1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
49 #include "diagnostic-core.h"
51 #include "fold-const.h"
60 #include "stor-layout.h"
64 struct target_rtl default_target_rtl
;
66 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 scalar_int_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
74 scalar_int_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
75 scalar_int_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
77 /* Datastructures maintained for currently processed function in RTL form. */
79 struct rtl_data x_rtl
;
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
91 static GTY(()) int label_num
= 1;
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
98 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
106 REAL_VALUE_TYPE dconsthalf
;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
110 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
117 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
119 /* Standard pieces of rtx, to be substituted directly into things. */
122 rtx simple_return_rtx
;
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn
*invalid_insn_rtx
;
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
133 struct const_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
135 typedef HOST_WIDE_INT compare_type
;
137 static hashval_t
hash (rtx i
);
138 static bool equal (rtx i
, HOST_WIDE_INT h
);
141 static GTY ((cache
)) hash_table
<const_int_hasher
> *const_int_htab
;
143 struct const_wide_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
145 static hashval_t
hash (rtx x
);
146 static bool equal (rtx x
, rtx y
);
149 static GTY ((cache
)) hash_table
<const_wide_int_hasher
> *const_wide_int_htab
;
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher
: ggc_cache_ptr_hash
<reg_attrs
>
154 static hashval_t
hash (reg_attrs
*x
);
155 static bool equal (reg_attrs
*a
, reg_attrs
*b
);
158 static GTY ((cache
)) hash_table
<reg_attr_hasher
> *reg_attrs_htab
;
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher
: ggc_cache_ptr_hash
<rtx_def
>
163 static hashval_t
hash (rtx x
);
164 static bool equal (rtx x
, rtx y
);
167 static GTY ((cache
)) hash_table
<const_double_hasher
> *const_double_htab
;
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher
: ggc_cache_ptr_hash
<rtx_def
>
172 static hashval_t
hash (rtx x
);
173 static bool equal (rtx x
, rtx y
);
176 static GTY ((cache
)) hash_table
<const_fixed_hasher
> *const_fixed_htab
;
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
182 static void set_used_decls (tree
);
183 static void mark_label_nuses (rtx
);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx
lookup_const_wide_int (rtx
);
187 static rtx
lookup_const_double (rtx
);
188 static rtx
lookup_const_fixed (rtx
);
189 static reg_attrs
*get_reg_attrs (tree
, int);
190 static rtx
gen_const_vector (machine_mode
, int);
191 static void copy_rtx_if_shared_1 (rtx
*orig
);
193 /* Probability of the conditional branch currently proceeded by try_split. */
194 profile_probability split_branch_probability
;
196 /* Returns a hash code for X (which is a really a CONST_INT). */
199 const_int_hasher::hash (rtx x
)
201 return (hashval_t
) INTVAL (x
);
204 /* Returns nonzero if the value represented by X (which is really a
205 CONST_INT) is the same as that given by Y (which is really a
209 const_int_hasher::equal (rtx x
, HOST_WIDE_INT y
)
211 return (INTVAL (x
) == y
);
214 #if TARGET_SUPPORTS_WIDE_INT
215 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
218 const_wide_int_hasher::hash (rtx x
)
221 unsigned HOST_WIDE_INT hash
= 0;
224 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
225 hash
+= CONST_WIDE_INT_ELT (xr
, i
);
227 return (hashval_t
) hash
;
230 /* Returns nonzero if the value represented by X (which is really a
231 CONST_WIDE_INT) is the same as that given by Y (which is really a
235 const_wide_int_hasher::equal (rtx x
, rtx y
)
240 if (CONST_WIDE_INT_NUNITS (xr
) != CONST_WIDE_INT_NUNITS (yr
))
243 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
244 if (CONST_WIDE_INT_ELT (xr
, i
) != CONST_WIDE_INT_ELT (yr
, i
))
251 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
253 const_double_hasher::hash (rtx x
)
255 const_rtx
const value
= x
;
258 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (value
) == VOIDmode
)
259 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
262 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h
^= GET_MODE (value
);
269 /* Returns nonzero if the value represented by X (really a ...)
270 is the same as that represented by Y (really a ...) */
272 const_double_hasher::equal (rtx x
, rtx y
)
274 const_rtx
const a
= x
, b
= y
;
276 if (GET_MODE (a
) != GET_MODE (b
))
278 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (a
) == VOIDmode
)
279 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
280 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
282 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
283 CONST_DOUBLE_REAL_VALUE (b
));
286 /* Returns a hash code for X (which is really a CONST_FIXED). */
289 const_fixed_hasher::hash (rtx x
)
291 const_rtx
const value
= x
;
294 h
= fixed_hash (CONST_FIXED_VALUE (value
));
295 /* MODE is used in the comparison, so it should be in the hash. */
296 h
^= GET_MODE (value
);
300 /* Returns nonzero if the value represented by X is the same as that
304 const_fixed_hasher::equal (rtx x
, rtx y
)
306 const_rtx
const a
= x
, b
= y
;
308 if (GET_MODE (a
) != GET_MODE (b
))
310 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
313 /* Return true if the given memory attributes are equal. */
316 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
322 return (p
->alias
== q
->alias
323 && p
->offset_known_p
== q
->offset_known_p
324 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
325 && p
->size_known_p
== q
->size_known_p
326 && (!p
->size_known_p
|| p
->size
== q
->size
)
327 && p
->align
== q
->align
328 && p
->addrspace
== q
->addrspace
329 && (p
->expr
== q
->expr
330 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
331 && operand_equal_p (p
->expr
, q
->expr
, 0))));
334 /* Set MEM's memory attributes so that they are the same as ATTRS. */
337 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
339 /* If everything is the default, we can just clear the attributes. */
340 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
347 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
349 MEM_ATTRS (mem
) = ggc_alloc
<mem_attrs
> ();
350 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
357 reg_attr_hasher::hash (reg_attrs
*x
)
359 const reg_attrs
*const p
= x
;
361 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
364 /* Returns nonzero if the value represented by X is the same as that given by
368 reg_attr_hasher::equal (reg_attrs
*x
, reg_attrs
*y
)
370 const reg_attrs
*const p
= x
;
371 const reg_attrs
*const q
= y
;
373 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
375 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
380 get_reg_attrs (tree decl
, int offset
)
384 /* If everything is the default, we can just return zero. */
385 if (decl
== 0 && offset
== 0)
389 attrs
.offset
= offset
;
391 reg_attrs
**slot
= reg_attrs_htab
->find_slot (&attrs
, INSERT
);
394 *slot
= ggc_alloc
<reg_attrs
> ();
395 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
403 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
404 and to block register equivalences to be seen across this insn. */
409 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
410 MEM_VOLATILE_P (x
) = true;
416 /* Set the mode and register number of X to MODE and REGNO. */
419 set_mode_and_regno (rtx x
, machine_mode mode
, unsigned int regno
)
421 unsigned int nregs
= (HARD_REGISTER_NUM_P (regno
)
422 ? hard_regno_nregs (regno
, mode
)
424 PUT_MODE_RAW (x
, mode
);
425 set_regno_raw (x
, regno
, nregs
);
428 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
429 don't attempt to share with the various global pieces of rtl (such as
430 frame_pointer_rtx). */
433 gen_raw_REG (machine_mode mode
, unsigned int regno
)
435 rtx x
= rtx_alloc (REG MEM_STAT_INFO
);
436 set_mode_and_regno (x
, mode
, regno
);
437 REG_ATTRS (x
) = NULL
;
438 ORIGINAL_REGNO (x
) = regno
;
442 /* There are some RTL codes that require special attention; the generation
443 functions do the raw handling. If you add to this list, modify
444 special_rtx in gengenrtl.c as well. */
447 gen_rtx_EXPR_LIST (machine_mode mode
, rtx expr
, rtx expr_list
)
449 return as_a
<rtx_expr_list
*> (gen_rtx_fmt_ee (EXPR_LIST
, mode
, expr
,
454 gen_rtx_INSN_LIST (machine_mode mode
, rtx insn
, rtx insn_list
)
456 return as_a
<rtx_insn_list
*> (gen_rtx_fmt_ue (INSN_LIST
, mode
, insn
,
461 gen_rtx_INSN (machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
462 basic_block bb
, rtx pattern
, int location
, int code
,
465 return as_a
<rtx_insn
*> (gen_rtx_fmt_uuBeiie (INSN
, mode
,
466 prev_insn
, next_insn
,
467 bb
, pattern
, location
, code
,
472 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
474 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
475 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
477 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
478 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
479 return const_true_rtx
;
482 /* Look up the CONST_INT in the hash table. */
483 rtx
*slot
= const_int_htab
->find_slot_with_hash (arg
, (hashval_t
) arg
,
486 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
492 gen_int_mode (HOST_WIDE_INT c
, machine_mode mode
)
494 return GEN_INT (trunc_int_for_mode (c
, mode
));
497 /* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
501 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
502 hash table. If so, return its counterpart; otherwise add it
503 to the hash table and return it. */
505 lookup_const_double (rtx real
)
507 rtx
*slot
= const_double_htab
->find_slot (real
, INSERT
);
514 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
515 VALUE in mode MODE. */
517 const_double_from_real_value (REAL_VALUE_TYPE value
, machine_mode mode
)
519 rtx real
= rtx_alloc (CONST_DOUBLE
);
520 PUT_MODE (real
, mode
);
524 return lookup_const_double (real
);
527 /* Determine whether FIXED, a CONST_FIXED, already exists in the
528 hash table. If so, return its counterpart; otherwise add it
529 to the hash table and return it. */
532 lookup_const_fixed (rtx fixed
)
534 rtx
*slot
= const_fixed_htab
->find_slot (fixed
, INSERT
);
541 /* Return a CONST_FIXED rtx for a fixed-point value specified by
542 VALUE in mode MODE. */
545 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, machine_mode mode
)
547 rtx fixed
= rtx_alloc (CONST_FIXED
);
548 PUT_MODE (fixed
, mode
);
552 return lookup_const_fixed (fixed
);
555 #if TARGET_SUPPORTS_WIDE_INT == 0
556 /* Constructs double_int from rtx CST. */
559 rtx_to_double_int (const_rtx cst
)
563 if (CONST_INT_P (cst
))
564 r
= double_int::from_shwi (INTVAL (cst
));
565 else if (CONST_DOUBLE_AS_INT_P (cst
))
567 r
.low
= CONST_DOUBLE_LOW (cst
);
568 r
.high
= CONST_DOUBLE_HIGH (cst
);
577 #if TARGET_SUPPORTS_WIDE_INT
578 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
579 If so, return its counterpart; otherwise add it to the hash table and
583 lookup_const_wide_int (rtx wint
)
585 rtx
*slot
= const_wide_int_htab
->find_slot (wint
, INSERT
);
593 /* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */
599 immed_wide_int_const (const wide_int_ref
&v
, machine_mode mode
)
601 unsigned int len
= v
.get_len ();
602 /* Not scalar_int_mode because we also allow pointer bound modes. */
603 unsigned int prec
= GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
));
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec
<= v
.get_precision ());
609 if (len
< 2 || prec
<= HOST_BITS_PER_WIDE_INT
)
610 return gen_int_mode (v
.elt (0), mode
);
612 #if TARGET_SUPPORTS_WIDE_INT
616 unsigned int blocks_needed
617 = (prec
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
619 if (len
> blocks_needed
)
622 value
= const_wide_int_alloc (len
);
624 /* It is so tempting to just put the mode in here. Must control
626 PUT_MODE (value
, VOIDmode
);
627 CWI_PUT_NUM_ELEM (value
, len
);
629 for (i
= 0; i
< len
; i
++)
630 CONST_WIDE_INT_ELT (value
, i
) = v
.elt (i
);
632 return lookup_const_wide_int (value
);
635 return immed_double_const (v
.elt (0), v
.elt (1), mode
);
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
649 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, machine_mode mode
)
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
664 if (is_a
<scalar_mode
> (mode
, &smode
)
665 && GET_MODE_BITSIZE (smode
) <= HOST_BITS_PER_WIDE_INT
)
666 return gen_int_mode (i0
, mode
);
668 /* If this integer fits in one word, return a CONST_INT. */
669 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
672 /* We use VOIDmode for integers. */
673 value
= rtx_alloc (CONST_DOUBLE
);
674 PUT_MODE (value
, VOIDmode
);
676 CONST_DOUBLE_LOW (value
) = i0
;
677 CONST_DOUBLE_HIGH (value
) = i1
;
679 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
680 XWINT (value
, i
) = 0;
682 return lookup_const_double (value
);
687 gen_rtx_REG (machine_mode mode
, unsigned int regno
)
689 /* In case the MD file explicitly references the frame pointer, have
690 all such references point to the same frame pointer. This is
691 used during frame pointer elimination to distinguish the explicit
692 references to these registers from pseudos that happened to be
695 If we have eliminated the frame pointer or arg pointer, we will
696 be using it as a normal register, for example as a spill
697 register. In such cases, we might be accessing it in a mode that
698 is not Pmode and therefore cannot use the pre-allocated rtx.
700 Also don't do this when we are making new REGs in reload, since
701 we don't want to get confused with the real pointers. */
703 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
705 if (regno
== FRAME_POINTER_REGNUM
706 && (!reload_completed
|| frame_pointer_needed
))
707 return frame_pointer_rtx
;
709 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
710 && regno
== HARD_FRAME_POINTER_REGNUM
711 && (!reload_completed
|| frame_pointer_needed
))
712 return hard_frame_pointer_rtx
;
713 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
714 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
715 && regno
== ARG_POINTER_REGNUM
)
716 return arg_pointer_rtx
;
718 #ifdef RETURN_ADDRESS_POINTER_REGNUM
719 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
720 return return_address_pointer_rtx
;
722 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
723 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
724 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
725 return pic_offset_table_rtx
;
726 if (regno
== STACK_POINTER_REGNUM
)
727 return stack_pointer_rtx
;
731 /* If the per-function register table has been set up, try to re-use
732 an existing entry in that table to avoid useless generation of RTL.
734 This code is disabled for now until we can fix the various backends
735 which depend on having non-shared hard registers in some cases. Long
736 term we want to re-enable this code as it can significantly cut down
737 on the amount of useless RTL that gets generated.
739 We'll also need to fix some code that runs after reload that wants to
740 set ORIGINAL_REGNO. */
745 && regno
< FIRST_PSEUDO_REGISTER
746 && reg_raw_mode
[regno
] == mode
)
747 return regno_reg_rtx
[regno
];
750 return gen_raw_REG (mode
, regno
);
754 gen_rtx_MEM (machine_mode mode
, rtx addr
)
756 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
758 /* This field is not cleared by the mere allocation of the rtx, so
765 /* Generate a memory referring to non-trapping constant memory. */
768 gen_const_mem (machine_mode mode
, rtx addr
)
770 rtx mem
= gen_rtx_MEM (mode
, addr
);
771 MEM_READONLY_P (mem
) = 1;
772 MEM_NOTRAP_P (mem
) = 1;
776 /* Generate a MEM referring to fixed portions of the frame, e.g., register
780 gen_frame_mem (machine_mode mode
, rtx addr
)
782 rtx mem
= gen_rtx_MEM (mode
, addr
);
783 MEM_NOTRAP_P (mem
) = 1;
784 set_mem_alias_set (mem
, get_frame_alias_set ());
788 /* Generate a MEM referring to a temporary use of the stack, not part
789 of the fixed stack frame. For example, something which is pushed
790 by a target splitter. */
792 gen_tmp_stack_mem (machine_mode mode
, rtx addr
)
794 rtx mem
= gen_rtx_MEM (mode
, addr
);
795 MEM_NOTRAP_P (mem
) = 1;
796 if (!cfun
->calls_alloca
)
797 set_mem_alias_set (mem
, get_frame_alias_set ());
801 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
802 this construct would be valid, and false otherwise. */
805 validate_subreg (machine_mode omode
, machine_mode imode
,
806 const_rtx reg
, unsigned int offset
)
808 unsigned int isize
= GET_MODE_SIZE (imode
);
809 unsigned int osize
= GET_MODE_SIZE (omode
);
811 /* All subregs must be aligned. */
812 if (offset
% osize
!= 0)
815 /* The subreg offset cannot be outside the inner object. */
819 unsigned int regsize
= REGMODE_NATURAL_SIZE (imode
);
821 /* ??? This should not be here. Temporarily continue to allow word_mode
822 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
823 Generally, backends are doing something sketchy but it'll take time to
825 if (omode
== word_mode
)
827 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
828 is the culprit here, and not the backends. */
829 else if (osize
>= regsize
&& isize
>= osize
)
831 /* Allow component subregs of complex and vector. Though given the below
832 extraction rules, it's not always clear what that means. */
833 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
834 && GET_MODE_INNER (imode
) == omode
)
836 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
837 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
838 represent this. It's questionable if this ought to be represented at
839 all -- why can't this all be hidden in post-reload splitters that make
840 arbitrarily mode changes to the registers themselves. */
841 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
843 /* Subregs involving floating point modes are not allowed to
844 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
845 (subreg:SI (reg:DF) 0) isn't. */
846 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
848 if (! (isize
== osize
849 /* LRA can use subreg to store a floating point value in
850 an integer mode. Although the floating point and the
851 integer modes need the same number of hard registers,
852 the size of floating point mode can be less than the
853 integer mode. LRA also uses subregs for a register
854 should be used in different mode in on insn. */
859 /* Paradoxical subregs must have offset zero. */
863 /* This is a normal subreg. Verify that the offset is representable. */
865 /* For hard registers, we already have most of these rules collected in
866 subreg_offset_representable_p. */
867 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
869 unsigned int regno
= REGNO (reg
);
871 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
872 && GET_MODE_INNER (imode
) == omode
)
874 else if (!REG_CAN_CHANGE_MODE_P (regno
, imode
, omode
))
877 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
880 /* For pseudo registers, we want most of the same checks. Namely:
882 Assume that the pseudo register will be allocated to hard registers
883 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
884 the remainder must correspond to the lowpart of the containing hard
885 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
886 otherwise it is at the lowest offset.
