (dump_file && (dump_flags & TDF_DETAILS))
5059 fprintf (dump_file, "dataflow difference found: removal of:\n");
5060 dump_var (var1);
5062 RETRUE;
5064 else if (variable_different_p (var1, var2))
5066 if (details)
5068 fprintf (dump_file, "dataflow difference found: "
5069 "old and new follow:\n");
5070 dump_var (var1);
5071 if (dv_onepart_p (var1->dv))
5072 dump_onepart_variable_differences (var1, var2);
5073 dump_var (var2);
5075 RETRUE;
5079 /* There's no need to traverse the second hashtab unless we want to
5080 print the details. If both have the same number of elements and
5081 the second one had all entries found in the first one, then the
5082 second can't have any extra entries. */
5083 if (!details)
5084 return diffound;
5086 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5087 var1, variable, hi)
5089 variable_table_type *htab = shared_hash_htab (old_set->vars);
5090 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5091 if (!var2)
5093 if (details)
5095 fprintf (dump_file, "dataflow difference found: addition of:\n");
5096 dump_var (var1);
5098 RETRUE;
5102 #undef RETRUE
5104 return diffound;
5107 /* Free the contents of dataflow set SET. */
5109 static void
5110 dataflow_set_destroy (dataflow_set *set)
5112 int i;
5114 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5115 attrs_list_clear (&set->regs[i]);
5117 shared_hash_destroy (set->vars);
5118 set->vars = NULL;
5121 /* Return true if T is a tracked parameter with non-degenerate record type. */
5123 static bool
5124 tracked_record_parameter_p (tree t)
5126 if (TREE_CODE (t) != PARM_DECL)
5127 return false;
5129 if (DECL_MODE (t) == BLKmode)
5130 return false;
5132 tree type = TREE_TYPE (t);
5133 if (TREE_CODE (type) != RECORD_TYPE)
5134 return false;
5136 if (TYPE_FIELDS (type) == NULL_TREE
5137 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5138 return false;
5140 return true;
5143 /* Shall EXPR be tracked? */
5145 static bool
5146 track_expr_p (tree expr, bool need_rtl)
5148 rtx decl_rtl;
5149 tree realdecl;
5151 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5152 return DECL_RTL_SET_P (expr);
5154 /* If EXPR is not a parameter or a variable do not track it. */
5155 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5156 return 0;
5158 /* It also must have a name... */
5159 if (!DECL_NAME (expr) && need_rtl)
5160 return 0;
5162 /* ... and a RTL assigned to it. */
5163 decl_rtl = DECL_RTL_IF_SET (expr);
5164 if (!decl_rtl && need_rtl)
5165 return 0;
5167 /* If this expression is really a debug alias of some other declaration, we
5168 don't need to track this expression if the ultimate declaration is
5169 ignored. */
5170 realdecl = expr;
5171 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5173 realdecl = DECL_DEBUG_EXPR (realdecl);
5174 if (!DECL_P (realdecl))
5176 if (handled_component_p (realdecl)
5177 || (TREE_CODE (realdecl) == MEM_REF
5178 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5180 HOST_WIDE_INT bitsize, bitpos, maxsize;
5181 bool reverse;
5182 tree innerdecl
5183 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5184 &maxsize, &reverse);
5185 if (!DECL_P (innerdecl)
5186 || DECL_IGNORED_P (innerdecl)
5187 /* Do not track declarations for parts of tracked record
5188 parameters since we want to track them as a whole. */
5189 || tracked_record_parameter_p (innerdecl)
5190 || TREE_STATIC (innerdecl)
5191 || bitsize <= 0
5192 || bitpos + bitsize > 256
5193 || bitsize != maxsize)
5194 return 0;
5195 else
5196 realdecl = expr;
5198 else
5199 return 0;
5203 /* Do not track EXPR if REALDECL it should be ignored for debugging
5204 purposes. */
5205 if (DECL_IGNORED_P (realdecl))
5206 return 0;
5208 /* Do not track global variables until we are able to emit correct location
5209 list for them. */
5210 if (TREE_STATIC (realdecl))
5211 return 0;
5213 /* When the EXPR is a DECL for alias of some variable (see example)
5214 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5215 DECL_RTL contains SYMBOL_REF.
5217 Example:
5218 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5219 char **_dl_argv;
5221 if (decl_rtl && MEM_P (decl_rtl)
5222 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5223 return 0;
5225 /* If RTX is a memory it should not be very large (because it would be
5226 an array or struct). */
5227 if (decl_rtl && MEM_P (decl_rtl))
5229 /* Do not track structures and arrays. */
5230 if ((GET_MODE (decl_rtl) == BLKmode
5231 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5232 && !tracked_record_parameter_p (realdecl))
5233 return 0;
5234 if (MEM_SIZE_KNOWN_P (decl_rtl)
5235 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5236 return 0;
5239 DECL_CHANGED (expr) = 0;
5240 DECL_CHANGED (realdecl) = 0;
5241 return 1;
5244 /* Determine whether a given LOC refers to the same variable part as
5245 EXPR+OFFSET. */
5247 static bool
5248 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5250 tree expr2;
5251 HOST_WIDE_INT offset2;
5253 if (! DECL_P (expr))
5254 return false;
5256 if (REG_P (loc))
5258 expr2 = REG_EXPR (loc);
5259 offset2 = REG_OFFSET (loc);
5261 else if (MEM_P (loc))
5263 expr2 = MEM_EXPR (loc);
5264 offset2 = int_mem_offset (loc);
5266 else
5267 return false;
5269 if (! expr2 || ! DECL_P (expr2))
5270 return false;
5272 expr = var_debug_decl (expr);
5273 expr2 = var_debug_decl (expr2);
5275 return (expr == expr2 && offset == offset2);
5278 /* LOC is a REG or MEM that we would like to track if possible.
5279 If EXPR is null, we don't know what expression LOC refers to,
5280 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5281 LOC is an lvalue register.
5283 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5284 is something we can track. When returning true, store the mode of
5285 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5286 from EXPR in *OFFSET_OUT (if nonnull). */
5288 static bool
5289 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5290 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5292 machine_mode mode;
5294 if (expr == NULL || !track_expr_p (expr, true))
5295 return false;
5297 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5298 whole subreg, but only the old inner part is really relevant. */
5299 mode = GET_MODE (loc);
5300 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5302 machine_mode pseudo_mode;
5304 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5305 if (paradoxical_subreg_p (mode, pseudo_mode))
5307 offset += byte_lowpart_offset (pseudo_mode, mode);
5308 mode = pseudo_mode;
5312 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5313 Do the same if we are storing to a register and EXPR occupies
5314 the whole of register LOC; in that case, the whole of EXPR is
5315 being changed. We exclude complex modes from the second case
5316 because the real and imaginary parts are represented as separate
5317 pseudo registers, even if the whole complex value fits into one
5318 hard register. */
5319 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5320 || (store_reg_p
5321 && !COMPLEX_MODE_P (DECL_MODE (expr))
5322 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5323 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5325 mode = DECL_MODE (expr);
5326 offset = 0;
5329 if (offset < 0 || offset >= MAX_VAR_PARTS)
5330 return false;
5332 if (mode_out)
5333 *mode_out = mode;
5334 if (offset_out)
5335 *offset_out = offset;
5336 return true;
5339 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5340 want to track. When returning nonnull, make sure that the attributes
5341 on the returned value are updated. */
5343 static rtx
5344 var_lowpart (machine_mode mode, rtx loc)
5346 unsigned int offset, reg_offset, regno;
5348 if (GET_MODE (loc) == mode)
5349 return loc;
5351 if (!REG_P (loc) && !MEM_P (loc))
5352 return NULL;
5354 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5356 if (MEM_P (loc))
5357 return adjust_address_nv (loc, mode, offset);
5359 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5360 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5361 reg_offset, mode);
5362 return gen_rtx_REG_offset (loc, mode, regno, offset);
5365 /* Carry information about uses and stores while walking rtx. */
5367 struct count_use_info
5369 /* The insn where the RTX is. */
5370 rtx_insn *insn;
5372 /* The basic block where insn is. */
5373 basic_block bb;
5375 /* The array of n_sets sets in the insn, as determined by cselib. */
5376 struct cselib_set *sets;
5377 int n_sets;
5379 /* True if we're counting stores, false otherwise. */
5380 bool store_p;
5383 /* Find a VALUE corresponding to X. */
5385 static inline cselib_val *
5386 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5388 int i;
5390 if (cui->sets)
5392 /* This is called after uses are set up and before stores are
5393 processed by cselib, so it's safe to look up srcs, but not
5394 dsts. So we look up expressions that appear in srcs or in
5395 dest expressions, but we search the sets array for dests of
5396 stores. */
5397 if (cui->store_p)
5399 /* Some targets represent memset and memcpy patterns
5400 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5401 (set (mem:BLK ...) (const_int ...)) or
5402 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5403 in that case, otherwise we end up with mode mismatches. */
5404 if (mode == BLKmode && MEM_P (x))
5405 return NULL;
5406 for (i = 0; i < cui->n_sets; i++)
5407 if (cui->sets[i].dest == x)
5408 return cui->sets[i].src_elt;
5410 else
5411 return cselib_lookup (x, mode, 0, VOIDmode);
5414 return NULL;
5417 /* Replace all registers and addresses in an expression with VALUE
5418 expressions that map back to them, unless the expression is a
5419 register. If no mapping is or can be performed, returns NULL. */
5421 static rtx
5422 replace_expr_with_values (rtx loc)
5424 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5425 return NULL;
5426 else if (MEM_P (loc))
5428 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5429 get_address_mode (loc), 0,
5430 GET_MODE (loc));
5431 if (addr)
5432 return replace_equiv_address_nv (loc, addr->val_rtx);
5433 else
5434 return NULL;
5436 else
5437 return cselib_subst_to_values (loc, VOIDmode);
5440 /* Return true if X contains a DEBUG_EXPR. */
5442 static bool
5443 rtx_debug_expr_p (const_rtx x)
5445 subrtx_iterator::array_type array;
5446 FOR_EACH_SUBRTX (iter, array, x, ALL)
5447 if (GET_CODE (*iter) == DEBUG_EXPR)
5448 return true;
5449 return false;
5452 /* Determine what kind of micro operation to choose for a USE. Return
5453 MO_CLOBBER if no micro operation is to be generated. */
5455 static enum micro_operation_type
5456 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5458 tree expr;
5460 if (cui && cui->sets)
5462 if (GET_CODE (loc) == VAR_LOCATION)
5464 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5466 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5467 if (! VAR_LOC_UNKNOWN_P (ploc))
5469 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5470 VOIDmode);
5472 /* ??? flag_float_store and volatile mems are never
5473 given values, but we could in theory use them for
5474 locations. */
5475 gcc_assert (val || 1);
5477 return MO_VAL_LOC;
5479 else
5480 return MO_CLOBBER;
5483 if (REG_P (loc) || MEM_P (loc))
5485 if (modep)
5486 *modep = GET_MODE (loc);
5487 if (cui->store_p)
5489 if (REG_P (loc)
5490 || (find_use_val (loc, GET_MODE (loc), cui)
5491 && cselib_lookup (XEXP (loc, 0),
5492 get_address_mode (loc), 0,
5493 GET_MODE (loc))))
5494 return MO_VAL_SET;
5496 else
5498 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5500 if (val && !cselib_preserved_value_p (val))
5501 return MO_VAL_USE;
5506 if (REG_P (loc))
5508 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5510 if (loc == cfa_base_rtx)
5511 return MO_CLOBBER;
5512 expr = REG_EXPR (loc);
5514 if (!expr)
5515 return MO_USE_NO_VAR;
5516 else if (target_for_debug_bind (var_debug_decl (expr)))
5517 return MO_CLOBBER;
5518 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5519 false, modep, NULL))
5520 return MO_USE;
5521 else
5522 return MO_USE_NO_VAR;
5524 else if (MEM_P (loc))
5526 expr = MEM_EXPR (loc);
5528 if (!expr)
5529 return MO_CLOBBER;
5530 else if (target_for_debug_bind (var_debug_decl (expr)))
5531 return MO_CLOBBER;
5532 else if (track_loc_p (loc, expr, int_mem_offset (loc),
5533 false, modep, NULL)
5534 /* Multi-part variables shouldn't refer to one-part
5535 variable names such as VALUEs (never happens) or
5536 DEBUG_EXPRs (only happens in the presence of debug
5537 insns). */
5538 && (!MAY_HAVE_DEBUG_INSNS
5539 || !rtx_debug_expr_p (XEXP (loc, 0))))
5540 return MO_USE;
5541 else
5542 return MO_CLOBBER;
5545 return MO_CLOBBER;
5548 /* Log to OUT information about micro-operation MOPT involving X in
5549 INSN of BB. */
5551 static inline void
5552 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5553 enum micro_operation_type mopt, FILE *out)
5555 fprintf (out, "bb %i op %i insn %i %s ",
5556 bb->index, VTI (bb)->mos.length (),
5557 INSN_UID (insn), micro_operation_type_name[mopt]);
5558 print_inline_rtx (out, x, 2);
5559 fputc ('\n', out);
5562 /* Tell whether the CONCAT used to holds a VALUE and its location
5563 needs value resolution, i.e., an attempt of mapping the location
5564 back to other incoming values. */
5565 #define VAL_NEEDS_RESOLUTION(x) \
5566 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5567 /* Whether the location in the CONCAT is a tracked expression, that
5568 should also be handled like a MO_USE. */
5569 #define VAL_HOLDS_TRACK_EXPR(x) \
5570 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5571 /* Whether the location in the CONCAT should be handled like a MO_COPY
5572 as well. */
5573 #define VAL_EXPR_IS_COPIED(x) \
5574 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5575 /* Whether the location in the CONCAT should be handled like a
5576 MO_CLOBBER as well. */
5577 #define VAL_EXPR_IS_CLOBBERED(x) \
5578 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5580 /* All preserved VALUEs. */
5581 static vec<rtx> preserved_values;
5583 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5585 static void
5586 preserve_value (cselib_val *val)
5588 cselib_preserve_value (val);
5589 preserved_values.safe_push (val->val_rtx);
5592 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5593 any rtxes not suitable for CONST use not replaced by VALUEs
5594 are discovered. */
5596 static bool
5597 non_suitable_const (const_rtx x)
5599 subrtx_iterator::array_type array;
5600 FOR_EACH_SUBRTX (iter, array, x, ALL)
5602 const_rtx x = *iter;
5603 switch (GET_CODE (x))
5605 case REG:
5606 case DEBUG_EXPR:
5607 case PC:
5608 case SCRATCH:
5609 case CC0:
5610 case ASM_INPUT:
5611 case ASM_OPERANDS:
5612 return true;
5613 case MEM:
5614 if (!MEM_READONLY_P (x))
5615 return true;
5616 break;
5617 default:
5618 break;
5621 return false;
5624 /* Add uses (register and memory references) LOC which will be tracked
5625 to VTI (bb)->mos. */
5627 static void
5628 add_uses (rtx loc, struct count_use_info *cui)
5630 machine_mode mode = VOIDmode;
5631 enum micro_operation_type type = use_type (loc, cui, &mode);
5633 if (type != MO_CLOBBER)
5635 basic_block bb = cui->bb;
5636 micro_operation mo;
5638 mo.type = type;
5639 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5640 mo.insn = cui->insn;
5642 if (type == MO_VAL_LOC)
5644 rtx oloc = loc;
5645 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5646 cselib_val *val;
5648 gcc_assert (cui->sets);
5650 if (MEM_P (vloc)
5651 && !REG_P (XEXP (vloc, 0))
5652 && !MEM_P (XEXP (vloc, 0)))
5654 rtx mloc = vloc;
5655 machine_mode address_mode = get_address_mode (mloc);
5656 cselib_val *val
5657 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5658 GET_MODE (mloc));
5660 if (val && !cselib_preserved_value_p (val))
5661 preserve_value (val);
5664 if (CONSTANT_P (vloc)
5665 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5666 /* For constants don't look up any value. */;
5667 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5668 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5670 machine_mode mode2;
5671 enum micro_operation_type type2;
5672 rtx nloc = NULL;
5673 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5675 if (resolvable)
5676 nloc = replace_expr_with_values (vloc);
5678 if (nloc)
5680 oloc = shallow_copy_rtx (oloc);
5681 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5684 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5686 type2 = use_type (vloc, 0, &mode2);
5688 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5689 || type2 == MO_CLOBBER);
5691 if (type2 == MO_CLOBBER
5692 && !cselib_preserved_value_p (val))
5694 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5695 preserve_value (val);
5698 else if (!VAR_LOC_UNKNOWN_P (vloc))
5700 oloc = shallow_copy_rtx (oloc);
5701 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5704 mo.u.loc = oloc;
5706 else if (type == MO_VAL_USE)
5708 machine_mode mode2 = VOIDmode;
5709 enum micro_operation_type type2;
5710 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5711 rtx vloc, oloc = loc, nloc;
5713 gcc_assert (cui->sets);
5715 if (MEM_P (oloc)
5716 && !REG_P (XEXP (oloc, 0))
5717 && !MEM_P (XEXP (oloc, 0)))
5719 rtx mloc = oloc;
5720 machine_mode address_mode = get_address_mode (mloc);
5721 cselib_val *val
5722 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5723 GET_MODE (mloc));
5725 if (val && !cselib_preserved_value_p (val))
5726 preserve_value (val);
5729 type2 = use_type (loc, 0, &mode2);
5731 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5732 || type2 == MO_CLOBBER);
5734 if (type2 == MO_USE)
5735 vloc = var_lowpart (mode2, loc);
5736 else
5737 vloc = oloc;
5739 /* The loc of a MO_VAL_USE may have two forms:
5741 (concat val src): val is at src, a value-based
5742 representation.
