gdbinit.in: add "break-on-diagnostic" command
[official-gcc.git] / gcc / rtlanal.c
blobbeb24ba573c1176fb8e6debf00d17f3d4ad507e4
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
53 const_rtx, machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
56 const_rtx, machine_mode,
57 unsigned int);
59 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
60 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
62 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
63 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
64 SIGN_EXTEND then while narrowing we also have to enforce the
65 representation and sign-extend the value to mode DESTINATION_REP.
67 If the value is already sign-extended to DESTINATION_REP mode we
68 can just switch to DESTINATION mode on it. For each pair of
69 integral modes SOURCE and DESTINATION, when truncating from SOURCE
70 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
71 contains the number of high-order bits in SOURCE that have to be
72 copies of the sign-bit so that we can do this mode-switch to
73 DESTINATION. */
75 static unsigned int
76 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
78 /* Store X into index I of ARRAY. ARRAY is known to have at least I
79 elements. Return the new base of ARRAY. */
81 template <typename T>
82 typename T::value_type *
83 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
84 value_type *base,
85 size_t i, value_type x)
87 if (base == array.stack)
89 if (i < LOCAL_ELEMS)
91 base[i] = x;
92 return base;
94 gcc_checking_assert (i == LOCAL_ELEMS);
95 /* A previous iteration might also have moved from the stack to the
96 heap, in which case the heap array will already be big enough. */
97 if (vec_safe_length (array.heap) <= i)
98 vec_safe_grow (array.heap, i + 1);
99 base = array.heap->address ();
100 memcpy (base, array.stack, sizeof (array.stack));
101 base[LOCAL_ELEMS] = x;
102 return base;
104 unsigned int length = array.heap->length ();
105 if (length > i)
107 gcc_checking_assert (base == array.heap->address ());
108 base[i] = x;
109 return base;
111 else
113 gcc_checking_assert (i == length);
114 vec_safe_push (array.heap, x);
115 return array.heap->address ();
119 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
120 number of elements added to the worklist. */
122 template <typename T>
123 size_t
124 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
125 value_type *base,
126 size_t end, rtx_type x)
128 enum rtx_code code = GET_CODE (x);
129 const char *format = GET_RTX_FORMAT (code);
130 size_t orig_end = end;
131 if (__builtin_expect (INSN_P (x), false))
133 /* Put the pattern at the top of the queue, since that's what
134 we're likely to want most. It also allows for the SEQUENCE
135 code below. */
136 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
137 if (format[i] == 'e')
139 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
140 if (__builtin_expect (end < LOCAL_ELEMS, true))
141 base[end++] = subx;
142 else
143 base = add_single_to_queue (array, base, end++, subx);
146 else
147 for (int i = 0; format[i]; ++i)
148 if (format[i] == 'e')
150 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
151 if (__builtin_expect (end < LOCAL_ELEMS, true))
152 base[end++] = subx;
153 else
154 base = add_single_to_queue (array, base, end++, subx);
156 else if (format[i] == 'E')
158 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
159 rtx *vec = x->u.fld[i].rt_rtvec->elem;
160 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
161 for (unsigned int j = 0; j < length; j++)
162 base[end++] = T::get_value (vec[j]);
163 else
164 for (unsigned int j = 0; j < length; j++)
165 base = add_single_to_queue (array, base, end++,
166 T::get_value (vec[j]));
167 if (code == SEQUENCE && end == length)
168 /* If the subrtxes of the sequence fill the entire array then
169 we know that no other parts of a containing insn are queued.
170 The caller is therefore iterating over the sequence as a
171 PATTERN (...), so we also want the patterns of the
172 subinstructions. */
173 for (unsigned int j = 0; j < length; j++)
175 typename T::rtx_type x = T::get_rtx (base[j]);
176 if (INSN_P (x))
177 base[j] = T::get_value (PATTERN (x));
180 return end - orig_end;
183 template <typename T>
184 void
185 generic_subrtx_iterator <T>::free_array (array_type &array)
187 vec_free (array.heap);
190 template <typename T>
191 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
193 template class generic_subrtx_iterator <const_rtx_accessor>;
194 template class generic_subrtx_iterator <rtx_var_accessor>;
195 template class generic_subrtx_iterator <rtx_ptr_accessor>;
197 /* Return 1 if the value of X is unstable
198 (would be different at a different point in the program).
199 The frame pointer, arg pointer, etc. are considered stable
200 (within one function) and so is anything marked `unchanging'. */
203 rtx_unstable_p (const_rtx x)
205 const RTX_CODE code = GET_CODE (x);
206 int i;
207 const char *fmt;
209 switch (code)
211 case MEM:
212 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
214 case CONST:
215 CASE_CONST_ANY:
216 case SYMBOL_REF:
217 case LABEL_REF:
218 return 0;
220 case REG:
221 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
222 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
223 /* The arg pointer varies if it is not a fixed register. */
224 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
225 return 0;
226 /* ??? When call-clobbered, the value is stable modulo the restore
227 that must happen after a call. This currently screws up local-alloc
228 into believing that the restore is not needed. */
229 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
230 return 0;
231 return 1;
233 case ASM_OPERANDS:
234 if (MEM_VOLATILE_P (x))
235 return 1;
237 /* Fall through. */
239 default:
240 break;
243 fmt = GET_RTX_FORMAT (code);
244 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
245 if (fmt[i] == 'e')
247 if (rtx_unstable_p (XEXP (x, i)))
248 return 1;
250 else if (fmt[i] == 'E')
252 int j;
253 for (j = 0; j < XVECLEN (x, i); j++)
254 if (rtx_unstable_p (XVECEXP (x, i, j)))
255 return 1;
258 return 0;
261 /* Return 1 if X has a value that can vary even between two
262 executions of the program. 0 means X can be compared reliably
263 against certain constants or near-constants.
264 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
265 zero, we are slightly more conservative.
266 The frame pointer and the arg pointer are considered constant. */
268 bool
269 rtx_varies_p (const_rtx x, bool for_alias)
271 RTX_CODE code;
272 int i;
273 const char *fmt;
275 if (!x)
276 return 0;
278 code = GET_CODE (x);
279 switch (code)
281 case MEM:
282 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
284 case CONST:
285 CASE_CONST_ANY:
286 case SYMBOL_REF:
287 case LABEL_REF:
288 return 0;
290 case REG:
291 /* Note that we have to test for the actual rtx used for the frame
292 and arg pointers and not just the register number in case we have
293 eliminated the frame and/or arg pointer and are using it
294 for pseudos. */
295 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
296 /* The arg pointer varies if it is not a fixed register. */
297 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
298 return 0;
299 if (x == pic_offset_table_rtx
300 /* ??? When call-clobbered, the value is stable modulo the restore
301 that must happen after a call. This currently screws up
302 local-alloc into believing that the restore is not needed, so we
303 must return 0 only if we are called from alias analysis. */
304 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
305 return 0;
306 return 1;
308 case LO_SUM:
309 /* The operand 0 of a LO_SUM is considered constant
310 (in fact it is related specifically to operand 1)
311 during alias analysis. */
312 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
313 || rtx_varies_p (XEXP (x, 1), for_alias);
315 case ASM_OPERANDS:
316 if (MEM_VOLATILE_P (x))
317 return 1;
319 /* Fall through. */
321 default:
322 break;
325 fmt = GET_RTX_FORMAT (code);
326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
327 if (fmt[i] == 'e')
329 if (rtx_varies_p (XEXP (x, i), for_alias))
330 return 1;
332 else if (fmt[i] == 'E')
334 int j;
335 for (j = 0; j < XVECLEN (x, i); j++)
336 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
337 return 1;
340 return 0;
343 /* Compute an approximation for the offset between the register
344 FROM and TO for the current function, as it was at the start
345 of the routine. */
347 static HOST_WIDE_INT
348 get_initial_register_offset (int from, int to)
350 static const struct elim_table_t
352 const int from;
353 const int to;
354 } table[] = ELIMINABLE_REGS;
355 HOST_WIDE_INT offset1, offset2;
356 unsigned int i, j;
358 if (to == from)
359 return 0;
361 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
362 before the reload pass. We need to give at least
363 an estimation for the resulting frame size. */
364 if (! reload_completed)
366 offset1 = crtl->outgoing_args_size + get_frame_size ();
367 #if !STACK_GROWS_DOWNWARD
368 offset1 = - offset1;
369 #endif
370 if (to == STACK_POINTER_REGNUM)
371 return offset1;
372 else if (from == STACK_POINTER_REGNUM)
373 return - offset1;
374 else
375 return 0;
378 for (i = 0; i < ARRAY_SIZE (table); i++)
379 if (table[i].from == from)
381 if (table[i].to == to)
383 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
384 offset1);
385 return offset1;
387 for (j = 0; j < ARRAY_SIZE (table); j++)
389 if (table[j].to == to
390 && table[j].from == table[i].to)
392 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
393 offset1);
394 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
395 offset2);
396 return offset1 + offset2;
398 if (table[j].from == to
399 && table[j].to == table[i].to)
401 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
402 offset1);
403 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
404 offset2);
405 return offset1 - offset2;
409 else if (table[i].to == from)
411 if (table[i].from == to)
413 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
414 offset1);
415 return - offset1;
417 for (j = 0; j < ARRAY_SIZE (table); j++)
419 if (table[j].to == to
420 && table[j].from == table[i].from)
422 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
423 offset1);
424 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
425 offset2);
426 return - offset1 + offset2;
428 if (table[j].from == to
429 && table[j].to == table[i].from)
431 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
432 offset1);
433 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
434 offset2);
435 return - offset1 - offset2;
440 /* If the requested register combination was not found,
441 try a different more simple combination. */
442 if (from == ARG_POINTER_REGNUM)
443 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
444 else if (to == ARG_POINTER_REGNUM)
445 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
446 else if (from == HARD_FRAME_POINTER_REGNUM)
447 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
448 else if (to == HARD_FRAME_POINTER_REGNUM)
449 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
450 else
451 return 0;
454 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
455 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
456 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
457 references on strict alignment machines. */
459 static int
460 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
461 machine_mode mode, bool unaligned_mems)
463 enum rtx_code code = GET_CODE (x);
465 /* The offset must be a multiple of the mode size if we are considering
466 unaligned memory references on strict alignment machines. */
467 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
469 HOST_WIDE_INT actual_offset = offset;
471 #ifdef SPARC_STACK_BOUNDARY_HACK
472 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
473 the real alignment of %sp. However, when it does this, the
474 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
475 if (SPARC_STACK_BOUNDARY_HACK
476 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
477 actual_offset -= STACK_POINTER_OFFSET;
478 #endif
480 if (actual_offset % GET_MODE_SIZE (mode) != 0)
481 return 1;
484 switch (code)
486 case SYMBOL_REF:
487 if (SYMBOL_REF_WEAK (x))
488 return 1;
489 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
491 tree decl;
492 HOST_WIDE_INT decl_size;
494 if (offset < 0)
495 return 1;
496 if (size == 0)
497 size = GET_MODE_SIZE (mode);
498 if (size == 0)
499 return offset != 0;
501 /* If the size of the access or of the symbol is unknown,
502 assume the worst. */
503 decl = SYMBOL_REF_DECL (x);
505 /* Else check that the access is in bounds. TODO: restructure
506 expr_size/tree_expr_size/int_expr_size and just use the latter. */
507 if (!decl)
508 decl_size = -1;
509 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
510 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
511 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
512 : -1);
513 else if (TREE_CODE (decl) == STRING_CST)
514 decl_size = TREE_STRING_LENGTH (decl);
515 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
516 decl_size = int_size_in_bytes (TREE_TYPE (decl));
517 else
518 decl_size = -1;
520 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
523 return 0;
525 case LABEL_REF:
526 return 0;
528 case REG:
529 /* Stack references are assumed not to trap, but we need to deal with
530 nonsensical offsets. */
531 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
532 || x == stack_pointer_rtx
533 /* The arg pointer varies if it is not a fixed register. */
534 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
536 #ifdef RED_ZONE_SIZE
537 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
538 #else
539 HOST_WIDE_INT red_zone_size = 0;
540 #endif
541 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
542 / BITS_PER_UNIT;
543 HOST_WIDE_INT low_bound, high_bound;
545 if (size == 0)
546 size = GET_MODE_SIZE (mode);
547 if (size == 0)
548 return 1;
550 if (x == frame_pointer_rtx)
552 if (FRAME_GROWS_DOWNWARD)
554 high_bound = targetm.starting_frame_offset ();
555 low_bound = high_bound - get_frame_size ();
557 else
559 low_bound = targetm.starting_frame_offset ();
560 high_bound = low_bound + get_frame_size ();
563 else if (x == hard_frame_pointer_rtx)
565 HOST_WIDE_INT sp_offset
566 = get_initial_register_offset (STACK_POINTER_REGNUM,
567 HARD_FRAME_POINTER_REGNUM);
568 HOST_WIDE_INT ap_offset
569 = get_initial_register_offset (ARG_POINTER_REGNUM,
570 HARD_FRAME_POINTER_REGNUM);
572 #if STACK_GROWS_DOWNWARD
573 low_bound = sp_offset - red_zone_size - stack_boundary;
574 high_bound = ap_offset
575 + FIRST_PARM_OFFSET (current_function_decl)
576 #if !ARGS_GROW_DOWNWARD
577 + crtl->args.size
578 #endif
579 + stack_boundary;
580 #else
581 high_bound = sp_offset + red_zone_size + stack_boundary;
582 low_bound = ap_offset
583 + FIRST_PARM_OFFSET (current_function_decl)
584 #if ARGS_GROW_DOWNWARD
585 - crtl->args.size
586 #endif
587 - stack_boundary;
588 #endif
590 else if (x == stack_pointer_rtx)
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 STACK_POINTER_REGNUM);
596 #if STACK_GROWS_DOWNWARD
597 low_bound = - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
614 else
616 /* We assume that accesses are safe to at least the
617 next stack boundary.
618 Examples are varargs and __builtin_return_address. */
619 #if ARGS_GROW_DOWNWARD
620 high_bound = FIRST_PARM_OFFSET (current_function_decl)
621 + stack_boundary;
622 low_bound = FIRST_PARM_OFFSET (current_function_decl)
623 - crtl->args.size - stack_boundary;
624 #else
625 low_bound = FIRST_PARM_OFFSET (current_function_decl)
626 - stack_boundary;
627 high_bound = FIRST_PARM_OFFSET (current_function_decl)
628 + crtl->args.size + stack_boundary;
629 #endif
632 if (offset >= low_bound && offset <= high_bound - size)
633 return 0;
634 return 1;
636 /* All of the virtual frame registers are stack references. */
637 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
638 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
639 return 0;
640 return 1;
642 case CONST:
643 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
644 mode, unaligned_mems);
646 case PLUS:
647 /* An address is assumed not to trap if:
648 - it is the pic register plus a const unspec without offset. */
649 if (XEXP (x, 0) == pic_offset_table_rtx
650 && GET_CODE (XEXP (x, 1)) == CONST
651 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
652 && offset == 0)
653 return 0;
655 /* - or it is an address that can't trap plus a constant integer. */
656 if (CONST_INT_P (XEXP (x, 1))
657 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
658 size, mode, unaligned_mems))
659 return 0;
661 return 1;
663 case LO_SUM:
664 case PRE_MODIFY:
665 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
666 mode, unaligned_mems);
668 case PRE_DEC:
669 case PRE_INC:
670 case POST_DEC:
671 case POST_INC:
672 case POST_MODIFY:
673 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
674 mode, unaligned_mems);
676 default:
677 break;
680 /* If it isn't one of the case above, it can cause a trap. */
681 return 1;
684 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
687 rtx_addr_can_trap_p (const_rtx x)
689 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
692 /* Return true if X contains a MEM subrtx. */
694 bool
695 contains_mem_rtx_p (rtx x)
697 subrtx_iterator::array_type array;
698 FOR_EACH_SUBRTX (iter, array, x, ALL)
699 if (MEM_P (*iter))
700 return true;
702 return false;
705 /* Return true if X is an address that is known to not be zero. */
707 bool
708 nonzero_address_p (const_rtx x)
710 const enum rtx_code code = GET_CODE (x);
712 switch (code)
714 case SYMBOL_REF:
715 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
717 case LABEL_REF:
718 return true;
720 case REG:
721 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
722 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
723 || x == stack_pointer_rtx
724 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
725 return true;
726 /* All of the virtual frame registers are stack references. */
727 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
728 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
729 return true;
730 return false;
732 case CONST:
733 return nonzero_address_p (XEXP (x, 0));
735 case PLUS:
736 /* Handle PIC references. */
737 if (XEXP (x, 0) == pic_offset_table_rtx
738 && CONSTANT_P (XEXP (x, 1)))
739 return true;
740 return false;
742 case PRE_MODIFY:
743 /* Similar to the above; allow positive offsets. Further, since
744 auto-inc is only allowed in memories, the register must be a
745 pointer. */
746 if (CONST_INT_P (XEXP (x, 1))
747 && INTVAL (XEXP (x, 1)) > 0)
748 return true;
749 return nonzero_address_p (XEXP (x, 0));
751 case PRE_INC:
752 /* Similarly. Further, the offset is always positive. */
753 return true;
755 case PRE_DEC:
756 case POST_DEC:
757 case POST_INC:
758 case POST_MODIFY:
759 return nonzero_address_p (XEXP (x, 0));
761 case LO_SUM:
762 return nonzero_address_p (XEXP (x, 1));
764 default:
765 break;
768 /* If it isn't one of the case above, might be zero. */
769 return false;
772 /* Return 1 if X refers to a memory location whose address
773 cannot be compared reliably with constant addresses,
774 or if X refers to a BLKmode memory object.
775 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
776 zero, we are slightly more conservative. */
778 bool
779 rtx_addr_varies_p (const_rtx x, bool for_alias)
781 enum rtx_code code;
782 int i;
783 const char *fmt;
785 if (x == 0)
786 return 0;
788 code = GET_CODE (x);
789 if (code == MEM)
790 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
792 fmt = GET_RTX_FORMAT (code);
793 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
794 if (fmt[i] == 'e')
796 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
797 return 1;
799 else if (fmt[i] == 'E')
801 int j;
802 for (j = 0; j < XVECLEN (x, i); j++)
803 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
804 return 1;
806 return 0;
809 /* Return the CALL in X if there is one. */
812 get_call_rtx_from (rtx x)
814 if (INSN_P (x))
815 x = PATTERN (x);
816 if (GET_CODE (x) == PARALLEL)
817 x = XVECEXP (x, 0, 0);
818 if (GET_CODE (x) == SET)
819 x = SET_SRC (x);
820 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
821 return x;
822 return NULL_RTX;
825 /* Return the value of the integer term in X, if one is apparent;
826 otherwise return 0.
827 Only obvious integer terms are detected.
828 This is used in cse.c with the `related_value' field. */
830 HOST_WIDE_INT
831 get_integer_term (const_rtx x)
833 if (GET_CODE (x) == CONST)
834 x = XEXP (x, 0);
836 if (GET_CODE (x) == MINUS
837 && CONST_INT_P (XEXP (x, 1)))
838 return - INTVAL (XEXP (x, 1));
839 if (GET_CODE (x) == PLUS
840 && CONST_INT_P (XEXP (x, 1)))
841 return INTVAL (XEXP (x, 1));
842 return 0;
845 /* If X is a constant, return the value sans apparent integer term;
846 otherwise return 0.