888 Given that we've already checked the mode and offset alignment,
889 we only have to check subblock subregs here. */
891 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
893 unsigned int block_size
= MIN (isize
, regsize
);
894 unsigned int offset_within_block
= offset
% block_size
;
896 ? offset_within_block
!= block_size
- osize
897 : offset_within_block
!= 0)
904 gen_rtx_SUBREG (machine_mode mode
, rtx reg
, int offset
)
906 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
907 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
910 /* Generate a SUBREG representing the least-significant part of REG if MODE
911 is smaller than mode of REG, otherwise paradoxical SUBREG. */
914 gen_lowpart_SUBREG (machine_mode mode
, rtx reg
)
918 inmode
= GET_MODE (reg
);
919 if (inmode
== VOIDmode
)
921 return gen_rtx_SUBREG (mode
, reg
,
922 subreg_lowpart_offset (mode
, inmode
));
926 gen_rtx_VAR_LOCATION (machine_mode mode
, tree decl
, rtx loc
,
927 enum var_init_status status
)
929 rtx x
= gen_rtx_fmt_te (VAR_LOCATION
, mode
, decl
, loc
);
930 PAT_VAR_LOCATION_STATUS (x
) = status
;
935 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
938 gen_rtvec (int n
, ...)
946 /* Don't allocate an empty rtvec... */
953 rt_val
= rtvec_alloc (n
);
955 for (i
= 0; i
< n
; i
++)
956 rt_val
->elem
[i
] = va_arg (p
, rtx
);
963 gen_rtvec_v (int n
, rtx
*argp
)
968 /* Don't allocate an empty rtvec... */
972 rt_val
= rtvec_alloc (n
);
974 for (i
= 0; i
< n
; i
++)
975 rt_val
->elem
[i
] = *argp
++;
981 gen_rtvec_v (int n
, rtx_insn
**argp
)
986 /* Don't allocate an empty rtvec... */
990 rt_val
= rtvec_alloc (n
);
992 for (i
= 0; i
< n
; i
++)
993 rt_val
->elem
[i
] = *argp
++;
999 /* Return the number of bytes between the start of an OUTER_MODE
1000 in-memory value and the start of an INNER_MODE in-memory value,
1001 given that the former is a lowpart of the latter. It may be a
1002 paradoxical lowpart, in which case the offset will be negative
1003 on big-endian targets. */
1006 byte_lowpart_offset (machine_mode outer_mode
,
1007 machine_mode inner_mode
)
1009 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
1010 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1012 return subreg_lowpart_offset (outer_mode
, inner_mode
);
1015 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1016 from address X. For paradoxical big-endian subregs this is a
1017 negative value, otherwise it's the same as OFFSET. */
1020 subreg_memory_offset (machine_mode outer_mode
, machine_mode inner_mode
,
1021 unsigned int offset
)
1023 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
1025 gcc_assert (offset
== 0);
1026 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1031 /* As above, but return the offset that existing subreg X would have
1032 if SUBREG_REG (X) were stored in memory. The only significant thing
1033 about the current SUBREG_REG is its mode. */
1036 subreg_memory_offset (const_rtx x
)
1038 return subreg_memory_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
1042 /* Generate a REG rtx for a new pseudo register of mode MODE.
1043 This pseudo is assigned the next sequential register number. */
1046 gen_reg_rtx (machine_mode mode
)
1049 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
1051 gcc_assert (can_create_pseudo_p ());
1053 /* If a virtual register with bigger mode alignment is generated,
1054 increase stack alignment estimation because it might be spilled
1056 if (SUPPORTS_STACK_ALIGNMENT
1057 && crtl
->stack_alignment_estimated
< align
1058 && !crtl
->stack_realign_processed
)
1060 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
1061 if (crtl
->stack_alignment_estimated
< min_align
)
1062 crtl
->stack_alignment_estimated
= min_align
;
1065 if (generating_concat_p
1066 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
1067 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
1069 /* For complex modes, don't make a single pseudo.
1070 Instead, make a CONCAT of two pseudos.
1071 This allows noncontiguous allocation of the real and imaginary parts,
1072 which makes much better code. Besides, allocating DCmode
1073 pseudos overstrains reload on some machines like the 386. */
1074 rtx realpart
, imagpart
;
1075 machine_mode partmode
= GET_MODE_INNER (mode
);
1077 realpart
= gen_reg_rtx (partmode
);
1078 imagpart
= gen_reg_rtx (partmode
);
1079 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
1082 /* Do not call gen_reg_rtx with uninitialized crtl. */
1083 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
1085 crtl
->emit
.ensure_regno_capacity ();
1086 gcc_assert (reg_rtx_no
< crtl
->emit
.regno_pointer_align_length
);
1088 val
= gen_raw_REG (mode
, reg_rtx_no
);
1089 regno_reg_rtx
[reg_rtx_no
++] = val
;
1093 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1094 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1097 emit_status::ensure_regno_capacity ()
1099 int old_size
= regno_pointer_align_length
;
1101 if (reg_rtx_no
< old_size
)
1104 int new_size
= old_size
* 2;
1105 while (reg_rtx_no
>= new_size
)
1108 char *tmp
= XRESIZEVEC (char, regno_pointer_align
, new_size
);
1109 memset (tmp
+ old_size
, 0, new_size
- old_size
);
1110 regno_pointer_align
= (unsigned char *) tmp
;
1112 rtx
*new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, new_size
);
1113 memset (new1
+ old_size
, 0, (new_size
- old_size
) * sizeof (rtx
));
1114 regno_reg_rtx
= new1
;
1116 crtl
->emit
.regno_pointer_align_length
= new_size
;
1119 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1122 reg_is_parm_p (rtx reg
)
1126 gcc_assert (REG_P (reg
));
1127 decl
= REG_EXPR (reg
);
1128 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
1131 /* Update NEW with the same attributes as REG, but with OFFSET added
1132 to the REG_OFFSET. */
1135 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
1137 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
1138 REG_OFFSET (reg
) + offset
);
1141 /* Generate a register with same attributes as REG, but with OFFSET
1142 added to the REG_OFFSET. */
1145 gen_rtx_REG_offset (rtx reg
, machine_mode mode
, unsigned int regno
,
1148 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
1150 update_reg_offset (new_rtx
, reg
, offset
);
1154 /* Generate a new pseudo-register with the same attributes as REG, but
1155 with OFFSET added to the REG_OFFSET. */
1158 gen_reg_rtx_offset (rtx reg
, machine_mode mode
, int offset
)
1160 rtx new_rtx
= gen_reg_rtx (mode
);
1162 update_reg_offset (new_rtx
, reg
, offset
);
1166 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1167 new register is a (possibly paradoxical) lowpart of the old one. */
1170 adjust_reg_mode (rtx reg
, machine_mode mode
)
1172 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
1173 PUT_MODE (reg
, mode
);
1176 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1177 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1180 set_reg_attrs_from_value (rtx reg
, rtx x
)
1183 bool can_be_reg_pointer
= true;
1185 /* Don't call mark_reg_pointer for incompatible pointer sign
1187 while (GET_CODE (x
) == SIGN_EXTEND
1188 || GET_CODE (x
) == ZERO_EXTEND
1189 || GET_CODE (x
) == TRUNCATE
1190 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
1192 #if defined(POINTERS_EXTEND_UNSIGNED)
1193 if (((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
1194 || (GET_CODE (x
) == ZERO_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
)
1195 || (paradoxical_subreg_p (x
)
1196 && ! (SUBREG_PROMOTED_VAR_P (x
)
1197 && SUBREG_CHECK_PROMOTED_SIGN (x
,
1198 POINTERS_EXTEND_UNSIGNED
))))
1199 && !targetm
.have_ptr_extend ())
1200 can_be_reg_pointer
= false;
1205 /* Hard registers can be reused for multiple purposes within the same
1206 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1207 on them is wrong. */
1208 if (HARD_REGISTER_P (reg
))
1211 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1214 if (MEM_OFFSET_KNOWN_P (x
))
1215 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1216 MEM_OFFSET (x
) + offset
);
1217 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1218 mark_reg_pointer (reg
, 0);
1223 update_reg_offset (reg
, x
, offset
);
1224 if (can_be_reg_pointer
&& REG_POINTER (x
))
1225 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1229 /* Generate a REG rtx for a new pseudo register, copying the mode
1230 and attributes from X. */
1233 gen_reg_rtx_and_attrs (rtx x
)
1235 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1236 set_reg_attrs_from_value (reg
, x
);
1240 /* Set the register attributes for registers contained in PARM_RTX.
1241 Use needed values from memory attributes of MEM. */
1244 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1246 if (REG_P (parm_rtx
))
1247 set_reg_attrs_from_value (parm_rtx
, mem
);
1248 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1250 /* Check for a NULL entry in the first slot, used to indicate that the
1251 parameter goes both on the stack and in registers. */
1252 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1253 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1255 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1256 if (REG_P (XEXP (x
, 0)))
1257 REG_ATTRS (XEXP (x
, 0))
1258 = get_reg_attrs (MEM_EXPR (mem
),
1259 INTVAL (XEXP (x
, 1)));
1264 /* Set the REG_ATTRS for registers in value X, given that X represents
1268 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1273 if (GET_CODE (x
) == SUBREG
)
1275 gcc_assert (subreg_lowpart_p (x
));
1280 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1283 : TYPE_MODE (TREE_TYPE (tdecl
))));
1284 if (GET_CODE (x
) == CONCAT
)
1286 if (REG_P (XEXP (x
, 0)))
1287 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1288 if (REG_P (XEXP (x
, 1)))
1289 REG_ATTRS (XEXP (x
, 1))
1290 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1292 if (GET_CODE (x
) == PARALLEL
)
1296 /* Check for a NULL entry, used to indicate that the parameter goes
1297 both on the stack and in registers. */
1298 if (XEXP (XVECEXP (x
, 0, 0), 0))
1303 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1305 rtx y
= XVECEXP (x
, 0, i
);
1306 if (REG_P (XEXP (y
, 0)))
1307 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1312 /* Assign the RTX X to declaration T. */
1315 set_decl_rtl (tree t
, rtx x
)
1317 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1319 set_reg_attrs_for_decl_rtl (t
, x
);
1322 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1323 if the ABI requires the parameter to be passed by reference. */
1326 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1328 DECL_INCOMING_RTL (t
) = x
;
1329 if (x
&& !by_reference_p
)
1330 set_reg_attrs_for_decl_rtl (t
, x
);
1333 /* Identify REG (which may be a CONCAT) as a user register. */
1336 mark_user_reg (rtx reg
)
1338 if (GET_CODE (reg
) == CONCAT
)
1340 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1341 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1345 gcc_assert (REG_P (reg
));
1346 REG_USERVAR_P (reg
) = 1;
1350 /* Identify REG as a probable pointer register and show its alignment
1351 as ALIGN, if nonzero. */
1354 mark_reg_pointer (rtx reg
, int align
)
1356 if (! REG_POINTER (reg
))
1358 REG_POINTER (reg
) = 1;
1361 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1363 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1364 /* We can no-longer be sure just how aligned this pointer is. */
1365 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1368 /* Return 1 plus largest pseudo reg number used in the current function. */
1376 /* Return 1 + the largest label number used so far in the current function. */
1379 max_label_num (void)
1384 /* Return first label number used in this function (if any were used). */
1387 get_first_label_num (void)
1389 return first_label_num
;
1392 /* If the rtx for label was created during the expansion of a nested
1393 function, then first_label_num won't include this label number.
1394 Fix this now so that array indices work later. */
1397 maybe_set_first_label_num (rtx_code_label
*x
)
1399 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1400 first_label_num
= CODE_LABEL_NUMBER (x
);
1403 /* For use by the RTL function loader, when mingling with normal
1405 Ensure that label_num is greater than the label num of X, to avoid
1406 duplicate labels in the generated assembler. */
1409 maybe_set_max_label_num (rtx_code_label
*x
)
1411 if (CODE_LABEL_NUMBER (x
) >= label_num
)
1412 label_num
= CODE_LABEL_NUMBER (x
) + 1;
1416 /* Return a value representing some low-order bits of X, where the number
1417 of low-order bits is given by MODE. Note that no conversion is done
1418 between floating-point and fixed-point values, rather, the bit
1419 representation is returned.
1421 This function handles the cases in common between gen_lowpart, below,
1422 and two variants in cse.c and combine.c. These are the cases that can
1423 be safely handled at all points in the compilation.
1425 If this is not a case we can handle, return 0. */
1428 gen_lowpart_common (machine_mode mode
, rtx x
)
1430 int msize
= GET_MODE_SIZE (mode
);
1432 machine_mode innermode
;
1434 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1435 so we have to make one up. Yuk. */
1436 innermode
= GET_MODE (x
);
1438 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1439 innermode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1440 else if (innermode
== VOIDmode
)
1441 innermode
= int_mode_for_size (HOST_BITS_PER_DOUBLE_INT
, 0).require ();
1443 xsize
= GET_MODE_SIZE (innermode
);
1445 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1447 if (innermode
== mode
)
1450 if (SCALAR_FLOAT_MODE_P (mode
))
1452 /* Don't allow paradoxical FLOAT_MODE subregs. */
1458 /* MODE must occupy no more of the underlying registers than X. */
1459 unsigned int regsize
= REGMODE_NATURAL_SIZE (innermode
);
1460 unsigned int mregs
= CEIL (msize
, regsize
);
1461 unsigned int xregs
= CEIL (xsize
, regsize
);
1466 scalar_int_mode int_mode
, int_innermode
, from_mode
;
1467 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1468 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1469 && is_a
<scalar_int_mode
> (innermode
, &int_innermode
)
1470 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &from_mode
))
1472 /* If we are getting the low-order part of something that has been
1473 sign- or zero-extended, we can either just use the object being
1474 extended or make a narrower extension. If we want an even smaller
1475 piece than the size of the object being extended, call ourselves
1478 This case is used mostly by combine and cse. */
1480 if (from_mode
== int_mode
)
1482 else if (GET_MODE_SIZE (int_mode
) < GET_MODE_SIZE (from_mode
))
1483 return gen_lowpart_common (int_mode
, XEXP (x
, 0));
1484 else if (GET_MODE_SIZE (int_mode
) < GET_MODE_SIZE (int_innermode
))
1485 return gen_rtx_fmt_e (GET_CODE (x
), int_mode
, XEXP (x
, 0));
1487 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1488 || GET_CODE (x
) == CONCAT
|| const_vec_p (x
)
1489 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1490 return lowpart_subreg (mode
, x
, innermode
);
1492 /* Otherwise, we can't do this. */
1497 gen_highpart (machine_mode mode
, rtx x
)
1499 unsigned int msize
= GET_MODE_SIZE (mode
);
1502 /* This case loses if X is a subreg. To catch bugs early,
1503 complain if an invalid MODE is used even in other cases. */
1504 gcc_assert (msize
<= UNITS_PER_WORD
1505 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1507 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1508 subreg_highpart_offset (mode
, GET_MODE (x
)));
1509 gcc_assert (result
);
1511 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1512 the target if we have a MEM. gen_highpart must return a valid operand,
1513 emitting code if necessary to do so. */
1516 result
= validize_mem (result
);
1517 gcc_assert (result
);
1523 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1524 be VOIDmode constant. */
1526 gen_highpart_mode (machine_mode outermode
, machine_mode innermode
, rtx exp
)
1528 if (GET_MODE (exp
) != VOIDmode
)
1530 gcc_assert (GET_MODE (exp
) == innermode
);
1531 return gen_highpart (outermode
, exp
);
1533 return simplify_gen_subreg (outermode
, exp
, innermode
,
1534 subreg_highpart_offset (outermode
, innermode
));
1537 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1538 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1541 subreg_size_lowpart_offset (unsigned int outer_bytes
, unsigned int inner_bytes
)
1543 if (outer_bytes
> inner_bytes
)
1544 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1547 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1548 return inner_bytes
- outer_bytes
;
1549 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1552 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
, 0);
1555 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1556 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1559 subreg_size_highpart_offset (unsigned int outer_bytes
,
1560 unsigned int inner_bytes
)
1562 gcc_assert (inner_bytes
>= outer_bytes
);
1564 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1566 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1567 return inner_bytes
- outer_bytes
;
1569 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
,
1570 (inner_bytes
- outer_bytes
)
1574 /* Return 1 iff X, assumed to be a SUBREG,
1575 refers to the least significant part of its containing reg.
1576 If X is not a SUBREG, always return 1 (it is its own low part!). */
1579 subreg_lowpart_p (const_rtx x
)
1581 if (GET_CODE (x
) != SUBREG
)
1583 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1586 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1587 == SUBREG_BYTE (x
));
1590 /* Return subword OFFSET of operand OP.
1591 The word number, OFFSET, is interpreted as the word number starting
1592 at the low-order address. OFFSET 0 is the low-order word if not
1593 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1595 If we cannot extract the required word, we return zero. Otherwise,
1596 an rtx corresponding to the requested word will be returned.