5744 (concat (concat val use) src): same as above, with use as
5745 the MO_USE tracked value, if it differs from src.
5749 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5750 nloc = replace_expr_with_values (loc);
5751 if (!nloc)
5752 nloc = oloc;
5754 if (vloc != nloc)
5755 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5756 else
5757 oloc = val->val_rtx;
5759 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5761 if (type2 == MO_USE)
5762 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5763 if (!cselib_preserved_value_p (val))
5765 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5766 preserve_value (val);
5769 else
5770 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5772 if (dump_file && (dump_flags & TDF_DETAILS))
5773 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5774 VTI (bb)->mos.safe_push (mo);
5778 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5780 static void
5781 add_uses_1 (rtx *x, void *cui)
5783 subrtx_var_iterator::array_type array;
5784 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5785 add_uses (*iter, (struct count_use_info *) cui);
5788 /* This is the value used during expansion of locations. We want it
5789 to be unbounded, so that variables expanded deep in a recursion
5790 nest are fully evaluated, so that their values are cached
5791 correctly. We avoid recursion cycles through other means, and we
5792 don't unshare RTL, so excess complexity is not a problem. */
5793 #define EXPR_DEPTH (INT_MAX)
5794 /* We use this to keep too-complex expressions from being emitted as
5795 location notes, and then to debug information. Users can trade
5796 compile time for ridiculously complex expressions, although they're
5797 seldom useful, and they may often have to be discarded as not
5798 representable anyway. */
5799 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5801 /* Attempt to reverse the EXPR operation in the debug info and record
5802 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5803 no longer live we can express its value as VAL - 6. */
5805 static void
5806 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5808 rtx src, arg, ret;
5809 cselib_val *v;
5810 struct elt_loc_list *l;
5811 enum rtx_code code;
5812 int count;
5814 if (GET_CODE (expr) != SET)
5815 return;
5817 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5818 return;
5820 src = SET_SRC (expr);
5821 switch (GET_CODE (src))
5823 case PLUS:
5824 case MINUS:
5825 case XOR:
5826 case NOT:
5827 case NEG:
5828 if (!REG_P (XEXP (src, 0)))
5829 return;
5830 break;
5831 case SIGN_EXTEND:
5832 case ZERO_EXTEND:
5833 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5834 return;
5835 break;
5836 default:
5837 return;
5840 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5841 return;
5843 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5844 if (!v || !cselib_preserved_value_p (v))
5845 return;
5847 /* Use canonical V to avoid creating multiple redundant expressions
5848 for different VALUES equivalent to V. */
5849 v = canonical_cselib_val (v);
5851 /* Adding a reverse op isn't useful if V already has an always valid
5852 location. Ignore ENTRY_VALUE, while it is always constant, we should
5853 prefer non-ENTRY_VALUE locations whenever possible. */
5854 for (l = v->locs, count = 0; l; l = l->next, count++)
5855 if (CONSTANT_P (l->loc)
5856 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5857 return;
5858 /* Avoid creating too large locs lists. */
5859 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5860 return;
5862 switch (GET_CODE (src))
5864 case NOT:
5865 case NEG:
5866 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5867 return;
5868 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5869 break;
5870 case SIGN_EXTEND:
5871 case ZERO_EXTEND:
5872 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5873 break;
5874 case XOR:
5875 code = XOR;
5876 goto binary;
5877 case PLUS:
5878 code = MINUS;
5879 goto binary;
5880 case MINUS:
5881 code = PLUS;
5882 goto binary;
5883 binary:
5884 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5885 return;
5886 arg = XEXP (src, 1);
5887 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5889 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5890 if (arg == NULL_RTX)
5891 return;
5892 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5893 return;
5895 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5896 break;
5897 default:
5898 gcc_unreachable ();
5901 cselib_add_permanent_equiv (v, ret, insn);
5904 /* Add stores (register and memory references) LOC which will be tracked
5905 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5906 CUIP->insn is instruction which the LOC is part of. */
5908 static void
5909 add_stores (rtx loc, const_rtx expr, void *cuip)
5911 machine_mode mode = VOIDmode, mode2;
5912 struct count_use_info *cui = (struct count_use_info *)cuip;
5913 basic_block bb = cui->bb;
5914 micro_operation mo;
5915 rtx oloc = loc, nloc, src = NULL;
5916 enum micro_operation_type type = use_type (loc, cui, &mode);
5917 bool track_p = false;
5918 cselib_val *v;
5919 bool resolve, preserve;
5921 if (type == MO_CLOBBER)
5922 return;
5924 mode2 = mode;
5926 if (REG_P (loc))
5928 gcc_assert (loc != cfa_base_rtx);
5929 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5930 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5931 || GET_CODE (expr) == CLOBBER)
5933 mo.type = MO_CLOBBER;
5934 mo.u.loc = loc;
5935 if (GET_CODE (expr) == SET
5936 && SET_DEST (expr) == loc
5937 && !unsuitable_loc (SET_SRC (expr))
5938 && find_use_val (loc, mode, cui))
5940 gcc_checking_assert (type == MO_VAL_SET);
5941 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5944 else
5946 if (GET_CODE (expr) == SET
5947 && SET_DEST (expr) == loc
5948 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5949 src = var_lowpart (mode2, SET_SRC (expr));
5950 loc = var_lowpart (mode2, loc);
5952 if (src == NULL)
5954 mo.type = MO_SET;
5955 mo.u.loc = loc;
5957 else
5959 rtx xexpr = gen_rtx_SET (loc, src);
5960 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5962 /* If this is an instruction copying (part of) a parameter
5963 passed by invisible reference to its register location,
5964 pretend it's a SET so that the initial memory location
5965 is discarded, as the parameter register can be reused
5966 for other purposes and we do not track locations based
5967 on generic registers. */
5968 if (MEM_P (src)
5969 && REG_EXPR (loc)
5970 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5971 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5972 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5973 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5974 != arg_pointer_rtx)
5975 mo.type = MO_SET;
5976 else
5977 mo.type = MO_COPY;
5979 else
5980 mo.type = MO_SET;
5981 mo.u.loc = xexpr;
5984 mo.insn = cui->insn;
5986 else if (MEM_P (loc)
5987 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5988 || cui->sets))
5990 if (MEM_P (loc) && type == MO_VAL_SET
5991 && !REG_P (XEXP (loc, 0))
5992 && !MEM_P (XEXP (loc, 0)))
5994 rtx mloc = loc;
5995 machine_mode address_mode = get_address_mode (mloc);
5996 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5997 address_mode, 0,
5998 GET_MODE (mloc));
6000 if (val && !cselib_preserved_value_p (val))
6001 preserve_value (val);
6004 if (GET_CODE (expr) == CLOBBER || !track_p)
6006 mo.type = MO_CLOBBER;
6007 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6009 else
6011 if (GET_CODE (expr) == SET
6012 && SET_DEST (expr) == loc
6013 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6014 src = var_lowpart (mode2, SET_SRC (expr));
6015 loc = var_lowpart (mode2, loc);
6017 if (src == NULL)
6019 mo.type = MO_SET;
6020 mo.u.loc = loc;
6022 else
6024 rtx xexpr = gen_rtx_SET (loc, src);
6025 if (same_variable_part_p (SET_SRC (xexpr),
6026 MEM_EXPR (loc),
6027 int_mem_offset (loc)))
6028 mo.type = MO_COPY;
6029 else
6030 mo.type = MO_SET;
6031 mo.u.loc = xexpr;
6034 mo.insn = cui->insn;
6036 else
6037 return;
6039 if (type != MO_VAL_SET)
6040 goto log_and_return;
6042 v = find_use_val (oloc, mode, cui);
6044 if (!v)
6045 goto log_and_return;
6047 resolve = preserve = !cselib_preserved_value_p (v);
6049 /* We cannot track values for multiple-part variables, so we track only
6050 locations for tracked record parameters. */
6051 if (track_p
6052 && REG_P (loc)
6053 && REG_EXPR (loc)
6054 && tracked_record_parameter_p (REG_EXPR (loc)))
6056 /* Although we don't use the value here, it could be used later by the
6057 mere virtue of its existence as the operand of the reverse operation
6058 that gave rise to it (typically extension/truncation). Make sure it
6059 is preserved as required by vt_expand_var_loc_chain. */
6060 if (preserve)
6061 preserve_value (v);
6062 goto log_and_return;
6065 if (loc == stack_pointer_rtx
6066 && hard_frame_pointer_adjustment != -1
6067 && preserve)
6068 cselib_set_value_sp_based (v);
6070 nloc = replace_expr_with_values (oloc);
6071 if (nloc)
6072 oloc = nloc;
6074 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6076 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6078 if (oval == v)
6079 return;
6080 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6082 if (oval && !cselib_preserved_value_p (oval))
6084 micro_operation moa;
6086 preserve_value (oval);
6088 moa.type = MO_VAL_USE;
6089 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6090 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6091 moa.insn = cui->insn;
6093 if (dump_file && (dump_flags & TDF_DETAILS))
6094 log_op_type (moa.u.loc, cui->bb, cui->insn,
6095 moa.type, dump_file);
6096 VTI (bb)->mos.safe_push (moa);
6099 resolve = false;
6101 else if (resolve && GET_CODE (mo.u.loc) == SET)
6103 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6104 nloc = replace_expr_with_values (SET_SRC (expr));
6105 else
6106 nloc = NULL_RTX;
6108 /* Avoid the mode mismatch between oexpr and expr. */
6109 if (!nloc && mode != mode2)
6111 nloc = SET_SRC (expr);
6112 gcc_assert (oloc == SET_DEST (expr));
6115 if (nloc && nloc != SET_SRC (mo.u.loc))
6116 oloc = gen_rtx_SET (oloc, nloc);
6117 else
6119 if (oloc == SET_DEST (mo.u.loc))
6120 /* No point in duplicating. */
6121 oloc = mo.u.loc;
6122 if (!REG_P (SET_SRC (mo.u.loc)))
6123 resolve = false;
6126 else if (!resolve)
6128 if (GET_CODE (mo.u.loc) == SET
6129 && oloc == SET_DEST (mo.u.loc))
6130 /* No point in duplicating. */
6131 oloc = mo.u.loc;
6133 else
6134 resolve = false;
6136 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6138 if (mo.u.loc != oloc)
6139 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6141 /* The loc of a MO_VAL_SET may have various forms:
6143 (concat val dst): dst now holds val
6145 (concat val (set dst src)): dst now holds val, copied from src
6147 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6148 after replacing mems and non-top-level regs with values.
6150 (concat (concat val dstv) (set dst src)): dst now holds val,
6151 copied from src. dstv is a value-based representation of dst, if
6152 it differs from dst. If resolution is needed, src is a REG, and
6153 its mode is the same as that of val.
6155 (concat (concat val (set dstv srcv)) (set dst src)): src
6156 copied to dst, holding val. dstv and srcv are value-based
6157 representations of dst and src, respectively.
6161 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6162 reverse_op (v->val_rtx, expr, cui->insn);
6164 mo.u.loc = loc;
6166 if (track_p)
6167 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6168 if (preserve)
6170 VAL_NEEDS_RESOLUTION (loc) = resolve;
6171 preserve_value (v);
6173 if (mo.type == MO_CLOBBER)
6174 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6175 if (mo.type == MO_COPY)
6176 VAL_EXPR_IS_COPIED (loc) = 1;
6178 mo.type = MO_VAL_SET;
6180 log_and_return:
6181 if (dump_file && (dump_flags & TDF_DETAILS))
6182 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6183 VTI (bb)->mos.safe_push (mo);
6186 /* Arguments to the call. */
6187 static rtx call_arguments;
6189 /* Compute call_arguments. */
6191 static void
6192 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6194 rtx link, x, call;
6195 rtx prev, cur, next;
6196 rtx this_arg = NULL_RTX;
6197 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6198 tree obj_type_ref = NULL_TREE;
6199 CUMULATIVE_ARGS args_so_far_v;
6200 cumulative_args_t args_so_far;
6202 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6203 args_so_far = pack_cumulative_args (&args_so_far_v);
6204 call = get_call_rtx_from (insn);
6205 if (call)
6207 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6209 rtx symbol = XEXP (XEXP (call, 0), 0);
6210 if (SYMBOL_REF_DECL (symbol))
6211 fndecl = SYMBOL_REF_DECL (symbol);
6213 if (fndecl == NULL_TREE)
6214 fndecl = MEM_EXPR (XEXP (call, 0));
6215 if (fndecl
6216 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6217 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6218 fndecl = NULL_TREE;
6219 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6220 type = TREE_TYPE (fndecl);
6221 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6223 if (TREE_CODE (fndecl) == INDIRECT_REF
6224 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6225 obj_type_ref = TREE_OPERAND (fndecl, 0);
6226 fndecl = NULL_TREE;
6228 if (type)
6230 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6231 t = TREE_CHAIN (t))
6232 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6233 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6234 break;
6235 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6236 type = NULL;
6237 else
6239 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6240 link = CALL_INSN_FUNCTION_USAGE (insn);
6241 #ifndef PCC_STATIC_STRUCT_RETURN
6242 if (aggregate_value_p (TREE_TYPE (type), type)
6243 && targetm.calls.struct_value_rtx (type, 0) == 0)
6245 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6246 machine_mode mode = TYPE_MODE (struct_addr);
6247 rtx reg;
6248 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6249 nargs + 1);
6250 reg = targetm.calls.function_arg (args_so_far, mode,
6251 struct_addr, true);
6252 targetm.calls.function_arg_advance (args_so_far, mode,
6253 struct_addr, true);
6254 if (reg == NULL_RTX)
6256 for (; link; link = XEXP (link, 1))
6257 if (GET_CODE (XEXP (link, 0)) == USE
6258 && MEM_P (XEXP (XEXP (link, 0), 0)))
6260 link = XEXP (link, 1);
6261 break;
6265 else
6266 #endif
6267 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6268 nargs);
6269 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6271 machine_mode mode;
6272 t = TYPE_ARG_TYPES (type);
6273 mode = TYPE_MODE (TREE_VALUE (t));
6274 this_arg = targetm.calls.function_arg (args_so_far, mode,
6275 TREE_VALUE (t), true);
6276 if (this_arg && !REG_P (this_arg))
6277 this_arg = NULL_RTX;
6278 else if (this_arg == NULL_RTX)
6280 for (; link; link = XEXP (link, 1))
6281 if (GET_CODE (XEXP (link, 0)) == USE
6282 && MEM_P (XEXP (XEXP (link, 0), 0)))
6284 this_arg = XEXP (XEXP (link, 0), 0);
6285 break;
6292 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6294 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6295 if (GET_CODE (XEXP (link, 0)) == USE)
6297 rtx item = NULL_RTX;
6298 x = XEXP (XEXP (link, 0), 0);
6299 if (GET_MODE (link) == VOIDmode
6300 || GET_MODE (link) == BLKmode
6301 || (GET_MODE (link) != GET_MODE (x)
6302 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6303 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6304 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6305 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6306 /* Can't do anything for these, if the original type mode
6307 isn't known or can't be converted. */;
6308 else if (REG_P (x))
6310 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6311 scalar_int_mode mode;
6312 if (val && cselib_preserved_value_p (val))
6313 item = val->val_rtx;
6314 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6316 opt_scalar_int_mode mode_iter;
6317 FOR_EACH_WIDER_MODE (mode_iter, mode)
6319 mode = mode_iter.require ();
6320 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6321 break;
6323 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6324 if (reg == NULL_RTX || !REG_P (reg))
6325 continue;
6326 val = cselib_lookup (reg, mode, 0, VOIDmode);
6327 if (val && cselib_preserved_value_p (val))
6329 item = val->val_rtx;
6330 break;
6335 else if (MEM_P (x))
6337 rtx mem = x;
6338 cselib_val *val;
6340 if (!frame_pointer_needed)
6342 struct adjust_mem_data amd;
6343 amd.mem_mode = VOIDmode;
6344 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6345 amd.store = true;
6346 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6347 &amd);
6348 gcc_assert (amd.side_effects.is_empty ());
6350 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6351 if (val && cselib_preserved_value_p (val))
6352 item = val->val_rtx;
6353 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6354 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6356 /* For non-integer stack argument see also if they weren't
6357 initialized by integers. */
6358 scalar_int_mode imode;
6359 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6360 && imode != GET_MODE (mem))
6362 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6363 imode, 0, VOIDmode);
6364 if (val && cselib_preserved_value_p (val))
6365 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6366 imode);
6370 if (item)
6372 rtx x2 = x;
