2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Since target arithmetic must be done on the host, there has to
22 be some way of evaluating arithmetic expressions as the host
23 would evaluate them. We use the GNU MP library and the MPFR
24 library to do arithmetic, and this file provides the interface. */
28 #include "coretypes.h"
32 #include "target-memory.h"
33 #include "constructor.h"
35 /* MPFR does not have a direct replacement for mpz_set_f() from GMP.
36 It's easily implemented with a few calls though. */
39 gfc_mpfr_to_mpz (mpz_t z
, mpfr_t x
, locus
*where
)
43 if (mpfr_inf_p (x
) || mpfr_nan_p (x
))
45 gfc_error ("Conversion of an Infinity or Not-a-Number at %L "
51 e
= mpfr_get_z_exp (z
, x
);
54 mpz_mul_2exp (z
, z
, e
);
56 mpz_tdiv_q_2exp (z
, z
, -e
);
60 /* Set the model number precision by the requested KIND. */
63 gfc_set_model_kind (int kind
)
65 int index
= gfc_validate_kind (BT_REAL
, kind
, false);
68 base2prec
= gfc_real_kinds
[index
].digits
;
69 if (gfc_real_kinds
[index
].radix
!= 2)
70 base2prec
*= gfc_real_kinds
[index
].radix
/ 2;
71 mpfr_set_default_prec (base2prec
);
75 /* Set the model number precision from mpfr_t x. */
78 gfc_set_model (mpfr_t x
)
80 mpfr_set_default_prec (mpfr_get_prec (x
));
84 /* Given an arithmetic error code, return a pointer to a string that
85 explains the error. */
88 gfc_arith_error (arith code
)
95 p
= _("Arithmetic OK at %L");
98 p
= _("Arithmetic overflow at %L");
100 case ARITH_UNDERFLOW
:
101 p
= _("Arithmetic underflow at %L");
104 p
= _("Arithmetic NaN at %L");
107 p
= _("Division by zero at %L");
109 case ARITH_INCOMMENSURATE
:
110 p
= _("Array operands are incommensurate at %L");
112 case ARITH_ASYMMETRIC
:
114 _("Integer outside symmetric range implied by Standard Fortran at %L");
117 gfc_internal_error ("gfc_arith_error(): Bad error code");
124 /* Get things ready to do math. */
127 gfc_arith_init_1 (void)
129 gfc_integer_info
*int_info
;
130 gfc_real_info
*real_info
;
134 mpfr_set_default_prec (128);
137 /* Convert the minimum and maximum values for each kind into their
138 GNU MP representation. */
139 for (int_info
= gfc_integer_kinds
; int_info
->kind
!= 0; int_info
++)
142 mpz_init (int_info
->huge
);
143 mpz_set_ui (int_info
->huge
, int_info
->radix
);
144 mpz_pow_ui (int_info
->huge
, int_info
->huge
, int_info
->digits
);
145 mpz_sub_ui (int_info
->huge
, int_info
->huge
, 1);
147 /* These are the numbers that are actually representable by the
148 target. For bases other than two, this needs to be changed. */
149 if (int_info
->radix
!= 2)
150 gfc_internal_error ("Fix min_int calculation");
152 /* See PRs 13490 and 17912, related to integer ranges.
153 The pedantic_min_int exists for range checking when a program
154 is compiled with -pedantic, and reflects the belief that
155 Standard Fortran requires integers to be symmetrical, i.e.
156 every negative integer must have a representable positive
157 absolute value, and vice versa. */
159 mpz_init (int_info
->pedantic_min_int
);
160 mpz_neg (int_info
->pedantic_min_int
, int_info
->huge
);
162 mpz_init (int_info
->min_int
);
163 mpz_sub_ui (int_info
->min_int
, int_info
->pedantic_min_int
, 1);
166 mpfr_set_z (a
, int_info
->huge
, GFC_RND_MODE
);
167 mpfr_log10 (a
, a
, GFC_RND_MODE
);
169 int_info
->range
= (int) mpfr_get_si (a
, GFC_RND_MODE
);
174 for (real_info
= gfc_real_kinds
; real_info
->kind
!= 0; real_info
++)
176 gfc_set_model_kind (real_info
->kind
);
181 /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */
183 mpfr_init (real_info
->huge
);
184 mpfr_set_ui (real_info
->huge
, 1, GFC_RND_MODE
);
185 mpfr_set_ui (a
, real_info
->radix
, GFC_RND_MODE
);
186 mpfr_pow_si (a
, a
, -real_info
->digits
, GFC_RND_MODE
);
187 mpfr_sub (real_info
->huge
, real_info
->huge
, a
, GFC_RND_MODE
);
190 mpfr_set_ui (a
, real_info
->radix
, GFC_RND_MODE
);
191 mpfr_pow_ui (a
, a
, real_info
->max_exponent
- 1, GFC_RND_MODE
);
193 /* (1 - b**(-p)) * b**(emax-1) */
194 mpfr_mul (real_info
->huge
, real_info
->huge
, a
, GFC_RND_MODE
);
196 /* (1 - b**(-p)) * b**(emax-1) * b */
197 mpfr_mul_ui (real_info
->huge
, real_info
->huge
, real_info
->radix
,
200 /* tiny(x) = b**(emin-1) */
201 mpfr_init (real_info
->tiny
);
202 mpfr_set_ui (real_info
->tiny
, real_info
->radix
, GFC_RND_MODE
);
203 mpfr_pow_si (real_info
->tiny
, real_info
->tiny
,
204 real_info
->min_exponent
- 1, GFC_RND_MODE
);
206 /* subnormal (x) = b**(emin - digit) */
207 mpfr_init (real_info
->subnormal
);
208 mpfr_set_ui (real_info
->subnormal
, real_info
->radix
, GFC_RND_MODE
);
209 mpfr_pow_si (real_info
->subnormal
, real_info
->subnormal
,
210 real_info
->min_exponent
- real_info
->digits
, GFC_RND_MODE
);
212 /* epsilon(x) = b**(1-p) */
213 mpfr_init (real_info
->epsilon
);
214 mpfr_set_ui (real_info
->epsilon
, real_info
->radix
, GFC_RND_MODE
);
215 mpfr_pow_si (real_info
->epsilon
, real_info
->epsilon
,
216 1 - real_info
->digits
, GFC_RND_MODE
);
218 /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
219 mpfr_log10 (a
, real_info
->huge
, GFC_RND_MODE
);
220 mpfr_log10 (b
, real_info
->tiny
, GFC_RND_MODE
);
221 mpfr_neg (b
, b
, GFC_RND_MODE
);
224 mpfr_min (a
, a
, b
, GFC_RND_MODE
);
226 real_info
->range
= (int) mpfr_get_si (a
, GFC_RND_MODE
);
228 /* precision(x) = int((p - 1) * log10(b)) + k */
229 mpfr_set_ui (a
, real_info
->radix
, GFC_RND_MODE
);
230 mpfr_log10 (a
, a
, GFC_RND_MODE
);
231 mpfr_mul_ui (a
, a
, real_info
->digits
- 1, GFC_RND_MODE
);
233 real_info
->precision
= (int) mpfr_get_si (a
, GFC_RND_MODE
);
235 /* If the radix is an integral power of 10, add one to the precision. */
236 for (i
= 10; i
<= real_info
->radix
; i
*= 10)
237 if (i
== real_info
->radix
)
238 real_info
->precision
++;
240 mpfr_clears (a
, b
, NULL
);
245 /* Clean up, get rid of numeric constants. */
248 gfc_arith_done_1 (void)
250 gfc_integer_info
*ip
;
253 for (ip
= gfc_integer_kinds
; ip
->kind
; ip
++)
255 mpz_clear (ip
->min_int
);
256 mpz_clear (ip
->pedantic_min_int
);
257 mpz_clear (ip
->huge
);
260 for (rp
= gfc_real_kinds
; rp
->kind
; rp
++)
261 mpfr_clears (rp
->epsilon
, rp
->huge
, rp
->tiny
, rp
->subnormal
, NULL
);
267 /* Given a wide character value and a character kind, determine whether
268 the character is representable for that kind. */
270 gfc_check_character_range (gfc_char_t c
, int kind
)
272 /* As wide characters are stored as 32-bit values, they're all
273 representable in UCS=4. */
278 return c
<= 255 ? true : false;
284 /* Given an integer and a kind, make sure that the integer lies within
285 the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or
289 gfc_check_integer_range (mpz_t p
, int kind
)
294 i
= gfc_validate_kind (BT_INTEGER
, kind
, false);
299 if (mpz_cmp (p