1598 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1599 reload has completed, a valid address will always be returned. After
1600 reload, if a valid address cannot be returned, we return zero.
1602 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1603 it is the responsibility of the caller.
1605 MODE is the mode of OP in case it is a CONST_INT.
1607 ??? This is still rather broken for some cases. The problem for the
1608 moment is that all callers of this thing provide no 'goal mode' to
1609 tell us to work with. This exists because all callers were written
1610 in a word based SUBREG world.
1611 Now use of this function can be deprecated by simplify_subreg in most
1616 operand_subword (rtx op
, unsigned int offset
, int validate_address
, machine_mode mode
)
1618 if (mode
== VOIDmode
)
1619 mode
= GET_MODE (op
);
1621 gcc_assert (mode
!= VOIDmode
);
1623 /* If OP is narrower than a word, fail. */
1625 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1628 /* If we want a word outside OP, return zero. */
1630 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1633 /* Form a new MEM at the requested address. */
1636 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1638 if (! validate_address
)
1641 else if (reload_completed
)
1643 if (! strict_memory_address_addr_space_p (word_mode
,
1645 MEM_ADDR_SPACE (op
)))
1649 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1652 /* Rest can be handled by simplify_subreg. */
1653 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1656 /* Similar to `operand_subword', but never return 0. If we can't
1657 extract the required subword, put OP into a register and try again.
1658 The second attempt must succeed. We always validate the address in
1661 MODE is the mode of OP, in case it is CONST_INT. */
1664 operand_subword_force (rtx op
, unsigned int offset
, machine_mode mode
)
1666 rtx result
= operand_subword (op
, offset
, 1, mode
);
1671 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1673 /* If this is a register which can not be accessed by words, copy it
1674 to a pseudo register. */
1676 op
= copy_to_reg (op
);
1678 op
= force_reg (mode
, op
);
1681 result
= operand_subword (op
, offset
, 1, mode
);
1682 gcc_assert (result
);
1687 /* Returns 1 if both MEM_EXPR can be considered equal
1691 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1696 if (! expr1
|| ! expr2
)
1699 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1702 return operand_equal_p (expr1
, expr2
, 0);
1705 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1706 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1710 get_mem_align_offset (rtx mem
, unsigned int align
)
1713 unsigned HOST_WIDE_INT offset
;
1715 /* This function can't use
1716 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1717 || (MAX (MEM_ALIGN (mem),
1718 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1722 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1724 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1725 for <variable>. get_inner_reference doesn't handle it and
1726 even if it did, the alignment in that case needs to be determined
1727 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1728 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1729 isn't sufficiently aligned, the object it is in might be. */
1730 gcc_assert (MEM_P (mem
));
1731 expr
= MEM_EXPR (mem
);
1732 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1735 offset
= MEM_OFFSET (mem
);
1738 if (DECL_ALIGN (expr
) < align
)
1741 else if (INDIRECT_REF_P (expr
))
1743 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1746 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1750 tree inner
= TREE_OPERAND (expr
, 0);
1751 tree field
= TREE_OPERAND (expr
, 1);
1752 tree byte_offset
= component_ref_field_offset (expr
);
1753 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1756 || !tree_fits_uhwi_p (byte_offset
)
1757 || !tree_fits_uhwi_p (bit_offset
))
1760 offset
+= tree_to_uhwi (byte_offset
);
1761 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1763 if (inner
== NULL_TREE
)
1765 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1766 < (unsigned int) align
)
1770 else if (DECL_P (inner
))
1772 if (DECL_ALIGN (inner
) < align
)
1776 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1784 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1787 /* Given REF (a MEM) and T, either the type of X or the expression
1788 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1789 if we are making a new object of this type. BITPOS is nonzero if
1790 there is an offset outstanding on T that will be applied later. */
1793 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1794 HOST_WIDE_INT bitpos
)
1796 HOST_WIDE_INT apply_bitpos
= 0;
1798 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1801 /* It can happen that type_for_mode was given a mode for which there
1802 is no language-level type. In which case it returns NULL, which
1807 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1808 if (type
== error_mark_node
)
1811 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1812 wrong answer, as it assumes that DECL_RTL already has the right alias
1813 info. Callers should not set DECL_RTL until after the call to
1814 set_mem_attributes. */
1815 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1817 memset (&attrs
, 0, sizeof (attrs
));
1819 /* Get the alias set from the expression or type (perhaps using a
1820 front-end routine) and use it. */
1821 attrs
.alias
= get_alias_set (t
);
1823 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1824 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1826 /* Default values from pre-existing memory attributes if present. */
1827 refattrs
= MEM_ATTRS (ref
);
1830 /* ??? Can this ever happen? Calling this routine on a MEM that
1831 already carries memory attributes should probably be invalid. */
1832 attrs
.expr
= refattrs
->expr
;
1833 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1834 attrs
.offset
= refattrs
->offset
;
1835 attrs
.size_known_p
= refattrs
->size_known_p
;
1836 attrs
.size
= refattrs
->size
;
1837 attrs
.align
= refattrs
->align
;
1840 /* Otherwise, default values from the mode of the MEM reference. */
1843 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1844 gcc_assert (!defattrs
->expr
);
1845 gcc_assert (!defattrs
->offset_known_p
);
1847 /* Respect mode size. */
1848 attrs
.size_known_p
= defattrs
->size_known_p
;
1849 attrs
.size
= defattrs
->size
;
1850 /* ??? Is this really necessary? We probably should always get
1851 the size from the type below. */
1853 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1854 if T is an object, always compute the object alignment below. */
1856 attrs
.align
= defattrs
->align
;
1858 attrs
.align
= BITS_PER_UNIT
;
1859 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1860 e.g. if the type carries an alignment attribute. Should we be
1861 able to simply always use TYPE_ALIGN? */
1864 /* We can set the alignment from the type if we are making an object or if
1865 this is an INDIRECT_REF. */
1866 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
)
1867 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1869 /* If the size is known, we can set that. */
1870 tree new_size
= TYPE_SIZE_UNIT (type
);
1872 /* The address-space is that of the type. */
1873 as
= TYPE_ADDR_SPACE (type
);
1875 /* If T is not a type, we may be able to deduce some more information about
1881 if (TREE_THIS_VOLATILE (t
))
1882 MEM_VOLATILE_P (ref
) = 1;
1884 /* Now remove any conversions: they don't change what the underlying
1885 object is. Likewise for SAVE_EXPR. */
1886 while (CONVERT_EXPR_P (t
)
1887 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1888 || TREE_CODE (t
) == SAVE_EXPR
)
1889 t
= TREE_OPERAND (t
, 0);
1891 /* Note whether this expression can trap. */
1892 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1894 base
= get_base_address (t
);
1898 && TREE_READONLY (base
)
1899 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1900 && !TREE_THIS_VOLATILE (base
))
1901 MEM_READONLY_P (ref
) = 1;
1903 /* Mark static const strings readonly as well. */
1904 if (TREE_CODE (base
) == STRING_CST
1905 && TREE_READONLY (base
)
1906 && TREE_STATIC (base
))
1907 MEM_READONLY_P (ref
) = 1;
1909 /* Address-space information is on the base object. */
1910 if (TREE_CODE (base
) == MEM_REF
1911 || TREE_CODE (base
) == TARGET_MEM_REF
)
1912 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1915 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1918 /* If this expression uses it's parent's alias set, mark it such
1919 that we won't change it. */
1920 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1921 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1923 /* If this is a decl, set the attributes of the MEM from it. */
1927 attrs
.offset_known_p
= true;
1929 apply_bitpos
= bitpos
;
1930 new_size
= DECL_SIZE_UNIT (t
);
1933 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1934 else if (CONSTANT_CLASS_P (t
))
1937 /* If this is a field reference, record it. */
1938 else if (TREE_CODE (t
) == COMPONENT_REF
)
1941 attrs
.offset_known_p
= true;
1943 apply_bitpos
= bitpos
;
1944 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1945 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1948 /* If this is an array reference, look for an outer field reference. */
1949 else if (TREE_CODE (t
) == ARRAY_REF
)
1951 tree off_tree
= size_zero_node
;
1952 /* We can't modify t, because we use it at the end of the
1958 tree index
= TREE_OPERAND (t2
, 1);
1959 tree low_bound
= array_ref_low_bound (t2
);
1960 tree unit_size
= array_ref_element_size (t2
);
1962 /* We assume all arrays have sizes that are a multiple of a byte.
1963 First subtract the lower bound, if any, in the type of the
1964 index, then convert to sizetype and multiply by the size of
1965 the array element. */
1966 if (! integer_zerop (low_bound
))
1967 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1970 off_tree
= size_binop (PLUS_EXPR
,
1971 size_binop (MULT_EXPR
,
1972 fold_convert (sizetype
,
1976 t2
= TREE_OPERAND (t2
, 0);
1978 while (TREE_CODE (t2
) == ARRAY_REF
);
1981 || (TREE_CODE (t2
) == COMPONENT_REF
1982 /* For trailing arrays t2 doesn't have a size that
1983 covers all valid accesses. */
1984 && ! array_at_struct_end_p (t
)))
1987 attrs
.offset_known_p
= false;
1988 if (tree_fits_uhwi_p (off_tree
))
1990 attrs
.offset_known_p
= true;
1991 attrs
.offset
= tree_to_uhwi (off_tree
);
1992 apply_bitpos
= bitpos
;
1995 /* Else do not record a MEM_EXPR. */
1998 /* If this is an indirect reference, record it. */
1999 else if (TREE_CODE (t
) == MEM_REF
2000 || TREE_CODE (t
) == TARGET_MEM_REF
)
2003 attrs
.offset_known_p
= true;
2005 apply_bitpos
= bitpos
;
2008 /* Compute the alignment. */
2009 unsigned int obj_align
;
2010 unsigned HOST_WIDE_INT obj_bitpos
;
2011 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
2012 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
2013 if (obj_bitpos
!= 0)
2014 obj_align
= least_bit_hwi (obj_bitpos
);
2015 attrs
.align
= MAX (attrs
.align
, obj_align
);
2018 if (tree_fits_uhwi_p (new_size
))
2020 attrs
.size_known_p
= true;
2021 attrs
.size
= tree_to_uhwi (new_size
);
2024 /* If we modified OFFSET based on T, then subtract the outstanding
2025 bit position offset. Similarly, increase the size of the accessed
2026 object to contain the negative offset. */
2029 gcc_assert (attrs
.offset_known_p
);
2030 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
2031 if (attrs
.size_known_p
)
2032 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
2035 /* Now set the attributes we computed above. */
2036 attrs
.addrspace
= as
;
2037 set_mem_attrs (ref
, &attrs
);
2041 set_mem_attributes (rtx ref
, tree t
, int objectp
)
2043 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
2046 /* Set the alias set of MEM to SET. */
2049 set_mem_alias_set (rtx mem
, alias_set_type set
)
2051 struct mem_attrs attrs
;
2053 /* If the new and old alias sets don't conflict, something is wrong. */
2054 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
2055 attrs
= *get_mem_attrs (mem
);
2057 set_mem_attrs (mem
, &attrs
);
2060 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2063 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
2065 struct mem_attrs attrs
;
2067 attrs
= *get_mem_attrs (mem
);
2068 attrs
.addrspace
= addrspace
;
2069 set_mem_attrs (mem
, &attrs
);
2072 /* Set the alignment of MEM to ALIGN bits. */
2075 set_mem_align (rtx mem
, unsigned int align
)
2077 struct mem_attrs attrs
;
2079 attrs
= *get_mem_attrs (mem
);
2080 attrs
.align
= align
;
2081 set_mem_attrs (mem
, &attrs
);
2084 /* Set the expr for MEM to EXPR. */
2087 set_mem_expr (rtx mem
, tree expr
)
2089 struct mem_attrs attrs
;
2091 attrs
= *get_mem_attrs (mem
);
2093 set_mem_attrs (mem
, &attrs
);
2096 /* Set the offset of MEM to OFFSET. */
2099 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
2101 struct mem_attrs attrs
;
2103 attrs
= *get_mem_attrs (mem
);
2104 attrs
.offset_known_p
= true;
2105 attrs
.offset
= offset
;
2106 set_mem_attrs (mem
, &attrs
);
2109 /* Clear the offset of MEM. */
2112 clear_mem_offset (rtx mem
)
2114 struct mem_attrs attrs
;
2116 attrs
= *get_mem_attrs (mem
);
2117 attrs
.offset_known_p
= false;
2118 set_mem_attrs (mem
, &attrs
);
2121 /* Set the size of MEM to SIZE. */
2124 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
2126 struct mem_attrs attrs
;
2128 attrs
= *get_mem_attrs (mem
);
2129 attrs
.size_known_p
= true;
2131 set_mem_attrs (mem
, &attrs
);
2134 /* Clear the size of MEM. */
2137 clear_mem_size (rtx mem
)
2139 struct mem_attrs attrs
;
2141 attrs
= *get_mem_attrs (mem
);
2142 attrs
.size_known_p
= false;
2143 set_mem_attrs (mem
, &attrs
);
2146 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2147 and its address changed to ADDR. (VOIDmode means don't change the mode.
2148 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2149 returned memory location is required to be valid. INPLACE is true if any
2150 changes can be made directly to MEMREF or false if MEMREF must be treated
2153 The memory attributes are not changed. */
2156 change_address_1 (rtx memref
, machine_mode mode
, rtx addr
, int validate
,
2162 gcc_assert (MEM_P (memref
));
2163 as
= MEM_ADDR_SPACE (memref
);
2164 if (mode
== VOIDmode
)
2165 mode
= GET_MODE (memref
);
2167 addr
= XEXP (memref
, 0);
2168 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2169 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2172 /* Don't validate address for LRA. LRA can make the address valid
2173 by itself in most efficient way. */
2174 if (validate
&& !lra_in_progress
)
2176 if (reload_in_progress
|| reload_completed
)
2177 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2179 addr
= memory_address_addr_space (mode
, addr
, as
);
2182 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2187 XEXP (memref
, 0) = addr
;
2191 new_rtx
= gen_rtx_MEM (mode
, addr
);
2192 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2196 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2197 way we are changing MEMREF, so we only preserve the alias set. */
2200 change_address (rtx memref
, machine_mode mode
, rtx addr
)
2202 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1, false);
2203 machine_mode mmode
= GET_MODE (new_rtx
);
2204 struct mem_attrs attrs
, *defattrs
;
2206 attrs
= *get_mem_attrs (memref
);
2207 defattrs
= mode_mem_attrs
[(int) mmode
];
2208 attrs
.expr
= NULL_TREE
;
2209 attrs
.offset_known_p
= false;
2210 attrs
.size_known_p
= defattrs
->size_known_p
;
2211 attrs
.size
= defattrs
->size
;
2212 attrs
.align
= defattrs
->align
;
2214 /* If there are no changes, just return the original memory reference. */
2215 if (new_rtx
== memref
)
2217 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2220 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2221 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2224 set_mem_attrs (new_rtx
, &attrs
);
2228 /* Return a memory reference like MEMREF, but with its mode changed
2229 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2230 nonzero, the memory address is forced to be valid.
2231 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2232 and the caller is responsible for adjusting MEMREF base register.
2233 If ADJUST_OBJECT is zero, the underlying object associated with the
2234 memory reference is left unchanged and the caller is responsible for
2235 dealing with it. Otherwise, if the new memory reference is outside
2236 the underlying object, even partially, then the object is dropped.
2237 SIZE, if nonzero, is the size of an access in cases where MODE
2238 has no inherent size. */
2241 adjust_address_1 (rtx memref
, machine_mode mode
, HOST_WIDE_INT offset
,
2242 int validate
, int adjust_address
, int adjust_object
,
2245 rtx addr
= XEXP (memref
, 0);
2247 scalar_int_mode address_mode
;
2249 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2250 unsigned HOST_WIDE_INT max_align
;
2251 #ifdef POINTERS_EXTEND_UNSIGNED
2252 scalar_int_mode pointer_mode
2253 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2256 /* VOIDmode means no mode change for change_address_1. */
2257 if (mode
== VOIDmode
)
2258 mode
= GET_MODE (memref
);
2260 /* Take the size of non-BLKmode accesses from the mode. */
2261 defattrs
= mode_mem_attrs
[(int) mode
];
2262 if (defattrs
->size_known_p
)
2263 size
= defattrs
->size
;
2265 /* If there are no changes, just return the original memory reference. */
2266 if (mode
== GET_MODE (memref
) && !offset
2267 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2268 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2272 /* ??? Prefer to create garbage instead of creating shared rtl.
2273 This may happen even if offset is nonzero -- consider
2274 (plus (plus reg reg) const_int) -- so do this always. */
2275 addr
= copy_rtx (addr
);
2277 /* Convert a possibly large offset to a signed value within the
2278 range of the target address space. */
2279 address_mode
= get_address_mode (memref
);
2280 pbits
= GET_MODE_BITSIZE (address_mode
);
2281 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2283 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2284 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2290 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2291 object, we can merge it into the LO_SUM. */
2292 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2294 && (unsigned HOST_WIDE_INT
) offset
2295 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2296 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2297 plus_constant (address_mode
,
2298 XEXP (addr
, 1), offset
));
2299 #ifdef POINTERS_EXTEND_UNSIGNED
2300 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2301 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2302 the fact that pointers are not allowed to overflow. */
2303 else if (POINTERS_EXTEND_UNSIGNED
> 0
2304 && GET_CODE (addr
) == ZERO_EXTEND
2305 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2306 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2307 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2308 plus_constant (pointer_mode
,
2309 XEXP (addr
, 0), offset
));
2312 addr
= plus_constant (address_mode
, addr
, offset
);
2315 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
, false);
2317 /* If the address is a REG, change_address_1 rightfully returns memref,
2318 but this would destroy memref's MEM_ATTRS. */
2319 if (new_rtx
== memref
&& offset
!= 0)
2320 new_rtx
= copy_rtx (new_rtx
);
2322 /* Conservatively drop the object if we don't know where we start from. */
2323 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2325 attrs
.expr
= NULL_TREE
;
2329 /* Compute the new values of the memory attributes due to this adjustment.