847 Only obvious integer terms are detected. */
850 get_related_value (const_rtx x)
852 if (GET_CODE (x) != CONST)
853 return 0;
854 x = XEXP (x, 0);
855 if (GET_CODE (x) == PLUS
856 && CONST_INT_P (XEXP (x, 1)))
857 return XEXP (x, 0);
858 else if (GET_CODE (x) == MINUS
859 && CONST_INT_P (XEXP (x, 1)))
860 return XEXP (x, 0);
861 return 0;
864 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
865 to somewhere in the same object or object_block as SYMBOL. */
867 bool
868 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
870 tree decl;
872 if (GET_CODE (symbol) != SYMBOL_REF)
873 return false;
875 if (offset == 0)
876 return true;
878 if (offset > 0)
880 if (CONSTANT_POOL_ADDRESS_P (symbol)
881 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
882 return true;
884 decl = SYMBOL_REF_DECL (symbol);
885 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
886 return true;
889 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
890 && SYMBOL_REF_BLOCK (symbol)
891 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
892 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
893 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
894 return true;
896 return false;
899 /* Split X into a base and a constant offset, storing them in *BASE_OUT
900 and *OFFSET_OUT respectively. */
902 void
903 split_const (rtx x, rtx *base_out, rtx *offset_out)
905 if (GET_CODE (x) == CONST)
907 x = XEXP (x, 0);
908 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
910 *base_out = XEXP (x, 0);
911 *offset_out = XEXP (x, 1);
912 return;
915 *base_out = x;
916 *offset_out = const0_rtx;
919 /* Return the number of places FIND appears within X. If COUNT_DEST is
920 zero, we do not count occurrences inside the destination of a SET. */
923 count_occurrences (const_rtx x, const_rtx find, int count_dest)
925 int i, j;
926 enum rtx_code code;
927 const char *format_ptr;
928 int count;
930 if (x == find)
931 return 1;
933 code = GET_CODE (x);
935 switch (code)
937 case REG:
938 CASE_CONST_ANY:
939 case SYMBOL_REF:
940 case CODE_LABEL:
941 case PC:
942 case CC0:
943 return 0;
945 case EXPR_LIST:
946 count = count_occurrences (XEXP (x, 0), find, count_dest);
947 if (XEXP (x, 1))
948 count += count_occurrences (XEXP (x, 1), find, count_dest);
949 return count;
951 case MEM:
952 if (MEM_P (find) && rtx_equal_p (x, find))
953 return 1;
954 break;
956 case SET:
957 if (SET_DEST (x) == find && ! count_dest)
958 return count_occurrences (SET_SRC (x), find, count_dest);
959 break;
961 default:
962 break;
965 format_ptr = GET_RTX_FORMAT (code);
966 count = 0;
968 for (i = 0; i < GET_RTX_LENGTH (code); i++)
970 switch (*format_ptr++)
972 case 'e':
973 count += count_occurrences (XEXP (x, i), find, count_dest);
974 break;
976 case 'E':
977 for (j = 0; j < XVECLEN (x, i); j++)
978 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
979 break;
982 return count;
986 /* Return TRUE if OP is a register or subreg of a register that
987 holds an unsigned quantity. Otherwise, return FALSE. */
989 bool
990 unsigned_reg_p (rtx op)
992 if (REG_P (op)
993 && REG_EXPR (op)
994 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
995 return true;
997 if (GET_CODE (op) == SUBREG
998 && SUBREG_PROMOTED_SIGN (op))
999 return true;
1001 return false;
1005 /* Nonzero if register REG appears somewhere within IN.
1006 Also works if REG is not a register; in this case it checks
1007 for a subexpression of IN that is Lisp "equal" to REG. */
1010 reg_mentioned_p (const_rtx reg, const_rtx in)
1012 const char *fmt;
1013 int i;
1014 enum rtx_code code;
1016 if (in == 0)
1017 return 0;
1019 if (reg == in)
1020 return 1;
1022 if (GET_CODE (in) == LABEL_REF)
1023 return reg == label_ref_label (in);
1025 code = GET_CODE (in);
1027 switch (code)
1029 /* Compare registers by number. */
1030 case REG:
1031 return REG_P (reg) && REGNO (in) == REGNO (reg);
1033 /* These codes have no constituent expressions
1034 and are unique. */
1035 case SCRATCH:
1036 case CC0:
1037 case PC:
1038 return 0;
1040 CASE_CONST_ANY:
1041 /* These are kept unique for a given value. */
1042 return 0;
1044 default:
1045 break;
1048 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1049 return 1;
1051 fmt = GET_RTX_FORMAT (code);
1053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1055 if (fmt[i] == 'E')
1057 int j;
1058 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1059 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1060 return 1;
1062 else if (fmt[i] == 'e'
1063 && reg_mentioned_p (reg, XEXP (in, i)))
1064 return 1;
1066 return 0;
1069 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1070 no CODE_LABEL insn. */
1073 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1075 rtx_insn *p;
1076 if (beg == end)
1077 return 0;
1078 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1079 if (LABEL_P (p))
1080 return 0;
1081 return 1;
1084 /* Nonzero if register REG is used in an insn between
1085 FROM_INSN and TO_INSN (exclusive of those two). */
1088 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1089 const rtx_insn *to_insn)
1091 rtx_insn *insn;
1093 if (from_insn == to_insn)
1094 return 0;
1096 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1097 if (NONDEBUG_INSN_P (insn)
1098 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1099 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1100 return 1;
1101 return 0;
1104 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1105 is entirely replaced by a new value and the only use is as a SET_DEST,
1106 we do not consider it a reference. */
1109 reg_referenced_p (const_rtx x, const_rtx body)
1111 int i;
1113 switch (GET_CODE (body))
1115 case SET:
1116 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1117 return 1;
1119 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1120 of a REG that occupies all of the REG, the insn references X if
1121 it is mentioned in the destination. */
1122 if (GET_CODE (SET_DEST (body)) != CC0
1123 && GET_CODE (SET_DEST (body)) != PC
1124 && !REG_P (SET_DEST (body))
1125 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1126 && REG_P (SUBREG_REG (SET_DEST (body)))
1127 && !read_modify_subreg_p (SET_DEST (body)))
1128 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1129 return 1;
1130 return 0;
1132 case ASM_OPERANDS:
1133 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1134 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1135 return 1;
1136 return 0;
1138 case CALL:
1139 case USE:
1140 case IF_THEN_ELSE:
1141 return reg_overlap_mentioned_p (x, body);
1143 case TRAP_IF:
1144 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1146 case PREFETCH:
1147 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1149 case UNSPEC:
1150 case UNSPEC_VOLATILE:
1151 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1152 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1153 return 1;
1154 return 0;
1156 case PARALLEL:
1157 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1158 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1159 return 1;
1160 return 0;
1162 case CLOBBER:
1163 if (MEM_P (XEXP (body, 0)))
1164 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1165 return 1;
1166 return 0;
1168 case COND_EXEC:
1169 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1170 return 1;
1171 return reg_referenced_p (x, COND_EXEC_CODE (body));
1173 default:
1174 return 0;
1178 /* Nonzero if register REG is set or clobbered in an insn between
1179 FROM_INSN and TO_INSN (exclusive of those two). */
1182 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1183 const rtx_insn *to_insn)
1185 const rtx_insn *insn;
1187 if (from_insn == to_insn)
1188 return 0;
1190 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1191 if (INSN_P (insn) && reg_set_p (reg, insn))
1192 return 1;
1193 return 0;
1196 /* Return true if REG is set or clobbered inside INSN. */
1199 reg_set_p (const_rtx reg, const_rtx insn)
1201 /* After delay slot handling, call and branch insns might be in a
1202 sequence. Check all the elements there. */
1203 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1205 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1206 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1207 return true;
1209 return false;
1212 /* We can be passed an insn or part of one. If we are passed an insn,
1213 check if a side-effect of the insn clobbers REG. */
1214 if (INSN_P (insn)
1215 && (FIND_REG_INC_NOTE (insn, reg)
1216 || (CALL_P (insn)
1217 && ((REG_P (reg)
1218 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1219 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1220 GET_MODE (reg), REGNO (reg)))
1221 || MEM_P (reg)
1222 || find_reg_fusage (insn, CLOBBER, reg)))))
1223 return true;
1225 /* There are no REG_INC notes for SP autoinc. */
1226 if (reg == stack_pointer_rtx && INSN_P (insn))
1228 subrtx_var_iterator::array_type array;
1229 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1231 rtx mem = *iter;
1232 if (mem
1233 && MEM_P (mem)
1234 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1236 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1237 return true;
1238 iter.skip_subrtxes ();
1243 return set_of (reg, insn) != NULL_RTX;
1246 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1247 only if none of them are modified between START and END. Return 1 if
1248 X contains a MEM; this routine does use memory aliasing. */
1251 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1253 const enum rtx_code code = GET_CODE (x);
1254 const char *fmt;
1255 int i, j;
1256 rtx_insn *insn;
1258 if (start == end)
1259 return 0;
1261 switch (code)
1263 CASE_CONST_ANY:
1264 case CONST:
1265 case SYMBOL_REF:
1266 case LABEL_REF:
1267 return 0;
1269 case PC:
1270 case CC0:
1271 return 1;
1273 case MEM:
1274 if (modified_between_p (XEXP (x, 0), start, end))
1275 return 1;
1276 if (MEM_READONLY_P (x))
1277 return 0;
1278 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1279 if (memory_modified_in_insn_p (x, insn))
1280 return 1;
1281 return 0;
1283 case REG:
1284 return reg_set_between_p (x, start, end);
1286 default:
1287 break;
1290 fmt = GET_RTX_FORMAT (code);
1291 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1293 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1294 return 1;
1296 else if (fmt[i] == 'E')
1297 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1298 if (modified_between_p (XVECEXP (x, i, j), start, end))
1299 return 1;
1302 return 0;
1305 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1306 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1307 does use memory aliasing. */
1310 modified_in_p (const_rtx x, const_rtx insn)
1312 const enum rtx_code code = GET_CODE (x);
1313 const char *fmt;
1314 int i, j;
1316 switch (code)
1318 CASE_CONST_ANY:
1319 case CONST:
1320 case SYMBOL_REF:
1321 case LABEL_REF:
1322 return 0;
1324 case PC:
1325 case CC0:
1326 return 1;
1328 case MEM:
1329 if (modified_in_p (XEXP (x, 0), insn))
1330 return 1;
1331 if (MEM_READONLY_P (x))
1332 return 0;
1333 if (memory_modified_in_insn_p (x, insn))
1334 return 1;
1335 return 0;
1337 case REG:
1338 return reg_set_p (x, insn);
1340 default:
1341 break;
1344 fmt = GET_RTX_FORMAT (code);
1345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1347 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1348 return 1;
1350 else if (fmt[i] == 'E')
1351 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1352 if (modified_in_p (XVECEXP (x, i, j), insn))
1353 return 1;
1356 return 0;
1359 /* Return true if X is a SUBREG and if storing a value to X would
1360 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1361 target, using a SUBREG to store to one half of a DImode REG would
1362 preserve the other half. */
1364 bool
1365 read_modify_subreg_p (const_rtx x)
1367 unsigned int isize, osize;
1368 if (GET_CODE (x) != SUBREG)
1369 return false;
1370 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1371 osize = GET_MODE_SIZE (GET_MODE (x));
1372 return isize > osize
1373 && isize > REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1376 /* Helper function for set_of. */
1377 struct set_of_data
1379 const_rtx found;
1380 const_rtx pat;
1383 static void
1384 set_of_1 (rtx x, const_rtx pat, void *data1)
1386 struct set_of_data *const data = (struct set_of_data *) (data1);
1387 if (rtx_equal_p (x, data->pat)
1388 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1389 data->found = pat;
1392 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1393 (either directly or via STRICT_LOW_PART and similar modifiers). */
1394 const_rtx
1395 set_of (const_rtx pat, const_rtx insn)
1397 struct set_of_data data;
1398 data.found = NULL_RTX;
1399 data.pat = pat;
1400 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1401 return data.found;
1404 /* Add all hard register in X to *PSET. */
1405 void
1406 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1408 subrtx_iterator::array_type array;
1409 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1411 const_rtx x = *iter;
1412 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1413 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1417 /* This function, called through note_stores, collects sets and
1418 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1419 by DATA. */
1420 void
1421 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1423 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1424 if (REG_P (x) && HARD_REGISTER_P (x))
1425 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1428 /* Examine INSN, and compute the set of hard registers written by it.
1429 Store it in *PSET. Should only be called after reload. */
1430 void
1431 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1433 rtx link;
1435 CLEAR_HARD_REG_SET (*pset);
1436 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1437 if (CALL_P (insn))
1439 if (implicit)
1440 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1442 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1443 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1445 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1446 if (REG_NOTE_KIND (link) == REG_INC)
1447 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1450 /* Like record_hard_reg_sets, but called through note_uses. */
1451 void
1452 record_hard_reg_uses (rtx *px, void *data)
1454 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1457 /* Given an INSN, return a SET expression if this insn has only a single SET.
1458 It may also have CLOBBERs, USEs, or SET whose output
1459 will not be used, which we ignore. */
1462 single_set_2 (const rtx_insn *insn, const_rtx pat)
1464 rtx set = NULL;
1465 int set_verified = 1;
1466 int i;
1468 if (GET_CODE (pat) == PARALLEL)
1470 for (i = 0; i < XVECLEN (pat, 0); i++)
1472 rtx sub = XVECEXP (pat, 0, i);
1473 switch (GET_CODE (sub))
1475 case USE:
1476 case CLOBBER:
1477 break;
1479 case SET:
1480 /* We can consider insns having multiple sets, where all
1481 but one are dead as single set insns. In common case
1482 only single set is present in the pattern so we want
1483 to avoid checking for REG_UNUSED notes unless necessary.
1485 When we reach set first time, we just expect this is
1486 the single set we are looking for and only when more
1487 sets are found in the insn, we check them. */
1488 if (!set_verified)
1490 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1491 && !side_effects_p (set))
1492 set = NULL;
1493 else
1494 set_verified = 1;
1496 if (!set)
1497 set = sub, set_verified = 0;
1498 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1499 || side_effects_p (sub))
1500 return NULL_RTX;
1501 break;
1503 default:
1504 return NULL_RTX;
1508 return set;
1511 /* Given an INSN, return nonzero if it has more than one SET, else return
1512 zero. */
1515 multiple_sets (const_rtx insn)
1517 int found;
1518 int i;
1520 /* INSN must be an insn. */
1521 if (! INSN_P (insn))
1522 return 0;
1524 /* Only a PARALLEL can have multiple SETs. */
1525 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1527 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1528 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1530 /* If we have already found a SET, then return now. */
1531 if (found)
1532 return 1;
1533 else
1534 found = 1;
1538 /* Either zero or one SET. */
1539 return 0;
1542 /* Return nonzero if the destination of SET equals the source
1543 and there are no side effects. */
1546 set_noop_p (const_rtx set)
1548 rtx src = SET_SRC (set);
1549 rtx dst = SET_DEST (set);
1551 if (dst == pc_rtx && src == pc_rtx)
1552 return 1;
1554 if (MEM_P (dst) && MEM_P (src))
1555 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1557 if (GET_CODE (dst) == ZERO_EXTRACT)
1558 return rtx_equal_p (XEXP (dst, 0), src)
1559 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1560 && !side_effects_p (src);
1562 if (GET_CODE (dst) == STRICT_LOW_PART)
1563 dst = XEXP (dst, 0);
1565 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1567 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1568 return 0;
1569 src = SUBREG_REG (src);
1570 dst = SUBREG_REG (dst);
1573 /* It is a NOOP if destination overlaps with selected src vector
1574 elements. */
1575 if (GET_CODE (src) == VEC_SELECT
1576 && REG_P (XEXP (src, 0)) && REG_P (dst)
1577 && HARD_REGISTER_P (XEXP (src, 0))
1578 && HARD_REGISTER_P (dst))
1580 int i;
1581 rtx par = XEXP (src, 1);
1582 rtx src0 = XEXP (src, 0);
1583 int c0 = INTVAL (XVECEXP (par, 0, 0));
1584 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1586 for (i = 1; i < XVECLEN (par, 0); i++)
1587 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1588 return 0;
1589 return
1590 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1591 offset, GET_MODE (dst)) == (int) REGNO (dst);
1594 return (REG_P (src) && REG_P (dst)
1595 && REGNO (src) == REGNO (dst));
1598 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1599 value to itself. */
1602 noop_move_p (const rtx_insn *insn)
1604 rtx pat = PATTERN (insn);
1606 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1607 return 1;
1609 /* Insns carrying these notes are useful later on. */
1610 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1611 return 0;
1613 /* Check the code to be executed for COND_EXEC. */
1614 if (GET_CODE (pat) == COND_EXEC)
1615 pat = COND_EXEC_CODE (pat);
1617 if (GET_CODE (pat) == SET && set_noop_p (pat))
1618 return 1;
1620 if (GET_CODE (pat) == PARALLEL)
1622 int i;
1623 /* If nothing but SETs of registers to themselves,
1624 this insn can also be deleted. */
1625 for (i = 0; i < XVECLEN (pat, 0); i++)
1627 rtx tem = XVECEXP (pat, 0, i);
1629 if (GET_CODE (tem) == USE
1630 || GET_CODE (tem) == CLOBBER)
1631 continue;
1633 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1634 return 0;
1637 return 1;
1639 return 0;
1643 /* Return nonzero if register in range [REGNO, ENDREGNO)
1644 appears either explicitly or implicitly in X
1645 other than being stored into.
1647 References contained within the substructure at LOC do not count.
1648 LOC may be zero, meaning don't ignore anything. */
1650 bool
1651 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1652 rtx *loc)
1654 int i;
1655 unsigned int x_regno;
1656 RTX_CODE code;
1657 const char *fmt;
1659 repeat:
1660 /* The contents of a REG_NONNEG note is always zero, so we must come here
1661 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1662 if (x == 0)
1663 return false;
1665 code = GET_CODE (x);
1667 switch (code)
1669 case REG:
1670 x_regno = REGNO (x);
1672 /* If we modifying the stack, frame, or argument pointer, it will
1673 clobber a virtual register. In fact, we could be more precise,
1674 but it isn't worth it. */
1675 if ((x_regno == STACK_POINTER_REGNUM
1676 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1677 && x_regno == ARG_POINTER_REGNUM)
1678 || x_regno == FRAME_POINTER_REGNUM)
1679 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1680 return true;
1682 return endregno > x_regno && regno < END_REGNO (x);
1684 case SUBREG:
1685 /* If this is a SUBREG of a hard reg, we can see exactly which
1686 registers are being modified. Otherwise, handle normally. */
1687 if (REG_P (SUBREG_REG (x))
1688 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1690 unsigned int inner_regno = subreg_regno (x);
1691 unsigned int inner_endregno
1692 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1693 ? subreg_nregs (x) : 1);
1695 return endregno > inner_regno && regno < inner_endregno;
1697 break;
1699 case CLOBBER:
1700 case SET:
1701 if (&SET_DEST (x) != loc
1702 /* Note setting a SUBREG counts as referring to the REG it is in for
1703 a pseudo but not for hard registers since we can
1704 treat each word individually. */
1705 && ((GET_CODE (SET_DEST (x)) == SUBREG
1706 && loc != &SUBREG_REG (SET_DEST (x))
1707 && REG_P (SUBREG_REG (SET_DEST (x)))
1708 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1709 && refers_to_regno_p (regno, endregno,
1710 SUBREG_REG (SET_DEST (x)), loc))
1711 || (!REG_P (SET_DEST (x))
1712 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1713 return true;
1715 if (code == CLOBBER || loc == &SET_SRC (x))
1716 return false;
1717 x = SET_SRC (x);
1718 goto repeat;
1720 default:
1721 break;
1724 /* X does not match, so try its subexpressions. */
1726 fmt = GET_RTX_FORMAT (code);
1727 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1729 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1731 if (i == 0)
1733 x = XEXP (x, 0);
1734 goto repeat;
1736 else
1737 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1738 return true;
1740 else if (fmt[i] == 'E')
1742 int j;
1743 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1744 if (loc != &XVECEXP (x, i, j)
1745 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1746 return true;
1749 return false;
1752 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1753 we check if any register number in X conflicts with the relevant register
1754 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1755 contains a MEM (we don't bother checking for memory addresses that can't
1756 conflict because we expect this to be a rare case. */
1759 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1761 unsigned int regno, endregno;
1763 /* If either argument is a constant, then modifying X can not
1764 affect IN. Here we look at IN, we can profitably combine
1765 CONSTANT_P (x) with the switch statement below. */
1766 if (CONSTANT_P (in))
1767 return 0;
1769 recurse:
1770 switch (GET_CODE (x))
1772 case STRICT_LOW_PART:
1773 case ZERO_EXTRACT:
1774 case SIGN_EXTRACT:
1775 /* Overly conservative. */
1776 x = XEXP (x, 0);
1777 goto recurse;
1779 case SUBREG:
1780 regno = REGNO (SUBREG_REG (x));
1781 if (regno < FIRST_PSEUDO_REGISTER)
1782 regno = subreg_regno (x);
1783 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1784 ? subreg_nregs (x) : 1);
1785 goto do_reg;
1787 case REG:
1788 regno = REGNO (x);
1789 endregno = END_REGNO (x);
1790 do_reg:
1791 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1793 case MEM:
1795 const char *fmt;
1796 int i;
1798 if (MEM_P (in))
1799 return 1;
1801 fmt = GET_RTX_FORMAT (GET_CODE (in));
1802 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1803 if (fmt[i] == 'e')
1805 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1806 return 1;
1808 else if (fmt[i] == 'E')
1810 int j;
1811 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1812 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1813 return 1;
1816 return 0;
1819 case SCRATCH:
1820 case PC:
1821 case CC0:
1822 return reg_mentioned_p (x, in);
1824 case PARALLEL:
1826 int i;
1828 /* If any register in here refers to it we return true. */
1829 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1830 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1831 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1832 return 1;
1833 return 0;
1836 default:
1837 gcc_assert (CONSTANT_P (x));
1838 return 0;
1842 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1843 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1844 ignored by note_stores, but passed to FUN.