6373 if (GET_MODE (item) != GET_MODE (link))
6374 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6375 if (GET_MODE (x2) != GET_MODE (link))
6376 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6377 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6378 call_arguments
6379 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6381 if (t && t != void_list_node)
6383 tree argtype = TREE_VALUE (t);
6384 machine_mode mode = TYPE_MODE (argtype);
6385 rtx reg;
6386 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6388 argtype = build_pointer_type (argtype);
6389 mode = TYPE_MODE (argtype);
6391 reg = targetm.calls.function_arg (args_so_far, mode,
6392 argtype, true);
6393 if (TREE_CODE (argtype) == REFERENCE_TYPE
6394 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6395 && reg
6396 && REG_P (reg)
6397 && GET_MODE (reg) == mode
6398 && (GET_MODE_CLASS (mode) == MODE_INT
6399 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6400 && REG_P (x)
6401 && REGNO (x) == REGNO (reg)
6402 && GET_MODE (x) == mode
6403 && item)
6405 machine_mode indmode
6406 = TYPE_MODE (TREE_TYPE (argtype));
6407 rtx mem = gen_rtx_MEM (indmode, x);
6408 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6409 if (val && cselib_preserved_value_p (val))
6411 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6412 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6413 call_arguments);
6415 else
6417 struct elt_loc_list *l;
6418 tree initial;
6420 /* Try harder, when passing address of a constant
6421 pool integer it can be easily read back. */
6422 item = XEXP (item, 1);
6423 if (GET_CODE (item) == SUBREG)
6424 item = SUBREG_REG (item);
6425 gcc_assert (GET_CODE (item) == VALUE);
6426 val = CSELIB_VAL_PTR (item);
6427 for (l = val->locs; l; l = l->next)
6428 if (GET_CODE (l->loc) == SYMBOL_REF
6429 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6430 && SYMBOL_REF_DECL (l->loc)
6431 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6433 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6434 if (tree_fits_shwi_p (initial))
6436 item = GEN_INT (tree_to_shwi (initial));
6437 item = gen_rtx_CONCAT (indmode, mem, item);
6438 call_arguments
6439 = gen_rtx_EXPR_LIST (VOIDmode, item,
6440 call_arguments);
6442 break;
6446 targetm.calls.function_arg_advance (args_so_far, mode,
6447 argtype, true);
6448 t = TREE_CHAIN (t);
6452 /* Add debug arguments. */
6453 if (fndecl
6454 && TREE_CODE (fndecl) == FUNCTION_DECL
6455 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6457 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6458 if (debug_args)
6460 unsigned int ix;
6461 tree param;
6462 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6464 rtx item;
6465 tree dtemp = (**debug_args)[ix + 1];
6466 machine_mode mode = DECL_MODE (dtemp);
6467 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6468 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6469 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6470 call_arguments);
6475 /* Reverse call_arguments chain. */
6476 prev = NULL_RTX;
6477 for (cur = call_arguments; cur; cur = next)
6479 next = XEXP (cur, 1);
6480 XEXP (cur, 1) = prev;
6481 prev = cur;
6483 call_arguments = prev;
6485 x = get_call_rtx_from (insn);
6486 if (x)
6488 x = XEXP (XEXP (x, 0), 0);
6489 if (GET_CODE (x) == SYMBOL_REF)
6490 /* Don't record anything. */;
6491 else if (CONSTANT_P (x))
6493 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6494 pc_rtx, x);
6495 call_arguments
6496 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6498 else
6500 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6501 if (val && cselib_preserved_value_p (val))
6503 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6504 call_arguments
6505 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6509 if (this_arg)
6511 machine_mode mode
6512 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6513 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6514 HOST_WIDE_INT token
6515 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6516 if (token)
6517 clobbered = plus_constant (mode, clobbered,
6518 token * GET_MODE_SIZE (mode));
6519 clobbered = gen_rtx_MEM (mode, clobbered);
6520 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6521 call_arguments
6522 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6526 /* Callback for cselib_record_sets_hook, that records as micro
6527 operations uses and stores in an insn after cselib_record_sets has
6528 analyzed the sets in an insn, but before it modifies the stored
6529 values in the internal tables, unless cselib_record_sets doesn't
6530 call it directly (perhaps because we're not doing cselib in the
6531 first place, in which case sets and n_sets will be 0). */
6533 static void
6534 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6536 basic_block bb = BLOCK_FOR_INSN (insn);
6537 int n1, n2;
6538 struct count_use_info cui;
6539 micro_operation *mos;
6541 cselib_hook_called = true;
6543 cui.insn = insn;
6544 cui.bb = bb;
6545 cui.sets = sets;
6546 cui.n_sets = n_sets;
6548 n1 = VTI (bb)->mos.length ();
6549 cui.store_p = false;
6550 note_uses (&PATTERN (insn), add_uses_1, &cui);
6551 n2 = VTI (bb)->mos.length () - 1;
6552 mos = VTI (bb)->mos.address ();
6554 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6555 MO_VAL_LOC last. */
6556 while (n1 < n2)
6558 while (n1 < n2 && mos[n1].type == MO_USE)
6559 n1++;
6560 while (n1 < n2 && mos[n2].type != MO_USE)
6561 n2--;
6562 if (n1 < n2)
6563 std::swap (mos[n1], mos[n2]);
6566 n2 = VTI (bb)->mos.length () - 1;
6567 while (n1 < n2)
6569 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6570 n1++;
6571 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6572 n2--;
6573 if (n1 < n2)
6574 std::swap (mos[n1], mos[n2]);
6577 if (CALL_P (insn))
6579 micro_operation mo;
6581 mo.type = MO_CALL;
6582 mo.insn = insn;
6583 mo.u.loc = call_arguments;
6584 call_arguments = NULL_RTX;
6586 if (dump_file && (dump_flags & TDF_DETAILS))
6587 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6588 VTI (bb)->mos.safe_push (mo);
6591 n1 = VTI (bb)->mos.length ();
6592 /* This will record NEXT_INSN (insn), such that we can
6593 insert notes before it without worrying about any
6594 notes that MO_USEs might emit after the insn. */
6595 cui.store_p = true;
6596 note_stores (PATTERN (insn), add_stores, &cui);
6597 n2 = VTI (bb)->mos.length () - 1;
6598 mos = VTI (bb)->mos.address ();
6600 /* Order the MO_VAL_USEs first (note_stores does nothing
6601 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6602 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6603 while (n1 < n2)
6605 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6606 n1++;
6607 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6608 n2--;
6609 if (n1 < n2)
6610 std::swap (mos[n1], mos[n2]);
6613 n2 = VTI (bb)->mos.length () - 1;
6614 while (n1 < n2)
6616 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6617 n1++;
6618 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6619 n2--;
6620 if (n1 < n2)
6621 std::swap (mos[n1], mos[n2]);
6625 static enum var_init_status
6626 find_src_status (dataflow_set *in, rtx src)
6628 tree decl = NULL_TREE;
6629 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6631 if (! flag_var_tracking_uninit)
6632 status = VAR_INIT_STATUS_INITIALIZED;
6634 if (src && REG_P (src))
6635 decl = var_debug_decl (REG_EXPR (src));
6636 else if (src && MEM_P (src))
6637 decl = var_debug_decl (MEM_EXPR (src));
6639 if (src && decl)
6640 status = get_init_value (in, src, dv_from_decl (decl));
6642 return status;
6645 /* SRC is the source of an assignment. Use SET to try to find what
6646 was ultimately assigned to SRC. Return that value if known,
6647 otherwise return SRC itself. */
6649 static rtx
6650 find_src_set_src (dataflow_set *set, rtx src)
6652 tree decl = NULL_TREE; /* The variable being copied around. */
6653 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6654 variable *var;
6655 location_chain *nextp;
6656 int i;
6657 bool found;
6659 if (src && REG_P (src))
6660 decl = var_debug_decl (REG_EXPR (src));
6661 else if (src && MEM_P (src))
6662 decl = var_debug_decl (MEM_EXPR (src));
6664 if (src && decl)
6666 decl_or_value dv = dv_from_decl (decl);
6668 var = shared_hash_find (set->vars, dv);
6669 if (var)
6671 found = false;
6672 for (i = 0; i < var->n_var_parts && !found; i++)
6673 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6674 nextp = nextp->next)
6675 if (rtx_equal_p (nextp->loc, src))
6677 set_src = nextp->set_src;
6678 found = true;
6684 return set_src;
6687 /* Compute the changes of variable locations in the basic block BB. */
6689 static bool
6690 compute_bb_dataflow (basic_block bb)
6692 unsigned int i;
6693 micro_operation *mo;
6694 bool changed;
6695 dataflow_set old_out;
6696 dataflow_set *in = &VTI (bb)->in;
6697 dataflow_set *out = &VTI (bb)->out;
6699 dataflow_set_init (&old_out);
6700 dataflow_set_copy (&old_out, out);
6701 dataflow_set_copy (out, in);
6703 if (MAY_HAVE_DEBUG_INSNS)
6704 local_get_addr_cache = new hash_map<rtx, rtx>;
6706 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6708 rtx_insn *insn = mo->insn;
6710 switch (mo->type)
6712 case MO_CALL:
6713 dataflow_set_clear_at_call (out, insn);
6714 break;
6716 case MO_USE:
6718 rtx loc = mo->u.loc;
6720 if (REG_P (loc))
6721 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6722 else if (MEM_P (loc))
6723 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6725 break;
6727 case MO_VAL_LOC:
6729 rtx loc = mo->u.loc;
6730 rtx val, vloc;
6731 tree var;
6733 if (GET_CODE (loc) == CONCAT)
6735 val = XEXP (loc, 0);
6736 vloc = XEXP (loc, 1);
6738 else
6740 val = NULL_RTX;
6741 vloc = loc;
6744 var = PAT_VAR_LOCATION_DECL (vloc);
6746 clobber_variable_part (out, NULL_RTX,
6747 dv_from_decl (var), 0, NULL_RTX);
6748 if (val)
6750 if (VAL_NEEDS_RESOLUTION (loc))
6751 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6752 set_variable_part (out, val, dv_from_decl (var), 0,
6753 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6754 INSERT);
6756 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6757 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6758 dv_from_decl (var), 0,
6759 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6760 INSERT);
6762 break;
6764 case MO_VAL_USE:
6766 rtx loc = mo->u.loc;
6767 rtx val, vloc, uloc;
6769 vloc = uloc = XEXP (loc, 1);
6770 val = XEXP (loc, 0);
6772 if (GET_CODE (val) == CONCAT)
6774 uloc = XEXP (val, 1);
6775 val = XEXP (val, 0);
6778 if (VAL_NEEDS_RESOLUTION (loc))
6779 val_resolve (out, val, vloc, insn);
6780 else
6781 val_store (out, val, uloc, insn, false);
6783 if (VAL_HOLDS_TRACK_EXPR (loc))
6785 if (GET_CODE (uloc) == REG)
6786 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6787 NULL);
6788 else if (GET_CODE (uloc) == MEM)
6789 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6790 NULL);
6793 break;
6795 case MO_VAL_SET:
6797 rtx loc = mo->u.loc;
6798 rtx val, vloc, uloc;
6799 rtx dstv, srcv;
6801 vloc = loc;
6802 uloc = XEXP (vloc, 1);
6803 val = XEXP (vloc, 0);
6804 vloc = uloc;
6806 if (GET_CODE (uloc) == SET)
6808 dstv = SET_DEST (uloc);
6809 srcv = SET_SRC (uloc);
6811 else
6813 dstv = uloc;
6814 srcv = NULL;
6817 if (GET_CODE (val) == CONCAT)
6819 dstv = vloc = XEXP (val, 1);
6820 val = XEXP (val, 0);
6823 if (GET_CODE (vloc) == SET)
6825 srcv = SET_SRC (vloc);
6827 gcc_assert (val != srcv);
6828 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6830 dstv = vloc = SET_DEST (vloc);
6832 if (VAL_NEEDS_RESOLUTION (loc))
6833 val_resolve (out, val, srcv, insn);
6835 else if (VAL_NEEDS_RESOLUTION (loc))
6837 gcc_assert (GET_CODE (uloc) == SET
6838 && GET_CODE (SET_SRC (uloc)) == REG);
6839 val_resolve (out, val, SET_SRC (uloc), insn);
6842 if (VAL_HOLDS_TRACK_EXPR (loc))
6844 if (VAL_EXPR_IS_CLOBBERED (loc))
6846 if (REG_P (uloc))
6847 var_reg_delete (out, uloc, true);
6848 else if (MEM_P (uloc))
6850 gcc_assert (MEM_P (dstv));
6851 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6852 var_mem_delete (out, dstv, true);
6855 else
6857 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6858 rtx src = NULL, dst = uloc;
6859 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6861 if (GET_CODE (uloc) == SET)
6863 src = SET_SRC (uloc);
6864 dst = SET_DEST (uloc);
6867 if (copied_p)
6869 if (flag_var_tracking_uninit)
6871 status = find_src_status (in, src);
6873 if (status == VAR_INIT_STATUS_UNKNOWN)
6874 status = find_src_status (out, src);
6877 src = find_src_set_src (in, src);
6880 if (REG_P (dst))
6881 var_reg_delete_and_set (out, dst, !copied_p,
6882 status, srcv);
6883 else if (MEM_P (dst))
6885 gcc_assert (MEM_P (dstv));
6886 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6887 var_mem_delete_and_set (out, dstv, !copied_p,
6888 status, srcv);
6892 else if (REG_P (uloc))
6893 var_regno_delete (out, REGNO (uloc));
6894 else if (MEM_P (uloc))
6896 gcc_checking_assert (GET_CODE (vloc) == MEM);
6897 gcc_checking_assert (dstv == vloc);
6898 if (dstv != vloc)
6899 clobber_overlapping_mems (out, vloc);
6902 val_store (out, val, dstv, insn, true);
6904 break;
6906 case MO_SET:
6908 rtx loc = mo->u.loc;
6909 rtx set_src = NULL;
6911 if (GET_CODE (loc) == SET)
6913 set_src = SET_SRC (loc);
6914 loc = SET_DEST (loc);
6917 if (REG_P (loc))
6918 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6919 set_src);
6920 else if (MEM_P (loc))
6921 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6922 set_src);
6924 break;
6926 case MO_COPY:
6928 rtx loc = mo->u.loc;
6929 enum var_init_status src_status;
6930 rtx set_src = NULL;
6932 if (GET_CODE (loc) == SET)
6934 set_src = SET_SRC (loc);
6935 loc = SET_DEST (loc);
6938 if (! flag_var_tracking_uninit)
6939 src_status = VAR_INIT_STATUS_INITIALIZED;
6940 else
6942 src_status = find_src_status (in, set_src);
6944 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6945 src_status = find_src_status (out, set_src);
6948 set_src = find_src_set_src (in, set_src);
6950 if (REG_P (loc))
6951 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6952 else if (MEM_P (loc))
6953 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6955 break;
6957 case MO_USE_NO_VAR:
6959 rtx loc = mo->u.loc;
6961 if (REG_P (loc))
6962 var_reg_delete (out, loc, false);
6963 else if (MEM_P (loc))
6964 var_mem_delete (out, loc, false);
6966 break;
6968 case MO_CLOBBER:
6970 rtx loc = mo->u.loc;
6972 if (REG_P (loc))
6973 var_reg_delete (out, loc, true);
6974 else if (MEM_P (loc))
6975 var_mem_delete (out, loc, true);
6977 break;
6979 case MO_ADJUST:
6980 out->stack_adjust += mo->u.adjust;
6981 break;
6985 if (MAY_HAVE_DEBUG_INSNS)
6987 delete local_get_addr_cache;
6988 local_get_addr_cache = NULL;
6990 dataflow_set_equiv_regs (out);
6991 shared_hash_htab (out->vars)
6992 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6993 shared_hash_htab (out->vars)
6994 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6995 if (flag_checking)
6996 shared_hash_htab (out->vars)
6997 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6999 changed = dataflow_set_different (&old_out, out);
7000 dataflow_set_destroy (&old_out);
7001 return changed;
7004 /* Find the locations of variables in the whole function. */
7006 static bool
7007 vt_find_locations (void)
7009 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7010 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7011 sbitmap in_worklist, in_pending;
7012 basic_block bb;
7013 edge e;
7014 int *bb_order;
7015 int *rc_order;
7016 int i;
7017 int htabsz = 0;
7018 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7019 bool success = true;
7021 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7022 /* Compute reverse completion order of depth first search of the CFG
7023 so that the data-flow runs faster. */
7024 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7025 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7026 pre_and_rev_post_order_compute (NULL, rc_order, false);
7027 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7028 bb_order[rc_order[i]] = i;
7029 free (rc_order);
7031 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7032 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7033 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7034 bitmap_clear (in_worklist);
7036 FOR_EACH_BB_FN (bb, cfun)
7037 pending->insert (bb_order[bb->index], bb);
7038 bitmap_ones (in_pending);
7040 while (success && !pending->empty ())
7042 std::swap (worklist, pending);
7043 std::swap (in_worklist, in_pending);
7045 bitmap_clear (visited);
7047 while (!worklist->empty ())
7049 bb = worklist->extract_min ();
7050 bitmap_clear_bit (in_worklist, bb->index);
7051 gcc_assert (!bitmap_bit_p (visited, bb->index));
7052 if (!bitmap_bit_p (visited, bb->index))
7054 bool changed;
7055 edge_iterator ei;
7056 int oldinsz, oldoutsz;
7058 bitmap_set_bit (visited, bb->index);
7060 if (VTI (bb)->in.vars)
7062 htabsz
7063 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7064 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7065 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7066 oldoutsz
7067 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7069 else
7070 oldinsz = oldoutsz = 0;
7072 if (MAY_HAVE_DEBUG_INSNS)
7074 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7075 bool first = true, adjust = false;
7077 /* Calculate the IN set as the intersection of
7078 predecessor OUT sets. */
7080 dataflow_set_clear (in);