2330 We add the offsets and update the alignment. */
2331 if (attrs
.offset_known_p
)
2333 attrs
.offset
+= offset
;
2335 /* Drop the object if the new left end is not within its bounds. */
2336 if (adjust_object
&& attrs
.offset
< 0)
2338 attrs
.expr
= NULL_TREE
;
2343 /* Compute the new alignment by taking the MIN of the alignment and the
2344 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2348 max_align
= least_bit_hwi (offset
) * BITS_PER_UNIT
;
2349 attrs
.align
= MIN (attrs
.align
, max_align
);
2354 /* Drop the object if the new right end is not within its bounds. */
2355 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2357 attrs
.expr
= NULL_TREE
;
2360 attrs
.size_known_p
= true;
2363 else if (attrs
.size_known_p
)
2365 gcc_assert (!adjust_object
);
2366 attrs
.size
-= offset
;
2367 /* ??? The store_by_pieces machinery generates negative sizes,
2368 so don't assert for that here. */
2371 set_mem_attrs (new_rtx
, &attrs
);
2376 /* Return a memory reference like MEMREF, but with its mode changed
2377 to MODE and its address changed to ADDR, which is assumed to be
2378 MEMREF offset by OFFSET bytes. If VALIDATE is
2379 nonzero, the memory address is forced to be valid. */
2382 adjust_automodify_address_1 (rtx memref
, machine_mode mode
, rtx addr
,
2383 HOST_WIDE_INT offset
, int validate
)
2385 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
, false);
2386 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2389 /* Return a memory reference like MEMREF, but whose address is changed by
2390 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2391 known to be in OFFSET (possibly 1). */
2394 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2396 rtx new_rtx
, addr
= XEXP (memref
, 0);
2397 machine_mode address_mode
;
2398 struct mem_attrs attrs
, *defattrs
;
2400 attrs
= *get_mem_attrs (memref
);
2401 address_mode
= get_address_mode (memref
);
2402 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2404 /* At this point we don't know _why_ the address is invalid. It
2405 could have secondary memory references, multiplies or anything.
2407 However, if we did go and rearrange things, we can wind up not
2408 being able to recognize the magic around pic_offset_table_rtx.
2409 This stuff is fragile, and is yet another example of why it is
2410 bad to expose PIC machinery too early. */
2411 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2413 && GET_CODE (addr
) == PLUS
2414 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2416 addr
= force_reg (GET_MODE (addr
), addr
);
2417 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2420 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2421 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1, false);
2423 /* If there are no changes, just return the original memory reference. */
2424 if (new_rtx
== memref
)
2427 /* Update the alignment to reflect the offset. Reset the offset, which
2429 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2430 attrs
.offset_known_p
= false;
2431 attrs
.size_known_p
= defattrs
->size_known_p
;
2432 attrs
.size
= defattrs
->size
;
2433 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2434 set_mem_attrs (new_rtx
, &attrs
);
2438 /* Return a memory reference like MEMREF, but with its address changed to
2439 ADDR. The caller is asserting that the actual piece of memory pointed
2440 to is the same, just the form of the address is being changed, such as
2441 by putting something into a register. INPLACE is true if any changes
2442 can be made directly to MEMREF or false if MEMREF must be treated as
2446 replace_equiv_address (rtx memref
, rtx addr
, bool inplace
)
2448 /* change_address_1 copies the memory attribute structure without change
2449 and that's exactly what we want here. */
2450 update_temp_slot_address (XEXP (memref
, 0), addr
);
2451 return change_address_1 (memref
, VOIDmode
, addr
, 1, inplace
);
2454 /* Likewise, but the reference is not required to be valid. */
2457 replace_equiv_address_nv (rtx memref
, rtx addr
, bool inplace
)
2459 return change_address_1 (memref
, VOIDmode
, addr
, 0, inplace
);
2462 /* Return a memory reference like MEMREF, but with its mode widened to
2463 MODE and offset by OFFSET. This would be used by targets that e.g.
2464 cannot issue QImode memory operations and have to use SImode memory
2465 operations plus masking logic. */
2468 widen_memory_access (rtx memref
, machine_mode mode
, HOST_WIDE_INT offset
)
2470 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2471 struct mem_attrs attrs
;
2472 unsigned int size
= GET_MODE_SIZE (mode
);
2474 /* If there are no changes, just return the original memory reference. */
2475 if (new_rtx
== memref
)
2478 attrs
= *get_mem_attrs (new_rtx
);
2480 /* If we don't know what offset we were at within the expression, then
2481 we can't know if we've overstepped the bounds. */
2482 if (! attrs
.offset_known_p
)
2483 attrs
.expr
= NULL_TREE
;
2487 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2489 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2490 tree offset
= component_ref_field_offset (attrs
.expr
);
2492 if (! DECL_SIZE_UNIT (field
))
2494 attrs
.expr
= NULL_TREE
;
2498 /* Is the field at least as large as the access? If so, ok,
2499 otherwise strip back to the containing structure. */
2500 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2501 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2502 && attrs
.offset
>= 0)
2505 if (! tree_fits_uhwi_p (offset
))
2507 attrs
.expr
= NULL_TREE
;
2511 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2512 attrs
.offset
+= tree_to_uhwi (offset
);
2513 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2516 /* Similarly for the decl. */
2517 else if (DECL_P (attrs
.expr
)
2518 && DECL_SIZE_UNIT (attrs
.expr
)
2519 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2520 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2521 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2525 /* The widened memory access overflows the expression, which means
2526 that it could alias another expression. Zap it. */
2527 attrs
.expr
= NULL_TREE
;
2533 attrs
.offset_known_p
= false;
2535 /* The widened memory may alias other stuff, so zap the alias set. */
2536 /* ??? Maybe use get_alias_set on any remaining expression. */
2538 attrs
.size_known_p
= true;
2540 set_mem_attrs (new_rtx
, &attrs
);
2544 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2545 static GTY(()) tree spill_slot_decl
;
2548 get_spill_slot_decl (bool force_build_p
)
2550 tree d
= spill_slot_decl
;
2552 struct mem_attrs attrs
;
2554 if (d
|| !force_build_p
)
2557 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2558 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2559 DECL_ARTIFICIAL (d
) = 1;
2560 DECL_IGNORED_P (d
) = 1;
2562 spill_slot_decl
= d
;
2564 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2565 MEM_NOTRAP_P (rd
) = 1;
2566 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2567 attrs
.alias
= new_alias_set ();
2569 set_mem_attrs (rd
, &attrs
);
2570 SET_DECL_RTL (d
, rd
);
2575 /* Given MEM, a result from assign_stack_local, fill in the memory
2576 attributes as appropriate for a register allocator spill slot.
2577 These slots are not aliasable by other memory. We arrange for
2578 them all to use a single MEM_EXPR, so that the aliasing code can
2579 work properly in the case of shared spill slots. */
2582 set_mem_attrs_for_spill (rtx mem
)
2584 struct mem_attrs attrs
;
2587 attrs
= *get_mem_attrs (mem
);
2588 attrs
.expr
= get_spill_slot_decl (true);
2589 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2590 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2592 /* We expect the incoming memory to be of the form:
2593 (mem:MODE (plus (reg sfp) (const_int offset)))
2594 with perhaps the plus missing for offset = 0. */
2595 addr
= XEXP (mem
, 0);
2596 attrs
.offset_known_p
= true;
2598 if (GET_CODE (addr
) == PLUS
2599 && CONST_INT_P (XEXP (addr
, 1)))
2600 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2602 set_mem_attrs (mem
, &attrs
);
2603 MEM_NOTRAP_P (mem
) = 1;
2606 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2609 gen_label_rtx (void)
2611 return as_a
<rtx_code_label
*> (
2612 gen_rtx_CODE_LABEL (VOIDmode
, NULL_RTX
, NULL_RTX
,
2613 NULL
, label_num
++, NULL
));
2616 /* For procedure integration. */
2618 /* Install new pointers to the first and last insns in the chain.
2619 Also, set cur_insn_uid to one higher than the last in use.
2620 Used for an inline-procedure after copying the insn chain. */
2623 set_new_first_and_last_insn (rtx_insn
*first
, rtx_insn
*last
)
2627 set_first_insn (first
);
2628 set_last_insn (last
);
2631 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2633 int debug_count
= 0;
2635 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2636 cur_debug_insn_uid
= 0;
2638 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2639 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2640 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2643 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2644 if (DEBUG_INSN_P (insn
))
2649 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2651 cur_debug_insn_uid
++;
2654 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2655 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2660 /* Go through all the RTL insn bodies and copy any invalid shared
2661 structure. This routine should only be called once. */
2664 unshare_all_rtl_1 (rtx_insn
*insn
)
2666 /* Unshare just about everything else. */
2667 unshare_all_rtl_in_chain (insn
);
2669 /* Make sure the addresses of stack slots found outside the insn chain
2670 (such as, in DECL_RTL of a variable) are not shared
2671 with the insn chain.
2673 This special care is necessary when the stack slot MEM does not
2674 actually appear in the insn chain. If it does appear, its address
2675 is unshared from all else at that point. */
2678 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2679 (*stack_slot_list
)[i
] = copy_rtx_if_shared (temp
);
2682 /* Go through all the RTL insn bodies and copy any invalid shared
2683 structure, again. This is a fairly expensive thing to do so it
2684 should be done sparingly. */
2687 unshare_all_rtl_again (rtx_insn
*insn
)
2692 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2695 reset_used_flags (PATTERN (p
));
2696 reset_used_flags (REG_NOTES (p
));
2698 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2701 /* Make sure that virtual stack slots are not shared. */
2702 set_used_decls (DECL_INITIAL (cfun
->decl
));
2704 /* Make sure that virtual parameters are not shared. */
2705 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2706 set_used_flags (DECL_RTL (decl
));
2710 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2711 reset_used_flags (temp
);
2713 unshare_all_rtl_1 (insn
);
2717 unshare_all_rtl (void)
2719 unshare_all_rtl_1 (get_insns ());
2721 for (tree decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2723 if (DECL_RTL_SET_P (decl
))
2724 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2725 DECL_INCOMING_RTL (decl
) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl
));
2732 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2733 Recursively does the same for subexpressions. */
2736 verify_rtx_sharing (rtx orig
, rtx insn
)
2741 const char *format_ptr
;
2746 code
= GET_CODE (x
);
2748 /* These types may be freely shared. */
2764 /* SCRATCH must be shared because they represent distinct values. */
2767 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2768 clobbers or clobbers of hard registers that originated as pseudos.
2769 This is needed to allow safe register renaming. */
2770 if (REG_P (XEXP (x
, 0))
2771 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
2772 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
2777 if (shared_const_p (orig
))
2782 /* A MEM is allowed to be shared if its address is constant. */
2783 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2784 || reload_completed
|| reload_in_progress
)
2793 /* This rtx may not be shared. If it has already been seen,
2794 replace it with a copy of itself. */
2795 if (flag_checking
&& RTX_FLAG (x
, used
))
2797 error ("invalid rtl sharing found in the insn");
2799 error ("shared rtx");
2801 internal_error ("internal consistency failure");
2803 gcc_assert (!RTX_FLAG (x
, used
));
2805 RTX_FLAG (x
, used
) = 1;
2807 /* Now scan the subexpressions recursively. */
2809 format_ptr
= GET_RTX_FORMAT (code
);
2811 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2813 switch (*format_ptr
++)
2816 verify_rtx_sharing (XEXP (x
, i
), insn
);
2820 if (XVEC (x
, i
) != NULL
)
2823 int len
= XVECLEN (x
, i
);
2825 for (j
= 0; j
< len
; j
++)
2827 /* We allow sharing of ASM_OPERANDS inside single
2829 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2830 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2832 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2834 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2843 /* Reset used-flags for INSN. */
2846 reset_insn_used_flags (rtx insn
)
2848 gcc_assert (INSN_P (insn
));
2849 reset_used_flags (PATTERN (insn
));
2850 reset_used_flags (REG_NOTES (insn
));
2852 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2855 /* Go through all the RTL insn bodies and clear all the USED bits. */
2858 reset_all_used_flags (void)
2862 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2865 rtx pat
= PATTERN (p
);
2866 if (GET_CODE (pat
) != SEQUENCE
)
2867 reset_insn_used_flags (p
);
2870 gcc_assert (REG_NOTES (p
) == NULL
);
2871 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2873 rtx insn
= XVECEXP (pat
, 0, i
);
2875 reset_insn_used_flags (insn
);
2881 /* Verify sharing in INSN. */
2884 verify_insn_sharing (rtx insn
)
2886 gcc_assert (INSN_P (insn
));
2887 verify_rtx_sharing (PATTERN (insn
), insn
);
2888 verify_rtx_sharing (REG_NOTES (insn
), insn
);
2890 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn
), insn
);
2893 /* Go through all the RTL insn bodies and check that there is no unexpected
2894 sharing in between the subexpressions. */
2897 verify_rtl_sharing (void)
2901 timevar_push (TV_VERIFY_RTL_SHARING
);
2903 reset_all_used_flags ();
2905 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2908 rtx pat
= PATTERN (p
);
2909 if (GET_CODE (pat
) != SEQUENCE
)
2910 verify_insn_sharing (p
);
2912 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2914 rtx insn
= XVECEXP (pat
, 0, i
);
2916 verify_insn_sharing (insn
);
2920 reset_all_used_flags ();
2922 timevar_pop (TV_VERIFY_RTL_SHARING
);
2925 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2926 Assumes the mark bits are cleared at entry. */
2929 unshare_all_rtl_in_chain (rtx_insn
*insn
)
2931 for (; insn
; insn
= NEXT_INSN (insn
))
2934 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2935 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2937 CALL_INSN_FUNCTION_USAGE (insn
)
2938 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2942 /* Go through all virtual stack slots of a function and mark them as
2943 shared. We never replace the DECL_RTLs themselves with a copy,
2944 but expressions mentioned into a DECL_RTL cannot be shared with
2945 expressions in the instruction stream.
2947 Note that reload may convert pseudo registers into memories in-place.
2948 Pseudo registers are always shared, but MEMs never are. Thus if we
2949 reset the used flags on MEMs in the instruction stream, we must set
2950 them again on MEMs that appear in DECL_RTLs. */
2953 set_used_decls (tree blk
)
2958 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2959 if (DECL_RTL_SET_P (t
))
2960 set_used_flags (DECL_RTL (t
));
2962 /* Now process sub-blocks. */
2963 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2967 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2968 Recursively does the same for subexpressions. Uses
2969 copy_rtx_if_shared_1 to reduce stack space. */
2972 copy_rtx_if_shared (rtx orig
)
2974 copy_rtx_if_shared_1 (&orig
);
2978 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2979 use. Recursively does the same for subexpressions. */
2982 copy_rtx_if_shared_1 (rtx
*orig1
)
2988 const char *format_ptr
;
2992 /* Repeat is used to turn tail-recursion into iteration. */
2999 code
= GET_CODE (x
);
3001 /* These types may be freely shared. */
3017 /* SCRATCH must be shared because they represent distinct values. */
3020 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3021 clobbers or clobbers of hard registers that originated as pseudos.
3022 This is needed to allow safe register renaming. */
3023 if (REG_P (XEXP (x
, 0))
3024 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
3025 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
3030 if (shared_const_p (x
))
3040 /* The chain of insns is not being copied. */
3047 /* This rtx may not be shared. If it has already been seen,
3048 replace it with a copy of itself. */
3050 if (RTX_FLAG (x
, used
))
3052 x
= shallow_copy_rtx (x
);
3055 RTX_FLAG (x
, used
) = 1;
3057 /* Now scan the subexpressions recursively.
3058 We can store any replaced subexpressions directly into X
3059 since we know X is not shared! Any vectors in X
3060 must be copied if X was copied. */
3062 format_ptr
= GET_RTX_FORMAT (code
);
3063 length
= GET_RTX_LENGTH (code
);
3066 for (i
= 0; i
< length
; i
++)
3068 switch (*format_ptr
++)
3072 copy_rtx_if_shared_1 (last_ptr
);
3073 last_ptr
= &XEXP (x
, i
);
3077 if (XVEC (x
, i
) != NULL
)
3080 int len
= XVECLEN (x
, i
);
3082 /* Copy the vector iff I copied the rtx and the length
3084 if (copied
&& len
> 0)
3085 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
3087 /* Call recursively on all inside the vector. */
3088 for (j
= 0; j
< len
; j
++)
3091 copy_rtx_if_shared_1 (last_ptr
);
3092 last_ptr
= &XVECEXP (x
, i
, j
);
3107 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3110 mark_used_flags (rtx x
, int flag
)
3114 const char *format_ptr
;
3117 /* Repeat is used to turn tail-recursion into iteration. */
3122 code
= GET_CODE (x
);
3124 /* These types may be freely shared so we needn't do any resetting
3148 /* The chain of insns is not being copied. */
3155 RTX_FLAG (x
, used
) = flag
;
3157 format_ptr
= GET_RTX_FORMAT (code
);
3158 length
= GET_RTX_LENGTH (code
);
3160 for (i
= 0; i
< length
; i
++)
3162 switch (*format_ptr
++)
3170 mark_used_flags (XEXP (x
, i
), flag
);
3174 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3175 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
3181 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3182 to look for shared sub-parts. */
3185 reset_used_flags (rtx x
)
3187 mark_used_flags (x
, 0);
3190 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3191 to look for shared sub-parts. */
3194 set_used_flags (rtx x
)
3196 mark_used_flags (x
, 1);
3199 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3200 Return X or the rtx for the pseudo reg the value of X was copied into.