1846 FUN receives three arguments:
1847 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1848 2. the SET or CLOBBER rtx that does the store,
1849 3. the pointer DATA provided to note_stores.
1851 If the item being stored in or clobbered is a SUBREG of a hard register,
1852 the SUBREG will be passed. */
1854 void
1855 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1857 int i;
1859 if (GET_CODE (x) == COND_EXEC)
1860 x = COND_EXEC_CODE (x);
1862 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1864 rtx dest = SET_DEST (x);
1866 while ((GET_CODE (dest) == SUBREG
1867 && (!REG_P (SUBREG_REG (dest))
1868 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1869 || GET_CODE (dest) == ZERO_EXTRACT
1870 || GET_CODE (dest) == STRICT_LOW_PART)
1871 dest = XEXP (dest, 0);
1873 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1874 each of whose first operand is a register. */
1875 if (GET_CODE (dest) == PARALLEL)
1877 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1878 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1879 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1881 else
1882 (*fun) (dest, x, data);
1885 else if (GET_CODE (x) == PARALLEL)
1886 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1887 note_stores (XVECEXP (x, 0, i), fun, data);
1890 /* Like notes_stores, but call FUN for each expression that is being
1891 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1892 FUN for each expression, not any interior subexpressions. FUN receives a
1893 pointer to the expression and the DATA passed to this function.
1895 Note that this is not quite the same test as that done in reg_referenced_p
1896 since that considers something as being referenced if it is being
1897 partially set, while we do not. */
1899 void
1900 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1902 rtx body = *pbody;
1903 int i;
1905 switch (GET_CODE (body))
1907 case COND_EXEC:
1908 (*fun) (&COND_EXEC_TEST (body), data);
1909 note_uses (&COND_EXEC_CODE (body), fun, data);
1910 return;
1912 case PARALLEL:
1913 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1914 note_uses (&XVECEXP (body, 0, i), fun, data);
1915 return;
1917 case SEQUENCE:
1918 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1919 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1920 return;
1922 case USE:
1923 (*fun) (&XEXP (body, 0), data);
1924 return;
1926 case ASM_OPERANDS:
1927 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1928 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1929 return;
1931 case TRAP_IF:
1932 (*fun) (&TRAP_CONDITION (body), data);
1933 return;
1935 case PREFETCH:
1936 (*fun) (&XEXP (body, 0), data);
1937 return;
1939 case UNSPEC:
1940 case UNSPEC_VOLATILE:
1941 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1942 (*fun) (&XVECEXP (body, 0, i), data);
1943 return;
1945 case CLOBBER:
1946 if (MEM_P (XEXP (body, 0)))
1947 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1948 return;
1950 case SET:
1952 rtx dest = SET_DEST (body);
1954 /* For sets we replace everything in source plus registers in memory
1955 expression in store and operands of a ZERO_EXTRACT. */
1956 (*fun) (&SET_SRC (body), data);
1958 if (GET_CODE (dest) == ZERO_EXTRACT)
1960 (*fun) (&XEXP (dest, 1), data);
1961 (*fun) (&XEXP (dest, 2), data);
1964 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1965 dest = XEXP (dest, 0);
1967 if (MEM_P (dest))
1968 (*fun) (&XEXP (dest, 0), data);
1970 return;
1972 default:
1973 /* All the other possibilities never store. */
1974 (*fun) (pbody, data);
1975 return;
1979 /* Return nonzero if X's old contents don't survive after INSN.
1980 This will be true if X is (cc0) or if X is a register and
1981 X dies in INSN or because INSN entirely sets X.
1983 "Entirely set" means set directly and not through a SUBREG, or
1984 ZERO_EXTRACT, so no trace of the old contents remains.
1985 Likewise, REG_INC does not count.
1987 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1988 but for this use that makes no difference, since regs don't overlap
1989 during their lifetimes. Therefore, this function may be used
1990 at any time after deaths have been computed.
1992 If REG is a hard reg that occupies multiple machine registers, this
1993 function will only return 1 if each of those registers will be replaced
1994 by INSN. */
1997 dead_or_set_p (const rtx_insn *insn, const_rtx x)
1999 unsigned int regno, end_regno;
2000 unsigned int i;
2002 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2003 if (GET_CODE (x) == CC0)
2004 return 1;
2006 gcc_assert (REG_P (x));
2008 regno = REGNO (x);
2009 end_regno = END_REGNO (x);
2010 for (i = regno; i < end_regno; i++)
2011 if (! dead_or_set_regno_p (insn, i))
2012 return 0;
2014 return 1;
2017 /* Return TRUE iff DEST is a register or subreg of a register, is a
2018 complete rather than read-modify-write destination, and contains
2019 register TEST_REGNO. */
2021 static bool
2022 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2024 unsigned int regno, endregno;
2026 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2027 dest = SUBREG_REG (dest);
2029 if (!REG_P (dest))
2030 return false;
2032 regno = REGNO (dest);
2033 endregno = END_REGNO (dest);
2034 return (test_regno >= regno && test_regno < endregno);
2037 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2038 any member matches the covers_regno_no_parallel_p criteria. */
2040 static bool
2041 covers_regno_p (const_rtx dest, unsigned int test_regno)
2043 if (GET_CODE (dest) == PARALLEL)
2045 /* Some targets place small structures in registers for return
2046 values of functions, and those registers are wrapped in
2047 PARALLELs that we may see as the destination of a SET. */
2048 int i;
2050 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2052 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2053 if (inner != NULL_RTX
2054 && covers_regno_no_parallel_p (inner, test_regno))
2055 return true;
2058 return false;
2060 else
2061 return covers_regno_no_parallel_p (dest, test_regno);
2064 /* Utility function for dead_or_set_p to check an individual register. */
2067 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2069 const_rtx pattern;
2071 /* See if there is a death note for something that includes TEST_REGNO. */
2072 if (find_regno_note (insn, REG_DEAD, test_regno))
2073 return 1;
2075 if (CALL_P (insn)
2076 && find_regno_fusage (insn, CLOBBER, test_regno))
2077 return 1;
2079 pattern = PATTERN (insn);
2081 /* If a COND_EXEC is not executed, the value survives. */
2082 if (GET_CODE (pattern) == COND_EXEC)
2083 return 0;
2085 if (GET_CODE (pattern) == SET)
2086 return covers_regno_p (SET_DEST (pattern), test_regno);
2087 else if (GET_CODE (pattern) == PARALLEL)
2089 int i;
2091 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2093 rtx body = XVECEXP (pattern, 0, i);
2095 if (GET_CODE (body) == COND_EXEC)
2096 body = COND_EXEC_CODE (body);
2098 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2099 && covers_regno_p (SET_DEST (body), test_regno))
2100 return 1;
2104 return 0;
2107 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2108 If DATUM is nonzero, look for one whose datum is DATUM. */
2111 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2113 rtx link;
2115 gcc_checking_assert (insn);
2117 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2118 if (! INSN_P (insn))
2119 return 0;
2120 if (datum == 0)
2122 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2123 if (REG_NOTE_KIND (link) == kind)
2124 return link;
2125 return 0;
2128 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2129 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2130 return link;
2131 return 0;
2134 /* Return the reg-note of kind KIND in insn INSN which applies to register
2135 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2136 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2137 it might be the case that the note overlaps REGNO. */
2140 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2142 rtx link;
2144 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2145 if (! INSN_P (insn))
2146 return 0;
2148 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2149 if (REG_NOTE_KIND (link) == kind
2150 /* Verify that it is a register, so that scratch and MEM won't cause a
2151 problem here. */
2152 && REG_P (XEXP (link, 0))
2153 && REGNO (XEXP (link, 0)) <= regno
2154 && END_REGNO (XEXP (link, 0)) > regno)
2155 return link;
2156 return 0;
2159 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2160 has such a note. */
2163 find_reg_equal_equiv_note (const_rtx insn)
2165 rtx link;
2167 if (!INSN_P (insn))
2168 return 0;
2170 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2171 if (REG_NOTE_KIND (link) == REG_EQUAL
2172 || REG_NOTE_KIND (link) == REG_EQUIV)
2174 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2175 insns that have multiple sets. Checking single_set to
2176 make sure of this is not the proper check, as explained
2177 in the comment in set_unique_reg_note.
2179 This should be changed into an assert. */
2180 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2181 return 0;
2182 return link;
2184 return NULL;
2187 /* Check whether INSN is a single_set whose source is known to be
2188 equivalent to a constant. Return that constant if so, otherwise
2189 return null. */
2192 find_constant_src (const rtx_insn *insn)
2194 rtx note, set, x;
2196 set = single_set (insn);
2197 if (set)
2199 x = avoid_constant_pool_reference (SET_SRC (set));
2200 if (CONSTANT_P (x))
2201 return x;
2204 note = find_reg_equal_equiv_note (insn);
2205 if (note && CONSTANT_P (XEXP (note, 0)))
2206 return XEXP (note, 0);
2208 return NULL_RTX;
2211 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2212 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2215 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2217 /* If it's not a CALL_INSN, it can't possibly have a
2218 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2219 if (!CALL_P (insn))
2220 return 0;
2222 gcc_assert (datum);
2224 if (!REG_P (datum))
2226 rtx link;
2228 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2229 link;
2230 link = XEXP (link, 1))
2231 if (GET_CODE (XEXP (link, 0)) == code
2232 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2233 return 1;
2235 else
2237 unsigned int regno = REGNO (datum);
2239 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2240 to pseudo registers, so don't bother checking. */
2242 if (regno < FIRST_PSEUDO_REGISTER)
2244 unsigned int end_regno = END_REGNO (datum);
2245 unsigned int i;
2247 for (i = regno; i < end_regno; i++)
2248 if (find_regno_fusage (insn, code, i))
2249 return 1;
2253 return 0;
2256 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2257 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2260 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2262 rtx link;
2264 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2265 to pseudo registers, so don't bother checking. */
2267 if (regno >= FIRST_PSEUDO_REGISTER
2268 || !CALL_P (insn) )
2269 return 0;
2271 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2273 rtx op, reg;
2275 if (GET_CODE (op = XEXP (link, 0)) == code
2276 && REG_P (reg = XEXP (op, 0))
2277 && REGNO (reg) <= regno
2278 && END_REGNO (reg) > regno)
2279 return 1;
2282 return 0;
2286 /* Return true if KIND is an integer REG_NOTE. */
2288 static bool
2289 int_reg_note_p (enum reg_note kind)
2291 return kind == REG_BR_PROB;
2294 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2295 stored as the pointer to the next register note. */
2298 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2300 rtx note;
2302 gcc_checking_assert (!int_reg_note_p (kind));
2303 switch (kind)
2305 case REG_CC_SETTER:
2306 case REG_CC_USER:
2307 case REG_LABEL_TARGET:
2308 case REG_LABEL_OPERAND:
2309 case REG_TM:
2310 /* These types of register notes use an INSN_LIST rather than an
2311 EXPR_LIST, so that copying is done right and dumps look
2312 better. */
2313 note = alloc_INSN_LIST (datum, list);
2314 PUT_REG_NOTE_KIND (note, kind);
2315 break;
2317 default:
2318 note = alloc_EXPR_LIST (kind, datum, list);
2319 break;
2322 return note;
2325 /* Add register note with kind KIND and datum DATUM to INSN. */
2327 void
2328 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2330 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2333 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2335 void
2336 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2338 gcc_checking_assert (int_reg_note_p (kind));
2339 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2340 datum, REG_NOTES (insn));
2343 /* Add a register note like NOTE to INSN. */
2345 void
2346 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2348 if (GET_CODE (note) == INT_LIST)
2349 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2350 else
2351 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2354 /* Duplicate NOTE and return the copy. */
2356 duplicate_reg_note (rtx note)
2358 reg_note kind = REG_NOTE_KIND (note);
2360 if (GET_CODE (note) == INT_LIST)
2361 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2362 else if (GET_CODE (note) == EXPR_LIST)
2363 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2364 else
2365 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2368 /* Remove register note NOTE from the REG_NOTES of INSN. */
2370 void
2371 remove_note (rtx_insn *insn, const_rtx note)
2373 rtx link;
2375 if (note == NULL_RTX)
2376 return;
2378 if (REG_NOTES (insn) == note)
2379 REG_NOTES (insn) = XEXP (note, 1);
2380 else
2381 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2382 if (XEXP (link, 1) == note)
2384 XEXP (link, 1) = XEXP (note, 1);
2385 break;
2388 switch (REG_NOTE_KIND (note))
2390 case REG_EQUAL:
2391 case REG_EQUIV:
2392 df_notes_rescan (insn);
2393 break;
2394 default:
2395 break;
2399 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2400 Return true if any note has been removed. */
2402 bool
2403 remove_reg_equal_equiv_notes (rtx_insn *insn)
2405 rtx *loc;
2406 bool ret = false;
2408 loc = &REG_NOTES (insn);
2409 while (*loc)
2411 enum reg_note kind = REG_NOTE_KIND (*loc);
2412 if (kind == REG_EQUAL || kind == REG_EQUIV)
2414 *loc = XEXP (*loc, 1);
2415 ret = true;
2417 else
2418 loc = &XEXP (*loc, 1);
2420 return ret;
2423 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2425 void
2426 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2428 df_ref eq_use;
2430 if (!df)
2431 return;
2433 /* This loop is a little tricky. We cannot just go down the chain because
2434 it is being modified by some actions in the loop. So we just iterate
2435 over the head. We plan to drain the list anyway. */
2436 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2438 rtx_insn *insn = DF_REF_INSN (eq_use);
2439 rtx note = find_reg_equal_equiv_note (insn);
2441 /* This assert is generally triggered when someone deletes a REG_EQUAL
2442 or REG_EQUIV note by hacking the list manually rather than calling
2443 remove_note. */
2444 gcc_assert (note);
2446 remove_note (insn, note);
2450 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2451 return 1 if it is found. A simple equality test is used to determine if
2452 NODE matches. */
2454 bool
2455 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2457 const_rtx x;
2459 for (x = listp; x; x = XEXP (x, 1))
2460 if (node == XEXP (x, 0))
2461 return true;
2463 return false;
2466 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2467 remove that entry from the list if it is found.
2469 A simple equality test is used to determine if NODE matches. */
2471 void
2472 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2474 rtx_expr_list *temp = *listp;
2475 rtx_expr_list *prev = NULL;
2477 while (temp)
2479 if (node == temp->element ())
2481 /* Splice the node out of the list. */
2482 if (prev)
2483 XEXP (prev, 1) = temp->next ();
2484 else
2485 *listp = temp->next ();
2487 return;
2490 prev = temp;
2491 temp = temp->next ();
2495 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2496 remove that entry from the list if it is found.
2498 A simple equality test is used to determine if NODE matches. */
2500 void
2501 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2503 rtx_insn_list *temp = *listp;
2504 rtx_insn_list *prev = NULL;
2506 while (temp)
2508 if (node == temp->insn ())
2510 /* Splice the node out of the list. */
2511 if (prev)
2512 XEXP (prev, 1) = temp->next ();
2513 else
2514 *listp = temp->next ();
2516 return;
2519 prev = temp;
2520 temp = temp->next ();
2524 /* Nonzero if X contains any volatile instructions. These are instructions
2525 which may cause unpredictable machine state instructions, and thus no
2526 instructions or register uses should be moved or combined across them.
2527 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2530 volatile_insn_p (const_rtx x)
2532 const RTX_CODE code = GET_CODE (x);
2533 switch (code)
2535 case LABEL_REF:
2536 case SYMBOL_REF:
2537 case CONST:
2538 CASE_CONST_ANY:
2539 case CC0:
2540 case PC:
2541 case REG:
2542 case SCRATCH:
2543 case CLOBBER:
2544 case ADDR_VEC:
2545 case ADDR_DIFF_VEC:
2546 case CALL:
2547 case MEM:
2548 return 0;
2550 case UNSPEC_VOLATILE:
2551 return 1;
2553 case ASM_INPUT:
2554 case ASM_OPERANDS:
2555 if (MEM_VOLATILE_P (x))
2556 return 1;
2558 default:
2559 break;
2562 /* Recursively scan the operands of this expression. */
2565 const char *const fmt = GET_RTX_FORMAT (code);
2566 int i;
2568 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2570 if (fmt[i] == 'e')
2572 if (volatile_insn_p (XEXP (x, i)))
2573 return 1;
2575 else if (fmt[i] == 'E')
2577 int j;
2578 for (j = 0; j < XVECLEN (x, i); j++)
2579 if (volatile_insn_p (XVECEXP (x, i, j)))
2580 return 1;
2584 return 0;
2587 /* Nonzero if X contains any volatile memory references
2588 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2591 volatile_refs_p (const_rtx x)
2593 const RTX_CODE code = GET_CODE (x);
2594 switch (code)
2596 case LABEL_REF:
2597 case SYMBOL_REF:
2598 case CONST:
2599 CASE_CONST_ANY:
2600 case CC0:
2601 case PC:
2602 case REG:
2603 case SCRATCH:
2604 case CLOBBER:
2605 case ADDR_VEC:
2606 case ADDR_DIFF_VEC:
2607 return 0;
2609 case UNSPEC_VOLATILE:
2610 return 1;
2612 case MEM:
2613 case ASM_INPUT:
2614 case ASM_OPERANDS:
2615 if (MEM_VOLATILE_P (x))
2616 return 1;
2618 default:
2619 break;
2622 /* Recursively scan the operands of this expression. */
2625 const char *const fmt = GET_RTX_FORMAT (code);
2626 int i;
2628 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2630 if (fmt[i] == 'e')
2632 if (volatile_refs_p (XEXP (x, i)))
2633 return 1;
2635 else if (fmt[i] == 'E')
2637 int j;
2638 for (j = 0; j < XVECLEN (x, i); j++)
2639 if (volatile_refs_p (XVECEXP (x, i, j)))
2640 return 1;
2644 return 0;
2647 /* Similar to above, except that it also rejects register pre- and post-
2648 incrementing. */
2651 side_effects_p (const_rtx x)
2653 const RTX_CODE code = GET_CODE (x);
2654 switch (code)
2656 case LABEL_REF:
2657 case SYMBOL_REF:
2658 case CONST:
2659 CASE_CONST_ANY:
2660 case CC0:
2661 case PC:
2662 case REG:
2663 case SCRATCH:
2664 case ADDR_VEC:
2665 case ADDR_DIFF_VEC:
2666 case VAR_LOCATION:
2667 return 0;
2669 case CLOBBER:
2670 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2671 when some combination can't be done. If we see one, don't think
2672 that we can simplify the expression. */
2673 return (GET_MODE (x) != VOIDmode);
2675 case PRE_INC:
2676 case PRE_DEC:
2677 case POST_INC:
2678 case POST_DEC:
2679 case PRE_MODIFY:
2680 case POST_MODIFY:
2681 case CALL:
2682 case UNSPEC_VOLATILE:
2683 return 1;
2685 case MEM:
2686 case ASM_INPUT:
2687 case ASM_OPERANDS:
2688 if (MEM_VOLATILE_P (x))
2689 return 1;
2691 default:
2692 break;
2695 /* Recursively scan the operands of this expression. */
2698 const char *fmt = GET_RTX_FORMAT (code);
2699 int i;
2701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2703 if (fmt[i] == 'e')
2705 if (side_effects_p (XEXP (x, i)))
2706 return 1;
2708 else if (fmt[i] == 'E')
2710 int j;
2711 for (j = 0; j < XVECLEN (x, i); j++)
2712 if (side_effects_p (XVECEXP (x, i, j)))
2713 return 1;
2717 return 0;
2720 /* Return nonzero if evaluating rtx X might cause a trap.