7081 dst_can_be_shared = true;
7083 FOR_EACH_EDGE (e, ei, bb->preds)
7084 if (!VTI (e->src)->flooded)
7085 gcc_assert (bb_order[bb->index]
7086 <= bb_order[e->src->index]);
7087 else if (first)
7089 dataflow_set_copy (in, &VTI (e->src)->out);
7090 first_out = &VTI (e->src)->out;
7091 first = false;
7093 else
7095 dataflow_set_merge (in, &VTI (e->src)->out);
7096 adjust = true;
7099 if (adjust)
7101 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7103 if (flag_checking)
7104 /* Merge and merge_adjust should keep entries in
7105 canonical order. */
7106 shared_hash_htab (in->vars)
7107 ->traverse <dataflow_set *,
7108 canonicalize_loc_order_check> (in);
7110 if (dst_can_be_shared)
7112 shared_hash_destroy (in->vars);
7113 in->vars = shared_hash_copy (first_out->vars);
7117 VTI (bb)->flooded = true;
7119 else
7121 /* Calculate the IN set as union of predecessor OUT sets. */
7122 dataflow_set_clear (&VTI (bb)->in);
7123 FOR_EACH_EDGE (e, ei, bb->preds)
7124 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7127 changed = compute_bb_dataflow (bb);
7128 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7129 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7131 if (htabmax && htabsz > htabmax)
7133 if (MAY_HAVE_DEBUG_INSNS)
7134 inform (DECL_SOURCE_LOCATION (cfun->decl),
7135 "variable tracking size limit exceeded with "
7136 "-fvar-tracking-assignments, retrying without");
7137 else
7138 inform (DECL_SOURCE_LOCATION (cfun->decl),
7139 "variable tracking size limit exceeded");
7140 success = false;
7141 break;
7144 if (changed)
7146 FOR_EACH_EDGE (e, ei, bb->succs)
7148 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7149 continue;
7151 if (bitmap_bit_p (visited, e->dest->index))
7153 if (!bitmap_bit_p (in_pending, e->dest->index))
7155 /* Send E->DEST to next round. */
7156 bitmap_set_bit (in_pending, e->dest->index);
7157 pending->insert (bb_order[e->dest->index],
7158 e->dest);
7161 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7163 /* Add E->DEST to current round. */
7164 bitmap_set_bit (in_worklist, e->dest->index);
7165 worklist->insert (bb_order[e->dest->index],
7166 e->dest);
7171 if (dump_file)
7172 fprintf (dump_file,
7173 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7174 bb->index,
7175 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7176 oldinsz,
7177 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7178 oldoutsz,
7179 (int)worklist->nodes (), (int)pending->nodes (),
7180 htabsz);
7182 if (dump_file && (dump_flags & TDF_DETAILS))
7184 fprintf (dump_file, "BB %i IN:\n", bb->index);
7185 dump_dataflow_set (&VTI (bb)->in);
7186 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7187 dump_dataflow_set (&VTI (bb)->out);
7193 if (success && MAY_HAVE_DEBUG_INSNS)
7194 FOR_EACH_BB_FN (bb, cfun)
7195 gcc_assert (VTI (bb)->flooded);
7197 free (bb_order);
7198 delete worklist;
7199 delete pending;
7200 sbitmap_free (in_worklist);
7201 sbitmap_free (in_pending);
7203 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7204 return success;
7207 /* Print the content of the LIST to dump file. */
7209 static void
7210 dump_attrs_list (attrs *list)
7212 for (; list; list = list->next)
7214 if (dv_is_decl_p (list->dv))
7215 print_mem_expr (dump_file, dv_as_decl (list->dv));
7216 else
7217 print_rtl_single (dump_file, dv_as_value (list->dv));
7218 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7220 fprintf (dump_file, "\n");
7223 /* Print the information about variable *SLOT to dump file. */
7226 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7228 variable *var = *slot;
7230 dump_var (var);
7232 /* Continue traversing the hash table. */
7233 return 1;
7236 /* Print the information about variable VAR to dump file. */
7238 static void
7239 dump_var (variable *var)
7241 int i;
7242 location_chain *node;
7244 if (dv_is_decl_p (var->dv))
7246 const_tree decl = dv_as_decl (var->dv);
7248 if (DECL_NAME (decl))
7250 fprintf (dump_file, " name: %s",
7251 IDENTIFIER_POINTER (DECL_NAME (decl)));
7252 if (dump_flags & TDF_UID)
7253 fprintf (dump_file, "D.%u", DECL_UID (decl));
7255 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7256 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7257 else
7258 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7259 fprintf (dump_file, "\n");
7261 else
7263 fputc (' ', dump_file);
7264 print_rtl_single (dump_file, dv_as_value (var->dv));
7267 for (i = 0; i < var->n_var_parts; i++)
7269 fprintf (dump_file, " offset %ld\n",
7270 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7271 for (node = var->var_part[i].loc_chain; node; node = node->next)
7273 fprintf (dump_file, " ");
7274 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7275 fprintf (dump_file, "[uninit]");
7276 print_rtl_single (dump_file, node->loc);
7281 /* Print the information about variables from hash table VARS to dump file. */
7283 static void
7284 dump_vars (variable_table_type *vars)
7286 if (vars->elements () > 0)
7288 fprintf (dump_file, "Variables:\n");
7289 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7293 /* Print the dataflow set SET to dump file. */
7295 static void
7296 dump_dataflow_set (dataflow_set *set)
7298 int i;
7300 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7301 set->stack_adjust);
7302 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7304 if (set->regs[i])
7306 fprintf (dump_file, "Reg %d:", i);
7307 dump_attrs_list (set->regs[i]);
7310 dump_vars (shared_hash_htab (set->vars));
7311 fprintf (dump_file, "\n");
7314 /* Print the IN and OUT sets for each basic block to dump file. */
7316 static void
7317 dump_dataflow_sets (void)
7319 basic_block bb;
7321 FOR_EACH_BB_FN (bb, cfun)
7323 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7324 fprintf (dump_file, "IN:\n");
7325 dump_dataflow_set (&VTI (bb)->in);
7326 fprintf (dump_file, "OUT:\n");
7327 dump_dataflow_set (&VTI (bb)->out);
7331 /* Return the variable for DV in dropped_values, inserting one if
7332 requested with INSERT. */
7334 static inline variable *
7335 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7337 variable **slot;
7338 variable *empty_var;
7339 onepart_enum onepart;
7341 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7343 if (!slot)
7344 return NULL;
7346 if (*slot)
7347 return *slot;
7349 gcc_checking_assert (insert == INSERT);
7351 onepart = dv_onepart_p (dv);
7353 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7355 empty_var = onepart_pool_allocate (onepart);
7356 empty_var->dv = dv;
7357 empty_var->refcount = 1;
7358 empty_var->n_var_parts = 0;
7359 empty_var->onepart = onepart;
7360 empty_var->in_changed_variables = false;
7361 empty_var->var_part[0].loc_chain = NULL;
7362 empty_var->var_part[0].cur_loc = NULL;
7363 VAR_LOC_1PAUX (empty_var) = NULL;
7364 set_dv_changed (dv, true);
7366 *slot = empty_var;
7368 return empty_var;
7371 /* Recover the one-part aux from dropped_values. */
7373 static struct onepart_aux *
7374 recover_dropped_1paux (variable *var)
7376 variable *dvar;
7378 gcc_checking_assert (var->onepart);
7380 if (VAR_LOC_1PAUX (var))
7381 return VAR_LOC_1PAUX (var);
7383 if (var->onepart == ONEPART_VDECL)
7384 return NULL;
7386 dvar = variable_from_dropped (var->dv, NO_INSERT);
7388 if (!dvar)
7389 return NULL;
7391 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7392 VAR_LOC_1PAUX (dvar) = NULL;
7394 return VAR_LOC_1PAUX (var);
7397 /* Add variable VAR to the hash table of changed variables and
7398 if it has no locations delete it from SET's hash table. */
7400 static void
7401 variable_was_changed (variable *var, dataflow_set *set)
7403 hashval_t hash = dv_htab_hash (var->dv);
7405 if (emit_notes)
7407 variable **slot;
7409 /* Remember this decl or VALUE has been added to changed_variables. */
7410 set_dv_changed (var->dv, true);
7412 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7414 if (*slot)
7416 variable *old_var = *slot;
7417 gcc_assert (old_var->in_changed_variables);
7418 old_var->in_changed_variables = false;
7419 if (var != old_var && var->onepart)
7421 /* Restore the auxiliary info from an empty variable
7422 previously created for changed_variables, so it is
7423 not lost. */
7424 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7425 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7426 VAR_LOC_1PAUX (old_var) = NULL;
7428 variable_htab_free (*slot);
7431 if (set && var->n_var_parts == 0)
7433 onepart_enum onepart = var->onepart;
7434 variable *empty_var = NULL;
7435 variable **dslot = NULL;
7437 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7439 dslot = dropped_values->find_slot_with_hash (var->dv,
7440 dv_htab_hash (var->dv),
7441 INSERT);
7442 empty_var = *dslot;
7444 if (empty_var)
7446 gcc_checking_assert (!empty_var->in_changed_variables);
7447 if (!VAR_LOC_1PAUX (var))
7449 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7450 VAR_LOC_1PAUX (empty_var) = NULL;
7452 else
7453 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7457 if (!empty_var)
7459 empty_var = onepart_pool_allocate (onepart);
7460 empty_var->dv = var->dv;
7461 empty_var->refcount = 1;
7462 empty_var->n_var_parts = 0;
7463 empty_var->onepart = onepart;
7464 if (dslot)
7466 empty_var->refcount++;
7467 *dslot = empty_var;
7470 else
7471 empty_var->refcount++;
7472 empty_var->in_changed_variables = true;
7473 *slot = empty_var;
7474 if (onepart)
7476 empty_var->var_part[0].loc_chain = NULL;
7477 empty_var->var_part[0].cur_loc = NULL;
7478 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7479 VAR_LOC_1PAUX (var) = NULL;
7481 goto drop_var;
7483 else
7485 if (var->onepart && !VAR_LOC_1PAUX (var))
7486 recover_dropped_1paux (var);
7487 var->refcount++;
7488 var->in_changed_variables = true;
7489 *slot = var;
7492 else
7494 gcc_assert (set);
7495 if (var->n_var_parts == 0)
7497 variable **slot;
7499 drop_var:
7500 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7501 if (slot)
7503 if (shared_hash_shared (set->vars))
7504 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7505 NO_INSERT);
7506 shared_hash_htab (set->vars)->clear_slot (slot);
7512 /* Look for the index in VAR->var_part corresponding to OFFSET.
7513 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7514 referenced int will be set to the index that the part has or should
7515 have, if it should be inserted. */
7517 static inline int
7518 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7519 int *insertion_point)
7521 int pos, low, high;
7523 if (var->onepart)
7525 if (offset != 0)
7526 return -1;
7528 if (insertion_point)
7529 *insertion_point = 0;
7531 return var->n_var_parts - 1;
7534 /* Find the location part. */
7535 low = 0;
7536 high = var->n_var_parts;
7537 while (low != high)
7539 pos = (low + high) / 2;
7540 if (VAR_PART_OFFSET (var, pos) < offset)
7541 low = pos + 1;
7542 else
7543 high = pos;
7545 pos = low;
7547 if (insertion_point)
7548 *insertion_point = pos;
7550 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7551 return pos;
7553 return -1;
7556 static variable **
7557 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7558 decl_or_value dv, HOST_WIDE_INT offset,
7559 enum var_init_status initialized, rtx set_src)
7561 int pos;
7562 location_chain *node, *next;
7563 location_chain **nextp;
7564 variable *var;
7565 onepart_enum onepart;
7567 var = *slot;
7569 if (var)
7570 onepart = var->onepart;
7571 else
7572 onepart = dv_onepart_p (dv);
7574 gcc_checking_assert (offset == 0 || !onepart);
7575 gcc_checking_assert (loc != dv_as_opaque (dv));
7577 if (! flag_var_tracking_uninit)
7578 initialized = VAR_INIT_STATUS_INITIALIZED;
7580 if (!var)
7582 /* Create new variable information. */
7583 var = onepart_pool_allocate (onepart);
7584 var->dv = dv;
7585 var->refcount = 1;
7586 var->n_var_parts = 1;
7587 var->onepart = onepart;
7588 var->in_changed_variables = false;
7589 if (var->onepart)
7590 VAR_LOC_1PAUX (var) = NULL;
7591 else
7592 VAR_PART_OFFSET (var, 0) = offset;
7593 var->var_part[0].loc_chain = NULL;
7594 var->var_part[0].cur_loc = NULL;
7595 *slot = var;
7596 pos = 0;
7597 nextp = &var->var_part[0].loc_chain;
7599 else if (onepart)
7601 int r = -1, c = 0;
7603 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7605 pos = 0;
7607 if (GET_CODE (loc) == VALUE)
7609 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7610 nextp = &node->next)
7611 if (GET_CODE (node->loc) == VALUE)
7613 if (node->loc == loc)
7615 r = 0;
7616 break;
7618 if (canon_value_cmp (node->loc, loc))
7619 c++;
7620 else
7622 r = 1;
7623 break;
7626 else if (REG_P (node->loc) || MEM_P (node->loc))
7627 c++;
7628 else
7630 r = 1;
7631 break;
7634 else if (REG_P (loc))
7636 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7637 nextp = &node->next)
7638 if (REG_P (node->loc))
7640 if (REGNO (node->loc) < REGNO (loc))
7641 c++;
7642 else
7644 if (REGNO (node->loc) == REGNO (loc))
7645 r = 0;
7646 else
7647 r = 1;
7648 break;
7651 else
7653 r = 1;
7654 break;
7657 else if (MEM_P (loc))
7659 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7660 nextp = &node->next)
7661 if (REG_P (node->loc))
7662 c++;
7663 else if (MEM_P (node->loc))
7665 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7666 break;
7667 else
7668 c++;
7670 else
7672 r = 1;
7673 break;
7676 else
7677 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7678 nextp = &node->next)
7679 if ((r = loc_cmp (node->loc, loc)) >= 0)
7680 break;
7681 else
7682 c++;
7684 if (r == 0)
7685 return slot;
7687 if (shared_var_p (var, set->vars))
7689 slot = unshare_variable (set, slot, var, initialized);
7690 var = *slot;
7691 for (nextp = &var->var_part[0].loc_chain; c;
7692 nextp = &(*nextp)->next)
7693 c--;
7694 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7697 else
7699 int inspos = 0;
7701 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7703 pos = find_variable_location_part (var, offset, &inspos);
7705 if (pos >= 0)
7707 node = var->var_part[pos].loc_chain;
7709 if (node
7710 && ((REG_P (node->loc) && REG_P (loc)
7711 && REGNO (node->loc) == REGNO (loc))
7712 || rtx_equal_p (node->loc, loc)))
7714 /* LOC is in the beginning of the chain so we have nothing
7715 to do. */
7716 if (node->init < initialized)
7717 node->init = initialized;
7718 if (set_src != NULL)
7719 node->set_src = set_src;
7721 return slot;
7723 else
7725 /* We have to make a copy of a shared variable. */
7726 if (shared_var_p (var, set->vars))
7728 slot = unshare_variable (set, slot, var, initialized);
7729 var = *slot;
7733 else
7735 /* We have not found the location part, new one will be created. */
7737 /* We have to make a copy of the shared variable. */
7738 if (shared_var_p (var, set->vars))
7740 slot = unshare_variable (set, slot, var, initialized);
7741 var = *slot;
7744 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7745 thus there are at most MAX_VAR_PARTS different offsets. */
7746 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7747 && (!var->n_var_parts || !onepart));
7749 /* We have to move the elements of array starting at index
7750 inspos to the next position. */
7751 for (pos = var->n_var_parts; pos > inspos; pos--)
7752 var->var_part[pos] = var->var_part[pos - 1];
7754 var->n_var_parts++;
7755 gcc_checking_assert (!onepart);
7756 VAR_PART_OFFSET (var, pos) = offset;
7757 var->var_part[pos].loc_chain = NULL;
7758 var->var_part[pos].cur_loc = NULL;
7761 /* Delete the location from the list. */
7762 nextp = &var->var_part[pos].loc_chain;
7763 for (node = var->var_part[pos].loc_chain; node; node = next)
7765 next = node->next;
7766 if ((REG_P (node->loc) && REG_P (loc)
7767 && REGNO (node->loc) == REGNO (loc))
7768 || rtx_equal_p (node->loc, loc))
7770 /* Save these values, to assign to the new node, before
7771 deleting this one. */
7772 if (node->init > initialized)
7773 initialized = node->init;
7774 if (node->set_src != NULL && set_src == NULL)
7775 set_src = node->set_src;
7776 if (var->var_part[pos].cur_loc == node->loc)
7777 var->var_part[pos].cur_loc = NULL;
7778 delete node;
7779 *nextp = next;
7780 break;
7782 else
7783 nextp = &node->next;
7786 nextp = &var->var_part[pos].loc_chain;
7789 /* Add the location to the beginning. */
7790 node = new location_chain;
7791 node->loc = loc;
7792 node->init = initialized;
7793 node->set_src = set_src;
7794 node->next = *nextp;
7795 *nextp = node;
7797 /* If no location was emitted do so. */
7798 if (var->var_part[pos].cur_loc == NULL)
7799 variable_was_changed (var, set);
7801 return slot;
7804 /* Set the part of variable's location in the dataflow set SET. The
7805 variable part is specified by variable's declaration in DV and
7806 offset OFFSET and the part's location by LOC. IOPT should be
7807 NO_INSERT if the variable is known to be in SET already and the
7808 variable hash table must not be resized, and INSERT otherwise. */
7810 static void
7811 set_variable_part (dataflow_set *set, rtx loc,
7812 decl_or_value dv, HOST_WIDE_INT offset,
7813 enum var_init_status initialized, rtx set_src,
7814 enum insert_option iopt)
7816 variable **slot;
7818 if (iopt == NO_INSERT)
7819 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7820 else
7822 slot = shared_hash_find_slot (set->vars, dv);
7823 if (!slot)
7824 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7826 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7829 /* Remove all recorded register locations for the given variable part
7830 from dataflow set SET, except for those that are identical to loc.
