1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
129 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static bool clear_storage_via_clrmem (rtx
, rtx
, unsigned);
138 static rtx
clear_storage_via_libcall (rtx
, rtx
);
139 static tree
clear_storage_libcall_fn (int);
140 static rtx
compress_float_constant (rtx
, rtx
);
141 static rtx
get_subtarget (rtx
);
142 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
143 HOST_WIDE_INT
, enum machine_mode
,
144 tree
, tree
, int, int);
145 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
146 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
149 static unsigned HOST_WIDE_INT
highest_pow2_factor (tree
);
150 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
152 static int is_aligning_offset (tree
, tree
);
153 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
154 enum expand_modifier
);
155 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
156 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
158 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
160 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
161 static rtx
const_vector_from_tree (tree
);
162 static void write_complex_part (rtx
, rtx
, bool);
164 /* Record for each mode whether we can move a register directly to or
165 from an object of that mode in memory. If we can't, we won't try
166 to use that mode directly when accessing a field of that mode. */
168 static char direct_load
[NUM_MACHINE_MODES
];
169 static char direct_store
[NUM_MACHINE_MODES
];
171 /* Record for each mode whether we can float-extend from memory. */
173 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO)
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO)
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero, or
193 to "memcpy" storage when the source is a constant string. */
194 #ifndef STORE_BY_PIECES_P
195 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
196 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
197 < (unsigned int) MOVE_RATIO)
200 /* This array records the insn_code of insns to perform block moves. */
201 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
203 /* This array records the insn_code of insns to perform block clears. */
204 enum insn_code clrmem_optab
[NUM_MACHINE_MODES
];
206 /* These arrays record the insn_code of two different kinds of insns
207 to perform block compares. */
208 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
209 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
211 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
213 #ifndef SLOW_UNALIGNED_ACCESS
214 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
217 /* This is run once per compilation to set up which modes can be used
218 directly in memory and to initialize the block move optab. */
221 init_expr_once (void)
224 enum machine_mode mode
;
229 /* Try indexing by frame ptr and try by stack ptr.
230 It is known that on the Convex the stack ptr isn't a valid index.
231 With luck, one or the other is valid on any machine. */
232 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
233 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
235 /* A scratch register we can modify in-place below to avoid
236 useless RTL allocations. */
237 reg
= gen_rtx_REG (VOIDmode
, -1);
239 insn
= rtx_alloc (INSN
);
240 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
241 PATTERN (insn
) = pat
;
243 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
244 mode
= (enum machine_mode
) ((int) mode
+ 1))
248 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
249 PUT_MODE (mem
, mode
);
250 PUT_MODE (mem1
, mode
);
251 PUT_MODE (reg
, mode
);
253 /* See if there is some register that can be used in this mode and
254 directly loaded or stored from memory. */
256 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
257 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
258 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
261 if (! HARD_REGNO_MODE_OK (regno
, mode
))
267 SET_DEST (pat
) = reg
;
268 if (recog (pat
, insn
, &num_clobbers
) >= 0)
269 direct_load
[(int) mode
] = 1;
271 SET_SRC (pat
) = mem1
;
272 SET_DEST (pat
) = reg
;
273 if (recog (pat
, insn
, &num_clobbers
) >= 0)
274 direct_load
[(int) mode
] = 1;
277 SET_DEST (pat
) = mem
;
278 if (recog (pat
, insn
, &num_clobbers
) >= 0)
279 direct_store
[(int) mode
] = 1;
282 SET_DEST (pat
) = mem1
;
283 if (recog (pat
, insn
, &num_clobbers
) >= 0)
284 direct_store
[(int) mode
] = 1;
288 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
290 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
291 mode
= GET_MODE_WIDER_MODE (mode
))
293 enum machine_mode srcmode
;
294 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
295 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
299 ic
= can_extend_p (mode
, srcmode
, 0);
300 if (ic
== CODE_FOR_nothing
)
303 PUT_MODE (mem
, srcmode
);
305 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
306 float_extend_from_mem
[mode
][srcmode
] = true;
311 /* This is run at the start of compiling a function. */
316 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
319 /* Copy data from FROM to TO, where the machine modes are not the same.
320 Both modes may be integer, or both may be floating.
321 UNSIGNEDP should be nonzero if FROM is an unsigned type.
322 This causes zero-extension instead of sign-extension. */
325 convert_move (rtx to
, rtx from
, int unsignedp
)
327 enum machine_mode to_mode
= GET_MODE (to
);
328 enum machine_mode from_mode
= GET_MODE (from
);
329 int to_real
= GET_MODE_CLASS (to_mode
) == MODE_FLOAT
;
330 int from_real
= GET_MODE_CLASS (from_mode
) == MODE_FLOAT
;
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
336 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
339 gcc_assert (to_real
== from_real
);
341 /* If the source and destination are already the same, then there's
346 /* If FROM is a SUBREG that indicates that we have already done at least
347 the required extension, strip it. We don't handle such SUBREGs as
350 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
351 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
352 >= GET_MODE_SIZE (to_mode
))
353 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
354 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
356 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
358 if (to_mode
== from_mode
359 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
361 emit_move_insn (to
, from
);
365 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
367 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
369 if (VECTOR_MODE_P (to_mode
))
370 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
372 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
374 emit_move_insn (to
, from
);
378 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
380 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
381 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
390 gcc_assert (GET_MODE_PRECISION (from_mode
)
391 != GET_MODE_PRECISION (to_mode
));
393 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
398 /* Try converting directly if the insn is supported. */
400 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
401 if (code
!= CODE_FOR_nothing
)
403 emit_unop_insn (code
, to
, from
,
404 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
408 /* Otherwise use a libcall. */
409 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
411 /* Is this conversion implemented yet? */
412 gcc_assert (libcall
);
415 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
417 insns
= get_insns ();
419 emit_libcall_block (insns
, to
, value
,
420 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
422 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
426 /* Handle pointer conversion. */ /* SPEE 900220. */
427 /* Targets are expected to provide conversion insns between PxImode and
428 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
429 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
431 enum machine_mode full_mode
432 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
434 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
435 != CODE_FOR_nothing
);
437 if (full_mode
!= from_mode
)
438 from
= convert_to_mode (full_mode
, from
, unsignedp
);
439 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
443 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
448 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
449 != CODE_FOR_nothing
);
451 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
453 if (to_mode
== full_mode
)
456 /* else proceed to integer conversions below. */
457 from_mode
= full_mode
;
460 /* Now both modes are integers. */
462 /* Handle expanding beyond a word. */
463 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
464 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
471 enum machine_mode lowpart_mode
;
472 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
474 /* Try converting directly if the insn is supported. */
475 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
478 /* If FROM is a SUBREG, put it into a register. Do this
479 so that we always generate the same set of insns for
480 better cse'ing; if an intermediate assignment occurred,
481 we won't be doing the operation directly on the SUBREG. */
482 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
483 from
= force_reg (from_mode
, from
);
484 emit_unop_insn (code
, to
, from
, equiv_code
);
487 /* Next, try converting via full word. */
488 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
489 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
490 != CODE_FOR_nothing
))
494 if (reg_overlap_mentioned_p (to
, from
))
495 from
= force_reg (from_mode
, from
);
496 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
498 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
499 emit_unop_insn (code
, to
,
500 gen_lowpart (word_mode
, to
), equiv_code
);
504 /* No special multiword conversion insn; do it by hand. */
507 /* Since we will turn this into a no conflict block, we must ensure
508 that the source does not overlap the target. */
510 if (reg_overlap_mentioned_p (to
, from
))
511 from
= force_reg (from_mode
, from
);
513 /* Get a copy of FROM widened to a word, if necessary. */
514 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
515 lowpart_mode
= word_mode
;
517 lowpart_mode
= from_mode
;
519 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
521 lowpart
= gen_lowpart (lowpart_mode
, to
);
522 emit_move_insn (lowpart
, lowfrom
);
524 /* Compute the value to put in each remaining word. */
526 fill_value
= const0_rtx
;
531 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
532 && STORE_FLAG_VALUE
== -1)
534 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
536 fill_value
= gen_reg_rtx (word_mode
);
537 emit_insn (gen_slt (fill_value
));
543 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
544 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
546 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
550 /* Fill the remaining words. */
551 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
553 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
554 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
556 gcc_assert (subword
);
558 if (fill_value
!= subword
)
559 emit_move_insn (subword
, fill_value
);
562 insns
= get_insns ();
565 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
566 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
570 /* Truncating multi-word to a word or less. */
571 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
572 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
575 && ! MEM_VOLATILE_P (from
)
576 && direct_load
[(int) to_mode
]
577 && ! mode_dependent_address_p (XEXP (from
, 0)))
579 || GET_CODE (from
) == SUBREG
))
580 from
= force_reg (from_mode
, from
);
581 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
585 /* Now follow all the conversions between integers
586 no more than a word long. */
588 /* For truncation, usually we can just refer to FROM in a narrower mode. */
589 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
590 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
591 GET_MODE_BITSIZE (from_mode
)))
594 && ! MEM_VOLATILE_P (from
)
595 && direct_load
[(int) to_mode
]
596 && ! mode_dependent_address_p (XEXP (from
, 0)))
598 || GET_CODE (from
) == SUBREG
))
599 from
= force_reg (from_mode
, from
);
600 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
601 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
602 from
= copy_to_reg (from
);
603 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
607 /* Handle extension. */
608 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
610 /* Convert directly if that works. */
611 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
615 from
= force_not_mem (from
);
617 emit_unop_insn (code
, to
, from
, equiv_code
);
622 enum machine_mode intermediate
;
626 /* Search for a mode to convert via. */
627 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
628 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
629 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
631 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
633 GET_MODE_BITSIZE (intermediate
))))
634 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
635 != CODE_FOR_nothing
))
637 convert_move (to
, convert_to_mode (intermediate
, from
,
638 unsignedp
), unsignedp
);
642 /* No suitable intermediate mode.
643 Generate what we need with shifts. */
644 shift_amount
= build_int_cst (NULL_TREE
,
645 GET_MODE_BITSIZE (to_mode
)
646 - GET_MODE_BITSIZE (from_mode
));
647 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
648 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
650 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
653 emit_move_insn (to
, tmp
);
658 /* Support special truncate insns for certain modes. */
659 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
661 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
666 /* Handle truncation of volatile memrefs, and so on;
667 the things that couldn't be truncated directly,
668 and for which there was no special instruction.
670 ??? Code above formerly short-circuited this, for most integer
671 mode pairs, with a force_reg in from_mode followed by a recursive
672 call to this routine. Appears always to have been wrong. */
673 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
675 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
676 emit_move_insn (to
, temp
);
680 /* Mode combination is not recognized. */
684 /* Return an rtx for a value that would result
685 from converting X to mode MODE.
686 Both X and MODE may be floating, or both integer.
687 UNSIGNEDP is nonzero if X is an unsigned value.
688 This can be done by referring to a part of X in place
689 or by copying to a new temporary with conversion. */
692 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
694 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
697 /* Return an rtx for a value that would result
698 from converting X from mode OLDMODE to mode MODE.
699 Both modes may be floating, or both integer.
700 UNSIGNEDP is nonzero if X is an unsigned value.
702 This can be done by referring to a part of X in place
703 or by copying to a new temporary with conversion.
705 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
708 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
712 /* If FROM is a SUBREG that indicates that we have already done at least
713 the required extension, strip it. */
715 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
716 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
717 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
718 x
= gen_lowpart (mode
, x
);
720 if (GET_MODE (x
) != VOIDmode
)
721 oldmode
= GET_MODE (x
);
726 /* There is one case that we must handle specially: If we are converting
727 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
728 we are to interpret the constant as unsigned, gen_lowpart will do
729 the wrong if the constant appears negative. What we want to do is
730 make the high-order word of the constant zero, not all ones. */
732 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
733 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
734 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
736 HOST_WIDE_INT val
= INTVAL (x
);
738 if (oldmode
!= VOIDmode
739 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
741 int width
= GET_MODE_BITSIZE (oldmode
);
743 /* We need to zero extend VAL. */
744 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
747 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
750 /* We can do this with a gen_lowpart if both desired and current modes
751 are integer, and this is either a constant integer, a register, or a
752 non-volatile MEM. Except for the constant case where MODE is no
753 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
755 if ((GET_CODE (x
) == CONST_INT
756 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
757 || (GET_MODE_CLASS (mode
) == MODE_INT
758 && GET_MODE_CLASS (oldmode
) == MODE_INT
759 && (GET_CODE (x
) == CONST_DOUBLE
760 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
761 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
762 && direct_load
[(int) mode
])
764 && (! HARD_REGISTER_P (x
)
765 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
766 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
767 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
769 /* ?? If we don't know OLDMODE, we have to assume here that
770 X does not need sign- or zero-extension. This may not be
771 the case, but it's the best we can do. */
772 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
773 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
775 HOST_WIDE_INT val
= INTVAL (x
);
776 int width
= GET_MODE_BITSIZE (oldmode
);
778 /* We must sign or zero-extend in this case. Start by
779 zero-extending, then sign extend if we need to. */
780 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
782 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
783 val
|= (HOST_WIDE_INT
) (-1) << width
;
785 return gen_int_mode (val
, mode
);
788 return gen_lowpart (mode
, x
);
791 /* Converting from integer constant into mode is always equivalent to an
793 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
795 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
796 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
799 temp
= gen_reg_rtx (mode
);
800 convert_move (temp
, x
, unsignedp
);
804 /* STORE_MAX_PIECES is the number of bytes at a time that we can
805 store efficiently. Due to internal GCC limitations, this is
806 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
807 for an immediate constant. */
809 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
811 /* Determine whether the LEN bytes can be moved by using several move
812 instructions. Return nonzero if a call to move_by_pieces should
816 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
817 unsigned int align ATTRIBUTE_UNUSED
)
819 return MOVE_BY_PIECES_P (len
, align
);
822 /* Generate several move instructions to copy LEN bytes from block FROM to
823 block TO. (These are MEM rtx's with BLKmode).
825 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
826 used to push FROM to the stack.
828 ALIGN is maximum stack alignment we can assume.
830 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
831 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
835 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
836 unsigned int align
, int endp
)
838 struct move_by_pieces data
;
839 rtx to_addr
, from_addr
= XEXP (from
, 0);
840 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
841 enum machine_mode mode
= VOIDmode
, tmode
;
842 enum insn_code icode
;
844 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
847 data
.from_addr
= from_addr
;
850 to_addr
= XEXP (to
, 0);
853 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
854 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
856 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
863 #ifdef STACK_GROWS_DOWNWARD
869 data
.to_addr
= to_addr
;
872 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
873 || GET_CODE (from_addr
) == POST_INC
874 || GET_CODE (from_addr
) == POST_DEC
);
876 data
.explicit_inc_from
= 0;
877 data
.explicit_inc_to
= 0;
878 if (data
.reverse
) data
.offset
= len
;
881 /* If copying requires more than two move insns,
882 copy addresses to registers (to make displacements shorter)
883 and use post-increment if available. */
884 if (!(data
.autinc_from
&& data
.autinc_to
)
885 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
887 /* Find the mode of the largest move... */
888 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
889 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
890 if (GET_MODE_SIZE (tmode
) < max_size
)
893 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
895 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
896 data
.autinc_from
= 1;
897 data
.explicit_inc_from
= -1;
899 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
901 data
.from_addr
= copy_addr_to_reg (from_addr
);
902 data
.autinc_from
= 1;
903 data
.explicit_inc_from
= 1;
905 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
906 data
.from_addr
= copy_addr_to_reg (from_addr
);
907 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
909 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
911 data
.explicit_inc_to
= -1;
913 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
915 data
.to_addr
= copy_addr_to_reg (to_addr
);
917 data
.explicit_inc_to
= 1;
919 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
920 data
.to_addr
= copy_addr_to_reg (to_addr
);
923 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
924 if (align
>= GET_MODE_ALIGNMENT (tmode
))
925 align
= GET_MODE_ALIGNMENT (tmode
);
928 enum machine_mode xmode
;
930 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
932 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
933 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
934 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
937 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
940 /* First move what we can in the largest integer mode, then go to
941 successively smaller modes. */
945 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
946 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
947 if (GET_MODE_SIZE (tmode
) < max_size
)
950 if (mode
== VOIDmode
)
953 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
954 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
955 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
957 max_size
= GET_MODE_SIZE (mode
);
960 /* The code above should have handled everything. */
961 gcc_assert (!data
.len
);
967 gcc_assert (!data
.reverse
);
972 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
973 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
975 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
978 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
985 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
993 /* Return number of insns required to move L bytes by pieces.
994 ALIGN (in bits) is maximum alignment we can assume. */
996 static unsigned HOST_WIDE_INT
997 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
998 unsigned int max_size
)
1000 unsigned HOST_WIDE_INT n_insns
= 0;
1001 enum machine_mode tmode
;
1003 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1004 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1005 align
= GET_MODE_ALIGNMENT (tmode
);
1008 enum machine_mode tmode
, xmode
;
1010 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1012 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1013 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1014 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1017 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1020 while (max_size
> 1)
1022 enum machine_mode mode
= VOIDmode
;
1023 enum insn_code icode
;
1025 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1026 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1027 if (GET_MODE_SIZE (tmode
) < max_size
)
1030 if (mode
== VOIDmode
)
1033 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1034 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1035 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1037 max_size
= GET_MODE_SIZE (mode
);
1044 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1045 with move instructions for mode MODE. GENFUN is the gen_... function
1046 to make a move insn for that mode. DATA has all the other info. */
1049 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1050 struct move_by_pieces
*data
)
1052 unsigned int size
= GET_MODE_SIZE (mode
);
1053 rtx to1
= NULL_RTX
, from1
;
1055 while (data
->len
>= size
)
1058 data
->offset
-= size
;
1062 if (data
->autinc_to
)
1063 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1066 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1069 if (data
->autinc_from
)
1070 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1073 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1075 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1076 emit_insn (gen_add2_insn (data
->to_addr
,
1077 GEN_INT (-(HOST_WIDE_INT
)size
)));
1078 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1079 emit_insn (gen_add2_insn (data
->from_addr
,
1080 GEN_INT (-(HOST_WIDE_INT
)size
)));
1083 emit_insn ((*genfun
) (to1
, from1
));
1086 #ifdef PUSH_ROUNDING
1087 emit_single_push_insn (mode
, from1
, NULL
);
1093 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1094 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1095 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1096 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1098 if (! data
->reverse
)
1099 data
->offset
+= size
;
1105 /* Emit code to move a block Y to a block X. This may be done with
1106 string-move instructions, with multiple scalar move instructions,
1107 or with a library call.
1109 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1110 SIZE is an rtx that says how long they are.
1111 ALIGN is the maximum alignment we can assume they have.
1112 METHOD describes what kind of copy this is, and what mechanisms may be used.
1114 Return the address of the new block, if memcpy is called and returns it,
1118 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1126 case BLOCK_OP_NORMAL
:
1127 may_use_call
= true;
1130 case BLOCK_OP_CALL_PARM
:
1131 may_use_call
= block_move_libcall_safe_for_call_parm ();
1133 /* Make inhibit_defer_pop nonzero around the library call
1134 to force it to pop the arguments right away. */
1138 case BLOCK_OP_NO_LIBCALL
:
1139 may_use_call
= false;
1146 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1148 gcc_assert (MEM_P (x
));
1149 gcc_assert (MEM_P (y
));
1152 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1153 block copy is more efficient for other large modes, e.g. DCmode. */
1154 x
= adjust_address (x
, BLKmode
, 0);
1155 y
= adjust_address (y
, BLKmode
, 0);
1157 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1158 can be incorrect is coming from __builtin_memcpy. */
1159 if (GET_CODE (size
) == CONST_INT
)
1161 if (INTVAL (size
) == 0)
1164 x
= shallow_copy_rtx (x
);
1165 y
= shallow_copy_rtx (y
);
1166 set_mem_size (x
, size
);
1167 set_mem_size (y
, size
);
1170 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1171 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1172 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1174 else if (may_use_call
)
1175 retval
= emit_block_move_via_libcall (x
, y
, size
);
1177 emit_block_move_via_loop (x
, y
, size
, align
);
1179 if (method
== BLOCK_OP_CALL_PARM
)
1185 /* A subroutine of emit_block_move. Returns true if calling the
1186 block move libcall will not clobber any parameters which may have
1187 already been placed on the stack. */
1190 block_move_libcall_safe_for_call_parm (void)
1192 /* If arguments are pushed on the stack, then they're safe. */
1196 /* If registers go on the stack anyway, any argument is sure to clobber
1197 an outgoing argument. */
1198 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1200 tree fn
= emit_block_move_libcall_fn (false);
1202 if (REG_PARM_STACK_SPACE (fn
) != 0)
1207 /* If any argument goes in memory, then it might clobber an outgoing
1210 CUMULATIVE_ARGS args_so_far
;
1213 fn
= emit_block_move_libcall_fn (false);
1214 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1216 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1217 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1219 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1220 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1221 if (!tmp
|| !REG_P (tmp
))
1223 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1225 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1231 /* A subroutine of emit_block_move. Expand a movmem pattern;
1232 return true if successful. */
1235 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1237 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1238 int save_volatile_ok
= volatile_ok
;
1239 enum machine_mode mode
;
1241 /* Since this is a move insn, we don't care about volatility. */
1244 /* Try the most limited insn first, because there's no point
1245 including more than one in the machine description unless
1246 the more limited one has some advantage. */
1248 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1249 mode
= GET_MODE_WIDER_MODE (mode
))
1251 enum insn_code code
= movmem_optab
[(int) mode
];
1252 insn_operand_predicate_fn pred
;
1254 if (code
!= CODE_FOR_nothing
1255 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1256 here because if SIZE is less than the mode mask, as it is
1257 returned by the macro, it will definitely be less than the
1258 actual mode mask. */
1259 && ((GET_CODE (size
) == CONST_INT
1260 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1261 <= (GET_MODE_MASK (mode
) >> 1)))
1262 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1263 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1264 || (*pred
) (x
, BLKmode
))
1265 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1266 || (*pred
) (y
, BLKmode
))
1267 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1268 || (*pred
) (opalign
, VOIDmode
)))
1271 rtx last
= get_last_insn ();
1274 op2
= convert_to_mode (mode
, size
, 1);
1275 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1276 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1277 op2
= copy_to_mode_reg (mode
, op2
);
1279 /* ??? When called via emit_block_move_for_call, it'd be
1280 nice if there were some way to inform the backend, so
1281 that it doesn't fail the expansion because it thinks
1282 emitting the libcall would be more efficient. */
1284 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1288 volatile_ok
= save_volatile_ok
;
1292 delete_insns_since (last
);
1296 volatile_ok
= save_volatile_ok
;
1300 /* A subroutine of emit_block_move. Expand a call to memcpy.
1301 Return the return value from memcpy, 0 otherwise. */
1304 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
)
1306 rtx dst_addr
, src_addr
;
1307 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1308 enum machine_mode size_mode
;
1311 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1312 pseudos. We can then place those new pseudos into a VAR_DECL and
1315 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1316 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1318 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1319 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1321 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1322 src_tree
= make_tree (ptr_type_node
, src_addr
);
1324 size_mode
= TYPE_MODE (sizetype
);
1326 size
= convert_to_mode (size_mode
, size
, 1);
1327 size
= copy_to_mode_reg (size_mode
, size
);
1329 /* It is incorrect to use the libcall calling conventions to call
1330 memcpy in this context. This could be a user call to memcpy and
1331 the user may wish to examine the return value from memcpy. For
1332 targets where libcalls and normal calls have different conventions
1333 for returning pointers, we could end up generating incorrect code. */
1335 size_tree
= make_tree (sizetype
, size
);
1337 fn
= emit_block_move_libcall_fn (true);
1338 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1339 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1340 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1342 /* Now we have to build up the CALL_EXPR itself. */
1343 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1344 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1345 call_expr
, arg_list
, NULL_TREE
);
1347 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
1352 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1353 for the function we use for block copies. The first time FOR_CALL
1354 is true, we call assemble_external. */
1356 static GTY(()) tree block_move_fn
;
1359 init_block_move_fn (const char *asmspec
)
1365 fn
= get_identifier ("memcpy");
1366 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1367 const_ptr_type_node
, sizetype
,
1370 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1371 DECL_EXTERNAL (fn
) = 1;
1372 TREE_PUBLIC (fn
) = 1;
1373 DECL_ARTIFICIAL (fn
) = 1;
1374 TREE_NOTHROW (fn
) = 1;
1380 set_user_assembler_name (block_move_fn
, asmspec
);
1384 emit_block_move_libcall_fn (int for_call
)
1386 static bool emitted_extern
;
1389 init_block_move_fn (NULL
);
1391 if (for_call
&& !emitted_extern
)
1393 emitted_extern
= true;
1394 make_decl_rtl (block_move_fn
);
1395 assemble_external (block_move_fn
);
1398 return block_move_fn
;
1401 /* A subroutine of emit_block_move. Copy the data via an explicit
1402 loop. This is used only when libcalls are forbidden. */
1403 /* ??? It'd be nice to copy in hunks larger than QImode. */
1406 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1407 unsigned int align ATTRIBUTE_UNUSED
)
1409 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1410 enum machine_mode iter_mode
;
1412 iter_mode
= GET_MODE (size
);
1413 if (iter_mode
== VOIDmode
)
1414 iter_mode
= word_mode
;
1416 top_label
= gen_label_rtx ();
1417 cmp_label
= gen_label_rtx ();
1418 iter
= gen_reg_rtx (iter_mode
);
1420 emit_move_insn (iter
, const0_rtx
);
1422 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1423 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1424 do_pending_stack_adjust ();
1426 emit_jump (cmp_label
);
1427 emit_label (top_label
);
1429 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1430 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1431 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1432 x
= change_address (x
, QImode
, x_addr
);
1433 y
= change_address (y
, QImode
, y_addr
);
1435 emit_move_insn (x
, y
);
1437 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1438 true, OPTAB_LIB_WIDEN
);
1440 emit_move_insn (iter
, tmp
);
1442 emit_label (cmp_label
);
1444 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1448 /* Copy all or part of a value X into registers starting at REGNO.