2721 FLAGS controls how to consider MEMs. A nonzero means the context
2722 of the access may have changed from the original, such that the
2723 address may have become invalid. */
2726 may_trap_p_1 (const_rtx x, unsigned flags)
2728 int i;
2729 enum rtx_code code;
2730 const char *fmt;
2732 /* We make no distinction currently, but this function is part of
2733 the internal target-hooks ABI so we keep the parameter as
2734 "unsigned flags". */
2735 bool code_changed = flags != 0;
2737 if (x == 0)
2738 return 0;
2739 code = GET_CODE (x);
2740 switch (code)
2742 /* Handle these cases quickly. */
2743 CASE_CONST_ANY:
2744 case SYMBOL_REF:
2745 case LABEL_REF:
2746 case CONST:
2747 case PC:
2748 case CC0:
2749 case REG:
2750 case SCRATCH:
2751 return 0;
2753 case UNSPEC:
2754 return targetm.unspec_may_trap_p (x, flags);
2756 case UNSPEC_VOLATILE:
2757 case ASM_INPUT:
2758 case TRAP_IF:
2759 return 1;
2761 case ASM_OPERANDS:
2762 return MEM_VOLATILE_P (x);
2764 /* Memory ref can trap unless it's a static var or a stack slot. */
2765 case MEM:
2766 /* Recognize specific pattern of stack checking probes. */
2767 if (flag_stack_check
2768 && MEM_VOLATILE_P (x)
2769 && XEXP (x, 0) == stack_pointer_rtx)
2770 return 1;
2771 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2772 reference; moving it out of context such as when moving code
2773 when optimizing, might cause its address to become invalid. */
2774 code_changed
2775 || !MEM_NOTRAP_P (x))
2777 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2778 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2779 GET_MODE (x), code_changed);
2782 return 0;
2784 /* Division by a non-constant might trap. */
2785 case DIV:
2786 case MOD:
2787 case UDIV:
2788 case UMOD:
2789 if (HONOR_SNANS (x))
2790 return 1;
2791 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2792 return flag_trapping_math;
2793 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2794 return 1;
2795 break;
2797 case EXPR_LIST:
2798 /* An EXPR_LIST is used to represent a function call. This
2799 certainly may trap. */
2800 return 1;
2802 case GE:
2803 case GT:
2804 case LE:
2805 case LT:
2806 case LTGT:
2807 case COMPARE:
2808 /* Some floating point comparisons may trap. */
2809 if (!flag_trapping_math)
2810 break;
2811 /* ??? There is no machine independent way to check for tests that trap
2812 when COMPARE is used, though many targets do make this distinction.
2813 For instance, sparc uses CCFPE for compares which generate exceptions
2814 and CCFP for compares which do not generate exceptions. */
2815 if (HONOR_NANS (x))
2816 return 1;
2817 /* But often the compare has some CC mode, so check operand
2818 modes as well. */
2819 if (HONOR_NANS (XEXP (x, 0))
2820 || HONOR_NANS (XEXP (x, 1)))
2821 return 1;
2822 break;
2824 case EQ:
2825 case NE:
2826 if (HONOR_SNANS (x))
2827 return 1;
2828 /* Often comparison is CC mode, so check operand modes. */
2829 if (HONOR_SNANS (XEXP (x, 0))
2830 || HONOR_SNANS (XEXP (x, 1)))
2831 return 1;
2832 break;
2834 case FIX:
2835 /* Conversion of floating point might trap. */
2836 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2837 return 1;
2838 break;
2840 case NEG:
2841 case ABS:
2842 case SUBREG:
2843 /* These operations don't trap even with floating point. */
2844 break;
2846 default:
2847 /* Any floating arithmetic may trap. */
2848 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2849 return 1;
2852 fmt = GET_RTX_FORMAT (code);
2853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2855 if (fmt[i] == 'e')
2857 if (may_trap_p_1 (XEXP (x, i), flags))
2858 return 1;
2860 else if (fmt[i] == 'E')
2862 int j;
2863 for (j = 0; j < XVECLEN (x, i); j++)
2864 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2865 return 1;
2868 return 0;
2871 /* Return nonzero if evaluating rtx X might cause a trap. */
2874 may_trap_p (const_rtx x)
2876 return may_trap_p_1 (x, 0);
2879 /* Same as above, but additionally return nonzero if evaluating rtx X might
2880 cause a fault. We define a fault for the purpose of this function as a
2881 erroneous execution condition that cannot be encountered during the normal
2882 execution of a valid program; the typical example is an unaligned memory
2883 access on a strict alignment machine. The compiler guarantees that it
2884 doesn't generate code that will fault from a valid program, but this
2885 guarantee doesn't mean anything for individual instructions. Consider
2886 the following example:
2888 struct S { int d; union { char *cp; int *ip; }; };
2890 int foo(struct S *s)
2892 if (s->d == 1)
2893 return *s->ip;
2894 else
2895 return *s->cp;
2898 on a strict alignment machine. In a valid program, foo will never be
2899 invoked on a structure for which d is equal to 1 and the underlying
2900 unique field of the union not aligned on a 4-byte boundary, but the
2901 expression *s->ip might cause a fault if considered individually.
2903 At the RTL level, potentially problematic expressions will almost always
2904 verify may_trap_p; for example, the above dereference can be emitted as
2905 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2906 However, suppose that foo is inlined in a caller that causes s->cp to
2907 point to a local character variable and guarantees that s->d is not set
2908 to 1; foo may have been effectively translated into pseudo-RTL as:
2910 if ((reg:SI) == 1)
2911 (set (reg:SI) (mem:SI (%fp - 7)))
2912 else
2913 (set (reg:QI) (mem:QI (%fp - 7)))
2915 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2916 memory reference to a stack slot, but it will certainly cause a fault
2917 on a strict alignment machine. */
2920 may_trap_or_fault_p (const_rtx x)
2922 return may_trap_p_1 (x, 1);
2925 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2926 i.e., an inequality. */
2929 inequality_comparisons_p (const_rtx x)
2931 const char *fmt;
2932 int len, i;
2933 const enum rtx_code code = GET_CODE (x);
2935 switch (code)
2937 case REG:
2938 case SCRATCH:
2939 case PC:
2940 case CC0:
2941 CASE_CONST_ANY:
2942 case CONST:
2943 case LABEL_REF:
2944 case SYMBOL_REF:
2945 return 0;
2947 case LT:
2948 case LTU:
2949 case GT:
2950 case GTU:
2951 case LE:
2952 case LEU:
2953 case GE:
2954 case GEU:
2955 return 1;
2957 default:
2958 break;
2961 len = GET_RTX_LENGTH (code);
2962 fmt = GET_RTX_FORMAT (code);
2964 for (i = 0; i < len; i++)
2966 if (fmt[i] == 'e')
2968 if (inequality_comparisons_p (XEXP (x, i)))
2969 return 1;
2971 else if (fmt[i] == 'E')
2973 int j;
2974 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2975 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2976 return 1;
2980 return 0;
2983 /* Replace any occurrence of FROM in X with TO. The function does
2984 not enter into CONST_DOUBLE for the replace.
2986 Note that copying is not done so X must not be shared unless all copies
2987 are to be modified.
2989 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2990 those pointer-equal ones. */
2993 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2995 int i, j;
2996 const char *fmt;
2998 if (x == from)
2999 return to;
3001 /* Allow this function to make replacements in EXPR_LISTs. */
3002 if (x == 0)
3003 return 0;
3005 if (all_regs
3006 && REG_P (x)
3007 && REG_P (from)
3008 && REGNO (x) == REGNO (from))
3010 gcc_assert (GET_MODE (x) == GET_MODE (from));
3011 return to;
3013 else if (GET_CODE (x) == SUBREG)
3015 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3017 if (CONST_INT_P (new_rtx))
3019 x = simplify_subreg (GET_MODE (x), new_rtx,
3020 GET_MODE (SUBREG_REG (x)),
3021 SUBREG_BYTE (x));
3022 gcc_assert (x);
3024 else
3025 SUBREG_REG (x) = new_rtx;
3027 return x;
3029 else if (GET_CODE (x) == ZERO_EXTEND)
3031 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3033 if (CONST_INT_P (new_rtx))
3035 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3036 new_rtx, GET_MODE (XEXP (x, 0)));
3037 gcc_assert (x);
3039 else
3040 XEXP (x, 0) = new_rtx;
3042 return x;
3045 fmt = GET_RTX_FORMAT (GET_CODE (x));
3046 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3048 if (fmt[i] == 'e')
3049 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3050 else if (fmt[i] == 'E')
3051 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3052 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3053 from, to, all_regs);
3056 return x;
3059 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3060 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3062 void
3063 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3065 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3066 rtx x = *loc;
3067 if (JUMP_TABLE_DATA_P (x))
3069 x = PATTERN (x);
3070 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3071 int len = GET_NUM_ELEM (vec);
3072 for (int i = 0; i < len; ++i)
3074 rtx ref = RTVEC_ELT (vec, i);
3075 if (XEXP (ref, 0) == old_label)
3077 XEXP (ref, 0) = new_label;
3078 if (update_label_nuses)
3080 ++LABEL_NUSES (new_label);
3081 --LABEL_NUSES (old_label);
3085 return;
3088 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3089 field. This is not handled by the iterator because it doesn't
3090 handle unprinted ('0') fields. */
3091 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3092 JUMP_LABEL (x) = new_label;
3094 subrtx_ptr_iterator::array_type array;
3095 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3097 rtx *loc = *iter;
3098 if (rtx x = *loc)
3100 if (GET_CODE (x) == SYMBOL_REF
3101 && CONSTANT_POOL_ADDRESS_P (x))
3103 rtx c = get_pool_constant (x);
3104 if (rtx_referenced_p (old_label, c))
3106 /* Create a copy of constant C; replace the label inside
3107 but do not update LABEL_NUSES because uses in constant pool
3108 are not counted. */
3109 rtx new_c = copy_rtx (c);
3110 replace_label (&new_c, old_label, new_label, false);
3112 /* Add the new constant NEW_C to constant pool and replace
3113 the old reference to constant by new reference. */
3114 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3115 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3119 if ((GET_CODE (x) == LABEL_REF
3120 || GET_CODE (x) == INSN_LIST)
3121 && XEXP (x, 0) == old_label)
3123 XEXP (x, 0) = new_label;
3124 if (update_label_nuses)
3126 ++LABEL_NUSES (new_label);
3127 --LABEL_NUSES (old_label);
3134 void
3135 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3136 rtx_insn *new_label, bool update_label_nuses)
3138 rtx insn_as_rtx = insn;
3139 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3140 gcc_checking_assert (insn_as_rtx == insn);
3143 /* Return true if X is referenced in BODY. */
3145 bool
3146 rtx_referenced_p (const_rtx x, const_rtx body)
3148 subrtx_iterator::array_type array;
3149 FOR_EACH_SUBRTX (iter, array, body, ALL)
3150 if (const_rtx y = *iter)
3152 /* Check if a label_ref Y refers to label X. */
3153 if (GET_CODE (y) == LABEL_REF
3154 && LABEL_P (x)
3155 && label_ref_label (y) == x)
3156 return true;
3158 if (rtx_equal_p (x, y))
3159 return true;
3161 /* If Y is a reference to pool constant traverse the constant. */
3162 if (GET_CODE (y) == SYMBOL_REF
3163 && CONSTANT_POOL_ADDRESS_P (y))
3164 iter.substitute (get_pool_constant (y));
3166 return false;
3169 /* If INSN is a tablejump return true and store the label (before jump table) to
3170 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3172 bool
3173 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3174 rtx_jump_table_data **tablep)
3176 if (!JUMP_P (insn))
3177 return false;
3179 rtx target = JUMP_LABEL (insn);
3180 if (target == NULL_RTX || ANY_RETURN_P (target))
3181 return false;
3183 rtx_insn *label = as_a<rtx_insn *> (target);
3184 rtx_insn *table = next_insn (label);
3185 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3186 return false;
3188 if (labelp)
3189 *labelp = label;
3190 if (tablep)
3191 *tablep = as_a <rtx_jump_table_data *> (table);
3192 return true;
3195 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3196 constant that is not in the constant pool and not in the condition
3197 of an IF_THEN_ELSE. */
3199 static int
3200 computed_jump_p_1 (const_rtx x)
3202 const enum rtx_code code = GET_CODE (x);
3203 int i, j;
3204 const char *fmt;
3206 switch (code)
3208 case LABEL_REF:
3209 case PC:
3210 return 0;
3212 case CONST:
3213 CASE_CONST_ANY:
3214 case SYMBOL_REF:
3215 case REG:
3216 return 1;
3218 case MEM:
3219 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3220 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3222 case IF_THEN_ELSE:
3223 return (computed_jump_p_1 (XEXP (x, 1))
3224 || computed_jump_p_1 (XEXP (x, 2)));
3226 default:
3227 break;
3230 fmt = GET_RTX_FORMAT (code);
3231 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3233 if (fmt[i] == 'e'
3234 && computed_jump_p_1 (XEXP (x, i)))
3235 return 1;
3237 else if (fmt[i] == 'E')
3238 for (j = 0; j < XVECLEN (x, i); j++)
3239 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3240 return 1;
3243 return 0;
3246 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3248 Tablejumps and casesi insns are not considered indirect jumps;
3249 we can recognize them by a (use (label_ref)). */
3252 computed_jump_p (const rtx_insn *insn)
3254 int i;
3255 if (JUMP_P (insn))
3257 rtx pat = PATTERN (insn);
3259 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3260 if (JUMP_LABEL (insn) != NULL)
3261 return 0;
3263 if (GET_CODE (pat) == PARALLEL)
3265 int len = XVECLEN (pat, 0);
3266 int has_use_labelref = 0;
3268 for (i = len - 1; i >= 0; i--)
3269 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3270 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3271 == LABEL_REF))
3273 has_use_labelref = 1;
3274 break;
3277 if (! has_use_labelref)
3278 for (i = len - 1; i >= 0; i--)
3279 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3280 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3281 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3282 return 1;
3284 else if (GET_CODE (pat) == SET
3285 && SET_DEST (pat) == pc_rtx
3286 && computed_jump_p_1 (SET_SRC (pat)))
3287 return 1;
3289 return 0;
3294 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3295 the equivalent add insn and pass the result to FN, using DATA as the
3296 final argument. */
3298 static int
3299 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3301 rtx x = XEXP (mem, 0);
3302 switch (GET_CODE (x))
3304 case PRE_INC:
3305 case POST_INC:
3307 int size = GET_MODE_SIZE (GET_MODE (mem));
3308 rtx r1 = XEXP (x, 0);
3309 rtx c = gen_int_mode (size, GET_MODE (r1));
3310 return fn (mem, x, r1, r1, c, data);
3313 case PRE_DEC:
3314 case POST_DEC:
3316 int size = GET_MODE_SIZE (GET_MODE (mem));
3317 rtx r1 = XEXP (x, 0);
3318 rtx c = gen_int_mode (-size, GET_MODE (r1));
3319 return fn (mem, x, r1, r1, c, data);
3322 case PRE_MODIFY:
3323 case POST_MODIFY:
3325 rtx r1 = XEXP (x, 0);
3326 rtx add = XEXP (x, 1);
3327 return fn (mem, x, r1, add, NULL, data);
3330 default:
3331 gcc_unreachable ();
3335 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3336 For each such autoinc operation found, call FN, passing it
3337 the innermost enclosing MEM, the operation itself, the RTX modified
3338 by the operation, two RTXs (the second may be NULL) that, once
3339 added, represent the value to be held by the modified RTX
3340 afterwards, and DATA. FN is to return 0 to continue the
3341 traversal or any other value to have it returned to the caller of
3342 for_each_inc_dec. */
3345 for_each_inc_dec (rtx x,
3346 for_each_inc_dec_fn fn,
3347 void *data)
3349 subrtx_var_iterator::array_type array;
3350 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3352 rtx mem = *iter;
3353 if (mem
3354 && MEM_P (mem)
3355 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3357 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3358 if (res != 0)
3359 return res;
3360 iter.skip_subrtxes ();
3363 return 0;
3367 /* Searches X for any reference to REGNO, returning the rtx of the
3368 reference found if any. Otherwise, returns NULL_RTX. */
3371 regno_use_in (unsigned int regno, rtx x)
3373 const char *fmt;
3374 int i, j;
3375 rtx tem;
3377 if (REG_P (x) && REGNO (x) == regno)
3378 return x;
3380 fmt = GET_RTX_FORMAT (GET_CODE (x));
3381 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3383 if (fmt[i] == 'e')
3385 if ((tem = regno_use_in (regno, XEXP (x, i))))
3386 return tem;
3388 else if (fmt[i] == 'E')
3389 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3390 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3391 return tem;
3394 return NULL_RTX;
3397 /* Return a value indicating whether OP, an operand of a commutative
3398 operation, is preferred as the first or second operand. The more
3399 positive the value, the stronger the preference for being the first
3400 operand. */
3403 commutative_operand_precedence (rtx op)
3405 enum rtx_code code = GET_CODE (op);
3407 /* Constants always become the second operand. Prefer "nice" constants. */
3408 if (code == CONST_INT)
3409 return -8;
3410 if (code == CONST_WIDE_INT)
3411 return -7;
3412 if (code == CONST_DOUBLE)
3413 return -7;
3414 if (code == CONST_FIXED)
3415 return -7;
3416 op = avoid_constant_pool_reference (op);
3417 code = GET_CODE (op);
3419 switch (GET_RTX_CLASS (code))
3421 case RTX_CONST_OBJ:
3422 if (code == CONST_INT)
3423 return -6;
3424 if (code == CONST_WIDE_INT)
3425 return -6;
3426 if (code == CONST_DOUBLE)
3427 return -5;
3428 if (code == CONST_FIXED)
3429 return -5;
3430 return -4;
3432 case RTX_EXTRA:
3433 /* SUBREGs of objects should come second. */
3434 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3435 return -3;
3436 return 0;
3438 case RTX_OBJ:
3439 /* Complex expressions should be the first, so decrease priority
3440 of objects. Prefer pointer objects over non pointer objects. */
3441 if ((REG_P (op) && REG_POINTER (op))
3442 || (MEM_P (op) && MEM_POINTER (op)))
3443 return -1;
3444 return -2;
3446 case RTX_COMM_ARITH:
3447 /* Prefer operands that are themselves commutative to be first.
