gdbinit.in: add "break-on-diagnostic" command
[official-gcc.git] / gcc / expr.c
blobc93d9f6754c6ddd0988ffc5c8173469af23be165
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-ssa-live.h"
58 #include "tree-outof-ssa.h"
59 #include "tree-ssa-address.h"
60 #include "builtins.h"
61 #include "tree-chkp.h"
62 #include "rtl-chkp.h"
63 #include "ccmp.h"
66 /* If this is nonzero, we do not bother generating VOLATILE
67 around volatile memory references, and we are willing to
68 output indirect addresses. If cse is to follow, we reject
69 indirect addresses so a useful potential cse is generated;
70 if it is used only once, instruction combination will produce
71 the same indirect address eventually. */
72 int cse_not_expected;
74 static bool block_move_libcall_safe_for_call_parm (void);
75 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
76 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT);
78 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
79 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
80 static rtx_insn *compress_float_constant (rtx, rtx);
81 static rtx get_subtarget (rtx);
82 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
83 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
84 unsigned HOST_WIDE_INT, machine_mode,
85 tree, int, alias_set_type, bool);
86 static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
87 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
88 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
89 machine_mode, tree, alias_set_type, bool, bool);
91 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
93 static int is_aligning_offset (const_tree, const_tree);
94 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
95 static rtx do_store_flag (sepops, rtx, machine_mode);
96 #ifdef PUSH_ROUNDING
97 static void emit_single_push_insn (machine_mode, rtx, tree);
98 #endif
99 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
100 profile_probability);
101 static rtx const_vector_from_tree (tree);
102 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
103 static tree tree_expr_size (const_tree);
104 static HOST_WIDE_INT int_expr_size (tree);
105 static void convert_mode_scalar (rtx, rtx, int);
108 /* This is run to set up which modes can be used
109 directly in memory and to initialize the block move optab. It is run
110 at the beginning of compilation and when the target is reinitialized. */
112 void
113 init_expr_target (void)
115 rtx pat;
116 int num_clobbers;
117 rtx mem, mem1;
118 rtx reg;
120 /* Try indexing by frame ptr and try by stack ptr.
121 It is known that on the Convex the stack ptr isn't a valid index.
122 With luck, one or the other is valid on any machine. */
123 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
124 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
126 /* A scratch register we can modify in-place below to avoid
127 useless RTL allocations. */
128 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
130 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
131 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
132 PATTERN (insn) = pat;
134 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
135 mode = (machine_mode) ((int) mode + 1))
137 int regno;
139 direct_load[(int) mode] = direct_store[(int) mode] = 0;
140 PUT_MODE (mem, mode);
141 PUT_MODE (mem1, mode);
143 /* See if there is some register that can be used in this mode and
144 directly loaded or stored from memory. */
146 if (mode != VOIDmode && mode != BLKmode)
147 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
148 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
149 regno++)
151 if (!targetm.hard_regno_mode_ok (regno, mode))
152 continue;
154 set_mode_and_regno (reg, mode, regno);
156 SET_SRC (pat) = mem;
157 SET_DEST (pat) = reg;
158 if (recog (pat, insn, &num_clobbers) >= 0)
159 direct_load[(int) mode] = 1;
161 SET_SRC (pat) = mem1;
162 SET_DEST (pat) = reg;
163 if (recog (pat, insn, &num_clobbers) >= 0)
164 direct_load[(int) mode] = 1;
166 SET_SRC (pat) = reg;
167 SET_DEST (pat) = mem;
168 if (recog (pat, insn, &num_clobbers) >= 0)
169 direct_store[(int) mode] = 1;
171 SET_SRC (pat) = reg;
172 SET_DEST (pat) = mem1;
173 if (recog (pat, insn, &num_clobbers) >= 0)
174 direct_store[(int) mode] = 1;
178 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
180 opt_scalar_float_mode mode_iter;
181 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
183 scalar_float_mode mode = mode_iter.require ();
184 scalar_float_mode srcmode;
185 FOR_EACH_MODE_UNTIL (srcmode, mode)
187 enum insn_code ic;
189 ic = can_extend_p (mode, srcmode, 0);
190 if (ic == CODE_FOR_nothing)
191 continue;
193 PUT_MODE (mem, srcmode);
195 if (insn_operand_matches (ic, 1, mem))
196 float_extend_from_mem[mode][srcmode] = true;
201 /* This is run at the start of compiling a function. */
203 void
204 init_expr (void)
206 memset (&crtl->expr, 0, sizeof (crtl->expr));
209 /* Copy data from FROM to TO, where the machine modes are not the same.
210 Both modes may be integer, or both may be floating, or both may be
211 fixed-point.
212 UNSIGNEDP should be nonzero if FROM is an unsigned type.
213 This causes zero-extension instead of sign-extension. */
215 void
216 convert_move (rtx to, rtx from, int unsignedp)
218 machine_mode to_mode = GET_MODE (to);
219 machine_mode from_mode = GET_MODE (from);
221 gcc_assert (to_mode != BLKmode);
222 gcc_assert (from_mode != BLKmode);
224 /* If the source and destination are already the same, then there's
225 nothing to do. */
226 if (to == from)
227 return;
229 /* If FROM is a SUBREG that indicates that we have already done at least
230 the required extension, strip it. We don't handle such SUBREGs as
231 TO here. */
233 scalar_int_mode to_int_mode;
234 if (GET_CODE (from) == SUBREG
235 && SUBREG_PROMOTED_VAR_P (from)
236 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
237 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
238 >= GET_MODE_PRECISION (to_int_mode))
239 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
240 from = gen_lowpart (to_int_mode, from), from_mode = to_int_mode;
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
247 emit_move_insn (to, from);
248 return;
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
253 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
260 emit_move_insn (to, from);
261 return;
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
271 convert_mode_scalar (to, from, unsignedp);
274 /* Like convert_move, but deals only with scalar modes. */
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
287 gcc_assert (to_real == from_real);
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
293 if (to_real)
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
312 /* Try converting directly if the insn is supported. */
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
343 convert_optab ctab;
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
388 if (to_mode == full_mode)
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
418 /* Now both modes are integers. */
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
499 gcc_assert (subword);
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
505 insns = get_insns ();
506 end_sequence ();
508 emit_insn (insns);
509 return;
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
528 /* Now follow all the conversions between integers
529 no more than a word long. */
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
560 else
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
637 return convert_modes (mode, VOIDmode, x, unsignedp);
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
653 rtx temp;
654 scalar_int_mode int_mode;
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
670 if (mode == oldmode)
671 return x;
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || (REG_P (x)
696 && (!HARD_REGISTER_P (x)
697 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
698 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
699 return gen_lowpart (int_mode, x);
701 /* Converting from integer constant into mode is always equivalent to an
702 subreg operation. */
703 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
705 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
706 return simplify_gen_subreg (mode, x, oldmode, 0);
709 temp = gen_reg_rtx (mode);
710 convert_move (temp, x, unsignedp);
711 return temp;
714 /* Return the largest alignment we can use for doing a move (or store)
715 of MAX_PIECES. ALIGN is the largest alignment we could use. */
717 static unsigned int
718 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
720 scalar_int_mode tmode
721 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
723 if (align >= GET_MODE_ALIGNMENT (tmode))
724 align = GET_MODE_ALIGNMENT (tmode);
725 else
727 scalar_int_mode xmode = NARROWEST_INT_MODE;
728 opt_scalar_int_mode mode_iter;
729 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
731 tmode = mode_iter.require ();
732 if (GET_MODE_SIZE (tmode) > max_pieces
733 || targetm.slow_unaligned_access (tmode, align))
734 break;
735 xmode = tmode;
738 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
741 return align;
744 /* Return the widest integer mode that is narrower than SIZE bytes. */
746 static scalar_int_mode
747 widest_int_mode_for_size (unsigned int size)
749 scalar_int_mode result = NARROWEST_INT_MODE;
751 gcc_checking_assert (size > 1);
753 opt_scalar_int_mode tmode;
754 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
755 if (GET_MODE_SIZE (tmode.require ()) < size)
756 result = tmode.require ();
758 return result;
761 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
762 and should be performed piecewise. */
764 static bool
765 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
766 enum by_pieces_operation op)
768 return targetm.use_by_pieces_infrastructure_p (len, align, op,
769 optimize_insn_for_speed_p ());
772 /* Determine whether the LEN bytes can be moved by using several move
773 instructions. Return nonzero if a call to move_by_pieces should
774 succeed. */
776 bool
777 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
779 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
782 /* Return number of insns required to perform operation OP by pieces
783 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
785 unsigned HOST_WIDE_INT
786 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
787 unsigned int max_size, by_pieces_operation op)
789 unsigned HOST_WIDE_INT n_insns = 0;
791 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
793 while (max_size > 1 && l > 0)
795 scalar_int_mode mode = widest_int_mode_for_size (max_size);
796 enum insn_code icode;
798 unsigned int modesize = GET_MODE_SIZE (mode);
800 icode = optab_handler (mov_optab, mode);
801 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
803 unsigned HOST_WIDE_INT n_pieces = l / modesize;
804 l %= modesize;
805 switch (op)
807 default:
808 n_insns += n_pieces;
809 break;
811 case COMPARE_BY_PIECES:
812 int batch = targetm.compare_by_pieces_branch_ratio (mode);
813 int batch_ops = 4 * batch - 1;
814 unsigned HOST_WIDE_INT full = n_pieces / batch;
815 n_insns += full * batch_ops;
816 if (n_pieces % batch != 0)
817 n_insns++;
818 break;
822 max_size = modesize;
825 gcc_assert (!l);
826 return n_insns;
829 /* Used when performing piecewise block operations, holds information
830 about one of the memory objects involved. The member functions
831 can be used to generate code for loading from the object and
832 updating the address when iterating. */
834 class pieces_addr
836 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
837 stack pushes. */
838 rtx m_obj;
839 /* The address of the object. Can differ from that seen in the
840 MEM rtx if we copied the address to a register. */
841 rtx m_addr;
842 /* Nonzero if the address on the object has an autoincrement already,
843 signifies whether that was an increment or decrement. */
844 signed char m_addr_inc;
845 /* Nonzero if we intend to use autoinc without the address already
846 having autoinc form. We will insert add insns around each memory
847 reference, expecting later passes to form autoinc addressing modes.
848 The only supported options are predecrement and postincrement. */
849 signed char m_explicit_inc;
850 /* True if we have either of the two possible cases of using
851 autoincrement. */
852 bool m_auto;
853 /* True if this is an address to be used for load operations rather
854 than stores. */
855 bool m_is_load;
857 /* Optionally, a function to obtain constants for any given offset into
858 the objects, and data associated with it. */
859 by_pieces_constfn m_constfn;
860 void *m_cfndata;
861 public:
862 pieces_addr (rtx, bool, by_pieces_constfn, void *);
863 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
864 void increment_address (HOST_WIDE_INT);
865 void maybe_predec (HOST_WIDE_INT);
866 void maybe_postinc (HOST_WIDE_INT);
867 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
868 int get_addr_inc ()
870 return m_addr_inc;
874 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
875 true if the operation to be performed on this object is a load
876 rather than a store. For stores, OBJ can be NULL, in which case we
877 assume the operation is a stack push. For loads, the optional
878 CONSTFN and its associated CFNDATA can be used in place of the
879 memory load. */
881 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
882 void *cfndata)
883 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
885 m_addr_inc = 0;
886 m_auto = false;
887 if (obj)
889 rtx addr = XEXP (obj, 0);
890 rtx_code code = GET_CODE (addr);
891 m_addr = addr;
892 bool dec = code == PRE_DEC || code == POST_DEC;
893 bool inc = code == PRE_INC || code == POST_INC;
894 m_auto = inc || dec;
895 if (m_auto)
896 m_addr_inc = dec ? -1 : 1;
898 /* While we have always looked for these codes here, the code
899 implementing the memory operation has never handled them.
900 Support could be added later if necessary or beneficial. */
901 gcc_assert (code != PRE_INC && code != POST_DEC);
903 else
905 m_addr = NULL_RTX;
906 if (!is_load)
908 m_auto = true;
909 if (STACK_GROWS_DOWNWARD)
910 m_addr_inc = -1;
911 else
912 m_addr_inc = 1;
914 else
915 gcc_assert (constfn != NULL);
917 m_explicit_inc = 0;
918 if (constfn)
919 gcc_assert (is_load);
922 /* Decide whether to use autoinc for an address involved in a memory op.
923 MODE is the mode of the accesses, REVERSE is true if we've decided to
924 perform the operation starting from the end, and LEN is the length of
925 the operation. Don't override an earlier decision to set m_auto. */
927 void
928 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
929 HOST_WIDE_INT len)
931 if (m_auto || m_obj == NULL_RTX)
932 return;
934 bool use_predec = (m_is_load
935 ? USE_LOAD_PRE_DECREMENT (mode)
936 : USE_STORE_PRE_DECREMENT (mode));
937 bool use_postinc = (m_is_load
938 ? USE_LOAD_POST_INCREMENT (mode)
939 : USE_STORE_POST_INCREMENT (mode));
940 machine_mode addr_mode = get_address_mode (m_obj);
942 if (use_predec && reverse)
944 m_addr = copy_to_mode_reg (addr_mode,
945 plus_constant (addr_mode,
946 m_addr, len));
947 m_auto = true;
948 m_explicit_inc = -1;
950 else if (use_postinc && !reverse)
952 m_addr = copy_to_mode_reg (addr_mode, m_addr);
953 m_auto = true;
954 m_explicit_inc = 1;
956 else if (CONSTANT_P (m_addr))
957 m_addr = copy_to_mode_reg (addr_mode, m_addr);
960 /* Adjust the address to refer to the data at OFFSET in MODE. If we
961 are using autoincrement for this address, we don't add the offset,
962 but we still modify the MEM's properties. */
965 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
967 if (m_constfn)
968 return m_constfn (m_cfndata, offset, mode);
969 if (m_obj == NULL_RTX)
970 return NULL_RTX;
971 if (m_auto)
972 return adjust_automodify_address (m_obj, mode, m_addr, offset);
973 else
974 return adjust_address (m_obj, mode, offset);
977 /* Emit an add instruction to increment the address by SIZE. */
979 void
980 pieces_addr::increment_address (HOST_WIDE_INT size)
982 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
983 emit_insn (gen_add2_insn (m_addr, amount));
986 /* If we are supposed to decrement the address after each access, emit code
987 to do so now. Increment by SIZE (which has should have the correct sign
988 already). */
990 void
991 pieces_addr::maybe_predec (HOST_WIDE_INT size)
993 if (m_explicit_inc >= 0)
994 return;
995 gcc_assert (HAVE_PRE_DECREMENT);
996 increment_address (size);
999 /* If we are supposed to decrement the address after each access, emit code
1000 to do so now. Increment by SIZE. */
1002 void
1003 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1005 if (m_explicit_inc <= 0)
1006 return;
1007 gcc_assert (HAVE_POST_INCREMENT);
1008 increment_address (size);
1011 /* This structure is used by do_op_by_pieces to describe the operation
1012 to be performed. */
1014 class op_by_pieces_d
1016 protected:
1017 pieces_addr m_to, m_from;
1018 unsigned HOST_WIDE_INT m_len;
1019 HOST_WIDE_INT m_offset;
1020 unsigned int m_align;
1021 unsigned int m_max_size;
1022 bool m_reverse;
1024 /* Virtual functions, overriden by derived classes for the specific
1025 operation. */
1026 virtual void generate (rtx, rtx, machine_mode) = 0;
1027 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1028 virtual void finish_mode (machine_mode)
1032 public:
1033 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1034 unsigned HOST_WIDE_INT, unsigned int);
1035 void run ();
1038 /* The constructor for an op_by_pieces_d structure. We require two
1039 objects named TO and FROM, which are identified as loads or stores
1040 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1041 and its associated FROM_CFN_DATA can be used to replace loads with
1042 constant values. LEN describes the length of the operation. */
1044 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1045 rtx from, bool from_load,
1046 by_pieces_constfn from_cfn,
1047 void *from_cfn_data,
1048 unsigned HOST_WIDE_INT len,
1049 unsigned int align)
1050 : m_to (to, to_load, NULL, NULL),
1051 m_from (from, from_load, from_cfn, from_cfn_data),
1052 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1054 int toi = m_to.get_addr_inc ();
1055 int fromi = m_from.get_addr_inc ();
1056 if (toi >= 0 && fromi >= 0)
1057 m_reverse = false;
1058 else if (toi <= 0 && fromi <= 0)
1059 m_reverse = true;
1060 else
1061 gcc_unreachable ();
1063 m_offset = m_reverse ? len : 0;
1064 align = MIN (to ? MEM_ALIGN (to) : align,
1065 from ? MEM_ALIGN (from) : align);
1067 /* If copying requires more than two move insns,
1068 copy addresses to registers (to make displacements shorter)
1069 and use post-increment if available. */
1070 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1072 /* Find the mode of the largest comparison. */
1073 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1075 m_from.decide_autoinc (mode, m_reverse, len);
1076 m_to.decide_autoinc (mode, m_reverse, len);
1079 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1080 m_align = align;
1083 /* This function contains the main loop used for expanding a block
1084 operation. First move what we can in the largest integer mode,
1085 then go to successively smaller modes. For every access, call
1086 GENFUN with the two operands and the EXTRA_DATA. */
1088 void
1089 op_by_pieces_d::run ()
1091 while (m_max_size > 1 && m_len > 0)
1093 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1095 if (prepare_mode (mode, m_align))
1097 unsigned int size = GET_MODE_SIZE (mode);
1098 rtx to1 = NULL_RTX, from1;
1100 while (m_len >= size)
1102 if (m_reverse)
1103 m_offset -= size;
1105 to1 = m_to.adjust (mode, m_offset);
1106 from1 = m_from.adjust (mode, m_offset);
1108 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1109 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1111 generate (to1, from1, mode);
1113 m_to.maybe_postinc (size);
1114 m_from.maybe_postinc (size);
1116 if (!m_reverse)
1117 m_offset += size;
1119 m_len -= size;
1122 finish_mode (mode);
1125 m_max_size = GET_MODE_SIZE (mode);
1128 /* The code above should have handled everything. */
1129 gcc_assert (!m_len);
1132 /* Derived class from op_by_pieces_d, providing support for block move
1133 operations. */
1135 class move_by_pieces_d : public op_by_pieces_d
1137 insn_gen_fn m_gen_fun;
1138 void generate (rtx, rtx, machine_mode);
1139 bool prepare_mode (machine_mode, unsigned int);
1141 public:
1142 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1143 unsigned int align)
1144 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1147 rtx finish_endp (int);
1150 /* Return true if MODE can be used for a set of copies, given an
1151 alignment ALIGN. Prepare whatever data is necessary for later
1152 calls to generate. */
1154 bool
1155 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1157 insn_code icode = optab_handler (mov_optab, mode);
1158 m_gen_fun = GEN_FCN (icode);
1159 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1162 /* A callback used when iterating for a compare_by_pieces_operation.
1163 OP0 and OP1 are the values that have been loaded and should be
1164 compared in MODE. If OP0 is NULL, this means we should generate a
1165 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1166 gen function that should be used to generate the mode. */
1168 void
1169 move_by_pieces_d::generate (rtx op0, rtx op1,
1170 machine_mode mode ATTRIBUTE_UNUSED)
1172 #ifdef PUSH_ROUNDING
1173 if (op0 == NULL_RTX)
1175 emit_single_push_insn (mode, op1, NULL);
1176 return;
1178 #endif
1179 emit_insn (m_gen_fun (op0, op1));
1182 /* Perform the final adjustment at the end of a string to obtain the
1183 correct return value for the block operation. If ENDP is 1 return
1184 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1185 end minus one byte ala stpcpy. */
1188 move_by_pieces_d::finish_endp (int endp)
1190 gcc_assert (!m_reverse);
1191 if (endp == 2)
1193 m_to.maybe_postinc (-1);
1194 --m_offset;
1196 return m_to.adjust (QImode, m_offset);
1199 /* Generate several move instructions to copy LEN bytes from block FROM to
1200 block TO. (These are MEM rtx's with BLKmode).
1202 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1203 used to push FROM to the stack.
1205 ALIGN is maximum stack alignment we can assume.
1207 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1208 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1209 stpcpy. */
1212 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1213 unsigned int align, int endp)
1215 #ifndef PUSH_ROUNDING
1216 if (to == NULL)
1217 gcc_unreachable ();
1218 #endif
1220 move_by_pieces_d data (to, from, len, align);
1222 data.run ();
1224 if (endp)
1225 return data.finish_endp (endp);
1226 else
1227 return to;
1230 /* Derived class from op_by_pieces_d, providing support for block move
1231 operations. */
1233 class store_by_pieces_d : public op_by_pieces_d
1235 insn_gen_fn m_gen_fun;
1236 void generate (rtx, rtx, machine_mode);
1237 bool prepare_mode (machine_mode, unsigned int);
1239 public:
1240 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1241 unsigned HOST_WIDE_INT len, unsigned int align)
1242 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1245 rtx finish_endp (int);
1248 /* Return true if MODE can be used for a set of stores, given an
1249 alignment ALIGN. Prepare whatever data is necessary for later
1250 calls to generate. */
1252 bool
1253 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1255 insn_code icode = optab_handler (mov_optab, mode);
1256 m_gen_fun = GEN_FCN (icode);
1257 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1260 /* A callback used when iterating for a store_by_pieces_operation.
1261 OP0 and OP1 are the values that have been loaded and should be
1262 compared in MODE. If OP0 is NULL, this means we should generate a
1263 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1264 gen function that should be used to generate the mode. */
1266 void
1267 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1269 emit_insn (m_gen_fun (op0, op1));
1272 /* Perform the final adjustment at the end of a string to obtain the
1273 correct return value for the block operation. If ENDP is 1 return
1274 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1275 end minus one byte ala stpcpy. */
1278 store_by_pieces_d::finish_endp (int endp)
1280 gcc_assert (!m_reverse);
1281 if (endp == 2)
1283 m_to.maybe_postinc (-1);
1284 --m_offset;
1286 return m_to.adjust (QImode, m_offset);
1289 /* Determine whether the LEN bytes generated by CONSTFUN can be
1290 stored to memory using several move instructions. CONSTFUNDATA is
1291 a pointer which will be passed as argument in every CONSTFUN call.
1292 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1293 a memset operation and false if it's a copy of a constant string.
1294 Return nonzero if a call to store_by_pieces should succeed. */
1297 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1298 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1299 void *constfundata, unsigned int align, bool memsetp)
1301 unsigned HOST_WIDE_INT l;
1302 unsigned int max_size;
1303 HOST_WIDE_INT offset = 0;
1304 enum insn_code icode;
1305 int reverse;
1306 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1307 rtx cst ATTRIBUTE_UNUSED;
1309 if (len == 0)
1310 return 1;
1312 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1313 memsetp
1314 ? SET_BY_PIECES
1315 : STORE_BY_PIECES,
1316 optimize_insn_for_speed_p ()))
1317 return 0;
1319 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1321 /* We would first store what we can in the largest integer mode, then go to
1322 successively smaller modes. */
1324 for (reverse = 0;
1325 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1326 reverse++)
1328 l = len;
1329 max_size = STORE_MAX_PIECES + 1;
1330 while (max_size > 1 && l > 0)
1332 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1334 icode = optab_handler (mov_optab, mode);
1335 if (icode != CODE_FOR_nothing
1336 && align >= GET_MODE_ALIGNMENT (mode))
1338 unsigned int size = GET_MODE_SIZE (mode);
1340 while (l >= size)
1342 if (reverse)
1343 offset -= size;
1345 cst = (*constfun) (constfundata, offset, mode);
1346 if (!targetm.legitimate_constant_p (mode, cst))
1347 return 0;
1349 if (!reverse)
1350 offset += size;
1352 l -= size;
1356 max_size = GET_MODE_SIZE (mode);
1359 /* The code above should have handled everything. */
1360 gcc_assert (!l);
1363 return 1;
1366 /* Generate several move instructions to store LEN bytes generated by
1367 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1368 pointer which will be passed as argument in every CONSTFUN call.
1369 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1370 a memset operation and false if it's a copy of a constant string.
1371 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1372 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1373 stpcpy. */
1376 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1377 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1378 void *constfundata, unsigned int align, bool memsetp, int endp)
1380 if (len == 0)
1382 gcc_assert (endp != 2);
1383 return to;
1386 gcc_assert (targetm.use_by_pieces_infrastructure_p
1387 (len, align,
1388 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1389 optimize_insn_for_speed_p ()));
1391 store_by_pieces_d data (to, constfun, constfundata, len, align);
1392 data.run ();
1394 if (endp)
1395 return data.finish_endp (endp);
1396 else
1397 return to;
1400 /* Callback routine for clear_by_pieces.
1401 Return const0_rtx unconditionally. */
1403 static rtx
1404 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1406 return const0_rtx;
1409 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1410 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1412 static void
1413 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1415 if (len == 0)
1416 return;
1418 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1419 data.run ();
1422 /* Context used by compare_by_pieces_genfn. It stores the fail label
1423 to jump to in case of miscomparison, and for branch ratios greater than 1,
1424 it stores an accumulator and the current and maximum counts before
1425 emitting another branch. */
1427 class compare_by_pieces_d : public op_by_pieces_d
1429 rtx_code_label *m_fail_label;
1430 rtx m_accumulator;
1431 int m_count, m_batch;
1433 void generate (rtx, rtx, machine_mode);
1434 bool prepare_mode (machine_mode, unsigned int);
1435 void finish_mode (machine_mode);
1436 public:
1437 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1438 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1439 rtx_code_label *fail_label)
1440 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1442 m_fail_label = fail_label;
1446 /* A callback used when iterating for a compare_by_pieces_operation.
1447 OP0 and OP1 are the values that have been loaded and should be
1448 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1449 context structure. */
1451 void
1452 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1454 if (m_batch > 1)
1456 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1457 true, OPTAB_LIB_WIDEN);
1458 if (m_count != 0)
1459 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1460 true, OPTAB_LIB_WIDEN);
1461 m_accumulator = temp;
1463 if (++m_count < m_batch)
1464 return;
1466 m_count = 0;
1467 op0 = m_accumulator;
1468 op1 = const0_rtx;
1469 m_accumulator = NULL_RTX;
1471 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1472 m_fail_label, profile_probability::uninitialized ());
1475 /* Return true if MODE can be used for a set of moves and comparisons,
1476 given an alignment ALIGN. Prepare whatever data is necessary for
1477 later calls to generate. */
1479 bool
1480 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1482 insn_code icode = optab_handler (mov_optab, mode);
1483 if (icode == CODE_FOR_nothing
1484 || align < GET_MODE_ALIGNMENT (mode)
1485 || !can_compare_p (EQ, mode, ccp_jump))
1486 return false;
1487 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1488 if (m_batch < 0)
1489 return false;
1490 m_accumulator = NULL_RTX;
1491 m_count = 0;
1492 return true;
1495 /* Called after expanding a series of comparisons in MODE. If we have
1496 accumulated results for which we haven't emitted a branch yet, do
1497 so now. */
1499 void
1500 compare_by_pieces_d::finish_mode (machine_mode mode)
1502 if (m_accumulator != NULL_RTX)
1503 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1504 NULL_RTX, NULL, m_fail_label,
1505 profile_probability::uninitialized ());
1508 /* Generate several move instructions to compare LEN bytes from blocks
1509 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1511 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1512 used to push FROM to the stack.
1514 ALIGN is maximum stack alignment we can assume.
1516 Optionally, the caller can pass a constfn and associated data in A1_CFN
1517 and A1_CFN_DATA. describing that the second operand being compared is a
1518 known constant and how to obtain its data. */
1520 static rtx
1521 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1522 rtx target, unsigned int align,
1523 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1525 rtx_code_label *fail_label = gen_label_rtx ();
1526 rtx_code_label *end_label = gen_label_rtx ();
1528 if (target == NULL_RTX
1529 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1530 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1532 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1533 fail_label);
1535 data.run ();
1537 emit_move_insn (target, const0_rtx);
1538 emit_jump (end_label);
1539 emit_barrier ();
1540 emit_label (fail_label);
1541 emit_move_insn (target, const1_rtx);
1542 emit_label (end_label);
1544 return target;
1547 /* Emit code to move a block Y to a block X. This may be done with
1548 string-move instructions, with multiple scalar move instructions,
1549 or with a library call.
1551 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1552 SIZE is an rtx that says how long they are.
1553 ALIGN is the maximum alignment we can assume they have.
1554 METHOD describes what kind of copy this is, and what mechanisms may be used.
1555 MIN_SIZE is the minimal size of block to move
1556 MAX_SIZE is the maximal size of block to move, if it can not be represented
1557 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1559 Return the address of the new block, if memcpy is called and returns it,
1560 0 otherwise. */
1563 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1564 unsigned int expected_align, HOST_WIDE_INT expected_size,
1565 unsigned HOST_WIDE_INT min_size,
1566 unsigned HOST_WIDE_INT max_size,
1567 unsigned HOST_WIDE_INT probable_max_size)
1569 bool may_use_call;
1570 rtx retval = 0;
1571 unsigned int align;
1573 gcc_assert (size);
1574 if (CONST_INT_P (size) && INTVAL (size) == 0)
1575 return 0;
1577 switch (method)
1579 case BLOCK_OP_NORMAL:
1580 case BLOCK_OP_TAILCALL:
1581 may_use_call = true;
1582 break;
1584 case BLOCK_OP_CALL_PARM:
1585 may_use_call = block_move_libcall_safe_for_call_parm ();
1587 /* Make inhibit_defer_pop nonzero around the library call
1588 to force it to pop the arguments right away. */
1589 NO_DEFER_POP;
1590 break;
1592 case BLOCK_OP_NO_LIBCALL:
1593 may_use_call = false;
1594 break;
1596 default:
1597 gcc_unreachable ();
1600 gcc_assert (MEM_P (x) && MEM_P (y));
1601 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1602 gcc_assert (align >= BITS_PER_UNIT);
1604 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1605 block copy is more efficient for other large modes, e.g. DCmode. */
1606 x = adjust_address (x, BLKmode, 0);
1607 y = adjust_address (y, BLKmode, 0);
1609 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1610 can be incorrect is coming from __builtin_memcpy. */
1611 if (CONST_INT_P (size))
1613 x = shallow_copy_rtx (x);
1614 y = shallow_copy_rtx (y);
1615 set_mem_size (x, INTVAL (size));
1616 set_mem_size (y, INTVAL (size));
1619 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1620 move_by_pieces (x, y, INTVAL (size), align, 0);
1621 else if (emit_block_move_via_movmem (x, y, size, align,
1622 expected_align, expected_size,
1623 min_size, max_size, probable_max_size))
1625 else if (may_use_call
1626 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1627 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1629 /* Since x and y are passed to a libcall, mark the corresponding
1630 tree EXPR as addressable. */
1631 tree y_expr = MEM_EXPR (y);
1632 tree x_expr = MEM_EXPR (x);
1633 if (y_expr)
1634 mark_addressable (y_expr);
1635 if (x_expr)
1636 mark_addressable (x_expr);
1637 retval = emit_block_copy_via_libcall (x, y, size,
1638 method == BLOCK_OP_TAILCALL);
1641 else
1642 emit_block_move_via_loop (x, y, size, align);
1644 if (method == BLOCK_OP_CALL_PARM)
1645 OK_DEFER_POP;
1647 return retval;
1651 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1653 unsigned HOST_WIDE_INT max, min = 0;
1654 if (GET_CODE (size) == CONST_INT)
1655 min = max = UINTVAL (size);
1656 else
1657 max = GET_MODE_MASK (GET_MODE (size));
1658 return emit_block_move_hints (x, y, size, method, 0, -1,
1659 min, max, max);
1662 /* A subroutine of emit_block_move. Returns true if calling the
1663 block move libcall will not clobber any parameters which may have
1664 already been placed on the stack. */
1666 static bool
1667 block_move_libcall_safe_for_call_parm (void)
1669 #if defined (REG_PARM_STACK_SPACE)
1670 tree fn;
1671 #endif
1673 /* If arguments are pushed on the stack, then they're safe. */
1674 if (PUSH_ARGS)
1675 return true;
1677 /* If registers go on the stack anyway, any argument is sure to clobber
1678 an outgoing argument. */
1679 #if defined (REG_PARM_STACK_SPACE)
1680 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1681 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1682 depend on its argument. */
1683 (void) fn;
1684 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1685 && REG_PARM_STACK_SPACE (fn) != 0)
1686 return false;
1687 #endif
1689 /* If any argument goes in memory, then it might clobber an outgoing
1690 argument. */
1692 CUMULATIVE_ARGS args_so_far_v;
1693 cumulative_args_t args_so_far;
1694 tree fn, arg;
1696 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1697 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1698 args_so_far = pack_cumulative_args (&args_so_far_v);
1700 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1701 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1703 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1704 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1705 NULL_TREE, true);
1706 if (!tmp || !REG_P (tmp))
1707 return false;
1708 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1709 return false;
1710 targetm.calls.function_arg_advance (args_so_far, mode,
1711 NULL_TREE, true);
1714 return true;
1717 /* A subroutine of emit_block_move. Expand a movmem pattern;
1718 return true if successful. */
1720 static bool
1721 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1722 unsigned int expected_align, HOST_WIDE_INT expected_size,
1723 unsigned HOST_WIDE_INT min_size,
1724 unsigned HOST_WIDE_INT max_size,
1725 unsigned HOST_WIDE_INT probable_max_size)
1727 int save_volatile_ok = volatile_ok;
1729 if (expected_align < align)
1730 expected_align = align;
1731 if (expected_size != -1)
1733 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1734 expected_size = probable_max_size;
1735 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1736 expected_size = min_size;
1739 /* Since this is a move insn, we don't care about volatility. */
1740 volatile_ok = 1;
1742 /* Try the most limited insn first, because there's no point
1743 including more than one in the machine description unless
1744 the more limited one has some advantage. */
1746 opt_scalar_int_mode mode_iter;
1747 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1749 scalar_int_mode mode = mode_iter.require ();
1750 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1752 if (code != CODE_FOR_nothing
1753 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1754 here because if SIZE is less than the mode mask, as it is
1755 returned by the macro, it will definitely be less than the
1756 actual mode mask. Since SIZE is within the Pmode address
1757 space, we limit MODE to Pmode. */
1758 && ((CONST_INT_P (size)
1759 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1760 <= (GET_MODE_MASK (mode) >> 1)))
1761 || max_size <= (GET_MODE_MASK (mode) >> 1)
1762 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1764 struct expand_operand ops[9];
1765 unsigned int nops;
1767 /* ??? When called via emit_block_move_for_call, it'd be
1768 nice if there were some way to inform the backend, so
1769 that it doesn't fail the expansion because it thinks
1770 emitting the libcall would be more efficient. */
1771 nops = insn_data[(int) code].n_generator_args;
1772 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1774 create_fixed_operand (&ops[0], x);
1775 create_fixed_operand (&ops[1], y);
1776 /* The check above guarantees that this size conversion is valid. */
1777 create_convert_operand_to (&ops[2], size, mode, true);
1778 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1779 if (nops >= 6)
1781 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1782 create_integer_operand (&ops[5], expected_size);
1784 if (nops >= 8)
1786 create_integer_operand (&ops[6], min_size);
1787 /* If we can not represent the maximal size,
1788 make parameter NULL. */
1789 if ((HOST_WIDE_INT) max_size != -1)
1790 create_integer_operand (&ops[7], max_size);
1791 else
1792 create_fixed_operand (&ops[7], NULL);
1794 if (nops == 9)
1796 /* If we can not represent the maximal size,
1797 make parameter NULL. */
1798 if ((HOST_WIDE_INT) probable_max_size != -1)
1799 create_integer_operand (&ops[8], probable_max_size);
1800 else
1801 create_fixed_operand (&ops[8], NULL);
1803 if (maybe_expand_insn (code, nops, ops))
1805 volatile_ok = save_volatile_ok;
1806 return true;
1811 volatile_ok = save_volatile_ok;
1812 return false;
1815 /* A subroutine of emit_block_move. Copy the data via an explicit
1816 loop. This is used only when libcalls are forbidden. */
1817 /* ??? It'd be nice to copy in hunks larger than QImode. */
1819 static void
1820 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1821 unsigned int align ATTRIBUTE_UNUSED)
1823 rtx_code_label *cmp_label, *top_label;
1824 rtx iter, x_addr, y_addr, tmp;
1825 machine_mode x_addr_mode = get_address_mode (x);
1826 machine_mode y_addr_mode = get_address_mode (y);
1827 machine_mode iter_mode;
1829 iter_mode = GET_MODE (size);
1830 if (iter_mode == VOIDmode)
1831 iter_mode = word_mode;
1833 top_label = gen_label_rtx ();
1834 cmp_label = gen_label_rtx ();
1835 iter = gen_reg_rtx (iter_mode);
1837 emit_move_insn (iter, const0_rtx);
1839 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1840 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1841 do_pending_stack_adjust ();
1843 emit_jump (cmp_label);
1844 emit_label (top_label);
1846 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1847 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1849 if (x_addr_mode != y_addr_mode)
1850 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1851 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1853 x = change_address (x, QImode, x_addr);
1854 y = change_address (y, QImode, y_addr);
1856 emit_move_insn (x, y);
1858 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1859 true, OPTAB_LIB_WIDEN);
1860 if (tmp != iter)
1861 emit_move_insn (iter, tmp);
1863 emit_label (cmp_label);
1865 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1866 true, top_label,
1867 profile_probability::guessed_always ()
1868 .apply_scale (9, 10));
1871 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1872 TAILCALL is true if this is a tail call. */
1875 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1876 rtx size, bool tailcall)
1878 rtx dst_addr, src_addr;
1879 tree call_expr, dst_tree, src_tree, size_tree;
1880 machine_mode size_mode;
1882 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1883 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1884 dst_tree = make_tree (ptr_type_node, dst_addr);
1886 src_addr = copy_addr_to_reg (XEXP (src, 0));
1887 src_addr = convert_memory_address (ptr_mode, src_addr);
1888 src_tree = make_tree (ptr_type_node, src_addr);
1890 size_mode = TYPE_MODE (sizetype);
1891 size = convert_to_mode (size_mode, size, 1);
1892 size = copy_to_mode_reg (size_mode, size);
1893 size_tree = make_tree (sizetype, size);
1895 /* It is incorrect to use the libcall calling conventions for calls to
1896 memcpy/memmove/memcmp because they can be provided by the user. */
1897 tree fn = builtin_decl_implicit (fncode);
1898 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1899 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1901 return expand_call (call_expr, NULL_RTX, false);
1904 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1905 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1906 otherwise return null. */
1909 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1910 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1911 HOST_WIDE_INT align)
1913 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1915 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1916 target = NULL_RTX;
1918 struct expand_operand ops[5];
1919 create_output_operand (&ops[0], target, insn_mode);
1920 create_fixed_operand (&ops[1], arg1_rtx);
1921 create_fixed_operand (&ops[2], arg2_rtx);
1922 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1923 TYPE_UNSIGNED (arg3_type));
1924 create_integer_operand (&ops[4], align);
1925 if (maybe_expand_insn (icode, 5, ops))
1926 return ops[0].value;
1927 return NULL_RTX;
1930 /* Expand a block compare between X and Y with length LEN using the
1931 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1932 of the expression that was used to calculate the length. ALIGN
1933 gives the known minimum common alignment. */
1935 static rtx
1936 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1937 unsigned align)
1939 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1940 implementing memcmp because it will stop if it encounters two
1941 zero bytes. */
1942 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1944 if (icode == CODE_FOR_nothing)
1945 return NULL_RTX;
1947 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1950 /* Emit code to compare a block Y to a block X. This may be done with
1951 string-compare instructions, with multiple scalar instructions,
1952 or with a library call.
1954 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1955 they are. LEN_TYPE is the type of the expression that was used to
1956 calculate it.
1958 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1959 value of a normal memcmp call, instead we can just compare for equality.
1960 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1961 returning NULL_RTX.
1963 Optionally, the caller can pass a constfn and associated data in Y_CFN
1964 and Y_CFN_DATA. describing that the second operand being compared is a
1965 known constant and how to obtain its data.
1966 Return the result of the comparison, or NULL_RTX if we failed to
1967 perform the operation. */
1970 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1971 bool equality_only, by_pieces_constfn y_cfn,
1972 void *y_cfndata)
1974 rtx result = 0;
1976 if (CONST_INT_P (len) && INTVAL (len) == 0)
1977 return const0_rtx;
1979 gcc_assert (MEM_P (x) && MEM_P (y));
1980 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1981 gcc_assert (align >= BITS_PER_UNIT);
1983 x = adjust_address (x, BLKmode, 0);
1984 y = adjust_address (y, BLKmode, 0);
1986 if (equality_only
1987 && CONST_INT_P (len)
1988 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1989 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1990 y_cfn, y_cfndata);
1991 else
1992 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1994 return result;
1997 /* Copy all or part of a value X into registers starting at REGNO.