1449 The number of registers to be filled is NREGS. */
1452 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1455 #ifdef HAVE_load_multiple
1463 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1464 x
= validize_mem (force_const_mem (mode
, x
));
1466 /* See if the machine can do this with a load multiple insn. */
1467 #ifdef HAVE_load_multiple
1468 if (HAVE_load_multiple
)
1470 last
= get_last_insn ();
1471 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1479 delete_insns_since (last
);
1483 for (i
= 0; i
< nregs
; i
++)
1484 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1485 operand_subword_force (x
, i
, mode
));
1488 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1492 move_block_from_reg (int regno
, rtx x
, int nregs
)
1499 /* See if the machine can do this with a store multiple insn. */
1500 #ifdef HAVE_store_multiple
1501 if (HAVE_store_multiple
)
1503 rtx last
= get_last_insn ();
1504 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1512 delete_insns_since (last
);
1516 for (i
= 0; i
< nregs
; i
++)
1518 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1522 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1526 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1527 ORIG, where ORIG is a non-consecutive group of registers represented by
1528 a PARALLEL. The clone is identical to the original except in that the
1529 original set of registers is replaced by a new set of pseudo registers.
1530 The new set has the same modes as the original set. */
1533 gen_group_rtx (rtx orig
)
1538 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1540 length
= XVECLEN (orig
, 0);
1541 tmps
= alloca (sizeof (rtx
) * length
);
1543 /* Skip a NULL entry in first slot. */
1544 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1549 for (; i
< length
; i
++)
1551 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1552 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1554 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1557 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1560 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1561 except that values are placed in TMPS[i], and must later be moved
1562 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1565 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1569 enum machine_mode m
= GET_MODE (orig_src
);
1571 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1574 && !SCALAR_INT_MODE_P (m
)
1575 && !MEM_P (orig_src
)
1576 && GET_CODE (orig_src
) != CONCAT
)
1578 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1579 if (imode
== BLKmode
)
1580 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1582 src
= gen_reg_rtx (imode
);
1583 if (imode
!= BLKmode
)
1584 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1585 emit_move_insn (src
, orig_src
);
1586 /* ...and back again. */
1587 if (imode
!= BLKmode
)
1588 src
= gen_lowpart (imode
, src
);
1589 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1593 /* Check for a NULL entry, used to indicate that the parameter goes
1594 both on the stack and in registers. */
1595 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1600 /* Process the pieces. */
1601 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1603 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1604 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1605 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1608 /* Handle trailing fragments that run over the size of the struct. */
1609 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1611 /* Arrange to shift the fragment to where it belongs.
1612 extract_bit_field loads to the lsb of the reg. */
1614 #ifdef BLOCK_REG_PADDING
1615 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1616 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1621 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1622 bytelen
= ssize
- bytepos
;
1623 gcc_assert (bytelen
> 0);
1626 /* If we won't be loading directly from memory, protect the real source
1627 from strange tricks we might play; but make sure that the source can
1628 be loaded directly into the destination. */
1630 if (!MEM_P (orig_src
)
1631 && (!CONSTANT_P (orig_src
)
1632 || (GET_MODE (orig_src
) != mode
1633 && GET_MODE (orig_src
) != VOIDmode
)))
1635 if (GET_MODE (orig_src
) == VOIDmode
)
1636 src
= gen_reg_rtx (mode
);
1638 src
= gen_reg_rtx (GET_MODE (orig_src
));
1640 emit_move_insn (src
, orig_src
);
1643 /* Optimize the access just a bit. */
1645 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1646 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1647 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1648 && bytelen
== GET_MODE_SIZE (mode
))
1650 tmps
[i
] = gen_reg_rtx (mode
);
1651 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1653 else if (COMPLEX_MODE_P (mode
)
1654 && GET_MODE (src
) == mode
1655 && bytelen
== GET_MODE_SIZE (mode
))
1656 /* Let emit_move_complex do the bulk of the work. */
1658 else if (GET_CODE (src
) == CONCAT
)
1660 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1661 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1663 if ((bytepos
== 0 && bytelen
== slen0
)
1664 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1666 /* The following assumes that the concatenated objects all
1667 have the same size. In this case, a simple calculation
1668 can be used to determine the object and the bit field
1670 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1671 if (! CONSTANT_P (tmps
[i
])
1672 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1673 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1674 (bytepos
% slen0
) * BITS_PER_UNIT
,
1675 1, NULL_RTX
, mode
, mode
);
1681 gcc_assert (!bytepos
);
1682 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1683 emit_move_insn (mem
, src
);
1684 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1685 0, 1, NULL_RTX
, mode
, mode
);
1688 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1689 SIMD register, which is currently broken. While we get GCC
1690 to emit proper RTL for these cases, let's dump to memory. */
1691 else if (VECTOR_MODE_P (GET_MODE (dst
))
1694 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1697 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1698 emit_move_insn (mem
, src
);
1699 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1701 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1702 && XVECLEN (dst
, 0) > 1)
1703 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1704 else if (CONSTANT_P (src
)
1705 || (REG_P (src
) && GET_MODE (src
) == mode
))
1708 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1709 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1713 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1714 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1718 /* Emit code to move a block SRC of type TYPE to a block DST,
1719 where DST is non-consecutive registers represented by a PARALLEL.
1720 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1724 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1729 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1730 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1732 /* Copy the extracted pieces into the proper (probable) hard regs. */
1733 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1735 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1738 emit_move_insn (d
, tmps
[i
]);
1742 /* Similar, but load SRC into new pseudos in a format that looks like
1743 PARALLEL. This can later be fed to emit_group_move to get things
1744 in the right place. */
1747 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1752 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1753 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1755 /* Convert the vector to look just like the original PARALLEL, except
1756 with the computed values. */
1757 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1759 rtx e
= XVECEXP (parallel
, 0, i
);
1760 rtx d
= XEXP (e
, 0);
1764 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1765 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1767 RTVEC_ELT (vec
, i
) = e
;
1770 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1773 /* Emit code to move a block SRC to block DST, where SRC and DST are
1774 non-consecutive groups of registers, each represented by a PARALLEL. */
1777 emit_group_move (rtx dst
, rtx src
)
1781 gcc_assert (GET_CODE (src
) == PARALLEL
1782 && GET_CODE (dst
) == PARALLEL
1783 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1785 /* Skip first entry if NULL. */
1786 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1787 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1788 XEXP (XVECEXP (src
, 0, i
), 0));
1791 /* Move a group of registers represented by a PARALLEL into pseudos. */
1794 emit_group_move_into_temps (rtx src
)
1796 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1799 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1801 rtx e
= XVECEXP (src
, 0, i
);
1802 rtx d
= XEXP (e
, 0);
1805 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1806 RTVEC_ELT (vec
, i
) = e
;
1809 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1812 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1813 where SRC is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_DST, or -1 if not
1818 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1822 enum machine_mode m
= GET_MODE (orig_dst
);
1824 gcc_assert (GET_CODE (src
) == PARALLEL
);
1826 if (!SCALAR_INT_MODE_P (m
)
1827 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1829 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1830 if (imode
== BLKmode
)
1831 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1833 dst
= gen_reg_rtx (imode
);
1834 emit_group_store (dst
, src
, type
, ssize
);
1835 if (imode
!= BLKmode
)
1836 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1837 emit_move_insn (orig_dst
, dst
);
1841 /* Check for a NULL entry, used to indicate that the parameter goes
1842 both on the stack and in registers. */
1843 if (XEXP (XVECEXP (src
, 0, 0), 0))
1848 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
1850 /* Copy the (probable) hard regs into pseudos. */
1851 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1853 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1854 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1855 emit_move_insn (tmps
[i
], reg
);
1858 /* If we won't be storing directly into memory, protect the real destination
1859 from strange tricks we might play. */
1861 if (GET_CODE (dst
) == PARALLEL
)
1865 /* We can get a PARALLEL dst if there is a conditional expression in
1866 a return statement. In that case, the dst and src are the same,
1867 so no action is necessary. */
1868 if (rtx_equal_p (dst
, src
))
1871 /* It is unclear if we can ever reach here, but we may as well handle
1872 it. Allocate a temporary, and split this into a store/load to/from
1875 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1876 emit_group_store (temp
, src
, type
, ssize
);
1877 emit_group_load (dst
, temp
, type
, ssize
);
1880 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1882 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
1883 /* Make life a bit easier for combine. */
1884 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
1887 /* Process the pieces. */
1888 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1890 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1891 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1892 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1895 /* Handle trailing fragments that run over the size of the struct. */
1896 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1898 /* store_bit_field always takes its value from the lsb.
1899 Move the fragment to the lsb if it's not already there. */
1901 #ifdef BLOCK_REG_PADDING
1902 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1903 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1909 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1910 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
1911 build_int_cst (NULL_TREE
, shift
),
1914 bytelen
= ssize
- bytepos
;
1917 if (GET_CODE (dst
) == CONCAT
)
1919 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1920 dest
= XEXP (dst
, 0);
1921 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1923 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
1924 dest
= XEXP (dst
, 1);
1928 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
1929 dest
= assign_stack_temp (GET_MODE (dest
),
1930 GET_MODE_SIZE (GET_MODE (dest
)), 0);
1931 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
1938 /* Optimize the access just a bit. */
1940 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
1941 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
1942 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1943 && bytelen
== GET_MODE_SIZE (mode
))
1944 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
1946 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
1950 /* Copy from the pseudo into the (probable) hard reg. */
1951 if (orig_dst
!= dst
)
1952 emit_move_insn (orig_dst
, dst
);
1955 /* Generate code to copy a BLKmode object of TYPE out of a
1956 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1957 is null, a stack temporary is created. TGTBLK is returned.
1959 The purpose of this routine is to handle functions that return
1960 BLKmode structures in registers. Some machines (the PA for example)
1961 want to return all small structures in registers regardless of the
1962 structure's alignment. */
1965 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
1967 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
1968 rtx src
= NULL
, dst
= NULL
;
1969 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
1970 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
1974 tgtblk
= assign_temp (build_qualified_type (type
,
1976 | TYPE_QUAL_CONST
)),
1978 preserve_temp_slots (tgtblk
);
1981 /* This code assumes srcreg is at least a full word. If it isn't, copy it
1982 into a new pseudo which is a full word. */
1984 if (GET_MODE (srcreg
) != BLKmode
1985 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
1986 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
1988 /* If the structure doesn't take up a whole number of words, see whether
1989 SRCREG is padded on the left or on the right. If it's on the left,
1990 set PADDING_CORRECTION to the number of bits to skip.
1992 In most ABIs, the structure will be returned at the least end of
1993 the register, which translates to right padding on little-endian
1994 targets and left padding on big-endian targets. The opposite
1995 holds if the structure is returned at the most significant
1996 end of the register. */
1997 if (bytes
% UNITS_PER_WORD
!= 0
1998 && (targetm
.calls
.return_in_msb (type
)
2000 : BYTES_BIG_ENDIAN
))
2002 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2004 /* Copy the structure BITSIZE bites at a time.
2006 We could probably emit more efficient code for machines which do not use
2007 strict alignment, but it doesn't seem worth the effort at the current
2009 for (bitpos
= 0, xbitpos
= padding_correction
;
2010 bitpos
< bytes
* BITS_PER_UNIT
;
2011 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2013 /* We need a new source operand each time xbitpos is on a
2014 word boundary and when xbitpos == padding_correction
2015 (the first time through). */
2016 if (xbitpos
% BITS_PER_WORD
== 0
2017 || xbitpos
== padding_correction
)
2018 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2021 /* We need a new destination operand each time bitpos is on
2023 if (bitpos
% BITS_PER_WORD
== 0)
2024 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2026 /* Use xbitpos for the source extraction (right justified) and
2027 xbitpos for the destination store (left justified). */
2028 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2029 extract_bit_field (src
, bitsize
,
2030 xbitpos
% BITS_PER_WORD
, 1,
2031 NULL_RTX
, word_mode
, word_mode
));
2037 /* Add a USE expression for REG to the (possibly empty) list pointed
2038 to by CALL_FUSAGE. REG must denote a hard register. */
2041 use_reg (rtx
*call_fusage
, rtx reg
)
2043 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2046 = gen_rtx_EXPR_LIST (VOIDmode
,
2047 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2050 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2051 starting at REGNO. All of these registers must be hard registers. */
2054 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2058 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2060 for (i
= 0; i
< nregs
; i
++)
2061 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2064 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2065 PARALLEL REGS. This is for calls that pass values in multiple
2066 non-contiguous locations. The Irix 6 ABI has examples of this. */
2069 use_group_regs (rtx
*call_fusage
, rtx regs
)
2073 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2075 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2077 /* A NULL entry means the parameter goes both on the stack and in
2078 registers. This can also be a MEM for targets that pass values
2079 partially on the stack and partially in registers. */
2080 if (reg
!= 0 && REG_P (reg
))
2081 use_reg (call_fusage
, reg
);
2086 /* Determine whether the LEN bytes generated by CONSTFUN can be
2087 stored to memory using several move instructions. CONSTFUNDATA is
2088 a pointer which will be passed as argument in every CONSTFUN call.
2089 ALIGN is maximum alignment we can assume. Return nonzero if a
2090 call to store_by_pieces should succeed. */
2093 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2094 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2095 void *constfundata
, unsigned int align
)
2097 unsigned HOST_WIDE_INT l
;
2098 unsigned int max_size
;
2099 HOST_WIDE_INT offset
= 0;
2100 enum machine_mode mode
, tmode
;
2101 enum insn_code icode
;
2108 if (! STORE_BY_PIECES_P (len
, align
))
2111 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2112 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2113 align
= GET_MODE_ALIGNMENT (tmode
);
2116 enum machine_mode xmode
;
2118 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2120 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2121 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2122 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2125 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2128 /* We would first store what we can in the largest integer mode, then go to
2129 successively smaller modes. */
2132 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2137 max_size
= STORE_MAX_PIECES
+ 1;
2138 while (max_size
> 1)
2140 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2141 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2142 if (GET_MODE_SIZE (tmode
) < max_size
)
2145 if (mode
== VOIDmode
)
2148 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2149 if (icode
!= CODE_FOR_nothing
2150 && align
>= GET_MODE_ALIGNMENT (mode
))
2152 unsigned int size
= GET_MODE_SIZE (mode
);
2159 cst
= (*constfun
) (constfundata
, offset
, mode
);
2160 if (!LEGITIMATE_CONSTANT_P (cst
))
2170 max_size
= GET_MODE_SIZE (mode
);
2173 /* The code above should have handled everything. */
2180 /* Generate several move instructions to store LEN bytes generated by
2181 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2182 pointer which will be passed as argument in every CONSTFUN call.
2183 ALIGN is maximum alignment we can assume.
2184 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2185 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2189 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2190 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2191 void *constfundata
, unsigned int align
, int endp
)
2193 struct store_by_pieces data
;
2197 gcc_assert (endp
!= 2);
2201 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2202 data
.constfun
= constfun
;
2203 data
.constfundata
= constfundata
;
2206 store_by_pieces_1 (&data
, align
);
2211 gcc_assert (!data
.reverse
);
2216 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2217 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2219 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2222 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2229 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2237 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2238 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2241 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2243 struct store_by_pieces data
;
2248 data
.constfun
= clear_by_pieces_1
;
2249 data
.constfundata
= NULL
;
2252 store_by_pieces_1 (&data
, align
);
2255 /* Callback routine for clear_by_pieces.
2256 Return const0_rtx unconditionally. */
2259 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2260 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2261 enum machine_mode mode ATTRIBUTE_UNUSED
)
2266 /* Subroutine of clear_by_pieces and store_by_pieces.
2267 Generate several move instructions to store LEN bytes of block TO. (A MEM
2268 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2271 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2272 unsigned int align ATTRIBUTE_UNUSED
)
2274 rtx to_addr
= XEXP (data
->to
, 0);
2275 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2276 enum machine_mode mode
= VOIDmode
, tmode
;
2277 enum insn_code icode
;
2280 data
->to_addr
= to_addr
;
2282 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2283 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2285 data
->explicit_inc_to
= 0;
2287 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2289 data
->offset
= data
->len
;
2291 /* If storing requires more than two move insns,
2292 copy addresses to registers (to make displacements shorter)
2293 and use post-increment if available. */
2294 if (!data
->autinc_to
2295 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2297 /* Determine the main mode we'll be using. */
2298 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2299 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2300 if (GET_MODE_SIZE (tmode
) < max_size
)
2303 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2305 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2306 data
->autinc_to
= 1;
2307 data
->explicit_inc_to
= -1;
2310 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2311 && ! data
->autinc_to
)
2313 data
->to_addr
= copy_addr_to_reg (to_addr
);
2314 data
->autinc_to
= 1;
2315 data
->explicit_inc_to
= 1;
2318 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2319 data
->to_addr
= copy_addr_to_reg (to_addr
);
2322 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2323 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2324 align
= GET_MODE_ALIGNMENT (tmode
);
2327 enum machine_mode xmode
;
2329 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2331 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2332 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2333 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2336 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2339 /* First store what we can in the largest integer mode, then go to
2340 successively smaller modes. */
2342 while (max_size
> 1)
2344 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2345 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2346 if (GET_MODE_SIZE (tmode
) < max_size
)
2349 if (mode
== VOIDmode
)
2352 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2353 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2354 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2356 max_size
= GET_MODE_SIZE (mode
);
2359 /* The code above should have handled everything. */
2360 gcc_assert (!data
->len
);
2363 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2364 with move instructions for mode MODE. GENFUN is the gen_... function
2365 to make a move insn for that mode. DATA has all the other info. */
2368 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2369 struct store_by_pieces
*data
)
2371 unsigned int size
= GET_MODE_SIZE (mode
);
2374 while (data
->len
>= size
)
2377 data
->offset
-= size
;
2379 if (data
->autinc_to
)
2380 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2383 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2385 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2386 emit_insn (gen_add2_insn (data
->to_addr
,
2387 GEN_INT (-(HOST_WIDE_INT
) size
)));
2389 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2390 emit_insn ((*genfun
) (to1
, cst
));
2392 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2393 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2395 if (! data
->reverse
)
2396 data
->offset
+= size
;
2402 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2403 its length in bytes. */
2406 clear_storage (rtx object
, rtx size
)
2408 enum machine_mode mode
= GET_MODE (object
);
2411 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2412 just move a zero. Otherwise, do this a piece at a time. */
2414 && GET_CODE (size
) == CONST_INT
2415 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2417 rtx zero
= CONST0_RTX (mode
);
2420 emit_move_insn (object
, zero
);
2424 if (COMPLEX_MODE_P (mode
))
2426 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2429 write_complex_part (object
, zero
, 0);
2430 write_complex_part (object
, zero
, 1);
2436 if (size
== const0_rtx
)
2439 align
= MEM_ALIGN (object
);
2441 if (GET_CODE (size
) == CONST_INT
2442 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2443 clear_by_pieces (object
, INTVAL (size
), align
);
2444 else if (clear_storage_via_clrmem (object
, size
, align
))
2447 return clear_storage_via_libcall (object
, size
);
2452 /* A subroutine of clear_storage. Expand a clrmem pattern;
2453 return true if successful. */
2456 clear_storage_via_clrmem (rtx object
, rtx size
, unsigned int align
)
2458 /* Try the most limited insn first, because there's no point
2459 including more than one in the machine description unless
2460 the more limited one has some advantage. */
2462 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2463 enum machine_mode mode
;
2465 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2466 mode
= GET_MODE_WIDER_MODE (mode
))
2468 enum insn_code code
= clrmem_optab
[(int) mode
];
2469 insn_operand_predicate_fn pred
;
2471 if (code
!= CODE_FOR_nothing
2472 /* We don't need MODE to be narrower than
2473 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2474 the mode mask, as it is returned by the macro, it will
2475 definitely be less than the actual mode mask. */
2476 && ((GET_CODE (size
) == CONST_INT
2477 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2478 <= (GET_MODE_MASK (mode
) >> 1)))
2479 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2480 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2481 || (*pred
) (object
, BLKmode
))
2482 && ((pred
= insn_data
[(int) code
].operand
[2].predicate
) == 0
2483 || (*pred
) (opalign
, VOIDmode
)))
2486 rtx last
= get_last_insn ();
2489 op1
= convert_to_mode (mode
, size
, 1);
2490 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2491 if (pred
!= 0 && ! (*pred
) (op1
, mode
))
2492 op1
= copy_to_mode_reg (mode
, op1
);
2494 pat
= GEN_FCN ((int) code
) (object
, op1
, opalign
);
2501 delete_insns_since (last
);
2508 /* A subroutine of clear_storage. Expand a call to memset.
2509 Return the return value of memset, 0 otherwise. */
2512 clear_storage_via_libcall (rtx object
, rtx size
)
2514 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2515 enum machine_mode size_mode
;
2518 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2519 place those into new pseudos into a VAR_DECL and use them later. */
2521 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2523 size_mode
= TYPE_MODE (sizetype
);
2524 size
= convert_to_mode (size_mode
, size
, 1);
2525 size
= copy_to_mode_reg (size_mode
, size
);
2527 /* It is incorrect to use the libcall calling conventions to call
2528 memset in this context. This could be a user call to memset and
2529 the user may wish to examine the return value from memset. For
2530 targets where libcalls and normal calls have different conventions
2531 for returning pointers, we could end up generating incorrect code. */
2533 object_tree
= make_tree (ptr_type_node
, object
);
2534 size_tree
= make_tree (sizetype
, size
);
2536 fn
= clear_storage_libcall_fn (true);
2537 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2538 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2539 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2541 /* Now we have to build up the CALL_EXPR itself. */
2542 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2543 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2544 call_expr
, arg_list
, NULL_TREE
);
2546 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2551 /* A subroutine of clear_storage_via_libcall. Create the tree node
2552 for the function we use for block clears. The first time FOR_CALL
2553 is true, we call assemble_external. */
2555 static GTY(()) tree block_clear_fn
;
2558 init_block_clear_fn (const char *asmspec
)
2560 if (!block_clear_fn
)
2564 fn
= get_identifier ("memset");
2565 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2566 integer_type_node
, sizetype
,
2569 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2570 DECL_EXTERNAL (fn
) = 1;
2571 TREE_PUBLIC (fn
) = 1;
2572 DECL_ARTIFICIAL (fn
) = 1;
2573 TREE_NOTHROW (fn
) = 1;
2575 block_clear_fn
= fn
;
2579 set_user_assembler_name (block_clear_fn
, asmspec
);
2583 clear_storage_libcall_fn (int for_call
)
2585 static bool emitted_extern
;
2587 if (!block_clear_fn
)
2588 init_block_clear_fn (NULL
);
2590 if (for_call
&& !emitted_extern
)
2592 emitted_extern
= true;
2593 make_decl_rtl (block_clear_fn
);
2594 assemble_external (block_clear_fn
);
2597 return block_clear_fn
;
2600 /* Write to one of the components of the complex value CPLX. Write VAL to
2601 the real part if IMAG_P is false, and the imaginary part if its true. */
2604 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2606 enum machine_mode cmode
;
2607 enum machine_mode imode
;
2610 if (GET_CODE (cplx
) == CONCAT
)
2612 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2616 cmode
= GET_MODE (cplx
);
2617 imode
= GET_MODE_INNER (cmode
);
2618 ibitsize
= GET_MODE_BITSIZE (imode
);
2620 /* If the sub-object is at least word sized, then we know that subregging
2621 will work. This special case is important, since store_bit_field
2622 wants to operate on integer modes, and there's rarely an OImode to
2623 correspond to TCmode. */
2624 if (ibitsize
>= BITS_PER_WORD
2625 /* For hard regs we have exact predicates. Assume we can split
2626 the original object if it spans an even number of hard regs.
2627 This special case is important for SCmode on 64-bit platforms
2628 where the natural size of floating-point regs is 32-bit. */
2629 || (GET_CODE (cplx
) == REG
2630 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2631 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2632 /* For MEMs we always try to make a "subreg", that is to adjust
2633 the MEM, because store_bit_field may generate overly
2634 convoluted RTL for sub-word fields. */
2637 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2638 imag_p
? GET_MODE_SIZE (imode
) : 0);
2641 emit_move_insn (part
, val
);
2645 /* simplify_gen_subreg may fail for sub-word MEMs. */
2646 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2649 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2652 /* Extract one of the components of the complex value CPLX. Extract the
2653 real part if IMAG_P is false, and the imaginary part if it's true. */
2656 read_complex_part (rtx cplx
, bool imag_p
)
2658 enum machine_mode cmode
, imode
;
2661 if (GET_CODE (cplx
) == CONCAT
)
2662 return XEXP (cplx
, imag_p
);
2664 cmode
= GET_MODE (cplx
);
2665 imode
= GET_MODE_INNER (cmode
);
2666 ibitsize
= GET_MODE_BITSIZE (imode
);
2668 /* Special case reads from complex constants that got spilled to memory. */
2669 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2671 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2672 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2674 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2675 if (CONSTANT_CLASS_P (part
))
2676 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2680 /* If the sub-object is at least word sized, then we know that subregging
2681 will work. This special case is important, since extract_bit_field
2682 wants to operate on integer modes, and there's rarely an OImode to
2683 correspond to TCmode. */
2684 if (ibitsize
>= BITS_PER_WORD
2685 /* For hard regs we have exact predicates. Assume we can split
2686 the original object if it spans an even number of hard regs.