, gfc_integer_kinds
[i
].pedantic_min_int
) < 0)
300 result
= ARITH_ASYMMETRIC
;
304 if (flag_range_check
== 0)
307 if (mpz_cmp (p
, gfc_integer_kinds
[i
].min_int
) < 0
308 || mpz_cmp (p
, gfc_integer_kinds
[i
].huge
) > 0)
309 result
= ARITH_OVERFLOW
;
315 /* Given a real and a kind, make sure that the real lies within the
316 range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or
320 gfc_check_real_range (mpfr_t p
, int kind
)
326 i
= gfc_validate_kind (BT_REAL
, kind
, false);
330 mpfr_abs (q
, p
, GFC_RND_MODE
);
336 if (flag_range_check
!= 0)
337 retval
= ARITH_OVERFLOW
;
339 else if (mpfr_nan_p (p
))
341 if (flag_range_check
!= 0)
344 else if (mpfr_sgn (q
) == 0)
349 else if (mpfr_cmp (q
, gfc_real_kinds
[i
].huge
) > 0)
351 if (flag_range_check
== 0)
352 mpfr_set_inf (p
, mpfr_sgn (p
));
354 retval
= ARITH_OVERFLOW
;
356 else if (mpfr_cmp (q
, gfc_real_kinds
[i
].subnormal
) < 0)
358 if (flag_range_check
== 0)
360 if (mpfr_sgn (p
) < 0)
362 mpfr_set_ui (p
, 0, GFC_RND_MODE
);
363 mpfr_set_si (q
, -1, GFC_RND_MODE
);
364 mpfr_copysign (p
, p
, q
, GFC_RND_MODE
);
367 mpfr_set_ui (p
, 0, GFC_RND_MODE
);
370 retval
= ARITH_UNDERFLOW
;
372 else if (mpfr_cmp (q
, gfc_real_kinds
[i
].tiny
) < 0)
377 /* Save current values of emin and emax. */
378 emin
= mpfr_get_emin ();
379 emax
= mpfr_get_emax ();
381 /* Set emin and emax for the current model number. */
382 en
= gfc_real_kinds
[i
].min_exponent
- gfc_real_kinds
[i
].digits
+ 1;
383 mpfr_set_emin ((mp_exp_t
) en
);
384 mpfr_set_emax ((mp_exp_t
) gfc_real_kinds
[i
].max_exponent
);
385 mpfr_check_range (q
, 0, GFC_RND_MODE
);
386 mpfr_subnormalize (q
, 0, GFC_RND_MODE
);
388 /* Reset emin and emax. */
389 mpfr_set_emin (emin
);
390 mpfr_set_emax (emax
);
392 /* Copy sign if needed. */
393 if (mpfr_sgn (p
) < 0)
394 mpfr_neg (p
, q
, GMP_RNDN
);
396 mpfr_set (p
, q
, GMP_RNDN
);
405 /* Low-level arithmetic functions. All of these subroutines assume
406 that all operands are of the same type and return an operand of the
407 same type. The other thing about these subroutines is that they
408 can fail in various ways -- overflow, underflow, division by zero,
409 zero raised to the zero, etc. */
412 gfc_arith_not (gfc_expr
*op1
, gfc_expr
**resultp
)
416 result
= gfc_get_constant_expr (BT_LOGICAL
, op1
->ts
.kind
, &op1
->where
);
417 result
->value
.logical
= !op1
->value
.logical
;
425 gfc_arith_and (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
429 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_kind_max (op1
, op2
),
431 result
->value
.logical
= op1
->value
.logical
&& op2
->value
.logical
;
439 gfc_arith_or (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
443 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_kind_max (op1
, op2
),
445 result
->value
.logical
= op1
->value
.logical
|| op2
->value
.logical
;
453 gfc_arith_eqv (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
457 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_kind_max (op1
, op2
),
459 result
->value
.logical
= op1
->value
.logical
== op2
->value
.logical
;
467 gfc_arith_neqv (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
471 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_kind_max (op1
, op2
),
473 result
->value
.logical
= op1
->value
.logical
!= op2
->value
.logical
;
480 /* Make sure a constant numeric expression is within the range for
481 its type and kind. Note that there's also a gfc_check_range(),
482 but that one deals with the intrinsic RANGE function. */
485 gfc_range_check (gfc_expr
*e
)
493 rc
= gfc_check_integer_range (e
->value
.integer
, e
->ts
.kind
);
497 rc
= gfc_check_real_range (e
->value
.real
, e
->ts
.kind
);
498 if (rc
== ARITH_UNDERFLOW
)
499 mpfr_set_ui (e
->value
.real
, 0, GFC_RND_MODE
);
500 if (rc
== ARITH_OVERFLOW
)
501 mpfr_set_inf (e
->value
.real
, mpfr_sgn (e
->value
.real
));
503 mpfr_set_nan (e
->value
.real
);
507 rc
= gfc_check_real_range (mpc_realref (e
->value
.complex), e
->ts
.kind
);
508 if (rc
== ARITH_UNDERFLOW
)
509 mpfr_set_ui (mpc_realref (e
->value
.complex), 0, GFC_RND_MODE
);
510 if (rc
== ARITH_OVERFLOW
)
511 mpfr_set_inf (mpc_realref (e
->value
.complex),
512 mpfr_sgn (mpc_realref (e
->value
.complex)));
514 mpfr_set_nan (mpc_realref (e
->value
.complex));
516 rc2
= gfc_check_real_range (mpc_imagref (e
->value
.complex), e
->ts
.kind
);
517 if (rc
== ARITH_UNDERFLOW
)
518 mpfr_set_ui (mpc_imagref (e
->value
.complex), 0, GFC_RND_MODE
);
519 if (rc
== ARITH_OVERFLOW
)
520 mpfr_set_inf (mpc_imagref (e
->value
.complex),
521 mpfr_sgn (mpc_imagref (e
->value
.complex)));
523 mpfr_set_nan (mpc_imagref (e
->value
.complex));
530 gfc_internal_error ("gfc_range_check(): Bad type");
537 /* Several of the following routines use the same set of statements to
538 check the validity of the result. Encapsulate the checking here. */
541 check_result (arith rc
, gfc_expr
*x
, gfc_expr
*r
, gfc_expr
**rp
)
545 if (val
== ARITH_UNDERFLOW
)
548 gfc_warning (OPT_Wunderflow
, gfc_arith_error (val
), &x
->where
);
552 if (val
== ARITH_ASYMMETRIC
)
554 gfc_warning (0, gfc_arith_error (val
), &x
->where
);
567 /* It may seem silly to have a subroutine that actually computes the
568 unary plus of a constant, but it prevents us from making exceptions
569 in the code elsewhere. Used for unary plus and parenthesized
573 gfc_arith_identity (gfc_expr
*op1
, gfc_expr
**resultp
)
575 *resultp
= gfc_copy_expr (op1
);
581 gfc_arith_uminus (gfc_expr
*op1
, gfc_expr
**resultp
)
586 result
= gfc_get_constant_expr (op1
->ts
.type
, op1
->ts
.kind
, &op1
->where
);
588 switch (op1
->ts
.type
)
591 mpz_neg (result
->value
.integer
, op1
->value
.integer
);
595 mpfr_neg (result
->value
.real
, op1
->value
.real
, GFC_RND_MODE
);
599 mpc_neg (result
->value
.complex, op1
->value
.complex, GFC_MPC_RND_MODE
);
603 gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
606 rc
= gfc_range_check (result
);
608 return check_result (rc
, op1
, result
, resultp
);
613 gfc_arith_plus (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
618 result
= gfc_get_constant_expr (op1
->ts
.type
, op1
->ts
.kind
, &op1
->where
);
620 switch (op1
->ts
.type
)
623 mpz_add (result
->value
.integer
, op1
->value
.integer
, op2
->value
.integer
);
627 mpfr_add (result
->value
.real
, op1
->value
.real
, op2
->value
.real
,
632 mpc_add (result
->value
.complex, op1
->value
.complex, op2
->value
.complex,
637 gfc_internal_error ("gfc_arith_plus(): Bad basic type");
640 rc
= gfc_range_check (result
);
642 return check_result (rc
, op1
, result
, resultp
);
647 gfc_arith_minus (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
652 result
= gfc_get_constant_expr (op1
->ts
.type
, op1
->ts
.kind
, &op1
->where
);
654 switch (op1