3448 This helps to make things linear. In particular,
3449 (and (and (reg) (reg)) (not (reg))) is canonical. */
3450 return 4;
3452 case RTX_BIN_ARITH:
3453 /* If only one operand is a binary expression, it will be the first
3454 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3455 is canonical, although it will usually be further simplified. */
3456 return 2;
3458 case RTX_UNARY:
3459 /* Then prefer NEG and NOT. */
3460 if (code == NEG || code == NOT)
3461 return 1;
3462 /* FALLTHRU */
3464 default:
3465 return 0;
3469 /* Return 1 iff it is necessary to swap operands of commutative operation
3470 in order to canonicalize expression. */
3472 bool
3473 swap_commutative_operands_p (rtx x, rtx y)
3475 return (commutative_operand_precedence (x)
3476 < commutative_operand_precedence (y));
3479 /* Return 1 if X is an autoincrement side effect and the register is
3480 not the stack pointer. */
3482 auto_inc_p (const_rtx x)
3484 switch (GET_CODE (x))
3486 case PRE_INC:
3487 case POST_INC:
3488 case PRE_DEC:
3489 case POST_DEC:
3490 case PRE_MODIFY:
3491 case POST_MODIFY:
3492 /* There are no REG_INC notes for SP. */
3493 if (XEXP (x, 0) != stack_pointer_rtx)
3494 return 1;
3495 default:
3496 break;
3498 return 0;
3501 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3503 loc_mentioned_in_p (rtx *loc, const_rtx in)
3505 enum rtx_code code;
3506 const char *fmt;
3507 int i, j;
3509 if (!in)
3510 return 0;
3512 code = GET_CODE (in);
3513 fmt = GET_RTX_FORMAT (code);
3514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3516 if (fmt[i] == 'e')
3518 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3519 return 1;
3521 else if (fmt[i] == 'E')
3522 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3523 if (loc == &XVECEXP (in, i, j)
3524 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3525 return 1;
3527 return 0;
3530 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3531 and SUBREG_BYTE, return the bit offset where the subreg begins
3532 (counting from the least significant bit of the operand). */
3534 unsigned int
3535 subreg_lsb_1 (machine_mode outer_mode,
3536 machine_mode inner_mode,
3537 unsigned int subreg_byte)
3539 unsigned int bitpos;
3540 unsigned int byte;
3541 unsigned int word;
3543 /* A paradoxical subreg begins at bit position 0. */
3544 if (paradoxical_subreg_p (outer_mode, inner_mode))
3545 return 0;
3547 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3548 /* If the subreg crosses a word boundary ensure that
3549 it also begins and ends on a word boundary. */
3550 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3551 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3552 && (subreg_byte % UNITS_PER_WORD
3553 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3555 if (WORDS_BIG_ENDIAN)
3556 word = (GET_MODE_SIZE (inner_mode)
3557 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3558 else
3559 word = subreg_byte / UNITS_PER_WORD;
3560 bitpos = word * BITS_PER_WORD;
3562 if (BYTES_BIG_ENDIAN)
3563 byte = (GET_MODE_SIZE (inner_mode)
3564 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3565 else
3566 byte = subreg_byte % UNITS_PER_WORD;
3567 bitpos += byte * BITS_PER_UNIT;
3569 return bitpos;
3572 /* Given a subreg X, return the bit offset where the subreg begins
3573 (counting from the least significant bit of the reg). */
3575 unsigned int
3576 subreg_lsb (const_rtx x)
3578 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3579 SUBREG_BYTE (x));
3582 /* Return the subreg byte offset for a subreg whose outer value has
3583 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3584 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3585 lsb of the inner value. This is the inverse of the calculation
3586 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3588 unsigned int
3589 subreg_size_offset_from_lsb (unsigned int outer_bytes,
3590 unsigned int inner_bytes,
3591 unsigned int lsb_shift)
3593 /* A paradoxical subreg begins at bit position 0. */
3594 if (outer_bytes > inner_bytes)
3596 gcc_checking_assert (lsb_shift == 0);
3597 return 0;
3600 gcc_assert (lsb_shift % BITS_PER_UNIT == 0);
3601 unsigned int lower_bytes = lsb_shift / BITS_PER_UNIT;
3602 unsigned int upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3603 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3604 return upper_bytes;
3605 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3606 return lower_bytes;
3607 else
3609 unsigned int lower_word_part = lower_bytes & -UNITS_PER_WORD;
3610 unsigned int upper_word_part = upper_bytes & -UNITS_PER_WORD;
3611 if (WORDS_BIG_ENDIAN)
3612 return upper_word_part + (lower_bytes - lower_word_part);
3613 else
3614 return lower_word_part + (upper_bytes - upper_word_part);
3618 /* Fill in information about a subreg of a hard register.
3619 xregno - A regno of an inner hard subreg_reg (or what will become one).
3620 xmode - The mode of xregno.
3621 offset - The byte offset.
3622 ymode - The mode of a top level SUBREG (or what may become one).
3623 info - Pointer to structure to fill in.
3625 Rather than considering one particular inner register (and thus one
3626 particular "outer" register) in isolation, this function really uses
3627 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3628 function does not check whether adding INFO->offset to XREGNO gives
3629 a valid hard register; even if INFO->offset + XREGNO is out of range,
3630 there might be another register of the same type that is in range.
3631 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3632 the new register, since that can depend on things like whether the final
3633 register number is even or odd. Callers that want to check whether
3634 this particular subreg can be replaced by a simple (reg ...) should
3635 use simplify_subreg_regno. */
3637 void
3638 subreg_get_info (unsigned int xregno, machine_mode xmode,
3639 unsigned int offset, machine_mode ymode,
3640 struct subreg_info *info)
3642 unsigned int nregs_xmode, nregs_ymode;
3644 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3646 unsigned int xsize = GET_MODE_SIZE (xmode);
3647 unsigned int ysize = GET_MODE_SIZE (ymode);
3648 bool rknown = false;
3650 /* If the register representation of a non-scalar mode has holes in it,
3651 we expect the scalar units to be concatenated together, with the holes
3652 distributed evenly among the scalar units. Each scalar unit must occupy
3653 at least one register. */
3654 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3656 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3657 unsigned int nunits = GET_MODE_NUNITS (xmode);
3658 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3659 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3660 gcc_assert (nregs_xmode
3661 == (nunits
3662 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3663 gcc_assert (hard_regno_nregs (xregno, xmode)
3664 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3666 /* You can only ask for a SUBREG of a value with holes in the middle
3667 if you don't cross the holes. (Such a SUBREG should be done by
3668 picking a different register class, or doing it in memory if
3669 necessary.) An example of a value with holes is XCmode on 32-bit
3670 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3671 3 for each part, but in memory it's two 128-bit parts.
3672 Padding is assumed to be at the end (not necessarily the 'high part')
3673 of each unit. */
3674 if ((offset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3675 && (offset / GET_MODE_SIZE (xmode_unit)
3676 != ((offset + ysize - 1) / GET_MODE_SIZE (xmode_unit))))
3678 info->representable_p = false;
3679 rknown = true;
3682 else
3683 nregs_xmode = hard_regno_nregs (xregno, xmode);
3685 nregs_ymode = hard_regno_nregs (xregno, ymode);
3687 /* Paradoxical subregs are otherwise valid. */
3688 if (!rknown && offset == 0 && ysize > xsize)
3690 info->representable_p = true;
3691 /* If this is a big endian paradoxical subreg, which uses more
3692 actual hard registers than the original register, we must
3693 return a negative offset so that we find the proper highpart
3694 of the register.
3696 We assume that the ordering of registers within a multi-register
3697 value has a consistent endianness: if bytes and register words
3698 have different endianness, the hard registers that make up a
3699 multi-register value must be at least word-sized. */
3700 if (REG_WORDS_BIG_ENDIAN)
3701 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3702 else
3703 info->offset = 0;
3704 info->nregs = nregs_ymode;
3705 return;
3708 /* If registers store different numbers of bits in the different
3709 modes, we cannot generally form this subreg. */
3710 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3711 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3712 && (xsize % nregs_xmode) == 0
3713 && (ysize % nregs_ymode) == 0)
3715 int regsize_xmode = xsize / nregs_xmode;
3716 int regsize_ymode = ysize / nregs_ymode;
3717 if (!rknown
3718 && ((nregs_ymode > 1 && regsize_xmode > regsize_ymode)
3719 || (nregs_xmode > 1 && regsize_ymode > regsize_xmode)))
3721 info->representable_p = false;
3722 info->nregs = CEIL (ysize, regsize_xmode);
3723 info->offset = offset / regsize_xmode;
3724 return;
3726 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3727 would go outside of XMODE. */
3728 if (!rknown && ysize + offset > xsize)
3730 info->representable_p = false;
3731 info->nregs = nregs_ymode;
3732 info->offset = offset / regsize_xmode;
3733 return;
3735 /* Quick exit for the simple and common case of extracting whole
3736 subregisters from a multiregister value. */
3737 /* ??? It would be better to integrate this into the code below,
3738 if we can generalize the concept enough and figure out how
3739 odd-sized modes can coexist with the other weird cases we support. */
3740 if (!rknown
3741 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3742 && regsize_xmode == regsize_ymode
3743 && (offset % regsize_ymode) == 0)
3745 info->representable_p = true;
3746 info->nregs = nregs_ymode;
3747 info->offset = offset / regsize_ymode;
3748 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3749 return;
3753 /* Lowpart subregs are otherwise valid. */
3754 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3756 info->representable_p = true;
3757 rknown = true;
3759 if (offset == 0 || nregs_xmode == nregs_ymode)
3761 info->offset = 0;
3762 info->nregs = nregs_ymode;
3763 return;
3767 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3768 values there are in (reg:XMODE XREGNO). We can view the register
3769 as consisting of this number of independent "blocks", where each
3770 block occupies NREGS_YMODE registers and contains exactly one
3771 representable YMODE value. */
3772 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3773 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3775 /* Calculate the number of bytes in each block. This must always
3776 be exact, otherwise we don't know how to verify the constraint.
3777 These conditions may be relaxed but subreg_regno_offset would
3778 need to be redesigned. */
3779 gcc_assert ((xsize % num_blocks) == 0);
3780 unsigned int bytes_per_block = xsize / num_blocks;
3782 /* Get the number of the first block that contains the subreg and the byte
3783 offset of the subreg from the start of that block. */
3784 unsigned int block_number = offset / bytes_per_block;
3785 unsigned int subblock_offset = offset % bytes_per_block;
3787 if (!rknown)
3789 /* Only the lowpart of each block is representable. */
3790 info->representable_p
3791 = (subblock_offset
3792 == subreg_size_lowpart_offset (ysize, bytes_per_block));
3793 rknown = true;
3796 /* We assume that the ordering of registers within a multi-register
3797 value has a consistent endianness: if bytes and register words
3798 have different endianness, the hard registers that make up a
3799 multi-register value must be at least word-sized. */
3800 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3801 /* The block number we calculated above followed memory endianness.
3802 Convert it to register endianness by counting back from the end.
3803 (Note that, because of the assumption above, each block must be
3804 at least word-sized.) */
3805 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3806 else
3807 info->offset = block_number * nregs_ymode;
3808 info->nregs = nregs_ymode;
3811 /* This function returns the regno offset of a subreg expression.
3812 xregno - A regno of an inner hard subreg_reg (or what will become one).
3813 xmode - The mode of xregno.
3814 offset - The byte offset.
3815 ymode - The mode of a top level SUBREG (or what may become one).
3816 RETURN - The regno offset which would be used. */
3817 unsigned int
3818 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3819 unsigned int offset, machine_mode ymode)
3821 struct subreg_info info;
3822 subreg_get_info (xregno, xmode, offset, ymode, &info);
3823 return info.offset;
3826 /* This function returns true when the offset is representable via
3827 subreg_offset in the given regno.
3828 xregno - A regno of an inner hard subreg_reg (or what will become one).
3829 xmode - The mode of xregno.
3830 offset - The byte offset.
3831 ymode - The mode of a top level SUBREG (or what may become one).
3832 RETURN - Whether the offset is representable. */
3833 bool
3834 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3835 unsigned int offset, machine_mode ymode)
3837 struct subreg_info info;
3838 subreg_get_info (xregno, xmode, offset, ymode, &info);
3839 return info.representable_p;
3842 /* Return the number of a YMODE register to which
3844 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3846 can be simplified. Return -1 if the subreg can't be simplified.
3848 XREGNO is a hard register number. */
3851 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3852 unsigned int offset, machine_mode ymode)
3854 struct subreg_info info;
3855 unsigned int yregno;
3857 /* Give the backend a chance to disallow the mode change. */
3858 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3859 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3860 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3861 /* We can use mode change in LRA for some transformations. */
3862 && ! lra_in_progress)
3863 return -1;
3865 /* We shouldn't simplify stack-related registers. */
3866 if ((!reload_completed || frame_pointer_needed)
3867 && xregno == FRAME_POINTER_REGNUM)
3868 return -1;
3870 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3871 && xregno == ARG_POINTER_REGNUM)
3872 return -1;
3874 if (xregno == STACK_POINTER_REGNUM
3875 /* We should convert hard stack register in LRA if it is
3876 possible. */
3877 && ! lra_in_progress)
3878 return -1;
3880 /* Try to get the register offset. */
3881 subreg_get_info (xregno, xmode, offset, ymode, &info);
3882 if (!info.representable_p)
3883 return -1;
3885 /* Make sure that the offsetted register value is in range. */
3886 yregno = xregno + info.offset;
3887 if (!HARD_REGISTER_NUM_P (yregno))
3888 return -1;
3890 /* See whether (reg:YMODE YREGNO) is valid.
3892 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3893 This is a kludge to work around how complex FP arguments are passed
3894 on IA-64 and should be fixed. See PR target/49226. */
3895 if (!targetm.hard_regno_mode_ok (yregno, ymode)
3896 && targetm.hard_regno_mode_ok (xregno, xmode))
3897 return -1;
3899 return (int) yregno;
3902 /* Return the final regno that a subreg expression refers to. */
3903 unsigned int
3904 subreg_regno (const_rtx x)
3906 unsigned int ret;
3907 rtx subreg = SUBREG_REG (x);
3908 int regno = REGNO (subreg);
3910 ret = regno + subreg_regno_offset (regno,
3911 GET_MODE (subreg),
3912 SUBREG_BYTE (x),
3913 GET_MODE (x));
3914 return ret;
3918 /* Return the number of registers that a subreg expression refers
3919 to. */
3920 unsigned int
3921 subreg_nregs (const_rtx x)
3923 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3926 /* Return the number of registers that a subreg REG with REGNO
3927 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3928 changed so that the regno can be passed in. */
3930 unsigned int
3931 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3933 struct subreg_info info;
3934 rtx subreg = SUBREG_REG (x);
3936 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3937 &info);
3938 return info.nregs;
3941 struct parms_set_data
3943 int nregs;
3944 HARD_REG_SET regs;
3947 /* Helper function for noticing stores to parameter registers. */
3948 static void
3949 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3951 struct parms_set_data *const d = (struct parms_set_data *) data;
3952 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3953 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3955 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3956 d->nregs--;
3960 /* Look backward for first parameter to be loaded.
3961 Note that loads of all parameters will not necessarily be
3962 found if CSE has eliminated some of them (e.g., an argument
3963 to the outer function is passed down as a parameter).
3964 Do not skip BOUNDARY. */
3965 rtx_insn *
3966 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3968 struct parms_set_data parm;
3969 rtx p;
3970 rtx_insn *before, *first_set;
3972 /* Since different machines initialize their parameter registers
3973 in different orders, assume nothing. Collect the set of all
3974 parameter registers. */
3975 CLEAR_HARD_REG_SET (parm.regs);
3976 parm.nregs = 0;
3977 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3978 if (GET_CODE (XEXP (p, 0)) == USE
3979 && REG_P (XEXP (XEXP (p, 0), 0))
3980 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
3982 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3984 /* We only care about registers which can hold function
3985 arguments. */
3986 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3987 continue;
3989 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3990 parm.nregs++;
3992 before = call_insn;
3993 first_set = call_insn;
3995 /* Search backward for the first set of a register in this set. */
3996 while (parm.nregs && before != boundary)
3998 before = PREV_INSN (before);
4000 /* It is possible that some loads got CSEed from one call to
4001 another. Stop in that case. */
4002 if (CALL_P (before))
4003 break;
4005 /* Our caller needs either ensure that we will find all sets
4006 (in case code has not been optimized yet), or take care
4007 for possible labels in a way by setting boundary to preceding
4008 CODE_LABEL. */
4009 if (LABEL_P (before))
4011 gcc_assert (before == boundary);
4012 break;
4015 if (INSN_P (before))
4017 int nregs_old = parm.nregs;
4018 note_stores (PATTERN (before), parms_set, &parm);
4019 /* If we found something that did not set a parameter reg,
4020 we're done. Do not keep going, as that might result
4021 in hoisting an insn before the setting of a pseudo
4022 that is used by the hoisted insn. */
4023 if (nregs_old != parm.nregs)
4024 first_set = before;
4025 else
4026 break;
4029 return first_set;
4032 /* Return true if we should avoid inserting code between INSN and preceding
4033 call instruction. */
4035 bool
4036 keep_with_call_p (const rtx_insn *insn)
4038 rtx set;
4040 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4042 if (REG_P (SET_DEST (set))
4043 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4044 && fixed_regs[REGNO (SET_DEST (set))]
4045 && general_operand (SET_SRC (set), VOIDmode))
4046 return true;
4047 if (REG_P (SET_SRC (set))
4048 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4049 && REG_P (SET_DEST (set))
4050 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4051 return true;
4052 /* There may be a stack pop just after the call and before the store
4053 of the return register. Search for the actual store when deciding
4054 if we can break or not. */
4055 if (SET_DEST (set) == stack_pointer_rtx)
4057 /* This CONST_CAST is okay because next_nonnote_insn just
4058 returns its argument and we assign it to a const_rtx
4059 variable. */
4060 const rtx_insn *i2
4061 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4062 if (i2 && keep_with_call_p (i2))
4063 return true;
4066 return false;
4069 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4070 to non-complex jumps. That is, direct unconditional, conditional,
4071 and tablejumps, but not computed jumps or returns. It also does
4072 not apply to the fallthru case of a conditional jump. */
4074 bool
4075 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4077 rtx tmp = JUMP_LABEL (jump_insn);
4078 rtx_jump_table_data *table;
4080 if (label == tmp)
4081 return true;
4083 if (tablejump_p (jump_insn, NULL, &table))
4085 rtvec vec = table->get_labels ();
4086 int i, veclen = GET_NUM_ELEM (vec);
4088 for (i = 0; i < veclen; ++i)
4089 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4090 return true;
4093 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4094 return true;
4096 return false;
4100 /* Return an estimate of the cost of computing rtx X.
4101 One use is in cse, to decide which expression to keep in the hash table.
4102 Another is in rtl generation, to pick the cheapest way to multiply.
4103 Other uses like the latter are expected in the future.
4105 X appears as operand OPNO in an expression with code OUTER_CODE.
4106 SPEED specifies whether costs optimized for speed or size should
4107 be returned. */
4110 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4111 int opno, bool speed)
4113 int i, j;
4114 enum rtx_code code;
4115 const char *fmt;
4116 int total;
4117 int factor;
4119 if (x == 0)
4120 return 0;
4122 if (GET_MODE (x) != VOIDmode)
4123 mode = GET_MODE (x);
4125 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4126 many insns, taking N times as long. */
4127 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4128 if (factor == 0)
4129 factor = 1;
4131 /* Compute the default costs of certain things.
4132 Note that targetm.rtx_costs can override the defaults. */
4134 code = GET_CODE (x);
4135 switch (code)
4137 case MULT:
4138 /* Multiplication has time-complexity O(N*N), where N is the
4139 number of units (translated from digits) when using
4140 schoolbook long multiplication. */
4141 total = factor * factor * COSTS_N_INSNS (5);
4142 break;
4143 case DIV:
4144 case UDIV:
4145 case MOD:
4146 case UMOD:
4147 /* Similarly, complexity for schoolbook long division. */
4148 total = factor * factor * COSTS_N_INSNS (7);
4149 break;
4150 case USE:
4151 /* Used in combine.c as a marker. */
4152 total = 0;
4153 break;
4154 case SET:
4155 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4156 the mode for the factor. */
4157 mode = GET_MODE (SET_DEST (x));
4158 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4159 if (factor == 0)
4160 factor = 1;
4161 /* FALLTHRU */
4162 default:
4163 total = factor * COSTS_N_INSNS (1);
4166 switch (code)
4168 case REG:
4169 return 0;
4171 case SUBREG:
4172 total = 0;
4173 /* If we can't tie these modes, make this expensive. The larger
4174 the mode, the more expensive it is. */
4175 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4176 return COSTS_N_INSNS (2 + factor);
4177 break;
4179 case TRUNCATE:
4180 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4182 total = 0;
4183 break;
4185 /* FALLTHRU */
4186 default:
4187 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4188 return total;
4189 break;
4192 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4193 which is already in total. */
4195 fmt = GET_RTX_FORMAT (code);
4196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4197 if (fmt[i] == 'e')
4198 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4199 else if (fmt[i] == 'E')
4200 for (j = 0; j < XVECLEN (x, i); j++)
4201 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4203 return total;
4206 /* Fill in the structure C with information about both speed and size rtx
4207 costs for X, which is operand OPNO in an expression with code OUTER. */
4209 void
4210 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4211 struct full_rtx_costs *c)
4213 c->speed = rtx_cost (x, mode, outer, opno, true);
4214 c->size = rtx_cost (x, mode, outer, opno, false);
4218 /* Return cost of address expression X.
