1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "tree-pass.h"
30 #include "stor-layout.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
34 #include "common/common-target.h"
36 #include "except.h" /* expand_builtin_dwarf_sp_column */
37 #include "expr.h" /* init_return_column_size */
38 #include "output.h" /* asm_out_file */
39 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
42 /* ??? Poison these here until it can be done generically. They've been
43 totally replaced in this file; make sure it stays that way. */
44 #undef DWARF2_UNWIND_INFO
45 #undef DWARF2_FRAME_INFO
46 #if (GCC_VERSION >= 3000)
47 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
50 #ifndef INCOMING_RETURN_ADDR_RTX
51 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
54 /* Maximum size (in bytes) of an artificially generated label. */
55 #define MAX_ARTIFICIAL_LABEL_BYTES 30
57 /* A collected description of an entire row of the abstract CFI table. */
58 struct GTY(()) dw_cfi_row
60 /* The expression that computes the CFA, expressed in two different ways.
61 The CFA member for the simple cases, and the full CFI expression for
62 the complex cases. The later will be a DW_CFA_cfa_expression. */
66 /* The expressions for any register column that is saved. */
70 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
71 struct GTY(()) reg_saved_in_data
{
77 /* Since we no longer have a proper CFG, we're going to create a facsimile
78 of one on the fly while processing the frame-related insns.
80 We create dw_trace_info structures for each extended basic block beginning
81 and ending at a "save point". Save points are labels, barriers, certain
82 notes, and of course the beginning and end of the function.
84 As we encounter control transfer insns, we propagate the "current"
85 row state across the edges to the starts of traces. When checking is
86 enabled, we validate that we propagate the same data from all sources.
88 All traces are members of the TRACE_INFO array, in the order in which
89 they appear in the instruction stream.
91 All save points are present in the TRACE_INDEX hash, mapping the insn
92 starting a trace to the dw_trace_info describing the trace. */
96 /* The insn that begins the trace. */
99 /* The row state at the beginning and end of the trace. */
100 dw_cfi_row
*beg_row
, *end_row
;
102 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
103 while scanning insns. However, the args_size value is irrelevant at
104 any point except can_throw_internal_p insns. Therefore the "delay"
105 sizes the values that must actually be emitted for this trace. */
106 HOST_WIDE_INT beg_true_args_size
, end_true_args_size
;
107 HOST_WIDE_INT beg_delay_args_size
, end_delay_args_size
;
109 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
112 /* The following variables contain data used in interpreting frame related
113 expressions. These are not part of the "real" row state as defined by
114 Dwarf, but it seems like they need to be propagated into a trace in case
115 frame related expressions have been sunk. */
116 /* ??? This seems fragile. These variables are fragments of a larger
117 expression. If we do not keep the entire expression together, we risk
118 not being able to put it together properly. Consider forcing targets
119 to generate self-contained expressions and dropping all of the magic
120 interpretation code in this file. Or at least refusing to shrink wrap
121 any frame related insn that doesn't contain a complete expression. */
123 /* The register used for saving registers to the stack, and its offset
125 dw_cfa_location cfa_store
;
127 /* A temporary register holding an integral value used in adjusting SP
128 or setting up the store_reg. The "offset" field holds the integer
129 value, not an offset. */
130 dw_cfa_location cfa_temp
;
132 /* A set of registers saved in other registers. This is the inverse of
133 the row->reg_save info, if the entry is a DW_CFA_register. This is
134 implemented as a flat array because it normally contains zero or 1
135 entry, depending on the target. IA-64 is the big spender here, using
136 a maximum of 5 entries. */
137 vec
<reg_saved_in_data
> regs_saved_in_regs
;
139 /* An identifier for this trace. Used only for debugging dumps. */
142 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
143 bool switch_sections
;
145 /* True if we've seen different values incoming to beg_true_args_size. */
146 bool args_size_undefined
;
150 /* Hashtable helpers. */
152 struct trace_info_hasher
: nofree_ptr_hash
<dw_trace_info
>
154 static inline hashval_t
hash (const dw_trace_info
*);
155 static inline bool equal (const dw_trace_info
*, const dw_trace_info
*);
159 trace_info_hasher::hash (const dw_trace_info
*ti
)
161 return INSN_UID (ti
->head
);
165 trace_info_hasher::equal (const dw_trace_info
*a
, const dw_trace_info
*b
)
167 return a
->head
== b
->head
;
171 /* The variables making up the pseudo-cfg, as described above. */
172 static vec
<dw_trace_info
> trace_info
;
173 static vec
<dw_trace_info
*> trace_work_list
;
174 static hash_table
<trace_info_hasher
> *trace_index
;
176 /* A vector of call frame insns for the CIE. */
179 /* The state of the first row of the FDE table, which includes the
180 state provided by the CIE. */
181 static GTY(()) dw_cfi_row
*cie_cfi_row
;
183 static GTY(()) reg_saved_in_data
*cie_return_save
;
185 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
187 /* The insn after which a new CFI note should be emitted. */
188 static rtx_insn
*add_cfi_insn
;
190 /* When non-null, add_cfi will add the CFI to this vector. */