->ts
.type
)
657 mpz_sub (result
->value
.integer
, op1
->value
.integer
, op2
->value
.integer
);
661 mpfr_sub (result
->value
.real
, op1
->value
.real
, op2
->value
.real
,
666 mpc_sub (result
->value
.complex, op1
->value
.complex,
667 op2
->value
.complex, GFC_MPC_RND_MODE
);
671 gfc_internal_error ("gfc_arith_minus(): Bad basic type");
674 rc
= gfc_range_check (result
);
676 return check_result (rc
, op1
, result
, resultp
);
681 gfc_arith_times (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
686 result
= gfc_get_constant_expr (op1
->ts
.type
, op1
->ts
.kind
, &op1
->where
);
688 switch (op1
->ts
.type
)
691 mpz_mul (result
->value
.integer
, op1
->value
.integer
, op2
->value
.integer
);
695 mpfr_mul (result
->value
.real
, op1
->value
.real
, op2
->value
.real
,
700 gfc_set_model (mpc_realref (op1
->value
.complex));
701 mpc_mul (result
->value
.complex, op1
->value
.complex, op2
->value
.complex,
706 gfc_internal_error ("gfc_arith_times(): Bad basic type");
709 rc
= gfc_range_check (result
);
711 return check_result (rc
, op1
, result
, resultp
);
716 gfc_arith_divide (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
723 result
= gfc_get_constant_expr (op1
->ts
.type
, op1
->ts
.kind
, &op1
->where
);
725 switch (op1
->ts
.type
)
728 if (mpz_sgn (op2
->value
.integer
) == 0)
734 if (warn_integer_division
)
738 mpz_tdiv_qr (result
->value
.integer
, r
, op1
->value
.integer
,
741 if (mpz_cmp_si (r
, 0) != 0)
744 p
= mpz_get_str (NULL
, 10, result
->value
.integer
);
745 gfc_warning_now (OPT_Winteger_division
, "Integer division "
746 "truncated to constant %qs at %L", p
,
753 mpz_tdiv_q (result
->value
.integer
, op1
->value
.integer
,
759 if (mpfr_sgn (op2
->value
.real
) == 0 && flag_range_check
== 1)
765 mpfr_div (result
->value
.real
, op1
->value
.real
, op2
->value
.real
,
770 if (mpc_cmp_si_si (op2
->value
.complex, 0, 0) == 0
771 && flag_range_check
== 1)
777 gfc_set_model (mpc_realref (op1
->value
.complex));
778 if (mpc_cmp_si_si (op2
->value
.complex, 0, 0) == 0)
780 /* In Fortran, return (NaN + NaN I) for any zero divisor. See
782 mpfr_set_nan (mpc_realref (result
->value
.complex));
783 mpfr_set_nan (mpc_imagref (result
->value
.complex));
786 mpc_div (result
->value
.complex, op1
->value
.complex, op2
->value
.complex,
791 gfc_internal_error ("gfc_arith_divide(): Bad basic type");
795 rc
= gfc_range_check (result
);
797 return check_result (rc
, op1
, result
, resultp
);
800 /* Raise a number to a power. */
803 arith_power (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
810 result
= gfc_get_constant_expr (op1
->ts
.type
, op1
->ts
.kind
, &op1
->where
);
812 switch (op2
->ts
.type
)
815 power_sign
= mpz_sgn (op2
->value
.integer
);
819 /* Handle something to the zeroth power. Since we're dealing
820 with integral exponents, there is no ambiguity in the
821 limiting procedure used to determine the value of 0**0. */
822 switch (op1
->ts
.type
)
825 mpz_set_ui (result
->value
.integer
, 1);
829 mpfr_set_ui (result
->value
.real
, 1, GFC_RND_MODE
);
833 mpc_set_ui (result
->value
.complex, 1, GFC_MPC_RND_MODE
);
837 gfc_internal_error ("arith_power(): Bad base");
842 switch (op1
->ts
.type
)
848 /* First, we simplify the cases of op1 == 1, 0 or -1. */
849 if (mpz_cmp_si (op1
->value
.integer
, 1) == 0)
852 mpz_set_si (result
->value
.integer
, 1);
854 else if (mpz_cmp_si (op1
->value
.integer
, 0) == 0)
856 /* 0**op2 == 0, if op2 > 0
857 0**op2 overflow, if op2 < 0 ; in that case, we
858 set the result to 0 and return ARITH_DIV0. */
859 mpz_set_si (result
->value
.integer
, 0);
860 if (mpz_cmp_si (op2
->value
.integer
, 0) < 0)
863 else if (mpz_cmp_si (op1
->value
.integer
, -1) == 0)
865 /* (-1)**op2 == (-1)**(mod(op2,2)) */
866 unsigned int odd
= mpz_fdiv_ui (op2
->value
.integer
, 2);
868 mpz_set_si (result
->value
.integer
, -1);
870 mpz_set_si (result
->value
.integer
, 1);
872 /* Then, we take care of op2 < 0. */
873 else if (mpz_cmp_si (op2
->value
.integer
, 0) < 0)
875 /* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */
876 mpz_set_si (result
->value
.integer
, 0);
878 else if (gfc_extract_int (op2
, &power
) != NULL
)
880 /* If op2 doesn't fit in an int, the exponentiation will
881 overflow, because op2 > 0 and abs(op1) > 1. */
884 i
= gfc_validate_kind (BT_INTEGER
, result
->ts
.kind
, false);
886 if (flag_range_check
)
889 /* Still, we want to give the same value as the
892 mpz_add_ui (max
, gfc_integer_kinds
[i
].huge
, 1);
893 mpz_mul_ui (max
, max
, 2);
894 mpz_powm (result
->value
.integer
, op1
->value
.integer
,
895 op2
->value
.integer
, max
);
899 mpz_pow_ui (result
->value
.integer
, op1
->value
.integer
,
905 mpfr_pow_z (result
->value
.real
, op1
->value
.real
,
906 op2
->value
.integer
, GFC_RND_MODE
);
910 mpc_pow_z (result
->value
.complex, op1
->value
.complex,
911 op2
->value
.integer
, GFC_MPC_RND_MODE
);
922 if (gfc_init_expr_flag
)
924 if (!gfc_notify_std (GFC_STD_F2003
, "Noninteger "
925 "exponent in an initialization "
926 "expression at %L", &op2
->where
))
928 gfc_free_expr (result
);
929 return ARITH_PROHIBIT
;
933 if (mpfr_cmp_si (op1
->value
.real
, 0) < 0)
935 gfc_error ("Raising a negative REAL at %L to "
936 "a REAL power is prohibited", &op1
->where
);
937 gfc_free_expr (result
);
938 return ARITH_PROHIBIT
;
941 mpfr_pow (result
->value
.real
, op1
->value
.real
, op2
->value
.real
,
947 if (gfc_init_expr_flag
)
949 if (!gfc_notify_std (GFC_STD_F2003
, "Noninteger "
950 "exponent in an initialization "
951 "expression at %L", &op2
->where
))
953 gfc_free_expr (result
);
954 return ARITH_PROHIBIT
;
958 mpc_pow (result
->value
.complex, op1
->value
.complex,
959 op2
->value
.complex, GFC_MPC_RND_MODE
);
963 gfc_internal_error ("arith_power(): unknown type");
967 rc
= gfc_range_check (result
);
969 return check_result (rc
, op1
, result
, resultp
);
973 /* Concatenate two string constants. */
976 gfc_arith_concat (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
981 gcc_assert (op1
->ts
.kind
== op2
->ts
.kind
);
982 result
= gfc_get_constant_expr (BT_CHARACTER
, op1
->ts
.kind
,
985 len
= op1
->value
.character
.length
+ op2
->value
.character
.length
;
987 result
->value
.character
.string
= gfc_get_wide_string (len
+ 1);
988 result
->value
.character
.length
= len
;
990 memcpy (result
->value
.character
.string
, op1
->value
.character
.string
,
991 op1
->value
.character
.length
* sizeof (gfc_char_t
));
993 memcpy (&result
->value
.character
.string
[op1
->value
.character
.length
],
994 op2
->value
.character
.string
,
995 op2
->value
.character
.length
* sizeof (gfc_char_t
));
997 result
->value
.character
.string
[len
] = '\0';
1004 /* Comparison between real values; returns 0 if (op1 .op. op2) is true.