3201 OTHER must be valid as a SET_DEST. */
3204 make_safe_from (rtx x
, rtx other
)
3207 switch (GET_CODE (other
))
3210 other
= SUBREG_REG (other
);
3212 case STRICT_LOW_PART
:
3215 other
= XEXP (other
, 0);
3224 && GET_CODE (x
) != SUBREG
)
3226 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
3227 || reg_mentioned_p (other
, x
))))
3229 rtx temp
= gen_reg_rtx (GET_MODE (x
));
3230 emit_move_insn (temp
, x
);
3236 /* Emission of insns (adding them to the doubly-linked list). */
3238 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3241 get_last_insn_anywhere (void)
3243 struct sequence_stack
*seq
;
3244 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
3250 /* Return the first nonnote insn emitted in current sequence or current
3251 function. This routine looks inside SEQUENCEs. */
3254 get_first_nonnote_insn (void)
3256 rtx_insn
*insn
= get_insns ();
3261 for (insn
= next_insn (insn
);
3262 insn
&& NOTE_P (insn
);
3263 insn
= next_insn (insn
))
3267 if (NONJUMP_INSN_P (insn
)
3268 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3269 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3276 /* Return the last nonnote insn emitted in current sequence or current
3277 function. This routine looks inside SEQUENCEs. */
3280 get_last_nonnote_insn (void)
3282 rtx_insn
*insn
= get_last_insn ();
3287 for (insn
= previous_insn (insn
);
3288 insn
&& NOTE_P (insn
);
3289 insn
= previous_insn (insn
))
3293 if (NONJUMP_INSN_P (insn
))
3294 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3295 insn
= seq
->insn (seq
->len () - 1);
3302 /* Return the number of actual (non-debug) insns emitted in this
3306 get_max_insn_count (void)
3308 int n
= cur_insn_uid
;
3310 /* The table size must be stable across -g, to avoid codegen
3311 differences due to debug insns, and not be affected by
3312 -fmin-insn-uid, to avoid excessive table size and to simplify
3313 debugging of -fcompare-debug failures. */
3314 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3315 n
-= cur_debug_insn_uid
;
3317 n
-= MIN_NONDEBUG_INSN_UID
;
3323 /* Return the next insn. If it is a SEQUENCE, return the first insn
3327 next_insn (rtx_insn
*insn
)
3331 insn
= NEXT_INSN (insn
);
3332 if (insn
&& NONJUMP_INSN_P (insn
)
3333 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3334 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3340 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3344 previous_insn (rtx_insn
*insn
)
3348 insn
= PREV_INSN (insn
);
3349 if (insn
&& NONJUMP_INSN_P (insn
))
3350 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3351 insn
= seq
->insn (seq
->len () - 1);
3357 /* Return the next insn after INSN that is not a NOTE. This routine does not
3358 look inside SEQUENCEs. */
3361 next_nonnote_insn (rtx_insn
*insn
)
3365 insn
= NEXT_INSN (insn
);
3366 if (insn
== 0 || !NOTE_P (insn
))
3373 /* Return the next insn after INSN that is not a NOTE, but stop the
3374 search before we enter another basic block. This routine does not
3375 look inside SEQUENCEs. */
3378 next_nonnote_insn_bb (rtx_insn
*insn
)
3382 insn
= NEXT_INSN (insn
);
3383 if (insn
== 0 || !NOTE_P (insn
))
3385 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3392 /* Return the previous insn before INSN that is not a NOTE. This routine does
3393 not look inside SEQUENCEs. */
3396 prev_nonnote_insn (rtx_insn
*insn
)
3400 insn
= PREV_INSN (insn
);
3401 if (insn
== 0 || !NOTE_P (insn
))
3408 /* Return the previous insn before INSN that is not a NOTE, but stop
3409 the search before we enter another basic block. This routine does
3410 not look inside SEQUENCEs. */
3413 prev_nonnote_insn_bb (rtx_insn
*insn
)
3418 insn
= PREV_INSN (insn
);
3419 if (insn
== 0 || !NOTE_P (insn
))
3421 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3428 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3429 routine does not look inside SEQUENCEs. */
3432 next_nondebug_insn (rtx_insn
*insn
)
3436 insn
= NEXT_INSN (insn
);
3437 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3444 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3445 This routine does not look inside SEQUENCEs. */
3448 prev_nondebug_insn (rtx_insn
*insn
)
3452 insn
= PREV_INSN (insn
);
3453 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3460 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3461 This routine does not look inside SEQUENCEs. */
3464 next_nonnote_nondebug_insn (rtx_insn
*insn
)
3468 insn
= NEXT_INSN (insn
);
3469 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3476 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3477 This routine does not look inside SEQUENCEs. */
3480 prev_nonnote_nondebug_insn (rtx_insn
*insn
)
3484 insn
= PREV_INSN (insn
);
3485 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3492 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3493 or 0, if there is none. This routine does not look inside
3497 next_real_insn (rtx uncast_insn
)
3499 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3503 insn
= NEXT_INSN (insn
);
3504 if (insn
== 0 || INSN_P (insn
))
3511 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3512 or 0, if there is none. This routine does not look inside
3516 prev_real_insn (rtx_insn
*insn
)
3520 insn
= PREV_INSN (insn
);
3521 if (insn
== 0 || INSN_P (insn
))
3528 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3529 This routine does not look inside SEQUENCEs. */
3532 last_call_insn (void)
3536 for (insn
= get_last_insn ();
3537 insn
&& !CALL_P (insn
);
3538 insn
= PREV_INSN (insn
))
3541 return safe_as_a
<rtx_call_insn
*> (insn
);
3544 /* Find the next insn after INSN that really does something. This routine
3545 does not look inside SEQUENCEs. After reload this also skips over
3546 standalone USE and CLOBBER insn. */
3549 active_insn_p (const rtx_insn
*insn
)
3551 return (CALL_P (insn
) || JUMP_P (insn
)
3552 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3553 || (NONJUMP_INSN_P (insn
)
3554 && (! reload_completed
3555 || (GET_CODE (PATTERN (insn
)) != USE
3556 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3560 next_active_insn (rtx_insn
*insn
)
3564 insn
= NEXT_INSN (insn
);
3565 if (insn
== 0 || active_insn_p (insn
))
3572 /* Find the last insn before INSN that really does something. This routine
3573 does not look inside SEQUENCEs. After reload this also skips over
3574 standalone USE and CLOBBER insn. */
3577 prev_active_insn (rtx_insn
*insn
)
3581 insn
= PREV_INSN (insn
);
3582 if (insn
== 0 || active_insn_p (insn
))
3589 /* Return the next insn that uses CC0 after INSN, which is assumed to
3590 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3591 applied to the result of this function should yield INSN).
3593 Normally, this is simply the next insn. However, if a REG_CC_USER note
3594 is present, it contains the insn that uses CC0.
3596 Return 0 if we can't find the insn. */
3599 next_cc0_user (rtx_insn
*insn
)
3601 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3604 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3606 insn
= next_nonnote_insn (insn
);
3607 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3608 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3610 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3616 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3617 note, it is the previous insn. */
3620 prev_cc0_setter (rtx_insn
*insn
)
3622 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3625 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3627 insn
= prev_nonnote_insn (insn
);
3628 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3633 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3636 find_auto_inc (const_rtx x
, const_rtx reg
)
3638 subrtx_iterator::array_type array
;
3639 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
3641 const_rtx x
= *iter
;
3642 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
3643 && rtx_equal_p (reg
, XEXP (x
, 0)))
3649 /* Increment the label uses for all labels present in rtx. */
3652 mark_label_nuses (rtx x
)
3658 code
= GET_CODE (x
);
3659 if (code
== LABEL_REF
&& LABEL_P (label_ref_label (x
)))
3660 LABEL_NUSES (label_ref_label (x
))++;
3662 fmt
= GET_RTX_FORMAT (code
);
3663 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3666 mark_label_nuses (XEXP (x
, i
));
3667 else if (fmt
[i
] == 'E')
3668 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3669 mark_label_nuses (XVECEXP (x
, i
, j
));
3674 /* Try splitting insns that can be split for better scheduling.
3675 PAT is the pattern which might split.
3676 TRIAL is the insn providing PAT.
3677 LAST is nonzero if we should return the last insn of the sequence produced.
3679 If this routine succeeds in splitting, it returns the first or last
3680 replacement insn depending on the value of LAST. Otherwise, it
3681 returns TRIAL. If the insn to be returned can be split, it will be. */
3684 try_split (rtx pat
, rtx_insn
*trial
, int last
)
3686 rtx_insn
*before
, *after
;
3688 rtx_insn
*seq
, *tem
;
3689 profile_probability probability
;
3690 rtx_insn
*insn_last
, *insn
;
3692 rtx_insn
*call_insn
= NULL
;
3694 /* We're not good at redistributing frame information. */
3695 if (RTX_FRAME_RELATED_P (trial
))
3698 if (any_condjump_p (trial
)
3699 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3700 split_branch_probability
3701 = profile_probability::from_reg_br_prob_note (XINT (note
, 0));
3703 split_branch_probability
= profile_probability::uninitialized ();
3705 probability
= split_branch_probability
;
3707 seq
= split_insns (pat
, trial
);
3709 split_branch_probability
= profile_probability::uninitialized ();
3714 /* Avoid infinite loop if any insn of the result matches
3715 the original pattern. */
3719 if (INSN_P (insn_last
)
3720 && rtx_equal_p (PATTERN (insn_last
), pat
))
3722 if (!NEXT_INSN (insn_last
))
3724 insn_last
= NEXT_INSN (insn_last
);
3727 /* We will be adding the new sequence to the function. The splitters
3728 may have introduced invalid RTL sharing, so unshare the sequence now. */
3729 unshare_all_rtl_in_chain (seq
);
3731 /* Mark labels and copy flags. */
3732 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3737 CROSSING_JUMP_P (insn
) = CROSSING_JUMP_P (trial
);
3738 mark_jump_label (PATTERN (insn
), insn
, 0);
3740 if (probability
.initialized_p ()
3741 && any_condjump_p (insn
)
3742 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3744 /* We can preserve the REG_BR_PROB notes only if exactly
3745 one jump is created, otherwise the machine description
3746 is responsible for this step using
3747 split_branch_probability variable. */
3748 gcc_assert (njumps
== 1);
3749 add_reg_br_prob_note (insn
, probability
);
3754 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3755 in SEQ and copy any additional information across. */
3758 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3764 gcc_assert (call_insn
== NULL_RTX
);
3767 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3768 target may have explicitly specified. */
3769 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3772 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3774 /* If the old call was a sibling call, the new one must
3776 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3778 /* If the new call is the last instruction in the sequence,
3779 it will effectively replace the old call in-situ. Otherwise
3780 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3781 so that it comes immediately after the new call. */
3782 if (NEXT_INSN (insn
))
3783 for (next
= NEXT_INSN (trial
);
3784 next
&& NOTE_P (next
);
3785 next
= NEXT_INSN (next
))
3786 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3789 add_insn_after (next
, insn
, NULL
);
3795 /* Copy notes, particularly those related to the CFG. */
3796 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3798 switch (REG_NOTE_KIND (note
))
3801 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3807 case REG_CALL_NOCF_CHECK
:
3808 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3811 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3815 case REG_NON_LOCAL_GOTO
:
3816 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3819 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3827 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3829 rtx reg
= XEXP (note
, 0);
3830 if (!FIND_REG_INC_NOTE (insn
, reg
)
3831 && find_auto_inc (PATTERN (insn
), reg
))
3832 add_reg_note (insn
, REG_INC
, reg
);
3837 fixup_args_size_notes (NULL
, insn_last
, INTVAL (XEXP (note
, 0)));
3841 gcc_assert (call_insn
!= NULL_RTX
);
3842 add_reg_note (call_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3850 /* If there are LABELS inside the split insns increment the
3851 usage count so we don't delete the label. */
3855 while (insn
!= NULL_RTX
)
3857 /* JUMP_P insns have already been "marked" above. */
3858 if (NONJUMP_INSN_P (insn
))
3859 mark_label_nuses (PATTERN (insn
));
3861 insn
= PREV_INSN (insn
);
3865 before
= PREV_INSN (trial
);
3866 after
= NEXT_INSN (trial
);
3868 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3870 delete_insn (trial
);
3872 /* Recursively call try_split for each new insn created; by the
3873 time control returns here that insn will be fully split, so
3874 set LAST and continue from the insn after the one returned.
3875 We can't use next_active_insn here since AFTER may be a note.
3876 Ignore deleted insns, which can be occur if not optimizing. */
3877 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3878 if (! tem
->deleted () && INSN_P (tem
))
3879 tem
= try_split (PATTERN (tem
), tem
, 1);
3881 /* Return either the first or the last insn, depending on which was
3884 ? (after
? PREV_INSN (after
) : get_last_insn ())
3885 : NEXT_INSN (before
);
3888 /* Make and return an INSN rtx, initializing all its slots.
3889 Store PATTERN in the pattern slots. */
3892 make_insn_raw (rtx pattern
)
3896 insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
3898 INSN_UID (insn
) = cur_insn_uid
++;
3899 PATTERN (insn
) = pattern
;
3900 INSN_CODE (insn
) = -1;
3901 REG_NOTES (insn
) = NULL
;
3902 INSN_LOCATION (insn
) = curr_insn_location ();
3903 BLOCK_FOR_INSN (insn
) = NULL
;
3905 #ifdef ENABLE_RTL_CHECKING
3908 && (returnjump_p (insn
)
3909 || (GET_CODE (insn
) == SET
3910 && SET_DEST (insn
) == pc_rtx
)))
3912 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3920 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3923 make_debug_insn_raw (rtx pattern
)
3925 rtx_debug_insn
*insn
;
3927 insn
= as_a
<rtx_debug_insn
*> (rtx_alloc (DEBUG_INSN
));
3928 INSN_UID (insn
) = cur_debug_insn_uid
++;
3929 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3930 INSN_UID (insn
) = cur_insn_uid
++;
3932 PATTERN (insn
) = pattern
;
3933 INSN_CODE (insn
) = -1;
3934 REG_NOTES (insn
) = NULL
;
3935 INSN_LOCATION (insn
) = curr_insn_location ();
3936 BLOCK_FOR_INSN (insn
) = NULL
;
3941 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3944 make_jump_insn_raw (rtx pattern
)
3946 rtx_jump_insn
*insn
;
3948 insn
= as_a
<rtx_jump_insn
*> (rtx_alloc (JUMP_INSN
));
3949 INSN_UID (insn
) = cur_insn_uid
++;
3951 PATTERN (insn
) = pattern
;
3952 INSN_CODE (insn
) = -1;
3953 REG_NOTES (insn
) = NULL
;
3954 JUMP_LABEL (insn
) = NULL
;
3955 INSN_LOCATION (insn
) = curr_insn_location ();
3956 BLOCK_FOR_INSN (insn
) = NULL
;
3961 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3964 make_call_insn_raw (rtx pattern
)
3966 rtx_call_insn
*insn
;
3968 insn
= as_a
<rtx_call_insn
*> (rtx_alloc (CALL_INSN
));
3969 INSN_UID (insn
) = cur_insn_uid
++;
3971 PATTERN (insn
) = pattern
;
3972 INSN_CODE (insn
) = -1;
3973 REG_NOTES (insn
) = NULL
;
3974 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3975 INSN_LOCATION (insn
) = curr_insn_location ();
3976 BLOCK_FOR_INSN (insn
) = NULL
;
3981 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3984 make_note_raw (enum insn_note subtype
)
3986 /* Some notes are never created this way at all. These notes are
3987 only created by patching out insns. */
3988 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3989 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3991 rtx_note
*note
= as_a
<rtx_note
*> (rtx_alloc (NOTE
));
3992 INSN_UID (note
) = cur_insn_uid
++;
3993 NOTE_KIND (note
) = subtype
;
3994 BLOCK_FOR_INSN (note
) = NULL
;
3995 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3999 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4000 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4001 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4004 link_insn_into_chain (rtx_insn
*insn
, rtx_insn
*prev
, rtx_insn
*next
)
4006 SET_PREV_INSN (insn
) = prev
;
4007 SET_NEXT_INSN (insn
) = next
;
4010 SET_NEXT_INSN (prev
) = insn
;
4011 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4013 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4014 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = insn
;
4019 SET_PREV_INSN (next
) = insn
;
4020 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4022 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4023 SET_PREV_INSN (sequence
->insn (0)) = insn
;
4027 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
4029 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (insn
));
4030 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4031 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4035 /* Add INSN to the end of the doubly-linked list.