2687 This special case is important for SCmode on 64-bit platforms
2688 where the natural size of floating-point regs is 32-bit. */
2689 || (GET_CODE (cplx
) == REG
2690 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2691 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2692 /* For MEMs we always try to make a "subreg", that is to adjust
2693 the MEM, because extract_bit_field may generate overly
2694 convoluted RTL for sub-word fields. */
2697 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2698 imag_p
? GET_MODE_SIZE (imode
) : 0);
2702 /* simplify_gen_subreg may fail for sub-word MEMs. */
2703 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2706 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2707 true, NULL_RTX
, imode
, imode
);
2710 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2711 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2712 represented in NEW_MODE. If FORCE is true, this will never happen, as
2713 we'll force-create a SUBREG if needed. */
2716 emit_move_change_mode (enum machine_mode new_mode
,
2717 enum machine_mode old_mode
, rtx x
, bool force
)
2721 if (reload_in_progress
&& MEM_P (x
))
2723 /* We can't use gen_lowpart here because it may call change_address
2724 which is not appropriate if we were called when a reload was in
2725 progress. We don't have to worry about changing the address since
2726 the size in bytes is supposed to be the same. Copy the MEM to
2727 change the mode and move any substitutions from the old MEM to
2730 ret
= adjust_address_nv (x
, new_mode
, 0);
2731 copy_replacements (x
, ret
);
2735 /* Note that we do want simplify_subreg's behavior of validating
2736 that the new mode is ok for a hard register. If we were to use
2737 simplify_gen_subreg, we would create the subreg, but would
2738 probably run into the target not being able to implement it. */
2739 /* Except, of course, when FORCE is true, when this is exactly what
2740 we want. Which is needed for CCmodes on some targets. */
2742 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2744 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2750 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2751 an integer mode of the same size as MODE. Returns the instruction
2752 emitted, or NULL if such a move could not be generated. */
2755 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
)
2757 enum machine_mode imode
;
2758 enum insn_code code
;
2760 /* There must exist a mode of the exact size we require. */
2761 imode
= int_mode_for_mode (mode
);
2762 if (imode
== BLKmode
)
2765 /* The target must support moves in this mode. */
2766 code
= mov_optab
->handlers
[imode
].insn_code
;
2767 if (code
== CODE_FOR_nothing
)
2770 x
= emit_move_change_mode (imode
, mode
, x
, false);
2773 y
= emit_move_change_mode (imode
, mode
, y
, false);
2776 return emit_insn (GEN_FCN (code
) (x
, y
));
2779 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2780 Return an equivalent MEM that does not use an auto-increment. */
2783 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2785 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2786 HOST_WIDE_INT adjust
;
2789 adjust
= GET_MODE_SIZE (mode
);
2790 #ifdef PUSH_ROUNDING
2791 adjust
= PUSH_ROUNDING (adjust
);
2793 if (code
== PRE_DEC
|| code
== POST_DEC
)
2796 /* Do not use anti_adjust_stack, since we don't want to update
2797 stack_pointer_delta. */
2798 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2799 GEN_INT (adjust
), stack_pointer_rtx
,
2800 0, OPTAB_LIB_WIDEN
);
2801 if (temp
!= stack_pointer_rtx
)
2802 emit_move_insn (stack_pointer_rtx
, temp
);
2808 temp
= stack_pointer_rtx
;
2811 temp
= plus_constant (stack_pointer_rtx
, -GET_MODE_SIZE (mode
));
2814 temp
= plus_constant (stack_pointer_rtx
, GET_MODE_SIZE (mode
));
2820 return replace_equiv_address (x
, temp
);
2823 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2824 X is known to satisfy push_operand, and MODE is known to be complex.
2825 Returns the last instruction emitted. */
2828 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
2830 enum machine_mode submode
= GET_MODE_INNER (mode
);
2833 #ifdef PUSH_ROUNDING
2834 unsigned int submodesize
= GET_MODE_SIZE (submode
);
2836 /* In case we output to the stack, but the size is smaller than the
2837 machine can push exactly, we need to use move instructions. */
2838 if (PUSH_ROUNDING (submodesize
) != submodesize
)
2840 x
= emit_move_resolve_push (mode
, x
);
2841 return emit_move_insn (x
, y
);
2845 /* Note that the real part always precedes the imag part in memory
2846 regardless of machine's endianness. */
2847 switch (GET_CODE (XEXP (x
, 0)))
2861 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2862 read_complex_part (y
, imag_first
));
2863 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2864 read_complex_part (y
, !imag_first
));
2867 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2868 MODE is known to be complex. Returns the last instruction emitted. */
2871 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
2875 /* Need to take special care for pushes, to maintain proper ordering
2876 of the data, and possibly extra padding. */
2877 if (push_operand (x
, mode
))
2878 return emit_move_complex_push (mode
, x
, y
);
2880 /* See if we can coerce the target into moving both values at once. */
2882 /* Move floating point as parts. */
2883 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
2884 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
2886 /* Not possible if the values are inherently not adjacent. */
2887 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
2889 /* Is possible if both are registers (or subregs of registers). */
2890 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
2892 /* If one of the operands is a memory, and alignment constraints
2893 are friendly enough, we may be able to do combined memory operations.
2894 We do not attempt this if Y is a constant because that combination is
2895 usually better with the by-parts thing below. */
2896 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
2897 && (!STRICT_ALIGNMENT
2898 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
2907 /* For memory to memory moves, optimal behavior can be had with the
2908 existing block move logic. */
2909 if (MEM_P (x
) && MEM_P (y
))
2911 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
2912 BLOCK_OP_NO_LIBCALL
);
2913 return get_last_insn ();
2916 ret
= emit_move_via_integer (mode
, x
, y
);
2921 /* Show the output dies here. This is necessary for SUBREGs
2922 of pseudos since we cannot track their lifetimes correctly;
2923 hard regs shouldn't appear here except as return values. */
2924 if (!reload_completed
&& !reload_in_progress
2925 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
2926 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2928 write_complex_part (x
, read_complex_part (y
, false), false);
2929 write_complex_part (x
, read_complex_part (y
, true), true);
2930 return get_last_insn ();
2933 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2934 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2937 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
2941 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
2944 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
2945 if (code
!= CODE_FOR_nothing
)
2947 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
2948 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
2949 return emit_insn (GEN_FCN (code
) (x
, y
));
2953 /* Otherwise, find the MODE_INT mode of the same width. */
2954 ret
= emit_move_via_integer (mode
, x
, y
);
2955 gcc_assert (ret
!= NULL
);
2959 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2960 MODE is any multi-word or full-word mode that lacks a move_insn
2961 pattern. Note that you will get better code if you define such
2962 patterns, even if they must turn into multiple assembler instructions. */
2965 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
2972 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
2974 /* If X is a push on the stack, do the push now and replace
2975 X with a reference to the stack pointer. */
2976 if (push_operand (x
, mode
))
2977 x
= emit_move_resolve_push (mode
, x
);
2979 /* If we are in reload, see if either operand is a MEM whose address
2980 is scheduled for replacement. */
2981 if (reload_in_progress
&& MEM_P (x
)
2982 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
2983 x
= replace_equiv_address_nv (x
, inner
);
2984 if (reload_in_progress
&& MEM_P (y
)
2985 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
2986 y
= replace_equiv_address_nv (y
, inner
);
2990 need_clobber
= false;
2992 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
2995 rtx xpart
= operand_subword (x
, i
, 1, mode
);
2996 rtx ypart
= operand_subword (y
, i
, 1, mode
);
2998 /* If we can't get a part of Y, put Y into memory if it is a
2999 constant. Otherwise, force it into a register. If we still
3000 can't get a part of Y, abort. */
3001 if (ypart
== 0 && CONSTANT_P (y
))
3003 y
= force_const_mem (mode
, y
);
3004 ypart
= operand_subword (y
, i
, 1, mode
);
3006 else if (ypart
== 0)
3007 ypart
= operand_subword_force (y
, i
, mode
);
3009 gcc_assert (xpart
&& ypart
);
3011 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3013 last_insn
= emit_move_insn (xpart
, ypart
);
3019 /* Show the output dies here. This is necessary for SUBREGs
3020 of pseudos since we cannot track their lifetimes correctly;
3021 hard regs shouldn't appear here except as return values.
3022 We never want to emit such a clobber after reload. */
3024 && ! (reload_in_progress
|| reload_completed
)
3025 && need_clobber
!= 0)
3026 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3033 /* Low level part of emit_move_insn.
3034 Called just like emit_move_insn, but assumes X and Y
3035 are basically valid. */
3038 emit_move_insn_1 (rtx x
, rtx y
)
3040 enum machine_mode mode
= GET_MODE (x
);
3041 enum insn_code code
;
3043 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3045 code
= mov_optab
->handlers
[mode
].insn_code
;
3046 if (code
!= CODE_FOR_nothing
)
3047 return emit_insn (GEN_FCN (code
) (x
, y
));
3049 /* Expand complex moves by moving real part and imag part. */
3050 if (COMPLEX_MODE_P (mode
))
3051 return emit_move_complex (mode
, x
, y
);
3053 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3054 return emit_move_ccmode (mode
, x
, y
);
3056 /* Try using a move pattern for the corresponding integer mode. This is
3057 only safe when simplify_subreg can convert MODE constants into integer
3058 constants. At present, it can only do this reliably if the value
3059 fits within a HOST_WIDE_INT. */
3060 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3062 rtx ret
= emit_move_via_integer (mode
, x
, y
);
3067 return emit_move_multi_word (mode
, x
, y
);
3070 /* Generate code to copy Y into X.
3071 Both Y and X must have the same mode, except that
3072 Y can be a constant with VOIDmode.
3073 This mode cannot be BLKmode; use emit_block_move for that.
3075 Return the last instruction emitted. */
3078 emit_move_insn (rtx x
, rtx y
)
3080 enum machine_mode mode
= GET_MODE (x
);
3081 rtx y_cst
= NULL_RTX
;
3084 gcc_assert (mode
!= BLKmode
3085 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3090 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3091 && (last_insn
= compress_float_constant (x
, y
)))
3096 if (!LEGITIMATE_CONSTANT_P (y
))
3098 y
= force_const_mem (mode
, y
);
3100 /* If the target's cannot_force_const_mem prevented the spill,
3101 assume that the target's move expanders will also take care
3102 of the non-legitimate constant. */
3108 /* If X or Y are memory references, verify that their addresses are valid
3111 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3112 && ! push_operand (x
, GET_MODE (x
)))
3114 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3115 x
= validize_mem (x
);
3118 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3120 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3121 y
= validize_mem (y
);
3123 gcc_assert (mode
!= BLKmode
);
3125 last_insn
= emit_move_insn_1 (x
, y
);
3127 if (y_cst
&& REG_P (x
)
3128 && (set
= single_set (last_insn
)) != NULL_RTX
3129 && SET_DEST (set
) == x
3130 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3131 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3136 /* If Y is representable exactly in a narrower mode, and the target can
3137 perform the extension directly from constant or memory, then emit the
3138 move as an extension. */
3141 compress_float_constant (rtx x
, rtx y
)
3143 enum machine_mode dstmode
= GET_MODE (x
);
3144 enum machine_mode orig_srcmode
= GET_MODE (y
);
3145 enum machine_mode srcmode
;
3148 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3150 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3151 srcmode
!= orig_srcmode
;
3152 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3155 rtx trunc_y
, last_insn
;
3157 /* Skip if the target can't extend this way. */
3158 ic
= can_extend_p (dstmode
, srcmode
, 0);
3159 if (ic
== CODE_FOR_nothing
)
3162 /* Skip if the narrowed value isn't exact. */
3163 if (! exact_real_truncate (srcmode
, &r
))
3166 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3168 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3170 /* Skip if the target needs extra instructions to perform
3172 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3175 else if (float_extend_from_mem
[dstmode
][srcmode
])
3176 trunc_y
= validize_mem (force_const_mem (srcmode
, trunc_y
));
3180 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3181 last_insn
= get_last_insn ();
3184 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3192 /* Pushing data onto the stack. */
3194 /* Push a block of length SIZE (perhaps variable)
3195 and return an rtx to address the beginning of the block.
3196 The value may be virtual_outgoing_args_rtx.
3198 EXTRA is the number of bytes of padding to push in addition to SIZE.
3199 BELOW nonzero means this padding comes at low addresses;
3200 otherwise, the padding comes at high addresses. */
3203 push_block (rtx size
, int extra
, int below
)
3207 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3208 if (CONSTANT_P (size
))
3209 anti_adjust_stack (plus_constant (size
, extra
));
3210 else if (REG_P (size
) && extra
== 0)
3211 anti_adjust_stack (size
);
3214 temp
= copy_to_mode_reg (Pmode
, size
);
3216 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3217 temp
, 0, OPTAB_LIB_WIDEN
);
3218 anti_adjust_stack (temp
);
3221 #ifndef STACK_GROWS_DOWNWARD
3227 temp
= virtual_outgoing_args_rtx
;
3228 if (extra
!= 0 && below
)
3229 temp
= plus_constant (temp
, extra
);
3233 if (GET_CODE (size
) == CONST_INT
)
3234 temp
= plus_constant (virtual_outgoing_args_rtx
,
3235 -INTVAL (size
) - (below
? 0 : extra
));
3236 else if (extra
!= 0 && !below
)
3237 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3238 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3240 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3241 negate_rtx (Pmode
, size
));
3244 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3247 #ifdef PUSH_ROUNDING
3249 /* Emit single push insn. */
3252 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3255 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3257 enum insn_code icode
;
3258 insn_operand_predicate_fn pred
;
3260 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3261 /* If there is push pattern, use it. Otherwise try old way of throwing
3262 MEM representing push operation to move expander. */
3263 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3264 if (icode
!= CODE_FOR_nothing
)
3266 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3267 && !((*pred
) (x
, mode
))))
3268 x
= force_reg (mode
, x
);
3269 emit_insn (GEN_FCN (icode
) (x
));
3272 if (GET_MODE_SIZE (mode
) == rounded_size
)
3273 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3274 /* If we are to pad downward, adjust the stack pointer first and
3275 then store X into the stack location using an offset. This is
3276 because emit_move_insn does not know how to pad; it does not have
3278 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3280 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3281 HOST_WIDE_INT offset
;
3283 emit_move_insn (stack_pointer_rtx
,
3284 expand_binop (Pmode
,
3285 #ifdef STACK_GROWS_DOWNWARD
3291 GEN_INT (rounded_size
),
3292 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3294 offset
= (HOST_WIDE_INT
) padding_size
;
3295 #ifdef STACK_GROWS_DOWNWARD
3296 if (STACK_PUSH_CODE
== POST_DEC
)
3297 /* We have already decremented the stack pointer, so get the
3299 offset
+= (HOST_WIDE_INT
) rounded_size
;
3301 if (STACK_PUSH_CODE
== POST_INC
)
3302 /* We have already incremented the stack pointer, so get the
3304 offset
-= (HOST_WIDE_INT
) rounded_size
;
3306 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3310 #ifdef STACK_GROWS_DOWNWARD
3311 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3312 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3313 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3315 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3316 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3317 GEN_INT (rounded_size
));
3319 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3322 dest
= gen_rtx_MEM (mode
, dest_addr
);
3326 set_mem_attributes (dest
, type
, 1);
3328 if (flag_optimize_sibling_calls
)
3329 /* Function incoming arguments may overlap with sibling call
3330 outgoing arguments and we cannot allow reordering of reads
3331 from function arguments with stores to outgoing arguments
3332 of sibling calls. */
3333 set_mem_alias_set (dest
, 0);
3335 emit_move_insn (dest
, x
);
3339 /* Generate code to push X onto the stack, assuming it has mode MODE and
3341 MODE is redundant except when X is a CONST_INT (since they don't
3343 SIZE is an rtx for the size of data to be copied (in bytes),
3344 needed only if X is BLKmode.
3346 ALIGN (in bits) is maximum alignment we can assume.
3348 If PARTIAL and REG are both nonzero, then copy that many of the first
3349 bytes of X into registers starting with REG, and push the rest of X.
3350 The amount of space pushed is decreased by PARTIAL bytes.
3351 REG must be a hard register in this case.
3352 If REG is zero but PARTIAL is not, take any all others actions for an
3353 argument partially in registers, but do not actually load any
3356 EXTRA is the amount in bytes of extra space to leave next to this arg.
3357 This is ignored if an argument block has already been allocated.
3359 On a machine that lacks real push insns, ARGS_ADDR is the address of
3360 the bottom of the argument block for this call. We use indexing off there
3361 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3362 argument block has not been preallocated.
3364 ARGS_SO_FAR is the size of args previously pushed for this call.
3366 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3367 for arguments passed in registers. If nonzero, it will be the number
3368 of bytes required. */
3371 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3372 unsigned int align
, int partial
, rtx reg
, int extra
,
3373 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3377 enum direction stack_direction
3378 #ifdef STACK_GROWS_DOWNWARD
3384 /* Decide where to pad the argument: `downward' for below,
3385 `upward' for above, or `none' for don't pad it.
3386 Default is below for small data on big-endian machines; else above. */
3387 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3389 /* Invert direction if stack is post-decrement.
3391 if (STACK_PUSH_CODE
== POST_DEC
)
3392 if (where_pad
!= none
)
3393 where_pad
= (where_pad
== downward
? upward
: downward
);
3397 if (mode
== BLKmode
)
3399 /* Copy a block into the stack, entirely or partially. */
3406 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3407 used
= partial
- offset
;
3411 /* USED is now the # of bytes we need not copy to the stack
3412 because registers will take care of them. */
3415 xinner
= adjust_address (xinner
, BLKmode
, used
);
3417 /* If the partial register-part of the arg counts in its stack size,
3418 skip the part of stack space corresponding to the registers.
3419 Otherwise, start copying to the beginning of the stack space,
3420 by setting SKIP to 0. */
3421 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3423 #ifdef PUSH_ROUNDING
3424 /* Do it with several push insns if that doesn't take lots of insns
3425 and if there is no difficulty with push insns that skip bytes
3426 on the stack for alignment purposes. */
3429 && GET_CODE (size
) == CONST_INT
3431 && MEM_ALIGN (xinner
) >= align
3432 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3433 /* Here we avoid the case of a structure whose weak alignment
3434 forces many pushes of a small amount of data,
3435 and such small pushes do rounding that causes trouble. */
3436 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3437 || align
>= BIGGEST_ALIGNMENT
3438 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3439 == (align
/ BITS_PER_UNIT
)))
3440 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3442 /* Push padding now if padding above and stack grows down,
3443 or if padding below and stack grows up.
3444 But if space already allocated, this has already been done. */
3445 if (extra
&& args_addr
== 0
3446 && where_pad
!= none
&& where_pad
!= stack_direction
)
3447 anti_adjust_stack (GEN_INT (extra
));
3449 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3452 #endif /* PUSH_ROUNDING */
3456 /* Otherwise make space on the stack and copy the data
3457 to the address of that space. */
3459 /* Deduct words put into registers from the size we must copy. */
3462 if (GET_CODE (size
) == CONST_INT
)
3463 size
= GEN_INT (INTVAL (size
) - used
);
3465 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3466 GEN_INT (used
), NULL_RTX
, 0,
3470 /* Get the address of the stack space.
3471 In this case, we do not deal with EXTRA separately.
3472 A single stack adjust will do. */
3475 temp
= push_block (size
, extra
, where_pad
== downward
);
3478 else if (GET_CODE (args_so_far
) == CONST_INT
)
3479 temp
= memory_address (BLKmode
,
3480 plus_constant (args_addr
,
3481 skip
+ INTVAL (args_so_far
)));
3483 temp
= memory_address (BLKmode
,
3484 plus_constant (gen_rtx_PLUS (Pmode
,
3489 if (!ACCUMULATE_OUTGOING_ARGS
)
3491 /* If the source is referenced relative to the stack pointer,
3492 copy it to another register to stabilize it. We do not need
3493 to do this if we know that we won't be changing sp. */
3495 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3496 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3497 temp
= copy_to_reg (temp
);
3500 target
= gen_rtx_MEM (BLKmode
, temp
);
3502 /* We do *not* set_mem_attributes here, because incoming arguments
3503 may overlap with sibling call outgoing arguments and we cannot
3504 allow reordering of reads from function arguments with stores
3505 to outgoing arguments of sibling calls. We do, however, want
3506 to record the alignment of the stack slot. */
3507 /* ALIGN may well be better aligned than TYPE, e.g. due to
3508 PARM_BOUNDARY. Assume the caller isn't lying. */
3509 set_mem_align (target
, align
);
3511 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3514 else if (partial
> 0)
3516 /* Scalar partly in registers. */
3518 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3521 /* # bytes of start of argument
3522 that we must make space for but need not store. */
3523 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_WORD
);
3524 int args_offset
= INTVAL (args_so_far
);
3527 /* Push padding now if padding above and stack grows down,
3528 or if padding below and stack grows up.
3529 But if space already allocated, this has already been done. */
3530 if (extra
&& args_addr
== 0
3531 && where_pad
!= none
&& where_pad
!= stack_direction
)
3532 anti_adjust_stack (GEN_INT (extra
));
3534 /* If we make space by pushing it, we might as well push
3535 the real data. Otherwise, we can leave OFFSET nonzero
3536 and leave the space uninitialized. */
3540 /* Now NOT_STACK gets the number of words that we don't need to
3541 allocate on the stack. */
3542 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3544 /* If the partial register-part of the arg counts in its stack size,
3545 skip the part of stack space corresponding to the registers.
3546 Otherwise, start copying to the beginning of the stack space,
3547 by setting SKIP to 0. */
3548 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3550 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3551 x
= validize_mem (force_const_mem (mode
, x
));
3553 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3554 SUBREGs of such registers are not allowed. */
3555 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3556 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3557 x
= copy_to_reg (x
);
3559 /* Loop over all the words allocated on the stack for this arg. */
3560 /* We can do it by words, because any scalar bigger than a word
3561 has a size a multiple of a word. */
3562 #ifndef PUSH_ARGS_REVERSED
3563 for (i
= not_stack
; i
< size
; i
++)
3565 for (i
= size
- 1; i
>= not_stack
; i
--)
3567 if (i
>= not_stack
+ offset
)
3568 emit_push_insn (operand_subword_force (x
, i
, mode
),
3569 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3571 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3573 reg_parm_stack_space
, alignment_pad
);
3580 /* Push padding now if padding above and stack grows down,
3581 or if padding below and stack grows up.
3582 But if space already allocated, this has already been done. */
3583 if (extra
&& args_addr
== 0
3584 && where_pad
!= none
&& where_pad
!= stack_direction
)
3585 anti_adjust_stack (GEN_INT (extra
));
3587 #ifdef PUSH_ROUNDING
3588 if (args_addr
== 0 && PUSH_ARGS
)
3589 emit_single_push_insn (mode
, x
, type
);
3593 if (GET_CODE (args_so_far
) == CONST_INT
)
3595 = memory_address (mode
,
3596 plus_constant (args_addr
,
3597 INTVAL (args_so_far
)));
3599 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3601 dest
= gen_rtx_MEM (mode
, addr
);
3603 /* We do *not* set_mem_attributes here, because incoming arguments
3604 may overlap with sibling call outgoing arguments and we cannot
3605 allow reordering of reads from function arguments with stores
3606 to outgoing arguments of sibling calls. We do, however, want
3607 to record the alignment of the stack slot. */
3608 /* ALIGN may well be better aligned than TYPE, e.g. due to
3609 PARM_BOUNDARY. Assume the caller isn't lying. */
3610 set_mem_align (dest
, align
);
3612 emit_move_insn (dest
, x
);
3616 /* If part should go in registers, copy that part
3617 into the appropriate registers. Do this now, at the end,
3618 since mem-to-mem copies above may do function calls. */
3619 if (partial
> 0 && reg
!= 0)
3621 /* Handle calls that pass values in multiple non-contiguous locations.
3622 The Irix 6 ABI has examples of this. */
3623 if (GET_CODE (reg
) == PARALLEL
)
3624 emit_group_load (reg
, x
, type
, -1);
3627 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3628 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3632 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3633 anti_adjust_stack (GEN_INT (extra
));
3635 if (alignment_pad
&& args_addr
== 0)
3636 anti_adjust_stack (alignment_pad
);
3639 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3643 get_subtarget (rtx x
)
3647 /* Only registers can be subtargets. */
3649 /* Don't use hard regs to avoid extending their life. */
3650 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3654 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3655 FIELD is a bitfield. Returns true if the optimization was successful,
3656 and there's nothing else to do. */
3659 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3660 unsigned HOST_WIDE_INT bitpos
,
3661 enum machine_mode mode1
, rtx str_rtx
,
3664 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3665 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3670 if (mode1
!= VOIDmode
3671 || bitsize
>= BITS_PER_WORD
3672 || str_bitsize
> BITS_PER_WORD
3673 || TREE_SIDE_EFFECTS (to
)
3674 || TREE_THIS_VOLATILE (to
))
3678 if (!BINARY_CLASS_P (src
)
3679 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3682 op0
= TREE_OPERAND (src
, 0);
3683 op1
= TREE_OPERAND (src
, 1);
3686 if (!operand_equal_p (to
, op0
, 0))
3689 if (MEM_P (str_rtx
))
3691 unsigned HOST_WIDE_INT offset1
;
3693 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3694 str_mode
= word_mode
;
3695 str_mode
= get_best_mode (bitsize
, bitpos
,
3696 MEM_ALIGN (str_rtx
), str_mode
, 0);
3697 if (str_mode
== VOIDmode
)
3699 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3702 bitpos
%= str_bitsize
;
3703 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3704 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3706 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3709 /* If the bit field covers the whole REG/MEM, store_field
3710 will likely generate better code. */
3711 if (bitsize
>= str_bitsize
)
3714 /* We can't handle fields split across multiple entities. */
3715 if (bitpos
+ bitsize
> str_bitsize
)
3718 if (BYTES_BIG_ENDIAN
)
3719 bitpos
= str_bitsize
- bitpos
- bitsize
;
3721 switch (TREE_CODE (src
))
3725 /* For now, just optimize the case of the topmost bitfield
3726 where we don't need to do any masking and also
3727 1 bit bitfields where xor can be used.