4219 Expect that X is properly formed address reference.
4221 SPEED parameter specify whether costs optimized for speed or size should
4222 be returned. */
4225 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4227 /* We may be asked for cost of various unusual addresses, such as operands
4228 of push instruction. It is not worthwhile to complicate writing
4229 of the target hook by such cases. */
4231 if (!memory_address_addr_space_p (mode, x, as))
4232 return 1000;
4234 return targetm.address_cost (x, mode, as, speed);
4237 /* If the target doesn't override, compute the cost as with arithmetic. */
4240 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4242 return rtx_cost (x, Pmode, MEM, 0, speed);
4246 unsigned HOST_WIDE_INT
4247 nonzero_bits (const_rtx x, machine_mode mode)
4249 if (mode == VOIDmode)
4250 mode = GET_MODE (x);
4251 scalar_int_mode int_mode;
4252 if (!is_a <scalar_int_mode> (mode, &int_mode))
4253 return GET_MODE_MASK (mode);
4254 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4257 unsigned int
4258 num_sign_bit_copies (const_rtx x, machine_mode mode)
4260 if (mode == VOIDmode)
4261 mode = GET_MODE (x);
4262 scalar_int_mode int_mode;
4263 if (!is_a <scalar_int_mode> (mode, &int_mode))
4264 return 1;
4265 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4268 /* Return true if nonzero_bits1 might recurse into both operands
4269 of X. */
4271 static inline bool
4272 nonzero_bits_binary_arith_p (const_rtx x)
4274 if (!ARITHMETIC_P (x))
4275 return false;
4276 switch (GET_CODE (x))
4278 case AND:
4279 case XOR:
4280 case IOR:
4281 case UMIN:
4282 case UMAX:
4283 case SMIN:
4284 case SMAX:
4285 case PLUS:
4286 case MINUS:
4287 case MULT:
4288 case DIV:
4289 case UDIV:
4290 case MOD:
4291 case UMOD:
4292 return true;
4293 default:
4294 return false;
4298 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4299 It avoids exponential behavior in nonzero_bits1 when X has
4300 identical subexpressions on the first or the second level. */
4302 static unsigned HOST_WIDE_INT
4303 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4304 machine_mode known_mode,
4305 unsigned HOST_WIDE_INT known_ret)
4307 if (x == known_x && mode == known_mode)
4308 return known_ret;
4310 /* Try to find identical subexpressions. If found call
4311 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4312 precomputed value for the subexpression as KNOWN_RET. */
4314 if (nonzero_bits_binary_arith_p (x))
4316 rtx x0 = XEXP (x, 0);
4317 rtx x1 = XEXP (x, 1);
4319 /* Check the first level. */
4320 if (x0 == x1)
4321 return nonzero_bits1 (x, mode, x0, mode,
4322 cached_nonzero_bits (x0, mode, known_x,
4323 known_mode, known_ret));
4325 /* Check the second level. */
4326 if (nonzero_bits_binary_arith_p (x0)
4327 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4328 return nonzero_bits1 (x, mode, x1, mode,
4329 cached_nonzero_bits (x1, mode, known_x,
4330 known_mode, known_ret));
4332 if (nonzero_bits_binary_arith_p (x1)
4333 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4334 return nonzero_bits1 (x, mode, x0, mode,
4335 cached_nonzero_bits (x0, mode, known_x,
4336 known_mode, known_ret));
4339 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4342 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4343 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4344 is less useful. We can't allow both, because that results in exponential
4345 run time recursion. There is a nullstone testcase that triggered
4346 this. This macro avoids accidental uses of num_sign_bit_copies. */
4347 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4349 /* Given an expression, X, compute which bits in X can be nonzero.
4350 We don't care about bits outside of those defined in MODE.
4352 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4353 an arithmetic operation, we can do better. */
4355 static unsigned HOST_WIDE_INT
4356 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4357 machine_mode known_mode,
4358 unsigned HOST_WIDE_INT known_ret)
4360 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4361 unsigned HOST_WIDE_INT inner_nz;
4362 enum rtx_code code;
4363 machine_mode inner_mode;
4364 scalar_int_mode xmode;
4366 unsigned int mode_width = GET_MODE_PRECISION (mode);
4368 if (CONST_INT_P (x))
4370 if (SHORT_IMMEDIATES_SIGN_EXTEND
4371 && INTVAL (x) > 0
4372 && mode_width < BITS_PER_WORD
4373 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4374 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4376 return UINTVAL (x);
4379 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4380 return nonzero;
4381 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4383 /* If X is wider than MODE, use its mode instead. */
4384 if (xmode_width > mode_width)
4386 mode = xmode;
4387 nonzero = GET_MODE_MASK (mode);
4388 mode_width = xmode_width;
4391 if (mode_width > HOST_BITS_PER_WIDE_INT)
4392 /* Our only callers in this case look for single bit values. So
4393 just return the mode mask. Those tests will then be false. */
4394 return nonzero;
4396 /* If MODE is wider than X, but both are a single word for both the host
4397 and target machines, we can compute this from which bits of the
4398 object might be nonzero in its own mode, taking into account the fact
4399 that on many CISC machines, accessing an object in a wider mode
4400 causes the high-order bits to become undefined. So they are
4401 not known to be zero. */
4403 if (!WORD_REGISTER_OPERATIONS
4404 && mode_width > xmode_width
4405 && xmode_width <= BITS_PER_WORD
4406 && xmode_width <= HOST_BITS_PER_WIDE_INT)
4408 nonzero &= cached_nonzero_bits (x, xmode,
4409 known_x, known_mode, known_ret);
4410 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4411 return nonzero;
4414 /* Please keep nonzero_bits_binary_arith_p above in sync with
4415 the code in the switch below. */
4416 code = GET_CODE (x);
4417 switch (code)
4419 case REG:
4420 #if defined(POINTERS_EXTEND_UNSIGNED)
4421 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4422 all the bits above ptr_mode are known to be zero. */
4423 /* As we do not know which address space the pointer is referring to,
4424 we can do this only if the target does not support different pointer
4425 or address modes depending on the address space. */
4426 if (target_default_pointer_address_modes_p ()
4427 && POINTERS_EXTEND_UNSIGNED
4428 && xmode == Pmode
4429 && REG_POINTER (x)
4430 && !targetm.have_ptr_extend ())
4431 nonzero &= GET_MODE_MASK (ptr_mode);
4432 #endif
4434 /* Include declared information about alignment of pointers. */
4435 /* ??? We don't properly preserve REG_POINTER changes across
4436 pointer-to-integer casts, so we can't trust it except for
4437 things that we know must be pointers. See execute/960116-1.c. */
4438 if ((x == stack_pointer_rtx
4439 || x == frame_pointer_rtx
4440 || x == arg_pointer_rtx)
4441 && REGNO_POINTER_ALIGN (REGNO (x)))
4443 unsigned HOST_WIDE_INT alignment
4444 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4446 #ifdef PUSH_ROUNDING
4447 /* If PUSH_ROUNDING is defined, it is possible for the
4448 stack to be momentarily aligned only to that amount,
4449 so we pick the least alignment. */
4450 if (x == stack_pointer_rtx && PUSH_ARGS)
4451 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4452 alignment);
4453 #endif
4455 nonzero &= ~(alignment - 1);
4459 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4460 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4461 &nonzero_for_hook);
4463 if (new_rtx)
4464 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4465 known_mode, known_ret);
4467 return nonzero_for_hook;
4470 case MEM:
4471 /* In many, if not most, RISC machines, reading a byte from memory
4472 zeros the rest of the register. Noticing that fact saves a lot
4473 of extra zero-extends. */
4474 if (load_extend_op (xmode) == ZERO_EXTEND)
4475 nonzero &= GET_MODE_MASK (xmode);
4476 break;
4478 case EQ: case NE:
4479 case UNEQ: case LTGT:
4480 case GT: case GTU: case UNGT:
4481 case LT: case LTU: case UNLT:
4482 case GE: case GEU: case UNGE:
4483 case LE: case LEU: case UNLE:
4484 case UNORDERED: case ORDERED:
4485 /* If this produces an integer result, we know which bits are set.
4486 Code here used to clear bits outside the mode of X, but that is
4487 now done above. */
4488 /* Mind that MODE is the mode the caller wants to look at this
4489 operation in, and not the actual operation mode. We can wind
4490 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4491 that describes the results of a vector compare. */
4492 if (GET_MODE_CLASS (xmode) == MODE_INT
4493 && mode_width <= HOST_BITS_PER_WIDE_INT)
4494 nonzero = STORE_FLAG_VALUE;
4495 break;
4497 case NEG:
4498 #if 0
4499 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4500 and num_sign_bit_copies. */
4501 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4502 nonzero = 1;
4503 #endif
4505 if (xmode_width < mode_width)
4506 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4507 break;
4509 case ABS:
4510 #if 0
4511 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4512 and num_sign_bit_copies. */
4513 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4514 nonzero = 1;
4515 #endif
4516 break;
4518 case TRUNCATE:
4519 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4520 known_x, known_mode, known_ret)
4521 & GET_MODE_MASK (mode));
4522 break;
4524 case ZERO_EXTEND:
4525 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4526 known_x, known_mode, known_ret);
4527 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4528 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4529 break;
4531 case SIGN_EXTEND:
4532 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4533 Otherwise, show all the bits in the outer mode but not the inner
4534 may be nonzero. */
4535 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4536 known_x, known_mode, known_ret);
4537 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4539 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4540 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4541 inner_nz |= (GET_MODE_MASK (mode)
4542 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4545 nonzero &= inner_nz;
4546 break;
4548 case AND:
4549 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4550 known_x, known_mode, known_ret)
4551 & cached_nonzero_bits (XEXP (x, 1), mode,
4552 known_x, known_mode, known_ret);
4553 break;
4555 case XOR: case IOR:
4556 case UMIN: case UMAX: case SMIN: case SMAX:
4558 unsigned HOST_WIDE_INT nonzero0
4559 = cached_nonzero_bits (XEXP (x, 0), mode,
4560 known_x, known_mode, known_ret);
4562 /* Don't call nonzero_bits for the second time if it cannot change
4563 anything. */
4564 if ((nonzero & nonzero0) != nonzero)
4565 nonzero &= nonzero0
4566 | cached_nonzero_bits (XEXP (x, 1), mode,
4567 known_x, known_mode, known_ret);
4569 break;
4571 case PLUS: case MINUS:
4572 case MULT:
4573 case DIV: case UDIV:
4574 case MOD: case UMOD:
4575 /* We can apply the rules of arithmetic to compute the number of
4576 high- and low-order zero bits of these operations. We start by
4577 computing the width (position of the highest-order nonzero bit)
4578 and the number of low-order zero bits for each value. */
4580 unsigned HOST_WIDE_INT nz0
4581 = cached_nonzero_bits (XEXP (x, 0), mode,
4582 known_x, known_mode, known_ret);
4583 unsigned HOST_WIDE_INT nz1
4584 = cached_nonzero_bits (XEXP (x, 1), mode,
4585 known_x, known_mode, known_ret);
4586 int sign_index = xmode_width - 1;
4587 int width0 = floor_log2 (nz0) + 1;
4588 int width1 = floor_log2 (nz1) + 1;
4589 int low0 = ctz_or_zero (nz0);
4590 int low1 = ctz_or_zero (nz1);
4591 unsigned HOST_WIDE_INT op0_maybe_minusp
4592 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4593 unsigned HOST_WIDE_INT op1_maybe_minusp
4594 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4595 unsigned int result_width = mode_width;
4596 int result_low = 0;
4598 switch (code)
4600 case PLUS:
4601 result_width = MAX (width0, width1) + 1;
4602 result_low = MIN (low0, low1);
4603 break;
4604 case MINUS:
4605 result_low = MIN (low0, low1);
4606 break;
4607 case MULT:
4608 result_width = width0 + width1;
4609 result_low = low0 + low1;
4610 break;
4611 case DIV:
4612 if (width1 == 0)
4613 break;
4614 if (!op0_maybe_minusp && !op1_maybe_minusp)
4615 result_width = width0;
4616 break;
4617 case UDIV:
4618 if (width1 == 0)
4619 break;
4620 result_width = width0;
4621 break;
4622 case MOD:
4623 if (width1 == 0)
4624 break;
4625 if (!op0_maybe_minusp && !op1_maybe_minusp)
4626 result_width = MIN (width0, width1);
4627 result_low = MIN (low0, low1);
4628 break;
4629 case UMOD:
4630 if (width1 == 0)
4631 break;
4632 result_width = MIN (width0, width1);
4633 result_low = MIN (low0, low1);
4634 break;
4635 default:
4636 gcc_unreachable ();
4639 if (result_width < mode_width)
4640 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4642 if (result_low > 0)
4643 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4645 break;
4647 case ZERO_EXTRACT:
4648 if (CONST_INT_P (XEXP (x, 1))
4649 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4650 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4651 break;
4653 case SUBREG:
4654 /* If this is a SUBREG formed for a promoted variable that has
4655 been zero-extended, we know that at least the high-order bits
4656 are zero, though others might be too. */
4657 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4658 nonzero = GET_MODE_MASK (xmode)
4659 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4660 known_x, known_mode, known_ret);
4662 /* If the inner mode is a single word for both the host and target
4663 machines, we can compute this from which bits of the inner
4664 object might be nonzero. */
4665 inner_mode = GET_MODE (SUBREG_REG (x));
4666 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4667 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT)
4669 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4670 known_x, known_mode, known_ret);
4672 /* On many CISC machines, accessing an object in a wider mode
4673 causes the high-order bits to become undefined. So they are
4674 not known to be zero. */
4675 rtx_code extend_op;
4676 if ((!WORD_REGISTER_OPERATIONS
4677 /* If this is a typical RISC machine, we only have to worry
4678 about the way loads are extended. */
4679 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4680 ? val_signbit_known_set_p (inner_mode, nonzero)
4681 : extend_op != ZERO_EXTEND)
4682 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4683 && xmode_width > GET_MODE_PRECISION (inner_mode))
4684 nonzero |= (GET_MODE_MASK (xmode) & ~GET_MODE_MASK (inner_mode));
4686 break;
4688 case ASHIFTRT:
4689 case LSHIFTRT:
4690 case ASHIFT:
4691 case ROTATE:
4692 /* The nonzero bits are in two classes: any bits within MODE
4693 that aren't in xmode are always significant. The rest of the
4694 nonzero bits are those that are significant in the operand of
4695 the shift when shifted the appropriate number of bits. This
4696 shows that high-order bits are cleared by the right shift and
4697 low-order bits by left shifts. */
4698 if (CONST_INT_P (XEXP (x, 1))
4699 && INTVAL (XEXP (x, 1)) >= 0
4700 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4701 && INTVAL (XEXP (x, 1)) < xmode_width)
4703 int count = INTVAL (XEXP (x, 1));
4704 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4705 unsigned HOST_WIDE_INT op_nonzero
4706 = cached_nonzero_bits (XEXP (x, 0), mode,
4707 known_x, known_mode, known_ret);
4708 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4709 unsigned HOST_WIDE_INT outer = 0;
4711 if (mode_width > xmode_width)
4712 outer = (op_nonzero & nonzero & ~mode_mask);
4714 if (code == LSHIFTRT)
4715 inner >>= count;
4716 else if (code == ASHIFTRT)
4718 inner >>= count;
4720 /* If the sign bit may have been nonzero before the shift, we
4721 need to mark all the places it could have been copied to
4722 by the shift as possibly nonzero. */
4723 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4724 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4725 << (xmode_width - count));
4727 else if (code == ASHIFT)
4728 inner <<= count;
4729 else
4730 inner = ((inner << (count % xmode_width)
4731 | (inner >> (xmode_width - (count % xmode_width))))
4732 & mode_mask);
4734 nonzero &= (outer | inner);
4736 break;
4738 case FFS:
4739 case POPCOUNT:
4740 /* This is at most the number of bits in the mode. */
4741 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4742 break;
4744 case CLZ:
4745 /* If CLZ has a known value at zero, then the nonzero bits are
4746 that value, plus the number of bits in the mode minus one. */
4747 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4748 nonzero
4749 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4750 else
4751 nonzero = -1;
4752 break;
4754 case CTZ:
4755 /* If CTZ has a known value at zero, then the nonzero bits are
4756 that value, plus the number of bits in the mode minus one. */
4757 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4758 nonzero
4759 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4760 else
4761 nonzero = -1;
4762 break;
4764 case CLRSB:
4765 /* This is at most the number of bits in the mode minus 1. */
4766 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4767 break;
4769 case PARITY:
4770 nonzero = 1;
4771 break;
4773 case IF_THEN_ELSE:
4775 unsigned HOST_WIDE_INT nonzero_true
4776 = cached_nonzero_bits (XEXP (x, 1), mode,
4777 known_x, known_mode, known_ret);
4779 /* Don't call nonzero_bits for the second time if it cannot change
4780 anything. */
4781 if ((nonzero & nonzero_true) != nonzero)
4782 nonzero &= nonzero_true
4783 | cached_nonzero_bits (XEXP (x, 2), mode,
4784 known_x, known_mode, known_ret);
4786 break;
4788 default:
4789 break;
4792 return nonzero;
4795 /* See the macro definition above. */
4796 #undef cached_num_sign_bit_copies
4799 /* Return true if num_sign_bit_copies1 might recurse into both operands
4800 of X. */
4802 static inline bool
4803 num_sign_bit_copies_binary_arith_p (const_rtx x)
4805 if (!ARITHMETIC_P (x))
4806 return false;
4807 switch (GET_CODE (x))
4809 case IOR:
4810 case AND:
4811 case XOR:
4812 case SMIN:
4813 case SMAX:
4814 case UMIN:
4815 case UMAX:
4816 case PLUS:
4817 case MINUS:
4818 case MULT:
4819 return true;
4820 default:
4821 return false;
4825 /* The function cached_num_sign_bit_copies is a wrapper around
4826 num_sign_bit_copies1. It avoids exponential behavior in
4827 num_sign_bit_copies1 when X has identical subexpressions on the
4828 first or the second level. */
4830 static unsigned int
4831 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4832 const_rtx known_x, machine_mode known_mode,
4833 unsigned int known_ret)
4835 if (x == known_x && mode == known_mode)
4836 return known_ret;
4838 /* Try to find identical subexpressions. If found call
4839 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4840 the precomputed value for the subexpression as KNOWN_RET. */
4842 if (num_sign_bit_copies_binary_arith_p (x))
4844 rtx x0 = XEXP (x, 0);
4845 rtx x1 = XEXP (x, 1);
4847 /* Check the first level. */
4848 if (x0 == x1)
4849 return
4850 num_sign_bit_copies1 (x, mode, x0, mode,
4851 cached_num_sign_bit_copies (x0, mode, known_x,
4852 known_mode,
4853 known_ret));
4855 /* Check the second level. */
4856 if (num_sign_bit_copies_binary_arith_p (x0)
4857 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4858 return
4859 num_sign_bit_copies1 (x, mode, x1, mode,
4860 cached_num_sign_bit_copies (x1, mode, known_x,
4861 known_mode,
4862 known_ret));
4864 if (num_sign_bit_copies_binary_arith_p (x1)
4865 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4866 return
4867 num_sign_bit_copies1 (x, mode, x0, mode,
4868 cached_num_sign_bit_copies (x0, mode, known_x,
4869 known_mode,
4870 known_ret));
4873 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4876 /* Return the number of bits at the high-order end of X that are known to
4877 be equal to the sign bit. X will be used in mode MODE. The returned
4878 value will always be between 1 and the number of bits in MODE. */
4880 static unsigned int
4881 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4882 machine_mode known_mode,
4883 unsigned int known_ret)
4885 enum rtx_code code = GET_CODE (x);
4886 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4887 int num0, num1, result;
4888 unsigned HOST_WIDE_INT nonzero;
4890 if (CONST_INT_P (x))
4892 /* If the constant is negative, take its 1's complement and remask.