4036 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4039 add_insn (rtx_insn
*insn
)
4041 rtx_insn
*prev
= get_last_insn ();
4042 link_insn_into_chain (insn
, prev
, NULL
);
4043 if (NULL
== get_insns ())
4044 set_first_insn (insn
);
4045 set_last_insn (insn
);
4048 /* Add INSN into the doubly-linked list after insn AFTER. */
4051 add_insn_after_nobb (rtx_insn
*insn
, rtx_insn
*after
)
4053 rtx_insn
*next
= NEXT_INSN (after
);
4055 gcc_assert (!optimize
|| !after
->deleted ());
4057 link_insn_into_chain (insn
, after
, next
);
4061 struct sequence_stack
*seq
;
4063 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4064 if (after
== seq
->last
)
4072 /* Add INSN into the doubly-linked list before insn BEFORE. */
4075 add_insn_before_nobb (rtx_insn
*insn
, rtx_insn
*before
)
4077 rtx_insn
*prev
= PREV_INSN (before
);
4079 gcc_assert (!optimize
|| !before
->deleted ());
4081 link_insn_into_chain (insn
, prev
, before
);
4085 struct sequence_stack
*seq
;
4087 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4088 if (before
== seq
->first
)
4098 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4099 If BB is NULL, an attempt is made to infer the bb from before.
4101 This and the next function should be the only functions called
4102 to insert an insn once delay slots have been filled since only
4103 they know how to update a SEQUENCE. */
4106 add_insn_after (rtx uncast_insn
, rtx uncast_after
, basic_block bb
)
4108 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4109 rtx_insn
*after
= as_a
<rtx_insn
*> (uncast_after
);
4110 add_insn_after_nobb (insn
, after
);
4111 if (!BARRIER_P (after
)
4112 && !BARRIER_P (insn
)
4113 && (bb
= BLOCK_FOR_INSN (after
)))
4115 set_block_for_insn (insn
, bb
);
4117 df_insn_rescan (insn
);
4118 /* Should not happen as first in the BB is always
4119 either NOTE or LABEL. */
4120 if (BB_END (bb
) == after
4121 /* Avoid clobbering of structure when creating new BB. */
4122 && !BARRIER_P (insn
)
4123 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
4128 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4129 If BB is NULL, an attempt is made to infer the bb from before.
4131 This and the previous function should be the only functions called
4132 to insert an insn once delay slots have been filled since only
4133 they know how to update a SEQUENCE. */
4136 add_insn_before (rtx uncast_insn
, rtx uncast_before
, basic_block bb
)
4138 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4139 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4140 add_insn_before_nobb (insn
, before
);
4143 && !BARRIER_P (before
)
4144 && !BARRIER_P (insn
))
4145 bb
= BLOCK_FOR_INSN (before
);
4149 set_block_for_insn (insn
, bb
);
4151 df_insn_rescan (insn
);
4152 /* Should not happen as first in the BB is always either NOTE or
4154 gcc_assert (BB_HEAD (bb
) != insn
4155 /* Avoid clobbering of structure when creating new BB. */
4157 || NOTE_INSN_BASIC_BLOCK_P (insn
));
4161 /* Replace insn with an deleted instruction note. */
4164 set_insn_deleted (rtx insn
)
4167 df_insn_delete (as_a
<rtx_insn
*> (insn
));
4168 PUT_CODE (insn
, NOTE
);
4169 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
4173 /* Unlink INSN from the insn chain.
4175 This function knows how to handle sequences.
4177 This function does not invalidate data flow information associated with
4178 INSN (i.e. does not call df_insn_delete). That makes this function
4179 usable for only disconnecting an insn from the chain, and re-emit it
4182 To later insert INSN elsewhere in the insn chain via add_insn and
4183 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4184 the caller. Nullifying them here breaks many insn chain walks.
4186 To really delete an insn and related DF information, use delete_insn. */
4189 remove_insn (rtx uncast_insn
)
4191 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4192 rtx_insn
*next
= NEXT_INSN (insn
);
4193 rtx_insn
*prev
= PREV_INSN (insn
);
4198 SET_NEXT_INSN (prev
) = next
;
4199 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4201 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4202 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4207 struct sequence_stack
*seq
;
4209 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4210 if (insn
== seq
->first
)
4221 SET_PREV_INSN (next
) = prev
;
4222 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4224 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4225 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4230 struct sequence_stack
*seq
;
4232 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4233 if (insn
== seq
->last
)
4242 /* Fix up basic block boundaries, if necessary. */
4243 if (!BARRIER_P (insn
)
4244 && (bb
= BLOCK_FOR_INSN (insn
)))
4246 if (BB_HEAD (bb
) == insn
)
4248 /* Never ever delete the basic block note without deleting whole
4250 gcc_assert (!NOTE_P (insn
));
4251 BB_HEAD (bb
) = next
;
4253 if (BB_END (bb
) == insn
)
4258 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4261 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4263 gcc_assert (call_insn
&& CALL_P (call_insn
));
4265 /* Put the register usage information on the CALL. If there is already
4266 some usage information, put ours at the end. */
4267 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4271 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4272 link
= XEXP (link
, 1))
4275 XEXP (link
, 1) = call_fusage
;
4278 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4281 /* Delete all insns made since FROM.
4282 FROM becomes the new last instruction. */
4285 delete_insns_since (rtx_insn
*from
)
4290 SET_NEXT_INSN (from
) = 0;
4291 set_last_insn (from
);
4294 /* This function is deprecated, please use sequences instead.
4296 Move a consecutive bunch of insns to a different place in the chain.
4297 The insns to be moved are those between FROM and TO.
4298 They are moved to a new position after the insn AFTER.
4299 AFTER must not be FROM or TO or any insn in between.
4301 This function does not know about SEQUENCEs and hence should not be
4302 called after delay-slot filling has been done. */
4305 reorder_insns_nobb (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4309 for (rtx_insn
*x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4310 gcc_assert (after
!= x
);
4311 gcc_assert (after
!= to
);
4314 /* Splice this bunch out of where it is now. */
4315 if (PREV_INSN (from
))
4316 SET_NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4318 SET_PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4319 if (get_last_insn () == to
)
4320 set_last_insn (PREV_INSN (from
));
4321 if (get_insns () == from
)
4322 set_first_insn (NEXT_INSN (to
));
4324 /* Make the new neighbors point to it and it to them. */
4325 if (NEXT_INSN (after
))
4326 SET_PREV_INSN (NEXT_INSN (after
)) = to
;
4328 SET_NEXT_INSN (to
) = NEXT_INSN (after
);
4329 SET_PREV_INSN (from
) = after
;
4330 SET_NEXT_INSN (after
) = from
;
4331 if (after
== get_last_insn ())
4335 /* Same as function above, but take care to update BB boundaries. */
4337 reorder_insns (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4339 rtx_insn
*prev
= PREV_INSN (from
);
4340 basic_block bb
, bb2
;
4342 reorder_insns_nobb (from
, to
, after
);
4344 if (!BARRIER_P (after
)
4345 && (bb
= BLOCK_FOR_INSN (after
)))
4348 df_set_bb_dirty (bb
);
4350 if (!BARRIER_P (from
)
4351 && (bb2
= BLOCK_FOR_INSN (from
)))
4353 if (BB_END (bb2
) == to
)
4354 BB_END (bb2
) = prev
;
4355 df_set_bb_dirty (bb2
);
4358 if (BB_END (bb
) == after
)
4361 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4363 df_insn_change_bb (x
, bb
);
4368 /* Emit insn(s) of given code and pattern
4369 at a specified place within the doubly-linked list.
4371 All of the emit_foo global entry points accept an object
4372 X which is either an insn list or a PATTERN of a single
4375 There are thus a few canonical ways to generate code and
4376 emit it at a specific place in the instruction stream. For
4377 example, consider the instruction named SPOT and the fact that
4378 we would like to emit some instructions before SPOT. We might
4382 ... emit the new instructions ...
4383 insns_head = get_insns ();
4386 emit_insn_before (insns_head, SPOT);
4388 It used to be common to generate SEQUENCE rtl instead, but that
4389 is a relic of the past which no longer occurs. The reason is that
4390 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4391 generated would almost certainly die right after it was created. */
4394 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4395 rtx_insn
*(*make_raw
) (rtx
))
4399 gcc_assert (before
);
4402 return safe_as_a
<rtx_insn
*> (last
);
4404 switch (GET_CODE (x
))
4413 insn
= as_a
<rtx_insn
*> (x
);
4416 rtx_insn
*next
= NEXT_INSN (insn
);
4417 add_insn_before (insn
, before
, bb
);
4423 #ifdef ENABLE_RTL_CHECKING
4430 last
= (*make_raw
) (x
);
4431 add_insn_before (last
, before
, bb
);
4435 return safe_as_a
<rtx_insn
*> (last
);
4438 /* Make X be output before the instruction BEFORE. */
4441 emit_insn_before_noloc (rtx x
, rtx_insn
*before
, basic_block bb
)
4443 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4446 /* Make an instruction with body X and code JUMP_INSN
4447 and output it before the instruction BEFORE. */
4450 emit_jump_insn_before_noloc (rtx x
, rtx_insn
*before
)
4452 return as_a
<rtx_jump_insn
*> (
4453 emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4454 make_jump_insn_raw
));
4457 /* Make an instruction with body X and code CALL_INSN
4458 and output it before the instruction BEFORE. */
4461 emit_call_insn_before_noloc (rtx x
, rtx_insn
*before
)
4463 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4464 make_call_insn_raw
);
4467 /* Make an instruction with body X and code DEBUG_INSN
4468 and output it before the instruction BEFORE. */
4471 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4473 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4474 make_debug_insn_raw
);
4477 /* Make an insn of code BARRIER
4478 and output it before the insn BEFORE. */
4481 emit_barrier_before (rtx before
)
4483 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4485 INSN_UID (insn
) = cur_insn_uid
++;
4487 add_insn_before (insn
, before
, NULL
);
4491 /* Emit the label LABEL before the insn BEFORE. */
4494 emit_label_before (rtx label
, rtx_insn
*before
)
4496 gcc_checking_assert (INSN_UID (label
) == 0);
4497 INSN_UID (label
) = cur_insn_uid
++;
4498 add_insn_before (label
, before
, NULL
);
4499 return as_a
<rtx_code_label
*> (label
);
4502 /* Helper for emit_insn_after, handles lists of instructions
4506 emit_insn_after_1 (rtx_insn
*first
, rtx uncast_after
, basic_block bb
)
4508 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4510 rtx_insn
*after_after
;
4511 if (!bb
&& !BARRIER_P (after
))
4512 bb
= BLOCK_FOR_INSN (after
);
4516 df_set_bb_dirty (bb
);
4517 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4518 if (!BARRIER_P (last
))
4520 set_block_for_insn (last
, bb
);
4521 df_insn_rescan (last
);
4523 if (!BARRIER_P (last
))
4525 set_block_for_insn (last
, bb
);
4526 df_insn_rescan (last
);
4528 if (BB_END (bb
) == after
)
4532 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4535 after_after
= NEXT_INSN (after
);
4537 SET_NEXT_INSN (after
) = first
;
4538 SET_PREV_INSN (first
) = after
;
4539 SET_NEXT_INSN (last
) = after_after
;
4541 SET_PREV_INSN (after_after
) = last
;
4543 if (after
== get_last_insn ())
4544 set_last_insn (last
);
4550 emit_pattern_after_noloc (rtx x
, rtx uncast_after
, basic_block bb
,
4551 rtx_insn
*(*make_raw
)(rtx
))
4553 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4554 rtx_insn
*last
= after
;
4561 switch (GET_CODE (x
))
4570 last
= emit_insn_after_1 (as_a
<rtx_insn
*> (x
), after
, bb
);
4573 #ifdef ENABLE_RTL_CHECKING
4580 last
= (*make_raw
) (x
);
4581 add_insn_after (last
, after
, bb
);
4588 /* Make X be output after the insn AFTER and set the BB of insn. If
4589 BB is NULL, an attempt is made to infer the BB from AFTER. */
4592 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4594 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4598 /* Make an insn of code JUMP_INSN with body X
4599 and output it after the insn AFTER. */
4602 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4604 return as_a
<rtx_jump_insn
*> (
4605 emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
));
4608 /* Make an instruction with body X and code CALL_INSN
4609 and output it after the instruction AFTER. */
4612 emit_call_insn_after_noloc (rtx x
, rtx after
)
4614 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4617 /* Make an instruction with body X and code CALL_INSN
4618 and output it after the instruction AFTER. */
4621 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4623 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4626 /* Make an insn of code BARRIER
4627 and output it after the insn AFTER. */
4630 emit_barrier_after (rtx after
)
4632 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4634 INSN_UID (insn
) = cur_insn_uid
++;
4636 add_insn_after (insn
, after
, NULL
);
4640 /* Emit the label LABEL after the insn AFTER. */
4643 emit_label_after (rtx label
, rtx_insn
*after
)
4645 gcc_checking_assert (INSN_UID (label
) == 0);
4646 INSN_UID (label
) = cur_insn_uid
++;
4647 add_insn_after (label
, after
, NULL
);
4648 return as_a
<rtx_insn
*> (label
);
4651 /* Notes require a bit of special handling: Some notes need to have their
4652 BLOCK_FOR_INSN set, others should never have it set, and some should
4653 have it set or clear depending on the context. */
4655 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4656 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4657 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4660 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4664 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4665 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4668 /* Notes for var tracking and EH region markers can appear between or
4669 inside basic blocks. If the caller is emitting on the basic block
4670 boundary, do not set BLOCK_FOR_INSN on the new note. */
4671 case NOTE_INSN_VAR_LOCATION
:
4672 case NOTE_INSN_CALL_ARG_LOCATION
:
4673 case NOTE_INSN_EH_REGION_BEG
:
4674 case NOTE_INSN_EH_REGION_END
:
4675 return on_bb_boundary_p
;
4677 /* Otherwise, BLOCK_FOR_INSN must be set. */
4683 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4686 emit_note_after (enum insn_note subtype
, rtx_insn
*after
)
4688 rtx_note
*note
= make_note_raw (subtype
);
4689 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4690 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4692 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4693 add_insn_after_nobb (note
, after
);
4695 add_insn_after (note
, after
, bb
);
4699 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4702 emit_note_before (enum insn_note subtype
, rtx_insn
*before
)
4704 rtx_note
*note
= make_note_raw (subtype
);
4705 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4706 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4708 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4709 add_insn_before_nobb (note
, before
);
4711 add_insn_before (note
, before
, bb
);
4715 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4716 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4719 emit_pattern_after_setloc (rtx pattern
, rtx uncast_after
, int loc
,
4720 rtx_insn
*(*make_raw
) (rtx
))
4722 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4723 rtx_insn
*last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4725 if (pattern
== NULL_RTX
|| !loc
)
4728 after
= NEXT_INSN (after
);
4731 if (active_insn_p (after
)
4732 && !JUMP_TABLE_DATA_P (after
) /* FIXME */
4733 && !INSN_LOCATION (after
))
4734 INSN_LOCATION (after
) = loc
;
4737 after
= NEXT_INSN (after
);
4742 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4743 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4747 emit_pattern_after (rtx pattern
, rtx uncast_after
, bool skip_debug_insns
,
4748 rtx_insn
*(*make_raw
) (rtx
))
4750 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4751 rtx_insn
*prev
= after
;
4753 if (skip_debug_insns
)
4754 while (DEBUG_INSN_P (prev
))
4755 prev
= PREV_INSN (prev
);
4758 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4761 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4764 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4766 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4768 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4771 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4773 emit_insn_after (rtx pattern
, rtx after
)
4775 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4778 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4780 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4782 return as_a
<rtx_jump_insn
*> (
4783 emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
));
4786 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4788 emit_jump_insn_after (rtx pattern
, rtx after
)
4790 return as_a
<rtx_jump_insn
*> (
4791 emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
));
4794 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4796 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4798 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4801 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4803 emit_call_insn_after (rtx pattern
, rtx after
)
4805 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4808 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4810 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4812 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4815 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4817 emit_debug_insn_after (rtx pattern
, rtx after
)
4819 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4822 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4823 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4824 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4828 emit_pattern_before_setloc (rtx pattern
, rtx uncast_before
, int loc
, bool insnp
,
4829 rtx_insn
*(*make_raw
) (rtx
))
4831 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4832 rtx_insn
*first
= PREV_INSN (before
);
4833 rtx_insn
*last
= emit_pattern_before_noloc (pattern
, before
,
4834 insnp
? before
: NULL_RTX
,
4837 if (pattern
== NULL_RTX
|| !loc
)
4841 first
= get_insns ();
4843 first
= NEXT_INSN (first
);
4846 if (active_insn_p (first
)
4847 && !JUMP_TABLE_DATA_P (first
) /* FIXME */
4848 && !INSN_LOCATION (first
))
4849 INSN_LOCATION (first
) = loc
;
4852 first
= NEXT_INSN (first
);
4857 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4858 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4859 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4860 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4863 emit_pattern_before (rtx pattern
, rtx uncast_before
, bool skip_debug_insns
,
4864 bool insnp
, rtx_insn
*(*make_raw
) (rtx
))
4866 rtx_insn
*before
= safe_as_a
<rtx_insn
*> (uncast_before
);
4867 rtx_insn
*next
= before
;
4869 if (skip_debug_insns
)
4870 while (DEBUG_INSN_P (next
))
4871 next
= PREV_INSN (next
);
4874 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4877 return emit_pattern_before_noloc (pattern
, before
,
4878 insnp
? before
: NULL_RTX
,