1005 This function mimics mpfr_cmp but takes NaN into account. */
1008 compare_real (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1014 rc
= mpfr_equal_p (op1
->value
.real
, op2
->value
.real
) ? 0 : 1;
1017 rc
= mpfr_greater_p (op1
->value
.real
, op2
->value
.real
) ? 1 : -1;
1020 rc
= mpfr_greaterequal_p (op1
->value
.real
, op2
->value
.real
) ? 1 : -1;
1023 rc
= mpfr_less_p (op1
->value
.real
, op2
->value
.real
) ? -1 : 1;
1026 rc
= mpfr_lessequal_p (op1
->value
.real
, op2
->value
.real
) ? -1 : 1;
1029 gfc_internal_error ("compare_real(): Bad operator");
1035 /* Comparison operators. Assumes that the two expression nodes
1036 contain two constants of the same type. The op argument is
1037 needed to handle NaN correctly. */
1040 gfc_compare_expr (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1044 switch (op1
->ts
.type
)
1047 rc
= mpz_cmp (op1
->value
.integer
, op2
->value
.integer
);
1051 rc
= compare_real (op1
, op2
, op
);
1055 rc
= gfc_compare_string (op1
, op2
);
1059 rc
= ((!op1
->value
.logical
&& op2
->value
.logical
)
1060 || (op1
->value
.logical
&& !op2
->value
.logical
));
1064 gfc_internal_error ("gfc_compare_expr(): Bad basic type");
1071 /* Compare a pair of complex numbers. Naturally, this is only for
1072 equality and inequality. */
1075 compare_complex (gfc_expr
*op1
, gfc_expr
*op2
)
1077 return mpc_cmp (op1
->value
.complex, op2
->value
.complex) == 0;
1081 /* Given two constant strings and the inverse collating sequence, compare the
1082 strings. We return -1 for a < b, 0 for a == b and 1 for a > b.
1083 We use the processor's default collating sequence. */
1086 gfc_compare_string (gfc_expr
*a
, gfc_expr
*b
)
1088 int len
, alen
, blen
, i
;
1091 alen
= a
->value
.character
.length
;
1092 blen
= b
->value
.character
.length
;
1094 len
= MAX(alen
, blen
);
1096 for (i
= 0; i
< len
; i
++)
1098 ac
= ((i
< alen
) ? a
->value
.character
.string
[i
] : ' ');
1099 bc
= ((i
< blen
) ? b
->value
.character
.string
[i
] : ' ');
1107 /* Strings are equal */
1113 gfc_compare_with_Cstring (gfc_expr
*a
, const char *b
, bool case_sensitive
)
1115 int len
, alen
, blen
, i
;
1118 alen
= a
->value
.character
.length
;
1121 len
= MAX(alen
, blen
);
1123 for (i
= 0; i
< len
; i
++)
1125 ac
= ((i
< alen
) ? a
->value
.character
.string
[i
] : ' ');
1126 bc
= ((i
< blen
) ? b
[i
] : ' ');
1128 if (!case_sensitive
)
1140 /* Strings are equal */
1145 /* Specific comparison subroutines. */
1148 gfc_arith_eq (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
1152 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_default_logical_kind
,
1154 result
->value
.logical
= (op1
->ts
.type
== BT_COMPLEX
)
1155 ? compare_complex (op1
, op2
)
1156 : (gfc_compare_expr (op1
, op2
, INTRINSIC_EQ
) == 0);
1164 gfc_arith_ne (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
1168 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_default_logical_kind
,
1170 result
->value
.logical
= (op1
->ts
.type
== BT_COMPLEX
)
1171 ? !compare_complex (op1
, op2
)
1172 : (gfc_compare_expr (op1
, op2
, INTRINSIC_EQ
) != 0);
1180 gfc_arith_gt (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
1184 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_default_logical_kind
,
1186 result
->value
.logical
= (gfc_compare_expr (op1
, op2
, INTRINSIC_GT
) > 0);
1194 gfc_arith_ge (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
1198 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_default_logical_kind
,
1200 result
->value
.logical
= (gfc_compare_expr (op1
, op2
, INTRINSIC_GE
) >= 0);
1208 gfc_arith_lt (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
1212 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_default_logical_kind
,
1214 result
->value
.logical
= (gfc_compare_expr (op1
, op2
, INTRINSIC_LT
) < 0);
1222 gfc_arith_le (gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**resultp
)
1226 result
= gfc_get_constant_expr (BT_LOGICAL
, gfc_default_logical_kind
,
1228 result
->value
.logical
= (gfc_compare_expr (op1
, op2
, INTRINSIC_LE
) <= 0);
1236 reduce_unary (arith (*eval
) (gfc_expr
*, gfc_expr
**), gfc_expr
*op
,
1239 gfc_constructor_base head
;
1244 if (op
->expr_type
== EXPR_CONSTANT
)
1245 return eval (op
, result
);
1248 head
= gfc_constructor_copy (op
->value
.constructor
);
1249 for (c
= gfc_constructor_first (head
); c
; c
= gfc_constructor_next (c
))
1251 rc
= reduce_unary (eval
, c
->expr
, &r
);
1256 gfc_replace_expr (c
->expr
, r
);
1260 gfc_constructor_free (head
);
1263 gfc_constructor
*c
= gfc_constructor_first (head
);
1264 r
= gfc_get_array_expr (c
->expr
->ts
.type
, c
->expr
->ts
.kind
,
1266 r
->shape
= gfc_copy_shape (op
->shape
, op
->rank
);
1268 r
->value
.constructor
= head
;
1277 reduce_binary_ac (arith (*eval
) (gfc_expr
*, gfc_expr
*, gfc_expr
**),
1278 gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**result
)
1280 gfc_constructor_base head
;
1283 arith rc
= ARITH_OK
;
1285 head
= gfc_constructor_copy (op1
->value
.constructor
);
1286 for (c
= gfc_constructor_first (head
); c
; c
= gfc_constructor_next (c
))
1288 if (c
->expr
->expr_type
== EXPR_CONSTANT
)
1289 rc
= eval (c
->expr
, op2
, &r
);
1291 rc
= reduce_binary_ac (eval
, c
->expr
, op2
, &r
);
1296 gfc_replace_expr (c
->expr
, r
);
1300 gfc_constructor_free (head
);
1303 gfc_constructor
*c
= gfc_constructor_first (head
);
1304 r
= gfc_get_array_expr (c
->expr
->ts
.type
, c
->expr
->ts
.kind
,
1306 r
->shape
= gfc_copy_shape (op1
->shape
, op1
->rank
);
1307 r
->rank
= op1
->rank
;
1308 r
->value
.constructor
= head
;
1317 reduce_binary_ca (arith (*eval
) (gfc_expr
*, gfc_expr
*, gfc_expr
**),
1318 gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**result
)
1320 gfc_constructor_base head
;
1323 arith rc
= ARITH_OK
;
1325 head
= gfc_constructor_copy (op2
->value
.constructor
);
1326 for (c
= gfc_constructor_first (head
); c
; c
= gfc_constructor_next (c
))
1328 if (c
->expr
->expr_type
== EXPR_CONSTANT
)
1329 rc
= eval (op1
, c
->expr
, &r
);
1331 rc
= reduce_binary_ca (eval
, op1
, c
->expr
, &r
);
1336 gfc_replace_expr (c
->expr
, r
);
1340 gfc_constructor_free (head
);
1343 gfc_constructor
*c
= gfc_constructor_first (head
);
1344 r
= gfc_get_array_expr (c
->expr
->ts
.type
, c
->expr
->ts
.kind
,
1346 r
->shape
= gfc_copy_shape (op2
->shape
, op2
->rank
);
1347 r
->rank
= op2
->rank
;
1348 r
->value
.constructor
= head
;
1356 /* We need a forward declaration of reduce_binary. */
1357 static arith
reduce_binary (arith (*eval
) (gfc_expr
*, gfc_expr
*, gfc_expr
**),
1358 gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**result
);
1362 reduce_binary_aa (arith (*eval
) (gfc_expr
*, gfc_expr
*, gfc_expr
**),
1363 gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**result
)
1365 gfc_constructor_base head
;
1366 gfc_constructor
*c
, *d
;
1368 arith rc
= ARITH_OK
;
1370 if (!gfc_check_conformance (op1
, op2
, "elemental binary operation"))
1371 return ARITH_INCOMMENSURATE
;
1373 head
= gfc_constructor_copy (op1
->value
.constructor
);
1374 for (c
= gfc_constructor_first (head
),
1375 d
= gfc_constructor_first (op2
->value
.constructor
);
1377 c
= gfc_constructor_next (c
), d
= gfc_constructor_next (d
))
1379 rc
= reduce_binary (eval
, c
->expr
, d
->expr
, &r
);
1383 gfc_replace_expr (c
->expr
, r
);
1387 rc
= ARITH_INCOMMENSURATE
;
1390 gfc_constructor_free (head
);
1393 gfc_constructor
*c
= gfc_constructor_first (head
);
1394 r
= gfc_get_array_expr (c
->expr
->ts
.type
, c
->expr
->ts
.kind
,
1396 r
->shape
= gfc_copy_shape (op1
->shape
, op1
->rank
);
1397 r
->rank
= op1
->rank
;
1398 r
->value
.constructor
= head
;
1407 reduce_binary (arith (*eval
) (gfc_expr
*, gfc_expr
*, gfc_expr
**),
1408 gfc_expr
*op1
, gfc_expr
*op2
, gfc_expr
**result
)
1410 if (op1
->expr_type
== EXPR_CONSTANT
&& op2
->expr_type
== EXPR_CONSTANT
)
1411 return eval (op1
, op2
, result
);
1413 if (op1
->expr_type
== EXPR_CONSTANT
&& op2
->expr_type
== EXPR_ARRAY
)
1414 return reduce_binary_ca (eval
, op1
, op2
, result
);
1416 if (op1
->expr_type
== EXPR_ARRAY
&& op2
->expr_type
== EXPR_CONSTANT
)
1417 return reduce_binary_ac (eval
, op1
, op2
, result
);
1419 return reduce_binary_aa (eval
, op1
, op2
, result
);
1425 arith (*f2
)(gfc_expr
*, gfc_expr
**);
1426 arith (*f3
)(gfc_expr
*, gfc_expr
*, gfc_expr
**);
1430 /* High level arithmetic subroutines. These subroutines go into
1431 eval_intrinsic(), which can do one of several things to its
1432 operands. If the operands are incompatible with the intrinsic
1433 operation, we return a node pointing to the operands and hope that
1434 an operator interface is found during resolution.