1998 The number of registers to be filled is NREGS. */
2000 void
2001 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2003 if (nregs == 0)
2004 return;
2006 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2007 x = validize_mem (force_const_mem (mode, x));
2009 /* See if the machine can do this with a load multiple insn. */
2010 if (targetm.have_load_multiple ())
2012 rtx_insn *last = get_last_insn ();
2013 rtx first = gen_rtx_REG (word_mode, regno);
2014 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2015 GEN_INT (nregs)))
2017 emit_insn (pat);
2018 return;
2020 else
2021 delete_insns_since (last);
2024 for (int i = 0; i < nregs; i++)
2025 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2026 operand_subword_force (x, i, mode));
2029 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2030 The number of registers to be filled is NREGS. */
2032 void
2033 move_block_from_reg (int regno, rtx x, int nregs)
2035 if (nregs == 0)
2036 return;
2038 /* See if the machine can do this with a store multiple insn. */
2039 if (targetm.have_store_multiple ())
2041 rtx_insn *last = get_last_insn ();
2042 rtx first = gen_rtx_REG (word_mode, regno);
2043 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2044 GEN_INT (nregs)))
2046 emit_insn (pat);
2047 return;
2049 else
2050 delete_insns_since (last);
2053 for (int i = 0; i < nregs; i++)
2055 rtx tem = operand_subword (x, i, 1, BLKmode);
2057 gcc_assert (tem);
2059 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2063 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2064 ORIG, where ORIG is a non-consecutive group of registers represented by
2065 a PARALLEL. The clone is identical to the original except in that the
2066 original set of registers is replaced by a new set of pseudo registers.
2067 The new set has the same modes as the original set. */
2070 gen_group_rtx (rtx orig)
2072 int i, length;
2073 rtx *tmps;
2075 gcc_assert (GET_CODE (orig) == PARALLEL);
2077 length = XVECLEN (orig, 0);
2078 tmps = XALLOCAVEC (rtx, length);
2080 /* Skip a NULL entry in first slot. */
2081 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2083 if (i)
2084 tmps[0] = 0;
2086 for (; i < length; i++)
2088 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2089 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2091 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2094 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2097 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2098 except that values are placed in TMPS[i], and must later be moved
2099 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2101 static void
2102 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
2104 rtx src;
2105 int start, i;
2106 machine_mode m = GET_MODE (orig_src);
2108 gcc_assert (GET_CODE (dst) == PARALLEL);
2110 if (m != VOIDmode
2111 && !SCALAR_INT_MODE_P (m)
2112 && !MEM_P (orig_src)
2113 && GET_CODE (orig_src) != CONCAT)
2115 scalar_int_mode imode;
2116 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2118 src = gen_reg_rtx (imode);
2119 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2121 else
2123 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2124 emit_move_insn (src, orig_src);
2126 emit_group_load_1 (tmps, dst, src, type, ssize);
2127 return;
2130 /* Check for a NULL entry, used to indicate that the parameter goes
2131 both on the stack and in registers. */
2132 if (XEXP (XVECEXP (dst, 0, 0), 0))
2133 start = 0;
2134 else
2135 start = 1;
2137 /* Process the pieces. */
2138 for (i = start; i < XVECLEN (dst, 0); i++)
2140 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2141 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
2142 unsigned int bytelen = GET_MODE_SIZE (mode);
2143 int shift = 0;
2145 /* Handle trailing fragments that run over the size of the struct. */
2146 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2148 /* Arrange to shift the fragment to where it belongs.
2149 extract_bit_field loads to the lsb of the reg. */
2150 if (
2151 #ifdef BLOCK_REG_PADDING
2152 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2153 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2154 #else
2155 BYTES_BIG_ENDIAN
2156 #endif
2158 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2159 bytelen = ssize - bytepos;
2160 gcc_assert (bytelen > 0);
2163 /* If we won't be loading directly from memory, protect the real source
2164 from strange tricks we might play; but make sure that the source can
2165 be loaded directly into the destination. */
2166 src = orig_src;
2167 if (!MEM_P (orig_src)
2168 && (!CONSTANT_P (orig_src)
2169 || (GET_MODE (orig_src) != mode
2170 && GET_MODE (orig_src) != VOIDmode)))
2172 if (GET_MODE (orig_src) == VOIDmode)
2173 src = gen_reg_rtx (mode);
2174 else
2175 src = gen_reg_rtx (GET_MODE (orig_src));
2177 emit_move_insn (src, orig_src);
2180 /* Optimize the access just a bit. */
2181 if (MEM_P (src)
2182 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2183 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2184 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2185 && bytelen == GET_MODE_SIZE (mode))
2187 tmps[i] = gen_reg_rtx (mode);
2188 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2190 else if (COMPLEX_MODE_P (mode)
2191 && GET_MODE (src) == mode
2192 && bytelen == GET_MODE_SIZE (mode))
2193 /* Let emit_move_complex do the bulk of the work. */
2194 tmps[i] = src;
2195 else if (GET_CODE (src) == CONCAT)
2197 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
2198 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2199 unsigned int elt = bytepos / slen0;
2200 unsigned int subpos = bytepos % slen0;
2202 if (subpos + bytelen <= slen0)
2204 /* The following assumes that the concatenated objects all
2205 have the same size. In this case, a simple calculation
2206 can be used to determine the object and the bit field
2207 to be extracted. */
2208 tmps[i] = XEXP (src, elt);
2209 if (subpos != 0
2210 || subpos + bytelen != slen0
2211 || (!CONSTANT_P (tmps[i])
2212 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2213 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2214 subpos * BITS_PER_UNIT,
2215 1, NULL_RTX, mode, mode, false,
2216 NULL);
2218 else
2220 rtx mem;
2222 gcc_assert (!bytepos);
2223 mem = assign_stack_temp (GET_MODE (src), slen);
2224 emit_move_insn (mem, src);
2225 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2226 0, 1, NULL_RTX, mode, mode, false,
2227 NULL);
2230 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2231 SIMD register, which is currently broken. While we get GCC
2232 to emit proper RTL for these cases, let's dump to memory. */
2233 else if (VECTOR_MODE_P (GET_MODE (dst))
2234 && REG_P (src))
2236 int slen = GET_MODE_SIZE (GET_MODE (src));
2237 rtx mem;
2239 mem = assign_stack_temp (GET_MODE (src), slen);
2240 emit_move_insn (mem, src);
2241 tmps[i] = adjust_address (mem, mode, (int) bytepos);
2243 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2244 && XVECLEN (dst, 0) > 1)
2245 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2246 else if (CONSTANT_P (src))
2248 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
2250 if (len == ssize)
2251 tmps[i] = src;
2252 else
2254 rtx first, second;
2256 /* TODO: const_wide_int can have sizes other than this... */
2257 gcc_assert (2 * len == ssize);
2258 split_double (src, &first, &second);
2259 if (i)
2260 tmps[i] = second;
2261 else
2262 tmps[i] = first;
2265 else if (REG_P (src) && GET_MODE (src) == mode)
2266 tmps[i] = src;
2267 else
2268 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2269 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2270 mode, mode, false, NULL);
2272 if (shift)
2273 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2274 shift, tmps[i], 0);
2278 /* Emit code to move a block SRC of type TYPE to a block DST,
2279 where DST is non-consecutive registers represented by a PARALLEL.
2280 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2281 if not known. */
2283 void
2284 emit_group_load (rtx dst, rtx src, tree type, int ssize)
2286 rtx *tmps;
2287 int i;
2289 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2290 emit_group_load_1 (tmps, dst, src, type, ssize);
2292 /* Copy the extracted pieces into the proper (probable) hard regs. */
2293 for (i = 0; i < XVECLEN (dst, 0); i++)
2295 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2296 if (d == NULL)
2297 continue;
2298 emit_move_insn (d, tmps[i]);
2302 /* Similar, but load SRC into new pseudos in a format that looks like
2303 PARALLEL. This can later be fed to emit_group_move to get things
2304 in the right place. */
2307 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
2309 rtvec vec;
2310 int i;
2312 vec = rtvec_alloc (XVECLEN (parallel, 0));
2313 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2315 /* Convert the vector to look just like the original PARALLEL, except
2316 with the computed values. */
2317 for (i = 0; i < XVECLEN (parallel, 0); i++)
2319 rtx e = XVECEXP (parallel, 0, i);
2320 rtx d = XEXP (e, 0);
2322 if (d)
2324 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2325 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2327 RTVEC_ELT (vec, i) = e;
2330 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2333 /* Emit code to move a block SRC to block DST, where SRC and DST are
2334 non-consecutive groups of registers, each represented by a PARALLEL. */
2336 void
2337 emit_group_move (rtx dst, rtx src)
2339 int i;
2341 gcc_assert (GET_CODE (src) == PARALLEL
2342 && GET_CODE (dst) == PARALLEL
2343 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2345 /* Skip first entry if NULL. */
2346 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2347 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2348 XEXP (XVECEXP (src, 0, i), 0));
2351 /* Move a group of registers represented by a PARALLEL into pseudos. */
2354 emit_group_move_into_temps (rtx src)
2356 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2357 int i;
2359 for (i = 0; i < XVECLEN (src, 0); i++)
2361 rtx e = XVECEXP (src, 0, i);
2362 rtx d = XEXP (e, 0);
2364 if (d)
2365 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2366 RTVEC_ELT (vec, i) = e;
2369 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2372 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2373 where SRC is non-consecutive registers represented by a PARALLEL.
2374 SSIZE represents the total size of block ORIG_DST, or -1 if not
2375 known. */
2377 void
2378 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
2380 rtx *tmps, dst;
2381 int start, finish, i;
2382 machine_mode m = GET_MODE (orig_dst);
2384 gcc_assert (GET_CODE (src) == PARALLEL);
2386 if (!SCALAR_INT_MODE_P (m)
2387 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2389 scalar_int_mode imode;
2390 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2392 dst = gen_reg_rtx (imode);
2393 emit_group_store (dst, src, type, ssize);
2394 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2396 else
2398 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2399 emit_group_store (dst, src, type, ssize);
2401 emit_move_insn (orig_dst, dst);
2402 return;
2405 /* Check for a NULL entry, used to indicate that the parameter goes
2406 both on the stack and in registers. */
2407 if (XEXP (XVECEXP (src, 0, 0), 0))
2408 start = 0;
2409 else
2410 start = 1;
2411 finish = XVECLEN (src, 0);
2413 tmps = XALLOCAVEC (rtx, finish);
2415 /* Copy the (probable) hard regs into pseudos. */
2416 for (i = start; i < finish; i++)
2418 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2419 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2421 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2422 emit_move_insn (tmps[i], reg);
2424 else
2425 tmps[i] = reg;
2428 /* If we won't be storing directly into memory, protect the real destination
2429 from strange tricks we might play. */
2430 dst = orig_dst;
2431 if (GET_CODE (dst) == PARALLEL)
2433 rtx temp;
2435 /* We can get a PARALLEL dst if there is a conditional expression in
2436 a return statement. In that case, the dst and src are the same,
2437 so no action is necessary. */
2438 if (rtx_equal_p (dst, src))
2439 return;
2441 /* It is unclear if we can ever reach here, but we may as well handle
2442 it. Allocate a temporary, and split this into a store/load to/from
2443 the temporary. */
2444 temp = assign_stack_temp (GET_MODE (dst), ssize);
2445 emit_group_store (temp, src, type, ssize);
2446 emit_group_load (dst, temp, type, ssize);
2447 return;
2449 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2451 machine_mode outer = GET_MODE (dst);
2452 machine_mode inner;
2453 HOST_WIDE_INT bytepos;
2454 bool done = false;
2455 rtx temp;
2457 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2458 dst = gen_reg_rtx (outer);
2460 /* Make life a bit easier for combine. */
2461 /* If the first element of the vector is the low part
2462 of the destination mode, use a paradoxical subreg to
2463 initialize the destination. */
2464 if (start < finish)
2466 inner = GET_MODE (tmps[start]);
2467 bytepos = subreg_lowpart_offset (inner, outer);
2468 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2470 temp = simplify_gen_subreg (outer, tmps[start],
2471 inner, 0);
2472 if (temp)
2474 emit_move_insn (dst, temp);
2475 done = true;
2476 start++;
2481 /* If the first element wasn't the low part, try the last. */
2482 if (!done
2483 && start < finish - 1)
2485 inner = GET_MODE (tmps[finish - 1]);
2486 bytepos = subreg_lowpart_offset (inner, outer);
2487 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2489 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2490 inner, 0);
2491 if (temp)
2493 emit_move_insn (dst, temp);
2494 done = true;
2495 finish--;
2500 /* Otherwise, simply initialize the result to zero. */
2501 if (!done)
2502 emit_move_insn (dst, CONST0_RTX (outer));
2505 /* Process the pieces. */
2506 for (i = start; i < finish; i++)
2508 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2509 machine_mode mode = GET_MODE (tmps[i]);
2510 unsigned int bytelen = GET_MODE_SIZE (mode);
2511 unsigned int adj_bytelen;
2512 rtx dest = dst;
2514 /* Handle trailing fragments that run over the size of the struct. */
2515 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2516 adj_bytelen = ssize - bytepos;
2517 else
2518 adj_bytelen = bytelen;
2520 if (GET_CODE (dst) == CONCAT)
2522 if (bytepos + adj_bytelen
2523 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2524 dest = XEXP (dst, 0);
2525 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2527 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2528 dest = XEXP (dst, 1);
2530 else
2532 machine_mode dest_mode = GET_MODE (dest);
2533 machine_mode tmp_mode = GET_MODE (tmps[i]);
2535 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2537 if (GET_MODE_ALIGNMENT (dest_mode)
2538 >= GET_MODE_ALIGNMENT (tmp_mode))
2540 dest = assign_stack_temp (dest_mode,
2541 GET_MODE_SIZE (dest_mode));
2542 emit_move_insn (adjust_address (dest,
2543 tmp_mode,
2544 bytepos),
2545 tmps[i]);
2546 dst = dest;
2548 else
2550 dest = assign_stack_temp (tmp_mode,
2551 GET_MODE_SIZE (tmp_mode));
2552 emit_move_insn (dest, tmps[i]);
2553 dst = adjust_address (dest, dest_mode, bytepos);
2555 break;
2559 /* Handle trailing fragments that run over the size of the struct. */
2560 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2562 /* store_bit_field always takes its value from the lsb.
2563 Move the fragment to the lsb if it's not already there. */
2564 if (
2565 #ifdef BLOCK_REG_PADDING
2566 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2567 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2568 #else
2569 BYTES_BIG_ENDIAN
2570 #endif
2573 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2574 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2575 shift, tmps[i], 0);
2578 /* Make sure not to write past the end of the struct. */
2579 store_bit_field (dest,
2580 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2581 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2582 VOIDmode, tmps[i], false);
2585 /* Optimize the access just a bit. */
2586 else if (MEM_P (dest)
2587 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2588 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2589 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2590 && bytelen == GET_MODE_SIZE (mode))
2591 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2593 else
2594 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2595 0, 0, mode, tmps[i], false);
2598 /* Copy from the pseudo into the (probable) hard reg. */
2599 if (orig_dst != dst)
2600 emit_move_insn (orig_dst, dst);
2603 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2604 of the value stored in X. */
2607 maybe_emit_group_store (rtx x, tree type)
2609 machine_mode mode = TYPE_MODE (type);
2610 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2611 if (GET_CODE (x) == PARALLEL)
2613 rtx result = gen_reg_rtx (mode);
2614 emit_group_store (result, x, type, int_size_in_bytes (type));
2615 return result;
2617 return x;
2620 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2622 This is used on targets that return BLKmode values in registers. */
2624 static void
2625 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2627 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2628 rtx src = NULL, dst = NULL;
2629 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2630 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2631 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2632 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2633 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2634 fixed_size_mode copy_mode;
2636 /* BLKmode registers created in the back-end shouldn't have survived. */
2637 gcc_assert (mode != BLKmode);
2639 /* If the structure doesn't take up a whole number of words, see whether
2640 SRCREG is padded on the left or on the right. If it's on the left,
2641 set PADDING_CORRECTION to the number of bits to skip.
2643 In most ABIs, the structure will be returned at the least end of
2644 the register, which translates to right padding on little-endian
2645 targets and left padding on big-endian targets. The opposite
2646 holds if the structure is returned at the most significant
2647 end of the register. */
2648 if (bytes % UNITS_PER_WORD != 0
2649 && (targetm.calls.return_in_msb (type)
2650 ? !BYTES_BIG_ENDIAN
2651 : BYTES_BIG_ENDIAN))
2652 padding_correction
2653 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2655 /* We can use a single move if we have an exact mode for the size. */
2656 else if (MEM_P (target)
2657 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2658 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2659 && bytes == GET_MODE_SIZE (mode))
2661 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2662 return;
2665 /* And if we additionally have the same mode for a register. */
2666 else if (REG_P (target)
2667 && GET_MODE (target) == mode
2668 && bytes == GET_MODE_SIZE (mode))
2670 emit_move_insn (target, srcreg);
2671 return;
2674 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2675 into a new pseudo which is a full word. */
2676 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2678 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2679 mode = word_mode;
2682 /* Copy the structure BITSIZE bits at a time. If the target lives in
2683 memory, take care of not reading/writing past its end by selecting
2684 a copy mode suited to BITSIZE. This should always be possible given
2685 how it is computed.
2687 If the target lives in register, make sure not to select a copy mode
2688 larger than the mode of the register.
2690 We could probably emit more efficient code for machines which do not use
2691 strict alignment, but it doesn't seem worth the effort at the current
2692 time. */
2694 copy_mode = word_mode;
2695 if (MEM_P (target))
2697 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2698 if (mem_mode.exists ())
2699 copy_mode = mem_mode.require ();
2701 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2702 copy_mode = tmode;
2704 for (bitpos = 0, xbitpos = padding_correction;
2705 bitpos < bytes * BITS_PER_UNIT;
2706 bitpos += bitsize, xbitpos += bitsize)
2708 /* We need a new source operand each time xbitpos is on a
2709 word boundary and when xbitpos == padding_correction
2710 (the first time through). */
2711 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2712 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2714 /* We need a new destination operand each time bitpos is on
2715 a word boundary. */
2716 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2717 dst = target;
2718 else if (bitpos % BITS_PER_WORD == 0)
2719 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2721 /* Use xbitpos for the source extraction (right justified) and
2722 bitpos for the destination store (left justified). */
2723 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2724 extract_bit_field (src, bitsize,
2725 xbitpos % BITS_PER_WORD, 1,
2726 NULL_RTX, copy_mode, copy_mode,
2727 false, NULL),
2728 false);
2732 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2733 register if it contains any data, otherwise return null.
2735 This is used on targets that return BLKmode values in registers. */
2738 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2740 int i, n_regs;
2741 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2742 unsigned int bitsize;
2743 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2744 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2745 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2746 fixed_size_mode dst_mode;
2748 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2750 x = expand_normal (src);
2752 bytes = int_size_in_bytes (TREE_TYPE (src));
2753 if (bytes == 0)
2754 return NULL_RTX;
2756 /* If the structure doesn't take up a whole number of words, see
2757 whether the register value should be padded on the left or on
2758 the right. Set PADDING_CORRECTION to the number of padding
2759 bits needed on the left side.
2761 In most ABIs, the structure will be returned at the least end of
2762 the register, which translates to right padding on little-endian
2763 targets and left padding on big-endian targets. The opposite
2764 holds if the structure is returned at the most significant
2765 end of the register. */
2766 if (bytes % UNITS_PER_WORD != 0
2767 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2768 ? !BYTES_BIG_ENDIAN
2769 : BYTES_BIG_ENDIAN))
2770 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2771 * BITS_PER_UNIT));
2773 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2774 dst_words = XALLOCAVEC (rtx, n_regs);
2775 bitsize = BITS_PER_WORD;
2776 if (targetm.slow_unaligned_access (word_mode, TYPE_ALIGN (TREE_TYPE (src))))
2777 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2779 /* Copy the structure BITSIZE bits at a time. */
2780 for (bitpos = 0, xbitpos = padding_correction;
2781 bitpos < bytes * BITS_PER_UNIT;
2782 bitpos += bitsize, xbitpos += bitsize)
2784 /* We need a new destination pseudo each time xbitpos is
2785 on a word boundary and when xbitpos == padding_correction
2786 (the first time through). */
2787 if (xbitpos % BITS_PER_WORD == 0
2788 || xbitpos == padding_correction)
2790 /* Generate an appropriate register. */
2791 dst_word = gen_reg_rtx (word_mode);
2792 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2794 /* Clear the destination before we move anything into it. */
2795 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2798 /* We need a new source operand each time bitpos is on a word
2799 boundary. */
2800 if (bitpos % BITS_PER_WORD == 0)
2801 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2803 /* Use bitpos for the source extraction (left justified) and
2804 xbitpos for the destination store (right justified). */
2805 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2806 0, 0, word_mode,
2807 extract_bit_field (src_word, bitsize,
2808 bitpos % BITS_PER_WORD, 1,
2809 NULL_RTX, word_mode, word_mode,
2810 false, NULL),
2811 false);
2814 if (mode == BLKmode)
2816 /* Find the smallest integer mode large enough to hold the
2817 entire structure. */
2818 opt_scalar_int_mode mode_iter;
2819 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2820 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2821 break;
2823 /* A suitable mode should have been found. */
2824 mode = mode_iter.require ();
2827 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2828 dst_mode = word_mode;
2829 else
2830 dst_mode = mode;
2831 dst = gen_reg_rtx (dst_mode);
2833 for (i = 0; i < n_regs; i++)
2834 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2836 if (mode != dst_mode)
2837 dst = gen_lowpart (mode, dst);
2839 return dst;
2842 /* Add a USE expression for REG to the (possibly empty) list pointed
2843 to by CALL_FUSAGE. REG must denote a hard register. */
2845 void
2846 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2848 gcc_assert (REG_P (reg));
2850 if (!HARD_REGISTER_P (reg))
2851 return;
2853 *call_fusage
2854 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2857 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2858 to by CALL_FUSAGE. REG must denote a hard register. */
2860 void
2861 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2863 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2865 *call_fusage
2866 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2869 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2870 starting at REGNO. All of these registers must be hard registers. */
2872 void
2873 use_regs (rtx *call_fusage, int regno, int nregs)
2875 int i;
2877 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2879 for (i = 0; i < nregs; i++)
2880 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2883 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2884 PARALLEL REGS. This is for calls that pass values in multiple
2885 non-contiguous locations. The Irix 6 ABI has examples of this. */
2887 void
2888 use_group_regs (rtx *call_fusage, rtx regs)
2890 int i;
2892 for (i = 0; i < XVECLEN (regs, 0); i++)
2894 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2896 /* A NULL entry means the parameter goes both on the stack and in
2897 registers. This can also be a MEM for targets that pass values
2898 partially on the stack and partially in registers. */
2899 if (reg != 0 && REG_P (reg))
2900 use_reg (call_fusage, reg);
2904 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2905 assigment and the code of the expresion on the RHS is CODE. Return
2906 NULL otherwise. */
2908 static gimple *
2909 get_def_for_expr (tree name, enum tree_code code)
2911 gimple *def_stmt;
2913 if (TREE_CODE (name) != SSA_NAME)
2914 return NULL;
2916 def_stmt = get_gimple_for_ssa_name (name);
2917 if (!def_stmt
2918 || gimple_assign_rhs_code (def_stmt) != code)
2919 return NULL;
2921 return def_stmt;
2924 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2925 assigment and the class of the expresion on the RHS is CLASS. Return
2926 NULL otherwise. */
2928 static gimple *
2929 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2931 gimple *def_stmt;
2933 if (TREE_CODE (name) != SSA_NAME)
2934 return NULL;
2936 def_stmt = get_gimple_for_ssa_name (name);
2937 if (!def_stmt
2938 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2939 return NULL;
2941 return def_stmt;
2944 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2945 its length in bytes. */
2948 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2949 unsigned int expected_align, HOST_WIDE_INT expected_size,
2950 unsigned HOST_WIDE_INT min_size,
2951 unsigned HOST_WIDE_INT max_size,
2952 unsigned HOST_WIDE_INT probable_max_size)
2954 machine_mode mode = GET_MODE (object);
2955 unsigned int align;
2957 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2959 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2960 just move a zero. Otherwise, do this a piece at a time. */
2961 if (mode != BLKmode
2962 && CONST_INT_P (size)
2963 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2965 rtx zero = CONST0_RTX (mode);
2966 if (zero != NULL)
2968 emit_move_insn (object, zero);
2969 return NULL;
2972 if (COMPLEX_MODE_P (mode))
2974 zero = CONST0_RTX (GET_MODE_INNER (mode));
2975 if (zero != NULL)
2977 write_complex_part (object, zero, 0);
2978 write_complex_part (object, zero, 1);
2979 return NULL;
2984 if (size == const0_rtx)
2985 return NULL;
2987 align = MEM_ALIGN (object);
2989 if (CONST_INT_P (size)
2990 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2991 CLEAR_BY_PIECES,
2992 optimize_insn_for_speed_p ()))
2993 clear_by_pieces (object, INTVAL (size), align);
2994 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2995 expected_align, expected_size,
2996 min_size, max_size, probable_max_size))
2998 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2999 return set_storage_via_libcall (object, size, const0_rtx,
3000 method == BLOCK_OP_TAILCALL);
3001 else
3002 gcc_unreachable ();
3004 return NULL;
3008 clear_storage (rtx object, rtx size, enum block_op_methods method)
3010 unsigned HOST_WIDE_INT max, min = 0;
3011 if (GET_CODE (size) == CONST_INT)
3012 min = max = UINTVAL (size);
3013 else
3014 max = GET_MODE_MASK (GET_MODE (size));
3015 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3019 /* A subroutine of clear_storage. Expand a call to memset.
3020 Return the return value of memset, 0 otherwise. */
3023 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3025 tree call_expr, fn, object_tree, size_tree, val_tree;
3026 machine_mode size_mode;
3028 object = copy_addr_to_reg (XEXP (object, 0));
3029 object_tree = make_tree (ptr_type_node, object);
3031 if (!CONST_INT_P (val))
3032 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3033 val_tree = make_tree (integer_type_node, val);
3035 size_mode = TYPE_MODE (sizetype);
3036 size = convert_to_mode (size_mode, size, 1);
3037 size = copy_to_mode_reg (size_mode, size);
3038 size_tree = make_tree (sizetype, size);
3040 /* It is incorrect to use the libcall calling conventions for calls to
3041 memset because it can be provided by the user. */
3042 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3043 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3044 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3046 return expand_call (call_expr, NULL_RTX, false);
3049 /* Expand a setmem pattern; return true if successful. */
3051 bool
3052 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3053 unsigned int expected_align, HOST_WIDE_INT expected_size,
3054 unsigned HOST_WIDE_INT min_size,
3055 unsigned HOST_WIDE_INT max_size,
3056 unsigned HOST_WIDE_INT probable_max_size)
3058 /* Try the most limited insn first, because there's no point
3059 including more than one in the machine description unless
3060 the more limited one has some advantage. */
3062 if (expected_align < align)
3063 expected_align = align;
3064 if (expected_size != -1)
3066 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3067 expected_size = max_size;
3068 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3069 expected_size = min_size;
3072 opt_scalar_int_mode mode_iter;
3073 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3075 scalar_int_mode mode = mode_iter.require ();
3076 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3078 if (code != CODE_FOR_nothing
3079 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3080 here because if SIZE is less than the mode mask, as it is
3081 returned by the macro, it will definitely be less than the
3082 actual mode mask. Since SIZE is within the Pmode address
3083 space, we limit MODE to Pmode. */
3084 && ((CONST_INT_P (size)
3085 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3086 <= (GET_MODE_MASK (mode) >> 1)))
3087 || max_size <= (GET_MODE_MASK (mode) >> 1)
3088 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3090 struct expand_operand ops[9];
3091 unsigned int nops;
3093 nops = insn_data[(int) code].n_generator_args;
3094 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3096 create_fixed_operand (&ops[0], object);
3097 /* The check above guarantees that this size conversion is valid. */
3098 create_convert_operand_to (&ops[1], size, mode, true);
3099 create_convert_operand_from (&ops[2], val, byte_mode, true);
3100 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3101 if (nops >= 6)
3103 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3104 create_integer_operand (&ops[5], expected_size);
3106 if (nops >= 8)
3108 create_integer_operand (&ops[6], min_size);
3109 /* If we can not represent the maximal size,
3110 make parameter NULL. */
3111 if ((HOST_WIDE_INT) max_size != -1)
3112 create_integer_operand (&ops[7], max_size);
3113 else
3114 create_fixed_operand (&ops[7], NULL);
3116 if (nops == 9)
3118 /* If we can not represent the maximal size,
3119 make parameter NULL. */
3120 if ((HOST_WIDE_INT) probable_max_size != -1)
3121 create_integer_operand (&ops[8], probable_max_size);
3122 else
3123 create_fixed_operand (&ops[8], NULL);
3125 if (maybe_expand_insn (code, nops, ops))
3126 return true;
3130 return false;
3134 /* Write to one of the components of the complex value CPLX. Write VAL to
3135 the real part if IMAG_P is false, and the imaginary part if its true. */
3137 void
3138 write_complex_part (rtx cplx, rtx val, bool imag_p)
3140 machine_mode cmode;
3141 scalar_mode imode;
3142 unsigned ibitsize;
3144 if (GET_CODE (cplx) == CONCAT)
3146 emit_move_insn (XEXP (cplx, imag_p), val);
3147 return;
3150 cmode = GET_MODE (cplx);
3151 imode = GET_MODE_INNER (cmode);
3152 ibitsize = GET_MODE_BITSIZE (imode);
3154 /* For MEMs simplify_gen_subreg may generate an invalid new address
3155 because, e.g., the original address is considered mode-dependent
3156 by the target, which restricts simplify_subreg from invoking
3157 adjust_address_nv. Instead of preparing fallback support for an
3158 invalid address, we call adjust_address_nv directly. */
3159 if (MEM_P (cplx))
3161 emit_move_insn (adjust_address_nv (cplx, imode,
3162 imag_p ? GET_MODE_SIZE (imode) : 0),
3163 val);
3164 return;
3167 /* If the sub-object is at least word sized, then we know that subregging
3168 will work. This special case is important, since store_bit_field
3169 wants to operate on integer modes, and there's rarely an OImode to
3170 correspond to TCmode. */
3171 if (ibitsize >= BITS_PER_WORD
3172 /* For hard regs we have exact predicates. Assume we can split
3173 the original object if it spans an even number of hard regs.
3174 This special case is important for SCmode on 64-bit platforms
3175 where the natural size of floating-point regs is 32-bit. */
3176 || (REG_P (cplx)
3177 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3178 && REG_NREGS (cplx) % 2 == 0))
3180 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3181 imag_p ? GET_MODE_SIZE (imode) : 0);
3182 if (part)
3184 emit_move_insn (part, val);
3185 return;
3187 else
3188 /* simplify_gen_subreg may fail for sub-word MEMs. */
3189 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3192 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3193 false);
3196 /* Extract one of the components of the complex value CPLX. Extract the
3197 real part if IMAG_P is false, and the imaginary part if it's true. */
3200 read_complex_part (rtx cplx, bool imag_p)
3202 machine_mode cmode;
3203 scalar_mode imode;
3204 unsigned ibitsize;
3206 if (GET_CODE (cplx) == CONCAT)
3207 return XEXP (cplx, imag_p);
3209 cmode = GET_MODE (cplx);
3210 imode = GET_MODE_INNER (cmode);
3211 ibitsize = GET_MODE_BITSIZE (imode);
3213 /* Special case reads from complex constants that got spilled to memory. */
3214 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3216 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3217 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3219 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3220 if (CONSTANT_CLASS_P (part))
3221 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3225 /* For MEMs simplify_gen_subreg may generate an invalid new address
3226 because, e.g., the original address is considered mode-dependent
3227 by the target, which restricts simplify_subreg from invoking
3228 adjust_address_nv. Instead of preparing fallback support for an
3229 invalid address, we call adjust_address_nv directly. */
3230 if (MEM_P (cplx))
3231 return adjust_address_nv (cplx, imode,
3232 imag_p ? GET_MODE_SIZE (imode) : 0);
3234 /* If the sub-object is at least word sized, then we know that subregging
3235 will work. This special case is important, since extract_bit_field
3236 wants to operate on integer modes, and there's rarely an OImode to
3237 correspond to TCmode. */
3238 if (ibitsize >= BITS_PER_WORD
3239 /* For hard regs we have exact predicates. Assume we can split
3240 the original object if it spans an even number of hard regs.
3241 This special case is important for SCmode on 64-bit platforms
3242 where the natural size of floating-point regs is 32-bit. */
3243 || (REG_P (cplx)
3244 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3245 && REG_NREGS (cplx) % 2 == 0))
3247 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3248 imag_p ? GET_MODE_SIZE (imode) : 0);
3249 if (ret)
3250 return ret;
3251 else
3252 /* simplify_gen_subreg may fail for sub-word MEMs. */
3253 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3256 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3257 true, NULL_RTX, imode, imode, false, NULL);
3260 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3261 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3262 represented in NEW_MODE. If FORCE is true, this will never happen, as
3263 we'll force-create a SUBREG if needed. */
3265 static rtx
3266 emit_move_change_mode (machine_mode new_mode,
3267 machine_mode old_mode, rtx x, bool force)
3269 rtx ret;
3271 if (push_operand (x, GET_MODE (x)))
3273 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3274 MEM_COPY_ATTRIBUTES (ret, x);
3276 else if (MEM_P (x))
3278 /* We don't have to worry about changing the address since the
3279 size in bytes is supposed to be the same. */
3280 if (reload_in_progress)
3282 /* Copy the MEM to change the mode and move any
3283 substitutions from the old MEM to the new one. */
3284 ret = adjust_address_nv (x, new_mode, 0);
3285 copy_replacements (x, ret);
3287 else
3288 ret = adjust_address (x, new_mode, 0);
3290 else
3292 /* Note that we do want simplify_subreg's behavior of validating
3293 that the new mode is ok for a hard register. If we were to use
3294 simplify_gen_subreg, we would create the subreg, but would
3295 probably run into the target not being able to implement it. */
3296 /* Except, of course, when FORCE is true, when this is exactly what
3297 we want. Which is needed for CCmodes on some targets. */
3298 if (force)
3299 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3300 else
3301 ret = simplify_subreg (new_mode, x, old_mode, 0);
3304 return ret;
3307 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3308 an integer mode of the same size as MODE. Returns the instruction
3309 emitted, or NULL if such a move could not be generated. */
3311 static rtx_insn *
3312 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3314 scalar_int_mode imode;
3315 enum insn_code code;
3317 /* There must exist a mode of the exact size we require. */
3318 if (!int_mode_for_mode (mode).exists (&imode))
3319 return NULL;
3321 /* The target must support moves in this mode. */
3322 code = optab_handler (mov_optab, imode);
3323 if (code == CODE_FOR_nothing)
3324 return NULL;
3326 x = emit_move_change_mode (imode, mode, x, force);
3327 if (x == NULL_RTX)
3328 return NULL;
3329 y = emit_move_change_mode (imode, mode, y, force);
3330 if (y == NULL_RTX)
3331 return NULL;
3332 return emit_insn (GEN_FCN (code) (x, y));
3335 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3336 Return an equivalent MEM that does not use an auto-increment. */
3339 emit_move_resolve_push (machine_mode mode, rtx x)
3341 enum rtx_code code = GET_CODE (XEXP (x, 0));
3342 HOST_WIDE_INT adjust;
3343 rtx temp;
3345 adjust = GET_MODE_SIZE (mode);
3346 #ifdef PUSH_ROUNDING
3347 adjust = PUSH_ROUNDING (adjust);
3348 #endif
3349 if (code == PRE_DEC || code == POST_DEC)
3350 adjust = -adjust;
3351 else if (code == PRE_MODIFY || code == POST_MODIFY)
3353 rtx expr = XEXP (XEXP (x, 0), 1);
3354 HOST_WIDE_INT val;
3356 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3357 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3358 val = INTVAL (XEXP (expr, 1));
3359 if (GET_CODE (expr) == MINUS)
3360 val = -val;
3361 gcc_assert (adjust == val || adjust == -val);
3362 adjust = val;
3365 /* Do not use anti_adjust_stack, since we don't want to update
3366 stack_pointer_delta. */
3367 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3368 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3369 0, OPTAB_LIB_WIDEN);
3370 if (temp != stack_pointer_rtx)
3371 emit_move_insn (stack_pointer_rtx, temp);
3373 switch (code)
3375 case PRE_INC:
3376 case PRE_DEC:
3377 case PRE_MODIFY:
3378 temp = stack_pointer_rtx;
3379 break;
3380 case POST_INC:
3381 case POST_DEC:
3382 case POST_MODIFY:
3383 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3384 break;
3385 default:
3386 gcc_unreachable ();
3389 return replace_equiv_address (x, temp);
3392 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3393 X is known to satisfy push_operand, and MODE is known to be complex.
3394 Returns the last instruction emitted. */
3396 rtx_insn *
3397 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3399 scalar_mode submode = GET_MODE_INNER (mode);
3400 bool imag_first;
3402 #ifdef PUSH_ROUNDING
3403 unsigned int submodesize = GET_MODE_SIZE (submode);
3405 /* In case we output to the stack, but the size is smaller than the
3406 machine can push exactly, we need to use move instructions. */
3407 if (PUSH_ROUNDING (submodesize) != submodesize)
3409 x = emit_move_resolve_push (mode, x);
3410 return emit_move_insn (x, y);
3412 #endif
3414 /* Note that the real part always precedes the imag part in memory
3415 regardless of machine's endianness. */
3416 switch (GET_CODE (XEXP (x, 0)))
3418 case PRE_DEC:
3419 case POST_DEC:
3420 imag_first = true;
3421 break;
3422 case PRE_INC:
3423 case POST_INC:
3424 imag_first = false;
3425 break;
3426 default:
3427 gcc_unreachable ();
3430 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3431 read_complex_part (y, imag_first));
3432 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3433 read_complex_part (y, !imag_first));
3436 /* A subroutine of emit_move_complex. Perform the move from Y to X
3437 via two moves of the parts. Returns the last instruction emitted. */
3439 rtx_insn *
3440 emit_move_complex_parts (rtx x, rtx y)
3442 /* Show the output dies here. This is necessary for SUBREGs
3443 of pseudos since we cannot track their lifetimes correctly;
3444 hard regs shouldn't appear here except as return values. */
3445 if (!reload_completed && !reload_in_progress
3446 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3447 emit_clobber (x);
3449 write_complex_part (x, read_complex_part (y, false), false);
3450 write_complex_part (x, read_complex_part (y, true), true);
3452 return get_last_insn ();
3455 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3456 MODE is known to be complex. Returns the last instruction emitted. */
3458 static rtx_insn *
3459 emit_move_complex (machine_mode mode, rtx x, rtx y)
3461 bool try_int;
3463 /* Need to take special care for pushes, to maintain proper ordering
3464 of the data, and possibly extra padding. */
3465 if (push_operand (x, mode))
3466 return emit_move_complex_push (mode, x, y);
3468 /* See if we can coerce the target into moving both values at once, except
3469 for floating point where we favor moving as parts if this is easy. */
3470 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3471 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3472 && !(REG_P (x)
3473 && HARD_REGISTER_P (x)
3474 && REG_NREGS (x) == 1)
3475 && !(REG_P (y)
3476 && HARD_REGISTER_P (y)
3477 && REG_NREGS (y) == 1))
3478 try_int = false;
3479 /* Not possible if the values are inherently not adjacent. */
3480 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3481 try_int = false;
3482 /* Is possible if both are registers (or subregs of registers). */
3483 else if (register_operand (x, mode) && register_operand (y, mode))
3484 try_int = true;
3485 /* If one of the operands is a memory, and alignment constraints
3486 are friendly enough, we may be able to do combined memory operations.