4882 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4884 emit_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4886 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4890 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4892 emit_insn_before (rtx pattern
, rtx before
)
4894 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4897 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4899 emit_jump_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4901 return as_a
<rtx_jump_insn
*> (
4902 emit_pattern_before_setloc (pattern
, before
, loc
, false,
4903 make_jump_insn_raw
));
4906 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4908 emit_jump_insn_before (rtx pattern
, rtx before
)
4910 return as_a
<rtx_jump_insn
*> (
4911 emit_pattern_before (pattern
, before
, true, false,
4912 make_jump_insn_raw
));
4915 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4917 emit_call_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4919 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4920 make_call_insn_raw
);
4923 /* Like emit_call_insn_before_noloc,
4924 but set insn_location according to BEFORE. */
4926 emit_call_insn_before (rtx pattern
, rtx_insn
*before
)
4928 return emit_pattern_before (pattern
, before
, true, false,
4929 make_call_insn_raw
);
4932 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4934 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4936 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4937 make_debug_insn_raw
);
4940 /* Like emit_debug_insn_before_noloc,
4941 but set insn_location according to BEFORE. */
4943 emit_debug_insn_before (rtx pattern
, rtx_insn
*before
)
4945 return emit_pattern_before (pattern
, before
, false, false,
4946 make_debug_insn_raw
);
4949 /* Take X and emit it at the end of the doubly-linked
4952 Returns the last insn emitted. */
4957 rtx_insn
*last
= get_last_insn ();
4963 switch (GET_CODE (x
))
4972 insn
= as_a
<rtx_insn
*> (x
);
4975 rtx_insn
*next
= NEXT_INSN (insn
);
4982 #ifdef ENABLE_RTL_CHECKING
4983 case JUMP_TABLE_DATA
:
4990 last
= make_insn_raw (x
);
4998 /* Make an insn of code DEBUG_INSN with pattern X
4999 and add it to the end of the doubly-linked list. */
5002 emit_debug_insn (rtx x
)
5004 rtx_insn
*last
= get_last_insn ();
5010 switch (GET_CODE (x
))
5019 insn
= as_a
<rtx_insn
*> (x
);
5022 rtx_insn
*next
= NEXT_INSN (insn
);
5029 #ifdef ENABLE_RTL_CHECKING
5030 case JUMP_TABLE_DATA
:
5037 last
= make_debug_insn_raw (x
);
5045 /* Make an insn of code JUMP_INSN with pattern X
5046 and add it to the end of the doubly-linked list. */
5049 emit_jump_insn (rtx x
)
5051 rtx_insn
*last
= NULL
;
5054 switch (GET_CODE (x
))
5063 insn
= as_a
<rtx_insn
*> (x
);
5066 rtx_insn
*next
= NEXT_INSN (insn
);
5073 #ifdef ENABLE_RTL_CHECKING
5074 case JUMP_TABLE_DATA
:
5081 last
= make_jump_insn_raw (x
);
5089 /* Make an insn of code CALL_INSN with pattern X
5090 and add it to the end of the doubly-linked list. */
5093 emit_call_insn (rtx x
)
5097 switch (GET_CODE (x
))
5106 insn
= emit_insn (x
);
5109 #ifdef ENABLE_RTL_CHECKING
5111 case JUMP_TABLE_DATA
:
5117 insn
= make_call_insn_raw (x
);
5125 /* Add the label LABEL to the end of the doubly-linked list. */
5128 emit_label (rtx uncast_label
)
5130 rtx_code_label
*label
= as_a
<rtx_code_label
*> (uncast_label
);
5132 gcc_checking_assert (INSN_UID (label
) == 0);
5133 INSN_UID (label
) = cur_insn_uid
++;
5138 /* Make an insn of code JUMP_TABLE_DATA
5139 and add it to the end of the doubly-linked list. */
5141 rtx_jump_table_data
*
5142 emit_jump_table_data (rtx table
)
5144 rtx_jump_table_data
*jump_table_data
=
5145 as_a
<rtx_jump_table_data
*> (rtx_alloc (JUMP_TABLE_DATA
));
5146 INSN_UID (jump_table_data
) = cur_insn_uid
++;
5147 PATTERN (jump_table_data
) = table
;
5148 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
5149 add_insn (jump_table_data
);
5150 return jump_table_data
;
5153 /* Make an insn of code BARRIER
5154 and add it to the end of the doubly-linked list. */
5159 rtx_barrier
*barrier
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
5160 INSN_UID (barrier
) = cur_insn_uid
++;
5165 /* Emit a copy of note ORIG. */
5168 emit_note_copy (rtx_note
*orig
)
5170 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
5171 rtx_note
*note
= make_note_raw (kind
);
5172 NOTE_DATA (note
) = NOTE_DATA (orig
);
5177 /* Make an insn of code NOTE or type NOTE_NO
5178 and add it to the end of the doubly-linked list. */
5181 emit_note (enum insn_note kind
)
5183 rtx_note
*note
= make_note_raw (kind
);
5188 /* Emit a clobber of lvalue X. */
5191 emit_clobber (rtx x
)
5193 /* CONCATs should not appear in the insn stream. */
5194 if (GET_CODE (x
) == CONCAT
)
5196 emit_clobber (XEXP (x
, 0));
5197 return emit_clobber (XEXP (x
, 1));
5199 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5202 /* Return a sequence of insns to clobber lvalue X. */
5216 /* Emit a use of rvalue X. */
5221 /* CONCATs should not appear in the insn stream. */
5222 if (GET_CODE (x
) == CONCAT
)
5224 emit_use (XEXP (x
, 0));
5225 return emit_use (XEXP (x
, 1));
5227 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5230 /* Return a sequence of insns to use rvalue X. */
5244 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5245 Return the set in INSN that such notes describe, or NULL if the notes
5246 have no meaning for INSN. */
5249 set_for_reg_notes (rtx insn
)
5256 pat
= PATTERN (insn
);
5257 if (GET_CODE (pat
) == PARALLEL
)
5259 /* We do not use single_set because that ignores SETs of unused
5260 registers. REG_EQUAL and REG_EQUIV notes really do require the
5261 PARALLEL to have a single SET. */
5262 if (multiple_sets (insn
))
5264 pat
= XVECEXP (pat
, 0, 0);
5267 if (GET_CODE (pat
) != SET
)
5270 reg
= SET_DEST (pat
);
5272 /* Notes apply to the contents of a STRICT_LOW_PART. */
5273 if (GET_CODE (reg
) == STRICT_LOW_PART
5274 || GET_CODE (reg
) == ZERO_EXTRACT
)
5275 reg
= XEXP (reg
, 0);
5277 /* Check that we have a register. */
5278 if (!(REG_P (reg
) || GET_CODE (reg
) == SUBREG
))
5284 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5285 note of this type already exists, remove it first. */
5288 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5290 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5296 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5297 if (!set_for_reg_notes (insn
) && GET_CODE (PATTERN (insn
)) != USE
)
5300 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5301 It serves no useful purpose and breaks eliminate_regs. */
5302 if (GET_CODE (datum
) == ASM_OPERANDS
)
5305 /* Notes with side effects are dangerous. Even if the side-effect
5306 initially mirrors one in PATTERN (INSN), later optimizations
5307 might alter the way that the final register value is calculated
5308 and so move or alter the side-effect in some way. The note would
5309 then no longer be a valid substitution for SET_SRC. */
5310 if (side_effects_p (datum
))
5319 XEXP (note
, 0) = datum
;
5322 add_reg_note (insn
, kind
, datum
);
5323 note
= REG_NOTES (insn
);
5330 df_notes_rescan (as_a
<rtx_insn
*> (insn
));
5339 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5341 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5343 rtx set
= set_for_reg_notes (insn
);
5345 if (set
&& SET_DEST (set
) == dst
)
5346 return set_unique_reg_note (insn
, kind
, datum
);
5350 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5351 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5354 If X is a label, it is simply added into the insn chain. */
5357 emit (rtx x
, bool allow_barrier_p
)
5359 enum rtx_code code
= classify_insn (x
);
5364 return emit_label (x
);
5366 return emit_insn (x
);
5369 rtx_insn
*insn
= emit_jump_insn (x
);
5371 && (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
))
5372 return emit_barrier ();
5376 return emit_call_insn (x
);
5378 return emit_debug_insn (x
);
5384 /* Space for free sequence stack entries. */
5385 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5387 /* Begin emitting insns to a sequence. If this sequence will contain
5388 something that might cause the compiler to pop arguments to function
5389 calls (because those pops have previously been deferred; see
5390 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5391 before calling this function. That will ensure that the deferred
5392 pops are not accidentally emitted in the middle of this sequence. */
5395 start_sequence (void)
5397 struct sequence_stack
*tem
;
5399 if (free_sequence_stack
!= NULL
)
5401 tem
= free_sequence_stack
;
5402 free_sequence_stack
= tem
->next
;
5405 tem
= ggc_alloc
<sequence_stack
> ();
5407 tem
->next
= get_current_sequence ()->next
;
5408 tem
->first
= get_insns ();
5409 tem
->last
= get_last_insn ();
5410 get_current_sequence ()->next
= tem
;
5416 /* Set up the insn chain starting with FIRST as the current sequence,
5417 saving the previously current one. See the documentation for
5418 start_sequence for more information about how to use this function. */
5421 push_to_sequence (rtx_insn
*first
)
5427 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5430 set_first_insn (first
);
5431 set_last_insn (last
);
5434 /* Like push_to_sequence, but take the last insn as an argument to avoid
5435 looping through the list. */
5438 push_to_sequence2 (rtx_insn
*first
, rtx_insn
*last
)
5442 set_first_insn (first
);
5443 set_last_insn (last
);
5446 /* Set up the outer-level insn chain
5447 as the current sequence, saving the previously current one. */
5450 push_topmost_sequence (void)
5452 struct sequence_stack
*top
;
5456 top
= get_topmost_sequence ();
5457 set_first_insn (top
->first
);
5458 set_last_insn (top
->last
);
5461 /* After emitting to the outer-level insn chain, update the outer-level
5462 insn chain, and restore the previous saved state. */
5465 pop_topmost_sequence (void)
5467 struct sequence_stack
*top
;
5469 top
= get_topmost_sequence ();
5470 top
->first
= get_insns ();
5471 top
->last
= get_last_insn ();
5476 /* After emitting to a sequence, restore previous saved state.
5478 To get the contents of the sequence just made, you must call
5479 `get_insns' *before* calling here.
5481 If the compiler might have deferred popping arguments while
5482 generating this sequence, and this sequence will not be immediately
5483 inserted into the instruction stream, use do_pending_stack_adjust
5484 before calling get_insns. That will ensure that the deferred
5485 pops are inserted into this sequence, and not into some random
5486 location in the instruction stream. See INHIBIT_DEFER_POP for more
5487 information about deferred popping of arguments. */
5492 struct sequence_stack
*tem
= get_current_sequence ()->next
;
5494 set_first_insn (tem
->first
);
5495 set_last_insn (tem
->last
);
5496 get_current_sequence ()->next
= tem
->next
;
5498 memset (tem
, 0, sizeof (*tem
));
5499 tem
->next
= free_sequence_stack
;
5500 free_sequence_stack
= tem
;
5503 /* Return 1 if currently emitting into a sequence. */
5506 in_sequence_p (void)
5508 return get_current_sequence ()->next
!= 0;
5511 /* Put the various virtual registers into REGNO_REG_RTX. */
5514 init_virtual_regs (void)
5516 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5517 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5518 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5519 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5520 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5521 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5522 = virtual_preferred_stack_boundary_rtx
;
5526 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5527 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5528 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5529 static int copy_insn_n_scratches
;
5531 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5532 copied an ASM_OPERANDS.
5533 In that case, it is the original input-operand vector. */
5534 static rtvec orig_asm_operands_vector
;
5536 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5537 copied an ASM_OPERANDS.
5538 In that case, it is the copied input-operand vector. */
5539 static rtvec copy_asm_operands_vector
;
5541 /* Likewise for the constraints vector. */
5542 static rtvec orig_asm_constraints_vector
;
5543 static rtvec copy_asm_constraints_vector
;
5545 /* Recursively create a new copy of an rtx for copy_insn.
5546 This function differs from copy_rtx in that it handles SCRATCHes and
5547 ASM_OPERANDs properly.
5548 Normally, this function is not used directly; use copy_insn as front end.
5549 However, you could first copy an insn pattern with copy_insn and then use
5550 this function afterwards to properly copy any REG_NOTEs containing
5554 copy_insn_1 (rtx orig
)
5559 const char *format_ptr
;
5564 code
= GET_CODE (orig
);
5579 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5580 clobbers or clobbers of hard registers that originated as pseudos.
5581 This is needed to allow safe register renaming. */
5582 if (REG_P (XEXP (orig
, 0))
5583 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0)))
5584 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig
, 0))))
5589 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5590 if (copy_insn_scratch_in
[i
] == orig
)
5591 return copy_insn_scratch_out
[i
];
5595 if (shared_const_p (orig
))
5599 /* A MEM with a constant address is not sharable. The problem is that
5600 the constant address may need to be reloaded. If the mem is shared,
5601 then reloading one copy of this mem will cause all copies to appear
5602 to have been reloaded. */
5608 /* Copy the various flags, fields, and other information. We assume
5609 that all fields need copying, and then clear the fields that should
5610 not be copied. That is the sensible default behavior, and forces
5611 us to explicitly document why we are *not* copying a flag. */
5612 copy
= shallow_copy_rtx (orig
);
5614 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5617 RTX_FLAG (copy
, jump
) = 0;
5618 RTX_FLAG (copy
, call
) = 0;
5619 RTX_FLAG (copy
, frame_related
) = 0;
5622 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5624 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5625 switch (*format_ptr
++)
5628 if (XEXP (orig
, i
) != NULL
)
5629 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5634 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5635 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5636 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5637 XVEC (copy
, i
) = copy_asm_operands_vector
;
5638 else if (XVEC (orig
, i
) != NULL
)
5640 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5641 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5642 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5653 /* These are left unchanged. */
5660 if (code
== SCRATCH
)
5662 i
= copy_insn_n_scratches
++;
5663 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5664 copy_insn_scratch_in
[i
] = orig
;
5665 copy_insn_scratch_out
[i
] = copy
;
5667 else if (code
== ASM_OPERANDS
)
5669 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5670 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5671 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5672 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5678 /* Create a new copy of an rtx.
5679 This function differs from copy_rtx in that it handles SCRATCHes and
5680 ASM_OPERANDs properly.
5681 INSN doesn't really have to be a full INSN; it could be just the
5684 copy_insn (rtx insn
)
5686 copy_insn_n_scratches
= 0;
5687 orig_asm_operands_vector
= 0;
5688 orig_asm_constraints_vector
= 0;
5689 copy_asm_operands_vector
= 0;
5690 copy_asm_constraints_vector
= 0;
5691 return copy_insn_1 (insn
);
5694 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5695 on that assumption that INSN itself remains in its original place. */
5698 copy_delay_slot_insn (rtx_insn
*insn
)
5700 /* Copy INSN with its rtx_code, all its notes, location etc. */
5701 insn
= as_a
<rtx_insn
*> (copy_rtx (insn
));
5702 INSN_UID (insn
) = cur_insn_uid
++;
5706 /* Initialize data structures and variables in this file
5707 before generating rtl for each function. */
5712 set_first_insn (NULL
);
5713 set_last_insn (NULL
);
5714 if (MIN_NONDEBUG_INSN_UID
)
5715 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5718 cur_debug_insn_uid
= 1;
5719 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5720 first_label_num
= label_num
;
5721 get_current_sequence ()->next
= NULL
;
5723 /* Init the tables that describe all the pseudo regs. */
5725 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5727 crtl
->emit
.regno_pointer_align
5728 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5731 = ggc_cleared_vec_alloc
<rtx
> (crtl
->emit
.regno_pointer_align_length
);
5733 /* Put copies of all the hard registers into regno_reg_rtx. */
5734 memcpy (regno_reg_rtx
,
5735 initial_regno_reg_rtx
,
5736 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5738 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5739 init_virtual_regs ();
5741 /* Indicate that the virtual registers and stack locations are
5743 REG_POINTER (stack_pointer_rtx
) = 1;
5744 REG_POINTER (frame_pointer_rtx
) = 1;
5745 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5746 REG_POINTER (arg_pointer_rtx
) = 1;
5748 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5749 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5750 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5751 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5752 REG_POINTER (virtual_cfa_rtx
) = 1;
5754 #ifdef STACK_BOUNDARY
5755 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5756 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5757 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5758 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5760 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5761 32-bit SPARC and cannot be all fixed because of the ABI). */
5762 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5763 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5764 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5765 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5767 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5770 #ifdef INIT_EXPANDERS
5775 /* Return true if X is a valid element for a duplicated vector constant
5776 of the given mode. */
5779 valid_for_const_vec_duplicate_p (machine_mode
, rtx x
)
5781 return (CONST_SCALAR_INT_P (x
)
5782 || CONST_DOUBLE_AS_FLOAT_P (x
)
5783 || CONST_FIXED_P (x
));
5786 /* Like gen_const_vec_duplicate, but ignore const_tiny_rtx. */
5789 gen_const_vec_duplicate_1 (machine_mode mode
, rtx el
)
5791 int nunits
= GET_MODE_NUNITS (mode
);
5792 rtvec v
= rtvec_alloc (nunits
);
5793 for (int i
= 0; i
< nunits
; ++i
)
5794 RTVEC_ELT (v
, i
) = el
;
5795 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5798 /* Generate a vector constant of mode MODE in which every element has
5802 gen_const_vec_duplicate (machine_mode mode
, rtx elt
)
5804 scalar_mode inner_mode
= GET_MODE_INNER (mode
);
5805 if (elt
== CONST0_RTX (inner_mode
))
5806 return CONST0_RTX (mode
);
5807 else if (elt
== CONST1_RTX (inner_mode
))
5808 return CONST1_RTX (mode
);
5809 else if (elt
== CONSTM1_RTX (inner_mode
))
5810 return CONSTM1_RTX (mode
);
5812 return gen_const_vec_duplicate_1 (mode
, elt
);
5815 /* Return a vector rtx of mode MODE in which every element has value X.