1436 If the operands are compatible and are constants, then we try doing
1437 the arithmetic. We also handle the cases where either or both
1438 operands are array constructors. */
1441 eval_intrinsic (gfc_intrinsic_op op
,
1442 eval_f eval
, gfc_expr
*op1
, gfc_expr
*op2
)
1444 gfc_expr temp
, *result
;
1448 gfc_clear_ts (&temp
.ts
);
1454 if (op1
->ts
.type
!= BT_LOGICAL
)
1457 temp
.ts
.type
= BT_LOGICAL
;
1458 temp
.ts
.kind
= gfc_default_logical_kind
;
1462 /* Logical binary operators */
1465 case INTRINSIC_NEQV
:
1467 if (op1
->ts
.type
!= BT_LOGICAL
|| op2
->ts
.type
!= BT_LOGICAL
)
1470 temp
.ts
.type
= BT_LOGICAL
;
1471 temp
.ts
.kind
= gfc_default_logical_kind
;
1476 case INTRINSIC_UPLUS
:
1477 case INTRINSIC_UMINUS
:
1478 if (!gfc_numeric_ts (&op1
->ts
))
1485 case INTRINSIC_PARENTHESES
:
1490 /* Additional restrictions for ordering relations. */
1492 case INTRINSIC_GE_OS
:
1494 case INTRINSIC_LT_OS
:
1496 case INTRINSIC_LE_OS
:
1498 case INTRINSIC_GT_OS
:
1499 if (op1
->ts
.type
== BT_COMPLEX
|| op2
->ts
.type
== BT_COMPLEX
)
1501 temp
.ts
.type
= BT_LOGICAL
;
1502 temp
.ts
.kind
= gfc_default_logical_kind
;
1508 case INTRINSIC_EQ_OS
:
1510 case INTRINSIC_NE_OS
:
1511 if (op1
->ts
.type
== BT_CHARACTER
&& op2
->ts
.type
== BT_CHARACTER
)
1514 temp
.ts
.type
= BT_LOGICAL
;
1515 temp
.ts
.kind
= gfc_default_logical_kind
;
1517 /* If kind mismatch, exit and we'll error out later. */
1518 if (op1
->ts
.kind
!= op2
->ts
.kind
)
1525 /* Numeric binary */
1526 case INTRINSIC_PLUS
:
1527 case INTRINSIC_MINUS
:
1528 case INTRINSIC_TIMES
:
1529 case INTRINSIC_DIVIDE
:
1530 case INTRINSIC_POWER
:
1531 if (!gfc_numeric_ts (&op1
->ts
) || !gfc_numeric_ts (&op2
->ts
))
1534 /* Insert any necessary type conversions to make the operands
1537 temp
.expr_type
= EXPR_OP
;
1538 gfc_clear_ts (&temp
.ts
);
1539 temp
.value
.op
.op
= op
;
1541 temp
.value
.op
.op1
= op1
;
1542 temp
.value
.op
.op2
= op2
;
1544 gfc_type_convert_binary (&temp
, warn_conversion
|| warn_conversion_extra
);
1546 if (op
== INTRINSIC_EQ
|| op
== INTRINSIC_NE
1547 || op
== INTRINSIC_GE
|| op
== INTRINSIC_GT
1548 || op
== INTRINSIC_LE
|| op
== INTRINSIC_LT
1549 || op
== INTRINSIC_EQ_OS
|| op
== INTRINSIC_NE_OS
1550 || op
== INTRINSIC_GE_OS
|| op
== INTRINSIC_GT_OS
1551 || op
== INTRINSIC_LE_OS
|| op
== INTRINSIC_LT_OS
)
1553 temp
.ts
.type
= BT_LOGICAL
;
1554 temp
.ts
.kind
= gfc_default_logical_kind
;
1560 /* Character binary */
1561 case INTRINSIC_CONCAT
:
1562 if (op1
->ts
.type
!= BT_CHARACTER
|| op2
->ts
.type
!= BT_CHARACTER
1563 || op1
->ts
.kind
!= op2
->ts
.kind
)
1566 temp
.ts
.type
= BT_CHARACTER
;
1567 temp
.ts
.kind
= op1
->ts
.kind
;
1571 case INTRINSIC_USER
:
1575 gfc_internal_error ("eval_intrinsic(): Bad operator");
1578 if (op1
->expr_type
!= EXPR_CONSTANT
1579 && (op1
->expr_type
!= EXPR_ARRAY
1580 || !gfc_is_constant_expr (op1
) || !gfc_expanded_ac (op1
)))
1584 && op2
->expr_type
!= EXPR_CONSTANT
1585 && (op2
->expr_type
!= EXPR_ARRAY
1586 || !gfc_is_constant_expr (op2
) || !gfc_expanded_ac (op2
)))
1590 rc
= reduce_unary (eval
.f2
, op1
, &result
);
1592 rc
= reduce_binary (eval
.f3
, op1
, op2
, &result
);
1595 /* Something went wrong. */
1596 if (op
== INTRINSIC_POWER
&& rc
== ARITH_PROHIBIT
)
1601 gfc_error (gfc_arith_error (rc
), &op1
->where
);
1605 gfc_free_expr (op1
);
1606 gfc_free_expr (op2
);
1610 /* Create a run-time expression. */
1611 result
= gfc_get_operator_expr (&op1
->where
, op
, op1
, op2
);
1612 result
->ts
= temp
.ts
;
1618 /* Modify type of expression for zero size array. */
1621 eval_type_intrinsic0 (gfc_intrinsic_op iop
, gfc_expr
*op
)
1624 gfc_internal_error ("eval_type_intrinsic0(): op NULL");
1629 case INTRINSIC_GE_OS
:
1631 case INTRINSIC_LT_OS
:
1633 case INTRINSIC_LE_OS
:
1635 case INTRINSIC_GT_OS
:
1637 case INTRINSIC_EQ_OS
:
1639 case INTRINSIC_NE_OS
:
1640 op
->ts
.type
= BT_LOGICAL
;
1641 op
->ts
.kind
= gfc_default_logical_kind
;
1652 /* Return nonzero if the expression is a zero size array. */
1655 gfc_zero_size_array (gfc_expr
*e
)
1657 if (e
->expr_type
!= EXPR_ARRAY
)
1660 return e
->value
.constructor
== NULL
;
1664 /* Reduce a binary expression where at least one of the operands
1665 involves a zero-length array. Returns NULL if neither of the
1666 operands is a zero-length array. */
1669 reduce_binary0 (gfc_expr
*op1
, gfc_expr
*op2
)
1671 if (gfc_zero_size_array (op1
))
1673 gfc_free_expr (op2
);
1677 if (gfc_zero_size_array (op2
))
1679 gfc_free_expr (op1
);
1688 eval_intrinsic_f2 (gfc_intrinsic_op op
,
1689 arith (*eval
) (gfc_expr
*, gfc_expr
**),
1690 gfc_expr
*op1
, gfc_expr
*op2
)
1697 if (gfc_zero_size_array (op1
))
1698 return eval_type_intrinsic0 (op
, op1
);
1702 result
= reduce_binary0 (op1
, op2
);
1704 return eval_type_intrinsic0 (op
, result
);
1708 return eval_intrinsic (op
, f
, op1
, op2
);
1713 eval_intrinsic_f3 (gfc_intrinsic_op op
,
1714 arith (*eval
) (gfc_expr
*, gfc_expr
*, gfc_expr
**),
1715 gfc_expr
*op1
, gfc_expr
*op2
)
1720 result
= reduce_binary0 (op1
, op2
);
1722 return eval_type_intrinsic0(op
, result
);
1725 return eval_intrinsic (op
, f
, op1
, op2
);
1730 gfc_parentheses (gfc_expr
*op
)
1732 if (gfc_is_constant_expr (op
))
1735 return eval_intrinsic_f2 (INTRINSIC_PARENTHESES
, gfc_arith_identity
,
1740 gfc_uplus (gfc_expr
*op
)
1742 return eval_intrinsic_f2 (INTRINSIC_UPLUS
, gfc_arith_identity
, op
, NULL
);
1747 gfc_uminus (gfc_expr
*op
)
1749 return eval_intrinsic_f2 (INTRINSIC_UMINUS
, gfc_arith_uminus
, op
, NULL
);
1754 gfc_add (gfc_expr
*op1
, gfc_expr
*op2
)
1756 return eval_intrinsic_f3 (INTRINSIC_PLUS
, gfc_arith_plus
, op1
, op2
);
1761 gfc_subtract (gfc_expr
*op1
, gfc_expr
*op2
)
1763 return eval_intrinsic_f3 (INTRINSIC_MINUS
, gfc_arith_minus
, op1
, op2
);
1768 gfc_multiply (gfc_expr
*op1
, gfc_expr
*op2
)
1770 return eval_intrinsic_f3 (INTRINSIC_TIMES
, gfc_arith_times
, op1
, op2
);
1775 gfc_divide (gfc_expr
*op1
, gfc_expr
*op2
)
1777 return eval_intrinsic_f3 (INTRINSIC_DIVIDE
, gfc_arith_divide
, op1
, op2
);
1782 gfc_power (gfc_expr
*op1
, gfc_expr
*op2
)
1784 return eval_intrinsic_f3 (INTRINSIC_POWER
, arith_power
, op1
, op2
);
1789 gfc_concat (gfc_expr
*op1
, gfc_expr
*op2
)
1791 return eval_intrinsic_f3 (INTRINSIC_CONCAT
, gfc_arith_concat
, op1
, op2
);
1796 gfc_and (gfc_expr
*op1
, gfc_expr