3487 We do not attempt this if Y is a constant because that combination is
3488 usually better with the by-parts thing below. */
3489 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3490 && (!STRICT_ALIGNMENT
3491 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3492 try_int = true;
3493 else
3494 try_int = false;
3496 if (try_int)
3498 rtx_insn *ret;
3500 /* For memory to memory moves, optimal behavior can be had with the
3501 existing block move logic. */
3502 if (MEM_P (x) && MEM_P (y))
3504 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3505 BLOCK_OP_NO_LIBCALL);
3506 return get_last_insn ();
3509 ret = emit_move_via_integer (mode, x, y, true);
3510 if (ret)
3511 return ret;
3514 return emit_move_complex_parts (x, y);
3517 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3518 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3520 static rtx_insn *
3521 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3523 rtx_insn *ret;
3525 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3526 if (mode != CCmode)
3528 enum insn_code code = optab_handler (mov_optab, CCmode);
3529 if (code != CODE_FOR_nothing)
3531 x = emit_move_change_mode (CCmode, mode, x, true);
3532 y = emit_move_change_mode (CCmode, mode, y, true);
3533 return emit_insn (GEN_FCN (code) (x, y));
3537 /* Otherwise, find the MODE_INT mode of the same width. */
3538 ret = emit_move_via_integer (mode, x, y, false);
3539 gcc_assert (ret != NULL);
3540 return ret;
3543 /* Return true if word I of OP lies entirely in the
3544 undefined bits of a paradoxical subreg. */
3546 static bool
3547 undefined_operand_subword_p (const_rtx op, int i)
3549 if (GET_CODE (op) != SUBREG)
3550 return false;
3551 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3552 HOST_WIDE_INT offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3553 return (offset >= GET_MODE_SIZE (innermostmode)
3554 || offset <= -UNITS_PER_WORD);
3557 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3558 MODE is any multi-word or full-word mode that lacks a move_insn
3559 pattern. Note that you will get better code if you define such
3560 patterns, even if they must turn into multiple assembler instructions. */
3562 static rtx_insn *
3563 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3565 rtx_insn *last_insn = 0;
3566 rtx_insn *seq;
3567 rtx inner;
3568 bool need_clobber;
3569 int i;
3571 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3573 /* If X is a push on the stack, do the push now and replace
3574 X with a reference to the stack pointer. */
3575 if (push_operand (x, mode))
3576 x = emit_move_resolve_push (mode, x);
3578 /* If we are in reload, see if either operand is a MEM whose address
3579 is scheduled for replacement. */
3580 if (reload_in_progress && MEM_P (x)
3581 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3582 x = replace_equiv_address_nv (x, inner);
3583 if (reload_in_progress && MEM_P (y)
3584 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3585 y = replace_equiv_address_nv (y, inner);
3587 start_sequence ();
3589 need_clobber = false;
3590 for (i = 0;
3591 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3592 i++)
3594 rtx xpart = operand_subword (x, i, 1, mode);
3595 rtx ypart;
3597 /* Do not generate code for a move if it would come entirely
3598 from the undefined bits of a paradoxical subreg. */
3599 if (undefined_operand_subword_p (y, i))
3600 continue;
3602 ypart = operand_subword (y, i, 1, mode);
3604 /* If we can't get a part of Y, put Y into memory if it is a
3605 constant. Otherwise, force it into a register. Then we must
3606 be able to get a part of Y. */
3607 if (ypart == 0 && CONSTANT_P (y))
3609 y = use_anchored_address (force_const_mem (mode, y));
3610 ypart = operand_subword (y, i, 1, mode);
3612 else if (ypart == 0)
3613 ypart = operand_subword_force (y, i, mode);
3615 gcc_assert (xpart && ypart);
3617 need_clobber |= (GET_CODE (xpart) == SUBREG);
3619 last_insn = emit_move_insn (xpart, ypart);
3622 seq = get_insns ();
3623 end_sequence ();
3625 /* Show the output dies here. This is necessary for SUBREGs
3626 of pseudos since we cannot track their lifetimes correctly;
3627 hard regs shouldn't appear here except as return values.
3628 We never want to emit such a clobber after reload. */
3629 if (x != y
3630 && ! (reload_in_progress || reload_completed)
3631 && need_clobber != 0)
3632 emit_clobber (x);
3634 emit_insn (seq);
3636 return last_insn;
3639 /* Low level part of emit_move_insn.
3640 Called just like emit_move_insn, but assumes X and Y
3641 are basically valid. */
3643 rtx_insn *
3644 emit_move_insn_1 (rtx x, rtx y)
3646 machine_mode mode = GET_MODE (x);
3647 enum insn_code code;
3649 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3651 code = optab_handler (mov_optab, mode);
3652 if (code != CODE_FOR_nothing)
3653 return emit_insn (GEN_FCN (code) (x, y));
3655 /* Expand complex moves by moving real part and imag part. */
3656 if (COMPLEX_MODE_P (mode))
3657 return emit_move_complex (mode, x, y);
3659 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3660 || ALL_FIXED_POINT_MODE_P (mode))
3662 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3664 /* If we can't find an integer mode, use multi words. */
3665 if (result)
3666 return result;
3667 else
3668 return emit_move_multi_word (mode, x, y);
3671 if (GET_MODE_CLASS (mode) == MODE_CC)
3672 return emit_move_ccmode (mode, x, y);
3674 /* Try using a move pattern for the corresponding integer mode. This is
3675 only safe when simplify_subreg can convert MODE constants into integer
3676 constants. At present, it can only do this reliably if the value
3677 fits within a HOST_WIDE_INT. */
3678 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3680 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3682 if (ret)
3684 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3685 return ret;
3689 return emit_move_multi_word (mode, x, y);
3692 /* Generate code to copy Y into X.
3693 Both Y and X must have the same mode, except that
3694 Y can be a constant with VOIDmode.
3695 This mode cannot be BLKmode; use emit_block_move for that.
3697 Return the last instruction emitted. */
3699 rtx_insn *
3700 emit_move_insn (rtx x, rtx y)
3702 machine_mode mode = GET_MODE (x);
3703 rtx y_cst = NULL_RTX;
3704 rtx_insn *last_insn;
3705 rtx set;
3707 gcc_assert (mode != BLKmode
3708 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3710 if (CONSTANT_P (y))
3712 if (optimize
3713 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3714 && (last_insn = compress_float_constant (x, y)))
3715 return last_insn;
3717 y_cst = y;
3719 if (!targetm.legitimate_constant_p (mode, y))
3721 y = force_const_mem (mode, y);
3723 /* If the target's cannot_force_const_mem prevented the spill,
3724 assume that the target's move expanders will also take care
3725 of the non-legitimate constant. */
3726 if (!y)
3727 y = y_cst;
3728 else
3729 y = use_anchored_address (y);
3733 /* If X or Y are memory references, verify that their addresses are valid
3734 for the machine. */
3735 if (MEM_P (x)
3736 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3737 MEM_ADDR_SPACE (x))
3738 && ! push_operand (x, GET_MODE (x))))
3739 x = validize_mem (x);
3741 if (MEM_P (y)
3742 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3743 MEM_ADDR_SPACE (y)))
3744 y = validize_mem (y);
3746 gcc_assert (mode != BLKmode);
3748 last_insn = emit_move_insn_1 (x, y);
3750 if (y_cst && REG_P (x)
3751 && (set = single_set (last_insn)) != NULL_RTX
3752 && SET_DEST (set) == x
3753 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3754 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3756 return last_insn;
3759 /* Generate the body of an instruction to copy Y into X.
3760 It may be a list of insns, if one insn isn't enough. */
3762 rtx_insn *
3763 gen_move_insn (rtx x, rtx y)
3765 rtx_insn *seq;
3767 start_sequence ();
3768 emit_move_insn_1 (x, y);
3769 seq = get_insns ();
3770 end_sequence ();
3771 return seq;
3774 /* If Y is representable exactly in a narrower mode, and the target can
3775 perform the extension directly from constant or memory, then emit the
3776 move as an extension. */
3778 static rtx_insn *
3779 compress_float_constant (rtx x, rtx y)
3781 machine_mode dstmode = GET_MODE (x);
3782 machine_mode orig_srcmode = GET_MODE (y);
3783 machine_mode srcmode;
3784 const REAL_VALUE_TYPE *r;
3785 int oldcost, newcost;
3786 bool speed = optimize_insn_for_speed_p ();
3788 r = CONST_DOUBLE_REAL_VALUE (y);
3790 if (targetm.legitimate_constant_p (dstmode, y))
3791 oldcost = set_src_cost (y, orig_srcmode, speed);
3792 else
3793 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3795 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3797 enum insn_code ic;
3798 rtx trunc_y;
3799 rtx_insn *last_insn;
3801 /* Skip if the target can't extend this way. */
3802 ic = can_extend_p (dstmode, srcmode, 0);
3803 if (ic == CODE_FOR_nothing)
3804 continue;
3806 /* Skip if the narrowed value isn't exact. */
3807 if (! exact_real_truncate (srcmode, r))
3808 continue;
3810 trunc_y = const_double_from_real_value (*r, srcmode);
3812 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3814 /* Skip if the target needs extra instructions to perform
3815 the extension. */
3816 if (!insn_operand_matches (ic, 1, trunc_y))
3817 continue;
3818 /* This is valid, but may not be cheaper than the original. */
3819 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3820 dstmode, speed);
3821 if (oldcost < newcost)
3822 continue;
3824 else if (float_extend_from_mem[dstmode][srcmode])
3826 trunc_y = force_const_mem (srcmode, trunc_y);
3827 /* This is valid, but may not be cheaper than the original. */
3828 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3829 dstmode, speed);
3830 if (oldcost < newcost)
3831 continue;
3832 trunc_y = validize_mem (trunc_y);
3834 else
3835 continue;
3837 /* For CSE's benefit, force the compressed constant pool entry
3838 into a new pseudo. This constant may be used in different modes,
3839 and if not, combine will put things back together for us. */
3840 trunc_y = force_reg (srcmode, trunc_y);
3842 /* If x is a hard register, perform the extension into a pseudo,
3843 so that e.g. stack realignment code is aware of it. */
3844 rtx target = x;
3845 if (REG_P (x) && HARD_REGISTER_P (x))
3846 target = gen_reg_rtx (dstmode);
3848 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3849 last_insn = get_last_insn ();
3851 if (REG_P (target))
3852 set_unique_reg_note (last_insn, REG_EQUAL, y);
3854 if (target != x)
3855 return emit_move_insn (x, target);
3856 return last_insn;
3859 return NULL;
3862 /* Pushing data onto the stack. */
3864 /* Push a block of length SIZE (perhaps variable)
3865 and return an rtx to address the beginning of the block.
3866 The value may be virtual_outgoing_args_rtx.
3868 EXTRA is the number of bytes of padding to push in addition to SIZE.
3869 BELOW nonzero means this padding comes at low addresses;
3870 otherwise, the padding comes at high addresses. */
3873 push_block (rtx size, int extra, int below)
3875 rtx temp;
3877 size = convert_modes (Pmode, ptr_mode, size, 1);
3878 if (CONSTANT_P (size))
3879 anti_adjust_stack (plus_constant (Pmode, size, extra));
3880 else if (REG_P (size) && extra == 0)
3881 anti_adjust_stack (size);
3882 else
3884 temp = copy_to_mode_reg (Pmode, size);
3885 if (extra != 0)
3886 temp = expand_binop (Pmode, add_optab, temp,
3887 gen_int_mode (extra, Pmode),
3888 temp, 0, OPTAB_LIB_WIDEN);
3889 anti_adjust_stack (temp);
3892 if (STACK_GROWS_DOWNWARD)
3894 temp = virtual_outgoing_args_rtx;
3895 if (extra != 0 && below)
3896 temp = plus_constant (Pmode, temp, extra);
3898 else
3900 if (CONST_INT_P (size))
3901 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3902 -INTVAL (size) - (below ? 0 : extra));
3903 else if (extra != 0 && !below)
3904 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3905 negate_rtx (Pmode, plus_constant (Pmode, size,
3906 extra)));
3907 else
3908 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3909 negate_rtx (Pmode, size));
3912 return memory_address (NARROWEST_INT_MODE, temp);
3915 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3917 static rtx
3918 mem_autoinc_base (rtx mem)
3920 if (MEM_P (mem))
3922 rtx addr = XEXP (mem, 0);
3923 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3924 return XEXP (addr, 0);
3926 return NULL;
3929 /* A utility routine used here, in reload, and in try_split. The insns
3930 after PREV up to and including LAST are known to adjust the stack,
3931 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3932 placing notes as appropriate. PREV may be NULL, indicating the
3933 entire insn sequence prior to LAST should be scanned.
3935 The set of allowed stack pointer modifications is small:
3936 (1) One or more auto-inc style memory references (aka pushes),
3937 (2) One or more addition/subtraction with the SP as destination,
3938 (3) A single move insn with the SP as destination,
3939 (4) A call_pop insn,
3940 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3942 Insns in the sequence that do not modify the SP are ignored,
3943 except for noreturn calls.
3945 The return value is the amount of adjustment that can be trivially
3946 verified, via immediate operand or auto-inc. If the adjustment
3947 cannot be trivially extracted, the return value is INT_MIN. */
3949 HOST_WIDE_INT
3950 find_args_size_adjust (rtx_insn *insn)
3952 rtx dest, set, pat;
3953 int i;
3955 pat = PATTERN (insn);
3956 set = NULL;
3958 /* Look for a call_pop pattern. */
3959 if (CALL_P (insn))
3961 /* We have to allow non-call_pop patterns for the case
3962 of emit_single_push_insn of a TLS address. */
3963 if (GET_CODE (pat) != PARALLEL)
3964 return 0;
3966 /* All call_pop have a stack pointer adjust in the parallel.
3967 The call itself is always first, and the stack adjust is
3968 usually last, so search from the end. */
3969 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3971 set = XVECEXP (pat, 0, i);
3972 if (GET_CODE (set) != SET)
3973 continue;
3974 dest = SET_DEST (set);
3975 if (dest == stack_pointer_rtx)
3976 break;
3978 /* We'd better have found the stack pointer adjust. */
3979 if (i == 0)
3980 return 0;
3981 /* Fall through to process the extracted SET and DEST
3982 as if it was a standalone insn. */
3984 else if (GET_CODE (pat) == SET)
3985 set = pat;
3986 else if ((set = single_set (insn)) != NULL)
3988 else if (GET_CODE (pat) == PARALLEL)
3990 /* ??? Some older ports use a parallel with a stack adjust
3991 and a store for a PUSH_ROUNDING pattern, rather than a
3992 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3993 /* ??? See h8300 and m68k, pushqi1. */
3994 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3996 set = XVECEXP (pat, 0, i);
3997 if (GET_CODE (set) != SET)
3998 continue;
3999 dest = SET_DEST (set);
4000 if (dest == stack_pointer_rtx)
4001 break;
4003 /* We do not expect an auto-inc of the sp in the parallel. */
4004 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4005 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4006 != stack_pointer_rtx);
4008 if (i < 0)
4009 return 0;
4011 else
4012 return 0;
4014 dest = SET_DEST (set);
4016 /* Look for direct modifications of the stack pointer. */
4017 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4019 /* Look for a trivial adjustment, otherwise assume nothing. */
4020 /* Note that the SPU restore_stack_block pattern refers to
4021 the stack pointer in V4SImode. Consider that non-trivial. */
4022 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4023 && GET_CODE (SET_SRC (set)) == PLUS
4024 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
4025 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
4026 return INTVAL (XEXP (SET_SRC (set), 1));
4027 /* ??? Reload can generate no-op moves, which will be cleaned
4028 up later. Recognize it and continue searching. */
4029 else if (rtx_equal_p (dest, SET_SRC (set)))
4030 return 0;
4031 else
4032 return HOST_WIDE_INT_MIN;
4034 else
4036 rtx mem, addr;
4038 /* Otherwise only think about autoinc patterns. */
4039 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4041 mem = dest;
4042 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4043 != stack_pointer_rtx);
4045 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4046 mem = SET_SRC (set);
4047 else
4048 return 0;
4050 addr = XEXP (mem, 0);
4051 switch (GET_CODE (addr))
4053 case PRE_INC:
4054 case POST_INC:
4055 return GET_MODE_SIZE (GET_MODE (mem));
4056 case PRE_DEC:
4057 case POST_DEC:
4058 return -GET_MODE_SIZE (GET_MODE (mem));
4059 case PRE_MODIFY:
4060 case POST_MODIFY:
4061 addr = XEXP (addr, 1);
4062 gcc_assert (GET_CODE (addr) == PLUS);
4063 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4064 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
4065 return INTVAL (XEXP (addr, 1));
4066 default:
4067 gcc_unreachable ();
4073 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
4075 int args_size = end_args_size;
4076 bool saw_unknown = false;
4077 rtx_insn *insn;
4079 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4081 HOST_WIDE_INT this_delta;
4083 if (!NONDEBUG_INSN_P (insn))
4084 continue;
4086 this_delta = find_args_size_adjust (insn);
4087 if (this_delta == 0)
4089 if (!CALL_P (insn)
4090 || ACCUMULATE_OUTGOING_ARGS
4091 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4092 continue;
4095 gcc_assert (!saw_unknown);
4096 if (this_delta == HOST_WIDE_INT_MIN)
4097 saw_unknown = true;
4099 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
4100 if (STACK_GROWS_DOWNWARD)
4101 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4103 args_size -= this_delta;
4106 return saw_unknown ? INT_MIN : args_size;
4109 #ifdef PUSH_ROUNDING
4110 /* Emit single push insn. */
4112 static void
4113 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4115 rtx dest_addr;
4116 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4117 rtx dest;
4118 enum insn_code icode;
4120 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4121 /* If there is push pattern, use it. Otherwise try old way of throwing
4122 MEM representing push operation to move expander. */
4123 icode = optab_handler (push_optab, mode);
4124 if (icode != CODE_FOR_nothing)
4126 struct expand_operand ops[1];
4128 create_input_operand (&ops[0], x, mode);
4129 if (maybe_expand_insn (icode, 1, ops))
4130 return;
4132 if (GET_MODE_SIZE (mode) == rounded_size)
4133 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4134 /* If we are to pad downward, adjust the stack pointer first and
4135 then store X into the stack location using an offset. This is
4136 because emit_move_insn does not know how to pad; it does not have
4137 access to type. */
4138 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4140 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4141 HOST_WIDE_INT offset;
4143 emit_move_insn (stack_pointer_rtx,
4144 expand_binop (Pmode,
4145 STACK_GROWS_DOWNWARD ? sub_optab
4146 : add_optab,
4147 stack_pointer_rtx,
4148 gen_int_mode (rounded_size, Pmode),
4149 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4151 offset = (HOST_WIDE_INT) padding_size;
4152 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4153 /* We have already decremented the stack pointer, so get the
4154 previous value. */
4155 offset += (HOST_WIDE_INT) rounded_size;
4157 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4158 /* We have already incremented the stack pointer, so get the
4159 previous value. */
4160 offset -= (HOST_WIDE_INT) rounded_size;
4162 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4163 gen_int_mode (offset, Pmode));
4165 else
4167 if (STACK_GROWS_DOWNWARD)
4168 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4169 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4170 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4171 Pmode));
4172 else
4173 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4174 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4175 gen_int_mode (rounded_size, Pmode));
4177 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4180 dest = gen_rtx_MEM (mode, dest_addr);
4182 if (type != 0)
4184 set_mem_attributes (dest, type, 1);
4186 if (cfun->tail_call_marked)
4187 /* Function incoming arguments may overlap with sibling call
4188 outgoing arguments and we cannot allow reordering of reads
4189 from function arguments with stores to outgoing arguments
4190 of sibling calls. */
4191 set_mem_alias_set (dest, 0);
4193 emit_move_insn (dest, x);
4196 /* Emit and annotate a single push insn. */
4198 static void
4199 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4201 int delta, old_delta = stack_pointer_delta;
4202 rtx_insn *prev = get_last_insn ();
4203 rtx_insn *last;
4205 emit_single_push_insn_1 (mode, x, type);
4207 last = get_last_insn ();
4209 /* Notice the common case where we emitted exactly one insn. */
4210 if (PREV_INSN (last) == prev)
4212 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4213 return;
4216 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4217 gcc_assert (delta == INT_MIN || delta == old_delta);
4219 #endif
4221 /* If reading SIZE bytes from X will end up reading from
4222 Y return the number of bytes that overlap. Return -1
4223 if there is no overlap or -2 if we can't determine
4224 (for example when X and Y have different base registers). */
4226 static int
4227 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4229 rtx tmp = plus_constant (Pmode, x, size);
4230 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4232 if (!CONST_INT_P (sub))
4233 return -2;
4235 HOST_WIDE_INT val = INTVAL (sub);
4237 return IN_RANGE (val, 1, size) ? val : -1;
4240 /* Generate code to push X onto the stack, assuming it has mode MODE and
4241 type TYPE.
4242 MODE is redundant except when X is a CONST_INT (since they don't
4243 carry mode info).
4244 SIZE is an rtx for the size of data to be copied (in bytes),
4245 needed only if X is BLKmode.
4246 Return true if successful. May return false if asked to push a
4247 partial argument during a sibcall optimization (as specified by
4248 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4249 to not overlap.
4251 ALIGN (in bits) is maximum alignment we can assume.
4253 If PARTIAL and REG are both nonzero, then copy that many of the first
4254 bytes of X into registers starting with REG, and push the rest of X.
4255 The amount of space pushed is decreased by PARTIAL bytes.
4256 REG must be a hard register in this case.
4257 If REG is zero but PARTIAL is not, take any all others actions for an
4258 argument partially in registers, but do not actually load any
4259 registers.
4261 EXTRA is the amount in bytes of extra space to leave next to this arg.
4262 This is ignored if an argument block has already been allocated.
4264 On a machine that lacks real push insns, ARGS_ADDR is the address of
4265 the bottom of the argument block for this call. We use indexing off there
4266 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4267 argument block has not been preallocated.
4269 ARGS_SO_FAR is the size of args previously pushed for this call.
4271 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4272 for arguments passed in registers. If nonzero, it will be the number
4273 of bytes required. */
4275 bool
4276 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4277 unsigned int align, int partial, rtx reg, int extra,
4278 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4279 rtx alignment_pad, bool sibcall_p)
4281 rtx xinner;
4282 pad_direction stack_direction
4283 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4285 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4286 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4287 Default is below for small data on big-endian machines; else above. */
4288 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4290 /* Invert direction if stack is post-decrement.
4291 FIXME: why? */
4292 if (STACK_PUSH_CODE == POST_DEC)
4293 if (where_pad != PAD_NONE)
4294 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4296 xinner = x;
4298 int nregs = partial / UNITS_PER_WORD;
4299 rtx *tmp_regs = NULL;
4300 int overlapping = 0;
4302 if (mode == BLKmode
4303 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4305 /* Copy a block into the stack, entirely or partially. */
4307 rtx temp;
4308 int used;
4309 int offset;
4310 int skip;
4312 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4313 used = partial - offset;
4315 if (mode != BLKmode)
4317 /* A value is to be stored in an insufficiently aligned
4318 stack slot; copy via a suitably aligned slot if
4319 necessary. */
4320 size = GEN_INT (GET_MODE_SIZE (mode));
4321 if (!MEM_P (xinner))
4323 temp = assign_temp (type, 1, 1);
4324 emit_move_insn (temp, xinner);
4325 xinner = temp;
4329 gcc_assert (size);
4331 /* USED is now the # of bytes we need not copy to the stack
4332 because registers will take care of them. */
4334 if (partial != 0)
4335 xinner = adjust_address (xinner, BLKmode, used);
4337 /* If the partial register-part of the arg counts in its stack size,
4338 skip the part of stack space corresponding to the registers.
4339 Otherwise, start copying to the beginning of the stack space,
4340 by setting SKIP to 0. */
4341 skip = (reg_parm_stack_space == 0) ? 0 : used;
4343 #ifdef PUSH_ROUNDING
4344 /* Do it with several push insns if that doesn't take lots of insns
4345 and if there is no difficulty with push insns that skip bytes
4346 on the stack for alignment purposes. */
4347 if (args_addr == 0
4348 && PUSH_ARGS
4349 && CONST_INT_P (size)
4350 && skip == 0
4351 && MEM_ALIGN (xinner) >= align
4352 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4353 /* Here we avoid the case of a structure whose weak alignment
4354 forces many pushes of a small amount of data,
4355 and such small pushes do rounding that causes trouble. */
4356 && ((!targetm.slow_unaligned_access (word_mode, align))
4357 || align >= BIGGEST_ALIGNMENT
4358 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4359 == (align / BITS_PER_UNIT)))
4360 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4362 /* Push padding now if padding above and stack grows down,
4363 or if padding below and stack grows up.
4364 But if space already allocated, this has already been done. */
4365 if (extra && args_addr == 0
4366 && where_pad != PAD_NONE && where_pad != stack_direction)
4367 anti_adjust_stack (GEN_INT (extra));
4369 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4371 else
4372 #endif /* PUSH_ROUNDING */
4374 rtx target;
4376 /* Otherwise make space on the stack and copy the data
4377 to the address of that space. */
4379 /* Deduct words put into registers from the size we must copy. */
4380 if (partial != 0)
4382 if (CONST_INT_P (size))
4383 size = GEN_INT (INTVAL (size) - used);
4384 else
4385 size = expand_binop (GET_MODE (size), sub_optab, size,
4386 gen_int_mode (used, GET_MODE (size)),
4387 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4390 /* Get the address of the stack space.
4391 In this case, we do not deal with EXTRA separately.
4392 A single stack adjust will do. */
4393 if (! args_addr)
4395 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4396 extra = 0;
4398 else if (CONST_INT_P (args_so_far))
4399 temp = memory_address (BLKmode,
4400 plus_constant (Pmode, args_addr,
4401 skip + INTVAL (args_so_far)));
4402 else
4403 temp = memory_address (BLKmode,
4404 plus_constant (Pmode,
4405 gen_rtx_PLUS (Pmode,
4406 args_addr,
4407 args_so_far),
4408 skip));
4410 if (!ACCUMULATE_OUTGOING_ARGS)
4412 /* If the source is referenced relative to the stack pointer,
4413 copy it to another register to stabilize it. We do not need
4414 to do this if we know that we won't be changing sp. */
4416 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4417 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4418 temp = copy_to_reg (temp);
4421 target = gen_rtx_MEM (BLKmode, temp);
4423 /* We do *not* set_mem_attributes here, because incoming arguments
4424 may overlap with sibling call outgoing arguments and we cannot
4425 allow reordering of reads from function arguments with stores
4426 to outgoing arguments of sibling calls. We do, however, want
4427 to record the alignment of the stack slot. */
4428 /* ALIGN may well be better aligned than TYPE, e.g. due to
4429 PARM_BOUNDARY. Assume the caller isn't lying. */
4430 set_mem_align (target, align);
4432 /* If part should go in registers and pushing to that part would
4433 overwrite some of the values that need to go into regs, load the
4434 overlapping values into temporary pseudos to be moved into the hard
4435 regs at the end after the stack pushing has completed.
4436 We cannot load them directly into the hard regs here because
4437 they can be clobbered by the block move expansions.
4438 See PR 65358. */
4440 if (partial > 0 && reg != 0 && mode == BLKmode
4441 && GET_CODE (reg) != PARALLEL)
4443 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4444 if (overlapping > 0)
4446 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4447 overlapping /= UNITS_PER_WORD;
4449 tmp_regs = XALLOCAVEC (rtx, overlapping);
4451 for (int i = 0; i < overlapping; i++)
4452 tmp_regs[i] = gen_reg_rtx (word_mode);
4454 for (int i = 0; i < overlapping; i++)
4455 emit_move_insn (tmp_regs[i],
4456 operand_subword_force (target, i, mode));
4458 else if (overlapping == -1)
4459 overlapping = 0;
4460 /* Could not determine whether there is overlap.
4461 Fail the sibcall. */
4462 else
4464 overlapping = 0;
4465 if (sibcall_p)
4466 return false;
4469 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4472 else if (partial > 0)
4474 /* Scalar partly in registers. */
4476 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4477 int i;
4478 int not_stack;
4479 /* # bytes of start of argument
4480 that we must make space for but need not store. */
4481 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4482 int args_offset = INTVAL (args_so_far);
4483 int skip;
4485 /* Push padding now if padding above and stack grows down,
4486 or if padding below and stack grows up.
4487 But if space already allocated, this has already been done. */
4488 if (extra && args_addr == 0
4489 && where_pad != PAD_NONE && where_pad != stack_direction)
4490 anti_adjust_stack (GEN_INT (extra));
4492 /* If we make space by pushing it, we might as well push
4493 the real data. Otherwise, we can leave OFFSET nonzero
4494 and leave the space uninitialized. */
4495 if (args_addr == 0)
4496 offset = 0;
4498 /* Now NOT_STACK gets the number of words that we don't need to
4499 allocate on the stack. Convert OFFSET to words too. */
4500 not_stack = (partial - offset) / UNITS_PER_WORD;
4501 offset /= UNITS_PER_WORD;
4503 /* If the partial register-part of the arg counts in its stack size,
4504 skip the part of stack space corresponding to the registers.
4505 Otherwise, start copying to the beginning of the stack space,
4506 by setting SKIP to 0. */
4507 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4509 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4510 x = validize_mem (force_const_mem (mode, x));
4512 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4513 SUBREGs of such registers are not allowed. */
4514 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4515 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4516 x = copy_to_reg (x);
4518 /* Loop over all the words allocated on the stack for this arg. */
4519 /* We can do it by words, because any scalar bigger than a word
4520 has a size a multiple of a word. */
4521 for (i = size - 1; i >= not_stack; i--)
4522 if (i >= not_stack + offset)
4523 if (!emit_push_insn (operand_subword_force (x, i, mode),
4524 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4525 0, args_addr,
4526 GEN_INT (args_offset + ((i - not_stack + skip)
4527 * UNITS_PER_WORD)),
4528 reg_parm_stack_space, alignment_pad, sibcall_p))
4529 return false;
4531 else
4533 rtx addr;
4534 rtx dest;
4536 /* Push padding now if padding above and stack grows down,
4537 or if padding below and stack grows up.
4538 But if space already allocated, this has already been done. */
4539 if (extra && args_addr == 0
4540 && where_pad != PAD_NONE && where_pad != stack_direction)
4541 anti_adjust_stack (GEN_INT (extra));
4543 #ifdef PUSH_ROUNDING
4544 if (args_addr == 0 && PUSH_ARGS)
4545 emit_single_push_insn (mode, x, type);
4546 else
4547 #endif
4549 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4550 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4552 /* We do *not* set_mem_attributes here, because incoming arguments
4553 may overlap with sibling call outgoing arguments and we cannot
4554 allow reordering of reads from function arguments with stores
4555 to outgoing arguments of sibling calls. We do, however, want
4556 to record the alignment of the stack slot. */
4557 /* ALIGN may well be better aligned than TYPE, e.g. due to
4558 PARM_BOUNDARY. Assume the caller isn't lying. */
4559 set_mem_align (dest, align);
4561 emit_move_insn (dest, x);
4565 /* Move the partial arguments into the registers and any overlapping
4566 values that we moved into the pseudos in tmp_regs. */
4567 if (partial > 0 && reg != 0)
4569 /* Handle calls that pass values in multiple non-contiguous locations.
4570 The Irix 6 ABI has examples of this. */
4571 if (GET_CODE (reg) == PARALLEL)
4572 emit_group_load (reg, x, type, -1);
4573 else
4575 gcc_assert (partial % UNITS_PER_WORD == 0);
4576 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4578 for (int i = 0; i < overlapping; i++)
4579 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4580 + nregs - overlapping + i),
4581 tmp_regs[i]);
4586 if (extra && args_addr == 0 && where_pad == stack_direction)
4587 anti_adjust_stack (GEN_INT (extra));
4589 if (alignment_pad && args_addr == 0)
4590 anti_adjust_stack (alignment_pad);
4592 return true;
4595 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4596 operations. */
4598 static rtx
4599 get_subtarget (rtx x)
4601 return (optimize
4602 || x == 0
4603 /* Only registers can be subtargets. */
4604 || !REG_P (x)
4605 /* Don't use hard regs to avoid extending their life. */
4606 || REGNO (x) < FIRST_PSEUDO_REGISTER
4607 ? 0 : x);
4610 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4611 FIELD is a bitfield. Returns true if the optimization was successful,
4612 and there's nothing else to do. */
4614 static bool
4615 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4616 unsigned HOST_WIDE_INT bitpos,
4617 unsigned HOST_WIDE_INT bitregion_start,
4618 unsigned HOST_WIDE_INT bitregion_end,
4619 machine_mode mode1, rtx str_rtx,
4620 tree to, tree src, bool reverse)
4622 machine_mode str_mode = GET_MODE (str_rtx);
4623 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4624 tree op0, op1;
4625 rtx value, result;
4626 optab binop;
4627 gimple *srcstmt;
4628 enum tree_code code;
4630 if (mode1 != VOIDmode
4631 || bitsize >= BITS_PER_WORD
4632 || str_bitsize > BITS_PER_WORD
4633 || TREE_SIDE_EFFECTS (to)
4634 || TREE_THIS_VOLATILE (to))
4635 return false;
4637 STRIP_NOPS (src);
4638 if (TREE_CODE (src) != SSA_NAME)
4639 return false;
4640 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4641 return false;
4643 srcstmt = get_gimple_for_ssa_name (src);
4644 if (!srcstmt
4645 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4646 return false;
4648 code = gimple_assign_rhs_code (srcstmt);
4650 op0 = gimple_assign_rhs1 (srcstmt);
4652 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4653 to find its initialization. Hopefully the initialization will
4654 be from a bitfield load. */
4655 if (TREE_CODE (op0) == SSA_NAME)
4657 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4659 /* We want to eventually have OP0 be the same as TO, which
4660 should be a bitfield. */
4661 if (!op0stmt
4662 || !is_gimple_assign (op0stmt)
4663 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4664 return false;
4665 op0 = gimple_assign_rhs1 (op0stmt);
4668 op1 = gimple_assign_rhs2 (srcstmt);
4670 if (!operand_equal_p (to, op0, 0))
4671 return false;
4673 if (MEM_P (str_rtx))
4675 unsigned HOST_WIDE_INT offset1;
4677 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4678 str_bitsize = BITS_PER_WORD;
4680 scalar_int_mode best_mode;
4681 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4682 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4683 return false;
4684 str_mode = best_mode;
4685 str_bitsize = GET_MODE_BITSIZE (best_mode);
4687 offset1 = bitpos;
4688 bitpos %= str_bitsize;
4689 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4690 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4692 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4693 return false;
4694 else
4695 gcc_assert (!reverse);
4697 /* If the bit field covers the whole REG/MEM, store_field
4698 will likely generate better code. */
4699 if (bitsize >= str_bitsize)
4700 return false;
4702 /* We can't handle fields split across multiple entities. */
4703 if (bitpos + bitsize > str_bitsize)
4704 return false;
4706 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4707 bitpos = str_bitsize - bitpos - bitsize;
4709 switch (code)
4711 case PLUS_EXPR:
4712 case MINUS_EXPR:
4713 /* For now, just optimize the case of the topmost bitfield
4714 where we don't need to do any masking and also
4715 1 bit bitfields where xor can be used.
4716 We might win by one instruction for the other bitfields
4717 too if insv/extv instructions aren't used, so that
4718 can be added later. */
4719 if ((reverse || bitpos + bitsize != str_bitsize)
4720 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4721 break;
4723 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4724 value = convert_modes (str_mode,
4725 TYPE_MODE (TREE_TYPE (op1)), value,
4726 TYPE_UNSIGNED (TREE_TYPE (op1)));
4728 /* We may be accessing data outside the field, which means
4729 we can alias adjacent data. */
4730 if (MEM_P (str_rtx))
4732 str_rtx = shallow_copy_rtx (str_rtx);
4733 set_mem_alias_set (str_rtx, 0);
4734 set_mem_expr (str_rtx, 0);
4737 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4739 value = expand_and (str_mode, value, const1_rtx, NULL);
4740 binop = xor_optab;
4742 else
4743 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4745 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4746 if (reverse)
4747 value = flip_storage_order (str_mode, value);
4748 result = expand_binop (str_mode, binop, str_rtx,
4749 value, str_rtx, 1, OPTAB_WIDEN);
4750 if (result != str_rtx)
4751 emit_move_insn (str_rtx, result);
4752 return true;
4754 case BIT_IOR_EXPR:
4755 case BIT_XOR_EXPR:
4756 if (TREE_CODE (op1) != INTEGER_CST)
4757 break;
4758 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4759 value = convert_modes (str_mode,
4760 TYPE_MODE (TREE_TYPE (op1)), value,
4761 TYPE_UNSIGNED (TREE_TYPE (op1)));
4763 /* We may be accessing data outside the field, which means
4764 we can alias adjacent data. */
4765 if (MEM_P (str_rtx))
4767 str_rtx = shallow_copy_rtx (str_rtx);
4768 set_mem_alias_set (str_rtx, 0);
4769 set_mem_expr (str_rtx, 0);
4772 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4773 if (bitpos + bitsize != str_bitsize)
4775 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4776 str_mode);
4777 value = expand_and (str_mode, value, mask, NULL_RTX);
4779 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4780 if (reverse)
4781 value = flip_storage_order (str_mode, value);
4782 result = expand_binop (str_mode, binop, str_rtx,
4783 value, str_rtx, 1, OPTAB_WIDEN);
4784 if (result != str_rtx)
4785 emit_move_insn (str_rtx, result);
4786 return true;
4788 default:
4789 break;
4792 return false;
4795 /* In the C++ memory model, consecutive bit fields in a structure are
4796 considered one memory location.
4798 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4799 returns the bit range of consecutive bits in which this COMPONENT_REF
4800 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4801 and *OFFSET may be adjusted in the process.
4803 If the access does not need to be restricted, 0 is returned in both
4804 *BITSTART and *BITEND. */
4806 void
4807 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4808 unsigned HOST_WIDE_INT *bitend,
4809 tree exp,
4810 HOST_WIDE_INT *bitpos,
4811 tree *offset)
4813 HOST_WIDE_INT bitoffset;
4814 tree field, repr;
4816 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4818 field = TREE_OPERAND (exp, 1);
4819 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4820 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4821 need to limit the range we can access. */
4822 if (!repr)
4824 *bitstart = *bitend = 0;
4825 return;
4828 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4829 part of a larger bit field, then the representative does not serve any
4830 useful purpose. This can occur in Ada. */
4831 if (handled_component_p (TREE_OPERAND (exp, 0)))
4833 machine_mode rmode;
4834 HOST_WIDE_INT rbitsize, rbitpos;
4835 tree roffset;
4836 int unsignedp, reversep, volatilep = 0;
4837 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4838 &roffset, &rmode, &unsignedp, &reversep,
4839 &volatilep);
4840 if ((rbitpos % BITS_PER_UNIT) != 0)
4842 *bitstart = *bitend = 0;
4843 return;
4847 /* Compute the adjustment to bitpos from the offset of the field
4848 relative to the representative. DECL_FIELD_OFFSET of field and
4849 repr are the same by construction if they are not constants,
4850 see finish_bitfield_layout. */
4851 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4852 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4853 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4854 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4855 else
4856 bitoffset = 0;
4857 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4858 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4860 /* If the adjustment is larger than bitpos, we would have a negative bit
4861 position for the lower bound and this may wreak havoc later. Adjust
4862 offset and bitpos to make the lower bound non-negative in that case. */
4863 if (bitoffset > *bitpos)
4865 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4866 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4868 *bitpos += adjust;
4869 if (*offset == NULL_TREE)
4870 *offset = size_int (-adjust / BITS_PER_UNIT);
4871 else
4872 *offset
4873 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4874 *bitstart = 0;
4876 else
4877 *bitstart = *bitpos - bitoffset;
4879 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4882 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4883 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4884 DECL_RTL was not set yet, return NORTL. */
4886 static inline bool
4887 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4889 if (TREE_CODE (addr) != ADDR_EXPR)
4890 return false;
4892 tree base = TREE_OPERAND (addr, 0);
4894 if (!DECL_P (base)
4895 || TREE_ADDRESSABLE (base)
4896 || DECL_MODE (base) == BLKmode)
4897 return false;
4899 if (!DECL_RTL_SET_P (base))
4900 return nortl;
4902 return (!MEM_P (DECL_RTL (base)));
4905 /* Returns true if the MEM_REF REF refers to an object that does not
4906 reside in memory and has non-BLKmode. */
4908 static inline bool
4909 mem_ref_refers_to_non_mem_p (tree ref)
4911 tree base = TREE_OPERAND (ref, 0);
4912 return addr_expr_of_non_mem_decl_p_1 (base, false);
4915 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4916 is true, try generating a nontemporal store. */
4918 void
4919 expand_assignment (tree to, tree from, bool nontemporal)
4921 rtx to_rtx = 0;
4922 rtx result;
4923 machine_mode mode;
4924 unsigned int align;
4925 enum insn_code icode;
4927 /* Don't crash if the lhs of the assignment was erroneous. */
4928 if (TREE_CODE (to) == ERROR_MARK)
4930 expand_normal (from);
4931 return;
4934 /* Optimize away no-op moves without side-effects. */
4935 if (operand_equal_p (to, from, 0))
4936 return;
4938 /* Handle misaligned stores. */
4939 mode = TYPE_MODE (TREE_TYPE (to));
4940 if ((TREE_CODE (to) == MEM_REF
4941 || TREE_CODE (to) == TARGET_MEM_REF)
4942 && mode != BLKmode
4943 && !mem_ref_refers_to_non_mem_p (to)
4944 && ((align = get_object_alignment (to))
4945 < GET_MODE_ALIGNMENT (mode))
4946 && (((icode = optab_handler (movmisalign_optab, mode))
4947 != CODE_FOR_nothing)
4948 || targetm.slow_unaligned_access (mode, align)))
4950 rtx reg, mem;
4952 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4953 reg = force_not_mem (reg);
4954 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4955 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
4956 reg = flip_storage_order (mode, reg);
4958 if (icode != CODE_FOR_nothing)
4960 struct expand_operand ops[2];
4962 create_fixed_operand (&ops[0], mem);
4963 create_input_operand (&ops[1], reg, mode);
4964 /* The movmisalign<mode> pattern cannot fail, else the assignment
4965 would silently be omitted. */
4966 expand_insn (icode, 2, ops);
4968 else
4969 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
4970 false);
4971 return;
4974 /* Assignment of a structure component needs special treatment
4975 if the structure component's rtx is not simply a MEM.