7831 The variable part is specified by variable's declaration or value
7832 DV and offset OFFSET. */
7834 static variable **
7835 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7836 HOST_WIDE_INT offset, rtx set_src)
7838 variable *var = *slot;
7839 int pos = find_variable_location_part (var, offset, NULL);
7841 if (pos >= 0)
7843 location_chain *node, *next;
7845 /* Remove the register locations from the dataflow set. */
7846 next = var->var_part[pos].loc_chain;
7847 for (node = next; node; node = next)
7849 next = node->next;
7850 if (node->loc != loc
7851 && (!flag_var_tracking_uninit
7852 || !set_src
7853 || MEM_P (set_src)
7854 || !rtx_equal_p (set_src, node->set_src)))
7856 if (REG_P (node->loc))
7858 attrs *anode, *anext;
7859 attrs **anextp;
7861 /* Remove the variable part from the register's
7862 list, but preserve any other variable parts
7863 that might be regarded as live in that same
7864 register. */
7865 anextp = &set->regs[REGNO (node->loc)];
7866 for (anode = *anextp; anode; anode = anext)
7868 anext = anode->next;
7869 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7870 && anode->offset == offset)
7872 delete anode;
7873 *anextp = anext;
7875 else
7876 anextp = &anode->next;
7880 slot = delete_slot_part (set, node->loc, slot, offset);
7885 return slot;
7888 /* Remove all recorded register locations for the given variable part
7889 from dataflow set SET, except for those that are identical to loc.
7890 The variable part is specified by variable's declaration or value
7891 DV and offset OFFSET. */
7893 static void
7894 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7895 HOST_WIDE_INT offset, rtx set_src)
7897 variable **slot;
7899 if (!dv_as_opaque (dv)
7900 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7901 return;
7903 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7904 if (!slot)
7905 return;
7907 clobber_slot_part (set, loc, slot, offset, set_src);
7910 /* Delete the part of variable's location from dataflow set SET. The
7911 variable part is specified by its SET->vars slot SLOT and offset
7912 OFFSET and the part's location by LOC. */
7914 static variable **
7915 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7916 HOST_WIDE_INT offset)
7918 variable *var = *slot;
7919 int pos = find_variable_location_part (var, offset, NULL);
7921 if (pos >= 0)
7923 location_chain *node, *next;
7924 location_chain **nextp;
7925 bool changed;
7926 rtx cur_loc;
7928 if (shared_var_p (var, set->vars))
7930 /* If the variable contains the location part we have to
7931 make a copy of the variable. */
7932 for (node = var->var_part[pos].loc_chain; node;
7933 node = node->next)
7935 if ((REG_P (node->loc) && REG_P (loc)
7936 && REGNO (node->loc) == REGNO (loc))
7937 || rtx_equal_p (node->loc, loc))
7939 slot = unshare_variable (set, slot, var,
7940 VAR_INIT_STATUS_UNKNOWN);
7941 var = *slot;
7942 break;
7947 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7948 cur_loc = VAR_LOC_FROM (var);
7949 else
7950 cur_loc = var->var_part[pos].cur_loc;
7952 /* Delete the location part. */
7953 changed = false;
7954 nextp = &var->var_part[pos].loc_chain;
7955 for (node = *nextp; node; node = next)
7957 next = node->next;
7958 if ((REG_P (node->loc) && REG_P (loc)
7959 && REGNO (node->loc) == REGNO (loc))
7960 || rtx_equal_p (node->loc, loc))
7962 /* If we have deleted the location which was last emitted
7963 we have to emit new location so add the variable to set
7964 of changed variables. */
7965 if (cur_loc == node->loc)
7967 changed = true;
7968 var->var_part[pos].cur_loc = NULL;
7969 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7970 VAR_LOC_FROM (var) = NULL;
7972 delete node;
7973 *nextp = next;
7974 break;
7976 else
7977 nextp = &node->next;
7980 if (var->var_part[pos].loc_chain == NULL)
7982 changed = true;
7983 var->n_var_parts--;
7984 while (pos < var->n_var_parts)
7986 var->var_part[pos] = var->var_part[pos + 1];
7987 pos++;
7990 if (changed)
7991 variable_was_changed (var, set);
7994 return slot;
7997 /* Delete the part of variable's location from dataflow set SET. The
7998 variable part is specified by variable's declaration or value DV
7999 and offset OFFSET and the part's location by LOC. */
8001 static void
8002 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8003 HOST_WIDE_INT offset)
8005 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8006 if (!slot)
8007 return;
8009 delete_slot_part (set, loc, slot, offset);
8013 /* Structure for passing some other parameters to function
8014 vt_expand_loc_callback. */
8015 struct expand_loc_callback_data
8017 /* The variables and values active at this point. */
8018 variable_table_type *vars;
8020 /* Stack of values and debug_exprs under expansion, and their
8021 children. */
8022 auto_vec<rtx, 4> expanding;
8024 /* Stack of values and debug_exprs whose expansion hit recursion
8025 cycles. They will have VALUE_RECURSED_INTO marked when added to
8026 this list. This flag will be cleared if any of its dependencies
8027 resolves to a valid location. So, if the flag remains set at the
8028 end of the search, we know no valid location for this one can
8029 possibly exist. */
8030 auto_vec<rtx, 4> pending;
8032 /* The maximum depth among the sub-expressions under expansion.
8033 Zero indicates no expansion so far. */
8034 expand_depth depth;
8037 /* Allocate the one-part auxiliary data structure for VAR, with enough
8038 room for COUNT dependencies. */
8040 static void
8041 loc_exp_dep_alloc (variable *var, int count)
8043 size_t allocsize;
8045 gcc_checking_assert (var->onepart);
8047 /* We can be called with COUNT == 0 to allocate the data structure
8048 without any dependencies, e.g. for the backlinks only. However,
8049 if we are specifying a COUNT, then the dependency list must have
8050 been emptied before. It would be possible to adjust pointers or
8051 force it empty here, but this is better done at an earlier point
8052 in the algorithm, so we instead leave an assertion to catch
8053 errors. */
8054 gcc_checking_assert (!count
8055 || VAR_LOC_DEP_VEC (var) == NULL
8056 || VAR_LOC_DEP_VEC (var)->is_empty ());
8058 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8059 return;
8061 allocsize = offsetof (struct onepart_aux, deps)
8062 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8064 if (VAR_LOC_1PAUX (var))
8066 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8067 VAR_LOC_1PAUX (var), allocsize);
8068 /* If the reallocation moves the onepaux structure, the
8069 back-pointer to BACKLINKS in the first list member will still
8070 point to its old location. Adjust it. */
8071 if (VAR_LOC_DEP_LST (var))
8072 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8074 else
8076 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8077 *VAR_LOC_DEP_LSTP (var) = NULL;
8078 VAR_LOC_FROM (var) = NULL;
8079 VAR_LOC_DEPTH (var).complexity = 0;
8080 VAR_LOC_DEPTH (var).entryvals = 0;
8082 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8085 /* Remove all entries from the vector of active dependencies of VAR,
8086 removing them from the back-links lists too. */
8088 static void
8089 loc_exp_dep_clear (variable *var)
8091 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8093 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8094 if (led->next)
8095 led->next->pprev = led->pprev;
8096 if (led->pprev)
8097 *led->pprev = led->next;
8098 VAR_LOC_DEP_VEC (var)->pop ();
8102 /* Insert an active dependency from VAR on X to the vector of
8103 dependencies, and add the corresponding back-link to X's list of
8104 back-links in VARS. */
8106 static void
8107 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8109 decl_or_value dv;
8110 variable *xvar;
8111 loc_exp_dep *led;
8113 dv = dv_from_rtx (x);
8115 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8116 an additional look up? */
8117 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8119 if (!xvar)
8121 xvar = variable_from_dropped (dv, NO_INSERT);
8122 gcc_checking_assert (xvar);
8125 /* No point in adding the same backlink more than once. This may
8126 arise if say the same value appears in two complex expressions in
8127 the same loc_list, or even more than once in a single
8128 expression. */
8129 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8130 return;
8132 if (var->onepart == NOT_ONEPART)
8133 led = new loc_exp_dep;
8134 else
8136 loc_exp_dep empty;
8137 memset (&empty, 0, sizeof (empty));
8138 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8139 led = &VAR_LOC_DEP_VEC (var)->last ();
8141 led->dv = var->dv;
8142 led->value = x;
8144 loc_exp_dep_alloc (xvar, 0);
8145 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8146 led->next = *led->pprev;
8147 if (led->next)
8148 led->next->pprev = &led->next;
8149 *led->pprev = led;
8152 /* Create active dependencies of VAR on COUNT values starting at
8153 VALUE, and corresponding back-links to the entries in VARS. Return
8154 true if we found any pending-recursion results. */
8156 static bool
8157 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8158 variable_table_type *vars)
8160 bool pending_recursion = false;
8162 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8163 || VAR_LOC_DEP_VEC (var)->is_empty ());
8165 /* Set up all dependencies from last_child (as set up at the end of
8166 the loop above) to the end. */
8167 loc_exp_dep_alloc (var, count);
8169 while (count--)
8171 rtx x = *value++;
8173 if (!pending_recursion)
8174 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8176 loc_exp_insert_dep (var, x, vars);
8179 return pending_recursion;
8182 /* Notify the back-links of IVAR that are pending recursion that we
8183 have found a non-NIL value for it, so they are cleared for another
8184 attempt to compute a current location. */
8186 static void
8187 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8189 loc_exp_dep *led, *next;
8191 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8193 decl_or_value dv = led->dv;
8194 variable *var;
8196 next = led->next;
8198 if (dv_is_value_p (dv))
8200 rtx value = dv_as_value (dv);
8202 /* If we have already resolved it, leave it alone. */
8203 if (!VALUE_RECURSED_INTO (value))
8204 continue;
8206 /* Check that VALUE_RECURSED_INTO, true from the test above,
8207 implies NO_LOC_P. */
8208 gcc_checking_assert (NO_LOC_P (value));
8210 /* We won't notify variables that are being expanded,
8211 because their dependency list is cleared before
8212 recursing. */
8213 NO_LOC_P (value) = false;
8214 VALUE_RECURSED_INTO (value) = false;
8216 gcc_checking_assert (dv_changed_p (dv));
8218 else
8220 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8221 if (!dv_changed_p (dv))
8222 continue;
8225 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8227 if (!var)
8228 var = variable_from_dropped (dv, NO_INSERT);
8230 if (var)
8231 notify_dependents_of_resolved_value (var, vars);
8233 if (next)
8234 next->pprev = led->pprev;
8235 if (led->pprev)
8236 *led->pprev = next;
8237 led->next = NULL;
8238 led->pprev = NULL;
8242 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8243 int max_depth, void *data);
8245 /* Return the combined depth, when one sub-expression evaluated to
8246 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8248 static inline expand_depth
8249 update_depth (expand_depth saved_depth, expand_depth best_depth)
8251 /* If we didn't find anything, stick with what we had. */
8252 if (!best_depth.complexity)
8253 return saved_depth;
8255 /* If we found hadn't found anything, use the depth of the current
8256 expression. Do NOT add one extra level, we want to compute the
8257 maximum depth among sub-expressions. We'll increment it later,
8258 if appropriate. */
8259 if (!saved_depth.complexity)
8260 return best_depth;
8262 /* Combine the entryval count so that regardless of which one we
8263 return, the entryval count is accurate. */
8264 best_depth.entryvals = saved_depth.entryvals
8265 = best_depth.entryvals + saved_depth.entryvals;
8267 if (saved_depth.complexity < best_depth.complexity)
8268 return best_depth;
8269 else
8270 return saved_depth;
8273 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8274 DATA for cselib expand callback. If PENDRECP is given, indicate in
8275 it whether any sub-expression couldn't be fully evaluated because
8276 it is pending recursion resolution. */
8278 static inline rtx
8279 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8280 bool *pendrecp)
8282 struct expand_loc_callback_data *elcd
8283 = (struct expand_loc_callback_data *) data;
8284 location_chain *loc, *next;
8285 rtx result = NULL;
8286 int first_child, result_first_child, last_child;
8287 bool pending_recursion;
8288 rtx loc_from = NULL;
8289 struct elt_loc_list *cloc = NULL;
8290 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8291 int wanted_entryvals, found_entryvals = 0;
8293 /* Clear all backlinks pointing at this, so that we're not notified
8294 while we're active. */
8295 loc_exp_dep_clear (var);
8297 retry:
8298 if (var->onepart == ONEPART_VALUE)
8300 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8302 gcc_checking_assert (cselib_preserved_value_p (val));
8304 cloc = val->locs;
8307 first_child = result_first_child = last_child
8308 = elcd->expanding.length ();
8310 wanted_entryvals = found_entryvals;
8312 /* Attempt to expand each available location in turn. */
8313 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8314 loc || cloc; loc = next)
8316 result_first_child = last_child;
8318 if (!loc)
8320 loc_from = cloc->loc;
8321 next = loc;
8322 cloc = cloc->next;
8323 if (unsuitable_loc (loc_from))
8324 continue;
8326 else
8328 loc_from = loc->loc;
8329 next = loc->next;
8332 gcc_checking_assert (!unsuitable_loc (loc_from));
8334 elcd->depth.complexity = elcd->depth.entryvals = 0;
8335 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8336 vt_expand_loc_callback, data);
8337 last_child = elcd->expanding.length ();
8339 if (result)
8341 depth = elcd->depth;
8343 gcc_checking_assert (depth.complexity
8344 || result_first_child == last_child);
8346 if (last_child - result_first_child != 1)
8348 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8349 depth.entryvals++;
8350 depth.complexity++;
8353 if (depth.complexity <= EXPR_USE_DEPTH)
8355 if (depth.entryvals <= wanted_entryvals)
8356 break;
8357 else if (!found_entryvals || depth.entryvals < found_entryvals)
8358 found_entryvals = depth.entryvals;
8361 result = NULL;
8364 /* Set it up in case we leave the loop. */
8365 depth.complexity = depth.entryvals = 0;
8366 loc_from = NULL;
8367 result_first_child = first_child;
8370 if (!loc_from && wanted_entryvals < found_entryvals)
8372 /* We found entries with ENTRY_VALUEs and skipped them. Since
8373 we could not find any expansions without ENTRY_VALUEs, but we
8374 found at least one with them, go back and get an entry with
8375 the minimum number ENTRY_VALUE count that we found. We could
8376 avoid looping, but since each sub-loc is already resolved,
8377 the re-expansion should be trivial. ??? Should we record all
8378 attempted locs as dependencies, so that we retry the
8379 expansion should any of them change, in the hope it can give
8380 us a new entry without an ENTRY_VALUE? */
8381 elcd->expanding.truncate (first_child);
8382 goto retry;
8385 /* Register all encountered dependencies as active. */
8386 pending_recursion = loc_exp_dep_set
8387 (var, result, elcd->expanding.address () + result_first_child,
8388 last_child - result_first_child, elcd->vars);
8390 elcd->expanding.truncate (first_child);
8392 /* Record where the expansion came from. */
8393 gcc_checking_assert (!result || !pending_recursion);
8394 VAR_LOC_FROM (var) = loc_from;
8395 VAR_LOC_DEPTH (var) = depth;
8397 gcc_checking_assert (!depth.complexity == !result);
8399 elcd->depth = update_depth (saved_depth, depth);
8401 /* Indicate whether any of the dependencies are pending recursion
8402 resolution. */
8403 if (pendrecp)
8404 *pendrecp = pending_recursion;
8406 if (!pendrecp || !pending_recursion)
8407 var->var_part[0].cur_loc = result;
8409 return result;
8412 /* Callback for cselib_expand_value, that looks for expressions
8413 holding the value in the var-tracking hash tables. Return X for
8414 standard processing, anything else is to be used as-is. */
8416 static rtx
8417 vt_expand_loc_callback (rtx x, bitmap regs,
8418 int max_depth ATTRIBUTE_UNUSED,
8419 void *data)
8421 struct expand_loc_callback_data *elcd
8422 = (struct expand_loc_callback_data *) data;
8423 decl_or_value dv;
8424 variable *var;
8425 rtx result, subreg;
8426 bool pending_recursion = false;
8427 bool from_empty = false;
8429 switch (GET_CODE (x))
8431 case SUBREG:
8432 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8433 EXPR_DEPTH,
8434 vt_expand_loc_callback, data);
8436 if (!subreg)
8437 return NULL;
8439 result = simplify_gen_subreg (GET_MODE (x), subreg,
8440 GET_MODE (SUBREG_REG (x)),
8441 SUBREG_BYTE (x));
8443 /* Invalid SUBREGs are ok in debug info. ??? We could try
8444 alternate expansions for the VALUE as well. */
8445 if (!result)
8446 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8448 return result;
8450 case DEBUG_EXPR:
8451 case VALUE:
8452 dv = dv_from_rtx (x);
8453 break;
8455 default:
8456 return x;
8459 elcd->expanding.safe_push (x);
8461 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8462 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8464 if (NO_LOC_P (x))
8466 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8467 return NULL;
8470 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8472 if (!var)
8474 from_empty = true;
8475 var = variable_from_dropped (dv, INSERT);
8478 gcc_checking_assert (var);
8480 if (!dv_changed_p (dv))
8482 gcc_checking_assert (!NO_LOC_P (x));
8483 gcc_checking_assert (var->var_part[0].cur_loc);
8484 gcc_checking_assert (VAR_LOC_1PAUX (var));
8485 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8487 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8489 return var->var_part[0].cur_loc;
8492 VALUE_RECURSED_INTO (x) = true;
8493 /* This is tentative, but it makes some tests simpler. */
8494 NO_LOC_P (x) = true;
8496 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8498 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8500 if (pending_recursion)
8502 gcc_checking_assert (!result);
8503 elcd->pending.safe_push (x);
8505 else
8507 NO_LOC_P (x) = !result;
8508 VALUE_RECURSED_INTO (x) = false;
8509 set_dv_changed (dv, false);
8511 if (result)
8512 notify_dependents_of_resolved_value (var, elcd->vars);
8515 return result;
8518 /* While expanding variables, we may encounter recursion cycles
8519 because of mutual (possibly indirect) dependencies between two
8520 particular variables (or values), say A and B. If we're trying to
8521 expand A when we get to B, which in turn attempts to expand A, if
8522 we can't find any other expansion for B, we'll add B to this
8523 pending-recursion stack, and tentatively return NULL for its
8524 location. This tentative value will be used for any other
8525 occurrences of B, unless A gets some other location, in which case
8526 it will notify B that it is worth another try at computing a
8527 location for it, and it will use the location computed for A then.