191 static cfi_vec
*add_cfi_vec
;
193 /* The current instruction trace. */
194 static dw_trace_info
*cur_trace
;
196 /* The current, i.e. most recently generated, row of the CFI table. */
197 static dw_cfi_row
*cur_row
;
199 /* A copy of the current CFA, for use during the processing of a
201 static dw_cfa_location
*cur_cfa
;
203 /* We delay emitting a register save until either (a) we reach the end
204 of the prologue or (b) the register is clobbered. This clusters
205 register saves so that there are fewer pc advances. */
207 struct queued_reg_save
{
210 HOST_WIDE_INT cfa_offset
;
214 static vec
<queued_reg_save
> queued_reg_saves
;
216 /* True if any CFI directives were emitted at the current insn. */
217 static bool any_cfis_emitted
;
219 /* Short-hand for commonly used register numbers. */
220 static unsigned dw_stack_pointer_regnum
;
221 static unsigned dw_frame_pointer_regnum
;
223 /* Hook used by __throw. */
226 expand_builtin_dwarf_sp_column (void)
228 unsigned int dwarf_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
229 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum
, 1));
232 /* MEM is a memory reference for the register size table, each element of
233 which has mode MODE. Initialize column C as a return address column. */
236 init_return_column_size (machine_mode mode
, rtx mem
, unsigned int c
)
238 HOST_WIDE_INT offset
= c
* GET_MODE_SIZE (mode
);
239 HOST_WIDE_INT size
= GET_MODE_SIZE (Pmode
);
240 emit_move_insn (adjust_address (mem
, mode
, offset
),
241 gen_int_mode (size
, mode
));
244 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
245 init_one_dwarf_reg_size to communicate on what has been done by the
248 struct init_one_dwarf_reg_state
250 /* Whether the dwarf return column was initialized. */
251 bool wrote_return_column
;
253 /* For each hard register REGNO, whether init_one_dwarf_reg_size
254 was given REGNO to process already. */
255 bool processed_regno
[FIRST_PSEUDO_REGISTER
];
259 /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
260 initialize the dwarf register size table entry corresponding to register
261 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
262 use for the size entry to initialize, and INIT_STATE is the communication
263 datastructure conveying what we're doing to our caller. */
266 void init_one_dwarf_reg_size (int regno
, machine_mode regmode
,
267 rtx table
, machine_mode slotmode
,
268 init_one_dwarf_reg_state
*init_state
)
270 const unsigned int dnum
= DWARF_FRAME_REGNUM (regno
);
271 const unsigned int rnum
= DWARF2_FRAME_REG_OUT (dnum
, 1);
272 const unsigned int dcol
= DWARF_REG_TO_UNWIND_COLUMN (rnum
);
274 const HOST_WIDE_INT slotoffset
= dcol
* GET_MODE_SIZE (slotmode
);
275 const HOST_WIDE_INT regsize
= GET_MODE_SIZE (regmode
);
277 init_state
->processed_regno
[regno
] = true;
279 if (rnum
>= DWARF_FRAME_REGISTERS
)
282 if (dnum
== DWARF_FRAME_RETURN_COLUMN
)
284 if (regmode
== VOIDmode
)
286 init_state
->wrote_return_column
= true;
292 emit_move_insn (adjust_address (table
, slotmode
, slotoffset
),
293 gen_int_mode (regsize
, slotmode
));
296 /* Generate code to initialize the dwarf register size table located
297 at the provided ADDRESS. */
300 expand_builtin_init_dwarf_reg_sizes (tree address
)
303 machine_mode mode
= TYPE_MODE (char_type_node
);
304 rtx addr
= expand_normal (address
);
305 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
307 init_one_dwarf_reg_state init_state
;
309 memset ((char *)&init_state
, 0, sizeof (init_state
));
311 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
313 machine_mode save_mode
;
316 /* No point in processing a register multiple times. This could happen
317 with register spans, e.g. when a reg is first processed as a piece of
318 a span, then as a register on its own later on. */
320 if (init_state
.processed_regno
[i
])
323 save_mode
= targetm
.dwarf_frame_reg_mode (i
);
324 span
= targetm
.dwarf_register_span (gen_rtx_REG (save_mode
, i
));
327 init_one_dwarf_reg_size (i
, save_mode
, mem
, mode
, &init_state
);
330 for (int si
= 0; si
< XVECLEN (span
, 0); si
++)
332 rtx reg
= XVECEXP (span
, 0, si
);
334 init_one_dwarf_reg_size
335 (REGNO (reg
), GET_MODE (reg
), mem
, mode
, &init_state
);
340 if (!init_state
.wrote_return_column
)
341 init_return_column_size (mode
, mem
, DWARF_FRAME_RETURN_COLUMN
);
343 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
344 init_return_column_size (mode
, mem
, DWARF_ALT_FRAME_RETURN_COLUMN
);
347 targetm
.init_dwarf_reg_sizes_extra (address
);
351 static dw_trace_info
*
352 get_trace_info (rtx_insn
*insn
)
356 return trace_index
->find_with_hash (&dummy
, INSN_UID (insn
));
360 save_point_p (rtx_insn
*insn
)
362 /* Labels, except those that are really jump tables. */
364 return inside_basic_block_p (insn
);
366 /* We split traces at the prologue/epilogue notes because those
367 are points at which the unwind info is usually stable. This
368 makes it easier to find spots with identical unwind info so
369 that we can use remember/restore_state opcodes. */
371 switch (NOTE_KIND (insn
))
373 case NOTE_INSN_PROLOGUE_END
:
374 case NOTE_INSN_EPILOGUE_BEG
:
381 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
383 static inline HOST_WIDE_INT
384 div_data_align (HOST_WIDE_INT off
)
386 HOST_WIDE_INT r
= off
/ DWARF_CIE_DATA_ALIGNMENT
;
387 gcc_assert (r
* DWARF_CIE_DATA_ALIGNMENT
== off
);
391 /* Return true if we need a signed version of a given opcode
392 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
395 need_data_align_sf_opcode (HOST_WIDE_INT off
)
397 return DWARF_CIE_DATA_ALIGNMENT
< 0 ? off