4976 Assignment of an array element at a constant index, and assignment of
4977 an array element in an unaligned packed structure field, has the same
4978 problem. Same for (partially) storing into a non-memory object. */
4979 if (handled_component_p (to)
4980 || (TREE_CODE (to) == MEM_REF
4981 && (REF_REVERSE_STORAGE_ORDER (to)
4982 || mem_ref_refers_to_non_mem_p (to)))
4983 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4985 machine_mode mode1;
4986 HOST_WIDE_INT bitsize, bitpos;
4987 unsigned HOST_WIDE_INT bitregion_start = 0;
4988 unsigned HOST_WIDE_INT bitregion_end = 0;
4989 tree offset;
4990 int unsignedp, reversep, volatilep = 0;
4991 tree tem;
4993 push_temp_slots ();
4994 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4995 &unsignedp, &reversep, &volatilep);
4997 /* Make sure bitpos is not negative, it can wreak havoc later. */
4998 if (bitpos < 0)
5000 gcc_assert (offset == NULL_TREE);
5001 offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
5002 bitpos &= BITS_PER_UNIT - 1;
5005 if (TREE_CODE (to) == COMPONENT_REF
5006 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5007 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5008 /* The C++ memory model naturally applies to byte-aligned fields.
5009 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5010 BITSIZE are not byte-aligned, there is no need to limit the range
5011 we can access. This can occur with packed structures in Ada. */
5012 else if (bitsize > 0
5013 && bitsize % BITS_PER_UNIT == 0
5014 && bitpos % BITS_PER_UNIT == 0)
5016 bitregion_start = bitpos;
5017 bitregion_end = bitpos + bitsize - 1;
5020 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5022 /* If the field has a mode, we want to access it in the
5023 field's mode, not the computed mode.
5024 If a MEM has VOIDmode (external with incomplete type),
5025 use BLKmode for it instead. */
5026 if (MEM_P (to_rtx))
5028 if (mode1 != VOIDmode)
5029 to_rtx = adjust_address (to_rtx, mode1, 0);
5030 else if (GET_MODE (to_rtx) == VOIDmode)
5031 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5034 if (offset != 0)
5036 machine_mode address_mode;
5037 rtx offset_rtx;
5039 if (!MEM_P (to_rtx))
5041 /* We can get constant negative offsets into arrays with broken
5042 user code. Translate this to a trap instead of ICEing. */
5043 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5044 expand_builtin_trap ();
5045 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5048 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5049 address_mode = get_address_mode (to_rtx);
5050 if (GET_MODE (offset_rtx) != address_mode)
5052 /* We cannot be sure that the RTL in offset_rtx is valid outside
5053 of a memory address context, so force it into a register
5054 before attempting to convert it to the desired mode. */
5055 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5056 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5059 /* If we have an expression in OFFSET_RTX and a non-zero
5060 byte offset in BITPOS, adding the byte offset before the
5061 OFFSET_RTX results in better intermediate code, which makes
5062 later rtl optimization passes perform better.
5064 We prefer intermediate code like this:
5066 r124:DI=r123:DI+0x18
5067 [r124:DI]=r121:DI
5069 ... instead of ...
5071 r124:DI=r123:DI+0x10
5072 [r124:DI+0x8]=r121:DI
5074 This is only done for aligned data values, as these can
5075 be expected to result in single move instructions. */
5076 if (mode1 != VOIDmode
5077 && bitpos != 0
5078 && bitsize > 0
5079 && (bitpos % bitsize) == 0
5080 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
5081 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5083 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
5084 bitregion_start = 0;
5085 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
5086 bitregion_end -= bitpos;
5087 bitpos = 0;
5090 to_rtx = offset_address (to_rtx, offset_rtx,
5091 highest_pow2_factor_for_target (to,
5092 offset));
5095 /* No action is needed if the target is not a memory and the field
5096 lies completely outside that target. This can occur if the source
5097 code contains an out-of-bounds access to a small array. */
5098 if (!MEM_P (to_rtx)
5099 && GET_MODE (to_rtx) != BLKmode
5100 && (unsigned HOST_WIDE_INT) bitpos
5101 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
5103 expand_normal (from);
5104 result = NULL;
5106 /* Handle expand_expr of a complex value returning a CONCAT. */
5107 else if (GET_CODE (to_rtx) == CONCAT)
5109 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
5110 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
5111 && bitpos == 0
5112 && bitsize == mode_bitsize)
5113 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5114 else if (bitsize == mode_bitsize / 2
5115 && (bitpos == 0 || bitpos == mode_bitsize / 2))
5116 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
5117 nontemporal, reversep);
5118 else if (bitpos + bitsize <= mode_bitsize / 2)
5119 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5120 bitregion_start, bitregion_end,
5121 mode1, from, get_alias_set (to),
5122 nontemporal, reversep);
5123 else if (bitpos >= mode_bitsize / 2)
5124 result = store_field (XEXP (to_rtx, 1), bitsize,
5125 bitpos - mode_bitsize / 2,
5126 bitregion_start, bitregion_end,
5127 mode1, from, get_alias_set (to),
5128 nontemporal, reversep);
5129 else if (bitpos == 0 && bitsize == mode_bitsize)
5131 rtx from_rtx;
5132 result = expand_normal (from);
5133 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
5134 TYPE_MODE (TREE_TYPE (from)), 0);
5135 emit_move_insn (XEXP (to_rtx, 0),
5136 read_complex_part (from_rtx, false));
5137 emit_move_insn (XEXP (to_rtx, 1),
5138 read_complex_part (from_rtx, true));
5140 else
5142 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5143 GET_MODE_SIZE (GET_MODE (to_rtx)));
5144 write_complex_part (temp, XEXP (to_rtx, 0), false);
5145 write_complex_part (temp, XEXP (to_rtx, 1), true);
5146 result = store_field (temp, bitsize, bitpos,
5147 bitregion_start, bitregion_end,
5148 mode1, from, get_alias_set (to),
5149 nontemporal, reversep);
5150 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5151 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5154 else
5156 if (MEM_P (to_rtx))
5158 /* If the field is at offset zero, we could have been given the
5159 DECL_RTX of the parent struct. Don't munge it. */
5160 to_rtx = shallow_copy_rtx (to_rtx);
5161 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5162 if (volatilep)
5163 MEM_VOLATILE_P (to_rtx) = 1;
5166 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5167 bitregion_start, bitregion_end,
5168 mode1, to_rtx, to, from,
5169 reversep))
5170 result = NULL;
5171 else
5172 result = store_field (to_rtx, bitsize, bitpos,
5173 bitregion_start, bitregion_end,
5174 mode1, from, get_alias_set (to),
5175 nontemporal, reversep);
5178 if (result)
5179 preserve_temp_slots (result);
5180 pop_temp_slots ();
5181 return;
5184 /* If the rhs is a function call and its value is not an aggregate,
5185 call the function before we start to compute the lhs.
5186 This is needed for correct code for cases such as
5187 val = setjmp (buf) on machines where reference to val
5188 requires loading up part of an address in a separate insn.
5190 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5191 since it might be a promoted variable where the zero- or sign- extension
5192 needs to be done. Handling this in the normal way is safe because no
5193 computation is done before the call. The same is true for SSA names. */
5194 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5195 && COMPLETE_TYPE_P (TREE_TYPE (from))
5196 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5197 && ! (((VAR_P (to)
5198 || TREE_CODE (to) == PARM_DECL
5199 || TREE_CODE (to) == RESULT_DECL)
5200 && REG_P (DECL_RTL (to)))
5201 || TREE_CODE (to) == SSA_NAME))
5203 rtx value;
5204 rtx bounds;
5206 push_temp_slots ();
5207 value = expand_normal (from);
5209 /* Split value and bounds to store them separately. */
5210 chkp_split_slot (value, &value, &bounds);
5212 if (to_rtx == 0)
5213 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5215 /* Handle calls that return values in multiple non-contiguous locations.
5216 The Irix 6 ABI has examples of this. */
5217 if (GET_CODE (to_rtx) == PARALLEL)
5219 if (GET_CODE (value) == PARALLEL)
5220 emit_group_move (to_rtx, value);
5221 else
5222 emit_group_load (to_rtx, value, TREE_TYPE (from),
5223 int_size_in_bytes (TREE_TYPE (from)));
5225 else if (GET_CODE (value) == PARALLEL)
5226 emit_group_store (to_rtx, value, TREE_TYPE (from),
5227 int_size_in_bytes (TREE_TYPE (from)));
5228 else if (GET_MODE (to_rtx) == BLKmode)
5230 /* Handle calls that return BLKmode values in registers. */
5231 if (REG_P (value))
5232 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5233 else
5234 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5236 else
5238 if (POINTER_TYPE_P (TREE_TYPE (to)))
5239 value = convert_memory_address_addr_space
5240 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5241 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5243 emit_move_insn (to_rtx, value);
5246 /* Store bounds if required. */
5247 if (bounds
5248 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5250 gcc_assert (MEM_P (to_rtx));
5251 chkp_emit_bounds_store (bounds, value, to_rtx);
5254 preserve_temp_slots (to_rtx);
5255 pop_temp_slots ();
5256 return;
5259 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5260 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5262 /* Don't move directly into a return register. */
5263 if (TREE_CODE (to) == RESULT_DECL
5264 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5266 rtx temp;
5268 push_temp_slots ();
5270 /* If the source is itself a return value, it still is in a pseudo at
5271 this point so we can move it back to the return register directly. */
5272 if (REG_P (to_rtx)
5273 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5274 && TREE_CODE (from) != CALL_EXPR)
5275 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5276 else
5277 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5279 /* Handle calls that return values in multiple non-contiguous locations.
5280 The Irix 6 ABI has examples of this. */
5281 if (GET_CODE (to_rtx) == PARALLEL)
5283 if (GET_CODE (temp) == PARALLEL)
5284 emit_group_move (to_rtx, temp);
5285 else
5286 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5287 int_size_in_bytes (TREE_TYPE (from)));
5289 else if (temp)
5290 emit_move_insn (to_rtx, temp);
5292 preserve_temp_slots (to_rtx);
5293 pop_temp_slots ();
5294 return;
5297 /* In case we are returning the contents of an object which overlaps
5298 the place the value is being stored, use a safe function when copying
5299 a value through a pointer into a structure value return block. */
5300 if (TREE_CODE (to) == RESULT_DECL
5301 && TREE_CODE (from) == INDIRECT_REF
5302 && ADDR_SPACE_GENERIC_P
5303 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5304 && refs_may_alias_p (to, from)
5305 && cfun->returns_struct
5306 && !cfun->returns_pcc_struct)
5308 rtx from_rtx, size;
5310 push_temp_slots ();
5311 size = expr_size (from);
5312 from_rtx = expand_normal (from);
5314 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5316 preserve_temp_slots (to_rtx);
5317 pop_temp_slots ();
5318 return;
5321 /* Compute FROM and store the value in the rtx we got. */
5323 push_temp_slots ();
5324 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
5325 preserve_temp_slots (result);
5326 pop_temp_slots ();
5327 return;
5330 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5331 succeeded, false otherwise. */
5333 bool
5334 emit_storent_insn (rtx to, rtx from)
5336 struct expand_operand ops[2];
5337 machine_mode mode = GET_MODE (to);
5338 enum insn_code code = optab_handler (storent_optab, mode);
5340 if (code == CODE_FOR_nothing)
5341 return false;
5343 create_fixed_operand (&ops[0], to);
5344 create_input_operand (&ops[1], from, mode);
5345 return maybe_expand_insn (code, 2, ops);
5348 /* Generate code for computing expression EXP,
5349 and storing the value into TARGET.
5351 If the mode is BLKmode then we may return TARGET itself.
5352 It turns out that in BLKmode it doesn't cause a problem.
5353 because C has no operators that could combine two different
5354 assignments into the same BLKmode object with different values
5355 with no sequence point. Will other languages need this to
5356 be more thorough?
5358 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5359 stack, and block moves may need to be treated specially.
5361 If NONTEMPORAL is true, try using a nontemporal store instruction.
5363 If REVERSE is true, the store is to be done in reverse order.
5365 If BTARGET is not NULL then computed bounds of EXP are
5366 associated with BTARGET. */
5369 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5370 bool nontemporal, bool reverse, tree btarget)
5372 rtx temp;
5373 rtx alt_rtl = NULL_RTX;
5374 location_t loc = curr_insn_location ();
5376 if (VOID_TYPE_P (TREE_TYPE (exp)))
5378 /* C++ can generate ?: expressions with a throw expression in one
5379 branch and an rvalue in the other. Here, we resolve attempts to
5380 store the throw expression's nonexistent result. */
5381 gcc_assert (!call_param_p);
5382 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5383 return NULL_RTX;
5385 if (TREE_CODE (exp) == COMPOUND_EXPR)
5387 /* Perform first part of compound expression, then assign from second
5388 part. */
5389 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5390 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5391 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5392 call_param_p, nontemporal, reverse,
5393 btarget);
5395 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5397 /* For conditional expression, get safe form of the target. Then
5398 test the condition, doing the appropriate assignment on either
5399 side. This avoids the creation of unnecessary temporaries.
5400 For non-BLKmode, it is more efficient not to do this. */
5402 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5404 do_pending_stack_adjust ();
5405 NO_DEFER_POP;
5406 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5407 profile_probability::uninitialized ());
5408 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5409 nontemporal, reverse, btarget);
5410 emit_jump_insn (targetm.gen_jump (lab2));
5411 emit_barrier ();
5412 emit_label (lab1);
5413 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5414 nontemporal, reverse, btarget);
5415 emit_label (lab2);
5416 OK_DEFER_POP;
5418 return NULL_RTX;
5420 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5421 /* If this is a scalar in a register that is stored in a wider mode
5422 than the declared mode, compute the result into its declared mode
5423 and then convert to the wider mode. Our value is the computed
5424 expression. */
5426 rtx inner_target = 0;
5427 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5428 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5430 /* We can do the conversion inside EXP, which will often result
5431 in some optimizations. Do the conversion in two steps: first
5432 change the signedness, if needed, then the extend. But don't
5433 do this if the type of EXP is a subtype of something else
5434 since then the conversion might involve more than just
5435 converting modes. */
5436 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5437 && TREE_TYPE (TREE_TYPE (exp)) == 0
5438 && GET_MODE_PRECISION (outer_mode)
5439 == TYPE_PRECISION (TREE_TYPE (exp)))
5441 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5442 TYPE_UNSIGNED (TREE_TYPE (exp))))
5444 /* Some types, e.g. Fortran's logical*4, won't have a signed
5445 version, so use the mode instead. */
5446 tree ntype
5447 = (signed_or_unsigned_type_for
5448 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5449 if (ntype == NULL)
5450 ntype = lang_hooks.types.type_for_mode
5451 (TYPE_MODE (TREE_TYPE (exp)),
5452 SUBREG_PROMOTED_SIGN (target));
5454 exp = fold_convert_loc (loc, ntype, exp);
5457 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5458 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5459 exp);
5461 inner_target = SUBREG_REG (target);
5464 temp = expand_expr (exp, inner_target, VOIDmode,
5465 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5467 /* Handle bounds returned by call. */
5468 if (TREE_CODE (exp) == CALL_EXPR)
5470 rtx bounds;
5471 chkp_split_slot (temp, &temp, &bounds);
5472 if (bounds && btarget)
5474 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5475 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5476 chkp_set_rtl_bounds (btarget, tmp);
5480 /* If TEMP is a VOIDmode constant, use convert_modes to make
5481 sure that we properly convert it. */
5482 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5484 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5485 temp, SUBREG_PROMOTED_SIGN (target));
5486 temp = convert_modes (inner_mode, outer_mode, temp,
5487 SUBREG_PROMOTED_SIGN (target));
5490 convert_move (SUBREG_REG (target), temp,
5491 SUBREG_PROMOTED_SIGN (target));
5493 return NULL_RTX;
5495 else if ((TREE_CODE (exp) == STRING_CST
5496 || (TREE_CODE (exp) == MEM_REF
5497 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5498 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5499 == STRING_CST
5500 && integer_zerop (TREE_OPERAND (exp, 1))))
5501 && !nontemporal && !call_param_p
5502 && MEM_P (target))
5504 /* Optimize initialization of an array with a STRING_CST. */
5505 HOST_WIDE_INT exp_len, str_copy_len;
5506 rtx dest_mem;
5507 tree str = TREE_CODE (exp) == STRING_CST
5508 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5510 exp_len = int_expr_size (exp);
5511 if (exp_len <= 0)
5512 goto normal_expr;
5514 if (TREE_STRING_LENGTH (str) <= 0)
5515 goto normal_expr;
5517 str_copy_len = strlen (TREE_STRING_POINTER (str));
5518 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5519 goto normal_expr;
5521 str_copy_len = TREE_STRING_LENGTH (str);
5522 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5523 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5525 str_copy_len += STORE_MAX_PIECES - 1;
5526 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5528 str_copy_len = MIN (str_copy_len, exp_len);
5529 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5530 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5531 MEM_ALIGN (target), false))
5532 goto normal_expr;
5534 dest_mem = target;
5536 dest_mem = store_by_pieces (dest_mem,
5537 str_copy_len, builtin_strncpy_read_str,
5538 CONST_CAST (char *,
5539 TREE_STRING_POINTER (str)),
5540 MEM_ALIGN (target), false,
5541 exp_len > str_copy_len ? 1 : 0);
5542 if (exp_len > str_copy_len)
5543 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5544 GEN_INT (exp_len - str_copy_len),
5545 BLOCK_OP_NORMAL);
5546 return NULL_RTX;
5548 else
5550 rtx tmp_target;
5552 normal_expr:
5553 /* If we want to use a nontemporal or a reverse order store, force the
5554 value into a register first. */
5555 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5556 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5557 (call_param_p
5558 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5559 &alt_rtl, false);
5561 /* Handle bounds returned by call. */
5562 if (TREE_CODE (exp) == CALL_EXPR)
5564 rtx bounds;
5565 chkp_split_slot (temp, &temp, &bounds);
5566 if (bounds && btarget)
5568 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5569 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5570 chkp_set_rtl_bounds (btarget, tmp);
5575 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5576 the same as that of TARGET, adjust the constant. This is needed, for
5577 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5578 only a word-sized value. */
5579 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5580 && TREE_CODE (exp) != ERROR_MARK
5581 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5582 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5583 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5585 /* If value was not generated in the target, store it there.
5586 Convert the value to TARGET's type first if necessary and emit the
5587 pending incrementations that have been queued when expanding EXP.
5588 Note that we cannot emit the whole queue blindly because this will
5589 effectively disable the POST_INC optimization later.
5591 If TEMP and TARGET compare equal according to rtx_equal_p, but
5592 one or both of them are volatile memory refs, we have to distinguish
5593 two cases:
5594 - expand_expr has used TARGET. In this case, we must not generate
5595 another copy. This can be detected by TARGET being equal according
5596 to == .
5597 - expand_expr has not used TARGET - that means that the source just
5598 happens to have the same RTX form. Since temp will have been created
5599 by expand_expr, it will compare unequal according to == .
5600 We must generate a copy in this case, to reach the correct number
5601 of volatile memory references. */
5603 if ((! rtx_equal_p (temp, target)
5604 || (temp != target && (side_effects_p (temp)
5605 || side_effects_p (target))))
5606 && TREE_CODE (exp) != ERROR_MARK
5607 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5608 but TARGET is not valid memory reference, TEMP will differ
5609 from TARGET although it is really the same location. */
5610 && !(alt_rtl
5611 && rtx_equal_p (alt_rtl, target)
5612 && !side_effects_p (alt_rtl)
5613 && !side_effects_p (target))
5614 /* If there's nothing to copy, don't bother. Don't call
5615 expr_size unless necessary, because some front-ends (C++)
5616 expr_size-hook must not be given objects that are not
5617 supposed to be bit-copied or bit-initialized. */
5618 && expr_size (exp) != const0_rtx)
5620 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5622 if (GET_MODE (target) == BLKmode)
5624 /* Handle calls that return BLKmode values in registers. */
5625 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5626 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5627 else
5628 store_bit_field (target,
5629 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5630 0, 0, 0, GET_MODE (temp), temp, reverse);
5632 else
5633 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5636 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5638 /* Handle copying a string constant into an array. The string
5639 constant may be shorter than the array. So copy just the string's
5640 actual length, and clear the rest. First get the size of the data
5641 type of the string, which is actually the size of the target. */
5642 rtx size = expr_size (exp);
5644 if (CONST_INT_P (size)
5645 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5646 emit_block_move (target, temp, size,
5647 (call_param_p
5648 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5649 else
5651 machine_mode pointer_mode
5652 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5653 machine_mode address_mode = get_address_mode (target);
5655 /* Compute the size of the data to copy from the string. */
5656 tree copy_size
5657 = size_binop_loc (loc, MIN_EXPR,
5658 make_tree (sizetype, size),
5659 size_int (TREE_STRING_LENGTH (exp)));
5660 rtx copy_size_rtx
5661 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5662 (call_param_p
5663 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5664 rtx_code_label *label = 0;
5666 /* Copy that much. */
5667 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5668 TYPE_UNSIGNED (sizetype));
5669 emit_block_move (target, temp, copy_size_rtx,
5670 (call_param_p
5671 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5673 /* Figure out how much is left in TARGET that we have to clear.
5674 Do all calculations in pointer_mode. */
5675 if (CONST_INT_P (copy_size_rtx))
5677 size = plus_constant (address_mode, size,
5678 -INTVAL (copy_size_rtx));
5679 target = adjust_address (target, BLKmode,
5680 INTVAL (copy_size_rtx));
5682 else
5684 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5685 copy_size_rtx, NULL_RTX, 0,
5686 OPTAB_LIB_WIDEN);
5688 if (GET_MODE (copy_size_rtx) != address_mode)
5689 copy_size_rtx = convert_to_mode (address_mode,
5690 copy_size_rtx,
5691 TYPE_UNSIGNED (sizetype));
5693 target = offset_address (target, copy_size_rtx,
5694 highest_pow2_factor (copy_size));
5695 label = gen_label_rtx ();
5696 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5697 GET_MODE (size), 0, label);
5700 if (size != const0_rtx)
5701 clear_storage (target, size, BLOCK_OP_NORMAL);
5703 if (label)
5704 emit_label (label);
5707 /* Handle calls that return values in multiple non-contiguous locations.
5708 The Irix 6 ABI has examples of this. */
5709 else if (GET_CODE (target) == PARALLEL)
5711 if (GET_CODE (temp) == PARALLEL)
5712 emit_group_move (target, temp);
5713 else
5714 emit_group_load (target, temp, TREE_TYPE (exp),
5715 int_size_in_bytes (TREE_TYPE (exp)));
5717 else if (GET_CODE (temp) == PARALLEL)
5718 emit_group_store (target, temp, TREE_TYPE (exp),
5719 int_size_in_bytes (TREE_TYPE (exp)));
5720 else if (GET_MODE (temp) == BLKmode)
5721 emit_block_move (target, temp, expr_size (exp),
5722 (call_param_p
5723 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5724 /* If we emit a nontemporal store, there is nothing else to do. */
5725 else if (nontemporal && emit_storent_insn (target, temp))
5727 else
5729 if (reverse)
5730 temp = flip_storage_order (GET_MODE (target), temp);
5731 temp = force_operand (temp, target);
5732 if (temp != target)
5733 emit_move_insn (target, temp);
5737 return NULL_RTX;
5740 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5742 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
5743 bool reverse)
5745 return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
5746 reverse, NULL);
5749 /* Return true if field F of structure TYPE is a flexible array. */
5751 static bool
5752 flexible_array_member_p (const_tree f, const_tree type)
5754 const_tree tf;
5756 tf = TREE_TYPE (f);
5757 return (DECL_CHAIN (f) == NULL
5758 && TREE_CODE (tf) == ARRAY_TYPE
5759 && TYPE_DOMAIN (tf)
5760 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5761 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5762 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5763 && int_size_in_bytes (type) >= 0);
5766 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5767 must have in order for it to completely initialize a value of type TYPE.
5768 Return -1 if the number isn't known.
5770 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5772 static HOST_WIDE_INT
5773 count_type_elements (const_tree type, bool for_ctor_p)
5775 switch (TREE_CODE (type))
5777 case ARRAY_TYPE:
5779 tree nelts;
5781 nelts = array_type_nelts (type);
5782 if (nelts && tree_fits_uhwi_p (nelts))
5784 unsigned HOST_WIDE_INT n;
5786 n = tree_to_uhwi (nelts) + 1;
5787 if (n == 0 || for_ctor_p)
5788 return n;
5789 else
5790 return n * count_type_elements (TREE_TYPE (type), false);
5792 return for_ctor_p ? -1 : 1;
5795 case RECORD_TYPE:
5797 unsigned HOST_WIDE_INT n;
5798 tree f;
5800 n = 0;
5801 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5802 if (TREE_CODE (f) == FIELD_DECL)
5804 if (!for_ctor_p)
5805 n += count_type_elements (TREE_TYPE (f), false);
5806 else if (!flexible_array_member_p (f, type))
5807 /* Don't count flexible arrays, which are not supposed
5808 to be initialized. */
5809 n += 1;
5812 return n;
5815 case UNION_TYPE:
5816 case QUAL_UNION_TYPE:
5818 tree f;
5819 HOST_WIDE_INT n, m;
5821 gcc_assert (!for_ctor_p);
5822 /* Estimate the number of scalars in each field and pick the
5823 maximum. Other estimates would do instead; the idea is simply
5824 to make sure that the estimate is not sensitive to the ordering
5825 of the fields. */
5826 n = 1;
5827 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5828 if (TREE_CODE (f) == FIELD_DECL)
5830 m = count_type_elements (TREE_TYPE (f), false);
5831 /* If the field doesn't span the whole union, add an extra
5832 scalar for the rest. */
5833 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5834 TYPE_SIZE (type)) != 1)
5835 m++;
5836 if (n < m)
5837 n = m;
5839 return n;
5842 case COMPLEX_TYPE:
5843 return 2;
5845 case VECTOR_TYPE:
5846 return TYPE_VECTOR_SUBPARTS (type);
5848 case INTEGER_TYPE:
5849 case REAL_TYPE:
5850 case FIXED_POINT_TYPE:
5851 case ENUMERAL_TYPE:
5852 case BOOLEAN_TYPE:
5853 case POINTER_TYPE:
5854 case OFFSET_TYPE:
5855 case REFERENCE_TYPE:
5856 case NULLPTR_TYPE:
5857 return 1;
5859 case ERROR_MARK:
5860 return 0;
5862 case VOID_TYPE:
5863 case METHOD_TYPE:
5864 case FUNCTION_TYPE:
5865 case LANG_TYPE:
5866 default:
5867 gcc_unreachable ();
5871 /* Helper for categorize_ctor_elements. Identical interface. */
5873 static bool
5874 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5875 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5877 unsigned HOST_WIDE_INT idx;
5878 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5879 tree value, purpose, elt_type;
5881 /* Whether CTOR is a valid constant initializer, in accordance with what
5882 initializer_constant_valid_p does. If inferred from the constructor
5883 elements, true until proven otherwise. */
5884 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5885 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5887 nz_elts = 0;
5888 init_elts = 0;
5889 num_fields = 0;
5890 elt_type = NULL_TREE;
5892 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5894 HOST_WIDE_INT mult = 1;
5896 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5898 tree lo_index = TREE_OPERAND (purpose, 0);
5899 tree hi_index = TREE_OPERAND (purpose, 1);
5901 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5902 mult = (tree_to_uhwi (hi_index)
5903 - tree_to_uhwi (lo_index) + 1);
5905 num_fields += mult;
5906 elt_type = TREE_TYPE (value);
5908 switch (TREE_CODE (value))
5910 case CONSTRUCTOR:
5912 HOST_WIDE_INT nz = 0, ic = 0;
5914 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5915 p_complete);
5917 nz_elts += mult * nz;
5918 init_elts += mult * ic;
5920 if (const_from_elts_p && const_p)
5921 const_p = const_elt_p;
5923 break;
5925 case INTEGER_CST:
5926 case REAL_CST:
5927 case FIXED_CST:
5928 if (!initializer_zerop (value))
5929 nz_elts += mult;
5930 init_elts += mult;
5931 break;
5933 case STRING_CST:
5934 nz_elts += mult * TREE_STRING_LENGTH (value);
5935 init_elts += mult * TREE_STRING_LENGTH (value);
5936 break;
5938 case COMPLEX_CST:
5939 if (!initializer_zerop (TREE_REALPART (value)))
5940 nz_elts += mult;
5941 if (!initializer_zerop (TREE_IMAGPART (value)))
5942 nz_elts += mult;
5943 init_elts += mult;
5944 break;
5946 case VECTOR_CST:
5948 unsigned i;
5949 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5951 tree v = VECTOR_CST_ELT (value, i);
5952 if (!initializer_zerop (v))
5953 nz_elts += mult;
5954 init_elts += mult;
5957 break;
5959 default:
5961 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5962 nz_elts += mult * tc;
5963 init_elts += mult * tc;
5965 if (const_from_elts_p && const_p)
5966 const_p
5967 = initializer_constant_valid_p (value,
5968 elt_type,
5969 TYPE_REVERSE_STORAGE_ORDER
5970 (TREE_TYPE (ctor)))
5971 != NULL_TREE;
5973 break;
5977 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5978 num_fields, elt_type))
5979 *p_complete = false;
5981 *p_nz_elts += nz_elts;
5982 *p_init_elts += init_elts;
5984 return const_p;
5987 /* Examine CTOR to discover:
5988 * how many scalar fields are set to nonzero values,
5989 and place it in *P_NZ_ELTS;
5990 * how many scalar fields in total are in CTOR,
5991 and place it in *P_ELT_COUNT.
5992 * whether the constructor is complete -- in the sense that every
5993 meaningful byte is explicitly given a value --
5994 and place it in *P_COMPLETE.
5996 Return whether or not CTOR is a valid static constant initializer, the same
5997 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5999 bool
6000 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6001 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6003 *p_nz_elts = 0;
6004 *p_init_elts = 0;
6005 *p_complete = true;
6007 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6010 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6011 of which had type LAST_TYPE. Each element was itself a complete
6012 initializer, in the sense that every meaningful byte was explicitly
6013 given a value. Return true if the same is true for the constructor
6014 as a whole. */
6016 bool
6017 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6018 const_tree last_type)
6020 if (TREE_CODE (type) == UNION_TYPE
6021 || TREE_CODE (type) == QUAL_UNION_TYPE)
6023 if (num_elts == 0)
6024 return false;
6026 gcc_assert (num_elts == 1 && last_type);
6028 /* ??? We could look at each element of the union, and find the
6029 largest element. Which would avoid comparing the size of the
6030 initialized element against any tail padding in the union.
6031 Doesn't seem worth the effort... */
6032 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6035 return count_type_elements (type, true) == num_elts;
6038 /* Return 1 if EXP contains mostly (3/4) zeros. */
6040 static int
6041 mostly_zeros_p (const_tree exp)
6043 if (TREE_CODE (exp) == CONSTRUCTOR)
6045 HOST_WIDE_INT nz_elts, init_elts;
6046 bool complete_p;
6048 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6049 return !complete_p || nz_elts < init_elts / 4;
6052 return initializer_zerop (exp);
6055 /* Return 1 if EXP contains all zeros. */
6057 static int
6058 all_zeros_p (const_tree exp)
6060 if (TREE_CODE (exp) == CONSTRUCTOR)
6062 HOST_WIDE_INT nz_elts, init_elts;
6063 bool complete_p;
6065 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6066 return nz_elts == 0;
6069 return initializer_zerop (exp);
6072 /* Helper function for store_constructor.
6073 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6074 CLEARED is as for store_constructor.
6075 ALIAS_SET is the alias set to use for any stores.
6076 If REVERSE is true, the store is to be done in reverse order.
6078 This provides a recursive shortcut back to store_constructor when it isn't
6079 necessary to go through store_field. This is so that we can pass through
6080 the cleared field to let store_constructor know that we may not have to
6081 clear a substructure if the outer structure has already been cleared. */
6083 static void
6084 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
6085 HOST_WIDE_INT bitpos,
6086 unsigned HOST_WIDE_INT bitregion_start,
6087 unsigned HOST_WIDE_INT bitregion_end,
6088 machine_mode mode,
6089 tree exp, int cleared,
6090 alias_set_type alias_set, bool reverse)
6092 if (TREE_CODE (exp) == CONSTRUCTOR
6093 /* We can only call store_constructor recursively if the size and
6094 bit position are on a byte boundary. */
6095 && bitpos % BITS_PER_UNIT == 0
6096 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
6097 /* If we have a nonzero bitpos for a register target, then we just
6098 let store_field do the bitfield handling. This is unlikely to
6099 generate unnecessary clear instructions anyways. */
6100 && (bitpos == 0 || MEM_P (target)))
6102 if (MEM_P (target))
6103 target
6104 = adjust_address (target,
6105 GET_MODE (target) == BLKmode
6106 || 0 != (bitpos
6107 % GET_MODE_ALIGNMENT (GET_MODE (target)))
6108 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
6111 /* Update the alias set, if required. */
6112 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6113 && MEM_ALIAS_SET (target) != 0)
6115 target = copy_rtx (target);
6116 set_mem_alias_set (target, alias_set);
6119 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
6120 reverse);
6122 else
6123 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6124 exp, alias_set, false, reverse);
6128 /* Returns the number of FIELD_DECLs in TYPE. */
6130 static int
6131 fields_length (const_tree type)
6133 tree t = TYPE_FIELDS (type);
6134 int count = 0;
6136 for (; t; t = DECL_CHAIN (t))
6137 if (TREE_CODE (t) == FIELD_DECL)
6138 ++count;
6140 return count;
6144 /* Store the value of constructor EXP into the rtx TARGET.
6145 TARGET is either a REG or a MEM; we know it cannot conflict, since
6146 safe_from_p has been called.
6147 CLEARED is true if TARGET is known to have been zero'd.
6148 SIZE is the number of bytes of TARGET we are allowed to modify: this
6149 may not be the same as the size of EXP if we are assigning to a field
6150 which has been packed to exclude padding bits.