*op2
)
1798 return eval_intrinsic_f3 (INTRINSIC_AND
, gfc_arith_and
, op1
, op2
);
1803 gfc_or (gfc_expr
*op1
, gfc_expr
*op2
)
1805 return eval_intrinsic_f3 (INTRINSIC_OR
, gfc_arith_or
, op1
, op2
);
1810 gfc_not (gfc_expr
*op1
)
1812 return eval_intrinsic_f2 (INTRINSIC_NOT
, gfc_arith_not
, op1
, NULL
);
1817 gfc_eqv (gfc_expr
*op1
, gfc_expr
*op2
)
1819 return eval_intrinsic_f3 (INTRINSIC_EQV
, gfc_arith_eqv
, op1
, op2
);
1824 gfc_neqv (gfc_expr
*op1
, gfc_expr
*op2
)
1826 return eval_intrinsic_f3 (INTRINSIC_NEQV
, gfc_arith_neqv
, op1
, op2
);
1831 gfc_eq (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1833 return eval_intrinsic_f3 (op
, gfc_arith_eq
, op1
, op2
);
1838 gfc_ne (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1840 return eval_intrinsic_f3 (op
, gfc_arith_ne
, op1
, op2
);
1845 gfc_gt (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1847 return eval_intrinsic_f3 (op
, gfc_arith_gt
, op1
, op2
);
1852 gfc_ge (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1854 return eval_intrinsic_f3 (op
, gfc_arith_ge
, op1
, op2
);
1859 gfc_lt (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1861 return eval_intrinsic_f3 (op
, gfc_arith_lt
, op1
, op2
);
1866 gfc_le (gfc_expr
*op1
, gfc_expr
*op2
, gfc_intrinsic_op op
)
1868 return eval_intrinsic_f3 (op
, gfc_arith_le
, op1
, op2
);
1872 /* Convert an integer string to an expression node. */
1875 gfc_convert_integer (const char *buffer
, int kind
, int radix
, locus
*where
)
1880 e
= gfc_get_constant_expr (BT_INTEGER
, kind
, where
);
1881 /* A leading plus is allowed, but not by mpz_set_str. */
1882 if (buffer
[0] == '+')
1886 mpz_set_str (e
->value
.integer
, t
, radix
);
1892 /* Convert a real string to an expression node. */
1895 gfc_convert_real (const char *buffer
, int kind
, locus
*where
)
1899 e
= gfc_get_constant_expr (BT_REAL
, kind
, where
);
1900 mpfr_set_str (e
->value
.real
, buffer
, 10, GFC_RND_MODE
);
1906 /* Convert a pair of real, constant expression nodes to a single
1907 complex expression node. */
1910 gfc_convert_complex (gfc_expr
*real
, gfc_expr
*imag
, int kind
)
1914 e
= gfc_get_constant_expr (BT_COMPLEX
, kind
, &real
->where
);
1915 mpc_set_fr_fr (e
->value
.complex, real
->value
.real
, imag
->value
.real
,
1922 /******* Simplification of intrinsic functions with constant arguments *****/
1925 /* Deal with an arithmetic error. */
1928 arith_error (arith rc
, gfc_typespec
*from
, gfc_typespec
*to
, locus
*where
)
1933 gfc_error ("Arithmetic OK converting %s to %s at %L",
1934 gfc_typename (from
), gfc_typename (to
), where
);
1936 case ARITH_OVERFLOW
:
1937 gfc_error ("Arithmetic overflow converting %s to %s at %L. This check "
1938 "can be disabled with the option %<-fno-range-check%>",
1939 gfc_typename (from
), gfc_typename (to
), where
);
1941 case ARITH_UNDERFLOW
:
1942 gfc_error ("Arithmetic underflow converting %s to %s at %L. This check "
1943 "can be disabled with the option %<-fno-range-check%>",
1944 gfc_typename (from
), gfc_typename (to
), where
);
1947 gfc_error ("Arithmetic NaN converting %s to %s at %L. This check "
1948 "can be disabled with the option %<-fno-range-check%>",
1949 gfc_typename (from
), gfc_typename (to
), where
);
1952 gfc_error ("Division by zero converting %s to %s at %L",
1953 gfc_typename (from
), gfc_typename (to
), where
);
1955 case ARITH_INCOMMENSURATE
:
1956 gfc_error ("Array operands are incommensurate converting %s to %s at %L",
1957 gfc_typename (from
), gfc_typename (to
), where
);
1959 case ARITH_ASYMMETRIC
:
1960 gfc_error ("Integer outside symmetric range implied by Standard Fortran"
1961 " converting %s to %s at %L",
1962 gfc_typename (from
), gfc_typename (to
), where
);
1965 gfc_internal_error ("gfc_arith_error(): Bad error code");
1968 /* TODO: Do something about the error, i.e., throw exception, return
1972 /* Returns true if significant bits were lost when converting real
1973 constant r from from_kind to to_kind. */
1976 wprecision_real_real (mpfr_t r
, int from_kind
, int to_kind
)
1981 gfc_set_model_kind (to_kind
);
1983 gfc_set_model_kind (from_kind
);
1986 mpfr_set (rv
, r
, GFC_RND_MODE
);
1987 mpfr_sub (diff
, rv
, r
, GFC_RND_MODE
);
1989 ret
= ! mpfr_zero_p (diff
);
1995 /* Return true if conversion from an integer to a real loses precision. */
1998 wprecision_int_real (mpz_t n
, mpfr_t r
)
2002 mpfr_get_z (i
, r
, GFC_RND_MODE
);
2004 return mpz_cmp_si (i
, 0) != 0;
2009 /* Convert integers to integers. */
2012 gfc_int2int (gfc_expr
*src
, int kind
)
2017 result
= gfc_get_constant_expr (BT_INTEGER
, kind
, &src
->where
);
2019 mpz_set (result
->value
.integer
, src
->value
.integer
);
2021 if ((rc
= gfc_check_integer_range (result
->value
.integer
, kind
)) != ARITH_OK
)
2023 if (rc
== ARITH_ASYMMETRIC
)
2025 gfc_warning (0, gfc_arith_error (rc
), &src
->where
);
2029 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2030 gfc_free_expr (result
);
2035 /* If we do not trap numeric overflow, we need to convert the number to
2036 signed, throwing away high-order bits if necessary. */
2037 if (flag_range_check
== 0)
2041 k
= gfc_validate_kind (BT_INTEGER
, kind
, false);
2042 gfc_convert_mpz_to_signed (result
->value
.integer
,
2043 gfc_integer_kinds
[k
].bit_size
);
2045 if (warn_conversion
&& kind
< src
->ts
.kind
)
2046 gfc_warning_now (OPT_Wconversion
, "Conversion from %qs to %qs at %L",
2047 gfc_typename (&src
->ts
), gfc_typename (&result
->ts
),
2054 /* Convert integers to reals. */
2057 gfc_int2real (gfc_expr
*src
, int kind
)
2062 result
= gfc_get_constant_expr (BT_REAL
, kind
, &src
->where
);
2064 mpfr_set_z (result
->value
.real
, src
->value
.integer
, GFC_RND_MODE
);
2066 if ((rc
= gfc_check_real_range (result
->value
.real
, kind
)) != ARITH_OK
)
2068 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2069 gfc_free_expr (result
);
2074 && wprecision_int_real (src
->value
.integer
, result
->value
.real
))
2075 gfc_warning_now (OPT_Wconversion
, "Change of value in conversion "
2076 "from %qs to %qs at %L",
2077 gfc_typename (&src
->ts
),
2078 gfc_typename (&result
->ts
),
2085 /* Convert default integer to default complex. */
2088 gfc_int2complex (gfc_expr
*src
, int kind
)
2093 result
= gfc_get_constant_expr (BT_COMPLEX
, kind
, &src
->where
);
2095 mpc_set_z (result
->value
.complex, src