5816 The result will be a constant if X is constant. */
5819 gen_vec_duplicate (machine_mode mode
, rtx x
)
5821 if (valid_for_const_vec_duplicate_p (mode
, x
))
5822 return gen_const_vec_duplicate (mode
, x
);
5823 return gen_rtx_VEC_DUPLICATE (mode
, x
);
5826 /* A subroutine of const_vec_series_p that handles the case in which
5827 X is known to be an integer CONST_VECTOR. */
5830 const_vec_series_p_1 (const_rtx x
, rtx
*base_out
, rtx
*step_out
)
5832 unsigned int nelts
= CONST_VECTOR_NUNITS (x
);
5836 scalar_mode inner
= GET_MODE_INNER (GET_MODE (x
));
5837 rtx base
= CONST_VECTOR_ELT (x
, 0);
5838 rtx step
= simplify_binary_operation (MINUS
, inner
,
5839 CONST_VECTOR_ELT (x
, 1), base
);
5840 if (rtx_equal_p (step
, CONST0_RTX (inner
)))
5843 for (unsigned int i
= 2; i
< nelts
; ++i
)
5845 rtx diff
= simplify_binary_operation (MINUS
, inner
,
5846 CONST_VECTOR_ELT (x
, i
),
5847 CONST_VECTOR_ELT (x
, i
- 1));
5848 if (!rtx_equal_p (step
, diff
))
5857 /* Generate a vector constant of mode MODE in which element I has
5858 the value BASE + I * STEP. */
5861 gen_const_vec_series (machine_mode mode
, rtx base
, rtx step
)
5863 gcc_assert (CONSTANT_P (base
) && CONSTANT_P (step
));
5865 int nunits
= GET_MODE_NUNITS (mode
);
5866 rtvec v
= rtvec_alloc (nunits
);
5867 scalar_mode inner_mode
= GET_MODE_INNER (mode
);
5868 RTVEC_ELT (v
, 0) = base
;
5869 for (int i
= 1; i
< nunits
; ++i
)
5870 RTVEC_ELT (v
, i
) = simplify_gen_binary (PLUS
, inner_mode
,
5871 RTVEC_ELT (v
, i
- 1), step
);
5872 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5875 /* Generate a vector of mode MODE in which element I has the value
5876 BASE + I * STEP. The result will be a constant if BASE and STEP
5877 are both constants. */
5880 gen_vec_series (machine_mode mode
, rtx base
, rtx step
)
5882 if (step
== const0_rtx
)
5883 return gen_vec_duplicate (mode
, base
);
5884 if (CONSTANT_P (base
) && CONSTANT_P (step
))
5885 return gen_const_vec_series (mode
, base
, step
);
5886 return gen_rtx_VEC_SERIES (mode
, base
, step
);
5889 /* Generate a new vector constant for mode MODE and constant value
5893 gen_const_vector (machine_mode mode
, int constant
)
5895 machine_mode inner
= GET_MODE_INNER (mode
);
5897 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5899 rtx el
= const_tiny_rtx
[constant
][(int) inner
];
5902 return gen_const_vec_duplicate_1 (mode
, el
);
5905 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5906 all elements are zero, and the one vector when all elements are one. */
5908 gen_rtx_CONST_VECTOR (machine_mode mode
, rtvec v
)
5910 gcc_assert (GET_MODE_NUNITS (mode
) == GET_NUM_ELEM (v
));
5912 /* If the values are all the same, check to see if we can use one of the
5913 standard constant vectors. */
5914 if (rtvec_all_equal_p (v
))
5915 return gen_const_vec_duplicate (mode
, RTVEC_ELT (v
, 0));
5917 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5920 /* Initialise global register information required by all functions. */
5923 init_emit_regs (void)
5929 /* Reset register attributes */
5930 reg_attrs_htab
->empty ();
5932 /* We need reg_raw_mode, so initialize the modes now. */
5933 init_reg_modes_target ();
5935 /* Assign register numbers to the globally defined register rtx. */
5936 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5937 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5938 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5939 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5940 virtual_incoming_args_rtx
=
5941 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5942 virtual_stack_vars_rtx
=
5943 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5944 virtual_stack_dynamic_rtx
=
5945 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5946 virtual_outgoing_args_rtx
=
5947 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5948 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5949 virtual_preferred_stack_boundary_rtx
=
5950 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5952 /* Initialize RTL for commonly used hard registers. These are
5953 copied into regno_reg_rtx as we begin to compile each function. */
5954 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5955 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5957 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5958 return_address_pointer_rtx
5959 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5962 pic_offset_table_rtx
= NULL_RTX
;
5963 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5964 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5966 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5968 mode
= (machine_mode
) i
;
5969 attrs
= ggc_cleared_alloc
<mem_attrs
> ();
5970 attrs
->align
= BITS_PER_UNIT
;
5971 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5972 if (mode
!= BLKmode
)
5974 attrs
->size_known_p
= true;
5975 attrs
->size
= GET_MODE_SIZE (mode
);
5976 if (STRICT_ALIGNMENT
)
5977 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5979 mode_mem_attrs
[i
] = attrs
;
5982 split_branch_probability
= profile_probability::uninitialized ();
5985 /* Initialize global machine_mode variables. */
5988 init_derived_machine_modes (void)
5990 opt_scalar_int_mode mode_iter
, opt_byte_mode
, opt_word_mode
;
5991 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
5993 scalar_int_mode mode
= mode_iter
.require ();
5995 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5996 && !opt_byte_mode
.exists ())
5997 opt_byte_mode
= mode
;
5999 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
6000 && !opt_word_mode
.exists ())
6001 opt_word_mode
= mode
;
6004 byte_mode
= opt_byte_mode
.require ();
6005 word_mode
= opt_word_mode
.require ();
6006 ptr_mode
= int_mode_for_size (POINTER_SIZE
, 0).require ();
6009 /* Create some permanent unique rtl objects shared between all functions. */
6012 init_emit_once (void)
6016 scalar_float_mode double_mode
;
6017 opt_scalar_mode smode_iter
;
6019 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6020 CONST_FIXED, and memory attribute hash tables. */
6021 const_int_htab
= hash_table
<const_int_hasher
>::create_ggc (37);
6023 #if TARGET_SUPPORTS_WIDE_INT
6024 const_wide_int_htab
= hash_table
<const_wide_int_hasher
>::create_ggc (37);
6026 const_double_htab
= hash_table
<const_double_hasher
>::create_ggc (37);
6028 const_fixed_htab
= hash_table
<const_fixed_hasher
>::create_ggc (37);
6030 reg_attrs_htab
= hash_table
<reg_attr_hasher
>::create_ggc (37);
6032 #ifdef INIT_EXPANDERS
6033 /* This is to initialize {init|mark|free}_machine_status before the first
6034 call to push_function_context_to. This is needed by the Chill front
6035 end which calls push_function_context_to before the first call to
6036 init_function_start. */
6040 /* Create the unique rtx's for certain rtx codes and operand values. */
6042 /* Process stack-limiting command-line options. */
6043 if (opt_fstack_limit_symbol_arg
!= NULL
)
6045 = gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (opt_fstack_limit_symbol_arg
));
6046 if (opt_fstack_limit_register_no
>= 0)
6047 stack_limit_rtx
= gen_rtx_REG (Pmode
, opt_fstack_limit_register_no
);
6049 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6050 tries to use these variables. */
6051 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
6052 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
6053 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
6055 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
6056 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
6057 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
6059 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
6061 double_mode
= float_mode_for_size (DOUBLE_TYPE_SIZE
).require ();
6063 real_from_integer (&dconst0
, double_mode
, 0, SIGNED
);
6064 real_from_integer (&dconst1
, double_mode
, 1, SIGNED
);
6065 real_from_integer (&dconst2
, double_mode
, 2, SIGNED
);
6070 dconsthalf
= dconst1
;
6071 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
6073 for (i
= 0; i
< 3; i
++)
6075 const REAL_VALUE_TYPE
*const r
=
6076 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
6078 FOR_EACH_MODE_IN_CLASS (mode
, MODE_FLOAT
)
6079 const_tiny_rtx
[i
][(int) mode
] =
6080 const_double_from_real_value (*r
, mode
);
6082 FOR_EACH_MODE_IN_CLASS (mode
, MODE_DECIMAL_FLOAT
)
6083 const_tiny_rtx
[i
][(int) mode
] =
6084 const_double_from_real_value (*r
, mode
);
6086 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
6088 FOR_EACH_MODE_IN_CLASS (mode
, MODE_INT
)
6089 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
6091 for (mode
= MIN_MODE_PARTIAL_INT
;
6092 mode
<= MAX_MODE_PARTIAL_INT
;
6093 mode
= (machine_mode
)((int)(mode
) + 1))
6094 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
6097 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
6099 FOR_EACH_MODE_IN_CLASS (mode
, MODE_INT
)
6100 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
6102 for (mode
= MIN_MODE_PARTIAL_INT
;
6103 mode
<= MAX_MODE_PARTIAL_INT
;
6104 mode
= (machine_mode
)((int)(mode
) + 1))
6105 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
6107 FOR_EACH_MODE_IN_CLASS (mode
, MODE_COMPLEX_INT
)
6109 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6110 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6113 FOR_EACH_MODE_IN_CLASS (mode
, MODE_COMPLEX_FLOAT
)
6115 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6116 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6119 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_INT
)
6121 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6122 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6123 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
6126 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_FLOAT
)
6128 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6129 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6132 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_FRACT
)
6134 scalar_mode smode
= smode_iter
.require ();
6135 FCONST0 (smode
).data
.high
= 0;
6136 FCONST0 (smode
).data
.low
= 0;
6137 FCONST0 (smode
).mode
= smode
;
6138 const_tiny_rtx
[0][(int) smode
]
6139 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6142 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_UFRACT
)
6144 scalar_mode smode
= smode_iter
.require ();
6145 FCONST0 (smode
).data
.high
= 0;
6146 FCONST0 (smode
).data
.low
= 0;
6147 FCONST0 (smode
).mode
= smode
;
6148 const_tiny_rtx
[0][(int) smode
]
6149 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6152 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_ACCUM
)
6154 scalar_mode smode
= smode_iter
.require ();
6155 FCONST0 (smode
).data
.high
= 0;
6156 FCONST0 (smode
).data
.low
= 0;
6157 FCONST0 (smode
).mode
= smode
;
6158 const_tiny_rtx
[0][(int) smode
]
6159 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6161 /* We store the value 1. */
6162 FCONST1 (smode
).data
.high
= 0;
6163 FCONST1 (smode
).data
.low
= 0;
6164 FCONST1 (smode
).mode
= smode
;
6165 FCONST1 (smode
).data
6166 = double_int_one
.lshift (GET_MODE_FBIT (smode
),
6167 HOST_BITS_PER_DOUBLE_INT
,
6168 SIGNED_FIXED_POINT_MODE_P (smode
));
6169 const_tiny_rtx
[1][(int) smode
]
6170 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode
), smode
);
6173 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_UACCUM
)
6175 scalar_mode smode
= smode_iter
.require ();
6176 FCONST0 (smode
).data
.high
= 0;
6177 FCONST0 (smode
).data
.low
= 0;
6178 FCONST0 (smode
).mode
= smode
;
6179 const_tiny_rtx
[0][(int) smode
]
6180 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6182 /* We store the value 1. */
6183 FCONST1 (smode
).data
.high
= 0;
6184 FCONST1 (smode
).data
.low
= 0;
6185 FCONST1 (smode
).mode
= smode
;
6186 FCONST1 (smode
).data
6187 = double_int_one
.lshift (GET_MODE_FBIT (smode
),
6188 HOST_BITS_PER_DOUBLE_INT
,
6189 SIGNED_FIXED_POINT_MODE_P (smode
));
6190 const_tiny_rtx
[1][(int) smode
]
6191 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode
), smode
);
6194 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_FRACT
)
6196 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6199 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_UFRACT
)
6201 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6204 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_ACCUM
)
6206 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6207 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6210 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_UACCUM
)
6212 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6213 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6216 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
6217 if (GET_MODE_CLASS ((machine_mode
) i
) == MODE_CC
)
6218 const_tiny_rtx
[0][i
] = const0_rtx
;
6220 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
6221 if (STORE_FLAG_VALUE
== 1)
6222 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
6224 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_POINTER_BOUNDS
)
6226 scalar_mode smode
= smode_iter
.require ();
6227 wide_int wi_zero
= wi::zero (GET_MODE_PRECISION (smode
));
6228 const_tiny_rtx
[0][smode
] = immed_wide_int_const (wi_zero
, smode
);
6231 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
6232 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
6233 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
6234 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
6235 invalid_insn_rtx
= gen_rtx_INSN (VOIDmode
,
6239 /*pattern=*/NULL_RTX
,
6242 /*reg_notes=*/NULL_RTX
);
6245 /* Produce exact duplicate of insn INSN after AFTER.
6246 Care updating of libcall regions if present. */
6249 emit_copy_of_insn_after (rtx_insn
*insn
, rtx_insn
*after
)
6254 switch (GET_CODE (insn
))
6257 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6261 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6262 CROSSING_JUMP_P (new_rtx
) = CROSSING_JUMP_P (insn
);
6266 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6270 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6271 if (CALL_INSN_FUNCTION_USAGE (insn
))
6272 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6273 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6274 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6275 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6276 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6277 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6278 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6285 /* Update LABEL_NUSES. */
6286 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6288 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
6290 /* If the old insn is frame related, then so is the new one. This is
6291 primarily needed for IA-64 unwind info which marks epilogue insns,
6292 which may be duplicated by the basic block reordering code. */
6293 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6295 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6296 rtx
*ptail
= ®_NOTES (new_rtx
);
6297 while (*ptail
!= NULL_RTX
)
6298 ptail
= &XEXP (*ptail
, 1);
6300 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6301 will make them. REG_LABEL_TARGETs are created there too, but are
6302 supposed to be sticky, so we copy them. */
6303 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6304 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6306 *ptail
= duplicate_reg_note (link
);
6307 ptail
= &XEXP (*ptail
, 1);
6310 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6314 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6316 gen_hard_reg_clobber (machine_mode mode
, unsigned int regno
)
6318 if (hard_reg_clobbers
[mode
][regno
])
6319 return hard_reg_clobbers
[mode
][regno
];
6321 return (hard_reg_clobbers
[mode
][regno
] =
6322 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6325 location_t prologue_location
;
6326 location_t epilogue_location
;
6328 /* Hold current location information and last location information, so the
6329 datastructures are built lazily only when some instructions in given
6330 place are needed. */
6331 static location_t curr_location
;
6333 /* Allocate insn location datastructure. */
6335 insn_locations_init (void)
6337 prologue_location
= epilogue_location
= 0;
6338 curr_location
= UNKNOWN_LOCATION
;
6341 /* At the end of emit stage, clear current location. */
6343 insn_locations_finalize (void)
6345 epilogue_location
= curr_location
;
6346 curr_location
= UNKNOWN_LOCATION
;
6349 /* Set current location. */
6351 set_curr_insn_location (location_t location
)
6353 curr_location
= location
;
6356 /* Get current location. */
6358 curr_insn_location (void)
6360 return curr_location
;
6363 /* Return lexical scope block insn belongs to. */
6365 insn_scope (const rtx_insn
*insn
)
6367 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6370 /* Return line number of the statement that produced this insn. */
6372 insn_line (const rtx_insn
*insn
)
6374 return LOCATION_LINE (INSN_LOCATION (insn
));
6377 /* Return source file of the statement that produced this insn. */
6379 insn_file (const rtx_insn
*insn
)
6381 return LOCATION_FILE (INSN_LOCATION (insn
));
6384 /* Return expanded location of the statement that produced this insn. */
6386 insn_location (const rtx_insn
*insn
)
6388 return expand_location (INSN_LOCATION (insn
));
6391 /* Return true if memory model MODEL requires a pre-operation (release-style)
6392 barrier or a post-operation (acquire-style) barrier. While not universal,
6393 this function matches behavior of several targets. */
6396 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6398 switch (model
& MEMMODEL_BASE_MASK
)
6400 case MEMMODEL_RELAXED
:
6401 case MEMMODEL_CONSUME
:
6403 case MEMMODEL_RELEASE
:
6405 case MEMMODEL_ACQUIRE
:
6407 case MEMMODEL_ACQ_REL
:
6408 case MEMMODEL_SEQ_CST
:
6415 /* Initialize fields of rtl_data related to stack alignment. */
6418 rtl_data::init_stack_alignment ()
6420 stack_alignment_needed
= STACK_BOUNDARY
;
6421 max_used_stack_slot_alignment
= STACK_BOUNDARY
;
6422 stack_alignment_estimated
= 0;
6423 preferred_stack_boundary
= STACK_BOUNDARY
;
6427 #include "gt-emit-rtl.h"