6151 If REVERSE is true, the store is to be done in reverse order. */
6153 static void
6154 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
6155 bool reverse)
6157 tree type = TREE_TYPE (exp);
6158 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6159 HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0;
6161 switch (TREE_CODE (type))
6163 case RECORD_TYPE:
6164 case UNION_TYPE:
6165 case QUAL_UNION_TYPE:
6167 unsigned HOST_WIDE_INT idx;
6168 tree field, value;
6170 /* The storage order is specified for every aggregate type. */
6171 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6173 /* If size is zero or the target is already cleared, do nothing. */
6174 if (size == 0 || cleared)
6175 cleared = 1;
6176 /* We either clear the aggregate or indicate the value is dead. */
6177 else if ((TREE_CODE (type) == UNION_TYPE
6178 || TREE_CODE (type) == QUAL_UNION_TYPE)
6179 && ! CONSTRUCTOR_ELTS (exp))
6180 /* If the constructor is empty, clear the union. */
6182 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6183 cleared = 1;
6186 /* If we are building a static constructor into a register,
6187 set the initial value as zero so we can fold the value into
6188 a constant. But if more than one register is involved,
6189 this probably loses. */
6190 else if (REG_P (target) && TREE_STATIC (exp)
6191 && (GET_MODE_SIZE (GET_MODE (target))
6192 <= REGMODE_NATURAL_SIZE (GET_MODE (target))))
6194 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6195 cleared = 1;
6198 /* If the constructor has fewer fields than the structure or
6199 if we are initializing the structure to mostly zeros, clear
6200 the whole structure first. Don't do this if TARGET is a
6201 register whose mode size isn't equal to SIZE since
6202 clear_storage can't handle this case. */
6203 else if (size > 0
6204 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6205 || mostly_zeros_p (exp))
6206 && (!REG_P (target)
6207 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6208 == size)))
6210 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6211 cleared = 1;
6214 if (REG_P (target) && !cleared)
6215 emit_clobber (target);
6217 /* Store each element of the constructor into the
6218 corresponding field of TARGET. */
6219 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6221 machine_mode mode;
6222 HOST_WIDE_INT bitsize;
6223 HOST_WIDE_INT bitpos = 0;
6224 tree offset;
6225 rtx to_rtx = target;
6227 /* Just ignore missing fields. We cleared the whole
6228 structure, above, if any fields are missing. */
6229 if (field == 0)
6230 continue;
6232 if (cleared && initializer_zerop (value))
6233 continue;
6235 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6236 bitsize = tree_to_uhwi (DECL_SIZE (field));
6237 else
6238 gcc_unreachable ();
6240 mode = DECL_MODE (field);
6241 if (DECL_BIT_FIELD (field))
6242 mode = VOIDmode;
6244 offset = DECL_FIELD_OFFSET (field);
6245 if (tree_fits_shwi_p (offset)
6246 && tree_fits_shwi_p (bit_position (field)))
6248 bitpos = int_bit_position (field);
6249 offset = NULL_TREE;
6251 else
6252 gcc_unreachable ();
6254 /* If this initializes a field that is smaller than a
6255 word, at the start of a word, try to widen it to a full
6256 word. This special case allows us to output C++ member
6257 function initializations in a form that the optimizers
6258 can understand. */
6259 if (WORD_REGISTER_OPERATIONS
6260 && REG_P (target)
6261 && bitsize < BITS_PER_WORD
6262 && bitpos % BITS_PER_WORD == 0
6263 && GET_MODE_CLASS (mode) == MODE_INT
6264 && TREE_CODE (value) == INTEGER_CST
6265 && exp_size >= 0
6266 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6268 tree type = TREE_TYPE (value);
6270 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6272 type = lang_hooks.types.type_for_mode
6273 (word_mode, TYPE_UNSIGNED (type));
6274 value = fold_convert (type, value);
6275 /* Make sure the bits beyond the original bitsize are zero
6276 so that we can correctly avoid extra zeroing stores in
6277 later constructor elements. */
6278 tree bitsize_mask
6279 = wide_int_to_tree (type, wi::mask (bitsize, false,
6280 BITS_PER_WORD));
6281 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6284 if (BYTES_BIG_ENDIAN)
6285 value
6286 = fold_build2 (LSHIFT_EXPR, type, value,
6287 build_int_cst (type,
6288 BITS_PER_WORD - bitsize));
6289 bitsize = BITS_PER_WORD;
6290 mode = word_mode;
6293 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6294 && DECL_NONADDRESSABLE_P (field))
6296 to_rtx = copy_rtx (to_rtx);
6297 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6300 store_constructor_field (to_rtx, bitsize, bitpos,
6301 0, bitregion_end, mode,
6302 value, cleared,
6303 get_alias_set (TREE_TYPE (field)),
6304 reverse);
6306 break;
6308 case ARRAY_TYPE:
6310 tree value, index;
6311 unsigned HOST_WIDE_INT i;
6312 int need_to_clear;
6313 tree domain;
6314 tree elttype = TREE_TYPE (type);
6315 int const_bounds_p;
6316 HOST_WIDE_INT minelt = 0;
6317 HOST_WIDE_INT maxelt = 0;
6319 /* The storage order is specified for every aggregate type. */
6320 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6322 domain = TYPE_DOMAIN (type);
6323 const_bounds_p = (TYPE_MIN_VALUE (domain)
6324 && TYPE_MAX_VALUE (domain)
6325 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6326 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6328 /* If we have constant bounds for the range of the type, get them. */
6329 if (const_bounds_p)
6331 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6332 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6335 /* If the constructor has fewer elements than the array, clear
6336 the whole array first. Similarly if this is static
6337 constructor of a non-BLKmode object. */
6338 if (cleared)
6339 need_to_clear = 0;
6340 else if (REG_P (target) && TREE_STATIC (exp))
6341 need_to_clear = 1;
6342 else
6344 unsigned HOST_WIDE_INT idx;
6345 tree index, value;
6346 HOST_WIDE_INT count = 0, zero_count = 0;
6347 need_to_clear = ! const_bounds_p;
6349 /* This loop is a more accurate version of the loop in
6350 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6351 is also needed to check for missing elements. */
6352 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6354 HOST_WIDE_INT this_node_count;
6356 if (need_to_clear)
6357 break;
6359 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6361 tree lo_index = TREE_OPERAND (index, 0);
6362 tree hi_index = TREE_OPERAND (index, 1);
6364 if (! tree_fits_uhwi_p (lo_index)
6365 || ! tree_fits_uhwi_p (hi_index))
6367 need_to_clear = 1;
6368 break;
6371 this_node_count = (tree_to_uhwi (hi_index)
6372 - tree_to_uhwi (lo_index) + 1);
6374 else
6375 this_node_count = 1;
6377 count += this_node_count;
6378 if (mostly_zeros_p (value))
6379 zero_count += this_node_count;
6382 /* Clear the entire array first if there are any missing
6383 elements, or if the incidence of zero elements is >=
6384 75%. */
6385 if (! need_to_clear
6386 && (count < maxelt - minelt + 1
6387 || 4 * zero_count >= 3 * count))
6388 need_to_clear = 1;
6391 if (need_to_clear && size > 0)
6393 if (REG_P (target))
6394 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6395 else
6396 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6397 cleared = 1;
6400 if (!cleared && REG_P (target))
6401 /* Inform later passes that the old value is dead. */
6402 emit_clobber (target);
6404 /* Store each element of the constructor into the
6405 corresponding element of TARGET, determined by counting the
6406 elements. */
6407 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6409 machine_mode mode;
6410 HOST_WIDE_INT bitsize;
6411 HOST_WIDE_INT bitpos;
6412 rtx xtarget = target;
6414 if (cleared && initializer_zerop (value))
6415 continue;
6417 mode = TYPE_MODE (elttype);
6418 if (mode == BLKmode)
6419 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6420 ? tree_to_uhwi (TYPE_SIZE (elttype))
6421 : -1);
6422 else
6423 bitsize = GET_MODE_BITSIZE (mode);
6425 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6427 tree lo_index = TREE_OPERAND (index, 0);
6428 tree hi_index = TREE_OPERAND (index, 1);
6429 rtx index_r, pos_rtx;
6430 HOST_WIDE_INT lo, hi, count;
6431 tree position;
6433 /* If the range is constant and "small", unroll the loop. */
6434 if (const_bounds_p
6435 && tree_fits_shwi_p (lo_index)
6436 && tree_fits_shwi_p (hi_index)
6437 && (lo = tree_to_shwi (lo_index),
6438 hi = tree_to_shwi (hi_index),
6439 count = hi - lo + 1,
6440 (!MEM_P (target)
6441 || count <= 2
6442 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6443 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6444 <= 40 * 8)))))
6446 lo -= minelt; hi -= minelt;
6447 for (; lo <= hi; lo++)
6449 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6451 if (MEM_P (target)
6452 && !MEM_KEEP_ALIAS_SET_P (target)
6453 && TREE_CODE (type) == ARRAY_TYPE
6454 && TYPE_NONALIASED_COMPONENT (type))
6456 target = copy_rtx (target);
6457 MEM_KEEP_ALIAS_SET_P (target) = 1;
6460 store_constructor_field
6461 (target, bitsize, bitpos, 0, bitregion_end,
6462 mode, value, cleared,
6463 get_alias_set (elttype), reverse);
6466 else
6468 rtx_code_label *loop_start = gen_label_rtx ();
6469 rtx_code_label *loop_end = gen_label_rtx ();
6470 tree exit_cond;
6472 expand_normal (hi_index);
6474 index = build_decl (EXPR_LOCATION (exp),
6475 VAR_DECL, NULL_TREE, domain);
6476 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6477 SET_DECL_RTL (index, index_r);
6478 store_expr (lo_index, index_r, 0, false, reverse);
6480 /* Build the head of the loop. */
6481 do_pending_stack_adjust ();
6482 emit_label (loop_start);
6484 /* Assign value to element index. */
6485 position =
6486 fold_convert (ssizetype,
6487 fold_build2 (MINUS_EXPR,
6488 TREE_TYPE (index),
6489 index,
6490 TYPE_MIN_VALUE (domain)));
6492 position =
6493 size_binop (MULT_EXPR, position,
6494 fold_convert (ssizetype,
6495 TYPE_SIZE_UNIT (elttype)));
6497 pos_rtx = expand_normal (position);
6498 xtarget = offset_address (target, pos_rtx,
6499 highest_pow2_factor (position));
6500 xtarget = adjust_address (xtarget, mode, 0);
6501 if (TREE_CODE (value) == CONSTRUCTOR)
6502 store_constructor (value, xtarget, cleared,
6503 bitsize / BITS_PER_UNIT, reverse);
6504 else
6505 store_expr (value, xtarget, 0, false, reverse);
6507 /* Generate a conditional jump to exit the loop. */
6508 exit_cond = build2 (LT_EXPR, integer_type_node,
6509 index, hi_index);
6510 jumpif (exit_cond, loop_end,
6511 profile_probability::uninitialized ());
6513 /* Update the loop counter, and jump to the head of
6514 the loop. */
6515 expand_assignment (index,
6516 build2 (PLUS_EXPR, TREE_TYPE (index),
6517 index, integer_one_node),
6518 false);
6520 emit_jump (loop_start);
6522 /* Build the end of the loop. */
6523 emit_label (loop_end);
6526 else if ((index != 0 && ! tree_fits_shwi_p (index))
6527 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6529 tree position;
6531 if (index == 0)
6532 index = ssize_int (1);
6534 if (minelt)
6535 index = fold_convert (ssizetype,
6536 fold_build2 (MINUS_EXPR,
6537 TREE_TYPE (index),
6538 index,
6539 TYPE_MIN_VALUE (domain)));
6541 position =
6542 size_binop (MULT_EXPR, index,
6543 fold_convert (ssizetype,
6544 TYPE_SIZE_UNIT (elttype)));
6545 xtarget = offset_address (target,
6546 expand_normal (position),
6547 highest_pow2_factor (position));
6548 xtarget = adjust_address (xtarget, mode, 0);
6549 store_expr (value, xtarget, 0, false, reverse);
6551 else
6553 if (index != 0)
6554 bitpos = ((tree_to_shwi (index) - minelt)
6555 * tree_to_uhwi (TYPE_SIZE (elttype)));
6556 else
6557 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6559 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6560 && TREE_CODE (type) == ARRAY_TYPE
6561 && TYPE_NONALIASED_COMPONENT (type))
6563 target = copy_rtx (target);
6564 MEM_KEEP_ALIAS_SET_P (target) = 1;
6566 store_constructor_field (target, bitsize, bitpos, 0,
6567 bitregion_end, mode, value,
6568 cleared, get_alias_set (elttype),
6569 reverse);
6572 break;
6575 case VECTOR_TYPE:
6577 unsigned HOST_WIDE_INT idx;
6578 constructor_elt *ce;
6579 int i;
6580 int need_to_clear;
6581 int icode = CODE_FOR_nothing;
6582 tree elttype = TREE_TYPE (type);
6583 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6584 machine_mode eltmode = TYPE_MODE (elttype);
6585 HOST_WIDE_INT bitsize;
6586 HOST_WIDE_INT bitpos;
6587 rtvec vector = NULL;
6588 unsigned n_elts;
6589 alias_set_type alias;
6590 bool vec_vec_init_p = false;
6592 gcc_assert (eltmode != BLKmode);
6594 n_elts = TYPE_VECTOR_SUBPARTS (type);
6595 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6597 machine_mode mode = GET_MODE (target);
6598 machine_mode emode = eltmode;
6600 if (CONSTRUCTOR_NELTS (exp)
6601 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6602 == VECTOR_TYPE))
6604 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6605 gcc_assert (CONSTRUCTOR_NELTS (exp) * TYPE_VECTOR_SUBPARTS (etype)
6606 == n_elts);
6607 emode = TYPE_MODE (etype);
6609 icode = (int) convert_optab_handler (vec_init_optab, mode, emode);
6610 if (icode != CODE_FOR_nothing)
6612 unsigned int i, n = n_elts;
6614 if (emode != eltmode)
6616 n = CONSTRUCTOR_NELTS (exp);
6617 vec_vec_init_p = true;
6619 vector = rtvec_alloc (n);
6620 for (i = 0; i < n; i++)
6621 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6625 /* If the constructor has fewer elements than the vector,
6626 clear the whole array first. Similarly if this is static
6627 constructor of a non-BLKmode object. */
6628 if (cleared)
6629 need_to_clear = 0;
6630 else if (REG_P (target) && TREE_STATIC (exp))
6631 need_to_clear = 1;
6632 else
6634 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6635 tree value;
6637 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6639 tree sz = TYPE_SIZE (TREE_TYPE (value));
6640 int n_elts_here
6641 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6642 TYPE_SIZE (elttype)));
6644 count += n_elts_here;
6645 if (mostly_zeros_p (value))
6646 zero_count += n_elts_here;
6649 /* Clear the entire vector first if there are any missing elements,
6650 or if the incidence of zero elements is >= 75%. */
6651 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6654 if (need_to_clear && size > 0 && !vector)
6656 if (REG_P (target))
6657 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6658 else
6659 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6660 cleared = 1;
6663 /* Inform later passes that the old value is dead. */
6664 if (!cleared && !vector && REG_P (target))
6665 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6667 if (MEM_P (target))
6668 alias = MEM_ALIAS_SET (target);
6669 else
6670 alias = get_alias_set (elttype);
6672 /* Store each element of the constructor into the corresponding
6673 element of TARGET, determined by counting the elements. */
6674 for (idx = 0, i = 0;
6675 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6676 idx++, i += bitsize / elt_size)
6678 HOST_WIDE_INT eltpos;
6679 tree value = ce->value;
6681 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6682 if (cleared && initializer_zerop (value))
6683 continue;
6685 if (ce->index)
6686 eltpos = tree_to_uhwi (ce->index);
6687 else
6688 eltpos = i;
6690 if (vector)
6692 if (vec_vec_init_p)
6694 gcc_assert (ce->index == NULL_TREE);
6695 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6696 eltpos = idx;
6698 else
6699 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6700 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6702 else
6704 machine_mode value_mode
6705 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6706 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6707 bitpos = eltpos * elt_size;
6708 store_constructor_field (target, bitsize, bitpos, 0,
6709 bitregion_end, value_mode,
6710 value, cleared, alias, reverse);
6714 if (vector)
6715 emit_insn (GEN_FCN (icode) (target,
6716 gen_rtx_PARALLEL (GET_MODE (target),
6717 vector)));
6718 break;
6721 default:
6722 gcc_unreachable ();
6726 /* Store the value of EXP (an expression tree)
6727 into a subfield of TARGET which has mode MODE and occupies
6728 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6729 If MODE is VOIDmode, it means that we are storing into a bit-field.
6731 BITREGION_START is bitpos of the first bitfield in this region.
6732 BITREGION_END is the bitpos of the ending bitfield in this region.
6733 These two fields are 0, if the C++ memory model does not apply,
6734 or we are not interested in keeping track of bitfield regions.
6736 Always return const0_rtx unless we have something particular to
6737 return.
6739 ALIAS_SET is the alias set for the destination. This value will
6740 (in general) be different from that for TARGET, since TARGET is a
6741 reference to the containing structure.
6743 If NONTEMPORAL is true, try generating a nontemporal store.
6745 If REVERSE is true, the store is to be done in reverse order. */
6747 static rtx
6748 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6749 unsigned HOST_WIDE_INT bitregion_start,
6750 unsigned HOST_WIDE_INT bitregion_end,
6751 machine_mode mode, tree exp,
6752 alias_set_type alias_set, bool nontemporal, bool reverse)
6754 if (TREE_CODE (exp) == ERROR_MARK)
6755 return const0_rtx;
6757 /* If we have nothing to store, do nothing unless the expression has
6758 side-effects. Don't do that for zero sized addressable lhs of
6759 calls. */
6760 if (bitsize == 0
6761 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6762 || TREE_CODE (exp) != CALL_EXPR))
6763 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6765 if (GET_CODE (target) == CONCAT)
6767 /* We're storing into a struct containing a single __complex. */
6769 gcc_assert (!bitpos);
6770 return store_expr (exp, target, 0, nontemporal, reverse);
6773 /* If the structure is in a register or if the component
6774 is a bit field, we cannot use addressing to access it.
6775 Use bit-field techniques or SUBREG to store in it. */
6777 if (mode == VOIDmode
6778 || (mode != BLKmode && ! direct_store[(int) mode]
6779 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6780 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6781 || REG_P (target)
6782 || GET_CODE (target) == SUBREG
6783 /* If the field isn't aligned enough to store as an ordinary memref,
6784 store it as a bit field. */
6785 || (mode != BLKmode
6786 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6787 || bitpos % GET_MODE_ALIGNMENT (mode))
6788 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6789 || (bitpos % BITS_PER_UNIT != 0)))
6790 || (bitsize >= 0 && mode != BLKmode
6791 && GET_MODE_BITSIZE (mode) > bitsize)
6792 /* If the RHS and field are a constant size and the size of the
6793 RHS isn't the same size as the bitfield, we must use bitfield
6794 operations. */
6795 || (bitsize >= 0
6796 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6797 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
6798 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6799 we will handle specially below. */
6800 && !(TREE_CODE (exp) == CONSTRUCTOR
6801 && bitsize % BITS_PER_UNIT == 0)
6802 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6803 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6804 includes some extra padding. store_expr / expand_expr will in
6805 that case call get_inner_reference that will have the bitsize
6806 we check here and thus the block move will not clobber the
6807 padding that shouldn't be clobbered. In the future we could
6808 replace the TREE_ADDRESSABLE check with a check that
6809 get_base_address needs to live in memory. */
6810 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6811 || TREE_CODE (exp) != COMPONENT_REF
6812 || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
6813 || (bitsize % BITS_PER_UNIT != 0)
6814 || (bitpos % BITS_PER_UNIT != 0)
6815 || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
6816 != 0)))
6817 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6818 decl we must use bitfield operations. */
6819 || (bitsize >= 0
6820 && TREE_CODE (exp) == MEM_REF
6821 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6822 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6823 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6824 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6826 rtx temp;
6827 gimple *nop_def;
6829 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6830 implies a mask operation. If the precision is the same size as
6831 the field we're storing into, that mask is redundant. This is
6832 particularly common with bit field assignments generated by the
6833 C front end. */
6834 nop_def = get_def_for_expr (exp, NOP_EXPR);
6835 if (nop_def)
6837 tree type = TREE_TYPE (exp);
6838 if (INTEGRAL_TYPE_P (type)
6839 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6840 && bitsize == TYPE_PRECISION (type))
6842 tree op = gimple_assign_rhs1 (nop_def);
6843 type = TREE_TYPE (op);
6844 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6845 exp = op;
6849 temp = expand_normal (exp);
6851 /* Handle calls that return values in multiple non-contiguous locations.
6852 The Irix 6 ABI has examples of this. */
6853 if (GET_CODE (temp) == PARALLEL)
6855 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6856 scalar_int_mode temp_mode
6857 = smallest_int_mode_for_size (size * BITS_PER_UNIT);
6858 rtx temp_target = gen_reg_rtx (temp_mode);
6859 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6860 temp = temp_target;
6863 /* Handle calls that return BLKmode values in registers. */
6864 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6866 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6867 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6868 temp = temp_target;
6871 /* If the value has aggregate type and an integral mode then, if BITSIZE
6872 is narrower than this mode and this is for big-endian data, we first
6873 need to put the value into the low-order bits for store_bit_field,
6874 except when MODE is BLKmode and BITSIZE larger than the word size
6875 (see the handling of fields larger than a word in store_bit_field).
6876 Moreover, the field may be not aligned on a byte boundary; in this
6877 case, if it has reverse storage order, it needs to be accessed as a
6878 scalar field with reverse storage order and we must first put the
6879 value into target order. */
6880 scalar_int_mode temp_mode;
6881 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
6882 && is_int_mode (GET_MODE (temp), &temp_mode))
6884 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
6886 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
6888 if (reverse)
6889 temp = flip_storage_order (temp_mode, temp);
6891 if (bitsize < size
6892 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
6893 && !(mode == BLKmode && bitsize > BITS_PER_WORD))
6894 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
6895 size - bitsize, NULL_RTX, 1);
6898 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6899 if (mode != VOIDmode && mode != BLKmode
6900 && mode != TYPE_MODE (TREE_TYPE (exp)))
6901 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6903 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
6904 and BITPOS must be aligned on a byte boundary. If so, we simply do
6905 a block copy. Likewise for a BLKmode-like TARGET. */
6906 if (GET_MODE (temp) == BLKmode
6907 && (GET_MODE (target) == BLKmode
6908 || (MEM_P (target)
6909 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6910 && (bitpos % BITS_PER_UNIT) == 0
6911 && (bitsize % BITS_PER_UNIT) == 0)))
6913 gcc_assert (MEM_P (target) && MEM_P (temp)
6914 && (bitpos % BITS_PER_UNIT) == 0);
6916 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6917 emit_block_move (target, temp,
6918 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6919 / BITS_PER_UNIT),
6920 BLOCK_OP_NORMAL);
6922 return const0_rtx;
6925 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
6926 word size, we need to load the value (see again store_bit_field). */
6927 if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD)
6929 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
6930 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
6931 temp_mode, false, NULL);
6934 /* Store the value in the bitfield. */
6935 store_bit_field (target, bitsize, bitpos,
6936 bitregion_start, bitregion_end,
6937 mode, temp, reverse);
6939 return const0_rtx;
6941 else
6943 /* Now build a reference to just the desired component. */
6944 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6946 if (to_rtx == target)
6947 to_rtx = copy_rtx (to_rtx);
6949 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6950 set_mem_alias_set (to_rtx, alias_set);
6952 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
6953 into a target smaller than its type; handle that case now. */
6954 if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
6956 gcc_assert (bitsize % BITS_PER_UNIT == 0);
6957 store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
6958 return to_rtx;
6961 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
6965 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6966 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6967 codes and find the ultimate containing object, which we return.
6969 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6970 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
6971 storage order of the field.
6972 If the position of the field is variable, we store a tree
6973 giving the variable offset (in units) in *POFFSET.
6974 This offset is in addition to the bit position.
6975 If the position is not variable, we store 0 in *POFFSET.
6977 If any of the extraction expressions is volatile,
6978 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6980 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6981 Otherwise, it is a mode that can be used to access the field.
6983 If the field describes a variable-sized object, *PMODE is set to
6984 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6985 this case, but the address of the object can be found. */
6987 tree
6988 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6989 HOST_WIDE_INT *pbitpos, tree *poffset,
6990 machine_mode *pmode, int *punsignedp,
6991 int *preversep, int *pvolatilep)
6993 tree size_tree = 0;
6994 machine_mode mode = VOIDmode;
6995 bool blkmode_bitfield = false;
6996 tree offset = size_zero_node;
6997 offset_int bit_offset = 0;
6999 /* First get the mode, signedness, storage order and size. We do this from
7000 just the outermost expression. */
7001 *pbitsize = -1;
7002 if (TREE_CODE (exp) == COMPONENT_REF)
7004 tree field = TREE_OPERAND (exp, 1);
7005 size_tree = DECL_SIZE (field);
7006 if (flag_strict_volatile_bitfields > 0
7007 && TREE_THIS_VOLATILE (exp)
7008 && DECL_BIT_FIELD_TYPE (field)
7009 && DECL_MODE (field) != BLKmode)
7010 /* Volatile bitfields should be accessed in the mode of the
7011 field's type, not the mode computed based on the bit
7012 size. */
7013 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7014 else if (!DECL_BIT_FIELD (field))
7015 mode = DECL_MODE (field);
7016 else if (DECL_MODE (field) == BLKmode)
7017 blkmode_bitfield = true;
7019 *punsignedp = DECL_UNSIGNED (field);
7021 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7023 size_tree = TREE_OPERAND (exp, 1);
7024 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7025 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7027 /* For vector types, with the correct size of access, use the mode of
7028 inner type. */
7029 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7030 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7031 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7032 mode = TYPE_MODE (TREE_TYPE (exp));
7034 else
7036 mode = TYPE_MODE (TREE_TYPE (exp));
7037 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7039 if (mode == BLKmode)
7040 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7041 else
7042 *pbitsize = GET_MODE_BITSIZE (mode);
7045 if (size_tree != 0)
7047 if (! tree_fits_uhwi_p (size_tree))
7048 mode = BLKmode, *pbitsize = -1;
7049 else
7050 *pbitsize = tree_to_uhwi (size_tree);
7053 *preversep = reverse_storage_order_for_component_p (exp);
7055 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7056 and find the ultimate containing object. */
7057 while (1)
7059 switch (TREE_CODE (exp))
7061 case BIT_FIELD_REF:
7062 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
7063 break;
7065 case COMPONENT_REF:
7067 tree field = TREE_OPERAND (exp, 1);
7068 tree this_offset = component_ref_field_offset (exp);
7070 /* If this field hasn't been filled in yet, don't go past it.
7071 This should only happen when folding expressions made during
7072 type construction. */
7073 if (this_offset == 0)
7074 break;
7076 offset = size_binop (PLUS_EXPR, offset, this_offset);
7077 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
7079 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7081 break;
7083 case ARRAY_REF:
7084 case ARRAY_RANGE_REF:
7086 tree index = TREE_OPERAND (exp, 1);
7087 tree low_bound = array_ref_low_bound (exp);
7088 tree unit_size = array_ref_element_size (exp);
7090 /* We assume all arrays have sizes that are a multiple of a byte.
7091 First subtract the lower bound, if any, in the type of the
7092 index, then convert to sizetype and multiply by the size of
7093 the array element. */
7094 if (! integer_zerop (low_bound))
7095 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7096 index, low_bound);
7098 offset = size_binop (PLUS_EXPR, offset,
7099 size_binop (MULT_EXPR,
7100 fold_convert (sizetype, index),
7101 unit_size));
7103 break;
7105 case REALPART_EXPR:
7106 break;
7108 case IMAGPART_EXPR:
7109 bit_offset += *pbitsize;
7110 break;
7112 case VIEW_CONVERT_EXPR:
7113 break;
7115 case MEM_REF:
7116 /* Hand back the decl for MEM[&decl, off]. */
7117 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7119 tree off = TREE_OPERAND (exp, 1);
7120 if (!integer_zerop (off))
7122 offset_int boff, coff = mem_ref_offset (exp);
7123 boff = coff << LOG2_BITS_PER_UNIT;
7124 bit_offset += boff;
7126 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7128 goto done;
7130 default:
7131 goto done;
7134 /* If any reference in the chain is volatile, the effect is volatile. */
7135 if (TREE_THIS_VOLATILE (exp))
7136 *pvolatilep = 1;
7138 exp = TREE_OPERAND (exp, 0);
7140 done:
7142 /* If OFFSET is constant, see if we can return the whole thing as a
7143 constant bit position. Make sure to handle overflow during
7144 this conversion. */
7145 if (TREE_CODE (offset) == INTEGER_CST)
7147 offset_int tem = wi::sext (wi::to_offset (offset),
7148 TYPE_PRECISION (sizetype));
7149 tem <<= LOG2_BITS_PER_UNIT;
7150 tem += bit_offset;
7151 if (wi::fits_shwi_p (tem))
7153 *pbitpos = tem.to_shwi ();
7154 *poffset = offset = NULL_TREE;
7158 /* Otherwise, split it up. */
7159 if (offset)
7161 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7162 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
7164 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
7165 offset_int tem = wi::bit_and_not (bit_offset, mask);
7166 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
7167 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
7168 bit_offset -= tem;
7169 tem >>= LOG2_BITS_PER_UNIT;
7170 offset = size_binop (PLUS_EXPR, offset,
7171 wide_int_to_tree (sizetype, tem));
7174 *pbitpos = bit_offset.to_shwi ();
7175 *poffset = offset;
7178 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7179 if (mode == VOIDmode
7180 && blkmode_bitfield
7181 && (*pbitpos % BITS_PER_UNIT) == 0
7182 && (*pbitsize % BITS_PER_UNIT) == 0)
7183 *pmode = BLKmode;
7184 else
7185 *pmode = mode;
7187 return exp;
7190 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7192 static unsigned HOST_WIDE_INT
7193 target_align (const_tree target)
7195 /* We might have a chain of nested references with intermediate misaligning
7196 bitfields components, so need to recurse to find out. */
7198 unsigned HOST_WIDE_INT this_align, outer_align;
7200 switch (TREE_CODE (target))
7202 case BIT_FIELD_REF:
7203 return 1;
7205 case COMPONENT_REF:
7206 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7207 outer_align = target_align (TREE_OPERAND (target, 0));
7208 return MIN (this_align, outer_align);
7210 case ARRAY_REF:
7211 case ARRAY_RANGE_REF:
7212 this_align = TYPE_ALIGN (TREE_TYPE (target));
7213 outer_align = target_align (TREE_OPERAND (target, 0));
7214 return MIN (this_align, outer_align);
7216 CASE_CONVERT:
7217 case NON_LVALUE_EXPR:
7218 case VIEW_CONVERT_EXPR:
7219 this_align = TYPE_ALIGN (TREE_TYPE (target));
7220 outer_align = target_align (TREE_OPERAND (target, 0));
7221 return MAX (this_align, outer_align);
7223 default:
7224 return TYPE_ALIGN (TREE_TYPE (target));
7229 /* Given an rtx VALUE that may contain additions and multiplications, return
7230 an equivalent value that just refers to a register, memory, or constant.
7231 This is done by generating instructions to perform the arithmetic and
7232 returning a pseudo-register containing the value.
7234 The returned value may be a REG, SUBREG, MEM or constant. */
7237 force_operand (rtx value, rtx target)
7239 rtx op1, op2;
7240 /* Use subtarget as the target for operand 0 of a binary operation. */
7241 rtx subtarget = get_subtarget (target);
7242 enum rtx_code code = GET_CODE (value);
7244 /* Check for subreg applied to an expression produced by loop optimizer. */
7245 if (code == SUBREG
7246 && !REG_P (SUBREG_REG (value))
7247 && !MEM_P (SUBREG_REG (value)))
7249 value
7250 = simplify_gen_subreg (GET_MODE (value),
7251 force_reg (GET_MODE (SUBREG_REG (value)),
7252 force_operand (SUBREG_REG (value),
7253 NULL_RTX)),
7254 GET_MODE (SUBREG_REG (value)),
7255 SUBREG_BYTE (value));
7256 code = GET_CODE (value);
7259 /* Check for a PIC address load. */
7260 if ((code == PLUS || code == MINUS)
7261 && XEXP (value, 0) == pic_offset_table_rtx
7262 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7263 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7264 || GET_CODE (XEXP (value, 1)) == CONST))
7266 if (!subtarget)
7267 subtarget = gen_reg_rtx (GET_MODE (value));
7268 emit_move_insn (subtarget, value);
7269 return subtarget;
7272 if (ARITHMETIC_P (value))
7274 op2 = XEXP (value, 1);
7275 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7276 subtarget = 0;
7277 if (code == MINUS && CONST_INT_P (op2))
7279 code = PLUS;
7280 op2 = negate_rtx (GET_MODE (value), op2);
7283 /* Check for an addition with OP2 a constant integer and our first
7284 operand a PLUS of a virtual register and something else. In that
7285 case, we want to emit the sum of the virtual register and the
7286 constant first and then add the other value. This allows virtual
7287 register instantiation to simply modify the constant rather than
7288 creating another one around this addition. */
7289 if (code == PLUS && CONST_INT_P (op2)
7290 && GET_CODE (XEXP (value, 0)) == PLUS
7291 && REG_P (XEXP (XEXP (value, 0), 0))
7292 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7293 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7295 rtx temp = expand_simple_binop (GET_MODE (value), code,
7296 XEXP (XEXP (value, 0), 0), op2,
7297 subtarget, 0, OPTAB_LIB_WIDEN);
7298 return expand_simple_binop (GET_MODE (value), code, temp,
7299 force_operand (XEXP (XEXP (value,
7300 0), 1), 0),
7301 target, 0, OPTAB_LIB_WIDEN);
7304 op1 = force_operand (XEXP (value, 0), subtarget);
7305 op2 = force_operand (op2, NULL_RTX);
7306 switch (code)
7308 case MULT:
7309 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7310 case DIV:
7311 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7312 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7313 target, 1, OPTAB_LIB_WIDEN);
7314 else
7315 return expand_divmod (0,
7316 FLOAT_MODE_P (GET_MODE (value))
7317 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7318 GET_MODE (value), op1, op2, target, 0);
7319 case MOD:
7320 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7321 target, 0);
7322 case UDIV:
7323 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7324 target, 1);
7325 case UMOD:
7326 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7327 target, 1);
7328 case ASHIFTRT:
7329 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7330 target, 0, OPTAB_LIB_WIDEN);
7331 default:
7332 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7333 target, 1, OPTAB_LIB_WIDEN);
7336 if (UNARY_P (value))
7338 if (!target)
7339 target = gen_reg_rtx (GET_MODE (value));
7340 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7341 switch (code)
7343 case ZERO_EXTEND:
7344 case SIGN_EXTEND:
7345 case TRUNCATE:
7346 case FLOAT_EXTEND:
7347 case FLOAT_TRUNCATE:
7348 convert_move (target, op1, code == ZERO_EXTEND);
7349 return target;
7351 case FIX:
7352 case UNSIGNED_FIX:
7353 expand_fix (target, op1, code == UNSIGNED_FIX);
7354 return target;
7356 case FLOAT:
7357 case UNSIGNED_FLOAT:
7358 expand_float (target, op1, code == UNSIGNED_FLOAT);
7359 return target;
7361 default:
7362 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7366 #ifdef INSN_SCHEDULING
7367 /* On machines that have insn scheduling, we want all memory reference to be
7368 explicit, so we need to deal with such paradoxical SUBREGs. */
7369 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7370 value
7371 = simplify_gen_subreg (GET_MODE (value),
7372 force_reg (GET_MODE (SUBREG_REG (value)),
7373 force_operand (SUBREG_REG (value),
7374 NULL_RTX)),
7375 GET_MODE (SUBREG_REG (value)),
7376 SUBREG_BYTE (value));
7377 #endif
7379 return value;
7382 /* Subroutine of expand_expr: return nonzero iff there is no way that
7383 EXP can reference X, which is being modified. TOP_P is nonzero if this
7384 call is going to be used to determine whether we need a temporary
7385 for EXP, as opposed to a recursive call to this function.
7387 It is always safe for this routine to return zero since it merely
7388 searches for optimization opportunities. */
7391 safe_from_p (const_rtx x, tree exp, int top_p)
7393 rtx exp_rtl = 0;
7394 int i, nops;
7396 if (x == 0
7397 /* If EXP has varying size, we MUST use a target since we currently
7398 have no way of allocating temporaries of variable size
7399 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7400 So we assume here that something at a higher level has prevented a
7401 clash. This is somewhat bogus, but the best we can do. Only
7402 do this when X is BLKmode and when we are at the top level. */
7403 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7404 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7405 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7406 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7407 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7408 != INTEGER_CST)
7409 && GET_MODE (x) == BLKmode)
7410 /* If X is in the outgoing argument area, it is always safe. */
7411 || (MEM_P (x)
7412 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7413 || (GET_CODE (XEXP (x, 0)) == PLUS
7414 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7415 return 1;
7417 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7418 find the underlying pseudo. */
7419 if (GET_CODE (x) == SUBREG)
7421 x = SUBREG_REG (x);
7422 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7423 return 0;
7426 /* Now look at our tree code and possibly recurse. */
7427 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7429 case tcc_declaration:
7430 exp_rtl = DECL_RTL_IF_SET (exp);
7431 break;
7433 case tcc_constant:
7434 return 1;
7436 case tcc_exceptional:
7437 if (TREE_CODE (exp) == TREE_LIST)
7439 while (1)
7441 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7442 return 0;
7443 exp = TREE_CHAIN (exp);
7444 if (!exp)
7445 return 1;
7446 if (TREE_CODE (exp) != TREE_LIST)
7447 return safe_from_p (x, exp, 0);
7450 else if (TREE_CODE (exp) == CONSTRUCTOR)
7452 constructor_elt *ce;
7453 unsigned HOST_WIDE_INT idx;
7455 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7456 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7457 || !safe_from_p (x, ce->value, 0))
7458 return 0;
7459 return 1;
7461 else if (TREE_CODE (exp) == ERROR_MARK)
7462 return 1; /* An already-visited SAVE_EXPR? */
7463 else
7464 return 0;
7466 case tcc_statement:
7467 /* The only case we look at here is the DECL_INITIAL inside a
7468 DECL_EXPR. */
7469 return (TREE_CODE (exp) != DECL_EXPR
7470 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7471 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7472 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7474 case tcc_binary:
7475 case tcc_comparison:
7476 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7477 return 0;
7478 /* Fall through. */
7480 case tcc_unary:
7481 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7483 case tcc_expression:
7484 case tcc_reference:
7485 case tcc_vl_exp:
7486 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7487 the expression. If it is set, we conflict iff we are that rtx or
7488 both are in memory. Otherwise, we check all operands of the
7489 expression recursively. */
7491 switch (TREE_CODE (exp))
7493 case ADDR_EXPR:
7494 /* If the operand is static or we are static, we can't conflict.
7495 Likewise if we don't conflict with the operand at all. */
7496 if (staticp (TREE_OPERAND (exp, 0))
7497 || TREE_STATIC (exp)
7498 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7499 return 1;
7501 /* Otherwise, the only way this can conflict is if we are taking
7502 the address of a DECL a that address if part of X, which is
7503 very rare. */
7504 exp = TREE_OPERAND (exp, 0);
7505 if (DECL_P (exp))
7507 if (!DECL_RTL_SET_P (exp)
7508 || !MEM_P (DECL_RTL (exp)))
7509 return 0;
7510 else
7511 exp_rtl = XEXP (DECL_RTL (exp), 0);
7513 break;
7515 case MEM_REF:
7516 if (MEM_P (x)
7517 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7518 get_alias_set (exp)))
7519 return 0;
7520 break;
7522 case CALL_EXPR:
7523 /* Assume that the call will clobber all hard registers and
7524 all of memory. */
7525 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7526 || MEM_P (x))
7527 return 0;
7528 break;
7530 case WITH_CLEANUP_EXPR:
7531 case CLEANUP_POINT_EXPR:
7532 /* Lowered by gimplify.c. */
7533 gcc_unreachable ();
7535 case SAVE_EXPR:
7536 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7538 default:
7539 break;
7542 /* If we have an rtx, we do not need to scan our operands. */
7543 if (exp_rtl)
7544 break;
7546 nops = TREE_OPERAND_LENGTH (exp);
7547 for (i = 0; i < nops; i++)
7548 if (TREE_OPERAND (exp, i) != 0
7549 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7550 return 0;
7552 break;
7554 case tcc_type:
7555 /* Should never get a type here. */
7556 gcc_unreachable ();
7559 /* If we have an rtl, find any enclosed object. Then see if we conflict
7560 with it. */
7561 if (exp_rtl)
7563 if (GET_CODE (exp_rtl) == SUBREG)
7565 exp_rtl = SUBREG_REG (exp_rtl);
7566 if (REG_P (exp_rtl)
7567 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7568 return 0;
7571 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7572 are memory and they conflict. */
7573 return ! (rtx_equal_p (x, exp_rtl)
7574 || (MEM_P (x) && MEM_P (exp_rtl)
7575 && true_dependence (exp_rtl, VOIDmode, x)));
7578 /* If we reach here, it is safe. */
7579 return 1;
7583 /* Return the highest power of two that EXP is known to be a multiple of.
7584 This is used in updating alignment of MEMs in array references. */
7586 unsigned HOST_WIDE_INT
7587 highest_pow2_factor (const_tree exp)
7589 unsigned HOST_WIDE_INT ret;
7590 int trailing_zeros = tree_ctz (exp);
7591 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7592 return BIGGEST_ALIGNMENT;
7593 ret = HOST_WIDE_INT_1U << trailing_zeros;
7594 if (ret > BIGGEST_ALIGNMENT)
7595 return BIGGEST_ALIGNMENT;
7596 return ret;
7599 /* Similar, except that the alignment requirements of TARGET are
7600 taken into account. Assume it is at least as aligned as its
7601 type, unless it is a COMPONENT_REF in which case the layout of
7602 the structure gives the alignment. */
7604 static unsigned HOST_WIDE_INT
7605 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7607 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7608 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7610 return MAX (factor, talign);
7613 /* Convert the tree comparison code TCODE to the rtl one where the
7614 signedness is UNSIGNEDP. */
7616 static enum rtx_code
7617 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7619 enum rtx_code code;
7620 switch (tcode)
7622 case EQ_EXPR:
7623 code = EQ;
7624 break;
7625 case NE_EXPR:
7626 code = NE;
7627 break;
7628 case LT_EXPR:
7629 code = unsignedp ? LTU : LT;
7630 break;
7631 case LE_EXPR:
7632 code = unsignedp ? LEU : LE;
7633 break;
7634 case GT_EXPR:
7635 code = unsignedp ? GTU : GT;
7636 break;
7637 case GE_EXPR:
7638 code = unsignedp ? GEU : GE;
7639 break;
7640 case UNORDERED_EXPR:
7641 code = UNORDERED;
7642 break;
7643 case ORDERED_EXPR:
7644 code = ORDERED;
7645 break;
7646 case UNLT_EXPR:
7647 code = UNLT;
7648 break;
7649 case UNLE_EXPR:
7650 code = UNLE;
7651 break;
7652 case UNGT_EXPR:
7653 code = UNGT;
7654 break;
7655 case UNGE_EXPR:
7656 code = UNGE;
7657 break;
7658 case UNEQ_EXPR:
7659 code = UNEQ;
7660 break;
7661 case LTGT_EXPR:
7662 code = LTGT;
7663 break;
7665 default:
7666 gcc_unreachable ();
7668 return code;
7671 /* Subroutine of expand_expr. Expand the two operands of a binary
7672 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7673 The value may be stored in TARGET if TARGET is nonzero. The
7674 MODIFIER argument is as documented by expand_expr. */
7676 void
7677 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7678 enum expand_modifier modifier)
7680 if (! safe_from_p (target, exp1, 1))
7681 target = 0;
7682 if (operand_equal_p (exp0, exp1, 0))
7684 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7685 *op1 = copy_rtx (*op0);
7687 else
7689 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7690 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7695 /* Return a MEM that contains constant EXP. DEFER is as for
7696 output_constant_def and MODIFIER is as for expand_expr. */
7698 static rtx
7699 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7701 rtx mem;
7703 mem = output_constant_def (exp, defer);
7704 if (modifier != EXPAND_INITIALIZER)
7705 mem = use_anchored_address (mem);
7706 return mem;
7709 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7710 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7712 static rtx
7713 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7714 enum expand_modifier modifier, addr_space_t as)
7716 rtx result, subtarget;
7717 tree inner, offset;
7718 HOST_WIDE_INT bitsize, bitpos;
7719 int unsignedp, reversep, volatilep = 0;
7720 machine_mode mode1;
7722 /* If we are taking the address of a constant and are at the top level,
7723 we have to use output_constant_def since we can't call force_const_mem
7724 at top level. */
7725 /* ??? This should be considered a front-end bug. We should not be
7726 generating ADDR_EXPR of something that isn't an LVALUE. The only
7727 exception here is STRING_CST. */
7728 if (CONSTANT_CLASS_P (exp))
7730 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7731 if (modifier < EXPAND_SUM)
7732 result = force_operand (result, target);
7733 return result;
7736 /* Everything must be something allowed by is_gimple_addressable. */
7737 switch (TREE_CODE (exp))
7739 case INDIRECT_REF:
7740 /* This case will happen via recursion for &a->b. */
7741 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7743 case MEM_REF:
7745 tree tem = TREE_OPERAND (exp, 0);
7746 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7747 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7748 return expand_expr (tem, target, tmode, modifier);
7751 case CONST_DECL:
7752 /* Expand the initializer like constants above. */
7753 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7754 0, modifier), 0);
7755 if (modifier < EXPAND_SUM)
7756 result = force_operand (result, target);
7757 return result;
7759 case REALPART_EXPR:
7760 /* The real part of the complex number is always first, therefore
7761 the address is the same as the address of the parent object. */
7762 offset = 0;
7763 bitpos = 0;
7764 inner = TREE_OPERAND (exp, 0);
7765 break;
7767 case IMAGPART_EXPR:
7768 /* The imaginary part of the complex number is always second.