> 0 : off
< 0;
400 /* Return a pointer to a newly allocated Call Frame Instruction. */
402 static inline dw_cfi_ref
405 dw_cfi_ref cfi
= ggc_alloc
<dw_cfi_node
> ();
407 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
408 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
413 /* Return a newly allocated CFI row, with no defined data. */
418 dw_cfi_row
*row
= ggc_cleared_alloc
<dw_cfi_row
> ();
420 row
->cfa
.reg
= INVALID_REGNUM
;
425 /* Return a copy of an existing CFI row. */
428 copy_cfi_row (dw_cfi_row
*src
)
430 dw_cfi_row
*dst
= ggc_alloc
<dw_cfi_row
> ();
433 dst
->reg_save
= vec_safe_copy (src
->reg_save
);
438 /* Generate a new label for the CFI info to refer to. */
441 dwarf2out_cfi_label (void)
443 int num
= dwarf2out_cfi_label_num
++;
446 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", num
);
448 return xstrdup (label
);
451 /* Add CFI either to the current insn stream or to a vector, or both. */
454 add_cfi (dw_cfi_ref cfi
)
456 any_cfis_emitted
= true;
458 if (add_cfi_insn
!= NULL
)
460 add_cfi_insn
= emit_note_after (NOTE_INSN_CFI
, add_cfi_insn
);
461 NOTE_CFI (add_cfi_insn
) = cfi
;
464 if (add_cfi_vec
!= NULL
)
465 vec_safe_push (*add_cfi_vec
, cfi
);
469 add_cfi_args_size (HOST_WIDE_INT size
)
471 dw_cfi_ref cfi
= new_cfi ();
473 /* While we can occasionally have args_size < 0 internally, this state
474 should not persist at a point we actually need an opcode. */
475 gcc_assert (size
>= 0);
477 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
478 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
484 add_cfi_restore (unsigned reg
)
486 dw_cfi_ref cfi
= new_cfi ();
488 cfi
->dw_cfi_opc
= (reg
& ~0x3f ? DW_CFA_restore_extended
: DW_CFA_restore
);
489 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
494 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
495 that the register column is no longer saved. */
498 update_row_reg_save (dw_cfi_row
*row
, unsigned column
, dw_cfi_ref cfi
)
500 if (vec_safe_length (row
->reg_save
) <= column
)
501 vec_safe_grow_cleared (row
->reg_save
, column
+ 1);
502 (*row
->reg_save
)[column
] = cfi
;
505 /* This function fills in aa dw_cfa_location structure from a dwarf location
506 descriptor sequence. */
509 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_node
*loc
)
511 struct dw_loc_descr_node
*ptr
;
513 cfa
->base_offset
= 0;
517 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
519 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
555 cfa
->reg
= op
- DW_OP_reg0
;
558 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
592 cfa
->reg
= op
- DW_OP_breg0
;
593 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
596 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
597 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
602 case DW_OP_plus_uconst
:
603 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
611 /* Find the previous value for the CFA, iteratively. CFI is the opcode
612 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
613 one level of remember/restore state processing. */
616 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
, dw_cfa_location
*remember
)
618 switch (cfi
->dw_cfi_opc
)
620 case DW_CFA_def_cfa_offset
:
621 case DW_CFA_def_cfa_offset_sf
:
622 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
624 case DW_CFA_def_cfa_register
:
625 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
628 case DW_CFA_def_cfa_sf
:
629 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
630 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
632 case DW_CFA_def_cfa_expression
:
633 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
636 case DW_CFA_remember_state
:
637 gcc_assert (!remember
->in_use
);
639 remember
->in_use
= 1;
641 case DW_CFA_restore_state
:
642 gcc_assert (remember
->in_use
);
644 remember
->in_use
= 0;
652 /* Determine if two dw_cfa_location structures define the same data. */
655 cfa_equal_p (const dw_cfa_location
*loc1
, const dw_cfa_location
*loc2
)
657 return (loc1
->reg
== loc2
->reg
658 && loc1
->offset
== loc2
->offset
659 && loc1
->indirect
== loc2
->indirect
660 && (loc1
->indirect
== 0
661 || loc1
->base_offset
== loc2
->base_offset
));
664 /* Determine if two CFI operands are identical. */
667 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t
, dw_cfi_oprnd
*a
, dw_cfi_oprnd
*b
)
671 case dw_cfi_oprnd_unused
:
673 case dw_cfi_oprnd_reg_num
:
674 return a
->dw_cfi_reg_num
== b
->dw_cfi_reg_num
;
675 case dw_cfi_oprnd_offset
:
676 return a
->dw_cfi_offset
== b
->dw_cfi_offset
;
677 case dw_cfi_oprnd_addr
:
678 return (a
->dw_cfi_addr
== b
->dw_cfi_addr
679 || strcmp (a
->dw_cfi_addr
, b
->dw_cfi_addr
) == 0);
680 case dw_cfi_oprnd_loc
:
681 return loc_descr_equal_p (a
->dw_cfi_loc
, b
->dw_cfi_loc
);
686 /* Determine if two CFI entries are identical. */
689 cfi_equal_p (dw_cfi_ref a
, dw_cfi_ref b
)
691 enum dwarf_call_frame_info opc
;
693 /* Make things easier for our callers, including missing operands. */
696 if (a
== NULL
|| b
== NULL
)
699 /* Obviously, the opcodes must match. */
701 if (opc
!= b
->dw_cfi_opc
)
704 /* Compare the two operands, re-using the type of the operands as
705 already exposed elsewhere. */
706 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc
),
707 &a
->dw_cfi_oprnd1
, &b
->dw_cfi_oprnd1
)
708 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc
),
709 &a
->dw_cfi_oprnd2
, &b
->dw_cfi_oprnd2
));
712 /* Determine if two CFI_ROW structures are identical. */
715 cfi_row_equal_p (dw_cfi_row
*a
, dw_cfi_row
*b
)
717 size_t i
, n_a
, n_b
, n_max
;
721 if (!cfi_equal_p (a
->cfa_cfi
, b