3728 We might win by one instruction for the other bitfields
3729 too if insv/extv instructions aren't used, so that
3730 can be added later. */
3731 if (bitpos
+ bitsize
!= str_bitsize
3732 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3735 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
3736 value
= convert_modes (str_mode
,
3737 TYPE_MODE (TREE_TYPE (op1
)), value
,
3738 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3740 /* We may be accessing data outside the field, which means
3741 we can alias adjacent data. */
3742 if (MEM_P (str_rtx
))
3744 str_rtx
= shallow_copy_rtx (str_rtx
);
3745 set_mem_alias_set (str_rtx
, 0);
3746 set_mem_expr (str_rtx
, 0);
3749 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3750 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
3752 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
3755 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
3756 build_int_cst (NULL_TREE
, bitpos
),
3758 result
= expand_binop (str_mode
, binop
, str_rtx
,
3759 value
, str_rtx
, 1, OPTAB_WIDEN
);
3760 if (result
!= str_rtx
)
3761 emit_move_insn (str_rtx
, result
);
3766 if (TREE_CODE (op1
) != INTEGER_CST
)
3768 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3769 value
= convert_modes (GET_MODE (str_rtx
),
3770 TYPE_MODE (TREE_TYPE (op1
)), value
,
3771 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3773 /* We may be accessing data outside the field, which means
3774 we can alias adjacent data. */
3775 if (MEM_P (str_rtx
))
3777 str_rtx
= shallow_copy_rtx (str_rtx
);
3778 set_mem_alias_set (str_rtx
, 0);
3779 set_mem_expr (str_rtx
, 0);
3782 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
3783 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3785 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
3787 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
3790 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
3791 build_int_cst (NULL_TREE
, bitpos
),
3793 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
3794 value
, str_rtx
, 1, OPTAB_WIDEN
);
3795 if (result
!= str_rtx
)
3796 emit_move_insn (str_rtx
, result
);
3807 /* Expand an assignment that stores the value of FROM into TO. */
3810 expand_assignment (tree to
, tree from
)
3815 /* Don't crash if the lhs of the assignment was erroneous. */
3817 if (TREE_CODE (to
) == ERROR_MARK
)
3819 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3823 /* Assignment of a structure component needs special treatment
3824 if the structure component's rtx is not simply a MEM.
3825 Assignment of an array element at a constant index, and assignment of
3826 an array element in an unaligned packed structure field, has the same
3828 if (handled_component_p (to
)
3829 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
3831 enum machine_mode mode1
;
3832 HOST_WIDE_INT bitsize
, bitpos
;
3839 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
3840 &unsignedp
, &volatilep
, true);
3842 /* If we are going to use store_bit_field and extract_bit_field,
3843 make sure to_rtx will be safe for multiple use. */
3845 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
3849 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
3851 gcc_assert (MEM_P (to_rtx
));
3853 #ifdef POINTERS_EXTEND_UNSIGNED
3854 if (GET_MODE (offset_rtx
) != Pmode
)
3855 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
3857 if (GET_MODE (offset_rtx
) != ptr_mode
)
3858 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
3861 /* A constant address in TO_RTX can have VOIDmode, we must not try
3862 to call force_reg for that case. Avoid that case. */
3864 && GET_MODE (to_rtx
) == BLKmode
3865 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
3867 && (bitpos
% bitsize
) == 0
3868 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
3869 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
3871 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
3875 to_rtx
= offset_address (to_rtx
, offset_rtx
,
3876 highest_pow2_factor_for_target (to
,
3880 /* Handle expand_expr of a complex value returning a CONCAT. */
3881 if (GET_CODE (to_rtx
) == CONCAT
)
3883 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
3885 gcc_assert (bitpos
== 0);
3886 result
= store_expr (from
, to_rtx
, false);
3890 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
3891 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
3898 /* If the field is at offset zero, we could have been given the
3899 DECL_RTX of the parent struct. Don't munge it. */
3900 to_rtx
= shallow_copy_rtx (to_rtx
);
3902 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
3904 /* Deal with volatile and readonly fields. The former is only
3905 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3907 MEM_VOLATILE_P (to_rtx
) = 1;
3908 if (component_uses_parent_alias_set (to
))
3909 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
3912 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
3916 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
3917 TREE_TYPE (tem
), get_alias_set (to
));
3921 preserve_temp_slots (result
);
3927 /* If the rhs is a function call and its value is not an aggregate,
3928 call the function before we start to compute the lhs.
3929 This is needed for correct code for cases such as
3930 val = setjmp (buf) on machines where reference to val
3931 requires loading up part of an address in a separate insn.
3933 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3934 since it might be a promoted variable where the zero- or sign- extension
3935 needs to be done. Handling this in the normal way is safe because no
3936 computation is done before the call. */
3937 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
3938 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
3939 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
3940 && REG_P (DECL_RTL (to
))))
3945 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3947 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3949 /* Handle calls that return values in multiple non-contiguous locations.
3950 The Irix 6 ABI has examples of this. */
3951 if (GET_CODE (to_rtx
) == PARALLEL
)
3952 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
3953 int_size_in_bytes (TREE_TYPE (from
)));
3954 else if (GET_MODE (to_rtx
) == BLKmode
)
3955 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
3958 if (POINTER_TYPE_P (TREE_TYPE (to
)))
3959 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
3960 emit_move_insn (to_rtx
, value
);
3962 preserve_temp_slots (to_rtx
);
3968 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3969 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3972 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3974 /* Don't move directly into a return register. */
3975 if (TREE_CODE (to
) == RESULT_DECL
3976 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
3981 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
3983 if (GET_CODE (to_rtx
) == PARALLEL
)
3984 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
3985 int_size_in_bytes (TREE_TYPE (from
)));
3987 emit_move_insn (to_rtx
, temp
);
3989 preserve_temp_slots (to_rtx
);
3995 /* In case we are returning the contents of an object which overlaps
3996 the place the value is being stored, use a safe function when copying
3997 a value through a pointer into a structure value return block. */
3998 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
3999 && current_function_returns_struct
4000 && !current_function_returns_pcc_struct
)
4005 size
= expr_size (from
);
4006 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4008 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4009 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4010 XEXP (from_rtx
, 0), Pmode
,
4011 convert_to_mode (TYPE_MODE (sizetype
),
4012 size
, TYPE_UNSIGNED (sizetype
)),
4013 TYPE_MODE (sizetype
));
4015 preserve_temp_slots (to_rtx
);
4021 /* Compute FROM and store the value in the rtx we got. */
4024 result
= store_expr (from
, to_rtx
, 0);
4025 preserve_temp_slots (result
);
4031 /* Generate code for computing expression EXP,
4032 and storing the value into TARGET.
4034 If the mode is BLKmode then we may return TARGET itself.
4035 It turns out that in BLKmode it doesn't cause a problem.
4036 because C has no operators that could combine two different
4037 assignments into the same BLKmode object with different values
4038 with no sequence point. Will other languages need this to
4041 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4042 stack, and block moves may need to be treated specially. */
4045 store_expr (tree exp
, rtx target
, int call_param_p
)
4048 rtx alt_rtl
= NULL_RTX
;
4049 int dont_return_target
= 0;
4051 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4053 /* C++ can generate ?: expressions with a throw expression in one
4054 branch and an rvalue in the other. Here, we resolve attempts to
4055 store the throw expression's nonexistent result. */
4056 gcc_assert (!call_param_p
);
4057 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4060 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4062 /* Perform first part of compound expression, then assign from second
4064 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4065 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4066 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4068 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4070 /* For conditional expression, get safe form of the target. Then
4071 test the condition, doing the appropriate assignment on either
4072 side. This avoids the creation of unnecessary temporaries.
4073 For non-BLKmode, it is more efficient not to do this. */
4075 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4077 do_pending_stack_adjust ();
4079 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4080 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4081 emit_jump_insn (gen_jump (lab2
));
4084 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4090 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4091 /* If this is a scalar in a register that is stored in a wider mode
4092 than the declared mode, compute the result into its declared mode
4093 and then convert to the wider mode. Our value is the computed
4096 rtx inner_target
= 0;
4098 /* We can do the conversion inside EXP, which will often result
4099 in some optimizations. Do the conversion in two steps: first
4100 change the signedness, if needed, then the extend. But don't
4101 do this if the type of EXP is a subtype of something else
4102 since then the conversion might involve more than just
4103 converting modes. */
4104 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4105 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4106 && (!lang_hooks
.reduce_bit_field_operations
4107 || (GET_MODE_PRECISION (GET_MODE (target
))
4108 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4110 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4111 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4113 (lang_hooks
.types
.signed_or_unsigned_type
4114 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4116 exp
= convert (lang_hooks
.types
.type_for_mode
4117 (GET_MODE (SUBREG_REG (target
)),
4118 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4121 inner_target
= SUBREG_REG (target
);
4124 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4125 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4127 /* If TEMP is a VOIDmode constant, use convert_modes to make
4128 sure that we properly convert it. */
4129 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4131 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4132 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4133 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4134 GET_MODE (target
), temp
,
4135 SUBREG_PROMOTED_UNSIGNED_P (target
));
4138 convert_move (SUBREG_REG (target
), temp
,
4139 SUBREG_PROMOTED_UNSIGNED_P (target
));
4145 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4147 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4149 /* Return TARGET if it's a specified hardware register.
4150 If TARGET is a volatile mem ref, either return TARGET
4151 or return a reg copied *from* TARGET; ANSI requires this.
4153 Otherwise, if TEMP is not TARGET, return TEMP
4154 if it is constant (for efficiency),
4155 or if we really want the correct value. */
4156 if (!(target
&& REG_P (target
)
4157 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4158 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4159 && ! rtx_equal_p (temp
, target
)
4160 && CONSTANT_P (temp
))
4161 dont_return_target
= 1;
4164 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4165 the same as that of TARGET, adjust the constant. This is needed, for
4166 example, in case it is a CONST_DOUBLE and we want only a word-sized
4168 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4169 && TREE_CODE (exp
) != ERROR_MARK
4170 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4171 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4172 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4174 /* If value was not generated in the target, store it there.
4175 Convert the value to TARGET's type first if necessary and emit the
4176 pending incrementations that have been queued when expanding EXP.
4177 Note that we cannot emit the whole queue blindly because this will
4178 effectively disable the POST_INC optimization later.
4180 If TEMP and TARGET compare equal according to rtx_equal_p, but
4181 one or both of them are volatile memory refs, we have to distinguish
4183 - expand_expr has used TARGET. In this case, we must not generate
4184 another copy. This can be detected by TARGET being equal according
4186 - expand_expr has not used TARGET - that means that the source just
4187 happens to have the same RTX form. Since temp will have been created
4188 by expand_expr, it will compare unequal according to == .
4189 We must generate a copy in this case, to reach the correct number
4190 of volatile memory references. */
4192 if ((! rtx_equal_p (temp
, target
)
4193 || (temp
!= target
&& (side_effects_p (temp
)
4194 || side_effects_p (target
))))
4195 && TREE_CODE (exp
) != ERROR_MARK
4196 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4197 but TARGET is not valid memory reference, TEMP will differ
4198 from TARGET although it is really the same location. */
4199 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4200 /* If there's nothing to copy, don't bother. Don't call expr_size
4201 unless necessary, because some front-ends (C++) expr_size-hook
4202 aborts on objects that are not supposed to be bit-copied or
4204 && expr_size (exp
) != const0_rtx
)
4206 if (GET_MODE (temp
) != GET_MODE (target
)
4207 && GET_MODE (temp
) != VOIDmode
)
4209 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4210 if (dont_return_target
)
4212 /* In this case, we will return TEMP,
4213 so make sure it has the proper mode.
4214 But don't forget to store the value into TARGET. */
4215 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4216 emit_move_insn (target
, temp
);
4219 convert_move (target
, temp
, unsignedp
);
4222 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4224 /* Handle copying a string constant into an array. The string
4225 constant may be shorter than the array. So copy just the string's
4226 actual length, and clear the rest. First get the size of the data
4227 type of the string, which is actually the size of the target. */
4228 rtx size
= expr_size (exp
);
4230 if (GET_CODE (size
) == CONST_INT
4231 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4232 emit_block_move (target
, temp
, size
,
4234 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4237 /* Compute the size of the data to copy from the string. */
4239 = size_binop (MIN_EXPR
,
4240 make_tree (sizetype
, size
),
4241 size_int (TREE_STRING_LENGTH (exp
)));
4243 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4245 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4248 /* Copy that much. */
4249 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4250 TYPE_UNSIGNED (sizetype
));
4251 emit_block_move (target
, temp
, copy_size_rtx
,
4253 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4255 /* Figure out how much is left in TARGET that we have to clear.
4256 Do all calculations in ptr_mode. */
4257 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4259 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4260 target
= adjust_address (target
, BLKmode
,
4261 INTVAL (copy_size_rtx
));
4265 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4266 copy_size_rtx
, NULL_RTX
, 0,
4269 #ifdef POINTERS_EXTEND_UNSIGNED
4270 if (GET_MODE (copy_size_rtx
) != Pmode
)
4271 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4272 TYPE_UNSIGNED (sizetype
));
4275 target
= offset_address (target
, copy_size_rtx
,
4276 highest_pow2_factor (copy_size
));
4277 label
= gen_label_rtx ();
4278 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4279 GET_MODE (size
), 0, label
);
4282 if (size
!= const0_rtx
)
4283 clear_storage (target
, size
);
4289 /* Handle calls that return values in multiple non-contiguous locations.
4290 The Irix 6 ABI has examples of this. */
4291 else if (GET_CODE (target
) == PARALLEL
)
4292 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4293 int_size_in_bytes (TREE_TYPE (exp
)));
4294 else if (GET_MODE (temp
) == BLKmode
)
4295 emit_block_move (target
, temp
, expr_size (exp
),
4297 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4300 temp
= force_operand (temp
, target
);
4302 emit_move_insn (target
, temp
);
4309 /* Examine CTOR to discover:
4310 * how many scalar fields are set to nonzero values,
4311 and place it in *P_NZ_ELTS;
4312 * how many scalar fields are set to non-constant values,
4313 and place it in *P_NC_ELTS; and
4314 * how many scalar fields in total are in CTOR,
4315 and place it in *P_ELT_COUNT.
4316 * if a type is a union, and the initializer from the constructor
4317 is not the largest element in the union, then set *p_must_clear. */
4320 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4321 HOST_WIDE_INT
*p_nc_elts
,
4322 HOST_WIDE_INT
*p_elt_count
,
4325 HOST_WIDE_INT nz_elts
, nc_elts
, elt_count
;
4332 for (list
= CONSTRUCTOR_ELTS (ctor
); list
; list
= TREE_CHAIN (list
))
4334 tree value
= TREE_VALUE (list
);
4335 tree purpose
= TREE_PURPOSE (list
);
4339 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4341 tree lo_index
= TREE_OPERAND (purpose
, 0);
4342 tree hi_index
= TREE_OPERAND (purpose
, 1);
4344 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4345 mult
= (tree_low_cst (hi_index
, 1)
4346 - tree_low_cst (lo_index
, 1) + 1);
4349 switch (TREE_CODE (value
))
4353 HOST_WIDE_INT nz
= 0, nc
= 0, ic
= 0;
4354 categorize_ctor_elements_1 (value
, &nz
, &nc
, &ic
, p_must_clear
);
4355 nz_elts
+= mult
* nz
;
4356 nc_elts
+= mult
* nc
;
4357 elt_count
+= mult
* ic
;
4363 if (!initializer_zerop (value
))
4369 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4370 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4374 if (!initializer_zerop (TREE_REALPART (value
)))
4376 if (!initializer_zerop (TREE_IMAGPART (value
)))
4384 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4386 if (!initializer_zerop (TREE_VALUE (v
)))
4396 if (!initializer_constant_valid_p (value
, TREE_TYPE (value
)))
4403 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4404 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4407 bool clear_this
= true;
4409 list
= CONSTRUCTOR_ELTS (ctor
);
4412 /* We don't expect more than one element of the union to be
4413 initialized. Not sure what we should do otherwise... */
4414 gcc_assert (TREE_CHAIN (list
) == NULL
);
4416 init_sub_type
= TREE_TYPE (TREE_VALUE (list
));
4418 /* ??? We could look at each element of the union, and find the
4419 largest element. Which would avoid comparing the size of the
4420 initialized element against any tail padding in the union.
4421 Doesn't seem worth the effort... */
4422 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4423 TYPE_SIZE (init_sub_type
)) == 1)
4425 /* And now we have to find out if the element itself is fully
4426 constructed. E.g. for union { struct { int a, b; } s; } u
4427 = { .s = { .a = 1 } }. */
4428 if (elt_count
== count_type_elements (init_sub_type
))
4433 *p_must_clear
= clear_this
;
4436 *p_nz_elts
+= nz_elts
;
4437 *p_nc_elts
+= nc_elts
;
4438 *p_elt_count
+= elt_count
;
4442 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4443 HOST_WIDE_INT
*p_nc_elts
,
4444 HOST_WIDE_INT
*p_elt_count
,
4450 *p_must_clear
= false;
4451 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_nc_elts
, p_elt_count
,
4455 /* Count the number of scalars in TYPE. Return -1 on overflow or
4459 count_type_elements (tree type
)
4461 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4462 switch (TREE_CODE (type
))
4466 tree telts
= array_type_nelts (type
);
4467 if (telts
&& host_integerp (telts
, 1))
4469 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4470 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
));
4473 else if (max
/ n
> m
)
4481 HOST_WIDE_INT n
= 0, t
;
4484 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4485 if (TREE_CODE (f
) == FIELD_DECL
)
4487 t
= count_type_elements (TREE_TYPE (f
));
4497 case QUAL_UNION_TYPE
:
4499 /* Ho hum. How in the world do we guess here? Clearly it isn't
4500 right to count the fields. Guess based on the number of words. */
4501 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4504 return n
/ UNITS_PER_WORD
;
4511 return TYPE_VECTOR_SUBPARTS (type
);
4520 case REFERENCE_TYPE
:
4532 /* Return 1 if EXP contains mostly (3/4) zeros. */
4535 mostly_zeros_p (tree exp
)
4537 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4540 HOST_WIDE_INT nz_elts
, nc_elts
, count
, elts
;
4543 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
, &count
, &must_clear
);
4547 elts
= count_type_elements (TREE_TYPE (exp
));
4549 return nz_elts
< elts
/ 4;
4552 return initializer_zerop (exp
);
4555 /* Helper function for store_constructor.
4556 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4557 TYPE is the type of the CONSTRUCTOR, not the element type.
4558 CLEARED is as for store_constructor.
4559 ALIAS_SET is the alias set to use for any stores.
4561 This provides a recursive shortcut back to store_constructor when it isn't
4562 necessary to go through store_field. This is so that we can pass through
4563 the cleared field to let store_constructor know that we may not have to
4564 clear a substructure if the outer structure has already been cleared. */
4567 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4568 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4569 tree exp
, tree type
, int cleared
, int alias_set
)
4571 if (TREE_CODE (exp
) == CONSTRUCTOR
4572 /* We can only call store_constructor recursively if the size and
4573 bit position are on a byte boundary. */
4574 && bitpos
% BITS_PER_UNIT
== 0
4575 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4576 /* If we have a nonzero bitpos for a register target, then we just
4577 let store_field do the bitfield handling. This is unlikely to
4578 generate unnecessary clear instructions anyways. */
4579 && (bitpos
== 0 || MEM_P (target
)))
4583 = adjust_address (target
,
4584 GET_MODE (target
) == BLKmode
4586 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4587 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4590 /* Update the alias set, if required. */
4591 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4592 && MEM_ALIAS_SET (target
) != 0)
4594 target
= copy_rtx (target
);
4595 set_mem_alias_set (target
, alias_set
);
4598 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4601 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4604 /* Store the value of constructor EXP into the rtx TARGET.
4605 TARGET is either a REG or a MEM; we know it cannot conflict, since
4606 safe_from_p has been called.