->value
.integer
, GFC_MPC_RND_MODE
);
2097 if ((rc
= gfc_check_real_range (mpc_realref (result
->value
.complex), kind
))
2100 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2101 gfc_free_expr (result
);
2106 && wprecision_int_real (src
->value
.integer
,
2107 mpc_realref (result
->value
.complex)))
2108 gfc_warning_now (OPT_Wconversion
, "Change of value in conversion "
2109 "from %qs to %qs at %L",
2110 gfc_typename (&src
->ts
),
2111 gfc_typename (&result
->ts
),
2118 /* Convert default real to default integer. */
2121 gfc_real2int (gfc_expr
*src
, int kind
)
2125 bool did_warn
= false;
2127 result
= gfc_get_constant_expr (BT_INTEGER
, kind
, &src
->where
);
2129 gfc_mpfr_to_mpz (result
->value
.integer
, src
->value
.real
, &src
->where
);
2131 if ((rc
= gfc_check_integer_range (result
->value
.integer
, kind
)) != ARITH_OK
)
2133 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2134 gfc_free_expr (result
);
2138 /* If there was a fractional part, warn about this. */
2140 if (warn_conversion
)
2144 mpfr_frac (f
, src
->value
.real
, GFC_RND_MODE
);
2145 if (mpfr_cmp_si (f
, 0) != 0)
2147 gfc_warning_now (OPT_Wconversion
, "Change of value in conversion "
2148 "from %qs to %qs at %L", gfc_typename (&src
->ts
),
2149 gfc_typename (&result
->ts
), &src
->where
);
2153 if (!did_warn
&& warn_conversion_extra
)
2155 gfc_warning_now (OPT_Wconversion_extra
, "Conversion from %qs to %qs "
2156 "at %L", gfc_typename (&src
->ts
),
2157 gfc_typename (&result
->ts
), &src
->where
);
2164 /* Convert real to real. */
2167 gfc_real2real (gfc_expr
*src
, int kind
)
2171 bool did_warn
= false;
2173 result
= gfc_get_constant_expr (BT_REAL
, kind
, &src
->where
);
2175 mpfr_set (result
->value
.real
, src
->value
.real
, GFC_RND_MODE
);
2177 rc
= gfc_check_real_range (result
->value
.real
, kind
);
2179 if (rc
== ARITH_UNDERFLOW
)
2182 gfc_warning (OPT_Woverflow
, gfc_arith_error (rc
), &src
->where
);
2183 mpfr_set_ui (result
->value
.real
, 0, GFC_RND_MODE
);
2185 else if (rc
!= ARITH_OK
)
2187 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2188 gfc_free_expr (result
);
2192 /* As a special bonus, don't warn about REAL values which are not changed by
2193 the conversion if -Wconversion is specified and -Wconversion-extra is
2196 if ((warn_conversion
|| warn_conversion_extra
) && src
->ts
.kind
> kind
)
2198 int w
= warn_conversion
? OPT_Wconversion
: OPT_Wconversion_extra
;
2200 /* Calculate the difference between the constant and the rounded
2201 value and check it against zero. */
2203 if (wprecision_real_real (src
->value
.real
, src
->ts
.kind
, kind
))
2205 gfc_warning_now (w
, "Change of value in conversion from "
2207 gfc_typename (&src
->ts
), gfc_typename (&result
->ts
),
2209 /* Make sure the conversion warning is not emitted again. */
2214 if (!did_warn
&& warn_conversion_extra
)
2215 gfc_warning_now (OPT_Wconversion_extra
, "Conversion from %qs to %qs "
2216 "at %L", gfc_typename(&src
->ts
),
2217 gfc_typename(&result
->ts
), &src
->where
);
2223 /* Convert real to complex. */
2226 gfc_real2complex (gfc_expr
*src
, int kind
)
2230 bool did_warn
= false;
2232 result
= gfc_get_constant_expr (BT_COMPLEX
, kind
, &src
->where
);
2234 mpc_set_fr (result
->value
.complex, src
->value
.real
, GFC_MPC_RND_MODE
);
2236 rc
= gfc_check_real_range (mpc_realref (result
->value
.complex), kind
);
2238 if (rc
== ARITH_UNDERFLOW
)
2241 gfc_warning (OPT_Woverflow
, gfc_arith_error (rc
), &src
->where
);
2242 mpfr_set_ui (mpc_realref (result
->value
.complex), 0, GFC_RND_MODE
);
2244 else if (rc
!= ARITH_OK
)
2246 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2247 gfc_free_expr (result
);
2251 if ((warn_conversion
|| warn_conversion_extra
) && src
->ts
.kind
> kind
)
2253 int w
= warn_conversion
? OPT_Wconversion
: OPT_Wconversion_extra
;
2255 if (wprecision_real_real (src
->value
.real
, src
->ts
.kind
, kind
))
2257 gfc_warning_now (w
, "Change of value in conversion from "
2259 gfc_typename (&src
->ts
), gfc_typename (&result
->ts
),
2261 /* Make sure the conversion warning is not emitted again. */
2266 if (!did_warn
&& warn_conversion_extra
)
2267 gfc_warning_now (OPT_Wconversion_extra
, "Conversion from %qs to %qs "
2268 "at %L", gfc_typename(&src
->ts
),
2269 gfc_typename(&result
->ts
), &src
->where
);
2275 /* Convert complex to integer. */
2278 gfc_complex2int (gfc_expr
*src
, int kind
)
2282 bool did_warn
= false;
2284 result
= gfc_get_constant_expr (BT_INTEGER
, kind
, &src
->where
);
2286 gfc_mpfr_to_mpz (result
->value
.integer
, mpc_realref (src
->value
.complex),
2289 if ((rc
= gfc_check_integer_range (result
->value
.integer
, kind
)) != ARITH_OK
)
2291 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2292 gfc_free_expr (result
);
2296 if (warn_conversion
|| warn_conversion_extra
)
2298 int w
= warn_conversion
? OPT_Wconversion
: OPT_Wconversion_extra
;
2300 /* See if we discarded an imaginary part. */
2301 if (mpfr_cmp_si (mpc_imagref (src
->value
.complex), 0) != 0)
2303 gfc_warning_now (w
, "Non-zero imaginary part discarded "
2304 "in conversion from %qs to %qs at %L",
2305 gfc_typename(&src
->ts
), gfc_typename (&result
->ts
),
2314 mpfr_frac (f
, src
->value
.real
, GFC_RND_MODE
);
2315 if (mpfr_cmp_si (f
, 0) != 0)
2317 gfc_warning_now (w
, "Change of value in conversion from "
2318 "%qs to %qs at %L", gfc_typename (&src
->ts
),
2319 gfc_typename (&result
->ts
), &src
->where
);
2325 if (!did_warn
&& warn_conversion_extra
)
2327 gfc_warning_now (OPT_Wconversion_extra
, "Conversion from %qs to %qs "
2328 "at %L", gfc_typename (&src
->ts
),
2329 gfc_typename (&result
->ts
), &src
->where
);
2337 /* Convert complex to real. */
2340 gfc_complex2real (gfc_expr
*src
, int kind
)
2344 bool did_warn
= false;
2346 result
= gfc_get_constant_expr (BT_REAL
, kind
, &src
->where
);
2348 mpc_real (result
->value
.real
, src
->value
.complex, GFC_RND_MODE
);
2350 rc
= gfc_check_real_range (result
->value
.real
, kind
);
2352 if (rc
== ARITH_UNDERFLOW
)
2355 gfc_warning (OPT_Woverflow
, gfc_arith_error (rc
), &src
->where
);
2356 mpfr_set_ui (result
->value
.real
, 0, GFC_RND_MODE
);
2360 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2361 gfc_free_expr (result
);
2365 if (warn_conversion
|| warn_conversion_extra
)
2367 int w
= warn_conversion
? OPT_Wconversion