4893 Then see how many zero bits we have. */
4894 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4895 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4896 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4897 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4899 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4902 scalar_int_mode xmode, inner_mode;
4903 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4904 return 1;
4906 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4908 /* For a smaller mode, just ignore the high bits. */
4909 if (bitwidth < xmode_width)
4911 num0 = cached_num_sign_bit_copies (x, xmode,
4912 known_x, known_mode, known_ret);
4913 return MAX (1, num0 - (int) (xmode_width - bitwidth));
4916 if (bitwidth > xmode_width)
4918 /* If this machine does not do all register operations on the entire
4919 register and MODE is wider than the mode of X, we can say nothing
4920 at all about the high-order bits. */
4921 if (!WORD_REGISTER_OPERATIONS)
4922 return 1;
4924 /* Likewise on machines that do, if the mode of the object is smaller
4925 than a word and loads of that size don't sign extend, we can say
4926 nothing about the high order bits. */
4927 if (xmode_width < BITS_PER_WORD
4928 && load_extend_op (xmode) != SIGN_EXTEND)
4929 return 1;
4932 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4933 the code in the switch below. */
4934 switch (code)
4936 case REG:
4938 #if defined(POINTERS_EXTEND_UNSIGNED)
4939 /* If pointers extend signed and this is a pointer in Pmode, say that
4940 all the bits above ptr_mode are known to be sign bit copies. */
4941 /* As we do not know which address space the pointer is referring to,
4942 we can do this only if the target does not support different pointer
4943 or address modes depending on the address space. */
4944 if (target_default_pointer_address_modes_p ()
4945 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
4946 && mode == Pmode && REG_POINTER (x)
4947 && !targetm.have_ptr_extend ())
4948 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4949 #endif
4952 unsigned int copies_for_hook = 1, copies = 1;
4953 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
4954 &copies_for_hook);
4956 if (new_rtx)
4957 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4958 known_mode, known_ret);
4960 if (copies > 1 || copies_for_hook > 1)
4961 return MAX (copies, copies_for_hook);
4963 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4965 break;
4967 case MEM:
4968 /* Some RISC machines sign-extend all loads of smaller than a word. */
4969 if (load_extend_op (xmode) == SIGN_EXTEND)
4970 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
4971 break;
4973 case SUBREG:
4974 /* If this is a SUBREG for a promoted object that is sign-extended
4975 and we are looking at it in a wider mode, we know that at least the
4976 high-order bits are known to be sign bit copies. */
4978 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4980 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4981 known_x, known_mode, known_ret);
4982 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
4985 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
4987 /* For a smaller object, just ignore the high bits. */
4988 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
4990 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
4991 known_x, known_mode,
4992 known_ret);
4993 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
4994 - bitwidth));
4997 /* For paradoxical SUBREGs on machines where all register operations
4998 affect the entire register, just look inside. Note that we are
4999 passing MODE to the recursive call, so the number of sign bit
5000 copies will remain relative to that mode, not the inner mode. */
5002 /* This works only if loads sign extend. Otherwise, if we get a
5003 reload for the inner part, it may be loaded from the stack, and
5004 then we lose all sign bit copies that existed before the store
5005 to the stack. */
5007 if (WORD_REGISTER_OPERATIONS
5008 && load_extend_op (inner_mode) == SIGN_EXTEND
5009 && paradoxical_subreg_p (x)
5010 && (MEM_P (SUBREG_REG (x)) || REG_P (SUBREG_REG (x))))
5011 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5012 known_x, known_mode, known_ret);
5014 break;
5016 case SIGN_EXTRACT:
5017 if (CONST_INT_P (XEXP (x, 1)))
5018 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5019 break;
5021 case SIGN_EXTEND:
5022 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5023 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5024 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5025 known_x, known_mode, known_ret));
5026 break;
5028 case TRUNCATE:
5029 /* For a smaller object, just ignore the high bits. */
5030 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5031 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5032 known_x, known_mode, known_ret);
5033 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5034 - bitwidth)));
5036 case NOT:
5037 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5038 known_x, known_mode, known_ret);
5040 case ROTATE: case ROTATERT:
5041 /* If we are rotating left by a number of bits less than the number
5042 of sign bit copies, we can just subtract that amount from the
5043 number. */
5044 if (CONST_INT_P (XEXP (x, 1))
5045 && INTVAL (XEXP (x, 1)) >= 0
5046 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5048 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5049 known_x, known_mode, known_ret);
5050 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5051 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5053 break;
5055 case NEG:
5056 /* In general, this subtracts one sign bit copy. But if the value
5057 is known to be positive, the number of sign bit copies is the
5058 same as that of the input. Finally, if the input has just one bit
5059 that might be nonzero, all the bits are copies of the sign bit. */
5060 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5061 known_x, known_mode, known_ret);
5062 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5063 return num0 > 1 ? num0 - 1 : 1;
5065 nonzero = nonzero_bits (XEXP (x, 0), mode);
5066 if (nonzero == 1)
5067 return bitwidth;
5069 if (num0 > 1
5070 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5071 num0--;
5073 return num0;
5075 case IOR: case AND: case XOR:
5076 case SMIN: case SMAX: case UMIN: case UMAX:
5077 /* Logical operations will preserve the number of sign-bit copies.
5078 MIN and MAX operations always return one of the operands. */
5079 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5080 known_x, known_mode, known_ret);
5081 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5082 known_x, known_mode, known_ret);
5084 /* If num1 is clearing some of the top bits then regardless of
5085 the other term, we are guaranteed to have at least that many
5086 high-order zero bits. */
5087 if (code == AND
5088 && num1 > 1
5089 && bitwidth <= HOST_BITS_PER_WIDE_INT
5090 && CONST_INT_P (XEXP (x, 1))
5091 && (UINTVAL (XEXP (x, 1))
5092 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5093 return num1;
5095 /* Similarly for IOR when setting high-order bits. */
5096 if (code == IOR
5097 && num1 > 1
5098 && bitwidth <= HOST_BITS_PER_WIDE_INT
5099 && CONST_INT_P (XEXP (x, 1))
5100 && (UINTVAL (XEXP (x, 1))
5101 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5102 return num1;
5104 return MIN (num0, num1);
5106 case PLUS: case MINUS:
5107 /* For addition and subtraction, we can have a 1-bit carry. However,
5108 if we are subtracting 1 from a positive number, there will not
5109 be such a carry. Furthermore, if the positive number is known to
5110 be 0 or 1, we know the result is either -1 or 0. */
5112 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5113 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5115 nonzero = nonzero_bits (XEXP (x, 0), mode);
5116 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5117 return (nonzero == 1 || nonzero == 0 ? bitwidth
5118 : bitwidth - floor_log2 (nonzero) - 1);
5121 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5122 known_x, known_mode, known_ret);
5123 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5124 known_x, known_mode, known_ret);
5125 result = MAX (1, MIN (num0, num1) - 1);
5127 return result;
5129 case MULT:
5130 /* The number of bits of the product is the sum of the number of
5131 bits of both terms. However, unless one of the terms if known
5132 to be positive, we must allow for an additional bit since negating
5133 a negative number can remove one sign bit copy. */
5135 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5136 known_x, known_mode, known_ret);
5137 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5138 known_x, known_mode, known_ret);
5140 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5141 if (result > 0
5142 && (bitwidth > HOST_BITS_PER_WIDE_INT
5143 || (((nonzero_bits (XEXP (x, 0), mode)
5144 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5145 && ((nonzero_bits (XEXP (x, 1), mode)
5146 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5147 != 0))))
5148 result--;
5150 return MAX (1, result);
5152 case UDIV:
5153 /* The result must be <= the first operand. If the first operand
5154 has the high bit set, we know nothing about the number of sign
5155 bit copies. */
5156 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5157 return 1;
5158 else if ((nonzero_bits (XEXP (x, 0), mode)
5159 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5160 return 1;
5161 else
5162 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5163 known_x, known_mode, known_ret);
5165 case UMOD:
5166 /* The result must be <= the second operand. If the second operand
5167 has (or just might have) the high bit set, we know nothing about
5168 the number of sign bit copies. */
5169 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5170 return 1;
5171 else if ((nonzero_bits (XEXP (x, 1), mode)
5172 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5173 return 1;
5174 else
5175 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5176 known_x, known_mode, known_ret);
5178 case DIV:
5179 /* Similar to unsigned division, except that we have to worry about
5180 the case where the divisor is negative, in which case we have
5181 to add 1. */
5182 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5183 known_x, known_mode, known_ret);
5184 if (result > 1
5185 && (bitwidth > HOST_BITS_PER_WIDE_INT
5186 || (nonzero_bits (XEXP (x, 1), mode)
5187 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5188 result--;
5190 return result;
5192 case MOD:
5193 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5194 known_x, known_mode, known_ret);
5195 if (result > 1
5196 && (bitwidth > HOST_BITS_PER_WIDE_INT
5197 || (nonzero_bits (XEXP (x, 1), mode)
5198 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5199 result--;
5201 return result;
5203 case ASHIFTRT:
5204 /* Shifts by a constant add to the number of bits equal to the
5205 sign bit. */
5206 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5207 known_x, known_mode, known_ret);
5208 if (CONST_INT_P (XEXP (x, 1))
5209 && INTVAL (XEXP (x, 1)) > 0
5210 && INTVAL (XEXP (x, 1)) < xmode_width)
5211 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5213 return num0;
5215 case ASHIFT:
5216 /* Left shifts destroy copies. */
5217 if (!CONST_INT_P (XEXP (x, 1))
5218 || INTVAL (XEXP (x, 1)) < 0
5219 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5220 || INTVAL (XEXP (x, 1)) >= xmode_width)
5221 return 1;
5223 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5224 known_x, known_mode, known_ret);
5225 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5227 case IF_THEN_ELSE:
5228 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5229 known_x, known_mode, known_ret);
5230 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5231 known_x, known_mode, known_ret);
5232 return MIN (num0, num1);
5234 case EQ: case NE: case GE: case GT: case LE: case LT:
5235 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5236 case GEU: case GTU: case LEU: case LTU:
5237 case UNORDERED: case ORDERED:
5238 /* If the constant is negative, take its 1's complement and remask.
5239 Then see how many zero bits we have. */
5240 nonzero = STORE_FLAG_VALUE;
5241 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5242 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5243 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5245 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5247 default:
5248 break;
5251 /* If we haven't been able to figure it out by one of the above rules,
5252 see if some of the high-order bits are known to be zero. If so,
5253 count those bits and return one less than that amount. If we can't
5254 safely compute the mask for this mode, always return BITWIDTH. */
5256 bitwidth = GET_MODE_PRECISION (mode);
5257 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5258 return 1;
5260 nonzero = nonzero_bits (x, mode);
5261 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5262 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5265 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5266 zero indicates an instruction pattern without a known cost. */
5269 pattern_cost (rtx pat, bool speed)
5271 int i, cost;
5272 rtx set;
5274 /* Extract the single set rtx from the instruction pattern. We
5275 can't use single_set since we only have the pattern. We also
5276 consider PARALLELs of a normal set and a single comparison. In
5277 that case we use the cost of the non-comparison SET operation,
5278 which is most-likely to be the real cost of this operation. */
5279 if (GET_CODE (pat) == SET)
5280 set = pat;
5281 else if (GET_CODE (pat) == PARALLEL)
5283 set = NULL_RTX;
5284 rtx comparison = NULL_RTX;
5286 for (i = 0; i < XVECLEN (pat, 0); i++)
5288 rtx x = XVECEXP (pat, 0, i);
5289 if (GET_CODE (x) == SET)
5291 if (GET_CODE (SET_SRC (x)) == COMPARE)
5293 if (comparison)
5294 return 0;
5295 comparison = x;
5297 else
5299 if (set)
5300 return 0;
5301 set = x;
5306 if (!set && comparison)
5307 set = comparison;
5309 if (!set)
5310 return 0;
5312 else
5313 return 0;
5315 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5316 return cost > 0 ? cost : COSTS_N_INSNS (1);
5319 /* Calculate the cost of a single instruction. A return value of zero
5320 indicates an instruction pattern without a known cost. */
5323 insn_cost (rtx_insn *insn, bool speed)
5325 if (targetm.insn_cost)
5326 return targetm.insn_cost (insn, speed);
5328 return pattern_cost (PATTERN (insn), speed);
5331 /* Returns estimate on cost of computing SEQ. */
5333 unsigned
5334 seq_cost (const rtx_insn *seq, bool speed)
5336 unsigned cost = 0;
5337 rtx set;
5339 for (; seq; seq = NEXT_INSN (seq))
5341 set = single_set (seq);
5342 if (set)
5343 cost += set_rtx_cost (set, speed);
5344 else
5345 cost++;
5348 return cost;
5351 /* Given an insn INSN and condition COND, return the condition in a
5352 canonical form to simplify testing by callers. Specifically:
5354 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5355 (2) Both operands will be machine operands; (cc0) will have been replaced.
5356 (3) If an operand is a constant, it will be the second operand.
5357 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5358 for GE, GEU, and LEU.
5360 If the condition cannot be understood, or is an inequality floating-point
5361 comparison which needs to be reversed, 0 will be returned.
5363 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5365 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5366 insn used in locating the condition was found. If a replacement test
5367 of the condition is desired, it should be placed in front of that
5368 insn and we will be sure that the inputs are still valid.
5370 If WANT_REG is nonzero, we wish the condition to be relative to that
5371 register, if possible. Therefore, do not canonicalize the condition
5372 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5373 to be a compare to a CC mode register.
5375 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5376 and at INSN. */
5379 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5380 rtx_insn **earliest,
5381 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5383 enum rtx_code code;
5384 rtx_insn *prev = insn;
5385 const_rtx set;
5386 rtx tem;
5387 rtx op0, op1;
5388 int reverse_code = 0;
5389 machine_mode mode;
5390 basic_block bb = BLOCK_FOR_INSN (insn);
5392 code = GET_CODE (cond);
5393 mode = GET_MODE (cond);
5394 op0 = XEXP (cond, 0);
5395 op1 = XEXP (cond, 1);
5397 if (reverse)
5398 code = reversed_comparison_code (cond, insn);
5399 if (code == UNKNOWN)
5400 return 0;
5402 if (earliest)
5403 *earliest = insn;
5405 /* If we are comparing a register with zero, see if the register is set
5406 in the previous insn to a COMPARE or a comparison operation. Perform
5407 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5408 in cse.c */
5410 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5411 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5412 && op1 == CONST0_RTX (GET_MODE (op0))
5413 && op0 != want_reg)
5415 /* Set nonzero when we find something of interest. */
5416 rtx x = 0;
5418 /* If comparison with cc0, import actual comparison from compare
5419 insn. */
5420 if (op0 == cc0_rtx)
5422 if ((prev = prev_nonnote_insn (prev)) == 0
5423 || !NONJUMP_INSN_P (prev)
5424 || (set = single_set (prev)) == 0
5425 || SET_DEST (set) != cc0_rtx)
5426 return 0;
5428 op0 = SET_SRC (set);
5429 op1 = CONST0_RTX (GET_MODE (op0));
5430 if (earliest)
5431 *earliest = prev;
5434 /* If this is a COMPARE, pick up the two things being compared. */
5435 if (GET_CODE (op0) == COMPARE)
5437 op1 = XEXP (op0, 1);
5438 op0 = XEXP (op0, 0);
5439 continue;
5441 else if (!REG_P (op0))
5442 break;
5444 /* Go back to the previous insn. Stop if it is not an INSN. We also
5445 stop if it isn't a single set or if it has a REG_INC note because
5446 we don't want to bother dealing with it. */
5448 prev = prev_nonnote_nondebug_insn (prev);
5450 if (prev == 0
5451 || !NONJUMP_INSN_P (prev)
5452 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5453 /* In cfglayout mode, there do not have to be labels at the
5454 beginning of a block, or jumps at the end, so the previous
5455 conditions would not stop us when we reach bb boundary. */
5456 || BLOCK_FOR_INSN (prev) != bb)
5457 break;
5459 set = set_of (op0, prev);
5461 if (set
5462 && (GET_CODE (set) != SET
5463 || !rtx_equal_p (SET_DEST (set), op0)))
5464 break;
5466 /* If this is setting OP0, get what it sets it to if it looks
5467 relevant. */
5468 if (set)
5470 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5471 #ifdef FLOAT_STORE_FLAG_VALUE
5472 REAL_VALUE_TYPE fsfv;
5473 #endif
5475 /* ??? We may not combine comparisons done in a CCmode with
5476 comparisons not done in a CCmode. This is to aid targets
5477 like Alpha that have an IEEE compliant EQ instruction, and
5478 a non-IEEE compliant BEQ instruction. The use of CCmode is
5479 actually artificial, simply to prevent the combination, but
5480 should not affect other platforms.
5482 However, we must allow VOIDmode comparisons to match either
5483 CCmode or non-CCmode comparison, because some ports have
5484 modeless comparisons inside branch patterns.
5486 ??? This mode check should perhaps look more like the mode check
5487 in simplify_comparison in combine. */
5488 if (((GET_MODE_CLASS (mode) == MODE_CC)
5489 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5490 && mode != VOIDmode
5491 && inner_mode != VOIDmode)
5492 break;
5493 if (GET_CODE (SET_SRC (set)) == COMPARE
5494 || (((code == NE
5495 || (code == LT
5496 && val_signbit_known_set_p (inner_mode,
5497 STORE_FLAG_VALUE))
5498 #ifdef FLOAT_STORE_FLAG_VALUE
5499 || (code == LT
5500 && SCALAR_FLOAT_MODE_P (inner_mode)
5501 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5502 REAL_VALUE_NEGATIVE (fsfv)))
5503 #endif
5505 && COMPARISON_P (SET_SRC (set))))
5506 x = SET_SRC (set);
5507 else if (((code == EQ
5508 || (code == GE
5509 && val_signbit_known_set_p (inner_mode,
5510 STORE_FLAG_VALUE))
5511 #ifdef FLOAT_STORE_FLAG_VALUE
5512 || (code == GE
5513 && SCALAR_FLOAT_MODE_P (inner_mode)
5514 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5515 REAL_VALUE_NEGATIVE (fsfv)))
5516 #endif
5518 && COMPARISON_P (SET_SRC (set)))
5520 reverse_code = 1;
5521 x = SET_SRC (set);
5523 else if ((code == EQ || code == NE)
5524 && GET_CODE (SET_SRC (set)) == XOR)
5525 /* Handle sequences like:
5527 (set op0 (xor X Y))
5528 ...(eq|ne op0 (const_int 0))...
5530 in which case:
5532 (eq op0 (const_int 0)) reduces to (eq X Y)
5533 (ne op0 (const_int 0)) reduces to (ne X Y)
5535 This is the form used by MIPS16, for example. */
5536 x = SET_SRC (set);
5537 else
5538 break;
5541 else if (reg_set_p (op0, prev))
5542 /* If this sets OP0, but not directly, we have to give up. */
5543 break;
5545 if (x)
5547 /* If the caller is expecting the condition to be valid at INSN,
5548 make sure X doesn't change before INSN. */
5549 if (valid_at_insn_p)
5550 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5551 break;
5552 if (COMPARISON_P (x))
5553 code = GET_CODE (x);
5554 if (reverse_code)
5556 code = reversed_comparison_code (x, prev);
5557 if (code == UNKNOWN)
5558 return 0;
5559 reverse_code = 0;
5562 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5563 if (earliest)
5564 *earliest = prev;
5568 /* If constant is first, put it last. */
5569 if (CONSTANT_P (op0))
5570 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5572 /* If OP0 is the result of a comparison, we weren't able to find what
5573 was really being compared, so fail. */
5574 if (!allow_cc_mode
5575 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5576 return 0;
5578 /* Canonicalize any ordered comparison with integers involving equality
5579 if we can do computations in the relevant mode and we do not
5580 overflow. */
5582 scalar_int_mode op0_mode;
5583 if (CONST_INT_P (op1)
5584 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5585 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5587 HOST_WIDE_INT const_val = INTVAL (op1);
5588 unsigned HOST_WIDE_INT uconst_val = const_val;
5589 unsigned HOST_WIDE_INT max_val
5590 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5592 switch (code)
5594 case LE:
5595 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5596 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5597 break;
5599 /* When cross-compiling, const_val might be sign-extended from
5600 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5601 case GE:
5602 if ((const_val & max_val)
5603 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5604 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5605 break;
5607 case LEU:
5608 if (uconst_val < max_val)
5609 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5610 break;
5612 case GEU:
5613 if (uconst_val != 0)
5614 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5615 break;
5617 default:
5618 break;
5622 /* Never return CC0; return zero instead. */
5623 if (CC0_P (op0))
5624 return 0;
5626 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5629 /* Given a jump insn JUMP, return the condition that will cause it to branch
5630 to its JUMP_LABEL. If the condition cannot be understood, or is an
5631 inequality floating-point comparison which needs to be reversed, 0 will
5632 be returned.
5634 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5635 insn used in locating the condition was found. If a replacement test
5636 of the condition is desired, it should be placed in front of that
5637 insn and we will be sure that the inputs are still valid. If EARLIEST
5638 is null, the returned condition will be valid at INSN.
5640 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5641 compare CC mode register.