4607 CLEARED is true if TARGET is known to have been zero'd.
4608 SIZE is the number of bytes of TARGET we are allowed to modify: this
4609 may not be the same as the size of EXP if we are assigning to a field
4610 which has been packed to exclude padding bits. */
4613 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4615 tree type
= TREE_TYPE (exp
);
4616 #ifdef WORD_REGISTER_OPERATIONS
4617 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4620 switch (TREE_CODE (type
))
4624 case QUAL_UNION_TYPE
:
4628 /* If size is zero or the target is already cleared, do nothing. */
4629 if (size
== 0 || cleared
)
4631 /* We either clear the aggregate or indicate the value is dead. */
4632 else if ((TREE_CODE (type
) == UNION_TYPE
4633 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4634 && ! CONSTRUCTOR_ELTS (exp
))
4635 /* If the constructor is empty, clear the union. */
4637 clear_storage (target
, expr_size (exp
));
4641 /* If we are building a static constructor into a register,
4642 set the initial value as zero so we can fold the value into
4643 a constant. But if more than one register is involved,
4644 this probably loses. */
4645 else if (REG_P (target
) && TREE_STATIC (exp
)
4646 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4648 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4652 /* If the constructor has fewer fields than the structure or
4653 if we are initializing the structure to mostly zeros, clear
4654 the whole structure first. Don't do this if TARGET is a
4655 register whose mode size isn't equal to SIZE since
4656 clear_storage can't handle this case. */
4658 && ((list_length (CONSTRUCTOR_ELTS (exp
))
4659 != fields_length (type
))
4660 || mostly_zeros_p (exp
))
4662 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4665 clear_storage (target
, GEN_INT (size
));
4670 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4672 /* Store each element of the constructor into the
4673 corresponding field of TARGET. */
4675 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
4677 tree field
= TREE_PURPOSE (elt
);
4678 tree value
= TREE_VALUE (elt
);
4679 enum machine_mode mode
;
4680 HOST_WIDE_INT bitsize
;
4681 HOST_WIDE_INT bitpos
= 0;
4683 rtx to_rtx
= target
;
4685 /* Just ignore missing fields. We cleared the whole
4686 structure, above, if any fields are missing. */
4690 if (cleared
&& initializer_zerop (value
))
4693 if (host_integerp (DECL_SIZE (field
), 1))
4694 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4698 mode
= DECL_MODE (field
);
4699 if (DECL_BIT_FIELD (field
))
4702 offset
= DECL_FIELD_OFFSET (field
);
4703 if (host_integerp (offset
, 0)
4704 && host_integerp (bit_position (field
), 0))
4706 bitpos
= int_bit_position (field
);
4710 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4717 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4718 make_tree (TREE_TYPE (exp
),
4721 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
4722 gcc_assert (MEM_P (to_rtx
));
4724 #ifdef POINTERS_EXTEND_UNSIGNED
4725 if (GET_MODE (offset_rtx
) != Pmode
)
4726 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4728 if (GET_MODE (offset_rtx
) != ptr_mode
)
4729 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4732 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4733 highest_pow2_factor (offset
));
4736 #ifdef WORD_REGISTER_OPERATIONS
4737 /* If this initializes a field that is smaller than a
4738 word, at the start of a word, try to widen it to a full
4739 word. This special case allows us to output C++ member
4740 function initializations in a form that the optimizers
4743 && bitsize
< BITS_PER_WORD
4744 && bitpos
% BITS_PER_WORD
== 0
4745 && GET_MODE_CLASS (mode
) == MODE_INT
4746 && TREE_CODE (value
) == INTEGER_CST
4748 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
4750 tree type
= TREE_TYPE (value
);
4752 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
4754 type
= lang_hooks
.types
.type_for_size
4755 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
4756 value
= convert (type
, value
);
4759 if (BYTES_BIG_ENDIAN
)
4761 = fold (build2 (LSHIFT_EXPR
, type
, value
,
4762 build_int_cst (NULL_TREE
,
4763 BITS_PER_WORD
- bitsize
)));
4764 bitsize
= BITS_PER_WORD
;
4769 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
4770 && DECL_NONADDRESSABLE_P (field
))
4772 to_rtx
= copy_rtx (to_rtx
);
4773 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4776 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
4777 value
, type
, cleared
,
4778 get_alias_set (TREE_TYPE (field
)));
4788 tree elttype
= TREE_TYPE (type
);
4790 HOST_WIDE_INT minelt
= 0;
4791 HOST_WIDE_INT maxelt
= 0;
4793 domain
= TYPE_DOMAIN (type
);
4794 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
4795 && TYPE_MAX_VALUE (domain
)
4796 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
4797 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
4799 /* If we have constant bounds for the range of the type, get them. */
4802 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
4803 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
4806 /* If the constructor has fewer elements than the array, clear
4807 the whole array first. Similarly if this is static
4808 constructor of a non-BLKmode object. */
4811 else if (REG_P (target
) && TREE_STATIC (exp
))
4815 HOST_WIDE_INT count
= 0, zero_count
= 0;
4816 need_to_clear
= ! const_bounds_p
;
4818 /* This loop is a more accurate version of the loop in
4819 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4820 is also needed to check for missing elements. */
4821 for (elt
= CONSTRUCTOR_ELTS (exp
);
4822 elt
!= NULL_TREE
&& ! need_to_clear
;
4823 elt
= TREE_CHAIN (elt
))
4825 tree index
= TREE_PURPOSE (elt
);
4826 HOST_WIDE_INT this_node_count
;
4828 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4830 tree lo_index
= TREE_OPERAND (index
, 0);
4831 tree hi_index
= TREE_OPERAND (index
, 1);
4833 if (! host_integerp (lo_index
, 1)
4834 || ! host_integerp (hi_index
, 1))
4840 this_node_count
= (tree_low_cst (hi_index
, 1)
4841 - tree_low_cst (lo_index
, 1) + 1);
4844 this_node_count
= 1;
4846 count
+= this_node_count
;
4847 if (mostly_zeros_p (TREE_VALUE (elt
)))
4848 zero_count
+= this_node_count
;
4851 /* Clear the entire array first if there are any missing
4852 elements, or if the incidence of zero elements is >=
4855 && (count
< maxelt
- minelt
+ 1
4856 || 4 * zero_count
>= 3 * count
))
4860 if (need_to_clear
&& size
> 0)
4863 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4865 clear_storage (target
, GEN_INT (size
));
4869 if (!cleared
&& REG_P (target
))
4870 /* Inform later passes that the old value is dead. */
4871 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4873 /* Store each element of the constructor into the
4874 corresponding element of TARGET, determined by counting the
4876 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
4878 elt
= TREE_CHAIN (elt
), i
++)
4880 enum machine_mode mode
;
4881 HOST_WIDE_INT bitsize
;
4882 HOST_WIDE_INT bitpos
;
4884 tree value
= TREE_VALUE (elt
);
4885 tree index
= TREE_PURPOSE (elt
);
4886 rtx xtarget
= target
;
4888 if (cleared
&& initializer_zerop (value
))
4891 unsignedp
= TYPE_UNSIGNED (elttype
);
4892 mode
= TYPE_MODE (elttype
);
4893 if (mode
== BLKmode
)
4894 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
4895 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
4898 bitsize
= GET_MODE_BITSIZE (mode
);
4900 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4902 tree lo_index
= TREE_OPERAND (index
, 0);
4903 tree hi_index
= TREE_OPERAND (index
, 1);
4904 rtx index_r
, pos_rtx
;
4905 HOST_WIDE_INT lo
, hi
, count
;
4908 /* If the range is constant and "small", unroll the loop. */
4910 && host_integerp (lo_index
, 0)
4911 && host_integerp (hi_index
, 0)
4912 && (lo
= tree_low_cst (lo_index
, 0),
4913 hi
= tree_low_cst (hi_index
, 0),
4914 count
= hi
- lo
+ 1,
4917 || (host_integerp (TYPE_SIZE (elttype
), 1)
4918 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
4921 lo
-= minelt
; hi
-= minelt
;
4922 for (; lo
<= hi
; lo
++)
4924 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
4927 && !MEM_KEEP_ALIAS_SET_P (target
)
4928 && TREE_CODE (type
) == ARRAY_TYPE
4929 && TYPE_NONALIASED_COMPONENT (type
))
4931 target
= copy_rtx (target
);
4932 MEM_KEEP_ALIAS_SET_P (target
) = 1;
4935 store_constructor_field
4936 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
4937 get_alias_set (elttype
));
4942 rtx loop_start
= gen_label_rtx ();
4943 rtx loop_end
= gen_label_rtx ();
4946 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
4947 unsignedp
= TYPE_UNSIGNED (domain
);
4949 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
4952 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
4954 SET_DECL_RTL (index
, index_r
);
4955 store_expr (lo_index
, index_r
, 0);
4957 /* Build the head of the loop. */
4958 do_pending_stack_adjust ();
4959 emit_label (loop_start
);
4961 /* Assign value to element index. */
4963 = convert (ssizetype
,
4964 fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
4965 index
, TYPE_MIN_VALUE (domain
))));
4966 position
= size_binop (MULT_EXPR
, position
,
4968 TYPE_SIZE_UNIT (elttype
)));
4970 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
4971 xtarget
= offset_address (target
, pos_rtx
,
4972 highest_pow2_factor (position
));
4973 xtarget
= adjust_address (xtarget
, mode
, 0);
4974 if (TREE_CODE (value
) == CONSTRUCTOR
)
4975 store_constructor (value
, xtarget
, cleared
,
4976 bitsize
/ BITS_PER_UNIT
);
4978 store_expr (value
, xtarget
, 0);
4980 /* Generate a conditional jump to exit the loop. */
4981 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
4983 jumpif (exit_cond
, loop_end
);
4985 /* Update the loop counter, and jump to the head of
4987 expand_assignment (index
,
4988 build2 (PLUS_EXPR
, TREE_TYPE (index
),
4989 index
, integer_one_node
));
4991 emit_jump (loop_start
);
4993 /* Build the end of the loop. */
4994 emit_label (loop_end
);
4997 else if ((index
!= 0 && ! host_integerp (index
, 0))
4998 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5003 index
= ssize_int (1);
5006 index
= fold_convert (ssizetype
,
5007 fold (build2 (MINUS_EXPR
,
5010 TYPE_MIN_VALUE (domain
))));
5012 position
= size_binop (MULT_EXPR
, index
,
5014 TYPE_SIZE_UNIT (elttype
)));
5015 xtarget
= offset_address (target
,
5016 expand_expr (position
, 0, VOIDmode
, 0),
5017 highest_pow2_factor (position
));
5018 xtarget
= adjust_address (xtarget
, mode
, 0);
5019 store_expr (value
, xtarget
, 0);
5024 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5025 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5027 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5029 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5030 && TREE_CODE (type
) == ARRAY_TYPE
5031 && TYPE_NONALIASED_COMPONENT (type
))
5033 target
= copy_rtx (target
);
5034 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5036 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5037 type
, cleared
, get_alias_set (elttype
));
5049 tree elttype
= TREE_TYPE (type
);
5050 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5051 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5052 HOST_WIDE_INT bitsize
;
5053 HOST_WIDE_INT bitpos
;
5054 rtvec vector
= NULL
;
5057 gcc_assert (eltmode
!= BLKmode
);
5059 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5060 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5062 enum machine_mode mode
= GET_MODE (target
);
5064 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5065 if (icode
!= CODE_FOR_nothing
)
5069 vector
= rtvec_alloc (n_elts
);
5070 for (i
= 0; i
< n_elts
; i
++)
5071 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5075 /* If the constructor has fewer elements than the vector,
5076 clear the whole array first. Similarly if this is static
5077 constructor of a non-BLKmode object. */
5080 else if (REG_P (target
) && TREE_STATIC (exp
))
5084 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5086 for (elt
= CONSTRUCTOR_ELTS (exp
);
5088 elt
= TREE_CHAIN (elt
))
5090 int n_elts_here
= tree_low_cst
5091 (int_const_binop (TRUNC_DIV_EXPR
,
5092 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt
))),
5093 TYPE_SIZE (elttype
), 0), 1);
5095 count
+= n_elts_here
;
5096 if (mostly_zeros_p (TREE_VALUE (elt
)))
5097 zero_count
+= n_elts_here
;
5100 /* Clear the entire vector first if there are any missing elements,
5101 or if the incidence of zero elements is >= 75%. */
5102 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5105 if (need_to_clear
&& size
> 0 && !vector
)
5108 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5110 clear_storage (target
, GEN_INT (size
));
5114 if (!cleared
&& REG_P (target
))
5115 /* Inform later passes that the old value is dead. */
5116 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
5118 /* Store each element of the constructor into the corresponding
5119 element of TARGET, determined by counting the elements. */
5120 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
5122 elt
= TREE_CHAIN (elt
), i
+= bitsize
/ elt_size
)
5124 tree value
= TREE_VALUE (elt
);
5125 tree index
= TREE_PURPOSE (elt
);
5126 HOST_WIDE_INT eltpos
;
5128 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5129 if (cleared
&& initializer_zerop (value
))
5133 eltpos
= tree_low_cst (index
, 1);
5139 /* Vector CONSTRUCTORs should only be built from smaller
5140 vectors in the case of BLKmode vectors. */
5141 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5142 RTVEC_ELT (vector
, eltpos
)
5143 = expand_expr (value
, NULL_RTX
, VOIDmode
, 0);
5147 enum machine_mode value_mode
=
5148 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5149 ? TYPE_MODE (TREE_TYPE (value
))
5151 bitpos
= eltpos
* elt_size
;
5152 store_constructor_field (target
, bitsize
, bitpos
,
5153 value_mode
, value
, type
,
5154 cleared
, get_alias_set (elttype
));
5159 emit_insn (GEN_FCN (icode
)
5161 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5170 /* Store the value of EXP (an expression tree)
5171 into a subfield of TARGET which has mode MODE and occupies
5172 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5173 If MODE is VOIDmode, it means that we are storing into a bit-field.
5175 Always return const0_rtx unless we have something particular to
5178 TYPE is the type of the underlying object,
5180 ALIAS_SET is the alias set for the destination. This value will
5181 (in general) be different from that for TARGET, since TARGET is a
5182 reference to the containing structure. */
5185 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5186 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5188 HOST_WIDE_INT width_mask
= 0;
5190 if (TREE_CODE (exp
) == ERROR_MARK
)
5193 /* If we have nothing to store, do nothing unless the expression has
5196 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5197 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5198 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5200 /* If we are storing into an unaligned field of an aligned union that is
5201 in a register, we may have the mode of TARGET being an integer mode but
5202 MODE == BLKmode. In that case, get an aligned object whose size and
5203 alignment are the same as TARGET and store TARGET into it (we can avoid
5204 the store if the field being stored is the entire width of TARGET). Then
5205 call ourselves recursively to store the field into a BLKmode version of
5206 that object. Finally, load from the object into TARGET. This is not
5207 very efficient in general, but should only be slightly more expensive
5208 than the otherwise-required unaligned accesses. Perhaps this can be
5209 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5210 twice, once with emit_move_insn and once via store_field. */
5213 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5215 rtx object
= assign_temp (type
, 0, 1, 1);
5216 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5218 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5219 emit_move_insn (object
, target
);
5221 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5223 emit_move_insn (target
, object
);
5225 /* We want to return the BLKmode version of the data. */
5229 if (GET_CODE (target
) == CONCAT
)
5231 /* We're storing into a struct containing a single __complex. */
5233 gcc_assert (!bitpos
);
5234 return store_expr (exp
, target
, 0);
5237 /* If the structure is in a register or if the component
5238 is a bit field, we cannot use addressing to access it.
5239 Use bit-field techniques or SUBREG to store in it. */
5241 if (mode
== VOIDmode
5242 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5243 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5244 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5246 || GET_CODE (target
) == SUBREG
5247 /* If the field isn't aligned enough to store as an ordinary memref,
5248 store it as a bit field. */
5250 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5251 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5252 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5253 || (bitpos
% BITS_PER_UNIT
!= 0)))
5254 /* If the RHS and field are a constant size and the size of the
5255 RHS isn't the same size as the bitfield, we must use bitfield
5258 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5259 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5263 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5264 implies a mask operation. If the precision is the same size as
5265 the field we're storing into, that mask is redundant. This is
5266 particularly common with bit field assignments generated by the
5268 if (TREE_CODE (exp
) == NOP_EXPR
)
5270 tree type
= TREE_TYPE (exp
);
5271 if (INTEGRAL_TYPE_P (type
)
5272 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5273 && bitsize
== TYPE_PRECISION (type
))
5275 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5276 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5277 exp
= TREE_OPERAND (exp
, 0);
5281 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5283 /* If BITSIZE is narrower than the size of the type of EXP
5284 we will be narrowing TEMP. Normally, what's wanted are the
5285 low-order bits. However, if EXP's type is a record and this is
5286 big-endian machine, we want the upper BITSIZE bits. */
5287 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5288 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5289 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5290 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5291 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5295 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5297 if (mode
!= VOIDmode
&& mode
!= BLKmode
5298 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5299 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5301 /* If the modes of TARGET and TEMP are both BLKmode, both
5302 must be in memory and BITPOS must be aligned on a byte
5303 boundary. If so, we simply do a block copy. */
5304 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5306 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5307 && !(bitpos
% BITS_PER_UNIT
));
5309 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5310 emit_block_move (target
, temp
,
5311 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5318 /* Store the value in the bitfield. */
5319 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5325 /* Now build a reference to just the desired component. */
5326 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5328 if (to_rtx
== target
)
5329 to_rtx
= copy_rtx (to_rtx
);
5331 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5332 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5333 set_mem_alias_set (to_rtx
, alias_set
);
5335 return store_expr (exp
, to_rtx
, 0);
5339 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5340 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5341 codes and find the ultimate containing object, which we return.
5343 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5344 bit position, and *PUNSIGNEDP to the signedness of the field.
5345 If the position of the field is variable, we store a tree
5346 giving the variable offset (in units) in *POFFSET.
5347 This offset is in addition to the bit position.
5348 If the position is not variable, we store 0 in *POFFSET.
5350 If any of the extraction expressions is volatile,
5351 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5353 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5354 is a mode that can be used to access the field. In that case, *PBITSIZE
5357 If the field describes a variable-sized object, *PMODE is set to
5358 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5359 this case, but the address of the object can be found.
5361 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5362 look through nodes that serve as markers of a greater alignment than
5363 the one that can be deduced from the expression. These nodes make it
5364 possible for front-ends to prevent temporaries from being created by
5365 the middle-end on alignment considerations. For that purpose, the
5366 normal operating mode at high-level is to always pass FALSE so that
5367 the ultimate containing object is really returned; moreover, the
5368 associated predicate handled_component_p will always return TRUE
5369 on these nodes, thus indicating that they are essentially handled
5370 by get_inner_reference. TRUE should only be passed when the caller
5371 is scanning the expression in order to build another representation
5372 and specifically knows how to handle these nodes; as such, this is
5373 the normal operating mode in the RTL expanders. */
5376 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5377 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5378 enum machine_mode
*pmode
, int *punsignedp
,
5379 int *pvolatilep
, bool keep_aligning
)
5382 enum machine_mode mode
= VOIDmode
;
5383 tree offset
= size_zero_node
;
5384 tree bit_offset
= bitsize_zero_node
;
5387 /* First get the mode, signedness, and size. We do this from just the
5388 outermost expression. */
5389 if (TREE_CODE (exp
) == COMPONENT_REF
)
5391 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5392 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5393 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5395 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5397 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5399 size_tree
= TREE_OPERAND (exp
, 1);
5400 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5404 mode
= TYPE_MODE (TREE_TYPE (exp
));
5405 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5407 if (mode
== BLKmode
)
5408 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5410 *pbitsize
= GET_MODE_BITSIZE (mode
);
5415 if (! host_integerp (size_tree
, 1))
5416 mode
= BLKmode
, *pbitsize
= -1;
5418 *pbitsize
= tree_low_cst (size_tree
, 1);
5421 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5422 and find the ultimate containing object. */
5425 switch (TREE_CODE (exp
))
5428 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5429 TREE_OPERAND (exp
, 2));
5434 tree field
= TREE_OPERAND (exp
, 1);
5435 tree this_offset
= component_ref_field_offset (exp
);
5437 /* If this field hasn't been filled in yet, don't go past it.
5438 This should only happen when folding expressions made during
5439 type construction. */
5440 if (this_offset
== 0)
5443 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5444 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5445 DECL_FIELD_BIT_OFFSET (field
));
5447 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5452 case ARRAY_RANGE_REF
:
5454 tree index
= TREE_OPERAND (exp
, 1);
5455 tree low_bound
= array_ref_low_bound (exp
);
5456 tree unit_size
= array_ref_element_size (exp
);
5458 /* We assume all arrays have sizes that are a multiple of a byte.
5459 First subtract the lower bound, if any, in the type of the
5460 index, then convert to sizetype and multiply by the size of
5461 the array element. */
5462 if (! integer_zerop (low_bound
))
5463 index
= fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
5466 offset
= size_binop (PLUS_EXPR
, offset
,
5467 size_binop (MULT_EXPR
,
5468 convert (sizetype
, index
),
5477 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5478 bitsize_int (*pbitsize
));
5481 case VIEW_CONVERT_EXPR
:
5482 if (keep_aligning
&& STRICT_ALIGNMENT
5483 && (TYPE_ALIGN (TREE_TYPE (exp
))
5484 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5485 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5486 < BIGGEST_ALIGNMENT
)
5487 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5488 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5496 /* If any reference in the chain is volatile, the effect is volatile. */
5497 if (TREE_THIS_VOLATILE (exp
))
5500 exp
= TREE_OPERAND (exp
, 0);
5504 /* If OFFSET is constant, see if we can return the whole thing as a
5505 constant bit position. Otherwise, split it up. */
5506 if (host_integerp (offset
, 0)
5507 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5509 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5510 && host_integerp (tem
, 0))
5511 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5513 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5519 /* Return a tree of sizetype representing the size, in bytes, of the element
5520 of EXP, an ARRAY_REF. */
5523 array_ref_element_size (tree exp
)
5525 tree aligned_size
= TREE_OPERAND (exp
, 3);
5526 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5528 /* If a size was specified in the ARRAY_REF, it's the size measured
5529 in alignment units of the element type. So multiply by that value. */
5532 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5533 sizetype from another type of the same width and signedness. */
5534 if (TREE_TYPE (aligned_size
) != sizetype
)
5535 aligned_size
= fold_convert (sizetype
, aligned_size
);
5536 return size_binop (MULT_EXPR
, aligned_size
,
5537 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5540 /* Otherwise, take the size from that of the element type. Substitute
5541 any PLACEHOLDER_EXPR that we have. */
5543 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5546 /* Return a tree representing the lower bound of the array mentioned in
5547 EXP, an ARRAY_REF. */
5550 array_ref_low_bound (tree exp
)
5552 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5554 /* If a lower bound is specified in EXP, use it. */
5555 if (TREE_OPERAND (exp
, 2))
5556 return TREE_OPERAND (exp
, 2);
5558 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5559 substituting for a PLACEHOLDER_EXPR as needed. */
5560 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5561 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5563 /* Otherwise, return a zero of the appropriate type. */
5564 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5567 /* Return a tree representing the upper bound of the array mentioned in
5568 EXP, an ARRAY_REF. */
5571 array_ref_up_bound (tree exp
)
5573 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5575 /* If there is a domain type and it has an upper bound, use it, substituting
5576 for a PLACEHOLDER_EXPR as needed. */
5577 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5578 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5580 /* Otherwise fail. */
5584 /* Return a tree representing the offset, in bytes, of the field referenced
5585 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5588 component_ref_field_offset (tree exp
)
5590 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5591 tree field
= TREE_OPERAND (exp
, 1);
5593 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5594 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5598 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5599 sizetype from another type of the same width and signedness. */
5600 if (TREE_TYPE (aligned_offset
) != sizetype
)
5601 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5602 return size_binop (MULT_EXPR
, aligned_offset
,
5603 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5606 /* Otherwise, take the offset from that of the field. Substitute
5607 any PLACEHOLDER_EXPR that we have. */
5609 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5612 /* Return 1 if T is an expression that get_inner_reference handles. */
5615 handled_component_p (tree t
)
5617 switch (TREE_CODE (t
))
5622 case ARRAY_RANGE_REF
:
5623 case VIEW_CONVERT_EXPR
:
5633 /* Given an rtx VALUE that may contain additions and multiplications, return
5634 an equivalent value that just refers to a register, memory, or constant.
5635 This is done by generating instructions to perform the arithmetic and
5636 returning a pseudo-register containing the value.
5638 The returned value may be a REG, SUBREG, MEM or constant. */
5641 force_operand (rtx value
, rtx target
)
5644 /* Use subtarget as the target for operand 0 of a binary operation. */
5645 rtx subtarget
= get_subtarget (target
);
5646 enum rtx_code code
= GET_CODE (value
);
5648 /* Check for subreg applied to an expression produced by loop optimizer. */
5650 && !REG_P (SUBREG_REG (value
))
5651 && !MEM_P (SUBREG_REG (value
)))
5653 value
= simplify_gen_subreg (GET_MODE (value
),
5654 force_reg (GET_MODE (SUBREG_REG (value
)),
5655 force_operand (SUBREG_REG (value
),
5657 GET_MODE (SUBREG_REG (value
)),
5658 SUBREG_BYTE (value
));
5659 code
= GET_CODE (value
);
5662 /* Check for a PIC address load. */
5663 if ((code
== PLUS
|| code
== MINUS
)
5664 && XEXP (value
, 0) == pic_offset_table_rtx
5665 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5666 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5667 || GET_CODE (XEXP (value
, 1)) == CONST
))
5670 subtarget
= gen_reg_rtx (GET_MODE (value
));
5671 emit_move_insn (subtarget
, value
);
5675 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5678 target
= gen_reg_rtx (GET_MODE (value
));
5679 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5680 code
== ZERO_EXTEND
);
5684 if (ARITHMETIC_P (value
))
5686 op2
= XEXP (value
, 1);
5687 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5689 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5692 op2
= negate_rtx (GET_MODE (value
), op2
);
5695 /* Check for an addition with OP2 a constant integer and our first
5696 operand a PLUS of a virtual register and something else. In that
5697 case, we want to emit the sum of the virtual register and the
5698 constant first and then add the other value. This allows virtual
5699 register instantiation to simply modify the constant rather than
5700 creating another one around this addition. */
5701 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5702 && GET_CODE (XEXP (value
, 0)) == PLUS
5703 && REG_P (XEXP (XEXP (value
, 0), 0))
5704 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5705 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5707 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5708 XEXP (XEXP (value
, 0), 0), op2
,
5709 subtarget
, 0, OPTAB_LIB_WIDEN
);
5710 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5711 force_operand (XEXP (XEXP (value
,
5713 target
, 0, OPTAB_LIB_WIDEN
);
5716 op1
= force_operand (XEXP (value
, 0), subtarget
);
5717 op2
= force_operand (op2
, NULL_RTX
);
5721 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5723 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5724 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5725 target
, 1, OPTAB_LIB_WIDEN
);
5727 return expand_divmod (0,
5728 FLOAT_MODE_P (GET_MODE (value
))
5729 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5730 GET_MODE (value
), op1
, op2
, target
, 0);
5733 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5737 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
5741 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5745 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5746 target
, 0, OPTAB_LIB_WIDEN
);
5749 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5750 target
, 1, OPTAB_LIB_WIDEN
);
5753 if (UNARY_P (value
))
5755 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
5756 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
5759 #ifdef INSN_SCHEDULING
5760 /* On machines that have insn scheduling, we want all memory reference to be
5761 explicit, so we need to deal with such paradoxical SUBREGs. */
5762 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
5763 && (GET_MODE_SIZE (GET_MODE (value
))
5764 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
5766 = simplify_gen_subreg (GET_MODE (value
),
5767 force_reg (GET_MODE (SUBREG_REG (value
)),
5768 force_operand (SUBREG_REG (value
),
5770 GET_MODE (SUBREG_REG (value
)),
5771 SUBREG_BYTE (value
));
5777 /* Subroutine of expand_expr: return nonzero iff there is no way that
5778 EXP can reference X, which is being modified. TOP_P is nonzero if this
5779 call is going to be used to determine whether we need a temporary
5780 for EXP, as opposed to a recursive call to this function.
5782 It is always safe for this routine to return zero since it merely
5783 searches for optimization opportunities. */
5786 safe_from_p (rtx x
, tree exp
, int top_p
)
5792 /* If EXP has varying size, we MUST use a target since we currently
5793 have no way of allocating temporaries of variable size
5794 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5795 So we assume here that something at a higher level has prevented a
5796 clash. This is somewhat bogus, but the best we can do. Only
5797 do this when X is BLKmode and when we are at the top level. */
5798 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
5799 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
5800 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
5801 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
5802 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
5804 && GET_MODE (x
) == BLKmode
)
5805 /* If X is in the outgoing argument area, it is always safe. */
5807 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
5808 || (GET_CODE (XEXP (x
, 0)) == PLUS
5809 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
5812 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5813 find the underlying pseudo. */
5814 if (GET_CODE (x
) == SUBREG
)
5817 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5821 /* Now look at our tree code and possibly recurse. */
5822 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
5824 case tcc_declaration
:
5825 exp_rtl
= DECL_RTL_IF_SET (exp
);
5831 case tcc_exceptional
:
5832 if (TREE_CODE (exp
) == TREE_LIST
)
5836 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
5838 exp
= TREE_CHAIN (exp
);
5841 if (TREE_CODE (exp
) != TREE_LIST
)
5842 return safe_from_p (x
, exp
, 0);
5845 else if (TREE_CODE (exp
) == ERROR_MARK
)
5846 return 1; /* An already-visited SAVE_EXPR? */
5851 /* The only case we look at here is the DECL_INITIAL inside a
5853 return (TREE_CODE (exp
) != DECL_EXPR
5854 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
5855 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
5856 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
5859 case tcc_comparison
:
5860 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
5865 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5867 case tcc_expression
:
5869 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5870 the expression. If it is set, we conflict iff we are that rtx or
5871 both are in memory. Otherwise, we check all operands of the
5872 expression recursively. */
5874 switch (TREE_CODE (exp
))
5877 /* If the operand is static or we are static, we can't conflict.
5878 Likewise if we don't conflict with the operand at all. */
5879 if (staticp (TREE_OPERAND (exp
, 0))
5880 || TREE_STATIC (exp
)
5881 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
5884 /* Otherwise, the only way this can conflict is if we are taking
5885 the address of a DECL a that address if part of X, which is
5887 exp
= TREE_OPERAND (exp
, 0);
5890 if (!DECL_RTL_SET_P (exp
)
5891 || !MEM_P (DECL_RTL (exp
)))
5894 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
5898 case MISALIGNED_INDIRECT_REF
:
5899 case ALIGN_INDIRECT_REF
:
5902 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
5903 get_alias_set (exp
)))
5908 /* Assume that the call will clobber all hard registers and
5910 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5915 case WITH_CLEANUP_EXPR
:
5916 case CLEANUP_POINT_EXPR
:
5917 /* Lowered by gimplify.c. */
5921 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5927 /* If we have an rtx, we do not need to scan our operands. */
5931 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
5932 for (i
= 0; i
< nops
; i
++)
5933 if (TREE_OPERAND (exp
, i
) != 0
5934 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
5937 /* If this is a language-specific tree code, it may require
5938 special handling. */
5939 if ((unsigned int) TREE_CODE (exp
)
5940 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5941 && !lang_hooks
.safe_from_p (x
, exp
))
5946 /* Should never get a type here. */
5950 /* If we have an rtl, find any enclosed object. Then see if we conflict
5954 if (GET_CODE (exp_rtl
) == SUBREG
)
5956 exp_rtl
= SUBREG_REG (exp_rtl
);
5958 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
5962 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5963 are memory and they conflict. */
5964 return ! (rtx_equal_p (x
, exp_rtl
)
5965 || (MEM_P (x
) && MEM_P (exp_rtl
)
5966 && true_dependence (exp_rtl
, VOIDmode
, x
,
5967 rtx_addr_varies_p
)));
5970 /* If we reach here, it is safe. */
5975 /* Return the highest power of two that EXP is known to be a multiple of.