7769 The expression is therefore always offset by the size of the
7770 scalar type. */
7771 offset = 0;
7772 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7773 inner = TREE_OPERAND (exp, 0);
7774 break;
7776 case COMPOUND_LITERAL_EXPR:
7777 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7778 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7779 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7780 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7781 the initializers aren't gimplified. */
7782 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7783 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7784 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7785 target, tmode, modifier, as);
7786 /* FALLTHRU */
7787 default:
7788 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7789 expand_expr, as that can have various side effects; LABEL_DECLs for
7790 example, may not have their DECL_RTL set yet. Expand the rtl of
7791 CONSTRUCTORs too, which should yield a memory reference for the
7792 constructor's contents. Assume language specific tree nodes can
7793 be expanded in some interesting way. */
7794 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7795 if (DECL_P (exp)
7796 || TREE_CODE (exp) == CONSTRUCTOR
7797 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7799 result = expand_expr (exp, target, tmode,
7800 modifier == EXPAND_INITIALIZER
7801 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7803 /* If the DECL isn't in memory, then the DECL wasn't properly
7804 marked TREE_ADDRESSABLE, which will be either a front-end
7805 or a tree optimizer bug. */
7807 gcc_assert (MEM_P (result));
7808 result = XEXP (result, 0);
7810 /* ??? Is this needed anymore? */
7811 if (DECL_P (exp))
7812 TREE_USED (exp) = 1;
7814 if (modifier != EXPAND_INITIALIZER
7815 && modifier != EXPAND_CONST_ADDRESS
7816 && modifier != EXPAND_SUM)
7817 result = force_operand (result, target);
7818 return result;
7821 /* Pass FALSE as the last argument to get_inner_reference although
7822 we are expanding to RTL. The rationale is that we know how to
7823 handle "aligning nodes" here: we can just bypass them because
7824 they won't change the final object whose address will be returned
7825 (they actually exist only for that purpose). */
7826 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7827 &unsignedp, &reversep, &volatilep);
7828 break;
7831 /* We must have made progress. */
7832 gcc_assert (inner != exp);
7834 subtarget = offset || bitpos ? NULL_RTX : target;
7835 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7836 inner alignment, force the inner to be sufficiently aligned. */
7837 if (CONSTANT_CLASS_P (inner)
7838 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7840 inner = copy_node (inner);
7841 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7842 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7843 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7845 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7847 if (offset)
7849 rtx tmp;
7851 if (modifier != EXPAND_NORMAL)
7852 result = force_operand (result, NULL);
7853 tmp = expand_expr (offset, NULL_RTX, tmode,
7854 modifier == EXPAND_INITIALIZER
7855 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7857 /* expand_expr is allowed to return an object in a mode other
7858 than TMODE. If it did, we need to convert. */
7859 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7860 tmp = convert_modes (tmode, GET_MODE (tmp),
7861 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7862 result = convert_memory_address_addr_space (tmode, result, as);
7863 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7865 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7866 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7867 else
7869 subtarget = bitpos ? NULL_RTX : target;
7870 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7871 1, OPTAB_LIB_WIDEN);
7875 if (bitpos)
7877 /* Someone beforehand should have rejected taking the address
7878 of such an object. */
7879 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7881 result = convert_memory_address_addr_space (tmode, result, as);
7882 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7883 if (modifier < EXPAND_SUM)
7884 result = force_operand (result, target);
7887 return result;
7890 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7891 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7893 static rtx
7894 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7895 enum expand_modifier modifier)
7897 addr_space_t as = ADDR_SPACE_GENERIC;
7898 scalar_int_mode address_mode = Pmode;
7899 scalar_int_mode pointer_mode = ptr_mode;
7900 machine_mode rmode;
7901 rtx result;
7903 /* Target mode of VOIDmode says "whatever's natural". */
7904 if (tmode == VOIDmode)
7905 tmode = TYPE_MODE (TREE_TYPE (exp));
7907 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7909 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7910 address_mode = targetm.addr_space.address_mode (as);
7911 pointer_mode = targetm.addr_space.pointer_mode (as);
7914 /* We can get called with some Weird Things if the user does silliness
7915 like "(short) &a". In that case, convert_memory_address won't do
7916 the right thing, so ignore the given target mode. */
7917 scalar_int_mode new_tmode = (tmode == pointer_mode
7918 ? pointer_mode
7919 : address_mode);
7921 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7922 new_tmode, modifier, as);
7924 /* Despite expand_expr claims concerning ignoring TMODE when not
7925 strictly convenient, stuff breaks if we don't honor it. Note
7926 that combined with the above, we only do this for pointer modes. */
7927 rmode = GET_MODE (result);
7928 if (rmode == VOIDmode)
7929 rmode = new_tmode;
7930 if (rmode != new_tmode)
7931 result = convert_memory_address_addr_space (new_tmode, result, as);
7933 return result;
7936 /* Generate code for computing CONSTRUCTOR EXP.
7937 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7938 is TRUE, instead of creating a temporary variable in memory
7939 NULL is returned and the caller needs to handle it differently. */
7941 static rtx
7942 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7943 bool avoid_temp_mem)
7945 tree type = TREE_TYPE (exp);
7946 machine_mode mode = TYPE_MODE (type);
7948 /* Try to avoid creating a temporary at all. This is possible
7949 if all of the initializer is zero.
7950 FIXME: try to handle all [0..255] initializers we can handle
7951 with memset. */
7952 if (TREE_STATIC (exp)
7953 && !TREE_ADDRESSABLE (exp)
7954 && target != 0 && mode == BLKmode
7955 && all_zeros_p (exp))
7957 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7958 return target;
7961 /* All elts simple constants => refer to a constant in memory. But
7962 if this is a non-BLKmode mode, let it store a field at a time
7963 since that should make a CONST_INT, CONST_WIDE_INT or
7964 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7965 use, it is best to store directly into the target unless the type
7966 is large enough that memcpy will be used. If we are making an
7967 initializer and all operands are constant, put it in memory as
7968 well.
7970 FIXME: Avoid trying to fill vector constructors piece-meal.
7971 Output them with output_constant_def below unless we're sure
7972 they're zeros. This should go away when vector initializers
7973 are treated like VECTOR_CST instead of arrays. */
7974 if ((TREE_STATIC (exp)
7975 && ((mode == BLKmode
7976 && ! (target != 0 && safe_from_p (target, exp, 1)))
7977 || TREE_ADDRESSABLE (exp)
7978 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7979 && (! can_move_by_pieces
7980 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7981 TYPE_ALIGN (type)))
7982 && ! mostly_zeros_p (exp))))
7983 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7984 && TREE_CONSTANT (exp)))
7986 rtx constructor;
7988 if (avoid_temp_mem)
7989 return NULL_RTX;
7991 constructor = expand_expr_constant (exp, 1, modifier);
7993 if (modifier != EXPAND_CONST_ADDRESS
7994 && modifier != EXPAND_INITIALIZER
7995 && modifier != EXPAND_SUM)
7996 constructor = validize_mem (constructor);
7998 return constructor;
8001 /* Handle calls that pass values in multiple non-contiguous
8002 locations. The Irix 6 ABI has examples of this. */
8003 if (target == 0 || ! safe_from_p (target, exp, 1)
8004 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8006 if (avoid_temp_mem)
8007 return NULL_RTX;
8009 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8012 store_constructor (exp, target, 0, int_expr_size (exp), false);
8013 return target;
8017 /* expand_expr: generate code for computing expression EXP.
8018 An rtx for the computed value is returned. The value is never null.
8019 In the case of a void EXP, const0_rtx is returned.
8021 The value may be stored in TARGET if TARGET is nonzero.
8022 TARGET is just a suggestion; callers must assume that
8023 the rtx returned may not be the same as TARGET.
8025 If TARGET is CONST0_RTX, it means that the value will be ignored.
8027 If TMODE is not VOIDmode, it suggests generating the
8028 result in mode TMODE. But this is done only when convenient.
8029 Otherwise, TMODE is ignored and the value generated in its natural mode.
8030 TMODE is just a suggestion; callers must assume that
8031 the rtx returned may not have mode TMODE.
8033 Note that TARGET may have neither TMODE nor MODE. In that case, it
8034 probably will not be used.
8036 If MODIFIER is EXPAND_SUM then when EXP is an addition
8037 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8038 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8039 products as above, or REG or MEM, or constant.
8040 Ordinarily in such cases we would output mul or add instructions
8041 and then return a pseudo reg containing the sum.
8043 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8044 it also marks a label as absolutely required (it can't be dead).
8045 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8046 This is used for outputting expressions used in initializers.
8048 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8049 with a constant address even if that address is not normally legitimate.
8050 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8052 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8053 a call parameter. Such targets require special care as we haven't yet
8054 marked TARGET so that it's safe from being trashed by libcalls. We
8055 don't want to use TARGET for anything but the final result;
8056 Intermediate values must go elsewhere. Additionally, calls to
8057 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8059 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8060 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8061 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8062 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8063 recursively.
8065 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8066 In this case, we don't adjust a returned MEM rtx that wouldn't be
8067 sufficiently aligned for its mode; instead, it's up to the caller
8068 to deal with it afterwards. This is used to make sure that unaligned
8069 base objects for which out-of-bounds accesses are supported, for
8070 example record types with trailing arrays, aren't realigned behind
8071 the back of the caller.
8072 The normal operating mode is to pass FALSE for this parameter. */
8075 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8076 enum expand_modifier modifier, rtx *alt_rtl,
8077 bool inner_reference_p)
8079 rtx ret;
8081 /* Handle ERROR_MARK before anybody tries to access its type. */
8082 if (TREE_CODE (exp) == ERROR_MARK
8083 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8085 ret = CONST0_RTX (tmode);
8086 return ret ? ret : const0_rtx;
8089 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8090 inner_reference_p);
8091 return ret;
8094 /* Try to expand the conditional expression which is represented by
8095 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8096 return the rtl reg which represents the result. Otherwise return
8097 NULL_RTX. */
8099 static rtx
8100 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8101 tree treeop1 ATTRIBUTE_UNUSED,
8102 tree treeop2 ATTRIBUTE_UNUSED)
8104 rtx insn;
8105 rtx op00, op01, op1, op2;
8106 enum rtx_code comparison_code;
8107 machine_mode comparison_mode;
8108 gimple *srcstmt;
8109 rtx temp;
8110 tree type = TREE_TYPE (treeop1);
8111 int unsignedp = TYPE_UNSIGNED (type);
8112 machine_mode mode = TYPE_MODE (type);
8113 machine_mode orig_mode = mode;
8114 static bool expanding_cond_expr_using_cmove = false;
8116 /* Conditional move expansion can end up TERing two operands which,
8117 when recursively hitting conditional expressions can result in
8118 exponential behavior if the cmove expansion ultimatively fails.
8119 It's hardly profitable to TER a cmove into a cmove so avoid doing
8120 that by failing early if we end up recursing. */
8121 if (expanding_cond_expr_using_cmove)
8122 return NULL_RTX;
8124 /* If we cannot do a conditional move on the mode, try doing it
8125 with the promoted mode. */
8126 if (!can_conditionally_move_p (mode))
8128 mode = promote_mode (type, mode, &unsignedp);
8129 if (!can_conditionally_move_p (mode))
8130 return NULL_RTX;
8131 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8133 else
8134 temp = assign_temp (type, 0, 1);
8136 expanding_cond_expr_using_cmove = true;
8137 start_sequence ();
8138 expand_operands (treeop1, treeop2,
8139 temp, &op1, &op2, EXPAND_NORMAL);
8141 if (TREE_CODE (treeop0) == SSA_NAME
8142 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8144 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8145 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8146 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8147 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8148 comparison_mode = TYPE_MODE (type);
8149 unsignedp = TYPE_UNSIGNED (type);
8150 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8152 else if (COMPARISON_CLASS_P (treeop0))
8154 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8155 enum tree_code cmpcode = TREE_CODE (treeop0);
8156 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8157 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8158 unsignedp = TYPE_UNSIGNED (type);
8159 comparison_mode = TYPE_MODE (type);
8160 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8162 else
8164 op00 = expand_normal (treeop0);
8165 op01 = const0_rtx;
8166 comparison_code = NE;
8167 comparison_mode = GET_MODE (op00);
8168 if (comparison_mode == VOIDmode)
8169 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8171 expanding_cond_expr_using_cmove = false;
8173 if (GET_MODE (op1) != mode)
8174 op1 = gen_lowpart (mode, op1);
8176 if (GET_MODE (op2) != mode)
8177 op2 = gen_lowpart (mode, op2);
8179 /* Try to emit the conditional move. */
8180 insn = emit_conditional_move (temp, comparison_code,
8181 op00, op01, comparison_mode,
8182 op1, op2, mode,
8183 unsignedp);
8185 /* If we could do the conditional move, emit the sequence,
8186 and return. */
8187 if (insn)
8189 rtx_insn *seq = get_insns ();
8190 end_sequence ();
8191 emit_insn (seq);
8192 return convert_modes (orig_mode, mode, temp, 0);
8195 /* Otherwise discard the sequence and fall back to code with
8196 branches. */
8197 end_sequence ();
8198 return NULL_RTX;
8202 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8203 enum expand_modifier modifier)
8205 rtx op0, op1, op2, temp;
8206 rtx_code_label *lab;
8207 tree type;
8208 int unsignedp;
8209 machine_mode mode;
8210 scalar_int_mode int_mode;
8211 enum tree_code code = ops->code;
8212 optab this_optab;
8213 rtx subtarget, original_target;
8214 int ignore;
8215 bool reduce_bit_field;
8216 location_t loc = ops->location;
8217 tree treeop0, treeop1, treeop2;
8218 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8219 ? reduce_to_bit_field_precision ((expr), \
8220 target, \
8221 type) \
8222 : (expr))
8224 type = ops->type;
8225 mode = TYPE_MODE (type);
8226 unsignedp = TYPE_UNSIGNED (type);
8228 treeop0 = ops->op0;
8229 treeop1 = ops->op1;
8230 treeop2 = ops->op2;
8232 /* We should be called only on simple (binary or unary) expressions,
8233 exactly those that are valid in gimple expressions that aren't
8234 GIMPLE_SINGLE_RHS (or invalid). */
8235 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8236 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8237 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8239 ignore = (target == const0_rtx
8240 || ((CONVERT_EXPR_CODE_P (code)
8241 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8242 && TREE_CODE (type) == VOID_TYPE));
8244 /* We should be called only if we need the result. */
8245 gcc_assert (!ignore);
8247 /* An operation in what may be a bit-field type needs the
8248 result to be reduced to the precision of the bit-field type,
8249 which is narrower than that of the type's mode. */
8250 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8251 && !type_has_mode_precision_p (type));
8253 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8254 target = 0;
8256 /* Use subtarget as the target for operand 0 of a binary operation. */
8257 subtarget = get_subtarget (target);
8258 original_target = target;
8260 switch (code)
8262 case NON_LVALUE_EXPR:
8263 case PAREN_EXPR:
8264 CASE_CONVERT:
8265 if (treeop0 == error_mark_node)
8266 return const0_rtx;
8268 if (TREE_CODE (type) == UNION_TYPE)
8270 tree valtype = TREE_TYPE (treeop0);
8272 /* If both input and output are BLKmode, this conversion isn't doing
8273 anything except possibly changing memory attribute. */
8274 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8276 rtx result = expand_expr (treeop0, target, tmode,
8277 modifier);
8279 result = copy_rtx (result);
8280 set_mem_attributes (result, type, 0);
8281 return result;
8284 if (target == 0)
8286 if (TYPE_MODE (type) != BLKmode)
8287 target = gen_reg_rtx (TYPE_MODE (type));
8288 else
8289 target = assign_temp (type, 1, 1);
8292 if (MEM_P (target))
8293 /* Store data into beginning of memory target. */
8294 store_expr (treeop0,
8295 adjust_address (target, TYPE_MODE (valtype), 0),
8296 modifier == EXPAND_STACK_PARM,
8297 false, TYPE_REVERSE_STORAGE_ORDER (type));
8299 else
8301 gcc_assert (REG_P (target)
8302 && !TYPE_REVERSE_STORAGE_ORDER (type));
8304 /* Store this field into a union of the proper type. */
8305 store_field (target,
8306 MIN ((int_size_in_bytes (TREE_TYPE
8307 (treeop0))
8308 * BITS_PER_UNIT),
8309 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8310 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8311 false, false);
8314 /* Return the entire union. */
8315 return target;
8318 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8320 op0 = expand_expr (treeop0, target, VOIDmode,
8321 modifier);
8323 /* If the signedness of the conversion differs and OP0 is
8324 a promoted SUBREG, clear that indication since we now
8325 have to do the proper extension. */
8326 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8327 && GET_CODE (op0) == SUBREG)
8328 SUBREG_PROMOTED_VAR_P (op0) = 0;
8330 return REDUCE_BIT_FIELD (op0);
8333 op0 = expand_expr (treeop0, NULL_RTX, mode,
8334 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8335 if (GET_MODE (op0) == mode)
8338 /* If OP0 is a constant, just convert it into the proper mode. */
8339 else if (CONSTANT_P (op0))
8341 tree inner_type = TREE_TYPE (treeop0);
8342 machine_mode inner_mode = GET_MODE (op0);
8344 if (inner_mode == VOIDmode)
8345 inner_mode = TYPE_MODE (inner_type);
8347 if (modifier == EXPAND_INITIALIZER)
8348 op0 = lowpart_subreg (mode, op0, inner_mode);
8349 else
8350 op0= convert_modes (mode, inner_mode, op0,
8351 TYPE_UNSIGNED (inner_type));
8354 else if (modifier == EXPAND_INITIALIZER)
8355 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8356 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8358 else if (target == 0)
8359 op0 = convert_to_mode (mode, op0,
8360 TYPE_UNSIGNED (TREE_TYPE
8361 (treeop0)));
8362 else
8364 convert_move (target, op0,
8365 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8366 op0 = target;
8369 return REDUCE_BIT_FIELD (op0);
8371 case ADDR_SPACE_CONVERT_EXPR:
8373 tree treeop0_type = TREE_TYPE (treeop0);
8375 gcc_assert (POINTER_TYPE_P (type));
8376 gcc_assert (POINTER_TYPE_P (treeop0_type));
8378 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8379 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8381 /* Conversions between pointers to the same address space should
8382 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8383 gcc_assert (as_to != as_from);
8385 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8387 /* Ask target code to handle conversion between pointers
8388 to overlapping address spaces. */
8389 if (targetm.addr_space.subset_p (as_to, as_from)
8390 || targetm.addr_space.subset_p (as_from, as_to))
8392 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8394 else
8396 /* For disjoint address spaces, converting anything but a null
8397 pointer invokes undefined behavior. We truncate or extend the
8398 value as if we'd converted via integers, which handles 0 as
8399 required, and all others as the programmer likely expects. */
8400 #ifndef POINTERS_EXTEND_UNSIGNED
8401 const int POINTERS_EXTEND_UNSIGNED = 1;
8402 #endif
8403 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8404 op0, POINTERS_EXTEND_UNSIGNED);
8406 gcc_assert (op0);
8407 return op0;
8410 case POINTER_PLUS_EXPR:
8411 /* Even though the sizetype mode and the pointer's mode can be different
8412 expand is able to handle this correctly and get the correct result out
8413 of the PLUS_EXPR code. */
8414 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8415 if sizetype precision is smaller than pointer precision. */
8416 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8417 treeop1 = fold_convert_loc (loc, type,
8418 fold_convert_loc (loc, ssizetype,
8419 treeop1));
8420 /* If sizetype precision is larger than pointer precision, truncate the
8421 offset to have matching modes. */
8422 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8423 treeop1 = fold_convert_loc (loc, type, treeop1);
8424 /* FALLTHRU */
8426 case PLUS_EXPR:
8427 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8428 something else, make sure we add the register to the constant and
8429 then to the other thing. This case can occur during strength
8430 reduction and doing it this way will produce better code if the
8431 frame pointer or argument pointer is eliminated.
8433 fold-const.c will ensure that the constant is always in the inner
8434 PLUS_EXPR, so the only case we need to do anything about is if
8435 sp, ap, or fp is our second argument, in which case we must swap
8436 the innermost first argument and our second argument. */
8438 if (TREE_CODE (treeop0) == PLUS_EXPR
8439 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8440 && VAR_P (treeop1)
8441 && (DECL_RTL (treeop1) == frame_pointer_rtx
8442 || DECL_RTL (treeop1) == stack_pointer_rtx
8443 || DECL_RTL (treeop1) == arg_pointer_rtx))
8445 gcc_unreachable ();
8448 /* If the result is to be ptr_mode and we are adding an integer to
8449 something, we might be forming a constant. So try to use
8450 plus_constant. If it produces a sum and we can't accept it,
8451 use force_operand. This allows P = &ARR[const] to generate
8452 efficient code on machines where a SYMBOL_REF is not a valid
8453 address.
8455 If this is an EXPAND_SUM call, always return the sum. */
8456 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8457 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8459 if (modifier == EXPAND_STACK_PARM)
8460 target = 0;
8461 if (TREE_CODE (treeop0) == INTEGER_CST
8462 && HWI_COMPUTABLE_MODE_P (mode)
8463 && TREE_CONSTANT (treeop1))
8465 rtx constant_part;
8466 HOST_WIDE_INT wc;
8467 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8469 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8470 EXPAND_SUM);
8471 /* Use wi::shwi to ensure that the constant is
8472 truncated according to the mode of OP1, then sign extended
8473 to a HOST_WIDE_INT. Using the constant directly can result
8474 in non-canonical RTL in a 64x32 cross compile. */
8475 wc = TREE_INT_CST_LOW (treeop0);
8476 constant_part =
8477 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8478 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8479 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8480 op1 = force_operand (op1, target);
8481 return REDUCE_BIT_FIELD (op1);
8484 else if (TREE_CODE (treeop1) == INTEGER_CST
8485 && HWI_COMPUTABLE_MODE_P (mode)
8486 && TREE_CONSTANT (treeop0))
8488 rtx constant_part;
8489 HOST_WIDE_INT wc;
8490 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8492 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8493 (modifier == EXPAND_INITIALIZER
8494 ? EXPAND_INITIALIZER : EXPAND_SUM));
8495 if (! CONSTANT_P (op0))
8497 op1 = expand_expr (treeop1, NULL_RTX,
8498 VOIDmode, modifier);
8499 /* Return a PLUS if modifier says it's OK. */
8500 if (modifier == EXPAND_SUM
8501 || modifier == EXPAND_INITIALIZER)
8502 return simplify_gen_binary (PLUS, mode, op0, op1);
8503 goto binop2;
8505 /* Use wi::shwi to ensure that the constant is
8506 truncated according to the mode of OP1, then sign extended
8507 to a HOST_WIDE_INT. Using the constant directly can result
8508 in non-canonical RTL in a 64x32 cross compile. */
8509 wc = TREE_INT_CST_LOW (treeop1);
8510 constant_part
8511 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8512 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8513 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8514 op0 = force_operand (op0, target);
8515 return REDUCE_BIT_FIELD (op0);
8519 /* Use TER to expand pointer addition of a negated value
8520 as pointer subtraction. */
8521 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8522 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8523 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8524 && TREE_CODE (treeop1) == SSA_NAME
8525 && TYPE_MODE (TREE_TYPE (treeop0))
8526 == TYPE_MODE (TREE_TYPE (treeop1)))
8528 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8529 if (def)
8531 treeop1 = gimple_assign_rhs1 (def);
8532 code = MINUS_EXPR;
8533 goto do_minus;
8537 /* No sense saving up arithmetic to be done
8538 if it's all in the wrong mode to form part of an address.
8539 And force_operand won't know whether to sign-extend or
8540 zero-extend. */
8541 if (modifier != EXPAND_INITIALIZER
8542 && (modifier != EXPAND_SUM || mode != ptr_mode))
8544 expand_operands (treeop0, treeop1,
8545 subtarget, &op0, &op1, modifier);
8546 if (op0 == const0_rtx)
8547 return op1;
8548 if (op1 == const0_rtx)
8549 return op0;
8550 goto binop2;
8553 expand_operands (treeop0, treeop1,
8554 subtarget, &op0, &op1, modifier);
8555 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8557 case MINUS_EXPR:
8558 do_minus:
8559 /* For initializers, we are allowed to return a MINUS of two
8560 symbolic constants. Here we handle all cases when both operands
8561 are constant. */
8562 /* Handle difference of two symbolic constants,
8563 for the sake of an initializer. */
8564 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8565 && really_constant_p (treeop0)
8566 && really_constant_p (treeop1))
8568 expand_operands (treeop0, treeop1,
8569 NULL_RTX, &op0, &op1, modifier);
8570 return simplify_gen_binary (MINUS, mode, op0, op1);
8573 /* No sense saving up arithmetic to be done
8574 if it's all in the wrong mode to form part of an address.
8575 And force_operand won't know whether to sign-extend or
8576 zero-extend. */
8577 if (modifier != EXPAND_INITIALIZER
8578 && (modifier != EXPAND_SUM || mode != ptr_mode))
8579 goto binop;
8581 expand_operands (treeop0, treeop1,
8582 subtarget, &op0, &op1, modifier);
8584 /* Convert A - const to A + (-const). */
8585 if (CONST_INT_P (op1))
8587 op1 = negate_rtx (mode, op1);
8588 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8591 goto binop2;
8593 case WIDEN_MULT_PLUS_EXPR:
8594 case WIDEN_MULT_MINUS_EXPR:
8595 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8596 op2 = expand_normal (treeop2);
8597 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8598 target, unsignedp);
8599 return target;
8601 case WIDEN_MULT_EXPR:
8602 /* If first operand is constant, swap them.
8603 Thus the following special case checks need only
8604 check the second operand. */
8605 if (TREE_CODE (treeop0) == INTEGER_CST)
8606 std::swap (treeop0, treeop1);
8608 /* First, check if we have a multiplication of one signed and one
8609 unsigned operand. */
8610 if (TREE_CODE (treeop1) != INTEGER_CST
8611 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8612 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8614 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8615 this_optab = usmul_widen_optab;
8616 if (find_widening_optab_handler (this_optab, mode, innermode)
8617 != CODE_FOR_nothing)
8619 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8620 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8621 EXPAND_NORMAL);
8622 else
8623 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8624 EXPAND_NORMAL);
8625 /* op0 and op1 might still be constant, despite the above
8626 != INTEGER_CST check. Handle it. */
8627 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8629 op0 = convert_modes (innermode, mode, op0, true);
8630 op1 = convert_modes (innermode, mode, op1, false);
8631 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8632 target, unsignedp));
8634 goto binop3;
8637 /* Check for a multiplication with matching signedness. */
8638 else if ((TREE_CODE (treeop1) == INTEGER_CST
8639 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8640 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8641 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8643 tree op0type = TREE_TYPE (treeop0);
8644 machine_mode innermode = TYPE_MODE (op0type);
8645 bool zextend_p = TYPE_UNSIGNED (op0type);
8646 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8647 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8649 if (TREE_CODE (treeop0) != INTEGER_CST)
8651 if (find_widening_optab_handler (this_optab, mode, innermode)
8652 != CODE_FOR_nothing)
8654 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8655 EXPAND_NORMAL);
8656 /* op0 and op1 might still be constant, despite the above
8657 != INTEGER_CST check. Handle it. */
8658 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8660 widen_mult_const:
8661 op0 = convert_modes (innermode, mode, op0, zextend_p);
8663 = convert_modes (innermode, mode, op1,
8664 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8665 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8666 target,
8667 unsignedp));
8669 temp = expand_widening_mult (mode, op0, op1, target,
8670 unsignedp, this_optab);
8671 return REDUCE_BIT_FIELD (temp);
8673 if (find_widening_optab_handler (other_optab, mode, innermode)
8674 != CODE_FOR_nothing
8675 && innermode == word_mode)
8677 rtx htem, hipart;
8678 op0 = expand_normal (treeop0);
8679 if (TREE_CODE (treeop1) == INTEGER_CST)
8680 op1 = convert_modes (word_mode, mode,
8681 expand_normal (treeop1),
8682 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8683 else
8684 op1 = expand_normal (treeop1);
8685 /* op0 and op1 might still be constant, despite the above
8686 != INTEGER_CST check. Handle it. */
8687 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8688 goto widen_mult_const;
8689 temp = expand_binop (mode, other_optab, op0, op1, target,
8690 unsignedp, OPTAB_LIB_WIDEN);
8691 hipart = gen_highpart (word_mode, temp);
8692 htem = expand_mult_highpart_adjust (word_mode, hipart,
8693 op0, op1, hipart,
8694 zextend_p);
8695 if (htem != hipart)
8696 emit_move_insn (hipart, htem);
8697 return REDUCE_BIT_FIELD (temp);
8701 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8702 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8703 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8704 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8706 case FMA_EXPR:
8708 optab opt = fma_optab;
8709 gimple *def0, *def2;
8711 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8712 call. */
8713 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8715 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8716 tree call_expr;
8718 gcc_assert (fn != NULL_TREE);
8719 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8720 return expand_builtin (call_expr, target, subtarget, mode, false);
8723 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8724 /* The multiplication is commutative - look at its 2nd operand
8725 if the first isn't fed by a negate. */
8726 if (!def0)
8728 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8729 /* Swap operands if the 2nd operand is fed by a negate. */
8730 if (def0)
8731 std::swap (treeop0, treeop1);
8733 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8735 op0 = op2 = NULL;
8737 if (def0 && def2
8738 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8740 opt = fnms_optab;
8741 op0 = expand_normal (gimple_assign_rhs1 (def0));
8742 op2 = expand_normal (gimple_assign_rhs1 (def2));
8744 else if (def0
8745 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8747 opt = fnma_optab;
8748 op0 = expand_normal (gimple_assign_rhs1 (def0));
8750 else if (def2
8751 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8753 opt = fms_optab;
8754 op2 = expand_normal (gimple_assign_rhs1 (def2));
8757 if (op0 == NULL)
8758 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8759 if (op2 == NULL)
8760 op2 = expand_normal (treeop2);
8761 op1 = expand_normal (treeop1);
8763 return expand_ternary_op (TYPE_MODE (type), opt,
8764 op0, op1, op2, target, 0);
8767 case MULT_EXPR:
8768 /* If this is a fixed-point operation, then we cannot use the code
8769 below because "expand_mult" doesn't support sat/no-sat fixed-point
8770 multiplications. */
8771 if (ALL_FIXED_POINT_MODE_P (mode))
8772 goto binop;
8774 /* If first operand is constant, swap them.
8775 Thus the following special case checks need only
8776 check the second operand. */
8777 if (TREE_CODE (treeop0) == INTEGER_CST)
8778 std::swap (treeop0, treeop1);
8780 /* Attempt to return something suitable for generating an
8781 indexed address, for machines that support that. */
8783 if (modifier == EXPAND_SUM && mode == ptr_mode
8784 && tree_fits_shwi_p (treeop1))
8786 tree exp1 = treeop1;
8788 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8789 EXPAND_SUM);
8791 if (!REG_P (op0))
8792 op0 = force_operand (op0, NULL_RTX);
8793 if (!REG_P (op0))
8794 op0 = copy_to_mode_reg (mode, op0);
8796 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8797 gen_int_mode (tree_to_shwi (exp1),
8798 TYPE_MODE (TREE_TYPE (exp1)))));
8801 if (modifier == EXPAND_STACK_PARM)
8802 target = 0;
8804 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8805 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8807 case TRUNC_MOD_EXPR:
8808 case FLOOR_MOD_EXPR:
8809 case CEIL_MOD_EXPR:
8810 case ROUND_MOD_EXPR:
8812 case TRUNC_DIV_EXPR:
8813 case FLOOR_DIV_EXPR:
8814 case CEIL_DIV_EXPR:
8815 case ROUND_DIV_EXPR:
8816 case EXACT_DIV_EXPR:
8818 /* If this is a fixed-point operation, then we cannot use the code
8819 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8820 divisions. */
8821 if (ALL_FIXED_POINT_MODE_P (mode))
8822 goto binop;
8824 if (modifier == EXPAND_STACK_PARM)
8825 target = 0;
8826 /* Possible optimization: compute the dividend with EXPAND_SUM
8827 then if the divisor is constant can optimize the case
8828 where some terms of the dividend have coeffs divisible by it. */
8829 expand_operands (treeop0, treeop1,
8830 subtarget, &op0, &op1, EXPAND_NORMAL);
8831 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8832 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8833 if (SCALAR_INT_MODE_P (mode)
8834 && optimize >= 2
8835 && get_range_pos_neg (treeop0) == 1
8836 && get_range_pos_neg (treeop1) == 1)
8838 /* If both arguments are known to be positive when interpreted
8839 as signed, we can expand it as both signed and unsigned
8840 division or modulo. Choose the cheaper sequence in that case. */
8841 bool speed_p = optimize_insn_for_speed_p ();
8842 do_pending_stack_adjust ();
8843 start_sequence ();
8844 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8845 rtx_insn *uns_insns = get_insns ();
8846 end_sequence ();
8847 start_sequence ();
8848 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8849 rtx_insn *sgn_insns = get_insns ();
8850 end_sequence ();
8851 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8852 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8854 /* If costs are the same then use as tie breaker the other
8855 other factor. */
8856 if (uns_cost == sgn_cost)
8858 uns_cost = seq_cost (uns_insns, !speed_p);
8859 sgn_cost = seq_cost (sgn_insns, !speed_p);
8862 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8864 emit_insn (uns_insns);
8865 return uns_ret;
8867 emit_insn (sgn_insns);
8868 return sgn_ret;
8870 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8872 case RDIV_EXPR:
8873 goto binop;
8875 case MULT_HIGHPART_EXPR:
8876 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8877 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8878 gcc_assert (temp);
8879 return temp;
8881 case FIXED_CONVERT_EXPR:
8882 op0 = expand_normal (treeop0);
8883 if (target == 0 || modifier == EXPAND_STACK_PARM)
8884 target = gen_reg_rtx (mode);
8886 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8887 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8888 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8889 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8890 else
8891 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8892 return target;
8894 case FIX_TRUNC_EXPR:
8895 op0 = expand_normal (treeop0);
8896 if (target == 0 || modifier == EXPAND_STACK_PARM)
8897 target = gen_reg_rtx (mode);
8898 expand_fix (target, op0, unsignedp);
8899 return target;
8901 case FLOAT_EXPR:
8902 op0 = expand_normal (treeop0);
8903 if (target == 0 || modifier == EXPAND_STACK_PARM)
8904 target = gen_reg_rtx (mode);
8905 /* expand_float can't figure out what to do if FROM has VOIDmode.
8906 So give it the correct mode. With -O, cse will optimize this. */
8907 if (GET_MODE (op0) == VOIDmode)
8908 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8909 op0);
8910 expand_float (target, op0,
8911 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8912 return target;
8914 case NEGATE_EXPR:
8915 op0 = expand_expr (treeop0, subtarget,
8916 VOIDmode, EXPAND_NORMAL);
8917 if (modifier == EXPAND_STACK_PARM)
8918 target = 0;
8919 temp = expand_unop (mode,
8920 optab_for_tree_code (NEGATE_EXPR, type,
8921 optab_default),
8922 op0, target, 0);
8923 gcc_assert (temp);
8924 return REDUCE_BIT_FIELD (temp);
8926 case ABS_EXPR:
8927 op0 = expand_expr (treeop0, subtarget,
8928 VOIDmode, EXPAND_NORMAL);
8929 if (modifier == EXPAND_STACK_PARM)
8930 target = 0;
8932 /* ABS_EXPR is not valid for complex arguments. */
8933 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8934 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8936 /* Unsigned abs is simply the operand. Testing here means we don't
8937 risk generating incorrect code below. */
8938 if (TYPE_UNSIGNED (type))
8939 return op0;
8941 return expand_abs (mode, op0, target, unsignedp,
8942 safe_from_p (target, treeop0, 1));
8944 case MAX_EXPR:
8945 case MIN_EXPR:
8946 target = original_target;
8947 if (target == 0
8948 || modifier == EXPAND_STACK_PARM
8949 || (MEM_P (target) && MEM_VOLATILE_P (target))
8950 || GET_MODE (target) != mode
8951 || (REG_P (target)
8952 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8953 target = gen_reg_rtx (mode);
8954 expand_operands (treeop0, treeop1,
8955 target, &op0, &op1, EXPAND_NORMAL);
8957 /* First try to do it with a special MIN or MAX instruction.
8958 If that does not win, use a conditional jump to select the proper
8959 value. */
8960 this_optab = optab_for_tree_code (code, type, optab_default);
8961 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8962 OPTAB_WIDEN);
8963 if (temp != 0)
8964 return temp;
8966 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
8967 and similarly for MAX <x, y>. */
8968 if (VECTOR_TYPE_P (type))
8970 tree t0 = make_tree (type, op0);
8971 tree t1 = make_tree (type, op1);
8972 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
8973 type, t0, t1);
8974 return expand_vec_cond_expr (type, comparison, t0, t1,
8975 original_target);
8978 /* At this point, a MEM target is no longer useful; we will get better
8979 code without it. */
8981 if (! REG_P (target))
8982 target = gen_reg_rtx (mode);
8984 /* If op1 was placed in target, swap op0 and op1. */
8985 if (target != op0 && target == op1)
8986 std::swap (op0, op1);
8988 /* We generate better code and avoid problems with op1 mentioning
8989 target by forcing op1 into a pseudo if it isn't a constant. */
8990 if (! CONSTANT_P (op1))
8991 op1 = force_reg (mode, op1);
8994 enum rtx_code comparison_code;
8995 rtx cmpop1 = op1;
8997 if (code == MAX_EXPR)
8998 comparison_code = unsignedp ? GEU : GE;
8999 else
9000 comparison_code = unsignedp ? LEU : LE;
9002 /* Canonicalize to comparisons against 0. */
9003 if (op1 == const1_rtx)
9005 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9006 or (a != 0 ? a : 1) for unsigned.
9007 For MIN we are safe converting (a <= 1 ? a : 1)
9008 into (a <= 0 ? a : 1) */
9009 cmpop1 = const0_rtx;
9010 if (code == MAX_EXPR)
9011 comparison_code = unsignedp ? NE : GT;
9013 if (op1 == constm1_rtx && !unsignedp)
9015 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9016 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9017 cmpop1 = const0_rtx;
9018 if (code == MIN_EXPR)
9019 comparison_code = LT;
9022 /* Use a conditional move if possible. */
9023 if (can_conditionally_move_p (mode))
9025 rtx insn;
9027 start_sequence ();
9029 /* Try to emit the conditional move. */
9030 insn = emit_conditional_move (target, comparison_code,
9031 op0, cmpop1, mode,
9032 op0, op1, mode,
9033 unsignedp);
9035 /* If we could do the conditional move, emit the sequence,
9036 and return. */
9037 if (insn)
9039 rtx_insn *seq = get_insns ();
9040 end_sequence ();
9041 emit_insn (seq);
9042 return target;
9045 /* Otherwise discard the sequence and fall back to code with
9046 branches. */
9047 end_sequence ();
9050 if (target != op0)
9051 emit_move_insn (target, op0);
9053 lab = gen_label_rtx ();
9054 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9055 unsignedp, mode, NULL_RTX, NULL, lab,
9056 profile_probability::uninitialized ());
9058 emit_move_insn (target, op1);
9059 emit_label (lab);
9060 return target;
9062 case BIT_NOT_EXPR:
9063 op0 = expand_expr (treeop0, subtarget,
9064 VOIDmode, EXPAND_NORMAL);
9065 if (modifier == EXPAND_STACK_PARM)
9066 target = 0;
9067 /* In case we have to reduce the result to bitfield precision
9068 for unsigned bitfield expand this as XOR with a proper constant
9069 instead. */
9070 if (reduce_bit_field && TYPE_UNSIGNED (type))
9072 int_mode = SCALAR_INT_TYPE_MODE (type);
9073 wide_int mask = wi::mask (TYPE_PRECISION (type),
9074 false, GET_MODE_PRECISION (int_mode));
9076 temp = expand_binop (int_mode, xor_optab, op0,
9077 immed_wide_int_const (mask, int_mode),
9078 target, 1, OPTAB_LIB_WIDEN);
9080 else
9081 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9082 gcc_assert (temp);
9083 return temp;
9085 /* ??? Can optimize bitwise operations with one arg constant.
9086 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9087 and (a bitwise1 b) bitwise2 b (etc)
9088 but that is probably not worth while. */
9090 case BIT_AND_EXPR:
9091 case BIT_IOR_EXPR:
9092 case BIT_XOR_EXPR:
9093 goto binop;
9095 case LROTATE_EXPR:
9096 case RROTATE_EXPR:
9097 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9098 || type_has_mode_precision_p (type));
9099 /* fall through */
9101 case LSHIFT_EXPR:
9102 case RSHIFT_EXPR:
9104 /* If this is a fixed-point operation, then we cannot use the code
9105 below because "expand_shift" doesn't support sat/no-sat fixed-point
9106 shifts. */
9107 if (ALL_FIXED_POINT_MODE_P (mode))
9108 goto binop;
9110 if (! safe_from_p (subtarget, treeop1, 1))
9111 subtarget = 0;
9112 if (modifier == EXPAND_STACK_PARM)
9113 target = 0;
9114 op0 = expand_expr (treeop0, subtarget,
9115 VOIDmode, EXPAND_NORMAL);
9117 /* Left shift optimization when shifting across word_size boundary.
9119 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9120 there isn't native instruction to support this wide mode
9121 left shift. Given below scenario:
9123 Type A = (Type) B << C
9125 |< T >|
9126 | dest_high | dest_low |
9128 | word_size |
9130 If the shift amount C caused we shift B to across the word
9131 size boundary, i.e part of B shifted into high half of
9132 destination register, and part of B remains in the low
9133 half, then GCC will use the following left shift expand
9134 logic:
9136 1. Initialize dest_low to B.
9137 2. Initialize every bit of dest_high to the sign bit of B.