8528 At the end of the expansion, the tentative NULL locations become
8529 final for all members of PENDING that didn't get a notification.
8530 This function performs this finalization of NULL locations. */
8532 static void
8533 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8535 while (!pending->is_empty ())
8537 rtx x = pending->pop ();
8538 decl_or_value dv;
8540 if (!VALUE_RECURSED_INTO (x))
8541 continue;
8543 gcc_checking_assert (NO_LOC_P (x));
8544 VALUE_RECURSED_INTO (x) = false;
8545 dv = dv_from_rtx (x);
8546 gcc_checking_assert (dv_changed_p (dv));
8547 set_dv_changed (dv, false);
8551 /* Initialize expand_loc_callback_data D with variable hash table V.
8552 It must be a macro because of alloca (vec stack). */
8553 #define INIT_ELCD(d, v) \
8554 do \
8556 (d).vars = (v); \
8557 (d).depth.complexity = (d).depth.entryvals = 0; \
8559 while (0)
8560 /* Finalize expand_loc_callback_data D, resolved to location L. */
8561 #define FINI_ELCD(d, l) \
8562 do \
8564 resolve_expansions_pending_recursion (&(d).pending); \
8565 (d).pending.release (); \
8566 (d).expanding.release (); \
8568 if ((l) && MEM_P (l)) \
8569 (l) = targetm.delegitimize_address (l); \
8571 while (0)
8573 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8574 equivalences in VARS, updating their CUR_LOCs in the process. */
8576 static rtx
8577 vt_expand_loc (rtx loc, variable_table_type *vars)
8579 struct expand_loc_callback_data data;
8580 rtx result;
8582 if (!MAY_HAVE_DEBUG_INSNS)
8583 return loc;
8585 INIT_ELCD (data, vars);
8587 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8588 vt_expand_loc_callback, &data);
8590 FINI_ELCD (data, result);
8592 return result;
8595 /* Expand the one-part VARiable to a location, using the equivalences
8596 in VARS, updating their CUR_LOCs in the process. */
8598 static rtx
8599 vt_expand_1pvar (variable *var, variable_table_type *vars)
8601 struct expand_loc_callback_data data;
8602 rtx loc;
8604 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8606 if (!dv_changed_p (var->dv))
8607 return var->var_part[0].cur_loc;
8609 INIT_ELCD (data, vars);
8611 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8613 gcc_checking_assert (data.expanding.is_empty ());
8615 FINI_ELCD (data, loc);
8617 return loc;
8620 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8621 additional parameters: WHERE specifies whether the note shall be emitted
8622 before or after instruction INSN. */
8625 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8627 variable *var = *varp;
8628 rtx_insn *insn = data->insn;
8629 enum emit_note_where where = data->where;
8630 variable_table_type *vars = data->vars;
8631 rtx_note *note;
8632 rtx note_vl;
8633 int i, j, n_var_parts;
8634 bool complete;
8635 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8636 HOST_WIDE_INT last_limit;
8637 tree type_size_unit;
8638 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8639 rtx loc[MAX_VAR_PARTS];
8640 tree decl;
8641 location_chain *lc;
8643 gcc_checking_assert (var->onepart == NOT_ONEPART
8644 || var->onepart == ONEPART_VDECL);
8646 decl = dv_as_decl (var->dv);
8648 complete = true;
8649 last_limit = 0;
8650 n_var_parts = 0;
8651 if (!var->onepart)
8652 for (i = 0; i < var->n_var_parts; i++)
8653 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8654 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8655 for (i = 0; i < var->n_var_parts; i++)
8657 machine_mode mode, wider_mode;
8658 rtx loc2;
8659 HOST_WIDE_INT offset;
8661 if (i == 0 && var->onepart)
8663 gcc_checking_assert (var->n_var_parts == 1);
8664 offset = 0;
8665 initialized = VAR_INIT_STATUS_INITIALIZED;
8666 loc2 = vt_expand_1pvar (var, vars);
8668 else
8670 if (last_limit < VAR_PART_OFFSET (var, i))
8672 complete = false;
8673 break;
8675 else if (last_limit > VAR_PART_OFFSET (var, i))
8676 continue;
8677 offset = VAR_PART_OFFSET (var, i);
8678 loc2 = var->var_part[i].cur_loc;
8679 if (loc2 && GET_CODE (loc2) == MEM
8680 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8682 rtx depval = XEXP (loc2, 0);
8684 loc2 = vt_expand_loc (loc2, vars);
8686 if (loc2)
8687 loc_exp_insert_dep (var, depval, vars);
8689 if (!loc2)
8691 complete = false;
8692 continue;
8694 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8695 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8696 if (var->var_part[i].cur_loc == lc->loc)
8698 initialized = lc->init;
8699 break;
8701 gcc_assert (lc);
8704 offsets[n_var_parts] = offset;
8705 if (!loc2)
8707 complete = false;
8708 continue;
8710 loc[n_var_parts] = loc2;
8711 mode = GET_MODE (var->var_part[i].cur_loc);
8712 if (mode == VOIDmode && var->onepart)
8713 mode = DECL_MODE (decl);
8714 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8716 /* Attempt to merge adjacent registers or memory. */
8717 for (j = i + 1; j < var->n_var_parts; j++)
8718 if (last_limit <= VAR_PART_OFFSET (var, j))
8719 break;
8720 if (j < var->n_var_parts
8721 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8722 && var->var_part[j].cur_loc
8723 && mode == GET_MODE (var->var_part[j].cur_loc)
8724 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8725 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8726 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8727 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8729 rtx new_loc = NULL;
8731 if (REG_P (loc[n_var_parts])
8732 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8733 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8734 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8735 == REGNO (loc2))
8737 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8738 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8739 mode, 0);
8740 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8741 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8742 if (new_loc)
8744 if (!REG_P (new_loc)
8745 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8746 new_loc = NULL;
8747 else
8748 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8751 else if (MEM_P (loc[n_var_parts])
8752 && GET_CODE (XEXP (loc2, 0)) == PLUS
8753 && REG_P (XEXP (XEXP (loc2, 0), 0))
8754 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8756 if ((REG_P (XEXP (loc[n_var_parts], 0))
8757 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8758 XEXP (XEXP (loc2, 0), 0))
8759 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8760 == GET_MODE_SIZE (mode))
8761 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8762 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8763 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8764 XEXP (XEXP (loc2, 0), 0))
8765 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8766 + GET_MODE_SIZE (mode)
8767 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8768 new_loc = adjust_address_nv (loc[n_var_parts],
8769 wider_mode, 0);
8772 if (new_loc)
8774 loc[n_var_parts] = new_loc;
8775 mode = wider_mode;
8776 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8777 i = j;
8780 ++n_var_parts;
8782 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8783 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8784 complete = false;
8786 if (! flag_var_tracking_uninit)
8787 initialized = VAR_INIT_STATUS_INITIALIZED;
8789 note_vl = NULL_RTX;
8790 if (!complete)
8791 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8792 else if (n_var_parts == 1)
8794 rtx expr_list;
8796 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8797 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8798 else
8799 expr_list = loc[0];
8801 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8803 else if (n_var_parts)
8805 rtx parallel;
8807 for (i = 0; i < n_var_parts; i++)
8808 loc[i]
8809 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8811 parallel = gen_rtx_PARALLEL (VOIDmode,
8812 gen_rtvec_v (n_var_parts, loc));
8813 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8814 parallel, initialized);
8817 if (where != EMIT_NOTE_BEFORE_INSN)
8819 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8820 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8821 NOTE_DURING_CALL_P (note) = true;
8823 else
8825 /* Make sure that the call related notes come first. */
8826 while (NEXT_INSN (insn)
8827 && NOTE_P (insn)
8828 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8829 && NOTE_DURING_CALL_P (insn))
8830 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8831 insn = NEXT_INSN (insn);
8832 if (NOTE_P (insn)
8833 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8834 && NOTE_DURING_CALL_P (insn))
8835 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8836 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8837 else
8838 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8840 NOTE_VAR_LOCATION (note) = note_vl;
8842 set_dv_changed (var->dv, false);
8843 gcc_assert (var->in_changed_variables);
8844 var->in_changed_variables = false;
8845 changed_variables->clear_slot (varp);
8847 /* Continue traversing the hash table. */
8848 return 1;
8851 /* While traversing changed_variables, push onto DATA (a stack of RTX
8852 values) entries that aren't user variables. */
8855 var_track_values_to_stack (variable **slot,
8856 vec<rtx, va_heap> *changed_values_stack)
8858 variable *var = *slot;
8860 if (var->onepart == ONEPART_VALUE)
8861 changed_values_stack->safe_push (dv_as_value (var->dv));
8862 else if (var->onepart == ONEPART_DEXPR)
8863 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8865 return 1;
8868 /* Remove from changed_variables the entry whose DV corresponds to
8869 value or debug_expr VAL. */
8870 static void
8871 remove_value_from_changed_variables (rtx val)
8873 decl_or_value dv = dv_from_rtx (val);
8874 variable **slot;
8875 variable *var;
8877 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8878 NO_INSERT);
8879 var = *slot;
8880 var->in_changed_variables = false;
8881 changed_variables->clear_slot (slot);
8884 /* If VAL (a value or debug_expr) has backlinks to variables actively
8885 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8886 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8887 have dependencies of their own to notify. */
8889 static void
8890 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8891 vec<rtx, va_heap> *changed_values_stack)
8893 variable **slot;
8894 variable *var;
8895 loc_exp_dep *led;
8896 decl_or_value dv = dv_from_rtx (val);
8898 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8899 NO_INSERT);
8900 if (!slot)
8901 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8902 if (!slot)
8903 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8904 NO_INSERT);
8905 var = *slot;
8907 while ((led = VAR_LOC_DEP_LST (var)))
8909 decl_or_value ldv = led->dv;
8910 variable *ivar;
8912 /* Deactivate and remove the backlink, as it was “used up”. It
8913 makes no sense to attempt to notify the same entity again:
8914 either it will be recomputed and re-register an active
8915 dependency, or it will still have the changed mark. */
8916 if (led->next)
8917 led->next->pprev = led->pprev;
8918 if (led->pprev)
8919 *led->pprev = led->next;
8920 led->next = NULL;
8921 led->pprev = NULL;
8923 if (dv_changed_p (ldv))
8924 continue;
8926 switch (dv_onepart_p (ldv))
8928 case ONEPART_VALUE:
8929 case ONEPART_DEXPR:
8930 set_dv_changed (ldv, true);
8931 changed_values_stack->safe_push (dv_as_rtx (ldv));
8932 break;
8934 case ONEPART_VDECL:
8935 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8936 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8937 variable_was_changed (ivar, NULL);
8938 break;
8940 case NOT_ONEPART:
8941 delete led;
8942 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8943 if (ivar)
8945 int i = ivar->n_var_parts;
8946 while (i--)
8948 rtx loc = ivar->var_part[i].cur_loc;
8950 if (loc && GET_CODE (loc) == MEM
8951 && XEXP (loc, 0) == val)
8953 variable_was_changed (ivar, NULL);
8954 break;
8958 break;
8960 default:
8961 gcc_unreachable ();
8966 /* Take out of changed_variables any entries that don't refer to use
8967 variables. Back-propagate change notifications from values and
8968 debug_exprs to their active dependencies in HTAB or in
8969 CHANGED_VARIABLES. */
8971 static void
8972 process_changed_values (variable_table_type *htab)
8974 int i, n;
8975 rtx val;
8976 auto_vec<rtx, 20> changed_values_stack;
8978 /* Move values from changed_variables to changed_values_stack. */
8979 changed_variables
8980 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8981 (&changed_values_stack);
8983 /* Back-propagate change notifications in values while popping
8984 them from the stack. */
8985 for (n = i = changed_values_stack.length ();
8986 i > 0; i = changed_values_stack.length ())
8988 val = changed_values_stack.pop ();
8989 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8991 /* This condition will hold when visiting each of the entries
8992 originally in changed_variables. We can't remove them
8993 earlier because this could drop the backlinks before we got a
8994 chance to use them. */
8995 if (i == n)
8997 remove_value_from_changed_variables (val);
8998 n--;
9003 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9004 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9005 the notes shall be emitted before of after instruction INSN. */
9007 static void
9008 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9009 shared_hash *vars)
9011 emit_note_data data;
9012 variable_table_type *htab = shared_hash_htab (vars);
9014 if (!changed_variables->elements ())
9015 return;
9017 if (MAY_HAVE_DEBUG_INSNS)
9018 process_changed_values (htab);
9020 data.insn = insn;
9021 data.where = where;
9022 data.vars = htab;
9024 changed_variables
9025 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9028 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9029 same variable in hash table DATA or is not there at all. */
9032 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9034 variable *old_var, *new_var;
9036 old_var = *slot;
9037 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9039 if (!new_var)
9041 /* Variable has disappeared. */
9042 variable *empty_var = NULL;
9044 if (old_var->onepart == ONEPART_VALUE
9045 || old_var->onepart == ONEPART_DEXPR)
9047 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9048 if (empty_var)
9050 gcc_checking_assert (!empty_var->in_changed_variables);
9051 if (!VAR_LOC_1PAUX (old_var))
9053 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9054 VAR_LOC_1PAUX (empty_var) = NULL;
9056 else
9057 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9061 if (!empty_var)
9063 empty_var = onepart_pool_allocate (old_var->onepart);
9064 empty_var->dv = old_var->dv;
9065 empty_var->refcount = 0;
9066 empty_var->n_var_parts = 0;
9067 empty_var->onepart = old_var->onepart;
9068 empty_var->in_changed_variables = false;
9071 if (empty_var->onepart)
9073 /* Propagate the auxiliary data to (ultimately)
9074 changed_variables. */
9075 empty_var->var_part[0].loc_chain = NULL;
9076 empty_var->var_part[0].cur_loc = NULL;
9077 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9078 VAR_LOC_1PAUX (old_var) = NULL;
9080 variable_was_changed (empty_var, NULL);
9081 /* Continue traversing the hash table. */
9082 return 1;
9084 /* Update cur_loc and one-part auxiliary data, before new_var goes
9085 through variable_was_changed. */
9086 if (old_var != new_var && new_var->onepart)
9088 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9089 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9090 VAR_LOC_1PAUX (old_var) = NULL;
9091 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9093 if (variable_different_p (old_var, new_var))
9094 variable_was_changed (new_var, NULL);
9096 /* Continue traversing the hash table. */
9097 return 1;
9100 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9101 table DATA. */
9104 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9106 variable *old_var, *new_var;
9108 new_var = *slot;
9109 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9110 if (!old_var)
9112 int i;
9113 for (i = 0; i < new_var->n_var_parts; i++)
9114 new_var->var_part[i].cur_loc = NULL;
9115 variable_was_changed (new_var, NULL);
9118 /* Continue traversing the hash table. */
9119 return 1;
9122 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9123 NEW_SET. */
9125 static void
9126 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9127 dataflow_set *new_set)
9129 shared_hash_htab (old_set->vars)
9130 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9131 (shared_hash_htab (new_set->vars));
9132 shared_hash_htab (new_set->vars)
9133 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9134 (shared_hash_htab (old_set->vars));
9135 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9138 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9140 static rtx_insn *
9141 next_non_note_insn_var_location (rtx_insn *insn)
9143 while (insn)
9145 insn = NEXT_INSN (insn);
9146 if (insn == 0
9147 || !NOTE_P (insn)
9148 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9149 break;
9152 return insn;
9155 /* Emit the notes for changes of location parts in the basic block BB. */
9157 static void
9158 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9160 unsigned int i;