->cfa_cfi
))
724 else if (!cfa_equal_p (&a
->cfa
, &b
->cfa
))
727 n_a
= vec_safe_length (a
->reg_save
);
728 n_b
= vec_safe_length (b
->reg_save
);
729 n_max
= MAX (n_a
, n_b
);
731 for (i
= 0; i
< n_max
; ++i
)
733 dw_cfi_ref r_a
= NULL
, r_b
= NULL
;
736 r_a
= (*a
->reg_save
)[i
];
738 r_b
= (*b
->reg_save
)[i
];
740 if (!cfi_equal_p (r_a
, r_b
))
747 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
748 what opcode to emit. Returns the CFI opcode to effect the change, or
749 NULL if NEW_CFA == OLD_CFA. */
752 def_cfa_0 (dw_cfa_location
*old_cfa
, dw_cfa_location
*new_cfa
)
756 /* If nothing changed, no need to issue any call frame instructions. */
757 if (cfa_equal_p (old_cfa
, new_cfa
))
762 if (new_cfa
->reg
== old_cfa
->reg
&& !new_cfa
->indirect
&& !old_cfa
->indirect
)
764 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
765 the CFA register did not change but the offset did. The data
766 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
767 in the assembler via the .cfi_def_cfa_offset directive. */
768 if (new_cfa
->offset
< 0)
769 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset_sf
;
771 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
772 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= new_cfa
->offset
;
774 else if (new_cfa
->offset
== old_cfa
->offset
775 && old_cfa
->reg
!= INVALID_REGNUM
776 && !new_cfa
->indirect
777 && !old_cfa
->indirect
)
779 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
780 indicating the CFA register has changed to <register> but the
781 offset has not changed. */
782 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
783 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
785 else if (new_cfa
->indirect
== 0)
787 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
788 indicating the CFA register has changed to <register> with
789 the specified offset. The data factoring for DW_CFA_def_cfa_sf
790 happens in output_cfi, or in the assembler via the .cfi_def_cfa
792 if (new_cfa
->offset
< 0)
793 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_sf
;
795 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
796 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
797 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= new_cfa
->offset
;
801 /* Construct a DW_CFA_def_cfa_expression instruction to
802 calculate the CFA using a full location expression since no
803 register-offset pair is available. */
804 struct dw_loc_descr_node
*loc_list
;
806 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
807 loc_list
= build_cfa_loc (new_cfa
, 0);
808 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
814 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
817 def_cfa_1 (dw_cfa_location
*new_cfa
)
821 if (cur_trace
->cfa_store
.reg
== new_cfa
->reg
&& new_cfa
->indirect
== 0)
822 cur_trace
->cfa_store
.offset
= new_cfa
->offset
;
824 cfi
= def_cfa_0 (&cur_row
->cfa
, new_cfa
);
827 cur_row
->cfa
= *new_cfa
;
828 cur_row
->cfa_cfi
= (cfi
->dw_cfi_opc
== DW_CFA_def_cfa_expression
835 /* Add the CFI for saving a register. REG is the CFA column number.
836 If SREG is -1, the register is saved at OFFSET from the CFA;
837 otherwise it is saved in SREG. */
840 reg_save (unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
842 dw_fde_ref fde
= cfun
? cfun
->fde
: NULL
;
843 dw_cfi_ref cfi
= new_cfi ();
845 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
847 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
849 && fde
->stack_realign
850 && sreg
== INVALID_REGNUM
)
852 cfi
->dw_cfi_opc
= DW_CFA_expression
;
853 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
854 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
855 = build_cfa_aligned_loc (&cur_row
->cfa
, offset
,
856 fde
->stack_realignment
);
858 else if (sreg
== INVALID_REGNUM
)
860 if (need_data_align_sf_opcode (offset
))
861 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
862 else if (reg
& ~0x3f)
863 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
865 cfi
->dw_cfi_opc
= DW_CFA_offset
;
866 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
868 else if (sreg
== reg
)
870 /* While we could emit something like DW_CFA_same_value or
871 DW_CFA_restore, we never expect to see something like that
872 in a prologue. This is more likely to be a bug. A backend
873 can always bypass this by using REG_CFA_RESTORE directly. */
878 cfi
->dw_cfi_opc
= DW_CFA_register
;
879 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
883 update_row_reg_save (cur_row
, reg
, cfi
);
886 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
887 and adjust data structures to match. */
890 notice_args_size (rtx_insn
*insn
)
892 HOST_WIDE_INT args_size
, delta
;
895 note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL
);
899 args_size
= INTVAL (XEXP (note
, 0));
900 delta
= args_size
- cur_trace
->end_true_args_size
;
904 cur_trace
->end_true_args_size
= args_size
;
906 /* If the CFA is computed off the stack pointer, then we must adjust
907 the computation of the CFA as well. */
908 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
910 gcc_assert (!cur_cfa
->indirect
);
912 /* Convert a change in args_size (always a positive in the
913 direction of stack growth) to a change in stack pointer. */
914 if (!STACK_GROWS_DOWNWARD
)
917 cur_cfa
->offset
+= delta
;
921 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
922 data within the trace related to EH insns and args_size. */
925 notice_eh_throw (rtx_insn
*insn
)
927 HOST_WIDE_INT args_size
;
929 args_size
= cur_trace
->end_true_args_size
;
930 if (cur_trace
->eh_head
== NULL
)