9138 3. Logic left shift dest_low by C bit to finalize dest_low.
9139 The value of dest_low before this shift is kept in a temp D.
9140 4. Logic left shift dest_high by C.
9141 5. Logic right shift D by (word_size - C).
9142 6. Or the result of 4 and 5 to finalize dest_high.
9144 While, by checking gimple statements, if operand B is
9145 coming from signed extension, then we can simplify above
9146 expand logic into:
9148 1. dest_high = src_low >> (word_size - C).
9149 2. dest_low = src_low << C.
9151 We can use one arithmetic right shift to finish all the
9152 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9153 needed from 6 into 2.
9155 The case is similar for zero extension, except that we
9156 initialize dest_high to zero rather than copies of the sign
9157 bit from B. Furthermore, we need to use a logical right shift
9158 in this case.
9160 The choice of sign-extension versus zero-extension is
9161 determined entirely by whether or not B is signed and is
9162 independent of the current setting of unsignedp. */
9164 temp = NULL_RTX;
9165 if (code == LSHIFT_EXPR
9166 && target
9167 && REG_P (target)
9168 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9169 && mode == int_mode
9170 && TREE_CONSTANT (treeop1)
9171 && TREE_CODE (treeop0) == SSA_NAME)
9173 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9174 if (is_gimple_assign (def)
9175 && gimple_assign_rhs_code (def) == NOP_EXPR)
9177 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9178 (TREE_TYPE (gimple_assign_rhs1 (def)));
9180 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9181 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9182 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9183 >= GET_MODE_BITSIZE (word_mode)))
9185 rtx_insn *seq, *seq_old;
9186 unsigned int high_off = subreg_highpart_offset (word_mode,
9187 int_mode);
9188 bool extend_unsigned
9189 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9190 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9191 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9192 rtx dest_high = simplify_gen_subreg (word_mode, target,
9193 int_mode, high_off);
9194 HOST_WIDE_INT ramount = (BITS_PER_WORD
9195 - TREE_INT_CST_LOW (treeop1));
9196 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9198 start_sequence ();
9199 /* dest_high = src_low >> (word_size - C). */
9200 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9201 rshift, dest_high,
9202 extend_unsigned);
9203 if (temp != dest_high)
9204 emit_move_insn (dest_high, temp);
9206 /* dest_low = src_low << C. */
9207 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9208 treeop1, dest_low, unsignedp);
9209 if (temp != dest_low)
9210 emit_move_insn (dest_low, temp);
9212 seq = get_insns ();
9213 end_sequence ();
9214 temp = target ;
9216 if (have_insn_for (ASHIFT, int_mode))
9218 bool speed_p = optimize_insn_for_speed_p ();
9219 start_sequence ();
9220 rtx ret_old = expand_variable_shift (code, int_mode,
9221 op0, treeop1,
9222 target,
9223 unsignedp);
9225 seq_old = get_insns ();
9226 end_sequence ();
9227 if (seq_cost (seq, speed_p)
9228 >= seq_cost (seq_old, speed_p))
9230 seq = seq_old;
9231 temp = ret_old;
9234 emit_insn (seq);
9239 if (temp == NULL_RTX)
9240 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9241 unsignedp);
9242 if (code == LSHIFT_EXPR)
9243 temp = REDUCE_BIT_FIELD (temp);
9244 return temp;
9247 /* Could determine the answer when only additive constants differ. Also,
9248 the addition of one can be handled by changing the condition. */
9249 case LT_EXPR:
9250 case LE_EXPR:
9251 case GT_EXPR:
9252 case GE_EXPR:
9253 case EQ_EXPR:
9254 case NE_EXPR:
9255 case UNORDERED_EXPR:
9256 case ORDERED_EXPR:
9257 case UNLT_EXPR:
9258 case UNLE_EXPR:
9259 case UNGT_EXPR:
9260 case UNGE_EXPR:
9261 case UNEQ_EXPR:
9262 case LTGT_EXPR:
9264 temp = do_store_flag (ops,
9265 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9266 tmode != VOIDmode ? tmode : mode);
9267 if (temp)
9268 return temp;
9270 /* Use a compare and a jump for BLKmode comparisons, or for function
9271 type comparisons is have_canonicalize_funcptr_for_compare. */
9273 if ((target == 0
9274 || modifier == EXPAND_STACK_PARM
9275 || ! safe_from_p (target, treeop0, 1)
9276 || ! safe_from_p (target, treeop1, 1)
9277 /* Make sure we don't have a hard reg (such as function's return
9278 value) live across basic blocks, if not optimizing. */
9279 || (!optimize && REG_P (target)
9280 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9281 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9283 emit_move_insn (target, const0_rtx);
9285 rtx_code_label *lab1 = gen_label_rtx ();
9286 jumpifnot_1 (code, treeop0, treeop1, lab1,
9287 profile_probability::uninitialized ());
9289 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9290 emit_move_insn (target, constm1_rtx);
9291 else
9292 emit_move_insn (target, const1_rtx);
9294 emit_label (lab1);
9295 return target;
9297 case COMPLEX_EXPR:
9298 /* Get the rtx code of the operands. */
9299 op0 = expand_normal (treeop0);
9300 op1 = expand_normal (treeop1);
9302 if (!target)
9303 target = gen_reg_rtx (TYPE_MODE (type));
9304 else
9305 /* If target overlaps with op1, then either we need to force
9306 op1 into a pseudo (if target also overlaps with op0),
9307 or write the complex parts in reverse order. */
9308 switch (GET_CODE (target))
9310 case CONCAT:
9311 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9313 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9315 complex_expr_force_op1:
9316 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9317 emit_move_insn (temp, op1);
9318 op1 = temp;
9319 break;
9321 complex_expr_swap_order:
9322 /* Move the imaginary (op1) and real (op0) parts to their
9323 location. */
9324 write_complex_part (target, op1, true);
9325 write_complex_part (target, op0, false);
9327 return target;
9329 break;
9330 case MEM:
9331 temp = adjust_address_nv (target,
9332 GET_MODE_INNER (GET_MODE (target)), 0);
9333 if (reg_overlap_mentioned_p (temp, op1))
9335 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9336 temp = adjust_address_nv (target, imode,
9337 GET_MODE_SIZE (imode));
9338 if (reg_overlap_mentioned_p (temp, op0))
9339 goto complex_expr_force_op1;
9340 goto complex_expr_swap_order;
9342 break;
9343 default:
9344 if (reg_overlap_mentioned_p (target, op1))
9346 if (reg_overlap_mentioned_p (target, op0))
9347 goto complex_expr_force_op1;
9348 goto complex_expr_swap_order;
9350 break;
9353 /* Move the real (op0) and imaginary (op1) parts to their location. */
9354 write_complex_part (target, op0, false);
9355 write_complex_part (target, op1, true);
9357 return target;
9359 case WIDEN_SUM_EXPR:
9361 tree oprnd0 = treeop0;
9362 tree oprnd1 = treeop1;
9364 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9365 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9366 target, unsignedp);
9367 return target;
9370 case REDUC_MAX_EXPR:
9371 case REDUC_MIN_EXPR:
9372 case REDUC_PLUS_EXPR:
9374 op0 = expand_normal (treeop0);
9375 this_optab = optab_for_tree_code (code, type, optab_default);
9376 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9378 struct expand_operand ops[2];
9379 enum insn_code icode = optab_handler (this_optab, vec_mode);
9381 create_output_operand (&ops[0], target, mode);
9382 create_input_operand (&ops[1], op0, vec_mode);
9383 expand_insn (icode, 2, ops);
9384 target = ops[0].value;
9385 if (GET_MODE (target) != mode)
9386 return gen_lowpart (tmode, target);
9387 return target;
9390 case VEC_UNPACK_HI_EXPR:
9391 case VEC_UNPACK_LO_EXPR:
9393 op0 = expand_normal (treeop0);
9394 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9395 target, unsignedp);
9396 gcc_assert (temp);
9397 return temp;
9400 case VEC_UNPACK_FLOAT_HI_EXPR:
9401 case VEC_UNPACK_FLOAT_LO_EXPR:
9403 op0 = expand_normal (treeop0);
9404 /* The signedness is determined from input operand. */
9405 temp = expand_widen_pattern_expr
9406 (ops, op0, NULL_RTX, NULL_RTX,
9407 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9409 gcc_assert (temp);
9410 return temp;
9413 case VEC_WIDEN_MULT_HI_EXPR:
9414 case VEC_WIDEN_MULT_LO_EXPR:
9415 case VEC_WIDEN_MULT_EVEN_EXPR:
9416 case VEC_WIDEN_MULT_ODD_EXPR:
9417 case VEC_WIDEN_LSHIFT_HI_EXPR:
9418 case VEC_WIDEN_LSHIFT_LO_EXPR:
9419 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9420 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9421 target, unsignedp);
9422 gcc_assert (target);
9423 return target;
9425 case VEC_PACK_TRUNC_EXPR:
9426 case VEC_PACK_SAT_EXPR:
9427 case VEC_PACK_FIX_TRUNC_EXPR:
9428 mode = TYPE_MODE (TREE_TYPE (treeop0));
9429 goto binop;
9431 case VEC_PERM_EXPR:
9432 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9433 op2 = expand_normal (treeop2);
9435 /* Careful here: if the target doesn't support integral vector modes,
9436 a constant selection vector could wind up smooshed into a normal
9437 integral constant. */
9438 if (CONSTANT_P (op2) && !VECTOR_MODE_P (GET_MODE (op2)))
9440 tree sel_type = TREE_TYPE (treeop2);
9441 machine_mode vmode
9442 = mode_for_vector (SCALAR_TYPE_MODE (TREE_TYPE (sel_type)),
9443 TYPE_VECTOR_SUBPARTS (sel_type)).require ();
9444 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9445 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9446 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9448 else
9449 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9451 temp = expand_vec_perm (mode, op0, op1, op2, target);
9452 gcc_assert (temp);
9453 return temp;
9455 case DOT_PROD_EXPR:
9457 tree oprnd0 = treeop0;
9458 tree oprnd1 = treeop1;
9459 tree oprnd2 = treeop2;
9460 rtx op2;
9462 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9463 op2 = expand_normal (oprnd2);
9464 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9465 target, unsignedp);
9466 return target;
9469 case SAD_EXPR:
9471 tree oprnd0 = treeop0;
9472 tree oprnd1 = treeop1;
9473 tree oprnd2 = treeop2;
9474 rtx op2;
9476 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9477 op2 = expand_normal (oprnd2);
9478 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9479 target, unsignedp);
9480 return target;
9483 case REALIGN_LOAD_EXPR:
9485 tree oprnd0 = treeop0;
9486 tree oprnd1 = treeop1;
9487 tree oprnd2 = treeop2;
9488 rtx op2;
9490 this_optab = optab_for_tree_code (code, type, optab_default);
9491 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9492 op2 = expand_normal (oprnd2);
9493 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9494 target, unsignedp);
9495 gcc_assert (temp);
9496 return temp;
9499 case COND_EXPR:
9501 /* A COND_EXPR with its type being VOID_TYPE represents a
9502 conditional jump and is handled in
9503 expand_gimple_cond_expr. */
9504 gcc_assert (!VOID_TYPE_P (type));
9506 /* Note that COND_EXPRs whose type is a structure or union
9507 are required to be constructed to contain assignments of
9508 a temporary variable, so that we can evaluate them here
9509 for side effect only. If type is void, we must do likewise. */
9511 gcc_assert (!TREE_ADDRESSABLE (type)
9512 && !ignore
9513 && TREE_TYPE (treeop1) != void_type_node
9514 && TREE_TYPE (treeop2) != void_type_node);
9516 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9517 if (temp)
9518 return temp;
9520 /* If we are not to produce a result, we have no target. Otherwise,
9521 if a target was specified use it; it will not be used as an
9522 intermediate target unless it is safe. If no target, use a
9523 temporary. */
9525 if (modifier != EXPAND_STACK_PARM
9526 && original_target
9527 && safe_from_p (original_target, treeop0, 1)
9528 && GET_MODE (original_target) == mode
9529 && !MEM_P (original_target))
9530 temp = original_target;
9531 else
9532 temp = assign_temp (type, 0, 1);
9534 do_pending_stack_adjust ();
9535 NO_DEFER_POP;
9536 rtx_code_label *lab0 = gen_label_rtx ();
9537 rtx_code_label *lab1 = gen_label_rtx ();
9538 jumpifnot (treeop0, lab0,
9539 profile_probability::uninitialized ());
9540 store_expr (treeop1, temp,
9541 modifier == EXPAND_STACK_PARM,
9542 false, false);
9544 emit_jump_insn (targetm.gen_jump (lab1));
9545 emit_barrier ();
9546 emit_label (lab0);
9547 store_expr (treeop2, temp,
9548 modifier == EXPAND_STACK_PARM,
9549 false, false);
9551 emit_label (lab1);
9552 OK_DEFER_POP;
9553 return temp;
9556 case VEC_COND_EXPR:
9557 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9558 return target;
9560 case BIT_INSERT_EXPR:
9562 unsigned bitpos = tree_to_uhwi (treeop2);
9563 unsigned bitsize;
9564 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9565 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9566 else
9567 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9568 rtx op0 = expand_normal (treeop0);
9569 rtx op1 = expand_normal (treeop1);
9570 rtx dst = gen_reg_rtx (mode);
9571 emit_move_insn (dst, op0);
9572 store_bit_field (dst, bitsize, bitpos, 0, 0,
9573 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9574 return dst;
9577 default:
9578 gcc_unreachable ();
9581 /* Here to do an ordinary binary operator. */
9582 binop:
9583 expand_operands (treeop0, treeop1,
9584 subtarget, &op0, &op1, EXPAND_NORMAL);
9585 binop2:
9586 this_optab = optab_for_tree_code (code, type, optab_default);
9587 binop3:
9588 if (modifier == EXPAND_STACK_PARM)
9589 target = 0;
9590 temp = expand_binop (mode, this_optab, op0, op1, target,
9591 unsignedp, OPTAB_LIB_WIDEN);
9592 gcc_assert (temp);
9593 /* Bitwise operations do not need bitfield reduction as we expect their
9594 operands being properly truncated. */
9595 if (code == BIT_XOR_EXPR
9596 || code == BIT_AND_EXPR
9597 || code == BIT_IOR_EXPR)
9598 return temp;
9599 return REDUCE_BIT_FIELD (temp);
9601 #undef REDUCE_BIT_FIELD
9604 /* Return TRUE if expression STMT is suitable for replacement.
9605 Never consider memory loads as replaceable, because those don't ever lead
9606 into constant expressions. */
9608 static bool
9609 stmt_is_replaceable_p (gimple *stmt)
9611 if (ssa_is_replaceable_p (stmt))
9613 /* Don't move around loads. */
9614 if (!gimple_assign_single_p (stmt)
9615 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9616 return true;
9618 return false;
9622 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9623 enum expand_modifier modifier, rtx *alt_rtl,
9624 bool inner_reference_p)
9626 rtx op0, op1, temp, decl_rtl;
9627 tree type;
9628 int unsignedp;
9629 machine_mode mode, dmode;
9630 enum tree_code code = TREE_CODE (exp);
9631 rtx subtarget, original_target;
9632 int ignore;
9633 tree context;
9634 bool reduce_bit_field;
9635 location_t loc = EXPR_LOCATION (exp);
9636 struct separate_ops ops;
9637 tree treeop0, treeop1, treeop2;
9638 tree ssa_name = NULL_TREE;
9639 gimple *g;
9641 type = TREE_TYPE (exp);
9642 mode = TYPE_MODE (type);
9643 unsignedp = TYPE_UNSIGNED (type);
9645 treeop0 = treeop1 = treeop2 = NULL_TREE;
9646 if (!VL_EXP_CLASS_P (exp))
9647 switch (TREE_CODE_LENGTH (code))
9649 default:
9650 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9651 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9652 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9653 case 0: break;
9655 ops.code = code;
9656 ops.type = type;
9657 ops.op0 = treeop0;
9658 ops.op1 = treeop1;
9659 ops.op2 = treeop2;
9660 ops.location = loc;
9662 ignore = (target == const0_rtx
9663 || ((CONVERT_EXPR_CODE_P (code)
9664 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9665 && TREE_CODE (type) == VOID_TYPE));
9667 /* An operation in what may be a bit-field type needs the
9668 result to be reduced to the precision of the bit-field type,
9669 which is narrower than that of the type's mode. */
9670 reduce_bit_field = (!ignore
9671 && INTEGRAL_TYPE_P (type)
9672 && !type_has_mode_precision_p (type));
9674 /* If we are going to ignore this result, we need only do something
9675 if there is a side-effect somewhere in the expression. If there
9676 is, short-circuit the most common cases here. Note that we must
9677 not call expand_expr with anything but const0_rtx in case this
9678 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9680 if (ignore)
9682 if (! TREE_SIDE_EFFECTS (exp))
9683 return const0_rtx;
9685 /* Ensure we reference a volatile object even if value is ignored, but
9686 don't do this if all we are doing is taking its address. */
9687 if (TREE_THIS_VOLATILE (exp)
9688 && TREE_CODE (exp) != FUNCTION_DECL
9689 && mode != VOIDmode && mode != BLKmode
9690 && modifier != EXPAND_CONST_ADDRESS)
9692 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9693 if (MEM_P (temp))
9694 copy_to_reg (temp);
9695 return const0_rtx;
9698 if (TREE_CODE_CLASS (code) == tcc_unary
9699 || code == BIT_FIELD_REF
9700 || code == COMPONENT_REF
9701 || code == INDIRECT_REF)
9702 return expand_expr (treeop0, const0_rtx, VOIDmode,
9703 modifier);
9705 else if (TREE_CODE_CLASS (code) == tcc_binary
9706 || TREE_CODE_CLASS (code) == tcc_comparison
9707 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9709 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9710 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9711 return const0_rtx;
9714 target = 0;
9717 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9718 target = 0;
9720 /* Use subtarget as the target for operand 0 of a binary operation. */
9721 subtarget = get_subtarget (target);
9722 original_target = target;
9724 switch (code)
9726 case LABEL_DECL:
9728 tree function = decl_function_context (exp);
9730 temp = label_rtx (exp);
9731 temp = gen_rtx_LABEL_REF (Pmode, temp);
9733 if (function != current_function_decl
9734 && function != 0)
9735 LABEL_REF_NONLOCAL_P (temp) = 1;
9737 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9738 return temp;
9741 case SSA_NAME:
9742 /* ??? ivopts calls expander, without any preparation from
9743 out-of-ssa. So fake instructions as if this was an access to the
9744 base variable. This unnecessarily allocates a pseudo, see how we can
9745 reuse it, if partition base vars have it set already. */
9746 if (!currently_expanding_to_rtl)
9748 tree var = SSA_NAME_VAR (exp);
9749 if (var && DECL_RTL_SET_P (var))
9750 return DECL_RTL (var);
9751 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9752 LAST_VIRTUAL_REGISTER + 1);
9755 g = get_gimple_for_ssa_name (exp);
9756 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9757 if (g == NULL
9758 && modifier == EXPAND_INITIALIZER
9759 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9760 && (optimize || !SSA_NAME_VAR (exp)
9761 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9762 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9763 g = SSA_NAME_DEF_STMT (exp);
9764 if (g)
9766 rtx r;
9767 location_t saved_loc = curr_insn_location ();
9768 location_t loc = gimple_location (g);
9769 if (loc != UNKNOWN_LOCATION)
9770 set_curr_insn_location (loc);
9771 ops.code = gimple_assign_rhs_code (g);
9772 switch (get_gimple_rhs_class (ops.code))
9774 case GIMPLE_TERNARY_RHS:
9775 ops.op2 = gimple_assign_rhs3 (g);
9776 /* Fallthru */
9777 case GIMPLE_BINARY_RHS:
9778 ops.op1 = gimple_assign_rhs2 (g);
9780 /* Try to expand conditonal compare. */
9781 if (targetm.gen_ccmp_first)
9783 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9784 r = expand_ccmp_expr (g, mode);
9785 if (r)
9786 break;
9788 /* Fallthru */
9789 case GIMPLE_UNARY_RHS:
9790 ops.op0 = gimple_assign_rhs1 (g);
9791 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9792 ops.location = loc;
9793 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9794 break;
9795 case GIMPLE_SINGLE_RHS:
9797 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9798 tmode, modifier, alt_rtl,
9799 inner_reference_p);
9800 break;
9802 default:
9803 gcc_unreachable ();
9805 set_curr_insn_location (saved_loc);
9806 if (REG_P (r) && !REG_EXPR (r))
9807 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9808 return r;
9811 ssa_name = exp;
9812 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9813 exp = SSA_NAME_VAR (ssa_name);
9814 goto expand_decl_rtl;
9816 case PARM_DECL:
9817 case VAR_DECL:
9818 /* If a static var's type was incomplete when the decl was written,
9819 but the type is complete now, lay out the decl now. */
9820 if (DECL_SIZE (exp) == 0
9821 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9822 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9823 layout_decl (exp, 0);
9825 /* fall through */
9827 case FUNCTION_DECL:
9828 case RESULT_DECL:
9829 decl_rtl = DECL_RTL (exp);
9830 expand_decl_rtl:
9831 gcc_assert (decl_rtl);
9833 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9834 settings for VECTOR_TYPE_P that might switch for the function. */
9835 if (currently_expanding_to_rtl
9836 && code == VAR_DECL && MEM_P (decl_rtl)
9837 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9838 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9839 else
9840 decl_rtl = copy_rtx (decl_rtl);
9842 /* Record writes to register variables. */
9843 if (modifier == EXPAND_WRITE
9844 && REG_P (decl_rtl)
9845 && HARD_REGISTER_P (decl_rtl))
9846 add_to_hard_reg_set (&crtl->asm_clobbers,
9847 GET_MODE (decl_rtl), REGNO (decl_rtl));
9849 /* Ensure variable marked as used even if it doesn't go through
9850 a parser. If it hasn't be used yet, write out an external
9851 definition. */
9852 if (exp)
9853 TREE_USED (exp) = 1;
9855 /* Show we haven't gotten RTL for this yet. */
9856 temp = 0;
9858 /* Variables inherited from containing functions should have
9859 been lowered by this point. */
9860 if (exp)
9861 context = decl_function_context (exp);
9862 gcc_assert (!exp
9863 || SCOPE_FILE_SCOPE_P (context)
9864 || context == current_function_decl
9865 || TREE_STATIC (exp)
9866 || DECL_EXTERNAL (exp)
9867 /* ??? C++ creates functions that are not TREE_STATIC. */
9868 || TREE_CODE (exp) == FUNCTION_DECL);
9870 /* This is the case of an array whose size is to be determined
9871 from its initializer, while the initializer is still being parsed.
9872 ??? We aren't parsing while expanding anymore. */
9874 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9875 temp = validize_mem (decl_rtl);
9877 /* If DECL_RTL is memory, we are in the normal case and the
9878 address is not valid, get the address into a register. */
9880 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9882 if (alt_rtl)
9883 *alt_rtl = decl_rtl;
9884 decl_rtl = use_anchored_address (decl_rtl);
9885 if (modifier != EXPAND_CONST_ADDRESS
9886 && modifier != EXPAND_SUM
9887 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9888 : GET_MODE (decl_rtl),
9889 XEXP (decl_rtl, 0),
9890 MEM_ADDR_SPACE (decl_rtl)))
9891 temp = replace_equiv_address (decl_rtl,
9892 copy_rtx (XEXP (decl_rtl, 0)));
9895 /* If we got something, return it. But first, set the alignment
9896 if the address is a register. */
9897 if (temp != 0)
9899 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9900 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9902 return temp;
9905 if (exp)
9906 dmode = DECL_MODE (exp);
9907 else
9908 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9910 /* If the mode of DECL_RTL does not match that of the decl,
9911 there are two cases: we are dealing with a BLKmode value
9912 that is returned in a register, or we are dealing with
9913 a promoted value. In the latter case, return a SUBREG
9914 of the wanted mode, but mark it so that we know that it
9915 was already extended. */
9916 if (REG_P (decl_rtl)
9917 && dmode != BLKmode
9918 && GET_MODE (decl_rtl) != dmode)
9920 machine_mode pmode;
9922 /* Get the signedness to be used for this variable. Ensure we get
9923 the same mode we got when the variable was declared. */
9924 if (code != SSA_NAME)
9925 pmode = promote_decl_mode (exp, &unsignedp);
9926 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9927 && gimple_code (g) == GIMPLE_CALL
9928 && !gimple_call_internal_p (g))
9929 pmode = promote_function_mode (type, mode, &unsignedp,
9930 gimple_call_fntype (g),
9932 else
9933 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9934 gcc_assert (GET_MODE (decl_rtl) == pmode);
9936 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9937 SUBREG_PROMOTED_VAR_P (temp) = 1;
9938 SUBREG_PROMOTED_SET (temp, unsignedp);
9939 return temp;
9942 return decl_rtl;
9944 case INTEGER_CST:
9946 /* Given that TYPE_PRECISION (type) is not always equal to
9947 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9948 the former to the latter according to the signedness of the
9949 type. */
9950 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
9951 temp = immed_wide_int_const
9952 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
9953 return temp;
9956 case VECTOR_CST:
9958 tree tmp = NULL_TREE;
9959 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9960 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9961 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9962 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9963 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9964 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9965 return const_vector_from_tree (exp);
9966 scalar_int_mode int_mode;
9967 if (is_int_mode (mode, &int_mode))
9969 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
9970 return const_scalar_mask_from_tree (int_mode, exp);
9971 else
9973 tree type_for_mode
9974 = lang_hooks.types.type_for_mode (int_mode, 1);
9975 if (type_for_mode)
9976 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
9977 type_for_mode, exp);
9980 if (!tmp)
9982 vec<constructor_elt, va_gc> *v;
9983 unsigned i;
9984 vec_alloc (v, VECTOR_CST_NELTS (exp));
9985 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9986 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9987 tmp = build_constructor (type, v);
9989 return expand_expr (tmp, ignore ? const0_rtx : target,
9990 tmode, modifier);
9993 case CONST_DECL:
9994 if (modifier == EXPAND_WRITE)
9996 /* Writing into CONST_DECL is always invalid, but handle it
9997 gracefully. */
9998 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
9999 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10000 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10001 EXPAND_NORMAL, as);
10002 op0 = memory_address_addr_space (mode, op0, as);
10003 temp = gen_rtx_MEM (mode, op0);
10004 set_mem_addr_space (temp, as);
10005 return temp;
10007 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10009 case REAL_CST:
10010 /* If optimized, generate immediate CONST_DOUBLE
10011 which will be turned into memory by reload if necessary.
10013 We used to force a register so that loop.c could see it. But
10014 this does not allow gen_* patterns to perform optimizations with
10015 the constants. It also produces two insns in cases like "x = 1.0;".
10016 On most machines, floating-point constants are not permitted in
10017 many insns, so we'd end up copying it to a register in any case.
10019 Now, we do the copying in expand_binop, if appropriate. */
10020 return const_double_from_real_value (TREE_REAL_CST (exp),
10021 TYPE_MODE (TREE_TYPE (exp)));
10023 case FIXED_CST:
10024 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10025 TYPE_MODE (TREE_TYPE (exp)));
10027 case COMPLEX_CST:
10028 /* Handle evaluating a complex constant in a CONCAT target. */
10029 if (original_target && GET_CODE (original_target) == CONCAT)
10031 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10032 rtx rtarg, itarg;
10034 rtarg = XEXP (original_target, 0);
10035 itarg = XEXP (original_target, 1);
10037 /* Move the real and imaginary parts separately. */
10038 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10039 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10041 if (op0 != rtarg)
10042 emit_move_insn (rtarg, op0);
10043 if (op1 != itarg)
10044 emit_move_insn (itarg, op1);
10046 return original_target;
10049 /* fall through */
10051 case STRING_CST:
10052 temp = expand_expr_constant (exp, 1, modifier);
10054 /* temp contains a constant address.
10055 On RISC machines where a constant address isn't valid,
10056 make some insns to get that address into a register. */
10057 if (modifier != EXPAND_CONST_ADDRESS
10058 && modifier != EXPAND_INITIALIZER
10059 && modifier != EXPAND_SUM
10060 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10061 MEM_ADDR_SPACE (temp)))
10062 return replace_equiv_address (temp,
10063 copy_rtx (XEXP (temp, 0)));
10064 return temp;
10066 case SAVE_EXPR:
10068 tree val = treeop0;
10069 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10070 inner_reference_p);
10072 if (!SAVE_EXPR_RESOLVED_P (exp))
10074 /* We can indeed still hit this case, typically via builtin
10075 expanders calling save_expr immediately before expanding
10076 something. Assume this means that we only have to deal
10077 with non-BLKmode values. */
10078 gcc_assert (GET_MODE (ret) != BLKmode);
10080 val = build_decl (curr_insn_location (),
10081 VAR_DECL, NULL, TREE_TYPE (exp));
10082 DECL_ARTIFICIAL (val) = 1;
10083 DECL_IGNORED_P (val) = 1;
10084 treeop0 = val;
10085 TREE_OPERAND (exp, 0) = treeop0;
10086 SAVE_EXPR_RESOLVED_P (exp) = 1;
10088 if (!CONSTANT_P (ret))
10089 ret = copy_to_reg (ret);
10090 SET_DECL_RTL (val, ret);
10093 return ret;
10097 case CONSTRUCTOR:
10098 /* If we don't need the result, just ensure we evaluate any
10099 subexpressions. */
10100 if (ignore)
10102 unsigned HOST_WIDE_INT idx;
10103 tree value;
10105 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10106 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10108 return const0_rtx;
10111 return expand_constructor (exp, target, modifier, false);
10113 case TARGET_MEM_REF:
10115 addr_space_t as
10116 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10117 enum insn_code icode;
10118 unsigned int align;
10120 op0 = addr_for_mem_ref (exp, as, true);
10121 op0 = memory_address_addr_space (mode, op0, as);
10122 temp = gen_rtx_MEM (mode, op0);
10123 set_mem_attributes (temp, exp, 0);
10124 set_mem_addr_space (temp, as);
10125 align = get_object_alignment (exp);
10126 if (modifier != EXPAND_WRITE
10127 && modifier != EXPAND_MEMORY
10128 && mode != BLKmode
10129 && align < GET_MODE_ALIGNMENT (mode)
10130 /* If the target does not have special handling for unaligned
10131 loads of mode then it can use regular moves for them. */
10132 && ((icode = optab_handler (movmisalign_optab, mode))
10133 != CODE_FOR_nothing))
10135 struct expand_operand ops[2];
10137 /* We've already validated the memory, and we're creating a
10138 new pseudo destination. The predicates really can't fail,
10139 nor can the generator. */
10140 create_output_operand (&ops[0], NULL_RTX, mode);
10141 create_fixed_operand (&ops[1], temp);
10142 expand_insn (icode, 2, ops);
10143 temp = ops[0].value;
10145 return temp;
10148 case MEM_REF:
10150 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10151 addr_space_t as
10152 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10153 machine_mode address_mode;
10154 tree base = TREE_OPERAND (exp, 0);
10155 gimple *def_stmt;
10156 enum insn_code icode;
10157 unsigned align;
10158 /* Handle expansion of non-aliased memory with non-BLKmode. That
10159 might end up in a register. */
10160 if (mem_ref_refers_to_non_mem_p (exp))
10162 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
10163 base = TREE_OPERAND (base, 0);
10164 if (offset == 0
10165 && !reverse
10166 && tree_fits_uhwi_p (TYPE_SIZE (type))
10167 && (GET_MODE_BITSIZE (DECL_MODE (base))
10168 == tree_to_uhwi (TYPE_SIZE (type))))
10169 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10170 target, tmode, modifier);
10171 if (TYPE_MODE (type) == BLKmode)
10173 temp = assign_stack_temp (DECL_MODE (base),
10174 GET_MODE_SIZE (DECL_MODE (base)));
10175 store_expr (base, temp, 0, false, false);
10176 temp = adjust_address (temp, BLKmode, offset);
10177 set_mem_size (temp, int_size_in_bytes (type));
10178 return temp;
10180 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10181 bitsize_int (offset * BITS_PER_UNIT));
10182 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10183 return expand_expr (exp, target, tmode, modifier);
10185 address_mode = targetm.addr_space.address_mode (as);
10186 base = TREE_OPERAND (exp, 0);
10187 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10189 tree mask = gimple_assign_rhs2 (def_stmt);
10190 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10191 gimple_assign_rhs1 (def_stmt), mask);
10192 TREE_OPERAND (exp, 0) = base;
10194 align = get_object_alignment (exp);
10195 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10196 op0 = memory_address_addr_space (mode, op0, as);
10197 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10199 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10200 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10201 op0 = memory_address_addr_space (mode, op0, as);
10203 temp = gen_rtx_MEM (mode, op0);
10204 set_mem_attributes (temp, exp, 0);
10205 set_mem_addr_space (temp, as);
10206 if (TREE_THIS_VOLATILE (exp))
10207 MEM_VOLATILE_P (temp) = 1;
10208 if (modifier != EXPAND_WRITE
10209 && modifier != EXPAND_MEMORY
10210 && !inner_reference_p
10211 && mode != BLKmode
10212 && align < GET_MODE_ALIGNMENT (mode))
10214 if ((icode = optab_handler (movmisalign_optab, mode))
10215 != CODE_FOR_nothing)
10217 struct expand_operand ops[2];
10219 /* We've already validated the memory, and we're creating a
10220 new pseudo destination. The predicates really can't fail,
10221 nor can the generator. */
10222 create_output_operand (&ops[0], NULL_RTX, mode);
10223 create_fixed_operand (&ops[1], temp);
10224 expand_insn (icode, 2, ops);
10225 temp = ops[0].value;
10227 else if (targetm.slow_unaligned_access (mode, align))
10228 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10229 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10230 (modifier == EXPAND_STACK_PARM
10231 ? NULL_RTX : target),
10232 mode, mode, false, alt_rtl);
10234 if (reverse
10235 && modifier != EXPAND_MEMORY
10236 && modifier != EXPAND_WRITE)
10237 temp = flip_storage_order (mode, temp);
10238 return temp;
10241 case ARRAY_REF:
10244 tree array = treeop0;
10245 tree index = treeop1;
10246 tree init;
10248 /* Fold an expression like: "foo"[2].
10249 This is not done in fold so it won't happen inside &.
10250 Don't fold if this is for wide characters since it's too
10251 difficult to do correctly and this is a very rare case. */
10253 if (modifier != EXPAND_CONST_ADDRESS
10254 && modifier != EXPAND_INITIALIZER
10255 && modifier != EXPAND_MEMORY)
10257 tree t = fold_read_from_constant_string (exp);
10259 if (t)
10260 return expand_expr (t, target, tmode, modifier);
10263 /* If this is a constant index into a constant array,
10264 just get the value from the array. Handle both the cases when
10265 we have an explicit constructor and when our operand is a variable
10266 that was declared const. */
10268 if (modifier != EXPAND_CONST_ADDRESS
10269 && modifier != EXPAND_INITIALIZER
10270 && modifier != EXPAND_MEMORY
10271 && TREE_CODE (array) == CONSTRUCTOR
10272 && ! TREE_SIDE_EFFECTS (array)
10273 && TREE_CODE (index) == INTEGER_CST)
10275 unsigned HOST_WIDE_INT ix;
10276 tree field, value;
10278 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10279 field, value)
10280 if (tree_int_cst_equal (field, index))
10282 if (!TREE_SIDE_EFFECTS (value))
10283 return expand_expr (fold (value), target, tmode, modifier);
10284 break;
10288 else if (optimize >= 1
10289 && modifier != EXPAND_CONST_ADDRESS
10290 && modifier != EXPAND_INITIALIZER
10291 && modifier != EXPAND_MEMORY
10292 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10293 && TREE_CODE (index) == INTEGER_CST
10294 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10295 && (init = ctor_for_folding (array)) != error_mark_node)
10297 if (init == NULL_TREE)
10299 tree value = build_zero_cst (type);
10300 if (TREE_CODE (value) == CONSTRUCTOR)
10302 /* If VALUE is a CONSTRUCTOR, this optimization is only
10303 useful if this doesn't store the CONSTRUCTOR into
10304 memory. If it does, it is more efficient to just
10305 load the data from the array directly. */
10306 rtx ret = expand_constructor (value, target,
10307 modifier, true);
10308 if (ret == NULL_RTX)
10309 value = NULL_TREE;
10312 if (value)
10313 return expand_expr (value, target, tmode, modifier);
10315 else if (TREE_CODE (init) == CONSTRUCTOR)
10317 unsigned HOST_WIDE_INT ix;
10318 tree field, value;
10320 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10321 field, value)
10322 if (tree_int_cst_equal (field, index))
10324 if (TREE_SIDE_EFFECTS (value))
10325 break;
10327 if (TREE_CODE (value) == CONSTRUCTOR)
10329 /* If VALUE is a CONSTRUCTOR, this
10330 optimization is only useful if
10331 this doesn't store the CONSTRUCTOR
10332 into memory. If it does, it is more
10333 efficient to just load the data from
10334 the array directly. */
10335 rtx ret = expand_constructor (value, target,
10336 modifier, true);
10337 if (ret == NULL_RTX)
10338 break;
10341 return
10342 expand_expr (fold (value), target, tmode, modifier);
10345 else if (TREE_CODE (init) == STRING_CST)
10347 tree low_bound = array_ref_low_bound (exp);
10348 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10350 /* Optimize the special case of a zero lower bound.
10352 We convert the lower bound to sizetype to avoid problems
10353 with constant folding. E.g. suppose the lower bound is
10354 1 and its mode is QI. Without the conversion
10355 (ARRAY + (INDEX - (unsigned char)1))
10356 becomes
10357 (ARRAY + (-(unsigned char)1) + INDEX)
10358 which becomes
10359 (ARRAY + 255 + INDEX). Oops! */
10360 if (!integer_zerop (low_bound))
10361 index1 = size_diffop_loc (loc, index1,
10362 fold_convert_loc (loc, sizetype,
10363 low_bound));
10365 if (tree_fits_uhwi_p (index1)
10366 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10368 tree type = TREE_TYPE (TREE_TYPE (init));
10369 scalar_int_mode mode;
10371 if (is_int_mode (TYPE_MODE (type), &mode)
10372 && GET_MODE_SIZE (mode) == 1)
10373 return gen_int_mode (TREE_STRING_POINTER (init)
10374 [TREE_INT_CST_LOW (index1)],
10375 mode);
10380 goto normal_inner_ref;
10382 case COMPONENT_REF:
10383 /* If the operand is a CONSTRUCTOR, we can just extract the
10384 appropriate field if it is present. */
10385 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10387 unsigned HOST_WIDE_INT idx;
10388 tree field, value;
10389 scalar_int_mode field_mode;
10391 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10392 idx, field, value)
10393 if (field == treeop1
10394 /* We can normally use the value of the field in the
10395 CONSTRUCTOR. However, if this is a bitfield in
10396 an integral mode that we can fit in a HOST_WIDE_INT,
10397 we must mask only the number of bits in the bitfield,
10398 since this is done implicitly by the constructor. If
10399 the bitfield does not meet either of those conditions,
10400 we can't do this optimization. */
10401 && (! DECL_BIT_FIELD (field)
10402 || (is_int_mode (DECL_MODE (field), &field_mode)
10403 && (GET_MODE_PRECISION (field_mode)
10404 <= HOST_BITS_PER_WIDE_INT))))
10406 if (DECL_BIT_FIELD (field)
10407 && modifier == EXPAND_STACK_PARM)
10408 target = 0;
10409 op0 = expand_expr (value, target, tmode, modifier);
10410 if (DECL_BIT_FIELD (field))
10412 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10413 scalar_int_mode imode
10414 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10416 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10418 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10419 imode);
10420 op0 = expand_and (imode, op0, op1, target);
10422 else
10424 int count = GET_MODE_PRECISION (imode) - bitsize;
10426 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10427 target, 0);
10428 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10429 target, 0);
10433 return op0;
10436 goto normal_inner_ref;
10438 case BIT_FIELD_REF:
10439 case ARRAY_RANGE_REF:
10440 normal_inner_ref:
10442 machine_mode mode1, mode2;
10443 HOST_WIDE_INT bitsize, bitpos;
10444 tree offset;
10445 int reversep, volatilep = 0, must_force_mem;
10446 tree tem
10447 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10448 &unsignedp, &reversep, &volatilep);
10449 rtx orig_op0, memloc;
10450 bool clear_mem_expr = false;
10452 /* If we got back the original object, something is wrong. Perhaps
10453 we are evaluating an expression too early. In any event, don't
10454 infinitely recurse. */
10455 gcc_assert (tem != exp);
10457 /* If TEM's type is a union of variable size, pass TARGET to the inner
10458 computation, since it will need a temporary and TARGET is known
10459 to have to do. This occurs in unchecked conversion in Ada. */
10460 orig_op0 = op0
10461 = expand_expr_real (tem,
10462 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10463 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10464 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10465 != INTEGER_CST)
10466 && modifier != EXPAND_STACK_PARM
10467 ? target : NULL_RTX),
10468 VOIDmode,
10469 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10470 NULL, true);
10472 /* If the field has a mode, we want to access it in the
10473 field's mode, not the computed mode.