5976 This is used in updating alignment of MEMs in array references. */
5978 static unsigned HOST_WIDE_INT
5979 highest_pow2_factor (tree exp
)
5981 unsigned HOST_WIDE_INT c0
, c1
;
5983 switch (TREE_CODE (exp
))
5986 /* We can find the lowest bit that's a one. If the low
5987 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
5988 We need to handle this case since we can find it in a COND_EXPR,
5989 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
5990 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
5992 if (TREE_CONSTANT_OVERFLOW (exp
))
5993 return BIGGEST_ALIGNMENT
;
5996 /* Note: tree_low_cst is intentionally not used here,
5997 we don't care about the upper bits. */
5998 c0
= TREE_INT_CST_LOW (exp
);
6000 return c0
? c0
: BIGGEST_ALIGNMENT
;
6004 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6005 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6006 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6007 return MIN (c0
, c1
);
6010 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6011 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6014 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6016 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6017 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6019 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6020 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6021 return MAX (1, c0
/ c1
);
6025 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6027 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6030 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6033 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6034 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6035 return MIN (c0
, c1
);
6044 /* Similar, except that the alignment requirements of TARGET are
6045 taken into account. Assume it is at least as aligned as its
6046 type, unless it is a COMPONENT_REF in which case the layout of
6047 the structure gives the alignment. */
6049 static unsigned HOST_WIDE_INT
6050 highest_pow2_factor_for_target (tree target
, tree exp
)
6052 unsigned HOST_WIDE_INT target_align
, factor
;
6054 factor
= highest_pow2_factor (exp
);
6055 if (TREE_CODE (target
) == COMPONENT_REF
)
6056 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6058 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6059 return MAX (factor
, target_align
);
6062 /* Expands variable VAR. */
6065 expand_var (tree var
)
6067 if (DECL_EXTERNAL (var
))
6070 if (TREE_STATIC (var
))
6071 /* If this is an inlined copy of a static local variable,
6072 look up the original decl. */
6073 var
= DECL_ORIGIN (var
);
6075 if (TREE_STATIC (var
)
6076 ? !TREE_ASM_WRITTEN (var
)
6077 : !DECL_RTL_SET_P (var
))
6079 if (TREE_CODE (var
) == VAR_DECL
&& DECL_VALUE_EXPR (var
))
6080 /* Should be ignored. */;
6081 else if (lang_hooks
.expand_decl (var
))
6083 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6085 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6086 rest_of_decl_compilation (var
, 0, 0);
6088 /* No expansion needed. */
6089 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6090 || TREE_CODE (var
) == CONST_DECL
6091 || TREE_CODE (var
) == FUNCTION_DECL
6092 || TREE_CODE (var
) == LABEL_DECL
);
6096 /* Subroutine of expand_expr. Expand the two operands of a binary
6097 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6098 The value may be stored in TARGET if TARGET is nonzero. The
6099 MODIFIER argument is as documented by expand_expr. */
6102 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6103 enum expand_modifier modifier
)
6105 if (! safe_from_p (target
, exp1
, 1))
6107 if (operand_equal_p (exp0
, exp1
, 0))
6109 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6110 *op1
= copy_rtx (*op0
);
6114 /* If we need to preserve evaluation order, copy exp0 into its own
6115 temporary variable so that it can't be clobbered by exp1. */
6116 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6117 exp0
= save_expr (exp0
);
6118 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6119 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6124 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6125 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6128 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6129 enum expand_modifier modifier
)
6131 rtx result
, subtarget
;
6133 HOST_WIDE_INT bitsize
, bitpos
;
6134 int volatilep
, unsignedp
;
6135 enum machine_mode mode1
;
6137 /* If we are taking the address of a constant and are at the top level,
6138 we have to use output_constant_def since we can't call force_const_mem
6140 /* ??? This should be considered a front-end bug. We should not be
6141 generating ADDR_EXPR of something that isn't an LVALUE. The only
6142 exception here is STRING_CST. */
6143 if (TREE_CODE (exp
) == CONSTRUCTOR
6144 || CONSTANT_CLASS_P (exp
))
6145 return XEXP (output_constant_def (exp
, 0), 0);
6147 /* Everything must be something allowed by is_gimple_addressable. */
6148 switch (TREE_CODE (exp
))
6151 /* This case will happen via recursion for &a->b. */
6152 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, EXPAND_NORMAL
);
6155 /* Recurse and make the output_constant_def clause above handle this. */
6156 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6160 /* The real part of the complex number is always first, therefore
6161 the address is the same as the address of the parent object. */
6164 inner
= TREE_OPERAND (exp
, 0);
6168 /* The imaginary part of the complex number is always second.
6169 The expression is therefore always offset by the size of the
6172 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6173 inner
= TREE_OPERAND (exp
, 0);
6177 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6178 expand_expr, as that can have various side effects; LABEL_DECLs for
6179 example, may not have their DECL_RTL set yet. Assume language
6180 specific tree nodes can be expanded in some interesting way. */
6182 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6184 result
= expand_expr (exp
, target
, tmode
,
6185 modifier
== EXPAND_INITIALIZER
6186 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6188 /* If the DECL isn't in memory, then the DECL wasn't properly
6189 marked TREE_ADDRESSABLE, which will be either a front-end
6190 or a tree optimizer bug. */
6191 gcc_assert (GET_CODE (result
) == MEM
);
6192 result
= XEXP (result
, 0);
6194 /* ??? Is this needed anymore? */
6195 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6197 assemble_external (exp
);
6198 TREE_USED (exp
) = 1;
6201 if (modifier
!= EXPAND_INITIALIZER
6202 && modifier
!= EXPAND_CONST_ADDRESS
)
6203 result
= force_operand (result
, target
);
6207 /* Pass FALSE as the last argument to get_inner_reference although
6208 we are expanding to RTL. The rationale is that we know how to
6209 handle "aligning nodes" here: we can just bypass them because
6210 they won't change the final object whose address will be returned
6211 (they actually exist only for that purpose). */
6212 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6213 &mode1
, &unsignedp
, &volatilep
, false);
6217 /* We must have made progress. */
6218 gcc_assert (inner
!= exp
);
6220 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6221 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6227 if (modifier
!= EXPAND_NORMAL
)
6228 result
= force_operand (result
, NULL
);
6229 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6231 result
= convert_memory_address (tmode
, result
);
6232 tmp
= convert_memory_address (tmode
, tmp
);
6234 if (modifier
== EXPAND_SUM
)
6235 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6238 subtarget
= bitpos
? NULL_RTX
: target
;
6239 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6240 1, OPTAB_LIB_WIDEN
);
6246 /* Someone beforehand should have rejected taking the address
6247 of such an object. */
6248 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6250 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6251 if (modifier
< EXPAND_SUM
)
6252 result
= force_operand (result
, target
);
6258 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6259 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6262 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6263 enum expand_modifier modifier
)
6265 enum machine_mode rmode
;
6268 /* Target mode of VOIDmode says "whatever's natural". */
6269 if (tmode
== VOIDmode
)
6270 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6272 /* We can get called with some Weird Things if the user does silliness
6273 like "(short) &a". In that case, convert_memory_address won't do
6274 the right thing, so ignore the given target mode. */
6275 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6278 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6281 /* Despite expand_expr claims concerning ignoring TMODE when not
6282 strictly convenient, stuff breaks if we don't honor it. Note
6283 that combined with the above, we only do this for pointer modes. */
6284 rmode
= GET_MODE (result
);
6285 if (rmode
== VOIDmode
)
6288 result
= convert_memory_address (tmode
, result
);
6294 /* expand_expr: generate code for computing expression EXP.
6295 An rtx for the computed value is returned. The value is never null.
6296 In the case of a void EXP, const0_rtx is returned.
6298 The value may be stored in TARGET if TARGET is nonzero.
6299 TARGET is just a suggestion; callers must assume that
6300 the rtx returned may not be the same as TARGET.
6302 If TARGET is CONST0_RTX, it means that the value will be ignored.
6304 If TMODE is not VOIDmode, it suggests generating the
6305 result in mode TMODE. But this is done only when convenient.
6306 Otherwise, TMODE is ignored and the value generated in its natural mode.
6307 TMODE is just a suggestion; callers must assume that
6308 the rtx returned may not have mode TMODE.
6310 Note that TARGET may have neither TMODE nor MODE. In that case, it
6311 probably will not be used.
6313 If MODIFIER is EXPAND_SUM then when EXP is an addition
6314 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6315 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6316 products as above, or REG or MEM, or constant.
6317 Ordinarily in such cases we would output mul or add instructions
6318 and then return a pseudo reg containing the sum.
6320 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6321 it also marks a label as absolutely required (it can't be dead).
6322 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6323 This is used for outputting expressions used in initializers.
6325 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6326 with a constant address even if that address is not normally legitimate.
6327 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6329 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6330 a call parameter. Such targets require special care as we haven't yet
6331 marked TARGET so that it's safe from being trashed by libcalls. We
6332 don't want to use TARGET for anything but the final result;
6333 Intermediate values must go elsewhere. Additionally, calls to
6334 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6336 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6337 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6338 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6339 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6342 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6343 enum expand_modifier
, rtx
*);
6346 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6347 enum expand_modifier modifier
, rtx
*alt_rtl
)
6350 rtx ret
, last
= NULL
;
6352 /* Handle ERROR_MARK before anybody tries to access its type. */
6353 if (TREE_CODE (exp
) == ERROR_MARK
6354 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6356 ret
= CONST0_RTX (tmode
);
6357 return ret
? ret
: const0_rtx
;
6360 if (flag_non_call_exceptions
)
6362 rn
= lookup_stmt_eh_region (exp
);
6363 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6365 last
= get_last_insn ();
6368 /* If this is an expression of some kind and it has an associated line
6369 number, then emit the line number before expanding the expression.
6371 We need to save and restore the file and line information so that
6372 errors discovered during expansion are emitted with the right
6373 information. It would be better of the diagnostic routines
6374 used the file/line information embedded in the tree nodes rather
6376 if (cfun
&& EXPR_HAS_LOCATION (exp
))
6378 location_t saved_location
= input_location
;
6379 input_location
= EXPR_LOCATION (exp
);
6380 emit_line_note (input_location
);
6382 /* Record where the insns produced belong. */
6383 record_block_change (TREE_BLOCK (exp
));
6385 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6387 input_location
= saved_location
;
6391 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6394 /* If using non-call exceptions, mark all insns that may trap.
6395 expand_call() will mark CALL_INSNs before we get to this code,
6396 but it doesn't handle libcalls, and these may trap. */
6400 for (insn
= next_real_insn (last
); insn
;
6401 insn
= next_real_insn (insn
))
6403 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6404 /* If we want exceptions for non-call insns, any
6405 may_trap_p instruction may throw. */
6406 && GET_CODE (PATTERN (insn
)) != CLOBBER
6407 && GET_CODE (PATTERN (insn
)) != USE
6408 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6410 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6420 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6421 enum expand_modifier modifier
, rtx
*alt_rtl
)
6424 tree type
= TREE_TYPE (exp
);
6426 enum machine_mode mode
;
6427 enum tree_code code
= TREE_CODE (exp
);
6429 rtx subtarget
, original_target
;
6432 bool reduce_bit_field
= false;
6433 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6434 ? reduce_to_bit_field_precision ((expr), \
6439 mode
= TYPE_MODE (type
);
6440 unsignedp
= TYPE_UNSIGNED (type
);
6441 if (lang_hooks
.reduce_bit_field_operations
6442 && TREE_CODE (type
) == INTEGER_TYPE
6443 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6445 /* An operation in what may be a bit-field type needs the
6446 result to be reduced to the precision of the bit-field type,
6447 which is narrower than that of the type's mode. */
6448 reduce_bit_field
= true;
6449 if (modifier
== EXPAND_STACK_PARM
)
6453 /* Use subtarget as the target for operand 0 of a binary operation. */
6454 subtarget
= get_subtarget (target
);
6455 original_target
= target
;
6456 ignore
= (target
== const0_rtx
6457 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6458 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6459 || code
== VIEW_CONVERT_EXPR
)
6460 && TREE_CODE (type
) == VOID_TYPE
));
6462 /* If we are going to ignore this result, we need only do something
6463 if there is a side-effect somewhere in the expression. If there
6464 is, short-circuit the most common cases here. Note that we must
6465 not call expand_expr with anything but const0_rtx in case this
6466 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6470 if (! TREE_SIDE_EFFECTS (exp
))
6473 /* Ensure we reference a volatile object even if value is ignored, but
6474 don't do this if all we are doing is taking its address. */
6475 if (TREE_THIS_VOLATILE (exp
)
6476 && TREE_CODE (exp
) != FUNCTION_DECL
6477 && mode
!= VOIDmode
&& mode
!= BLKmode
6478 && modifier
!= EXPAND_CONST_ADDRESS
)
6480 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6482 temp
= copy_to_reg (temp
);
6486 if (TREE_CODE_CLASS (code
) == tcc_unary
6487 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6488 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6491 else if (TREE_CODE_CLASS (code
) == tcc_binary
6492 || TREE_CODE_CLASS (code
) == tcc_comparison
6493 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6495 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6496 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6499 else if (code
== BIT_FIELD_REF
)
6501 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6502 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6503 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6510 /* If will do cse, generate all results into pseudo registers
6511 since 1) that allows cse to find more things
6512 and 2) otherwise cse could produce an insn the machine
6513 cannot support. An exception is a CONSTRUCTOR into a multi-word
6514 MEM: that's much more likely to be most efficient into the MEM.
6515 Another is a CALL_EXPR which must return in memory. */
6517 if (! cse_not_expected
&& mode
!= BLKmode
&& target
6518 && (!REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
6519 && ! (code
== CONSTRUCTOR
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
6520 && ! (code
== CALL_EXPR
&& aggregate_value_p (exp
, exp
)))
6527 tree function
= decl_function_context (exp
);
6529 temp
= label_rtx (exp
);
6530 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6532 if (function
!= current_function_decl
6534 LABEL_REF_NONLOCAL_P (temp
) = 1;
6536 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6541 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6546 /* If a static var's type was incomplete when the decl was written,
6547 but the type is complete now, lay out the decl now. */
6548 if (DECL_SIZE (exp
) == 0
6549 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6550 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6551 layout_decl (exp
, 0);
6553 /* ... fall through ... */
6557 gcc_assert (DECL_RTL (exp
));
6559 /* Ensure variable marked as used even if it doesn't go through
6560 a parser. If it hasn't be used yet, write out an external
6562 if (! TREE_USED (exp
))
6564 assemble_external (exp
);
6565 TREE_USED (exp
) = 1;
6568 /* Show we haven't gotten RTL for this yet. */
6571 /* Variables inherited from containing functions should have
6572 been lowered by this point. */
6573 context
= decl_function_context (exp
);
6574 gcc_assert (!context
6575 || context
== current_function_decl
6576 || TREE_STATIC (exp
)
6577 /* ??? C++ creates functions that are not TREE_STATIC. */
6578 || TREE_CODE (exp
) == FUNCTION_DECL
);
6580 /* This is the case of an array whose size is to be determined
6581 from its initializer, while the initializer is still being parsed.
6584 if (MEM_P (DECL_RTL (exp
))
6585 && REG_P (XEXP (DECL_RTL (exp
), 0)))
6586 temp
= validize_mem (DECL_RTL (exp
));
6588 /* If DECL_RTL is memory, we are in the normal case and either
6589 the address is not valid or it is not a register and -fforce-addr
6590 is specified, get the address into a register. */
6592 else if (MEM_P (DECL_RTL (exp
))
6593 && modifier
!= EXPAND_CONST_ADDRESS
6594 && modifier
!= EXPAND_SUM
6595 && modifier
!= EXPAND_INITIALIZER
6596 && (! memory_address_p (DECL_MODE (exp
),
6597 XEXP (DECL_RTL (exp
), 0))
6599 && !REG_P (XEXP (DECL_RTL (exp
), 0)))))
6602 *alt_rtl
= DECL_RTL (exp
);
6603 temp
= replace_equiv_address (DECL_RTL (exp
),
6604 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6607 /* If we got something, return it. But first, set the alignment
6608 if the address is a register. */
6611 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6612 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6617 /* If the mode of DECL_RTL does not match that of the decl, it
6618 must be a promoted value. We return a SUBREG of the wanted mode,
6619 but mark it so that we know that it was already extended. */
6621 if (REG_P (DECL_RTL (exp
))
6622 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6624 enum machine_mode pmode
;
6626 /* Get the signedness used for this variable. Ensure we get the
6627 same mode we got when the variable was declared. */
6628 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6629 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0));
6630 gcc_assert (GET_MODE (DECL_RTL (exp
)) == pmode
);
6632 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6633 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6634 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6638 return DECL_RTL (exp
);
6641 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6642 TREE_INT_CST_HIGH (exp
), mode
);
6644 /* ??? If overflow is set, fold will have done an incomplete job,
6645 which can result in (plus xx (const_int 0)), which can get
6646 simplified by validate_replace_rtx during virtual register
6647 instantiation, which can result in unrecognizable insns.
6648 Avoid this by forcing all overflows into registers. */
6649 if (TREE_CONSTANT_OVERFLOW (exp
)
6650 && modifier
!= EXPAND_INITIALIZER
)
6651 temp
= force_reg (mode
, temp
);
6656 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_INT
6657 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_FLOAT
)
6658 return const_vector_from_tree (exp
);
6660 return expand_expr (build1 (CONSTRUCTOR
, TREE_TYPE (exp
),
6661 TREE_VECTOR_CST_ELTS (exp
)),
6662 ignore
? const0_rtx
: target
, tmode
, modifier
);
6665 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6668 /* If optimized, generate immediate CONST_DOUBLE
6669 which will be turned into memory by reload if necessary.
6671 We used to force a register so that loop.c could see it. But
6672 this does not allow gen_* patterns to perform optimizations with
6673 the constants. It also produces two insns in cases like "x = 1.0;".
6674 On most machines, floating-point constants are not permitted in
6675 many insns, so we'd end up copying it to a register in any case.
6677 Now, we do the copying in expand_binop, if appropriate. */
6678 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6679 TYPE_MODE (TREE_TYPE (exp
)));
6682 /* Handle evaluating a complex constant in a CONCAT target. */
6683 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6685 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6688 rtarg
= XEXP (original_target
, 0);
6689 itarg
= XEXP (original_target
, 1);
6691 /* Move the real and imaginary parts separately. */
6692 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6693 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6696 emit_move_insn (rtarg
, op0
);
6698 emit_move_insn (itarg
, op1
);
6700 return original_target
;
6703 /* ... fall through ... */
6706 temp
= output_constant_def (exp
, 1);
6708 /* temp contains a constant address.
6709 On RISC machines where a constant address isn't valid,
6710 make some insns to get that address into a register. */
6711 if (modifier
!= EXPAND_CONST_ADDRESS
6712 && modifier
!= EXPAND_INITIALIZER
6713 && modifier
!= EXPAND_SUM
6714 && (! memory_address_p (mode
, XEXP (temp
, 0))
6715 || flag_force_addr
))
6716 return replace_equiv_address (temp
,
6717 copy_rtx (XEXP (temp
, 0)));
6722 tree val
= TREE_OPERAND (exp
, 0);
6723 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
6725 if (!SAVE_EXPR_RESOLVED_P (exp
))
6727 /* We can indeed still hit this case, typically via builtin
6728 expanders calling save_expr immediately before expanding
6729 something. Assume this means that we only have to deal
6730 with non-BLKmode values. */
6731 gcc_assert (GET_MODE (ret
) != BLKmode
);
6733 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
6734 DECL_ARTIFICIAL (val
) = 1;
6735 DECL_IGNORED_P (val
) = 1;
6736 TREE_OPERAND (exp
, 0) = val
;
6737 SAVE_EXPR_RESOLVED_P (exp
) = 1;
6739 if (!CONSTANT_P (ret
))
6740 ret
= copy_to_reg (ret
);
6741 SET_DECL_RTL (val
, ret
);
6748 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
6749 expand_goto (TREE_OPERAND (exp
, 0));
6751 expand_computed_goto (TREE_OPERAND (exp
, 0));
6755 /* If we don't need the result, just ensure we evaluate any
6761 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
6762 expand_expr (TREE_VALUE (elt
), const0_rtx
, VOIDmode
, 0);
6767 /* All elts simple constants => refer to a constant in memory. But
6768 if this is a non-BLKmode mode, let it store a field at a time
6769 since that should make a CONST_INT or CONST_DOUBLE when we
6770 fold. Likewise, if we have a target we can use, it is best to
6771 store directly into the target unless the type is large enough
6772 that memcpy will be used. If we are making an initializer and
6773 all operands are constant, put it in memory as well.
6775 FIXME: Avoid trying to fill vector constructors piece-meal.
6776 Output them with output_constant_def below unless we're sure
6777 they're zeros. This should go away when vector initializers
6778 are treated like VECTOR_CST instead of arrays.
6780 else if ((TREE_STATIC (exp
)
6781 && ((mode
== BLKmode
6782 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6783 || TREE_ADDRESSABLE (exp
)
6784 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6785 && (! MOVE_BY_PIECES_P
6786 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6788 && ! mostly_zeros_p (exp
))))
6789 || ((modifier
== EXPAND_INITIALIZER
6790 || modifier
== EXPAND_CONST_ADDRESS
)
6791 && TREE_CONSTANT (exp
)))
6793 rtx constructor
= output_constant_def (exp
, 1);
6795 if (modifier
!= EXPAND_CONST_ADDRESS
6796 && modifier
!= EXPAND_INITIALIZER
6797 && modifier
!= EXPAND_SUM
)
6798 constructor
= validize_mem (constructor
);
6804 /* Handle calls that pass values in multiple non-contiguous
6805 locations. The Irix 6 ABI has examples of this. */
6806 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6807 || GET_CODE (target
) == PARALLEL
6808 || modifier
== EXPAND_STACK_PARM
)
6810 = assign_temp (build_qualified_type (type
,
6812 | (TREE_READONLY (exp
)
6813 * TYPE_QUAL_CONST
))),
6814 0, TREE_ADDRESSABLE (exp
), 1);
6816 store_constructor (exp
, target
, 0, int_expr_size (exp
));
6820 case MISALIGNED_INDIRECT_REF
:
6821 case ALIGN_INDIRECT_REF
:
6824 tree exp1
= TREE_OPERAND (exp
, 0);
6827 if (modifier
!= EXPAND_WRITE
)
6831 t
= fold_read_from_constant_string (exp
);
6833 return expand_expr (t
, target
, tmode
, modifier
);
6836 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6837 op0
= memory_address (mode
, op0
);
6839 if (code
== ALIGN_INDIRECT_REF
)
6841 int align
= TYPE_ALIGN_UNIT (type
);
6842 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
6843 op0
= memory_address (mode
, op0
);
6846 temp
= gen_rtx_MEM (mode
, op0
);
6848 orig
= REF_ORIGINAL (exp
);
6851 set_mem_attributes (temp
, orig
, 0);
6853 /* Resolve the misalignment now, so that we don't have to remember
6854 to resolve it later. Of course, this only works for reads. */
6855 /* ??? When we get around to supporting writes, we'll have to handle
6856 this in store_expr directly. The vectorizer isn't generating
6857 those yet, however. */
6858 if (code
== MISALIGNED_INDIRECT_REF
)
6863 gcc_assert (modifier
== EXPAND_NORMAL
);
6865 /* The vectorizer should have already checked the mode. */
6866 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
6867 gcc_assert (icode
!= CODE_FOR_nothing
);
6869 /* We've already validated the memory, and we're creating a
6870 new pseudo destination. The predicates really can't fail. */
6871 reg
= gen_reg_rtx (mode
);
6873 /* Nor can the insn generator. */
6874 insn
= GEN_FCN (icode
) (reg
, temp
);
6886 tree array
= TREE_OPERAND (exp
, 0);
6887 tree index
= TREE_OPERAND (exp
, 1);
6889 /* Fold an expression like: "foo"[2].