932 cur_trace
->eh_head
= insn
;
933 cur_trace
->beg_delay_args_size
= args_size
;
934 cur_trace
->end_delay_args_size
= args_size
;
936 else if (cur_trace
->end_delay_args_size
!= args_size
)
938 cur_trace
->end_delay_args_size
= args_size
;
940 /* ??? If the CFA is the stack pointer, search backward for the last
941 CFI note and insert there. Given that the stack changed for the
942 args_size change, there *must* be such a note in between here and
944 add_cfi_args_size (args_size
);
948 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
949 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
950 used in places where rtl is prohibited. */
952 static inline unsigned
953 dwf_regno (const_rtx reg
)
955 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
956 return DWARF_FRAME_REGNUM (REGNO (reg
));
959 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
962 compare_reg_or_pc (rtx x
, rtx y
)
964 if (REG_P (x
) && REG_P (y
))
965 return REGNO (x
) == REGNO (y
);
969 /* Record SRC as being saved in DEST. DEST may be null to delete an
970 existing entry. SRC may be a register or PC_RTX. */
973 record_reg_saved_in_reg (rtx dest
, rtx src
)
975 reg_saved_in_data
*elt
;
978 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, elt
)
979 if (compare_reg_or_pc (elt
->orig_reg
, src
))
982 cur_trace
->regs_saved_in_regs
.unordered_remove (i
);
984 elt
->saved_in_reg
= dest
;
991 reg_saved_in_data e
= {src
, dest
};
992 cur_trace
->regs_saved_in_regs
.safe_push (e
);
995 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
996 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
999 queue_reg_save (rtx reg
, rtx sreg
, HOST_WIDE_INT offset
)
1002 queued_reg_save e
= {reg
, sreg
, offset
};
1005 /* Duplicates waste space, but it's also necessary to remove them
1006 for correctness, since the queue gets output in reverse order. */
1007 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1008 if (compare_reg_or_pc (q
->reg
, reg
))
1014 queued_reg_saves
.safe_push (e
);
1017 /* Output all the entries in QUEUED_REG_SAVES. */
1020 dwarf2out_flush_queued_reg_saves (void)
1025 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1027 unsigned int reg
, sreg
;
1029 record_reg_saved_in_reg (q
->saved_reg
, q
->reg
);
1031 if (q
->reg
== pc_rtx
)
1032 reg
= DWARF_FRAME_RETURN_COLUMN
;
1034 reg
= dwf_regno (q
->reg
);
1036 sreg
= dwf_regno (q
->saved_reg
);
1038 sreg
= INVALID_REGNUM
;
1039 reg_save (reg
, sreg
, q
->cfa_offset
);
1042 queued_reg_saves
.truncate (0);
1045 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1046 location for? Or, does it clobber a register which we've previously
1047 said that some other register is saved in, and for which we now
1048 have a new location for? */
1051 clobbers_queued_reg_save (const_rtx insn
)
1056 FOR_EACH_VEC_ELT (queued_reg_saves
, iq
, q
)
1059 reg_saved_in_data
*rir
;
1061 if (modified_in_p (q
->reg
, insn
))
1064 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, ir
, rir
)
1065 if (compare_reg_or_pc (q
->reg
, rir
->orig_reg
)
1066 && modified_in_p (rir
->saved_in_reg
, insn
))
1073 /* What register, if any, is currently saved in REG? */
1076 reg_saved_in (rtx reg
)
1078 unsigned int regn
= REGNO (reg
);
1080 reg_saved_in_data
*rir
;
1083 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1084 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1087 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, rir
)
1088 if (regn
== REGNO (rir
->saved_in_reg
))
1089 return rir
->orig_reg
;
1094 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1097 dwarf2out_frame_debug_def_cfa (rtx pat
)
1099 memset (cur_cfa
, 0, sizeof (*cur_cfa
));
1101 if (GET_CODE (pat
) == PLUS
)
1103 cur_cfa
->offset
= INTVAL (XEXP (pat
, 1));
1104 pat
= XEXP (pat
, 0);
1108 cur_cfa
->indirect
= 1;
1109 pat
= XEXP (pat
, 0);
1110 if (GET_CODE (pat
) == PLUS
)
1112 cur_cfa
->base_offset
= INTVAL (XEXP (pat
, 1));
1113 pat
= XEXP (pat
, 0);
1116 /* ??? If this fails, we could be calling into the _loc functions to
1117 define a full expression. So far no port does that. */
1118 gcc_assert (REG_P (pat
));
1119 cur_cfa
->reg
= dwf_regno (pat
);
1122 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1125 dwarf2out_frame_debug_adjust_cfa (rtx pat
)
1129 gcc_assert (GET_CODE (pat
) == SET
);
1130 dest
= XEXP (pat
, 0);
1131 src
= XEXP (pat
, 1);
1133 switch (GET_CODE (src
))
1136 gcc_assert (dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
);
1137 cur_cfa
->offset
-= INTVAL (XEXP (src
, 1));
1147 cur_cfa
->reg
= dwf_regno (dest
);
1148 gcc_assert (cur_cfa
->indirect
== 0);
1151 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1154 dwarf2out_frame_debug_cfa_offset (rtx set
)
1156 HOST_WIDE_INT offset
;
1157 rtx src
, addr
, span
;
1158 unsigned int sregno
;
1160 src
= XEXP (set
, 1);
1161 addr
= XEXP (set
, 0);
1162 gcc_assert (MEM_P (addr
));
1163 addr
= XEXP (addr
, 0);
1165 /* As documented, only consider extremely simple addresses. */
1166 switch (GET_CODE (addr
))
1169 gcc_assert (dwf_regno (addr
) == cur_cfa
->reg
);
1170 offset
= -cur_cfa
->offset
;
1173 gcc_assert (dwf_regno (XEXP (addr
, 0)) == cur_cfa
->reg
);
1174 offset
= INTVAL (XEXP (addr
, 1)) - cur_cfa
->offset
;
1183 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1187 span
= targetm
.dwarf_register_span (src
);
1188 sregno
= dwf_regno (src
);
1191 /* ??? We'd like to use queue_reg_save, but we need to come up with
1192 a different flushing heuristic for epilogues. */
1194 reg_save (sregno
, INVALID_REGNUM
, offset
);
1197 /* We have a PARALLEL describing where the contents of SRC live.