9161 micro_operation *mo;
9163 dataflow_set_clear (set);
9164 dataflow_set_copy (set, &VTI (bb)->in);
9166 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9168 rtx_insn *insn = mo->insn;
9169 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9171 switch (mo->type)
9173 case MO_CALL:
9174 dataflow_set_clear_at_call (set, insn);
9175 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9177 rtx arguments = mo->u.loc, *p = &arguments;
9178 rtx_note *note;
9179 while (*p)
9181 XEXP (XEXP (*p, 0), 1)
9182 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9183 shared_hash_htab (set->vars));
9184 /* If expansion is successful, keep it in the list. */
9185 if (XEXP (XEXP (*p, 0), 1))
9186 p = &XEXP (*p, 1);
9187 /* Otherwise, if the following item is data_value for it,
9188 drop it too too. */
9189 else if (XEXP (*p, 1)
9190 && REG_P (XEXP (XEXP (*p, 0), 0))
9191 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9192 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9194 && REGNO (XEXP (XEXP (*p, 0), 0))
9195 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9196 0), 0)))
9197 *p = XEXP (XEXP (*p, 1), 1);
9198 /* Just drop this item. */
9199 else
9200 *p = XEXP (*p, 1);
9202 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9203 NOTE_VAR_LOCATION (note) = arguments;
9205 break;
9207 case MO_USE:
9209 rtx loc = mo->u.loc;
9211 if (REG_P (loc))
9212 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9213 else
9214 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9216 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9218 break;
9220 case MO_VAL_LOC:
9222 rtx loc = mo->u.loc;
9223 rtx val, vloc;
9224 tree var;
9226 if (GET_CODE (loc) == CONCAT)
9228 val = XEXP (loc, 0);
9229 vloc = XEXP (loc, 1);
9231 else
9233 val = NULL_RTX;
9234 vloc = loc;
9237 var = PAT_VAR_LOCATION_DECL (vloc);
9239 clobber_variable_part (set, NULL_RTX,
9240 dv_from_decl (var), 0, NULL_RTX);
9241 if (val)
9243 if (VAL_NEEDS_RESOLUTION (loc))
9244 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9245 set_variable_part (set, val, dv_from_decl (var), 0,
9246 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9247 INSERT);
9249 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9250 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9251 dv_from_decl (var), 0,
9252 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9253 INSERT);
9255 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9257 break;
9259 case MO_VAL_USE:
9261 rtx loc = mo->u.loc;
9262 rtx val, vloc, uloc;
9264 vloc = uloc = XEXP (loc, 1);
9265 val = XEXP (loc, 0);
9267 if (GET_CODE (val) == CONCAT)
9269 uloc = XEXP (val, 1);
9270 val = XEXP (val, 0);
9273 if (VAL_NEEDS_RESOLUTION (loc))
9274 val_resolve (set, val, vloc, insn);
9275 else
9276 val_store (set, val, uloc, insn, false);
9278 if (VAL_HOLDS_TRACK_EXPR (loc))
9280 if (GET_CODE (uloc) == REG)
9281 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9282 NULL);
9283 else if (GET_CODE (uloc) == MEM)
9284 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9285 NULL);
9288 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9290 break;
9292 case MO_VAL_SET:
9294 rtx loc = mo->u.loc;
9295 rtx val, vloc, uloc;
9296 rtx dstv, srcv;
9298 vloc = loc;
9299 uloc = XEXP (vloc, 1);
9300 val = XEXP (vloc, 0);
9301 vloc = uloc;
9303 if (GET_CODE (uloc) == SET)
9305 dstv = SET_DEST (uloc);
9306 srcv = SET_SRC (uloc);
9308 else
9310 dstv = uloc;
9311 srcv = NULL;
9314 if (GET_CODE (val) == CONCAT)
9316 dstv = vloc = XEXP (val, 1);
9317 val = XEXP (val, 0);
9320 if (GET_CODE (vloc) == SET)
9322 srcv = SET_SRC (vloc);
9324 gcc_assert (val != srcv);
9325 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9327 dstv = vloc = SET_DEST (vloc);
9329 if (VAL_NEEDS_RESOLUTION (loc))
9330 val_resolve (set, val, srcv, insn);
9332 else if (VAL_NEEDS_RESOLUTION (loc))
9334 gcc_assert (GET_CODE (uloc) == SET
9335 && GET_CODE (SET_SRC (uloc)) == REG);
9336 val_resolve (set, val, SET_SRC (uloc), insn);
9339 if (VAL_HOLDS_TRACK_EXPR (loc))
9341 if (VAL_EXPR_IS_CLOBBERED (loc))
9343 if (REG_P (uloc))
9344 var_reg_delete (set, uloc, true);
9345 else if (MEM_P (uloc))
9347 gcc_assert (MEM_P (dstv));
9348 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9349 var_mem_delete (set, dstv, true);
9352 else
9354 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9355 rtx src = NULL, dst = uloc;
9356 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9358 if (GET_CODE (uloc) == SET)
9360 src = SET_SRC (uloc);
9361 dst = SET_DEST (uloc);
9364 if (copied_p)
9366 status = find_src_status (set, src);
9368 src = find_src_set_src (set, src);
9371 if (REG_P (dst))
9372 var_reg_delete_and_set (set, dst, !copied_p,
9373 status, srcv);
9374 else if (MEM_P (dst))
9376 gcc_assert (MEM_P (dstv));
9377 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9378 var_mem_delete_and_set (set, dstv, !copied_p,
9379 status, srcv);
9383 else if (REG_P (uloc))
9384 var_regno_delete (set, REGNO (uloc));
9385 else if (MEM_P (uloc))
9387 gcc_checking_assert (GET_CODE (vloc) == MEM);
9388 gcc_checking_assert (vloc == dstv);
9389 if (vloc != dstv)
9390 clobber_overlapping_mems (set, vloc);
9393 val_store (set, val, dstv, insn, true);
9395 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9396 set->vars);
9398 break;
9400 case MO_SET:
9402 rtx loc = mo->u.loc;
9403 rtx set_src = NULL;
9405 if (GET_CODE (loc) == SET)
9407 set_src = SET_SRC (loc);
9408 loc = SET_DEST (loc);
9411 if (REG_P (loc))
9412 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9413 set_src);
9414 else
9415 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9416 set_src);
9418 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9419 set->vars);
9421 break;
9423 case MO_COPY:
9425 rtx loc = mo->u.loc;
9426 enum var_init_status src_status;
9427 rtx set_src = NULL;
9429 if (GET_CODE (loc) == SET)
9431 set_src = SET_SRC (loc);
9432 loc = SET_DEST (loc);
9435 src_status = find_src_status (set, set_src);
9436 set_src = find_src_set_src (set, set_src);
9438 if (REG_P (loc))
9439 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9440 else
9441 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9443 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9444 set->vars);
9446 break;
9448 case MO_USE_NO_VAR:
9450 rtx loc = mo->u.loc;
9452 if (REG_P (loc))
9453 var_reg_delete (set, loc, false);
9454 else
9455 var_mem_delete (set, loc, false);
9457 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9459 break;
9461 case MO_CLOBBER:
9463 rtx loc = mo->u.loc;
9465 if (REG_P (loc))
9466 var_reg_delete (set, loc, true);
9467 else
9468 var_mem_delete (set, loc, true);
9470 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9471 set->vars);
9473 break;
9475 case MO_ADJUST:
9476 set->stack_adjust += mo->u.adjust;
9477 break;
9482 /* Emit notes for the whole function. */
9484 static void
9485 vt_emit_notes (void)
9487 basic_block bb;
9488 dataflow_set cur;
9490 gcc_assert (!changed_variables->elements ());
9492 /* Free memory occupied by the out hash tables, as they aren't used
9493 anymore. */
9494 FOR_EACH_BB_FN (bb, cfun)
9495 dataflow_set_clear (&VTI (bb)->out);
9497 /* Enable emitting notes by functions (mainly by set_variable_part and
9498 delete_variable_part). */
9499 emit_notes = true;
9501 if (MAY_HAVE_DEBUG_INSNS)
9503 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9506 dataflow_set_init (&cur);
9508 FOR_EACH_BB_FN (bb, cfun)
9510 /* Emit the notes for changes of variable locations between two
9511 subsequent basic blocks. */
9512 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9514 if (MAY_HAVE_DEBUG_INSNS)
9515 local_get_addr_cache = new hash_map<rtx, rtx>;
9517 /* Emit the notes for the changes in the basic block itself. */
9518 emit_notes_in_bb (bb, &cur);
9520 if (MAY_HAVE_DEBUG_INSNS)
9521 delete local_get_addr_cache;
9522 local_get_addr_cache = NULL;
9524 /* Free memory occupied by the in hash table, we won't need it
9525 again. */
9526 dataflow_set_clear (&VTI (bb)->in);
9529 if (flag_checking)
9530 shared_hash_htab (cur.vars)
9531 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9532 (shared_hash_htab (empty_shared_hash));
9534 dataflow_set_destroy (&cur);
9536 if (MAY_HAVE_DEBUG_INSNS)
9537 delete dropped_values;
9538 dropped_values = NULL;
9540 emit_notes = false;
9543 /* If there is a declaration and offset associated with register/memory RTL
9544 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9546 static bool
9547 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9549 if (REG_P (rtl))
9551 if (REG_ATTRS (rtl))
9553 *declp = REG_EXPR (rtl);
9554 *offsetp = REG_OFFSET (rtl);
9555 return true;
9558 else if (GET_CODE (rtl) == PARALLEL)
9560 tree decl = NULL_TREE;
9561 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9562 int len = XVECLEN (rtl, 0), i;
9564 for (i = 0; i < len; i++)
9566 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9567 if (!REG_P (reg) || !REG_ATTRS (reg))
9568 break;
9569 if (!decl)
9570 decl = REG_EXPR (reg);
9571 if (REG_EXPR (reg) != decl)
9572 break;
9573 if (REG_OFFSET (reg) < offset)
9574 offset = REG_OFFSET (reg);
9577 if (i == len)
9579 *declp = decl;
9580 *offsetp = offset;
9581 return true;
9584 else if (MEM_P (rtl))
9586 if (MEM_ATTRS (rtl))
9588 *declp = MEM_EXPR (rtl);
9589 *offsetp = int_mem_offset (rtl);
9590 return true;
9593 return false;
9596 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9597 of VAL. */
9599 static void
9600 record_entry_value (cselib_val *val, rtx rtl)
9602 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9604 ENTRY_VALUE_EXP (ev) = rtl;
9606 cselib_add_permanent_equiv (val, ev, get_insns ());
9609 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9611 static void
9612 vt_add_function_parameter (tree parm)
9614 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9615 rtx incoming = DECL_INCOMING_RTL (parm);
9616 tree decl;
9617 machine_mode mode;
9618 HOST_WIDE_INT offset;
9619 dataflow_set *out;
9620 decl_or_value dv;
9622 if (TREE_CODE (parm) != PARM_DECL)
9623 return;
9625 if (!decl_rtl || !incoming)
9626 return;
9628 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9629 return;
9631 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9632 rewrite the incoming location of parameters passed on the stack
9633 into MEMs based on the argument pointer, so that incoming doesn't
9634 depend on a pseudo. */
9635 if (MEM_P (incoming)
9636 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9637 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9638 && XEXP (XEXP (incoming, 0), 0)
9639 == crtl->args.internal_arg_pointer
9640 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9642 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9643 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9644 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9645 incoming
9646 = replace_equiv_address_nv (incoming,
9647 plus_constant (Pmode,
9648 arg_pointer_rtx, off));
9651 #ifdef HAVE_window_save
9652 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9653 If the target machine has an explicit window save instruction, the
9654 actual entry value is the corresponding OUTGOING_REGNO instead. */
9655 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9657 if (REG_P (incoming)
9658 && HARD_REGISTER_P (incoming)
9659 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9661 parm_reg p;
9662 p.incoming = incoming;
9663 incoming
9664 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9665 OUTGOING_REGNO (REGNO (incoming)), 0);
9666 p.outgoing = incoming;
9667 vec_safe_push (windowed_parm_regs, p);
9669 else if (GET_CODE (incoming) == PARALLEL)
9671 rtx outgoing
9672 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9673 int i;
9675 for (i = 0; i < XVECLEN (incoming, 0); i++)
9677 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9678 parm_reg p;
9679 p.incoming = reg;
9680 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9681 OUTGOING_REGNO (REGNO (reg)), 0);
9682 p.outgoing = reg;
9683 XVECEXP (outgoing, 0, i)
9684 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9685 XEXP (XVECEXP (incoming, 0, i), 1));
9686 vec_safe_push (windowed_parm_regs, p);
9689 incoming = outgoing;
9691 else if (MEM_P (incoming)
9692 && REG_P (XEXP (incoming, 0))
9693 && HARD_REGISTER_P (XEXP (incoming, 0)))
9695 rtx reg = XEXP (incoming, 0);
9696 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9698 parm_reg p;
9699 p.incoming = reg;
9700 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9701 p.outgoing = reg;
9702 vec_safe_push (windowed_parm_regs, p);
9703 incoming = replace_equiv_address_nv (incoming, reg);
9707 #endif
9709 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9711 if (MEM_P (incoming))
9713 /* This means argument is passed by invisible reference. */
9714 offset = 0;
9715 decl = parm;
9717 else
9719 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9720 return;
9721 offset += byte_lowpart_offset (GET_MODE (incoming),
9722 GET_MODE (decl_rtl));
9726 if (!decl)
9727 return;
9729 if (parm != decl)
9731 /* If that DECL_RTL wasn't a pseudo that got spilled to
9732 memory, bail out. Otherwise, the spill slot sharing code
9733 will force the memory to reference spill_slot_decl (%sfp),
9734 so we don't match above. That's ok, the pseudo must have
9735 referenced the entire parameter, so just reset OFFSET. */
9736 if (decl != get_spill_slot_decl (false))
9737 return;
9738 offset = 0;
9741 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9742 return;
9744 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9746 dv = dv_from_decl (parm);
9748 if (target_for_debug_bind (parm)
9749 /* We can't deal with these right now, because this kind of
9750 variable is single-part. ??? We could handle parallels
9751 that describe multiple locations for the same single
9752 value, but ATM we don't. */
9753 && GET_CODE (incoming) != PARALLEL)
9755 cselib_val *val;
9756 rtx lowpart;
9758 /* ??? We shouldn't ever hit this, but it may happen because
9759 arguments passed by invisible reference aren't dealt with
9760 above: incoming-rtl will have Pmode rather than the
9761 expected mode for the type. */
9762 if (offset)
9763 return;
9765 lowpart = var_lowpart (mode, incoming);
9766 if (!lowpart)
9767 return;
9769 val = cselib_lookup_from_insn (lowpart, mode, true,
9770 VOIDmode, get_insns ());
9772 /* ??? Float-typed values in memory are not handled by
9773 cselib. */
9774 if (val)
9776 preserve_value (val);
9777 set_variable_part (out, val->val_rtx, dv, offset,
9778 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9779 dv = dv_from_value (val->val_rtx);
9782 if (MEM_P (incoming))
9784 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9785 VOIDmode, get_insns ());
9786 if (val)
9788 preserve_value (val);
9789 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9794 if (REG_P (incoming))
9796 incoming = var_lowpart (mode, incoming);
9797 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9798 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9799 incoming);
9800 set_variable_part (out, incoming, dv, offset,
9801 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9802 if (dv_is_value_p (dv))
9804 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9805 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9806 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9808 machine_mode indmode
9809 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9810 rtx mem = gen_rtx_MEM (indmode, incoming);
9811 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9812 VOIDmode,
9813 get_insns ());
9814 if (val)
9816 preserve_value (val);
9817 record_entry_value (val, mem);
9818 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9819 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9824 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9826 int i;
9828 for (i = 0; i < XVECLEN (incoming, 0); i++)
9830 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9831 offset = REG_OFFSET (reg);
9832 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9833 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9834 set_variable_part (out, reg, dv, offset,
9835 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9838 else if (MEM_P (incoming))
9840 incoming = var_lowpart (mode, incoming);
9841 set_variable_part (out, incoming, dv, offset,
9842 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9846 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9848 static void
9849 vt_add_function_parameters (void)
9851 tree parm;
9853 for (parm = DECL_ARGUMENTS (current_function_decl);
9854 parm; parm = DECL_CHAIN (parm))
9855 if (!POINTER_BOUNDS_P (parm))
9856 vt_add_function_parameter (parm);
9858 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9860 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9862 if (TREE_CODE (vexpr) == INDIRECT_REF)
9863 vexpr = TREE_OPERAND (vexpr, 0);
9865 if (TREE_CODE (vexpr) == PARM_DECL
9866 && DECL_ARTIFICIAL (vexpr)
9867 && !DECL_IGNORED_P (vexpr)
9868 && DECL_NAMELESS (vexpr))
9869 vt_add_function_parameter (vexpr);
9873 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9874 ensure it isn't flushed during cselib_reset_table.