6890 This is not done in fold so it won't happen inside &.
6891 Don't fold if this is for wide characters since it's too
6892 difficult to do correctly and this is a very rare case. */
6894 if (modifier
!= EXPAND_CONST_ADDRESS
6895 && modifier
!= EXPAND_INITIALIZER
6896 && modifier
!= EXPAND_MEMORY
)
6898 tree t
= fold_read_from_constant_string (exp
);
6901 return expand_expr (t
, target
, tmode
, modifier
);
6904 /* If this is a constant index into a constant array,
6905 just get the value from the array. Handle both the cases when
6906 we have an explicit constructor and when our operand is a variable
6907 that was declared const. */
6909 if (modifier
!= EXPAND_CONST_ADDRESS
6910 && modifier
!= EXPAND_INITIALIZER
6911 && modifier
!= EXPAND_MEMORY
6912 && TREE_CODE (array
) == CONSTRUCTOR
6913 && ! TREE_SIDE_EFFECTS (array
)
6914 && TREE_CODE (index
) == INTEGER_CST
)
6918 for (elem
= CONSTRUCTOR_ELTS (array
);
6919 (elem
&& !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6920 elem
= TREE_CHAIN (elem
))
6923 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6924 return expand_expr (fold (TREE_VALUE (elem
)), target
, tmode
,
6928 else if (optimize
>= 1
6929 && modifier
!= EXPAND_CONST_ADDRESS
6930 && modifier
!= EXPAND_INITIALIZER
6931 && modifier
!= EXPAND_MEMORY
6932 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
6933 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
6934 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
6935 && targetm
.binds_local_p (array
))
6937 if (TREE_CODE (index
) == INTEGER_CST
)
6939 tree init
= DECL_INITIAL (array
);
6941 if (TREE_CODE (init
) == CONSTRUCTOR
)
6945 for (elem
= CONSTRUCTOR_ELTS (init
);
6947 && !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6948 elem
= TREE_CHAIN (elem
))
6951 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6952 return expand_expr (fold (TREE_VALUE (elem
)), target
,
6955 else if (TREE_CODE (init
) == STRING_CST
6956 && 0 > compare_tree_int (index
,
6957 TREE_STRING_LENGTH (init
)))
6959 tree type
= TREE_TYPE (TREE_TYPE (init
));
6960 enum machine_mode mode
= TYPE_MODE (type
);
6962 if (GET_MODE_CLASS (mode
) == MODE_INT
6963 && GET_MODE_SIZE (mode
) == 1)
6964 return gen_int_mode (TREE_STRING_POINTER (init
)
6965 [TREE_INT_CST_LOW (index
)], mode
);
6970 goto normal_inner_ref
;
6973 /* If the operand is a CONSTRUCTOR, we can just extract the
6974 appropriate field if it is present. */
6975 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
6979 for (elt
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)); elt
;
6980 elt
= TREE_CHAIN (elt
))
6981 if (TREE_PURPOSE (elt
) == TREE_OPERAND (exp
, 1)
6982 /* We can normally use the value of the field in the
6983 CONSTRUCTOR. However, if this is a bitfield in
6984 an integral mode that we can fit in a HOST_WIDE_INT,
6985 we must mask only the number of bits in the bitfield,
6986 since this is done implicitly by the constructor. If
6987 the bitfield does not meet either of those conditions,
6988 we can't do this optimization. */
6989 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt
))
6990 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt
)))
6992 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt
)))
6993 <= HOST_BITS_PER_WIDE_INT
))))
6995 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
))
6996 && modifier
== EXPAND_STACK_PARM
)
6998 op0
= expand_expr (TREE_VALUE (elt
), target
, tmode
, modifier
);
6999 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
)))
7001 HOST_WIDE_INT bitsize
7002 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt
)));
7003 enum machine_mode imode
7004 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt
)));
7006 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt
))))
7008 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7009 op0
= expand_and (imode
, op0
, op1
, target
);
7014 = build_int_cst (NULL_TREE
,
7015 GET_MODE_BITSIZE (imode
) - bitsize
);
7017 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7019 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7027 goto normal_inner_ref
;
7030 case ARRAY_RANGE_REF
:
7033 enum machine_mode mode1
;
7034 HOST_WIDE_INT bitsize
, bitpos
;
7037 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7038 &mode1
, &unsignedp
, &volatilep
, true);
7041 /* If we got back the original object, something is wrong. Perhaps
7042 we are evaluating an expression too early. In any event, don't
7043 infinitely recurse. */
7044 gcc_assert (tem
!= exp
);
7046 /* If TEM's type is a union of variable size, pass TARGET to the inner
7047 computation, since it will need a temporary and TARGET is known
7048 to have to do. This occurs in unchecked conversion in Ada. */
7052 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7053 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7055 && modifier
!= EXPAND_STACK_PARM
7056 ? target
: NULL_RTX
),
7058 (modifier
== EXPAND_INITIALIZER
7059 || modifier
== EXPAND_CONST_ADDRESS
7060 || modifier
== EXPAND_STACK_PARM
)
7061 ? modifier
: EXPAND_NORMAL
);
7063 /* If this is a constant, put it into a register if it is a
7064 legitimate constant and OFFSET is 0 and memory if it isn't. */
7065 if (CONSTANT_P (op0
))
7067 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7068 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7070 op0
= force_reg (mode
, op0
);
7072 op0
= validize_mem (force_const_mem (mode
, op0
));
7075 /* Otherwise, if this object not in memory and we either have an
7076 offset or a BLKmode result, put it there. This case can't occur in
7077 C, but can in Ada if we have unchecked conversion of an expression
7078 from a scalar type to an array or record type or for an
7079 ARRAY_RANGE_REF whose type is BLKmode. */
7080 else if (!MEM_P (op0
)
7082 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7084 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7085 (TYPE_QUALS (TREE_TYPE (tem
))
7086 | TYPE_QUAL_CONST
));
7087 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7089 emit_move_insn (memloc
, op0
);
7095 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7098 gcc_assert (MEM_P (op0
));
7100 #ifdef POINTERS_EXTEND_UNSIGNED
7101 if (GET_MODE (offset_rtx
) != Pmode
)
7102 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7104 if (GET_MODE (offset_rtx
) != ptr_mode
)
7105 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7108 if (GET_MODE (op0
) == BLKmode
7109 /* A constant address in OP0 can have VOIDmode, we must
7110 not try to call force_reg in that case. */
7111 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7113 && (bitpos
% bitsize
) == 0
7114 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7115 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7117 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7121 op0
= offset_address (op0
, offset_rtx
,
7122 highest_pow2_factor (offset
));
7125 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7126 record its alignment as BIGGEST_ALIGNMENT. */
7127 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7128 && is_aligning_offset (offset
, tem
))
7129 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7131 /* Don't forget about volatility even if this is a bitfield. */
7132 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7134 if (op0
== orig_op0
)
7135 op0
= copy_rtx (op0
);
7137 MEM_VOLATILE_P (op0
) = 1;
7140 /* The following code doesn't handle CONCAT.
7141 Assume only bitpos == 0 can be used for CONCAT, due to
7142 one element arrays having the same mode as its element. */
7143 if (GET_CODE (op0
) == CONCAT
)
7145 gcc_assert (bitpos
== 0
7146 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7150 /* In cases where an aligned union has an unaligned object
7151 as a field, we might be extracting a BLKmode value from
7152 an integer-mode (e.g., SImode) object. Handle this case
7153 by doing the extract into an object as wide as the field
7154 (which we know to be the width of a basic mode), then
7155 storing into memory, and changing the mode to BLKmode. */
7156 if (mode1
== VOIDmode
7157 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7158 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7159 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7160 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7161 && modifier
!= EXPAND_CONST_ADDRESS
7162 && modifier
!= EXPAND_INITIALIZER
)
7163 /* If the field isn't aligned enough to fetch as a memref,
7164 fetch it as a bit field. */
7165 || (mode1
!= BLKmode
7166 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7167 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7169 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7170 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7171 && ((modifier
== EXPAND_CONST_ADDRESS
7172 || modifier
== EXPAND_INITIALIZER
)
7174 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7175 || (bitpos
% BITS_PER_UNIT
!= 0)))
7176 /* If the type and the field are a constant size and the
7177 size of the type isn't the same size as the bitfield,
7178 we must use bitfield operations. */
7180 && TYPE_SIZE (TREE_TYPE (exp
))
7181 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7182 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7185 enum machine_mode ext_mode
= mode
;
7187 if (ext_mode
== BLKmode
7188 && ! (target
!= 0 && MEM_P (op0
)
7190 && bitpos
% BITS_PER_UNIT
== 0))
7191 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7193 if (ext_mode
== BLKmode
)
7196 target
= assign_temp (type
, 0, 1, 1);
7201 /* In this case, BITPOS must start at a byte boundary and
7202 TARGET, if specified, must be a MEM. */
7203 gcc_assert (MEM_P (op0
)
7204 && (!target
|| MEM_P (target
))
7205 && !(bitpos
% BITS_PER_UNIT
));
7207 emit_block_move (target
,
7208 adjust_address (op0
, VOIDmode
,
7209 bitpos
/ BITS_PER_UNIT
),
7210 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7212 (modifier
== EXPAND_STACK_PARM
7213 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7218 op0
= validize_mem (op0
);
7220 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7221 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7223 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7224 (modifier
== EXPAND_STACK_PARM
7225 ? NULL_RTX
: target
),
7226 ext_mode
, ext_mode
);
7228 /* If the result is a record type and BITSIZE is narrower than
7229 the mode of OP0, an integral mode, and this is a big endian
7230 machine, we must put the field into the high-order bits. */
7231 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7232 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7233 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7234 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7235 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7239 /* If the result type is BLKmode, store the data into a temporary
7240 of the appropriate type, but with the mode corresponding to the
7241 mode for the data we have (op0's mode). It's tempting to make
7242 this a constant type, since we know it's only being stored once,
7243 but that can cause problems if we are taking the address of this
7244 COMPONENT_REF because the MEM of any reference via that address
7245 will have flags corresponding to the type, which will not
7246 necessarily be constant. */
7247 if (mode
== BLKmode
)
7250 = assign_stack_temp_for_type
7251 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7253 emit_move_insn (new, op0
);
7254 op0
= copy_rtx (new);
7255 PUT_MODE (op0
, BLKmode
);
7256 set_mem_attributes (op0
, exp
, 1);
7262 /* If the result is BLKmode, use that to access the object
7264 if (mode
== BLKmode
)
7267 /* Get a reference to just this component. */
7268 if (modifier
== EXPAND_CONST_ADDRESS
7269 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7270 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7272 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7274 if (op0
== orig_op0
)
7275 op0
= copy_rtx (op0
);
7277 set_mem_attributes (op0
, exp
, 0);
7278 if (REG_P (XEXP (op0
, 0)))
7279 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7281 MEM_VOLATILE_P (op0
) |= volatilep
;
7282 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7283 || modifier
== EXPAND_CONST_ADDRESS
7284 || modifier
== EXPAND_INITIALIZER
)
7286 else if (target
== 0)
7287 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7289 convert_move (target
, op0
, unsignedp
);
7294 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7297 /* Check for a built-in function. */
7298 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7299 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7301 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7303 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7304 == BUILT_IN_FRONTEND
)
7305 return lang_hooks
.expand_expr (exp
, original_target
,
7309 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7312 return expand_call (exp
, target
, ignore
);
7314 case NON_LVALUE_EXPR
:
7317 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7320 if (TREE_CODE (type
) == UNION_TYPE
)
7322 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7324 /* If both input and output are BLKmode, this conversion isn't doing
7325 anything except possibly changing memory attribute. */
7326 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7328 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7331 result
= copy_rtx (result
);
7332 set_mem_attributes (result
, exp
, 0);
7338 if (TYPE_MODE (type
) != BLKmode
)
7339 target
= gen_reg_rtx (TYPE_MODE (type
));
7341 target
= assign_temp (type
, 0, 1, 1);
7345 /* Store data into beginning of memory target. */
7346 store_expr (TREE_OPERAND (exp
, 0),
7347 adjust_address (target
, TYPE_MODE (valtype
), 0),
7348 modifier
== EXPAND_STACK_PARM
);
7352 gcc_assert (REG_P (target
));
7354 /* Store this field into a union of the proper type. */
7355 store_field (target
,
7356 MIN ((int_size_in_bytes (TREE_TYPE
7357 (TREE_OPERAND (exp
, 0)))
7359 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7360 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7364 /* Return the entire union. */
7368 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7370 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7373 /* If the signedness of the conversion differs and OP0 is
7374 a promoted SUBREG, clear that indication since we now
7375 have to do the proper extension. */
7376 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7377 && GET_CODE (op0
) == SUBREG
)
7378 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7380 return REDUCE_BIT_FIELD (op0
);
7383 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7384 if (GET_MODE (op0
) == mode
)
7387 /* If OP0 is a constant, just convert it into the proper mode. */
7388 else if (CONSTANT_P (op0
))
7390 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7391 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7393 if (modifier
== EXPAND_INITIALIZER
)
7394 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7395 subreg_lowpart_offset (mode
,
7398 op0
= convert_modes (mode
, inner_mode
, op0
,
7399 TYPE_UNSIGNED (inner_type
));
7402 else if (modifier
== EXPAND_INITIALIZER
)
7403 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7405 else if (target
== 0)
7406 op0
= convert_to_mode (mode
, op0
,
7407 TYPE_UNSIGNED (TREE_TYPE
7408 (TREE_OPERAND (exp
, 0))));
7411 convert_move (target
, op0
,
7412 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7416 return REDUCE_BIT_FIELD (op0
);
7418 case VIEW_CONVERT_EXPR
:
7419 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7421 /* If the input and output modes are both the same, we are done.
7422 Otherwise, if neither mode is BLKmode and both are integral and within
7423 a word, we can use gen_lowpart. If neither is true, make sure the
7424 operand is in memory and convert the MEM to the new mode. */
7425 if (TYPE_MODE (type
) == GET_MODE (op0
))
7427 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7428 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7429 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
7430 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_WORD
7431 && GET_MODE_SIZE (GET_MODE (op0
)) <= UNITS_PER_WORD
)
7432 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7433 else if (!MEM_P (op0
))
7435 /* If the operand is not a MEM, force it into memory. Since we
7436 are going to be be changing the mode of the MEM, don't call
7437 force_const_mem for constants because we don't allow pool
7438 constants to change mode. */
7439 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7441 gcc_assert (!TREE_ADDRESSABLE (exp
));
7443 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7445 = assign_stack_temp_for_type
7446 (TYPE_MODE (inner_type
),
7447 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7449 emit_move_insn (target
, op0
);
7453 /* At this point, OP0 is in the correct mode. If the output type is such
7454 that the operand is known to be aligned, indicate that it is.
7455 Otherwise, we need only be concerned about alignment for non-BLKmode
7459 op0
= copy_rtx (op0
);
7461 if (TYPE_ALIGN_OK (type
))
7462 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7463 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7464 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7466 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7467 HOST_WIDE_INT temp_size
7468 = MAX (int_size_in_bytes (inner_type
),
7469 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7470 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7471 temp_size
, 0, type
);
7472 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7474 gcc_assert (!TREE_ADDRESSABLE (exp
));
7476 if (GET_MODE (op0
) == BLKmode
)
7477 emit_block_move (new_with_op0_mode
, op0
,
7478 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7479 (modifier
== EXPAND_STACK_PARM
7480 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7482 emit_move_insn (new_with_op0_mode
, op0
);
7487 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7493 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7494 something else, make sure we add the register to the constant and
7495 then to the other thing. This case can occur during strength
7496 reduction and doing it this way will produce better code if the
7497 frame pointer or argument pointer is eliminated.
7499 fold-const.c will ensure that the constant is always in the inner
7500 PLUS_EXPR, so the only case we need to do anything about is if
7501 sp, ap, or fp is our second argument, in which case we must swap
7502 the innermost first argument and our second argument. */
7504 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7505 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7506 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7507 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7508 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7509 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7511 tree t
= TREE_OPERAND (exp
, 1);
7513 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7514 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7517 /* If the result is to be ptr_mode and we are adding an integer to
7518 something, we might be forming a constant. So try to use
7519 plus_constant. If it produces a sum and we can't accept it,
7520 use force_operand. This allows P = &ARR[const] to generate
7521 efficient code on machines where a SYMBOL_REF is not a valid
7524 If this is an EXPAND_SUM call, always return the sum. */
7525 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7526 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7528 if (modifier
== EXPAND_STACK_PARM
)
7530 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7531 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7532 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7536 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7538 /* Use immed_double_const to ensure that the constant is
7539 truncated according to the mode of OP1, then sign extended
7540 to a HOST_WIDE_INT. Using the constant directly can result
7541 in non-canonical RTL in a 64x32 cross compile. */
7543 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7545 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7546 op1
= plus_constant (op1
, INTVAL (constant_part
));
7547 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7548 op1
= force_operand (op1
, target
);
7549 return REDUCE_BIT_FIELD (op1
);
7552 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7553 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_INT
7554 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7558 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7559 (modifier
== EXPAND_INITIALIZER
7560 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7561 if (! CONSTANT_P (op0
))
7563 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7564 VOIDmode
, modifier
);
7565 /* Return a PLUS if modifier says it's OK. */
7566 if (modifier
== EXPAND_SUM
7567 || modifier
== EXPAND_INITIALIZER
)
7568 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7571 /* Use immed_double_const to ensure that the constant is
7572 truncated according to the mode of OP1, then sign extended
7573 to a HOST_WIDE_INT. Using the constant directly can result
7574 in non-canonical RTL in a 64x32 cross compile. */
7576 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7578 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7579 op0
= plus_constant (op0
, INTVAL (constant_part
));
7580 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7581 op0
= force_operand (op0
, target
);
7582 return REDUCE_BIT_FIELD (op0
);
7586 /* No sense saving up arithmetic to be done
7587 if it's all in the wrong mode to form part of an address.
7588 And force_operand won't know whether to sign-extend or
7590 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7591 || mode
!= ptr_mode
)
7593 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7594 subtarget
, &op0
, &op1
, 0);
7595 if (op0
== const0_rtx
)
7597 if (op1
== const0_rtx
)
7602 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7603 subtarget
, &op0
, &op1
, modifier
);
7604 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7607 /* For initializers, we are allowed to return a MINUS of two
7608 symbolic constants. Here we handle all cases when both operands
7610 /* Handle difference of two symbolic constants,
7611 for the sake of an initializer. */
7612 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7613 && really_constant_p (TREE_OPERAND (exp
, 0))
7614 && really_constant_p (TREE_OPERAND (exp
, 1)))
7616 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7617 NULL_RTX
, &op0
, &op1
, modifier
);
7619 /* If the last operand is a CONST_INT, use plus_constant of
7620 the negated constant. Else make the MINUS. */
7621 if (GET_CODE (op1
) == CONST_INT
)
7622 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7624 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7627 /* No sense saving up arithmetic to be done
7628 if it's all in the wrong mode to form part of an address.
7629 And force_operand won't know whether to sign-extend or
7631 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7632 || mode
!= ptr_mode
)
7635 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7636 subtarget
, &op0
, &op1
, modifier
);
7638 /* Convert A - const to A + (-const). */
7639 if (GET_CODE (op1
) == CONST_INT
)
7641 op1
= negate_rtx (mode
, op1
);
7642 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7648 /* If first operand is constant, swap them.
7649 Thus the following special case checks need only
7650 check the second operand. */
7651 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
7653 tree t1
= TREE_OPERAND (exp
, 0);
7654 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
7655 TREE_OPERAND (exp
, 1) = t1
;
7658 /* Attempt to return something suitable for generating an
7659 indexed address, for machines that support that. */
7661 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
7662 && host_integerp (TREE_OPERAND (exp
, 1), 0))
7664 tree exp1
= TREE_OPERAND (exp
, 1);
7666 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7670 op0
= force_operand (op0
, NULL_RTX
);
7672 op0
= copy_to_mode_reg (mode
, op0
);
7674 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
7675 gen_int_mode (tree_low_cst (exp1
, 0),
7676 TYPE_MODE (TREE_TYPE (exp1
)))));
7679 if (modifier
== EXPAND_STACK_PARM
)
7682 /* Check for multiplying things that have been extended
7683 from a narrower type. If this machine supports multiplying
7684 in that narrower type with a result in the desired type,
7685 do it that way, and avoid the explicit type-conversion. */
7686 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
7687 && TREE_CODE (type
) == INTEGER_TYPE
7688 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7689 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7690 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7691 && int_fits_type_p (TREE_OPERAND (exp
, 1),
7692 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7693 /* Don't use a widening multiply if a shift will do. */
7694 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
7695 > HOST_BITS_PER_WIDE_INT
)
7696 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
7698 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
7699 && (TYPE_PRECISION (TREE_TYPE
7700 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7701 == TYPE_PRECISION (TREE_TYPE
7703 (TREE_OPERAND (exp
, 0), 0))))
7704 /* If both operands are extended, they must either both
7705 be zero-extended or both be sign-extended. */
7706 && (TYPE_UNSIGNED (TREE_TYPE
7707 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7708 == TYPE_UNSIGNED (TREE_TYPE
7710 (TREE_OPERAND (exp
, 0), 0)))))))
7712 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
7713 enum machine_mode innermode
= TYPE_MODE (op0type
);
7714 bool zextend_p
= TYPE_UNSIGNED (op0type
);
7715 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
7716 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
7718 if (mode
== GET_MODE_WIDER_MODE (innermode
))
7720 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7722 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7723 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7724 TREE_OPERAND (exp
, 1),
7725 NULL_RTX
, &op0
, &op1
, 0);
7727 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7728 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7729 NULL_RTX
, &op0
, &op1
, 0);
7732 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
7733 && innermode
== word_mode
)
7736 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7737 NULL_RTX
, VOIDmode
, 0);
7738 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7739 op1
= convert_modes (innermode
, mode
,
7740 expand_expr (TREE_OPERAND (exp
, 1),
7741 NULL_RTX
, VOIDmode
, 0),
7744 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7745 NULL_RTX
, VOIDmode
, 0);
7746 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
7747 unsignedp
, OPTAB_LIB_WIDEN
);
7748 hipart
= gen_highpart (innermode
, temp
);
7749 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
7753 emit_move_insn (hipart
, htem
);
7754 return REDUCE_BIT_FIELD (temp
);
7758 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7759 subtarget
, &op0
, &op1
, 0);
7760 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
7762 case TRUNC_DIV_EXPR
:
7763 case FLOOR_DIV_EXPR
:
7765 case ROUND_DIV_EXPR
:
7766 case EXACT_DIV_EXPR
:
7767 if (modifier
== EXPAND_STACK_PARM
)
7769 /* Possible optimization: compute the dividend with EXPAND_SUM
7770 then if the divisor is constant can optimize the case
7771 where some terms of the dividend have coeffs divisible by it. */
7772 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7773 subtarget
, &op0
, &op1
, 0);
7774 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
7777 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7778 expensive divide. If not, combine will rebuild the original
7780 if (flag_unsafe_math_optimizations
&& optimize
&& !optimize_size
7781 && TREE_CODE (type
) == REAL_TYPE
7782 && !real_onep (TREE_OPERAND (exp
, 0)))
7783 return expand_expr (build2 (MULT_EXPR
, type
, TREE_OPERAND (exp
, 0),
7784 build2 (RDIV_EXPR
, type
,
7785 build_real (type
, dconst1
),
7786 TREE_OPERAND (exp
, 1))),
7787 target
, tmode
, modifier
);
7791 case TRUNC_MOD_EXPR
:
7792 case FLOOR_MOD_EXPR
:
7794 case ROUND_MOD_EXPR
:
7795 if (modifier
== EXPAND_STACK_PARM
)
7797 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7798 subtarget
, &op0
, &op1
, 0);
7799 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
7801 case FIX_ROUND_EXPR
:
7802 case FIX_FLOOR_EXPR
:
7804 gcc_unreachable (); /* Not used for C. */
7806 case FIX_TRUNC_EXPR
:
7807 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7808 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7809 target
= gen_reg_rtx (mode
);
7810 expand_fix (target
, op0
, unsignedp
);
7814 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7815 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7816 target
= gen_reg_rtx (mode
);
7817 /* expand_float can't figure out what to do if FROM has VOIDmode.
7818 So give it the correct mode. With -O, cse will optimize this. */
7819 if (GET_MODE (op0
) == VOIDmode
)
7820 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
7822 expand_float (target
, op0
,
7823 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7827 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7828 if (modifier
== EXPAND_STACK_PARM
)
7830 temp
= expand_unop (mode
,
7831 optab_for_tree_code (NEGATE_EXPR
, type
),
7834 return REDUCE_BIT_FIELD (temp
);
7837 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7838 if (modifier
== EXPAND_STACK_PARM
)
7841 /* ABS_EXPR is not valid for complex arguments. */
7842 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7843 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
7845 /* Unsigned abs is simply the operand. Testing here means we don't
7846 risk generating incorrect code below. */
7847 if (TYPE_UNSIGNED (type
))
7850 return expand_abs (mode
, op0
, target
, unsignedp
,
7851 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
7855 target
= original_target
;
7857 || modifier
== EXPAND_STACK_PARM
7858 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
7859 || GET_MODE (target
) != mode
7861 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
7862 target
= gen_reg_rtx (mode
);
7863 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7864 target
, &op0
, &op1
, 0);
7866 /* First try to do it with a special MIN or MAX instruction.
7867 If that does not win, use a conditional jump to select the proper
7869 this_optab
= optab_for_tree_code (code
, type
);
7870 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
7875 /* At this point, a MEM target is no longer useful; we will get better
7878 if (! REG_P (target
))
7879 target
= gen_reg_rtx (mode
);
7881 /* If op1 was placed in target, swap op0 and op1. */
7882 if (target
!= op0
&& target
== op1
)
7889 /* We generate better code and avoid problems with op1 mentioning
7890 target by forcing op1 into a pseudo if it isn't a constant. */
7891 if (! CONSTANT_P (op1
))
7892 op1
= force_reg (mode
, op1
);
7894 #ifdef HAVE_conditional_move
7895 /* Use a conditional move if possible. */
7896 if (can_conditionally_move_p (mode
))
7898 enum rtx_code comparison_code
;
7901 if (code
== MAX_EXPR
)
7902 comparison_code
= unsignedp
? GEU
: GE
;
7904 comparison_code
= unsignedp
? LEU
: LE
;
7906 /* ??? Same problem as in expmed.c: emit_conditional_move
7907 forces a stack adjustment via compare_from_rtx, and we
7908 lose the stack adjustment if the sequence we are about
7909 to create is discarded. */
7910 do_pending_stack_adjust ();
7914 /* Try to emit the conditional move. */
7915 insn
= emit_conditional_move (target
, comparison_code
,
7920 /* If we could do the conditional move, emit the sequence,
7924 rtx seq
= get_insns ();
7930 /* Otherwise discard the sequence and fall back to code with
7936 emit_move_insn (target
, op0
);
7938 temp
= gen_label_rtx ();
7940 /* If this mode is an integer too wide to compare properly,
7941 compare word by word. Rely on cse to optimize constant cases. */
7942 if (GET_MODE_CLASS (mode
) == MODE_INT
7943 && ! can_compare_p (GE
, mode
, ccp_jump
))
7945 if (code
== MAX_EXPR
)
7946 do_jump_by_parts_greater_rtx (mode
, unsignedp
, target
, op1
,
7949 do_jump_by_parts_greater_rtx (mode
, unsignedp
, op1
, target
,
7954 do_compare_rtx_and_jump (target
, op1
, code
== MAX_EXPR
? GE
: LE
,
7955 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
7957 emit_move_insn (target
, op1
);
7962 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7963 if (modifier
== EXPAND_STACK_PARM
)
7965 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
7969 /* ??? Can optimize bitwise operations with one arg constant.