1198 Adjust the offset for each piece of the PARALLEL. */
1199 HOST_WIDE_INT span_offset
= offset
;
1201 gcc_assert (GET_CODE (span
) == PARALLEL
);
1203 const int par_len
= XVECLEN (span
, 0);
1204 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1206 rtx elem
= XVECEXP (span
, 0, par_index
);
1207 sregno
= dwf_regno (src
);
1208 reg_save (sregno
, INVALID_REGNUM
, span_offset
);
1209 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1214 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1217 dwarf2out_frame_debug_cfa_register (rtx set
)
1220 unsigned sregno
, dregno
;
1222 src
= XEXP (set
, 1);
1223 dest
= XEXP (set
, 0);
1225 record_reg_saved_in_reg (dest
, src
);
1227 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1229 sregno
= dwf_regno (src
);
1231 dregno
= dwf_regno (dest
);
1233 /* ??? We'd like to use queue_reg_save, but we need to come up with
1234 a different flushing heuristic for epilogues. */
1235 reg_save (sregno
, dregno
, 0);
1238 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1241 dwarf2out_frame_debug_cfa_expression (rtx set
)
1243 rtx src
, dest
, span
;
1244 dw_cfi_ref cfi
= new_cfi ();
1247 dest
= SET_DEST (set
);
1248 src
= SET_SRC (set
);
1250 gcc_assert (REG_P (src
));
1251 gcc_assert (MEM_P (dest
));
1253 span
= targetm
.dwarf_register_span (src
);
1256 regno
= dwf_regno (src
);
1258 cfi
->dw_cfi_opc
= DW_CFA_expression
;
1259 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= regno
;
1260 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
1261 = mem_loc_descriptor (XEXP (dest
, 0), get_address_mode (dest
),
1262 GET_MODE (dest
), VAR_INIT_STATUS_INITIALIZED
);
1264 /* ??? We'd like to use queue_reg_save, were the interface different,
1265 and, as above, we could manage flushing for epilogues. */
1267 update_row_reg_save (cur_row
, regno
, cfi
);
1270 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1273 dwarf2out_frame_debug_cfa_restore (rtx reg
)
1275 gcc_assert (REG_P (reg
));
1277 rtx span
= targetm
.dwarf_register_span (reg
);
1280 unsigned int regno
= dwf_regno (reg
);
1281 add_cfi_restore (regno
);
1282 update_row_reg_save (cur_row
, regno
, NULL
);
1286 /* We have a PARALLEL describing where the contents of REG live.
1287 Restore the register for each piece of the PARALLEL. */
1288 gcc_assert (GET_CODE (span
) == PARALLEL
);
1290 const int par_len
= XVECLEN (span
, 0);
1291 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1293 reg
= XVECEXP (span
, 0, par_index
);
1294 gcc_assert (REG_P (reg
));
1295 unsigned int regno
= dwf_regno (reg
);
1296 add_cfi_restore (regno
);
1297 update_row_reg_save (cur_row
, regno
, NULL
);
1302 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1303 ??? Perhaps we should note in the CIE where windows are saved (instead of
1304 assuming 0(cfa)) and what registers are in the window. */
1307 dwarf2out_frame_debug_cfa_window_save (void)
1309 dw_cfi_ref cfi
= new_cfi ();
1311 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
1315 /* Record call frame debugging information for an expression EXPR,
1316 which either sets SP or FP (adjusting how we calculate the frame
1317 address) or saves a register to the stack or another register.
1318 LABEL indicates the address of EXPR.
1320 This function encodes a state machine mapping rtxes to actions on
1321 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1322 users need not read the source code.
1324 The High-Level Picture
1326 Changes in the register we use to calculate the CFA: Currently we
1327 assume that if you copy the CFA register into another register, we
1328 should take the other one as the new CFA register; this seems to
1329 work pretty well. If it's wrong for some target, it's simple
1330 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1332 Changes in the register we use for saving registers to the stack:
1333 This is usually SP, but not always. Again, we deduce that if you
1334 copy SP into another register (and SP is not the CFA register),
1335 then the new register is the one we will be using for register
1336 saves. This also seems to work.
1338 Register saves: There's not much guesswork about this one; if
1339 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1340 register save, and the register used to calculate the destination
1341 had better be the one we think we're using for this purpose.
1342 It's also assumed that a copy from a call-saved register to another
1343 register is saving that register if RTX_FRAME_RELATED_P is set on
1344 that instruction. If the copy is from a call-saved register to
1345 the *same* register, that means that the register is now the same
1346 value as in the caller.
1348 Except: If the register being saved is the CFA register, and the
1349 offset is nonzero, we are saving the CFA, so we assume we have to
1350 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1351 the intent is to save the value of SP from the previous frame.
1353 In addition, if a register has previously been saved to a different
1356 Invariants / Summaries of Rules
1358 cfa current rule for calculating the CFA. It usually
1359 consists of a register and an offset. This is
1360 actually stored in *cur_cfa, but abbreviated
1361 for the purposes of this documentation.
1362 cfa_store register used by prologue code to save things to the stack
1363 cfa_store.offset is the offset from the value of
1364 cfa_store.reg to the actual CFA
1365 cfa_temp register holding an integral value. cfa_temp.offset
1366 stores the value, which will be used to adjust the
1367 stack pointer. cfa_temp is also used like cfa_store,
1368 to track stores to the stack via fp or a temp reg.
1370 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1371 with cfa.reg as the first operand changes the cfa.reg and its
1372 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1375 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1376 expression yielding a constant. This sets cfa_temp.reg
1377 and cfa_temp.offset.
1379 Rule 5: Create a new register cfa_store used to save items to the
1382 Rules 10-14: Save a register to the stack. Define offset as the
1383 difference of the original location and cfa_store's
1384 location (or cfa_temp's location if cfa_temp is used).
1386 Rules 16-20: If AND operation happens on sp in prologue, we assume
1387 stack is realigned. We will use a group of DW_OP_XXX
1388 expressions to represent the location of the stored
1389 register instead of CFA+offset.
1393 "{a,b}" indicates a choice of a xor b.