9875 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9876 has been eliminated. */
9878 static void
9879 vt_init_cfa_base (void)
9881 cselib_val *val;
9883 #ifdef FRAME_POINTER_CFA_OFFSET
9884 cfa_base_rtx = frame_pointer_rtx;
9885 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9886 #else
9887 cfa_base_rtx = arg_pointer_rtx;
9888 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9889 #endif
9890 if (cfa_base_rtx == hard_frame_pointer_rtx
9891 || !fixed_regs[REGNO (cfa_base_rtx)])
9893 cfa_base_rtx = NULL_RTX;
9894 return;
9896 if (!MAY_HAVE_DEBUG_INSNS)
9897 return;
9899 /* Tell alias analysis that cfa_base_rtx should share
9900 find_base_term value with stack pointer or hard frame pointer. */
9901 if (!frame_pointer_needed)
9902 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9903 else if (!crtl->stack_realign_tried)
9904 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9906 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9907 VOIDmode, get_insns ());
9908 preserve_value (val);
9909 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9912 /* Allocate and initialize the data structures for variable tracking
9913 and parse the RTL to get the micro operations. */
9915 static bool
9916 vt_initialize (void)
9918 basic_block bb;
9919 HOST_WIDE_INT fp_cfa_offset = -1;
9921 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9923 empty_shared_hash = shared_hash_pool.allocate ();
9924 empty_shared_hash->refcount = 1;
9925 empty_shared_hash->htab = new variable_table_type (1);
9926 changed_variables = new variable_table_type (10);
9928 /* Init the IN and OUT sets. */
9929 FOR_ALL_BB_FN (bb, cfun)
9931 VTI (bb)->visited = false;
9932 VTI (bb)->flooded = false;
9933 dataflow_set_init (&VTI (bb)->in);
9934 dataflow_set_init (&VTI (bb)->out);
9935 VTI (bb)->permp = NULL;
9938 if (MAY_HAVE_DEBUG_INSNS)
9940 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9941 scratch_regs = BITMAP_ALLOC (NULL);
9942 preserved_values.create (256);
9943 global_get_addr_cache = new hash_map<rtx, rtx>;
9945 else
9947 scratch_regs = NULL;
9948 global_get_addr_cache = NULL;
9951 if (MAY_HAVE_DEBUG_INSNS)
9953 rtx reg, expr;
9954 int ofst;
9955 cselib_val *val;
9957 #ifdef FRAME_POINTER_CFA_OFFSET
9958 reg = frame_pointer_rtx;
9959 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9960 #else
9961 reg = arg_pointer_rtx;
9962 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9963 #endif
9965 ofst -= INCOMING_FRAME_SP_OFFSET;
9967 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9968 VOIDmode, get_insns ());
9969 preserve_value (val);
9970 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9971 cselib_preserve_cfa_base_value (val, REGNO (reg));
9972 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9973 stack_pointer_rtx, -ofst);
9974 cselib_add_permanent_equiv (val, expr, get_insns ());
9976 if (ofst)
9978 val = cselib_lookup_from_insn (stack_pointer_rtx,
9979 GET_MODE (stack_pointer_rtx), 1,
9980 VOIDmode, get_insns ());
9981 preserve_value (val);
9982 expr = plus_constant (GET_MODE (reg), reg, ofst);
9983 cselib_add_permanent_equiv (val, expr, get_insns ());
9987 /* In order to factor out the adjustments made to the stack pointer or to
9988 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9989 instead of individual location lists, we're going to rewrite MEMs based
9990 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9991 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9992 resp. arg_pointer_rtx. We can do this either when there is no frame
9993 pointer in the function and stack adjustments are consistent for all
9994 basic blocks or when there is a frame pointer and no stack realignment.
9995 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9996 has been eliminated. */
9997 if (!frame_pointer_needed)
9999 rtx reg, elim;
10001 if (!vt_stack_adjustments ())
10002 return false;
10004 #ifdef FRAME_POINTER_CFA_OFFSET
10005 reg = frame_pointer_rtx;
10006 #else
10007 reg = arg_pointer_rtx;
10008 #endif
10009 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10010 if (elim != reg)
10012 if (GET_CODE (elim) == PLUS)
10013 elim = XEXP (elim, 0);
10014 if (elim == stack_pointer_rtx)
10015 vt_init_cfa_base ();
10018 else if (!crtl->stack_realign_tried)
10020 rtx reg, elim;
10022 #ifdef FRAME_POINTER_CFA_OFFSET
10023 reg = frame_pointer_rtx;
10024 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10025 #else
10026 reg = arg_pointer_rtx;
10027 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10028 #endif
10029 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10030 if (elim != reg)
10032 if (GET_CODE (elim) == PLUS)
10034 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10035 elim = XEXP (elim, 0);
10037 if (elim != hard_frame_pointer_rtx)
10038 fp_cfa_offset = -1;
10040 else
10041 fp_cfa_offset = -1;
10044 /* If the stack is realigned and a DRAP register is used, we're going to
10045 rewrite MEMs based on it representing incoming locations of parameters
10046 passed on the stack into MEMs based on the argument pointer. Although
10047 we aren't going to rewrite other MEMs, we still need to initialize the
10048 virtual CFA pointer in order to ensure that the argument pointer will
10049 be seen as a constant throughout the function.
10051 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10052 else if (stack_realign_drap)
10054 rtx reg, elim;
10056 #ifdef FRAME_POINTER_CFA_OFFSET
10057 reg = frame_pointer_rtx;
10058 #else
10059 reg = arg_pointer_rtx;
10060 #endif
10061 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10062 if (elim != reg)
10064 if (GET_CODE (elim) == PLUS)
10065 elim = XEXP (elim, 0);
10066 if (elim == hard_frame_pointer_rtx)
10067 vt_init_cfa_base ();
10071 hard_frame_pointer_adjustment = -1;
10073 vt_add_function_parameters ();
10075 FOR_EACH_BB_FN (bb, cfun)
10077 rtx_insn *insn;
10078 HOST_WIDE_INT pre, post = 0;
10079 basic_block first_bb, last_bb;
10081 if (MAY_HAVE_DEBUG_INSNS)
10083 cselib_record_sets_hook = add_with_sets;
10084 if (dump_file && (dump_flags & TDF_DETAILS))
10085 fprintf (dump_file, "first value: %i\n",
10086 cselib_get_next_uid ());
10089 first_bb = bb;
10090 for (;;)
10092 edge e;
10093 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10094 || ! single_pred_p (bb->next_bb))
10095 break;
10096 e = find_edge (bb, bb->next_bb);
10097 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10098 break;
10099 bb = bb->next_bb;
10101 last_bb = bb;
10103 /* Add the micro-operations to the vector. */
10104 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10106 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10107 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10108 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10109 insn = NEXT_INSN (insn))
10111 if (INSN_P (insn))
10113 if (!frame_pointer_needed)
10115 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10116 if (pre)
10118 micro_operation mo;
10119 mo.type = MO_ADJUST;
10120 mo.u.adjust = pre;
10121 mo.insn = insn;
10122 if (dump_file && (dump_flags & TDF_DETAILS))
10123 log_op_type (PATTERN (insn), bb, insn,
10124 MO_ADJUST, dump_file);
10125 VTI (bb)->mos.safe_push (mo);
10126 VTI (bb)->out.stack_adjust += pre;
10130 cselib_hook_called = false;
10131 adjust_insn (bb, insn);
10132 if (MAY_HAVE_DEBUG_INSNS)
10134 if (CALL_P (insn))
10135 prepare_call_arguments (bb, insn);
10136 cselib_process_insn (insn);
10137 if (dump_file && (dump_flags & TDF_DETAILS))
10139 print_rtl_single (dump_file, insn);
10140 dump_cselib_table (dump_file);
10143 if (!cselib_hook_called)
10144 add_with_sets (insn, 0, 0);
10145 cancel_changes (0);
10147 if (!frame_pointer_needed && post)
10149 micro_operation mo;
10150 mo.type = MO_ADJUST;
10151 mo.u.adjust = post;
10152 mo.insn = insn;
10153 if (dump_file && (dump_flags & TDF_DETAILS))
10154 log_op_type (PATTERN (insn), bb, insn,
10155 MO_ADJUST, dump_file);
10156 VTI (bb)->mos.safe_push (mo);
10157 VTI (bb)->out.stack_adjust += post;
10160 if (fp_cfa_offset != -1
10161 && hard_frame_pointer_adjustment == -1
10162 && fp_setter_insn (insn))
10164 vt_init_cfa_base ();
10165 hard_frame_pointer_adjustment = fp_cfa_offset;
10166 /* Disassociate sp from fp now. */
10167 if (MAY_HAVE_DEBUG_INSNS)
10169 cselib_val *v;
10170 cselib_invalidate_rtx (stack_pointer_rtx);
10171 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10172 VOIDmode);
10173 if (v && !cselib_preserved_value_p (v))
10175 cselib_set_value_sp_based (v);
10176 preserve_value (v);
10182 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10185 bb = last_bb;
10187 if (MAY_HAVE_DEBUG_INSNS)
10189 cselib_preserve_only_values ();
10190 cselib_reset_table (cselib_get_next_uid ());
10191 cselib_record_sets_hook = NULL;
10195 hard_frame_pointer_adjustment = -1;
10196 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10197 cfa_base_rtx = NULL_RTX;
10198 return true;
10201 /* This is *not* reset after each function. It gives each
10202 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10203 a unique label number. */
10205 static int debug_label_num = 1;
10207 /* Get rid of all debug insns from the insn stream. */
10209 static void
10210 delete_debug_insns (void)
10212 basic_block bb;
10213 rtx_insn *insn, *next;
10215 if (!MAY_HAVE_DEBUG_INSNS)
10216 return;
10218 FOR_EACH_BB_FN (bb, cfun)
10220 FOR_BB_INSNS_SAFE (bb, insn, next)
10221 if (DEBUG_INSN_P (insn))
10223 tree decl = INSN_VAR_LOCATION_DECL (insn);
10224 if (TREE_CODE (decl) == LABEL_DECL
10225 && DECL_NAME (decl)
10226 && !DECL_RTL_SET_P (decl))
10228 PUT_CODE (insn, NOTE);
10229 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10230 NOTE_DELETED_LABEL_NAME (insn)
10231 = IDENTIFIER_POINTER (DECL_NAME (decl));
10232 SET_DECL_RTL (decl, insn);
10233 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10235 else
10236 delete_insn (insn);
10241 /* Run a fast, BB-local only version of var tracking, to take care of
10242 information that we don't do global analysis on, such that not all
10243 information is lost. If SKIPPED holds, we're skipping the global
10244 pass entirely, so we should try to use information it would have
10245 handled as well.. */
10247 static void
10248 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10250 /* ??? Just skip it all for now. */
10251 delete_debug_insns ();
10254 /* Free the data structures needed for variable tracking. */
10256 static void
10257 vt_finalize (void)
10259 basic_block bb;
10261 FOR_EACH_BB_FN (bb, cfun)
10263 VTI (bb)->mos.release ();
10266 FOR_ALL_BB_FN (bb, cfun)
10268 dataflow_set_destroy (&VTI (bb)->in);
10269 dataflow_set_destroy (&VTI (bb)->out);
10270 if (VTI (bb)->permp)
10272 dataflow_set_destroy (VTI (bb)->permp);
10273 XDELETE (VTI (bb)->permp);
10276 free_aux_for_blocks ();
10277 delete empty_shared_hash->htab;
10278 empty_shared_hash->htab = NULL;
10279 delete changed_variables;
10280 changed_variables = NULL;
10281 attrs_pool.release ();
10282 var_pool.release ();
10283 location_chain_pool.release ();
10284 shared_hash_pool.release ();
10286 if (MAY_HAVE_DEBUG_INSNS)
10288 if (global_get_addr_cache)
10289 delete global_get_addr_cache;
10290 global_get_addr_cache = NULL;
10291 loc_exp_dep_pool.release ();
10292 valvar_pool.release ();
10293 preserved_values.release ();
10294 cselib_finish ();
10295 BITMAP_FREE (scratch_regs);
10296 scratch_regs = NULL;
10299 #ifdef HAVE_window_save
10300 vec_free (windowed_parm_regs);
10301 #endif
10303 if (vui_vec)
10304 XDELETEVEC (vui_vec);
10305 vui_vec = NULL;
10306 vui_allocated = 0;
10309 /* The entry point to variable tracking pass. */
10311 static inline unsigned int
10312 variable_tracking_main_1 (void)
10314 bool success;
10316 if (flag_var_tracking_assignments < 0
10317 /* Var-tracking right now assumes the IR doesn't contain
10318 any pseudos at this point. */
10319 || targetm.no_register_allocation)
10321 delete_debug_insns ();
10322 return 0;
10325 if (n_basic_blocks_for_fn (cfun) > 500 &&
10326 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10328 vt_debug_insns_local (true);
10329 return 0;
10332 mark_dfs_back_edges ();
10333 if (!vt_initialize ())
10335 vt_finalize ();
10336 vt_debug_insns_local (true);
10337 return 0;
10340 success = vt_find_locations ();
10342 if (!success && flag_var_tracking_assignments > 0)
10344 vt_finalize ();
10346 delete_debug_insns ();
10348 /* This is later restored by our caller. */
10349 flag_var_tracking_assignments = 0;
10351 success = vt_initialize ();
10352 gcc_assert (success);
10354 success = vt_find_locations ();
10357 if (!success)
10359 vt_finalize ();
10360 vt_debug_insns_local (false);
10361 return 0;
10364 if (dump_file && (dump_flags & TDF_DETAILS))
10366 dump_dataflow_sets ();
10367 dump_reg_info (dump_file);
10368 dump_flow_info (dump_file, dump_flags);
10371 timevar_push (TV_VAR_TRACKING_EMIT);
10372 vt_emit_notes ();
10373 timevar_pop (TV_VAR_TRACKING_EMIT);
10375 vt_finalize ();
10376 vt_debug_insns_local (false);
10377 return 0;
10380 unsigned int
10381 variable_tracking_main (void)
10383 unsigned int ret;
10384 int save = flag_var_tracking_assignments;
10386 ret = variable_tracking_main_1 ();
10388 flag_var_tracking_assignments = save;
10390 return ret;
10393 namespace {
10395 const pass_data pass_data_variable_tracking =
10397 RTL_PASS, /* type */
10398 "vartrack", /* name */
10399 OPTGROUP_NONE, /* optinfo_flags */
10400 TV_VAR_TRACKING, /* tv_id */
10401 0, /* properties_required */
10402 0, /* properties_provided */
10403 0, /* properties_destroyed */
10404 0, /* todo_flags_start */
10405 0, /* todo_flags_finish */
10408 class pass_variable_tracking : public rtl_opt_pass
10410 public:
10411 pass_variable_tracking (gcc::context *ctxt)
10412 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10415 /* opt_pass methods: */
10416 virtual bool gate (function *)
10418 return (flag_var_tracking && !targetm.delay_vartrack);
10421 virtual unsigned int execute (function *)
10423 return variable_tracking_main ();
10426 }; // class pass_variable_tracking
10428 } // anon namespace
10430 rtl_opt_pass *
10431 make_pass_variable_tracking (gcc::context *ctxt)
10433 return new pass_variable_tracking (ctxt);