7970 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7971 and (a bitwise1 b) bitwise2 b (etc)
7972 but that is probably not worth while. */
7974 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7975 boolean values when we want in all cases to compute both of them. In
7976 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7977 as actual zero-or-1 values and then bitwise anding. In cases where
7978 there cannot be any side effects, better code would be made by
7979 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7980 how to recognize those cases. */
7982 case TRUTH_AND_EXPR
:
7983 code
= BIT_AND_EXPR
;
7988 code
= BIT_IOR_EXPR
;
7992 case TRUTH_XOR_EXPR
:
7993 code
= BIT_XOR_EXPR
;
8001 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8003 if (modifier
== EXPAND_STACK_PARM
)
8005 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8006 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8009 /* Could determine the answer when only additive constants differ. Also,
8010 the addition of one can be handled by changing the condition. */
8017 case UNORDERED_EXPR
:
8025 temp
= do_store_flag (exp
,
8026 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8027 tmode
!= VOIDmode
? tmode
: mode
, 0);
8031 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8032 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8034 && REG_P (original_target
)
8035 && (GET_MODE (original_target
)
8036 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8038 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8041 /* If temp is constant, we can just compute the result. */
8042 if (GET_CODE (temp
) == CONST_INT
)
8044 if (INTVAL (temp
) != 0)
8045 emit_move_insn (target
, const1_rtx
);
8047 emit_move_insn (target
, const0_rtx
);
8052 if (temp
!= original_target
)
8054 enum machine_mode mode1
= GET_MODE (temp
);
8055 if (mode1
== VOIDmode
)
8056 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8058 temp
= copy_to_mode_reg (mode1
, temp
);
8061 op1
= gen_label_rtx ();
8062 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8063 GET_MODE (temp
), unsignedp
, op1
);
8064 emit_move_insn (temp
, const1_rtx
);
8069 /* If no set-flag instruction, must generate a conditional store
8070 into a temporary variable. Drop through and handle this
8075 || modifier
== EXPAND_STACK_PARM
8076 || ! safe_from_p (target
, exp
, 1)
8077 /* Make sure we don't have a hard reg (such as function's return
8078 value) live across basic blocks, if not optimizing. */
8079 || (!optimize
&& REG_P (target
)
8080 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8081 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8084 emit_move_insn (target
, const0_rtx
);
8086 op1
= gen_label_rtx ();
8087 jumpifnot (exp
, op1
);
8090 emit_move_insn (target
, const1_rtx
);
8093 return ignore
? const0_rtx
: target
;
8095 case TRUTH_NOT_EXPR
:
8096 if (modifier
== EXPAND_STACK_PARM
)
8098 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8099 /* The parser is careful to generate TRUTH_NOT_EXPR
8100 only with operands that are always zero or one. */
8101 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8102 target
, 1, OPTAB_LIB_WIDEN
);
8106 case STATEMENT_LIST
:
8108 tree_stmt_iterator iter
;
8110 gcc_assert (ignore
);
8112 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8113 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8118 /* A COND_EXPR with its type being VOID_TYPE represents a
8119 conditional jump and is handled in
8120 expand_gimple_cond_expr. */
8121 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8123 /* Note that COND_EXPRs whose type is a structure or union
8124 are required to be constructed to contain assignments of
8125 a temporary variable, so that we can evaluate them here
8126 for side effect only. If type is void, we must do likewise. */
8128 gcc_assert (!TREE_ADDRESSABLE (type
)
8130 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8131 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8133 /* If we are not to produce a result, we have no target. Otherwise,
8134 if a target was specified use it; it will not be used as an
8135 intermediate target unless it is safe. If no target, use a
8138 if (modifier
!= EXPAND_STACK_PARM
8140 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8141 && GET_MODE (original_target
) == mode
8142 #ifdef HAVE_conditional_move
8143 && (! can_conditionally_move_p (mode
)
8144 || REG_P (original_target
))
8146 && !MEM_P (original_target
))
8147 temp
= original_target
;
8149 temp
= assign_temp (type
, 0, 0, 1);
8151 do_pending_stack_adjust ();
8153 op0
= gen_label_rtx ();
8154 op1
= gen_label_rtx ();
8155 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8156 store_expr (TREE_OPERAND (exp
, 1), temp
,
8157 modifier
== EXPAND_STACK_PARM
);
8159 emit_jump_insn (gen_jump (op1
));
8162 store_expr (TREE_OPERAND (exp
, 2), temp
,
8163 modifier
== EXPAND_STACK_PARM
);
8170 target
= expand_vec_cond_expr (exp
, target
);
8175 tree lhs
= TREE_OPERAND (exp
, 0);
8176 tree rhs
= TREE_OPERAND (exp
, 1);
8178 gcc_assert (ignore
);
8180 /* Check for |= or &= of a bitfield of size one into another bitfield
8181 of size 1. In this case, (unless we need the result of the
8182 assignment) we can do this more efficiently with a
8183 test followed by an assignment, if necessary.
8185 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8186 things change so we do, this code should be enhanced to
8188 if (TREE_CODE (lhs
) == COMPONENT_REF
8189 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8190 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8191 && TREE_OPERAND (rhs
, 0) == lhs
8192 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8193 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8194 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8196 rtx label
= gen_label_rtx ();
8198 do_jump (TREE_OPERAND (rhs
, 1),
8199 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
8200 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
8201 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
8202 (TREE_CODE (rhs
) == BIT_IOR_EXPR
8204 : integer_zero_node
)));
8205 do_pending_stack_adjust ();
8210 expand_assignment (lhs
, rhs
);
8216 if (!TREE_OPERAND (exp
, 0))
8217 expand_null_return ();
8219 expand_return (TREE_OPERAND (exp
, 0));
8223 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8226 /* Get the rtx code of the operands. */
8227 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8228 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
8231 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8233 /* Move the real (op0) and imaginary (op1) parts to their location. */
8234 write_complex_part (target
, op0
, false);
8235 write_complex_part (target
, op1
, true);
8240 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8241 return read_complex_part (op0
, false);
8244 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8245 return read_complex_part (op0
, true);
8248 expand_resx_expr (exp
);
8251 case TRY_CATCH_EXPR
:
8253 case EH_FILTER_EXPR
:
8254 case TRY_FINALLY_EXPR
:
8255 /* Lowered by tree-eh.c. */
8258 case WITH_CLEANUP_EXPR
:
8259 case CLEANUP_POINT_EXPR
:
8261 case CASE_LABEL_EXPR
:
8267 case PREINCREMENT_EXPR
:
8268 case PREDECREMENT_EXPR
:
8269 case POSTINCREMENT_EXPR
:
8270 case POSTDECREMENT_EXPR
:
8273 case TRUTH_ANDIF_EXPR
:
8274 case TRUTH_ORIF_EXPR
:
8275 /* Lowered by gimplify.c. */
8279 return get_exception_pointer (cfun
);
8282 return get_exception_filter (cfun
);
8285 /* Function descriptors are not valid except for as
8286 initialization constants, and should not be expanded. */
8294 expand_label (TREE_OPERAND (exp
, 0));
8298 expand_asm_expr (exp
);
8301 case WITH_SIZE_EXPR
:
8302 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8303 have pulled out the size to use in whatever context it needed. */
8304 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8307 case REALIGN_LOAD_EXPR
:
8309 tree oprnd0
= TREE_OPERAND (exp
, 0);
8310 tree oprnd1
= TREE_OPERAND (exp
, 1);
8311 tree oprnd2
= TREE_OPERAND (exp
, 2);
8314 this_optab
= optab_for_tree_code (code
, type
);
8315 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8316 op2
= expand_expr (oprnd2
, NULL_RTX
, VOIDmode
, 0);
8317 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8326 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8330 /* Here to do an ordinary binary operator. */
8332 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8333 subtarget
, &op0
, &op1
, 0);
8335 this_optab
= optab_for_tree_code (code
, type
);
8337 if (modifier
== EXPAND_STACK_PARM
)
8339 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8340 unsignedp
, OPTAB_LIB_WIDEN
);
8342 return REDUCE_BIT_FIELD (temp
);
8344 #undef REDUCE_BIT_FIELD
8346 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8347 signedness of TYPE), possibly returning the result in TARGET. */
8349 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8351 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8352 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8354 if (TYPE_UNSIGNED (type
))
8357 if (prec
< HOST_BITS_PER_WIDE_INT
)
8358 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8361 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8362 ((unsigned HOST_WIDE_INT
) 1
8363 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8365 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8369 tree count
= build_int_cst (NULL_TREE
,
8370 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8371 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8372 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8376 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8377 when applied to the address of EXP produces an address known to be
8378 aligned more than BIGGEST_ALIGNMENT. */
8381 is_aligning_offset (tree offset
, tree exp
)
8383 /* Strip off any conversions. */
8384 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8385 || TREE_CODE (offset
) == NOP_EXPR
8386 || TREE_CODE (offset
) == CONVERT_EXPR
)
8387 offset
= TREE_OPERAND (offset
, 0);
8389 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8390 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8391 if (TREE_CODE (offset
) != BIT_AND_EXPR
8392 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8393 || compare_tree_int (TREE_OPERAND (offset
, 1),
8394 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8395 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8398 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8399 It must be NEGATE_EXPR. Then strip any more conversions. */
8400 offset
= TREE_OPERAND (offset
, 0);
8401 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8402 || TREE_CODE (offset
) == NOP_EXPR
8403 || TREE_CODE (offset
) == CONVERT_EXPR
)
8404 offset
= TREE_OPERAND (offset
, 0);
8406 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8409 offset
= TREE_OPERAND (offset
, 0);
8410 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8411 || TREE_CODE (offset
) == NOP_EXPR
8412 || TREE_CODE (offset
) == CONVERT_EXPR
)
8413 offset
= TREE_OPERAND (offset
, 0);
8415 /* This must now be the address of EXP. */
8416 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8419 /* Return the tree node if an ARG corresponds to a string constant or zero
8420 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8421 in bytes within the string that ARG is accessing. The type of the
8422 offset will be `sizetype'. */
8425 string_constant (tree arg
, tree
*ptr_offset
)
8430 if (TREE_CODE (arg
) == ADDR_EXPR
)
8432 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8434 *ptr_offset
= size_zero_node
;
8435 return TREE_OPERAND (arg
, 0);
8437 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8439 array
= TREE_OPERAND (arg
, 0);
8440 offset
= size_zero_node
;
8442 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8444 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8445 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8446 if (TREE_CODE (array
) != STRING_CST
8447 && TREE_CODE (array
) != VAR_DECL
)
8453 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8455 tree arg0
= TREE_OPERAND (arg
, 0);
8456 tree arg1
= TREE_OPERAND (arg
, 1);
8461 if (TREE_CODE (arg0
) == ADDR_EXPR
8462 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8463 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8465 array
= TREE_OPERAND (arg0
, 0);
8468 else if (TREE_CODE (arg1
) == ADDR_EXPR
8469 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8470 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8472 array
= TREE_OPERAND (arg1
, 0);
8481 if (TREE_CODE (array
) == STRING_CST
)
8483 *ptr_offset
= convert (sizetype
, offset
);
8486 else if (TREE_CODE (array
) == VAR_DECL
)
8490 /* Variables initialized to string literals can be handled too. */
8491 if (DECL_INITIAL (array
) == NULL_TREE
8492 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8495 /* If they are read-only, non-volatile and bind locally. */
8496 if (! TREE_READONLY (array
)
8497 || TREE_SIDE_EFFECTS (array
)
8498 || ! targetm
.binds_local_p (array
))
8501 /* Avoid const char foo[4] = "abcde"; */
8502 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8503 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8504 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8505 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8508 /* If variable is bigger than the string literal, OFFSET must be constant
8509 and inside of the bounds of the string literal. */
8510 offset
= convert (sizetype
, offset
);
8511 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8512 && (! host_integerp (offset
, 1)
8513 || compare_tree_int (offset
, length
) >= 0))
8516 *ptr_offset
= offset
;
8517 return DECL_INITIAL (array
);
8523 /* Generate code to calculate EXP using a store-flag instruction
8524 and return an rtx for the result. EXP is either a comparison
8525 or a TRUTH_NOT_EXPR whose operand is a comparison.
8527 If TARGET is nonzero, store the result there if convenient.
8529 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8532 Return zero if there is no suitable set-flag instruction
8533 available on this machine.
8535 Once expand_expr has been called on the arguments of the comparison,
8536 we are committed to doing the store flag, since it is not safe to
8537 re-evaluate the expression. We emit the store-flag insn by calling
8538 emit_store_flag, but only expand the arguments if we have a reason
8539 to believe that emit_store_flag will be successful. If we think that
8540 it will, but it isn't, we have to simulate the store-flag with a
8541 set/jump/set sequence. */
8544 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8547 tree arg0
, arg1
, type
;
8549 enum machine_mode operand_mode
;
8553 enum insn_code icode
;
8554 rtx subtarget
= target
;
8557 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8558 result at the end. We can't simply invert the test since it would
8559 have already been inverted if it were valid. This case occurs for
8560 some floating-point comparisons. */
8562 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8563 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8565 arg0
= TREE_OPERAND (exp
, 0);
8566 arg1
= TREE_OPERAND (exp
, 1);
8568 /* Don't crash if the comparison was erroneous. */
8569 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8572 type
= TREE_TYPE (arg0
);
8573 operand_mode
= TYPE_MODE (type
);
8574 unsignedp
= TYPE_UNSIGNED (type
);
8576 /* We won't bother with BLKmode store-flag operations because it would mean
8577 passing a lot of information to emit_store_flag. */
8578 if (operand_mode
== BLKmode
)
8581 /* We won't bother with store-flag operations involving function pointers
8582 when function pointers must be canonicalized before comparisons. */
8583 #ifdef HAVE_canonicalize_funcptr_for_compare
8584 if (HAVE_canonicalize_funcptr_for_compare
8585 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
8586 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8588 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
8589 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8590 == FUNCTION_TYPE
))))
8597 /* Get the rtx comparison code to use. We know that EXP is a comparison
8598 operation of some type. Some comparisons against 1 and -1 can be
8599 converted to comparisons with zero. Do so here so that the tests
8600 below will be aware that we have a comparison with zero. These
8601 tests will not catch constants in the first operand, but constants
8602 are rarely passed as the first operand. */
8604 switch (TREE_CODE (exp
))
8613 if (integer_onep (arg1
))
8614 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
8616 code
= unsignedp
? LTU
: LT
;
8619 if (! unsignedp
&& integer_all_onesp (arg1
))
8620 arg1
= integer_zero_node
, code
= LT
;
8622 code
= unsignedp
? LEU
: LE
;
8625 if (! unsignedp
&& integer_all_onesp (arg1
))
8626 arg1
= integer_zero_node
, code
= GE
;
8628 code
= unsignedp
? GTU
: GT
;
8631 if (integer_onep (arg1
))
8632 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
8634 code
= unsignedp
? GEU
: GE
;
8637 case UNORDERED_EXPR
:
8666 /* Put a constant second. */
8667 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
8669 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
8670 code
= swap_condition (code
);
8673 /* If this is an equality or inequality test of a single bit, we can
8674 do this by shifting the bit being tested to the low-order bit and
8675 masking the result with the constant 1. If the condition was EQ,
8676 we xor it with 1. This does not require an scc insn and is faster
8677 than an scc insn even if we have it.
8679 The code to make this transformation was moved into fold_single_bit_test,
8680 so we just call into the folder and expand its result. */
8682 if ((code
== NE
|| code
== EQ
)
8683 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
8684 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
8686 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
8687 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
8689 target
, VOIDmode
, EXPAND_NORMAL
);
8692 /* Now see if we are likely to be able to do this. Return if not. */
8693 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
8696 icode
= setcc_gen_code
[(int) code
];
8697 if (icode
== CODE_FOR_nothing
8698 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
8700 /* We can only do this if it is one of the special cases that
8701 can be handled without an scc insn. */
8702 if ((code
== LT
&& integer_zerop (arg1
))
8703 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
8705 else if (BRANCH_COST
>= 0
8706 && ! only_cheap
&& (code
== NE
|| code
== EQ
)
8707 && TREE_CODE (type
) != REAL_TYPE
8708 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
8709 != CODE_FOR_nothing
)
8710 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
8711 != CODE_FOR_nothing
)))
8717 if (! get_subtarget (target
)
8718 || GET_MODE (subtarget
) != operand_mode
)
8721 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
8724 target
= gen_reg_rtx (mode
);
8726 result
= emit_store_flag (target
, code
, op0
, op1
,
8727 operand_mode
, unsignedp
, 1);
8732 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
8733 result
, 0, OPTAB_LIB_WIDEN
);
8737 /* If this failed, we have to do this with set/compare/jump/set code. */
8739 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
8740 target
= gen_reg_rtx (GET_MODE (target
));
8742 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
8743 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
8744 operand_mode
, NULL_RTX
);
8745 if (GET_CODE (result
) == CONST_INT
)
8746 return (((result
== const0_rtx
&& ! invert
)
8747 || (result
!= const0_rtx
&& invert
))
8748 ? const0_rtx
: const1_rtx
);
8750 /* The code of RESULT may not match CODE if compare_from_rtx
8751 decided to swap its operands and reverse the original code.
8753 We know that compare_from_rtx returns either a CONST_INT or
8754 a new comparison code, so it is safe to just extract the
8755 code from RESULT. */
8756 code
= GET_CODE (result
);
8758 label
= gen_label_rtx ();
8759 gcc_assert (bcc_gen_fctn
[(int) code
]);
8761 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
8762 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
8769 /* Stubs in case we haven't got a casesi insn. */
8771 # define HAVE_casesi 0
8772 # define gen_casesi(a, b, c, d, e) (0)
8773 # define CODE_FOR_casesi CODE_FOR_nothing
8776 /* If the machine does not have a case insn that compares the bounds,
8777 this means extra overhead for dispatch tables, which raises the
8778 threshold for using them. */
8779 #ifndef CASE_VALUES_THRESHOLD
8780 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8781 #endif /* CASE_VALUES_THRESHOLD */
8784 case_values_threshold (void)
8786 return CASE_VALUES_THRESHOLD
;
8789 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8790 0 otherwise (i.e. if there is no casesi instruction). */
8792 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
8793 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
8795 enum machine_mode index_mode
= SImode
;
8796 int index_bits
= GET_MODE_BITSIZE (index_mode
);
8797 rtx op1
, op2
, index
;
8798 enum machine_mode op_mode
;
8803 /* Convert the index to SImode. */
8804 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
8806 enum machine_mode omode
= TYPE_MODE (index_type
);
8807 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8809 /* We must handle the endpoints in the original mode. */
8810 index_expr
= build2 (MINUS_EXPR
, index_type
,
8811 index_expr
, minval
);
8812 minval
= integer_zero_node
;
8813 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8814 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
8815 omode
, 1, default_label
);
8816 /* Now we can safely truncate. */
8817 index
= convert_to_mode (index_mode
, index
, 0);
8821 if (TYPE_MODE (index_type
) != index_mode
)
8823 index_expr
= convert (lang_hooks
.types
.type_for_size
8824 (index_bits
, 0), index_expr
);
8825 index_type
= TREE_TYPE (index_expr
);
8828 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8831 do_pending_stack_adjust ();
8833 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
8834 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
8836 index
= copy_to_mode_reg (op_mode
, index
);
8838 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
8840 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
8841 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
8842 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
8843 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
8845 op1
= copy_to_mode_reg (op_mode
, op1
);
8847 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8849 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
8850 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
8851 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
8852 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
8854 op2
= copy_to_mode_reg (op_mode
, op2
);
8856 emit_jump_insn (gen_casesi (index
, op1
, op2
,
8857 table_label
, default_label
));
8861 /* Attempt to generate a tablejump instruction; same concept. */
8862 #ifndef HAVE_tablejump
8863 #define HAVE_tablejump 0
8864 #define gen_tablejump(x, y) (0)
8867 /* Subroutine of the next function.
8869 INDEX is the value being switched on, with the lowest value
8870 in the table already subtracted.
8871 MODE is its expected mode (needed if INDEX is constant).
8872 RANGE is the length of the jump table.
8873 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8875 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8876 index value is out of range. */
8879 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
8884 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
8885 cfun
->max_jumptable_ents
= INTVAL (range
);
8887 /* Do an unsigned comparison (in the proper mode) between the index
8888 expression and the value which represents the length of the range.
8889 Since we just finished subtracting the lower bound of the range
8890 from the index expression, this comparison allows us to simultaneously
8891 check that the original index expression value is both greater than
8892 or equal to the minimum value of the range and less than or equal to
8893 the maximum value of the range. */
8895 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
8898 /* If index is in range, it must fit in Pmode.
8899 Convert to Pmode so we can index with it. */
8901 index
= convert_to_mode (Pmode
, index
, 1);
8903 /* Don't let a MEM slip through, because then INDEX that comes
8904 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8905 and break_out_memory_refs will go to work on it and mess it up. */
8906 #ifdef PIC_CASE_VECTOR_ADDRESS
8907 if (flag_pic
&& !REG_P (index
))
8908 index
= copy_to_mode_reg (Pmode
, index
);
8911 /* If flag_force_addr were to affect this address
8912 it could interfere with the tricky assumptions made
8913 about addresses that contain label-refs,
8914 which may be valid only very near the tablejump itself. */
8915 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8916 GET_MODE_SIZE, because this indicates how large insns are. The other
8917 uses should all be Pmode, because they are addresses. This code
8918 could fail if addresses and insns are not the same size. */
8919 index
= gen_rtx_PLUS (Pmode
,
8920 gen_rtx_MULT (Pmode
, index
,
8921 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
8922 gen_rtx_LABEL_REF (Pmode
, table_label
));
8923 #ifdef PIC_CASE_VECTOR_ADDRESS
8925 index
= PIC_CASE_VECTOR_ADDRESS (index
);
8928 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
8929 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
8930 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
8931 convert_move (temp
, vector
, 0);
8933 emit_jump_insn (gen_tablejump (temp
, table_label
));
8935 /* If we are generating PIC code or if the table is PC-relative, the
8936 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8937 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
8942 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
8943 rtx table_label
, rtx default_label
)
8947 if (! HAVE_tablejump
)
8950 index_expr
= fold (build2 (MINUS_EXPR
, index_type
,
8951 convert (index_type
, index_expr
),
8952 convert (index_type
, minval
)));
8953 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8954 do_pending_stack_adjust ();
8956 do_tablejump (index
, TYPE_MODE (index_type
),
8957 convert_modes (TYPE_MODE (index_type
),
8958 TYPE_MODE (TREE_TYPE (range
)),
8959 expand_expr (range
, NULL_RTX
,
8961 TYPE_UNSIGNED (TREE_TYPE (range
))),
8962 table_label
, default_label
);
8966 /* Nonzero if the mode is a valid vector mode for this architecture.
8967 This returns nonzero even if there is no hardware support for the
8968 vector mode, but we can emulate with narrower modes. */
8971 vector_mode_valid_p (enum machine_mode mode
)
8973 enum mode_class
class = GET_MODE_CLASS (mode
);
8974 enum machine_mode innermode
;
8976 /* Doh! What's going on? */
8977 if (class != MODE_VECTOR_INT
8978 && class != MODE_VECTOR_FLOAT
)
8981 /* Hardware support. Woo hoo! */
8982 if (targetm
.vector_mode_supported_p (mode
))
8985 innermode
= GET_MODE_INNER (mode
);
8987 /* We should probably return 1 if requesting V4DI and we have no DI,
8988 but we have V2DI, but this is probably very unlikely. */
8990 /* If we have support for the inner mode, we can safely emulate it.
8991 We may not have V2DI, but me can emulate with a pair of DIs. */
8992 return targetm
.scalar_mode_supported_p (innermode
);
8995 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
8997 const_vector_from_tree (tree exp
)
9002 enum machine_mode inner
, mode
;
9004 mode
= TYPE_MODE (TREE_TYPE (exp
));
9006 if (initializer_zerop (exp
))
9007 return CONST0_RTX (mode
);
9009 units
= GET_MODE_NUNITS (mode
);
9010 inner
= GET_MODE_INNER (mode
);
9012 v
= rtvec_alloc (units
);
9014 link
= TREE_VECTOR_CST_ELTS (exp
);
9015 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9017 elt
= TREE_VALUE (link
);
9019 if (TREE_CODE (elt
) == REAL_CST
)
9020 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9023 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9024 TREE_INT_CST_HIGH (elt
),
9028 /* Initialize remaining elements to 0. */
9029 for (; i
< units
; ++i
)
9030 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9032 return gen_rtx_CONST_VECTOR (mode
, v
);
9034 #include "gt-expr.h"