1394 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1397 (set <reg1> <reg2>:cfa.reg)
1398 effects: cfa.reg = <reg1>
1399 cfa.offset unchanged
1400 cfa_temp.reg = <reg1>
1401 cfa_temp.offset = cfa.offset
1404 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1405 {<const_int>,<reg>:cfa_temp.reg}))
1406 effects: cfa.reg = sp if fp used
1407 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1408 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1409 if cfa_store.reg==sp
1412 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1413 effects: cfa.reg = fp
1414 cfa_offset += +/- <const_int>
1417 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1418 constraints: <reg1> != fp
1420 effects: cfa.reg = <reg1>
1421 cfa_temp.reg = <reg1>
1422 cfa_temp.offset = cfa.offset
1425 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1426 constraints: <reg1> != fp
1428 effects: cfa_store.reg = <reg1>
1429 cfa_store.offset = cfa.offset - cfa_temp.offset
1432 (set <reg> <const_int>)
1433 effects: cfa_temp.reg = <reg>
1434 cfa_temp.offset = <const_int>
1437 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1438 effects: cfa_temp.reg = <reg1>
1439 cfa_temp.offset |= <const_int>
1442 (set <reg> (high <exp>))
1446 (set <reg> (lo_sum <exp> <const_int>))
1447 effects: cfa_temp.reg = <reg>
1448 cfa_temp.offset = <const_int>
1451 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1452 effects: cfa_store.offset -= <const_int>
1453 cfa.offset = cfa_store.offset if cfa.reg == sp
1455 cfa.base_offset = -cfa_store.offset
1458 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1459 effects: cfa_store.offset += -/+ mode_size(mem)
1460 cfa.offset = cfa_store.offset if cfa.reg == sp
1462 cfa.base_offset = -cfa_store.offset
1465 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1468 effects: cfa.reg = <reg1>
1469 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1472 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1473 effects: cfa.reg = <reg1>
1474 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1477 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1478 effects: cfa.reg = <reg1>
1479 cfa.base_offset = -cfa_temp.offset
1480 cfa_temp.offset -= mode_size(mem)
1483 (set <reg> {unspec, unspec_volatile})
1484 effects: target-dependent
1487 (set sp (and: sp <const_int>))
1488 constraints: cfa_store.reg == sp
1489 effects: cfun->fde.stack_realign = 1
1490 cfa_store.offset = 0
1491 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1494 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1495 effects: cfa_store.offset += -/+ mode_size(mem)
1498 (set (mem ({pre_inc, pre_dec} sp)) fp)
1499 constraints: fde->stack_realign == 1
1500 effects: cfa_store.offset = 0
1501 cfa.reg != HARD_FRAME_POINTER_REGNUM
1504 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1505 constraints: fde->stack_realign == 1
1507 && cfa.indirect == 0
1508 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1509 effects: Use DW_CFA_def_cfa_expression to define cfa
1510 cfa.reg == fde->drap_reg */
1513 dwarf2out_frame_debug_expr (rtx expr
)
1515 rtx src
, dest
, span
;
1516 HOST_WIDE_INT offset
;
1519 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1520 the PARALLEL independently. The first element is always processed if
1521 it is a SET. This is for backward compatibility. Other elements
1522 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1523 flag is set in them. */
1524 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1527 int limit
= XVECLEN (expr
, 0);
1530 /* PARALLELs have strict read-modify-write semantics, so we
1531 ought to evaluate every rvalue before changing any lvalue.
1532 It's cumbersome to do that in general, but there's an
1533 easy approximation that is enough for all current users:
1534 handle register saves before register assignments. */
1535 if (GET_CODE (expr
) == PARALLEL
)
1536 for (par_index
= 0; par_index
< limit
; par_index
++)
1538 elem
= XVECEXP (expr
, 0, par_index
);
1539 if (GET_CODE (elem
) == SET
1540 && MEM_P (SET_DEST (elem
))
1541 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1542 dwarf2out_frame_debug_expr (elem
);
1545 for (par_index
= 0; par_index
< limit
; par_index
++)
1547 elem
= XVECEXP (expr
, 0, par_index
);
1548 if (GET_CODE (elem
) == SET
1549 && (!MEM_P (SET_DEST (elem
)) || GET_CODE (expr
) == SEQUENCE
)
1550 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1551 dwarf2out_frame_debug_expr (elem
);
1556 gcc_assert (GET_CODE (expr
) == SET
);
1558 src
= SET_SRC (expr
);
1559 dest
= SET_DEST (expr
);
1563 rtx rsi
= reg_saved_in (src
);
1570 switch (GET_CODE (dest
))
1573 switch (GET_CODE (src
))
1575 /* Setting FP from SP. */
1577 if (cur_cfa
->reg
== dwf_regno (src
))
1580 /* Update the CFA rule wrt SP or FP. Make sure src is
1581 relative to the current CFA register.
1583 We used to require that dest be either SP or FP, but the
1584 ARM copies SP to a temporary register, and from there to
1585 FP. So we just rely on the backends to only set
1586 RTX_FRAME_RELATED_P on appropriate insns. */
1587 cur_cfa
->reg
= dwf_regno (dest
);
1588 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1589 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1593 /* Saving a register in a register. */
1594 gcc_assert (!fixed_regs
[REGNO (dest
)]
1595 /* For the SPARC and its register window. */
1596 || (dwf_regno (src
) == DWARF_FRAME_RETURN_COLUMN
));
1598 /* After stack is aligned, we can only save SP in FP
1599 if drap register is used. In this case, we have
1600 to restore stack pointer with the CFA value and we
1601 don't generate this DWARF information. */
1603 && fde
->stack_realign
1604 && REGNO (src
) == STACK_POINTER_REGNUM
)
1605 gcc_assert (REGNO (dest
) == HARD_FRAME_POINTER_REGNUM
1606 && fde
->drap_reg
!= INVALID_REGNUM
1607 && cur_cfa
->reg
!= dwf_regno (src
));
1609 queue_reg_save (src
, dest
, 0);
1616 if (dest
== stack_pointer_rtx
)
1620 switch (GET_CODE (XEXP (src
, 1)))
1623 offset
= INTVAL (XEXP (src
, 1));
1626 gcc_assert (dwf_regno (XEXP (src
, 1))
1627 == cur_trace
->cfa_temp
.reg
);
1628 offset
= cur_trace
->cfa_temp
.offset
;
1634 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1636 /* Restoring SP from FP in the epilogue. */
1637 gcc_assert (cur_cfa
->reg
== dw_frame_pointer_regnum
);
1638 cur_cfa
->reg
= dw_stack_pointer_regnum
;
1640 else if (GET_CODE (src