5643 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5646 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5647 int valid_at_insn_p)
5649 rtx cond;
5650 int reverse;
5651 rtx set;
5653 /* If this is not a standard conditional jump, we can't parse it. */
5654 if (!JUMP_P (jump)
5655 || ! any_condjump_p (jump))
5656 return 0;
5657 set = pc_set (jump);
5659 cond = XEXP (SET_SRC (set), 0);
5661 /* If this branches to JUMP_LABEL when the condition is false, reverse
5662 the condition. */
5663 reverse
5664 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5665 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5667 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5668 allow_cc_mode, valid_at_insn_p);
5671 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5672 TARGET_MODE_REP_EXTENDED.
5674 Note that we assume that the property of
5675 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5676 narrower than mode B. I.e., if A is a mode narrower than B then in
5677 order to be able to operate on it in mode B, mode A needs to
5678 satisfy the requirements set by the representation of mode B. */
5680 static void
5681 init_num_sign_bit_copies_in_rep (void)
5683 opt_scalar_int_mode in_mode_iter;
5684 scalar_int_mode mode;
5686 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5687 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5689 scalar_int_mode in_mode = in_mode_iter.require ();
5690 scalar_int_mode i;
5692 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5693 extends to the next widest mode. */
5694 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5695 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5697 /* We are in in_mode. Count how many bits outside of mode
5698 have to be copies of the sign-bit. */
5699 FOR_EACH_MODE (i, mode, in_mode)
5701 /* This must always exist (for the last iteration it will be
5702 IN_MODE). */
5703 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5705 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5706 /* We can only check sign-bit copies starting from the
5707 top-bit. In order to be able to check the bits we
5708 have already seen we pretend that subsequent bits
5709 have to be sign-bit copies too. */
5710 || num_sign_bit_copies_in_rep [in_mode][mode])
5711 num_sign_bit_copies_in_rep [in_mode][mode]
5712 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5717 /* Suppose that truncation from the machine mode of X to MODE is not a
5718 no-op. See if there is anything special about X so that we can
5719 assume it already contains a truncated value of MODE. */
5721 bool
5722 truncated_to_mode (machine_mode mode, const_rtx x)
5724 /* This register has already been used in MODE without explicit
5725 truncation. */
5726 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5727 return true;
5729 /* See if we already satisfy the requirements of MODE. If yes we
5730 can just switch to MODE. */
5731 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5732 && (num_sign_bit_copies (x, GET_MODE (x))
5733 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5734 return true;
5736 return false;
5739 /* Return true if RTX code CODE has a single sequence of zero or more
5740 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5741 entry in that case. */
5743 static bool
5744 setup_reg_subrtx_bounds (unsigned int code)
5746 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5747 unsigned int i = 0;
5748 for (; format[i] != 'e'; ++i)
5750 if (!format[i])
5751 /* No subrtxes. Leave start and count as 0. */
5752 return true;
5753 if (format[i] == 'E' || format[i] == 'V')
5754 return false;
5757 /* Record the sequence of 'e's. */
5758 rtx_all_subrtx_bounds[code].start = i;
5760 ++i;
5761 while (format[i] == 'e');
5762 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5763 /* rtl-iter.h relies on this. */
5764 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5766 for (; format[i]; ++i)
5767 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5768 return false;
5770 return true;
5773 /* Initialize rtx_all_subrtx_bounds. */
5774 void
5775 init_rtlanal (void)
5777 int i;
5778 for (i = 0; i < NUM_RTX_CODE; i++)
5780 if (!setup_reg_subrtx_bounds (i))
5781 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5782 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5783 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5786 init_num_sign_bit_copies_in_rep ();
5789 /* Check whether this is a constant pool constant. */
5790 bool
5791 constant_pool_constant_p (rtx x)
5793 x = avoid_constant_pool_reference (x);
5794 return CONST_DOUBLE_P (x);
5797 /* If M is a bitmask that selects a field of low-order bits within an item but
5798 not the entire word, return the length of the field. Return -1 otherwise.
5799 M is used in machine mode MODE. */
5802 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5804 if (mode != VOIDmode)
5806 if (!HWI_COMPUTABLE_MODE_P (mode))
5807 return -1;
5808 m &= GET_MODE_MASK (mode);
5811 return exact_log2 (m + 1);
5814 /* Return the mode of MEM's address. */
5816 scalar_int_mode
5817 get_address_mode (rtx mem)
5819 machine_mode mode;
5821 gcc_assert (MEM_P (mem));
5822 mode = GET_MODE (XEXP (mem, 0));
5823 if (mode != VOIDmode)
5824 return as_a <scalar_int_mode> (mode);
5825 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5828 /* Split up a CONST_DOUBLE or integer constant rtx
5829 into two rtx's for single words,
5830 storing in *FIRST the word that comes first in memory in the target
5831 and in *SECOND the other.
5833 TODO: This function needs to be rewritten to work on any size
5834 integer. */
5836 void
5837 split_double (rtx value, rtx *first, rtx *second)
5839 if (CONST_INT_P (value))
5841 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5843 /* In this case the CONST_INT holds both target words.
5844 Extract the bits from it into two word-sized pieces.
5845 Sign extend each half to HOST_WIDE_INT. */
5846 unsigned HOST_WIDE_INT low, high;
5847 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5848 unsigned bits_per_word = BITS_PER_WORD;
5850 /* Set sign_bit to the most significant bit of a word. */
5851 sign_bit = 1;
5852 sign_bit <<= bits_per_word - 1;
5854 /* Set mask so that all bits of the word are set. We could
5855 have used 1 << BITS_PER_WORD instead of basing the
5856 calculation on sign_bit. However, on machines where
5857 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5858 compiler warning, even though the code would never be
5859 executed. */
5860 mask = sign_bit << 1;
5861 mask--;
5863 /* Set sign_extend as any remaining bits. */
5864 sign_extend = ~mask;
5866 /* Pick the lower word and sign-extend it. */
5867 low = INTVAL (value);
5868 low &= mask;
5869 if (low & sign_bit)
5870 low |= sign_extend;
5872 /* Pick the higher word, shifted to the least significant
5873 bits, and sign-extend it. */
5874 high = INTVAL (value);
5875 high >>= bits_per_word - 1;
5876 high >>= 1;
5877 high &= mask;
5878 if (high & sign_bit)
5879 high |= sign_extend;
5881 /* Store the words in the target machine order. */
5882 if (WORDS_BIG_ENDIAN)
5884 *first = GEN_INT (high);
5885 *second = GEN_INT (low);
5887 else
5889 *first = GEN_INT (low);
5890 *second = GEN_INT (high);
5893 else
5895 /* The rule for using CONST_INT for a wider mode
5896 is that we regard the value as signed.
5897 So sign-extend it. */
5898 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5899 if (WORDS_BIG_ENDIAN)
5901 *first = high;
5902 *second = value;
5904 else
5906 *first = value;
5907 *second = high;
5911 else if (GET_CODE (value) == CONST_WIDE_INT)
5913 /* All of this is scary code and needs to be converted to
5914 properly work with any size integer. */
5915 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5916 if (WORDS_BIG_ENDIAN)
5918 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5919 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5921 else
5923 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5924 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5927 else if (!CONST_DOUBLE_P (value))
5929 if (WORDS_BIG_ENDIAN)
5931 *first = const0_rtx;
5932 *second = value;
5934 else
5936 *first = value;
5937 *second = const0_rtx;
5940 else if (GET_MODE (value) == VOIDmode
5941 /* This is the old way we did CONST_DOUBLE integers. */
5942 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5944 /* In an integer, the words are defined as most and least significant.
5945 So order them by the target's convention. */
5946 if (WORDS_BIG_ENDIAN)
5948 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5949 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5951 else
5953 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5954 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5957 else
5959 long l[2];
5961 /* Note, this converts the REAL_VALUE_TYPE to the target's
5962 format, splits up the floating point double and outputs
5963 exactly 32 bits of it into each of l[0] and l[1] --
5964 not necessarily BITS_PER_WORD bits. */
5965 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5967 /* If 32 bits is an entire word for the target, but not for the host,
5968 then sign-extend on the host so that the number will look the same
5969 way on the host that it would on the target. See for instance
5970 simplify_unary_operation. The #if is needed to avoid compiler
5971 warnings. */
5973 #if HOST_BITS_PER_LONG > 32
5974 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5976 if (l[0] & ((long) 1 << 31))
5977 l[0] |= ((unsigned long) (-1) << 32);
5978 if (l[1] & ((long) 1 << 31))
5979 l[1] |= ((unsigned long) (-1) << 32);
5981 #endif
5983 *first = GEN_INT (l[0]);
5984 *second = GEN_INT (l[1]);
5988 /* Return true if X is a sign_extract or zero_extract from the least
5989 significant bit. */
5991 static bool
5992 lsb_bitfield_op_p (rtx x)
5994 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5996 machine_mode mode = GET_MODE (XEXP (x, 0));
5997 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5998 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6000 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
6002 return false;
6005 /* Strip outer address "mutations" from LOC and return a pointer to the
6006 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6007 stripped expression there.
6009 "Mutations" either convert between modes or apply some kind of
6010 extension, truncation or alignment. */
6012 rtx *
6013 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6015 for (;;)
6017 enum rtx_code code = GET_CODE (*loc);
6018 if (GET_RTX_CLASS (code) == RTX_UNARY)
6019 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6020 used to convert between pointer sizes. */
6021 loc = &XEXP (*loc, 0);
6022 else if (lsb_bitfield_op_p (*loc))
6023 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6024 acts as a combined truncation and extension. */
6025 loc = &XEXP (*loc, 0);
6026 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6027 /* (and ... (const_int -X)) is used to align to X bytes. */
6028 loc = &XEXP (*loc, 0);
6029 else if (code == SUBREG
6030 && !OBJECT_P (SUBREG_REG (*loc))
6031 && subreg_lowpart_p (*loc))
6032 /* (subreg (operator ...) ...) inside and is used for mode
6033 conversion too. */
6034 loc = &SUBREG_REG (*loc);
6035 else
6036 return loc;
6037 if (outer_code)
6038 *outer_code = code;
6042 /* Return true if CODE applies some kind of scale. The scaled value is
6043 is the first operand and the scale is the second. */
6045 static bool
6046 binary_scale_code_p (enum rtx_code code)
6048 return (code == MULT
6049 || code == ASHIFT
6050 /* Needed by ARM targets. */
6051 || code == ASHIFTRT
6052 || code == LSHIFTRT
6053 || code == ROTATE
6054 || code == ROTATERT);
6057 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6058 (see address_info). Return null otherwise. */
6060 static rtx *
6061 get_base_term (rtx *inner)
6063 if (GET_CODE (*inner) == LO_SUM)
6064 inner = strip_address_mutations (&XEXP (*inner, 0));
6065 if (REG_P (*inner)
6066 || MEM_P (*inner)
6067 || GET_CODE (*inner) == SUBREG
6068 || GET_CODE (*inner) == SCRATCH)
6069 return inner;
6070 return 0;
6073 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6074 (see address_info). Return null otherwise. */
6076 static rtx *
6077 get_index_term (rtx *inner)
6079 /* At present, only constant scales are allowed. */
6080 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6081 inner = strip_address_mutations (&XEXP (*inner, 0));
6082 if (REG_P (*inner)
6083 || MEM_P (*inner)
6084 || GET_CODE (*inner) == SUBREG
6085 || GET_CODE (*inner) == SCRATCH)
6086 return inner;
6087 return 0;
6090 /* Set the segment part of address INFO to LOC, given that INNER is the
6091 unmutated value. */
6093 static void
6094 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6096 gcc_assert (!info->segment);
6097 info->segment = loc;
6098 info->segment_term = inner;
6101 /* Set the base part of address INFO to LOC, given that INNER is the
6102 unmutated value. */
6104 static void
6105 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6107 gcc_assert (!info->base);
6108 info->base = loc;
6109 info->base_term = inner;
6112 /* Set the index part of address INFO to LOC, given that INNER is the
6113 unmutated value. */
6115 static void
6116 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6118 gcc_assert (!info->index);
6119 info->index = loc;
6120 info->index_term = inner;
6123 /* Set the displacement part of address INFO to LOC, given that INNER
6124 is the constant term. */
6126 static void
6127 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6129 gcc_assert (!info->disp);
6130 info->disp = loc;
6131 info->disp_term = inner;
6134 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6135 rest of INFO accordingly. */
6137 static void
6138 decompose_incdec_address (struct address_info *info)
6140 info->autoinc_p = true;
6142 rtx *base = &XEXP (*info->inner, 0);
6143 set_address_base (info, base, base);
6144 gcc_checking_assert (info->base == info->base_term);
6146 /* These addresses are only valid when the size of the addressed
6147 value is known. */
6148 gcc_checking_assert (info->mode != VOIDmode);
6151 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6152 of INFO accordingly. */
6154 static void
6155 decompose_automod_address (struct address_info *info)
6157 info->autoinc_p = true;
6159 rtx *base = &XEXP (*info->inner, 0);
6160 set_address_base (info, base, base);
6161 gcc_checking_assert (info->base == info->base_term);
6163 rtx plus = XEXP (*info->inner, 1);
6164 gcc_assert (GET_CODE (plus) == PLUS);
6166 info->base_term2 = &XEXP (plus, 0);
6167 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6169 rtx *step = &XEXP (plus, 1);
6170 rtx *inner_step = strip_address_mutations (step);
6171 if (CONSTANT_P (*inner_step))
6172 set_address_disp (info, step, inner_step);
6173 else
6174 set_address_index (info, step, inner_step);
6177 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6178 values in [PTR, END). Return a pointer to the end of the used array. */
6180 static rtx **
6181 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6183 rtx x = *loc;
6184 if (GET_CODE (x) == PLUS)
6186 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6187 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6189 else
6191 gcc_assert (ptr != end);
6192 *ptr++ = loc;
6194 return ptr;
6197 /* Evaluate the likelihood of X being a base or index value, returning
6198 positive if it is likely to be a base, negative if it is likely to be
6199 an index, and 0 if we can't tell. Make the magnitude of the return
6200 value reflect the amount of confidence we have in the answer.
6202 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6204 static int
6205 baseness (rtx x, machine_mode mode, addr_space_t as,
6206 enum rtx_code outer_code, enum rtx_code index_code)
6208 /* Believe *_POINTER unless the address shape requires otherwise. */
6209 if (REG_P (x) && REG_POINTER (x))
6210 return 2;
6211 if (MEM_P (x) && MEM_POINTER (x))
6212 return 2;
6214 if (REG_P (x) && HARD_REGISTER_P (x))
6216 /* X is a hard register. If it only fits one of the base
6217 or index classes, choose that interpretation. */
6218 int regno = REGNO (x);
6219 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6220 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6221 if (base_p != index_p)
6222 return base_p ? 1 : -1;
6224 return 0;
6227 /* INFO->INNER describes a normal, non-automodified address.
6228 Fill in the rest of INFO accordingly. */
6230 static void
6231 decompose_normal_address (struct address_info *info)
6233 /* Treat the address as the sum of up to four values. */
6234 rtx *ops[4];
6235 size_t n_ops = extract_plus_operands (info->inner, ops,
6236 ops + ARRAY_SIZE (ops)) - ops;
6238 /* If there is more than one component, any base component is in a PLUS. */
6239 if (n_ops > 1)
6240 info->base_outer_code = PLUS;
6242 /* Try to classify each sum operand now. Leave those that could be
6243 either a base or an index in OPS. */
6244 rtx *inner_ops[4];
6245 size_t out = 0;
6246 for (size_t in = 0; in < n_ops; ++in)
6248 rtx *loc = ops[in];
6249 rtx *inner = strip_address_mutations (loc);
6250 if (CONSTANT_P (*inner))
6251 set_address_disp (info, loc, inner);
6252 else if (GET_CODE (*inner) == UNSPEC)
6253 set_address_segment (info, loc, inner);
6254 else
6256 /* The only other possibilities are a base or an index. */
6257 rtx *base_term = get_base_term (inner);
6258 rtx *index_term = get_index_term (inner);
6259 gcc_assert (base_term || index_term);
6260 if (!base_term)
6261 set_address_index (info, loc, index_term);
6262 else if (!index_term)
6263 set_address_base (info, loc, base_term);
6264 else
6266 gcc_assert (base_term == index_term);
6267 ops[out] = loc;
6268 inner_ops[out] = base_term;
6269 ++out;
6274 /* Classify the remaining OPS members as bases and indexes. */
6275 if (out == 1)
6277 /* If we haven't seen a base or an index yet, assume that this is
6278 the base. If we were confident that another term was the base
6279 or index, treat the remaining operand as the other kind. */
6280 if (!info->base)
6281 set_address_base (info, ops[0], inner_ops[0]);
6282 else
6283 set_address_index (info, ops[0], inner_ops[0]);
6285 else if (out == 2)
6287 /* In the event of a tie, assume the base comes first. */
6288 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6289 GET_CODE (*ops[1]))
6290 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6291 GET_CODE (*ops[0])))
6293 set_address_base (info, ops[0], inner_ops[0]);
6294 set_address_index (info, ops[1], inner_ops[1]);
6296 else
6298 set_address_base (info, ops[1], inner_ops[1]);
6299 set_address_index (info, ops[0], inner_ops[0]);
6302 else
6303 gcc_assert (out == 0);
6306 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6307 or VOIDmode if not known. AS is the address space associated with LOC.
6308 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6310 void
6311 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6312 addr_space_t as, enum rtx_code outer_code)
6314 memset (info, 0, sizeof (*info));
6315 info->mode = mode;
6316 info->as = as;
6317 info->addr_outer_code = outer_code;
6318 info->outer = loc;
6319 info->inner = strip_address_mutations (loc, &outer_code);
6320 info->base_outer_code = outer_code;
6321 switch (GET_CODE (*info->inner))
6323 case PRE_DEC:
6324 case PRE_INC:
6325 case POST_DEC:
6326 case POST_INC:
6327 decompose_incdec_address (info);
6328 break;
6330 case PRE_MODIFY:
6331 case POST_MODIFY:
6332 decompose_automod_address (info);
6333 break;
6335 default:
6336 decompose_normal_address (info);
6337 break;
6341 /* Describe address operand LOC in INFO. */
6343 void
6344 decompose_lea_address (struct address_info *info, rtx *loc)
6346 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6349 /* Describe the address of MEM X in INFO. */
6351 void
6352 decompose_mem_address (struct address_info *info, rtx x)
6354 gcc_assert (MEM_P (x));
6355 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6356 MEM_ADDR_SPACE (x), MEM);
6359 /* Update INFO after a change to the address it describes. */
6361 void
6362 update_address (struct address_info *info)
6364 decompose_address (info, info->outer, info->mode, info->as,
6365 info->addr_outer_code);
6368 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6369 more complicated than that. */
6371 HOST_WIDE_INT
6372 get_index_scale (const struct address_info *info)
6374 rtx index = *info->index;
6375 if (GET_CODE (index) == MULT
6376 && CONST_INT_P (XEXP (index, 1))
6377 && info->index_term == &XEXP (index, 0))
6378 return INTVAL (XEXP (index, 1));
6380 if (GET_CODE (index) == ASHIFT
6381 && CONST_INT_P (XEXP (index, 1))
6382 && info->index_term == &XEXP (index, 0))
6383 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6385 if (info->index == info->index_term)
6386 return 1;
6388 return 0;
6391 /* Return the "index code" of INFO, in the form required by
6392 ok_for_base_p_1. */
6394 enum rtx_code
6395 get_index_code (const struct address_info *info)
6397 if (info->index)
6398 return GET_CODE (*info->index);
6400 if (info->disp)
6401 return GET_CODE (*info->disp);
6403 return SCRATCH;
6406 /* Return true if RTL X contains a SYMBOL_REF. */
6408 bool
6409 contains_symbol_ref_p (const_rtx x)
6411 subrtx_iterator::array_type array;
6412 FOR_EACH_SUBRTX (iter, array, x, ALL)
6413 if (SYMBOL_REF_P (*iter))
6414 return true;
6416 return false;
6419 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6421 bool
6422 contains_symbolic_reference_p (const_rtx x)
6424 subrtx_iterator::array_type array;
6425 FOR_EACH_SUBRTX (iter, array, x, ALL)
6426 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6427 return true;
6429 return false;
6432 /* Return true if X contains a thread-local symbol. */
6434 bool
6435 tls_referenced_p (const_rtx x)
6437 if (!targetm.have_tls)
6438 return false;
6440 subrtx_iterator::array_type array;
6441 FOR_EACH_SUBRTX (iter, array, x, ALL)
6442 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6443 return true;
6444 return false;