: OPT_Wconversion_extra
;
2369 /* See if we discarded an imaginary part. */
2370 if (mpfr_cmp_si (mpc_imagref (src
->value
.complex), 0) != 0)
2372 gfc_warning_now (w
, "Non-zero imaginary part discarded "
2373 "in conversion from %qs to %qs at %L",
2374 gfc_typename(&src
->ts
), gfc_typename (&result
->ts
),
2379 /* Calculate the difference between the real constant and the rounded
2380 value and check it against zero. */
2382 if (kind
> src
->ts
.kind
2383 && wprecision_real_real (mpc_realref (src
->value
.complex),
2384 src
->ts
.kind
, kind
))
2386 gfc_warning_now (w
, "Change of value in conversion from "
2388 gfc_typename (&src
->ts
), gfc_typename (&result
->ts
),
2390 /* Make sure the conversion warning is not emitted again. */
2395 if (!did_warn
&& warn_conversion_extra
)
2396 gfc_warning_now (OPT_Wconversion
, "Conversion from %qs to %qs at %L",
2397 gfc_typename(&src
->ts
), gfc_typename (&result
->ts
),
2404 /* Convert complex to complex. */
2407 gfc_complex2complex (gfc_expr
*src
, int kind
)
2411 bool did_warn
= false;
2413 result
= gfc_get_constant_expr (BT_COMPLEX
, kind
, &src
->where
);
2415 mpc_set (result
->value
.complex, src
->value
.complex, GFC_MPC_RND_MODE
);
2417 rc
= gfc_check_real_range (mpc_realref (result
->value
.complex), kind
);
2419 if (rc
== ARITH_UNDERFLOW
)
2422 gfc_warning (OPT_Woverflow
, gfc_arith_error (rc
), &src
->where
);
2423 mpfr_set_ui (mpc_realref (result
->value
.complex), 0, GFC_RND_MODE
);
2425 else if (rc
!= ARITH_OK
)
2427 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2428 gfc_free_expr (result
);
2432 rc
= gfc_check_real_range (mpc_imagref (result
->value
.complex), kind
);
2434 if (rc
== ARITH_UNDERFLOW
)
2437 gfc_warning (OPT_Woverflow
, gfc_arith_error (rc
), &src
->where
);
2438 mpfr_set_ui (mpc_imagref (result
->value
.complex), 0, GFC_RND_MODE
);
2440 else if (rc
!= ARITH_OK
)
2442 arith_error (rc
, &src
->ts
, &result
->ts
, &src
->where
);
2443 gfc_free_expr (result
);
2447 if ((warn_conversion
|| warn_conversion_extra
) && src
->ts
.kind
> kind
2448 && (wprecision_real_real (mpc_realref (src
->value
.complex),
2450 || wprecision_real_real (mpc_imagref (src
->value
.complex),
2451 src
->ts
.kind
, kind
)))
2453 int w
= warn_conversion
? OPT_Wconversion
: OPT_Wconversion_extra
;
2455 gfc_warning_now (w
, "Change of value in conversion from "
2456 " %qs to %qs at %L",
2457 gfc_typename (&src
->ts
), gfc_typename (&result
->ts
),
2462 if (!did_warn
&& warn_conversion_extra
&& src
->ts
.kind
!= kind
)
2463 gfc_warning_now (OPT_Wconversion_extra
, "Conversion from %qs to %qs "
2464 "at %L", gfc_typename(&src
->ts
),
2465 gfc_typename (&result
->ts
), &src
->where
);
2471 /* Logical kind conversion. */
2474 gfc_log2log (gfc_expr
*src
, int kind
)
2478 result
= gfc_get_constant_expr (BT_LOGICAL
, kind
, &src
->where
);
2479 result
->value
.logical
= src
->value
.logical
;
2485 /* Convert logical to integer. */
2488 gfc_log2int (gfc_expr
*src
, int kind
)
2492 result
= gfc_get_constant_expr (BT_INTEGER
, kind
, &src
->where
);
2493 mpz_set_si (result
->value
.integer
, src
->value
.logical
);
2499 /* Convert integer to logical. */
2502 gfc_int2log (gfc_expr
*src
, int kind
)
2506 result
= gfc_get_constant_expr (BT_LOGICAL
, kind
, &src
->where
);
2507 result
->value
.logical
= (mpz_cmp_si (src
->value
.integer
, 0) != 0);
2513 /* Helper function to set the representation in a Hollerith conversion.
2514 This assumes that the ts.type and ts.kind of the result have already
2518 hollerith2representation (gfc_expr
*result
, gfc_expr
*src
)
2520 int src_len
, result_len
;
2522 src_len
= src
->representation
.length
- src
->ts
.u
.pad
;
2523 result_len
= gfc_target_expr_size (result
);
2525 if (src_len
> result_len
)
2528 "The Hollerith constant at %L is too long to convert to %qs",
2529 &src
->where
, gfc_typename(&result
->ts
));
2532 result
->representation
.string
= XCNEWVEC (char, result_len
+ 1);
2533 memcpy (result
->representation
.string
, src
->representation
.string
,
2534 MIN (result_len
, src_len
));
2536 if (src_len
< result_len
)
2537 memset (&result
->representation
.string
[src_len
], ' ', result_len
- src_len
);
2539 result
->representation
.string
[result_len
] = '\0'; /* For debugger */
2540 result
->representation
.length
= result_len
;
2544 /* Convert Hollerith to integer. The constant will be padded or truncated. */
2547 gfc_hollerith2int (gfc_expr
*src
, int kind
)
2550 result
= gfc_get_constant_expr (BT_INTEGER
, kind
, &src
->where
);
2552 hollerith2representation (result
, src
);
2553 gfc_interpret_integer (kind
, (unsigned char *) result
->representation
.string
,
2554 result
->representation
.length
, result
->value
.integer
);
2560 /* Convert Hollerith to real. The constant will be padded or truncated. */
2563 gfc_hollerith2real (gfc_expr
*src
, int kind
)
2566 result
= gfc_get_constant_expr (BT_REAL
, kind
, &src
->where
);
2568 hollerith2representation (result
, src
);
2569 gfc_interpret_float (kind
, (unsigned char *) result
->representation
.string
,
2570 result
->representation
.length
, result
->value
.real
);
2576 /* Convert Hollerith to complex. The constant will be padded or truncated. */
2579 gfc_hollerith2complex (gfc_expr
*src
, int kind
)
2582 result
= gfc_get_constant_expr (BT_COMPLEX
, kind
, &src
->where
);
2584 hollerith2representation (result
, src
);
2585 gfc_interpret_complex (kind
, (unsigned char *) result
->representation
.string
,
2586 result
->representation
.length
, result
->value
.complex);
2592 /* Convert Hollerith to character. */
2595 gfc_hollerith2character (gfc_expr
*src
, int kind
)
2599 result
= gfc_copy_expr (src
);
2600 result
->ts
.type
= BT_CHARACTER
;
2601 result
->ts
.kind
= kind
;
2603 result
->value
.character
.length
= result
->representation
.length
;
2604 result
->value
.character
.string
2605 = gfc_char_to_widechar (result
->representation
.string
);
2611 /* Convert Hollerith to logical. The constant will be padded or truncated. */
2614 gfc_hollerith2logical (gfc_expr
*src
, int kind
)
2617 result
= gfc_get_constant_expr (BT_LOGICAL
, kind
, &src
->where
);
2619 hollerith2representation (result
, src
);
2620 gfc_interpret_logical (kind
, (unsigned char *) result
->representation
.string
,
2621 result
->representation
.length
, &result
->value
.logical
);