10474 If a MEM has VOIDmode (external with incomplete type),
10475 use BLKmode for it instead. */
10476 if (MEM_P (op0))
10478 if (mode1 != VOIDmode)
10479 op0 = adjust_address (op0, mode1, 0);
10480 else if (GET_MODE (op0) == VOIDmode)
10481 op0 = adjust_address (op0, BLKmode, 0);
10484 mode2
10485 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10487 /* If we have either an offset, a BLKmode result, or a reference
10488 outside the underlying object, we must force it to memory.
10489 Such a case can occur in Ada if we have unchecked conversion
10490 of an expression from a scalar type to an aggregate type or
10491 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10492 passed a partially uninitialized object or a view-conversion
10493 to a larger size. */
10494 must_force_mem = (offset
10495 || mode1 == BLKmode
10496 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10498 /* Handle CONCAT first. */
10499 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10501 if (bitpos == 0
10502 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0))
10503 && COMPLEX_MODE_P (mode1)
10504 && COMPLEX_MODE_P (GET_MODE (op0))
10505 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10506 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10508 if (reversep)
10509 op0 = flip_storage_order (GET_MODE (op0), op0);
10510 if (mode1 != GET_MODE (op0))
10512 rtx parts[2];
10513 for (int i = 0; i < 2; i++)
10515 rtx op = read_complex_part (op0, i != 0);
10516 if (GET_CODE (op) == SUBREG)
10517 op = force_reg (GET_MODE (op), op);
10518 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10519 op);
10520 if (temp)
10521 op = temp;
10522 else
10524 if (!REG_P (op) && !MEM_P (op))
10525 op = force_reg (GET_MODE (op), op);
10526 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10528 parts[i] = op;
10530 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10532 return op0;
10534 if (bitpos == 0
10535 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10536 && bitsize)
10538 op0 = XEXP (op0, 0);
10539 mode2 = GET_MODE (op0);
10541 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10542 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10543 && bitpos
10544 && bitsize)
10546 op0 = XEXP (op0, 1);
10547 bitpos = 0;
10548 mode2 = GET_MODE (op0);
10550 else
10551 /* Otherwise force into memory. */
10552 must_force_mem = 1;
10555 /* If this is a constant, put it in a register if it is a legitimate
10556 constant and we don't need a memory reference. */
10557 if (CONSTANT_P (op0)
10558 && mode2 != BLKmode
10559 && targetm.legitimate_constant_p (mode2, op0)
10560 && !must_force_mem)
10561 op0 = force_reg (mode2, op0);
10563 /* Otherwise, if this is a constant, try to force it to the constant
10564 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10565 is a legitimate constant. */
10566 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10567 op0 = validize_mem (memloc);
10569 /* Otherwise, if this is a constant or the object is not in memory
10570 and need be, put it there. */
10571 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10573 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10574 emit_move_insn (memloc, op0);
10575 op0 = memloc;
10576 clear_mem_expr = true;
10579 if (offset)
10581 machine_mode address_mode;
10582 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10583 EXPAND_SUM);
10585 gcc_assert (MEM_P (op0));
10587 address_mode = get_address_mode (op0);
10588 if (GET_MODE (offset_rtx) != address_mode)
10590 /* We cannot be sure that the RTL in offset_rtx is valid outside
10591 of a memory address context, so force it into a register
10592 before attempting to convert it to the desired mode. */
10593 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10594 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10597 /* See the comment in expand_assignment for the rationale. */
10598 if (mode1 != VOIDmode
10599 && bitpos != 0
10600 && bitsize > 0
10601 && (bitpos % bitsize) == 0
10602 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10603 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10605 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10606 bitpos = 0;
10609 op0 = offset_address (op0, offset_rtx,
10610 highest_pow2_factor (offset));
10613 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10614 record its alignment as BIGGEST_ALIGNMENT. */
10615 if (MEM_P (op0) && bitpos == 0 && offset != 0
10616 && is_aligning_offset (offset, tem))
10617 set_mem_align (op0, BIGGEST_ALIGNMENT);
10619 /* Don't forget about volatility even if this is a bitfield. */
10620 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10622 if (op0 == orig_op0)
10623 op0 = copy_rtx (op0);
10625 MEM_VOLATILE_P (op0) = 1;
10628 /* In cases where an aligned union has an unaligned object
10629 as a field, we might be extracting a BLKmode value from
10630 an integer-mode (e.g., SImode) object. Handle this case
10631 by doing the extract into an object as wide as the field
10632 (which we know to be the width of a basic mode), then
10633 storing into memory, and changing the mode to BLKmode. */
10634 if (mode1 == VOIDmode
10635 || REG_P (op0) || GET_CODE (op0) == SUBREG
10636 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10637 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10638 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10639 && modifier != EXPAND_CONST_ADDRESS
10640 && modifier != EXPAND_INITIALIZER
10641 && modifier != EXPAND_MEMORY)
10642 /* If the bitfield is volatile and the bitsize
10643 is narrower than the access size of the bitfield,
10644 we need to extract bitfields from the access. */
10645 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10646 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10647 && mode1 != BLKmode
10648 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10649 /* If the field isn't aligned enough to fetch as a memref,
10650 fetch it as a bit field. */
10651 || (mode1 != BLKmode
10652 && (((MEM_P (op0)
10653 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10654 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0)
10655 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10656 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
10657 && modifier != EXPAND_MEMORY
10658 && ((modifier == EXPAND_CONST_ADDRESS
10659 || modifier == EXPAND_INITIALIZER)
10660 ? STRICT_ALIGNMENT
10661 : targetm.slow_unaligned_access (mode1,
10662 MEM_ALIGN (op0))))
10663 || (bitpos % BITS_PER_UNIT != 0)))
10664 /* If the type and the field are a constant size and the
10665 size of the type isn't the same size as the bitfield,
10666 we must use bitfield operations. */
10667 || (bitsize >= 0
10668 && TYPE_SIZE (TREE_TYPE (exp))
10669 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10670 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10671 bitsize)))
10673 machine_mode ext_mode = mode;
10675 if (ext_mode == BLKmode
10676 && ! (target != 0 && MEM_P (op0)
10677 && MEM_P (target)
10678 && bitpos % BITS_PER_UNIT == 0))
10679 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10681 if (ext_mode == BLKmode)
10683 if (target == 0)
10684 target = assign_temp (type, 1, 1);
10686 /* ??? Unlike the similar test a few lines below, this one is
10687 very likely obsolete. */
10688 if (bitsize == 0)
10689 return target;
10691 /* In this case, BITPOS must start at a byte boundary and
10692 TARGET, if specified, must be a MEM. */
10693 gcc_assert (MEM_P (op0)
10694 && (!target || MEM_P (target))
10695 && !(bitpos % BITS_PER_UNIT));
10697 emit_block_move (target,
10698 adjust_address (op0, VOIDmode,
10699 bitpos / BITS_PER_UNIT),
10700 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10701 / BITS_PER_UNIT),
10702 (modifier == EXPAND_STACK_PARM
10703 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10705 return target;
10708 /* If we have nothing to extract, the result will be 0 for targets
10709 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10710 return 0 for the sake of consistency, as reading a zero-sized
10711 bitfield is valid in Ada and the value is fully specified. */
10712 if (bitsize == 0)
10713 return const0_rtx;
10715 op0 = validize_mem (op0);
10717 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10718 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10720 /* If the result has a record type and the extraction is done in
10721 an integral mode, then the field may be not aligned on a byte
10722 boundary; in this case, if it has reverse storage order, it
10723 needs to be extracted as a scalar field with reverse storage
10724 order and put back into memory order afterwards. */
10725 if (TREE_CODE (type) == RECORD_TYPE
10726 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10727 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10729 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10730 (modifier == EXPAND_STACK_PARM
10731 ? NULL_RTX : target),
10732 ext_mode, ext_mode, reversep, alt_rtl);
10734 /* If the result has a record type and the mode of OP0 is an
10735 integral mode then, if BITSIZE is narrower than this mode
10736 and this is for big-endian data, we must put the field
10737 into the high-order bits. And we must also put it back
10738 into memory order if it has been previously reversed. */
10739 scalar_int_mode op0_mode;
10740 if (TREE_CODE (type) == RECORD_TYPE
10741 && is_int_mode (GET_MODE (op0), &op0_mode))
10743 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10745 if (bitsize < size
10746 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10747 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10748 size - bitsize, op0, 1);
10750 if (reversep)
10751 op0 = flip_storage_order (op0_mode, op0);
10754 /* If the result type is BLKmode, store the data into a temporary
10755 of the appropriate type, but with the mode corresponding to the
10756 mode for the data we have (op0's mode). */
10757 if (mode == BLKmode)
10759 rtx new_rtx
10760 = assign_stack_temp_for_type (ext_mode,
10761 GET_MODE_BITSIZE (ext_mode),
10762 type);
10763 emit_move_insn (new_rtx, op0);
10764 op0 = copy_rtx (new_rtx);
10765 PUT_MODE (op0, BLKmode);
10768 return op0;
10771 /* If the result is BLKmode, use that to access the object
10772 now as well. */
10773 if (mode == BLKmode)
10774 mode1 = BLKmode;
10776 /* Get a reference to just this component. */
10777 if (modifier == EXPAND_CONST_ADDRESS
10778 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10779 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10780 else
10781 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10783 if (op0 == orig_op0)
10784 op0 = copy_rtx (op0);
10786 /* Don't set memory attributes if the base expression is
10787 SSA_NAME that got expanded as a MEM. In that case, we should
10788 just honor its original memory attributes. */
10789 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10790 set_mem_attributes (op0, exp, 0);
10792 if (REG_P (XEXP (op0, 0)))
10793 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10795 /* If op0 is a temporary because the original expressions was forced
10796 to memory, clear MEM_EXPR so that the original expression cannot
10797 be marked as addressable through MEM_EXPR of the temporary. */
10798 if (clear_mem_expr)
10799 set_mem_expr (op0, NULL_TREE);
10801 MEM_VOLATILE_P (op0) |= volatilep;
10803 if (reversep
10804 && modifier != EXPAND_MEMORY
10805 && modifier != EXPAND_WRITE)
10806 op0 = flip_storage_order (mode1, op0);
10808 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10809 || modifier == EXPAND_CONST_ADDRESS
10810 || modifier == EXPAND_INITIALIZER)
10811 return op0;
10813 if (target == 0)
10814 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10816 convert_move (target, op0, unsignedp);
10817 return target;
10820 case OBJ_TYPE_REF:
10821 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10823 case CALL_EXPR:
10824 /* All valid uses of __builtin_va_arg_pack () are removed during
10825 inlining. */
10826 if (CALL_EXPR_VA_ARG_PACK (exp))
10827 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10829 tree fndecl = get_callee_fndecl (exp), attr;
10831 if (fndecl
10832 && (attr = lookup_attribute ("error",
10833 DECL_ATTRIBUTES (fndecl))) != NULL)
10834 error ("%Kcall to %qs declared with attribute error: %s",
10835 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10836 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10837 if (fndecl
10838 && (attr = lookup_attribute ("warning",
10839 DECL_ATTRIBUTES (fndecl))) != NULL)
10840 warning_at (tree_nonartificial_location (exp),
10841 0, "%Kcall to %qs declared with attribute warning: %s",
10842 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10843 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10845 /* Check for a built-in function. */
10846 if (fndecl && DECL_BUILT_IN (fndecl))
10848 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10849 if (CALL_WITH_BOUNDS_P (exp))
10850 return expand_builtin_with_bounds (exp, target, subtarget,
10851 tmode, ignore);
10852 else
10853 return expand_builtin (exp, target, subtarget, tmode, ignore);
10856 return expand_call (exp, target, ignore);
10858 case VIEW_CONVERT_EXPR:
10859 op0 = NULL_RTX;
10861 /* If we are converting to BLKmode, try to avoid an intermediate
10862 temporary by fetching an inner memory reference. */
10863 if (mode == BLKmode
10864 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10865 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10866 && handled_component_p (treeop0))
10868 machine_mode mode1;
10869 HOST_WIDE_INT bitsize, bitpos;
10870 tree offset;
10871 int unsignedp, reversep, volatilep = 0;
10872 tree tem
10873 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
10874 &unsignedp, &reversep, &volatilep);
10875 rtx orig_op0;
10877 /* ??? We should work harder and deal with non-zero offsets. */
10878 if (!offset
10879 && (bitpos % BITS_PER_UNIT) == 0
10880 && !reversep
10881 && bitsize >= 0
10882 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10884 /* See the normal_inner_ref case for the rationale. */
10885 orig_op0
10886 = expand_expr_real (tem,
10887 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10888 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10889 != INTEGER_CST)
10890 && modifier != EXPAND_STACK_PARM
10891 ? target : NULL_RTX),
10892 VOIDmode,
10893 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10894 NULL, true);
10896 if (MEM_P (orig_op0))
10898 op0 = orig_op0;
10900 /* Get a reference to just this component. */
10901 if (modifier == EXPAND_CONST_ADDRESS
10902 || modifier == EXPAND_SUM
10903 || modifier == EXPAND_INITIALIZER)
10904 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10905 else
10906 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10908 if (op0 == orig_op0)
10909 op0 = copy_rtx (op0);
10911 set_mem_attributes (op0, treeop0, 0);
10912 if (REG_P (XEXP (op0, 0)))
10913 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10915 MEM_VOLATILE_P (op0) |= volatilep;
10920 if (!op0)
10921 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10922 NULL, inner_reference_p);
10924 /* If the input and output modes are both the same, we are done. */
10925 if (mode == GET_MODE (op0))
10927 /* If neither mode is BLKmode, and both modes are the same size
10928 then we can use gen_lowpart. */
10929 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10930 && (GET_MODE_PRECISION (mode)
10931 == GET_MODE_PRECISION (GET_MODE (op0)))
10932 && !COMPLEX_MODE_P (GET_MODE (op0)))
10934 if (GET_CODE (op0) == SUBREG)
10935 op0 = force_reg (GET_MODE (op0), op0);
10936 temp = gen_lowpart_common (mode, op0);
10937 if (temp)
10938 op0 = temp;
10939 else
10941 if (!REG_P (op0) && !MEM_P (op0))
10942 op0 = force_reg (GET_MODE (op0), op0);
10943 op0 = gen_lowpart (mode, op0);
10946 /* If both types are integral, convert from one mode to the other. */
10947 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10948 op0 = convert_modes (mode, GET_MODE (op0), op0,
10949 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10950 /* If the output type is a bit-field type, do an extraction. */
10951 else if (reduce_bit_field)
10952 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10953 TYPE_UNSIGNED (type), NULL_RTX,
10954 mode, mode, false, NULL);
10955 /* As a last resort, spill op0 to memory, and reload it in a
10956 different mode. */
10957 else if (!MEM_P (op0))
10959 /* If the operand is not a MEM, force it into memory. Since we
10960 are going to be changing the mode of the MEM, don't call
10961 force_const_mem for constants because we don't allow pool
10962 constants to change mode. */
10963 tree inner_type = TREE_TYPE (treeop0);
10965 gcc_assert (!TREE_ADDRESSABLE (exp));
10967 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10968 target
10969 = assign_stack_temp_for_type
10970 (TYPE_MODE (inner_type),
10971 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10973 emit_move_insn (target, op0);
10974 op0 = target;
10977 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10978 output type is such that the operand is known to be aligned, indicate
10979 that it is. Otherwise, we need only be concerned about alignment for
10980 non-BLKmode results. */
10981 if (MEM_P (op0))
10983 enum insn_code icode;
10985 if (modifier != EXPAND_WRITE
10986 && modifier != EXPAND_MEMORY
10987 && !inner_reference_p
10988 && mode != BLKmode
10989 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10991 /* If the target does have special handling for unaligned
10992 loads of mode then use them. */
10993 if ((icode = optab_handler (movmisalign_optab, mode))
10994 != CODE_FOR_nothing)
10996 rtx reg;
10998 op0 = adjust_address (op0, mode, 0);
10999 /* We've already validated the memory, and we're creating a
11000 new pseudo destination. The predicates really can't
11001 fail. */
11002 reg = gen_reg_rtx (mode);
11004 /* Nor can the insn generator. */
11005 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11006 emit_insn (insn);
11007 return reg;
11009 else if (STRICT_ALIGNMENT)
11011 tree inner_type = TREE_TYPE (treeop0);
11012 HOST_WIDE_INT temp_size
11013 = MAX (int_size_in_bytes (inner_type),
11014 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
11015 rtx new_rtx
11016 = assign_stack_temp_for_type (mode, temp_size, type);
11017 rtx new_with_op0_mode
11018 = adjust_address (new_rtx, GET_MODE (op0), 0);
11020 gcc_assert (!TREE_ADDRESSABLE (exp));
11022 if (GET_MODE (op0) == BLKmode)
11023 emit_block_move (new_with_op0_mode, op0,
11024 GEN_INT (GET_MODE_SIZE (mode)),
11025 (modifier == EXPAND_STACK_PARM
11026 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11027 else
11028 emit_move_insn (new_with_op0_mode, op0);
11030 op0 = new_rtx;
11034 op0 = adjust_address (op0, mode, 0);
11037 return op0;
11039 case MODIFY_EXPR:
11041 tree lhs = treeop0;
11042 tree rhs = treeop1;
11043 gcc_assert (ignore);
11045 /* Check for |= or &= of a bitfield of size one into another bitfield
11046 of size 1. In this case, (unless we need the result of the
11047 assignment) we can do this more efficiently with a
11048 test followed by an assignment, if necessary.
11050 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11051 things change so we do, this code should be enhanced to
11052 support it. */
11053 if (TREE_CODE (lhs) == COMPONENT_REF
11054 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11055 || TREE_CODE (rhs) == BIT_AND_EXPR)
11056 && TREE_OPERAND (rhs, 0) == lhs
11057 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11058 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11059 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11061 rtx_code_label *label = gen_label_rtx ();
11062 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11063 do_jump (TREE_OPERAND (rhs, 1),
11064 value ? label : 0,
11065 value ? 0 : label,
11066 profile_probability::uninitialized ());
11067 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11068 false);
11069 do_pending_stack_adjust ();
11070 emit_label (label);
11071 return const0_rtx;
11074 expand_assignment (lhs, rhs, false);
11075 return const0_rtx;
11078 case ADDR_EXPR:
11079 return expand_expr_addr_expr (exp, target, tmode, modifier);
11081 case REALPART_EXPR:
11082 op0 = expand_normal (treeop0);
11083 return read_complex_part (op0, false);
11085 case IMAGPART_EXPR:
11086 op0 = expand_normal (treeop0);
11087 return read_complex_part (op0, true);
11089 case RETURN_EXPR:
11090 case LABEL_EXPR:
11091 case GOTO_EXPR:
11092 case SWITCH_EXPR:
11093 case ASM_EXPR:
11094 /* Expanded in cfgexpand.c. */
11095 gcc_unreachable ();
11097 case TRY_CATCH_EXPR:
11098 case CATCH_EXPR:
11099 case EH_FILTER_EXPR:
11100 case TRY_FINALLY_EXPR:
11101 /* Lowered by tree-eh.c. */
11102 gcc_unreachable ();
11104 case WITH_CLEANUP_EXPR:
11105 case CLEANUP_POINT_EXPR:
11106 case TARGET_EXPR:
11107 case CASE_LABEL_EXPR:
11108 case VA_ARG_EXPR:
11109 case BIND_EXPR:
11110 case INIT_EXPR:
11111 case CONJ_EXPR:
11112 case COMPOUND_EXPR:
11113 case PREINCREMENT_EXPR:
11114 case PREDECREMENT_EXPR:
11115 case POSTINCREMENT_EXPR:
11116 case POSTDECREMENT_EXPR:
11117 case LOOP_EXPR:
11118 case EXIT_EXPR:
11119 case COMPOUND_LITERAL_EXPR:
11120 /* Lowered by gimplify.c. */
11121 gcc_unreachable ();
11123 case FDESC_EXPR:
11124 /* Function descriptors are not valid except for as
11125 initialization constants, and should not be expanded. */
11126 gcc_unreachable ();
11128 case WITH_SIZE_EXPR:
11129 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11130 have pulled out the size to use in whatever context it needed. */
11131 return expand_expr_real (treeop0, original_target, tmode,
11132 modifier, alt_rtl, inner_reference_p);
11134 default:
11135 return expand_expr_real_2 (&ops, target, tmode, modifier);
11139 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11140 signedness of TYPE), possibly returning the result in TARGET.
11141 TYPE is known to be a partial integer type. */
11142 static rtx
11143 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11145 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11146 if (target && GET_MODE (target) != GET_MODE (exp))
11147 target = 0;
11148 /* For constant values, reduce using build_int_cst_type. */
11149 if (CONST_INT_P (exp))
11151 HOST_WIDE_INT value = INTVAL (exp);
11152 tree t = build_int_cst_type (type, value);
11153 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11155 else if (TYPE_UNSIGNED (type))
11157 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11158 rtx mask = immed_wide_int_const
11159 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11160 return expand_and (mode, exp, mask, target);
11162 else
11164 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11165 int count = GET_MODE_PRECISION (mode) - prec;
11166 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11167 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11171 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11172 when applied to the address of EXP produces an address known to be
11173 aligned more than BIGGEST_ALIGNMENT. */
11175 static int
11176 is_aligning_offset (const_tree offset, const_tree exp)
11178 /* Strip off any conversions. */
11179 while (CONVERT_EXPR_P (offset))
11180 offset = TREE_OPERAND (offset, 0);
11182 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11183 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11184 if (TREE_CODE (offset) != BIT_AND_EXPR
11185 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11186 || compare_tree_int (TREE_OPERAND (offset, 1),
11187 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11188 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11189 return 0;
11191 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11192 It must be NEGATE_EXPR. Then strip any more conversions. */
11193 offset = TREE_OPERAND (offset, 0);
11194 while (CONVERT_EXPR_P (offset))
11195 offset = TREE_OPERAND (offset, 0);
11197 if (TREE_CODE (offset) != NEGATE_EXPR)
11198 return 0;
11200 offset = TREE_OPERAND (offset, 0);
11201 while (CONVERT_EXPR_P (offset))
11202 offset = TREE_OPERAND (offset, 0);
11204 /* This must now be the address of EXP. */
11205 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11208 /* Return the tree node if an ARG corresponds to a string constant or zero
11209 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11210 in bytes within the string that ARG is accessing. The type of the
11211 offset will be `sizetype'. */
11213 tree
11214 string_constant (tree arg, tree *ptr_offset)
11216 tree array, offset, lower_bound;
11217 STRIP_NOPS (arg);
11219 if (TREE_CODE (arg) == ADDR_EXPR)
11221 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
11223 *ptr_offset = size_zero_node;
11224 return TREE_OPERAND (arg, 0);
11226 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
11228 array = TREE_OPERAND (arg, 0);
11229 offset = size_zero_node;
11231 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
11233 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11234 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11235 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11236 return 0;
11238 /* Check if the array has a nonzero lower bound. */
11239 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
11240 if (!integer_zerop (lower_bound))
11242 /* If the offset and base aren't both constants, return 0. */
11243 if (TREE_CODE (lower_bound) != INTEGER_CST)
11244 return 0;
11245 if (TREE_CODE (offset) != INTEGER_CST)
11246 return 0;
11247 /* Adjust offset by the lower bound. */
11248 offset = size_diffop (fold_convert (sizetype, offset),
11249 fold_convert (sizetype, lower_bound));
11252 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
11254 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11255 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11256 if (TREE_CODE (array) != ADDR_EXPR)
11257 return 0;
11258 array = TREE_OPERAND (array, 0);
11259 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11260 return 0;
11262 else
11263 return 0;
11265 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11267 tree arg0 = TREE_OPERAND (arg, 0);
11268 tree arg1 = TREE_OPERAND (arg, 1);
11270 STRIP_NOPS (arg0);
11271 STRIP_NOPS (arg1);
11273 if (TREE_CODE (arg0) == ADDR_EXPR
11274 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
11275 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
11277 array = TREE_OPERAND (arg0, 0);
11278 offset = arg1;
11280 else if (TREE_CODE (arg1) == ADDR_EXPR
11281 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
11282 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
11284 array = TREE_OPERAND (arg1, 0);
11285 offset = arg0;
11287 else
11288 return 0;
11290 else
11291 return 0;
11293 if (TREE_CODE (array) == STRING_CST)
11295 *ptr_offset = fold_convert (sizetype, offset);
11296 return array;
11298 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11300 int length;
11301 tree init = ctor_for_folding (array);
11303 /* Variables initialized to string literals can be handled too. */
11304 if (init == error_mark_node
11305 || !init
11306 || TREE_CODE (init) != STRING_CST)
11307 return 0;
11309 /* Avoid const char foo[4] = "abcde"; */
11310 if (DECL_SIZE_UNIT (array) == NULL_TREE
11311 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
11312 || (length = TREE_STRING_LENGTH (init)) <= 0
11313 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
11314 return 0;
11316 /* If variable is bigger than the string literal, OFFSET must be constant
11317 and inside of the bounds of the string literal. */
11318 offset = fold_convert (sizetype, offset);
11319 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
11320 && (! tree_fits_uhwi_p (offset)
11321 || compare_tree_int (offset, length) >= 0))
11322 return 0;
11324 *ptr_offset = offset;
11325 return init;
11328 return 0;
11331 /* Generate code to calculate OPS, and exploded expression
11332 using a store-flag instruction and return an rtx for the result.
11333 OPS reflects a comparison.
11335 If TARGET is nonzero, store the result there if convenient.
11337 Return zero if there is no suitable set-flag instruction
11338 available on this machine.
11340 Once expand_expr has been called on the arguments of the comparison,
11341 we are committed to doing the store flag, since it is not safe to
11342 re-evaluate the expression. We emit the store-flag insn by calling
11343 emit_store_flag, but only expand the arguments if we have a reason
11344 to believe that emit_store_flag will be successful. If we think that
11345 it will, but it isn't, we have to simulate the store-flag with a
11346 set/jump/set sequence. */
11348 static rtx
11349 do_store_flag (sepops ops, rtx target, machine_mode mode)
11351 enum rtx_code code;
11352 tree arg0, arg1, type;
11353 machine_mode operand_mode;
11354 int unsignedp;
11355 rtx op0, op1;
11356 rtx subtarget = target;
11357 location_t loc = ops->location;
11359 arg0 = ops->op0;
11360 arg1 = ops->op1;
11362 /* Don't crash if the comparison was erroneous. */
11363 if (arg0 == error_mark_node || arg1 == error_mark_node)
11364 return const0_rtx;
11366 type = TREE_TYPE (arg0);
11367 operand_mode = TYPE_MODE (type);
11368 unsignedp = TYPE_UNSIGNED (type);
11370 /* We won't bother with BLKmode store-flag operations because it would mean
11371 passing a lot of information to emit_store_flag. */
11372 if (operand_mode == BLKmode)
11373 return 0;
11375 /* We won't bother with store-flag operations involving function pointers
11376 when function pointers must be canonicalized before comparisons. */
11377 if (targetm.have_canonicalize_funcptr_for_compare ()
11378 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11379 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11380 == FUNCTION_TYPE))
11381 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11382 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11383 == FUNCTION_TYPE))))
11384 return 0;
11386 STRIP_NOPS (arg0);
11387 STRIP_NOPS (arg1);
11389 /* For vector typed comparisons emit code to generate the desired
11390 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11391 expander for this. */
11392 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11394 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11395 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11396 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
11397 return expand_vec_cmp_expr (ops->type, ifexp, target);
11398 else
11400 tree if_true = constant_boolean_node (true, ops->type);
11401 tree if_false = constant_boolean_node (false, ops->type);
11402 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11403 if_false, target);
11407 /* Get the rtx comparison code to use. We know that EXP is a comparison
11408 operation of some type. Some comparisons against 1 and -1 can be
11409 converted to comparisons with zero. Do so here so that the tests
11410 below will be aware that we have a comparison with zero. These
11411 tests will not catch constants in the first operand, but constants
11412 are rarely passed as the first operand. */
11414 switch (ops->code)
11416 case EQ_EXPR:
11417 code = EQ;
11418 break;
11419 case NE_EXPR:
11420 code = NE;
11421 break;
11422 case LT_EXPR:
11423 if (integer_onep (arg1))
11424 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11425 else
11426 code = unsignedp ? LTU : LT;
11427 break;
11428 case LE_EXPR:
11429 if (! unsignedp && integer_all_onesp (arg1))
11430 arg1 = integer_zero_node, code = LT;
11431 else
11432 code = unsignedp ? LEU : LE;
11433 break;
11434 case GT_EXPR:
11435 if (! unsignedp && integer_all_onesp (arg1))
11436 arg1 = integer_zero_node, code = GE;
11437 else
11438 code = unsignedp ? GTU : GT;
11439 break;
11440 case GE_EXPR:
11441 if (integer_onep (arg1))
11442 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11443 else
11444 code = unsignedp ? GEU : GE;
11445 break;
11447 case UNORDERED_EXPR:
11448 code = UNORDERED;
11449 break;
11450 case ORDERED_EXPR:
11451 code = ORDERED;
11452 break;
11453 case UNLT_EXPR:
11454 code = UNLT;
11455 break;
11456 case UNLE_EXPR:
11457 code = UNLE;
11458 break;
11459 case UNGT_EXPR:
11460 code = UNGT;
11461 break;
11462 case UNGE_EXPR:
11463 code = UNGE;
11464 break;
11465 case UNEQ_EXPR:
11466 code = UNEQ;
11467 break;
11468 case LTGT_EXPR:
11469 code = LTGT;
11470 break;
11472 default:
11473 gcc_unreachable ();
11476 /* Put a constant second. */
11477 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11478 || TREE_CODE (arg0) == FIXED_CST)
11480 std::swap (arg0, arg1);
11481 code = swap_condition (code);
11484 /* If this is an equality or inequality test of a single bit, we can
11485 do this by shifting the bit being tested to the low-order bit and
11486 masking the result with the constant 1. If the condition was EQ,
11487 we xor it with 1. This does not require an scc insn and is faster
11488 than an scc insn even if we have it.
11490 The code to make this transformation was moved into fold_single_bit_test,
11491 so we just call into the folder and expand its result. */
11493 if ((code == NE || code == EQ)
11494 && integer_zerop (arg1)
11495 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11497 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11498 if (srcstmt
11499 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11501 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11502 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11503 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11504 gimple_assign_rhs1 (srcstmt),
11505 gimple_assign_rhs2 (srcstmt));
11506 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11507 if (temp)
11508 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11512 if (! get_subtarget (target)
11513 || GET_MODE (subtarget) != operand_mode)
11514 subtarget = 0;
11516 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11518 if (target == 0)
11519 target = gen_reg_rtx (mode);
11521 /* Try a cstore if possible. */
11522 return emit_store_flag_force (target, code, op0, op1,
11523 operand_mode, unsignedp,
11524 (TYPE_PRECISION (ops->type) == 1
11525 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11528 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11529 0 otherwise (i.e. if there is no casesi instruction).
11531 DEFAULT_PROBABILITY is the probability of jumping to the default
11532 label. */
11534 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11535 rtx table_label, rtx default_label, rtx fallback_label,
11536 profile_probability default_probability)
11538 struct expand_operand ops[5];
11539 scalar_int_mode index_mode = SImode;
11540 rtx op1, op2, index;
11542 if (! targetm.have_casesi ())
11543 return 0;
11545 /* The index must be some form of integer. Convert it to SImode. */
11546 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
11547 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
11549 rtx rangertx = expand_normal (range);
11551 /* We must handle the endpoints in the original mode. */
11552 index_expr = build2 (MINUS_EXPR, index_type,
11553 index_expr, minval);
11554 minval = integer_zero_node;
11555 index = expand_normal (index_expr);
11556 if (default_label)
11557 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11558 omode, 1, default_label,
11559 default_probability);
11560 /* Now we can safely truncate. */
11561 index = convert_to_mode (index_mode, index, 0);
11563 else
11565 if (omode != index_mode)
11567 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11568 index_expr = fold_convert (index_type, index_expr);
11571 index = expand_normal (index_expr);
11574 do_pending_stack_adjust ();
11576 op1 = expand_normal (minval);
11577 op2 = expand_normal (range);
11579 create_input_operand (&ops[0], index, index_mode);
11580 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11581 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11582 create_fixed_operand (&ops[3], table_label);
11583 create_fixed_operand (&ops[4], (default_label
11584 ? default_label
11585 : fallback_label));
11586 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11587 return 1;
11590 /* Attempt to generate a tablejump instruction; same concept. */
11591 /* Subroutine of the next function.
11593 INDEX is the value being switched on, with the lowest value
11594 in the table already subtracted.
11595 MODE is its expected mode (needed if INDEX is constant).
11596 RANGE is the length of the jump table.
11597 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11599 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11600 index value is out of range.
11601 DEFAULT_PROBABILITY is the probability of jumping to
11602 the default label. */
11604 static void
11605 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11606 rtx default_label, profile_probability default_probability)
11608 rtx temp, vector;
11610 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11611 cfun->cfg->max_jumptable_ents = INTVAL (range);
11613 /* Do an unsigned comparison (in the proper mode) between the index
11614 expression and the value which represents the length of the range.
11615 Since we just finished subtracting the lower bound of the range
11616 from the index expression, this comparison allows us to simultaneously
11617 check that the original index expression value is both greater than
11618 or equal to the minimum value of the range and less than or equal to
11619 the maximum value of the range. */
11621 if (default_label)
11622 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11623 default_label, default_probability);
11626 /* If index is in range, it must fit in Pmode.
11627 Convert to Pmode so we can index with it. */
11628 if (mode != Pmode)
11629 index = convert_to_mode (Pmode, index, 1);
11631 /* Don't let a MEM slip through, because then INDEX that comes
11632 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11633 and break_out_memory_refs will go to work on it and mess it up. */
11634 #ifdef PIC_CASE_VECTOR_ADDRESS
11635 if (flag_pic && !REG_P (index))
11636 index = copy_to_mode_reg (Pmode, index);
11637 #endif
11639 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11640 GET_MODE_SIZE, because this indicates how large insns are. The other
11641 uses should all be Pmode, because they are addresses. This code
11642 could fail if addresses and insns are not the same size. */
11643 index = simplify_gen_binary (MULT, Pmode, index,
11644 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11645 Pmode));
11646 index = simplify_gen_binary (PLUS, Pmode, index,
11647 gen_rtx_LABEL_REF (Pmode, table_label));
11649 #ifdef PIC_CASE_VECTOR_ADDRESS
11650 if (flag_pic)
11651 index = PIC_CASE_VECTOR_ADDRESS (index);
11652 else
11653 #endif
11654 index = memory_address (CASE_VECTOR_MODE, index);
11655 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11656 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11657 convert_move (temp, vector, 0);
11659 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11661 /* If we are generating PIC code or if the table is PC-relative, the
11662 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11663 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11664 emit_barrier ();
11668 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11669 rtx table_label, rtx default_label,
11670 profile_probability default_probability)
11672 rtx index;
11674 if (! targetm.have_tablejump ())
11675 return 0;
11677 index_expr = fold_build2 (MINUS_EXPR, index_type,
11678 fold_convert (index_type, index_expr),
11679 fold_convert (index_type, minval));
11680 index = expand_normal (index_expr);
11681 do_pending_stack_adjust ();
11683 do_tablejump (index, TYPE_MODE (index_type),
11684 convert_modes (TYPE_MODE (index_type),
11685 TYPE_MODE (TREE_TYPE (range)),
11686 expand_normal (range),
11687 TYPE_UNSIGNED (TREE_TYPE (range))),
11688 table_label, default_label, default_probability);
11689 return 1;
11692 /* Return a CONST_VECTOR rtx representing vector mask for
11693 a VECTOR_CST of booleans. */
11694 static rtx
11695 const_vector_mask_from_tree (tree exp)
11697 rtvec v;
11698 unsigned i, units;
11699 tree elt;
11700 machine_mode inner, mode;
11702 mode = TYPE_MODE (TREE_TYPE (exp));
11703 units = VECTOR_CST_NELTS (exp);
11704 inner = GET_MODE_INNER (mode);
11706 v = rtvec_alloc (units);
11708 for (i = 0; i < units; ++i)
11710 elt = VECTOR_CST_ELT (exp, i);
11712 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11713 if (integer_zerop (elt))
11714 RTVEC_ELT (v, i) = CONST0_RTX (inner);
11715 else if (integer_onep (elt)
11716 || integer_minus_onep (elt))
11717 RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
11718 else
11719 gcc_unreachable ();
11722 return gen_rtx_CONST_VECTOR (mode, v);
11725 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
11726 Return a constant scalar rtx of mode MODE in which bit X is set if element
11727 X of EXP is nonzero. */
11728 static rtx
11729 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
11731 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
11732 tree elt;
11733 unsigned i;
11735 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11737 elt = VECTOR_CST_ELT (exp, i);
11738 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11739 if (integer_all_onesp (elt))
11740 res = wi::set_bit (res, i);
11741 else
11742 gcc_assert (integer_zerop (elt));
11745 return immed_wide_int_const (res, mode);
11748 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11749 static rtx
11750 const_vector_from_tree (tree exp)
11752 rtvec v;
11753 unsigned i, units;
11754 tree elt;
11755 machine_mode inner, mode;
11757 mode = TYPE_MODE (TREE_TYPE (exp));
11759 if (initializer_zerop (exp))
11760 return CONST0_RTX (mode);
11762 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
11763 return const_vector_mask_from_tree (exp);
11765 units = VECTOR_CST_NELTS (exp);
11766 inner = GET_MODE_INNER (mode);
11768 v = rtvec_alloc (units);
11770 for (i = 0; i < units; ++i)
11772 elt = VECTOR_CST_ELT (exp, i);
11774 if (TREE_CODE (elt) == REAL_CST)
11775 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
11776 inner);
11777 else if (TREE_CODE (elt) == FIXED_CST)
11778 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11779 inner);
11780 else
11781 RTVEC_ELT (v, i) = immed_wide_int_const (wi::to_wide (elt), inner);
11784 return gen_rtx_CONST_VECTOR (mode, v);
11787 /* Build a decl for a personality function given a language prefix. */
11789 tree
11790 build_personality_function (const char *lang)
11792 const char *unwind_and_version;
11793 tree decl, type;
11794 char *name;
11796 switch (targetm_common.except_unwind_info (&global_options))
11798 case UI_NONE:
11799 return NULL;
11800 case UI_SJLJ:
11801 unwind_and_version = "_sj0";
11802 break;
11803 case UI_DWARF2:
11804 case UI_TARGET:
11805 unwind_and_version = "_v0";
11806 break;
11807 case UI_SEH:
11808 unwind_and_version = "_seh0";
11809 break;
11810 default:
11811 gcc_unreachable ();
11814 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11816 type = build_function_type_list (integer_type_node, integer_type_node,
11817 long_long_unsigned_type_node,
11818 ptr_type_node, ptr_type_node, NULL_TREE);
11819 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11820 get_identifier (name), type);
11821 DECL_ARTIFICIAL (decl) = 1;
11822 DECL_EXTERNAL (decl) = 1;
11823 TREE_PUBLIC (decl) = 1;
11825 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11826 are the flags assigned by targetm.encode_section_info. */
11827 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11829 return decl;
11832 /* Extracts the personality function of DECL and returns the corresponding
11833 libfunc. */
11836 get_personality_function (tree decl)
11838 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11839 enum eh_personality_kind pk;
11841 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11842 if (pk == eh_personality_none)
11843 return NULL;
11845 if (!personality
11846 && pk == eh_personality_any)
11847 personality = lang_hooks.eh_personality ();
11849 if (pk == eh_personality_lang)
11850 gcc_assert (personality != NULL_TREE);
11852 return XEXP (DECL_RTL (personality), 0);
11855 /* Returns a tree for the size of EXP in bytes. */
11857 static tree
11858 tree_expr_size (const_tree exp)
11860 if (DECL_P (exp)
11861 && DECL_SIZE_UNIT (exp) != 0)
11862 return DECL_SIZE_UNIT (exp);
11863 else
11864 return size_in_bytes (TREE_TYPE (exp));
11867 /* Return an rtx for the size in bytes of the value of EXP. */
11870 expr_size (tree exp)
11872 tree size;
11874 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11875 size = TREE_OPERAND (exp, 1);
11876 else
11878 size = tree_expr_size (exp);
11879 gcc_assert (size);
11880 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11883 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11886 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11887 if the size can vary or is larger than an integer. */
11889 static HOST_WIDE_INT
11890 int_expr_size (tree exp)
11892 tree size;
11894 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11895 size = TREE_OPERAND (exp, 1);
11896 else
11898 size = tree_expr_size (exp);
11899 gcc_assert (size);
11902 if (size == 0 || !tree_fits_shwi_p (size))
11903 return -1;
11905 return tree_to_shwi (size);