) == LO_SUM
)
1641 /* Assume we've set the source reg of the LO_SUM from sp. */
1644 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1646 if (GET_CODE (src
) != MINUS
)
1648 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1649 cur_cfa
->offset
+= offset
;
1650 if (cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
)
1651 cur_trace
->cfa_store
.offset
+= offset
;
1653 else if (dest
== hard_frame_pointer_rtx
)
1656 /* Either setting the FP from an offset of the SP,
1657 or adjusting the FP */
1658 gcc_assert (frame_pointer_needed
);
1660 gcc_assert (REG_P (XEXP (src
, 0))
1661 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1662 && CONST_INT_P (XEXP (src
, 1)));
1663 offset
= INTVAL (XEXP (src
, 1));
1664 if (GET_CODE (src
) != MINUS
)
1666 cur_cfa
->offset
+= offset
;
1667 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1671 gcc_assert (GET_CODE (src
) != MINUS
);
1674 if (REG_P (XEXP (src
, 0))
1675 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1676 && CONST_INT_P (XEXP (src
, 1)))
1678 /* Setting a temporary CFA register that will be copied
1679 into the FP later on. */
1680 offset
= - INTVAL (XEXP (src
, 1));
1681 cur_cfa
->offset
+= offset
;
1682 cur_cfa
->reg
= dwf_regno (dest
);
1683 /* Or used to save regs to the stack. */
1684 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1685 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1689 else if (REG_P (XEXP (src
, 0))
1690 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1691 && XEXP (src
, 1) == stack_pointer_rtx
)
1693 /* Setting a scratch register that we will use instead
1694 of SP for saving registers to the stack. */
1695 gcc_assert (cur_cfa
->reg
== dw_stack_pointer_regnum
);
1696 cur_trace
->cfa_store
.reg
= dwf_regno (dest
);
1697 cur_trace
->cfa_store
.offset
1698 = cur_cfa
->offset
- cur_trace
->cfa_temp
.offset
;
1702 else if (GET_CODE (src
) == LO_SUM
1703 && CONST_INT_P (XEXP (src
, 1)))
1705 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1706 cur_trace
->cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1715 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1716 cur_trace
->cfa_temp
.offset
= INTVAL (src
);
1721 gcc_assert (REG_P (XEXP (src
, 0))
1722 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1723 && CONST_INT_P (XEXP (src
, 1)));
1725 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1726 cur_trace
->cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1729 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1730 which will fill in all of the bits. */
1737 case UNSPEC_VOLATILE
:
1738 /* All unspecs should be represented by REG_CFA_* notes. */
1744 /* If this AND operation happens on stack pointer in prologue,
1745 we assume the stack is realigned and we extract the
1747 if (fde
&& XEXP (src
, 0) == stack_pointer_rtx
)
1749 /* We interpret reg_save differently with stack_realign set.
1750 Thus we must flush whatever we have queued first. */
1751 dwarf2out_flush_queued_reg_saves ();
1753 gcc_assert (cur_trace
->cfa_store
.reg
1754 == dwf_regno (XEXP (src
, 0)));
1755 fde
->stack_realign
= 1;
1756 fde
->stack_realignment
= INTVAL (XEXP (src
, 1));
1757 cur_trace
->cfa_store
.offset
= 0;
1759 if (cur_cfa
->reg
!= dw_stack_pointer_regnum
1760 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1761 fde
->drap_reg
= cur_cfa
->reg
;
1772 /* Saving a register to the stack. Make sure dest is relative to the
1774 switch (GET_CODE (XEXP (dest
, 0)))
1780 /* We can't handle variable size modifications. */
1781 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1))
1783 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1785 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1786 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1788 cur_trace
->cfa_store
.offset
+= offset
;
1789 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1790 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1792 if (GET_CODE (XEXP (dest
, 0)) == POST_MODIFY
)
1793 offset
-= cur_trace
->cfa_store
.offset
;
1795 offset
= -cur_trace
->cfa_store
.offset
;
1802 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1803 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1806 gcc_assert ((REGNO (XEXP (XEXP (dest
, 0), 0))
1807 == STACK_POINTER_REGNUM
)
1808 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1810 cur_trace
->cfa_store
.offset
+= offset
;
1812 /* Rule 18: If stack is aligned, we will use FP as a
1813 reference to represent the address of the stored
1816 && fde
->stack_realign
1818 && REGNO (src
) == HARD_FRAME_POINTER_REGNUM
)
1820 gcc_assert (cur_cfa
->reg
!= dw_frame_pointer_regnum
);
1821 cur_trace
->cfa_store
.offset
= 0;
1824 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1825 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1827 if (GET_CODE (XEXP (dest
, 0)) == POST_DEC
)
1828 offset
+= -cur_trace
->cfa_store
.offset
;
1830 offset
= -cur_trace
->cfa_store
.offset
;
1834 /* With an offset. */
1841 gcc_assert (CONST_INT_P (XEXP (XEXP (dest
, 0), 1))
1842 && REG_P (XEXP (XEXP (dest
, 0), 0)));
1843 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1844 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1847 regno
= dwf_regno (XEXP (XEXP (dest
, 0), 0));
1849 if (cur_cfa
->reg
== regno
)
1850 offset
-= cur_cfa
->offset
;
1851 else if (cur_trace
->cfa_store
.reg
== regno
)
1852 offset
-= cur_trace
->cfa_store
.offset
;
1855 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1856 offset
-= cur_trace
->cfa_temp
.offset
;
1862 /* Without an offset. */
1865 unsigned int regno
= dwf_regno (XEXP (dest
, 0));
1867 if (cur_cfa
->reg
== regno
)
1868 offset
= -cur_cfa
->offset
;
1869 else if (cur_trace
->cfa_store
.reg
== regno
)
1870 offset
= -cur_trace
->cfa_store
.offset
;
1873 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1874 offset
= -cur_trace
->cfa_temp
.offset
;
1881 gcc_assert (cur_trace
->cfa_temp
.reg
1882 == dwf_regno (XEXP (XEXP (dest
, 0), 0)));
1883 offset
= -cur_trace
->cfa_temp
.offset
;
1884 cur_trace
->cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1892 /* If the source operand of this MEM operation is a memory,
1893 we only care how much stack grew. */
1898 && REGNO (src
) != STACK_POINTER_REGNUM
1899 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1900 && dwf_regno (src
) == cur_cfa
->reg
)
1902 /* We're storing the current CFA reg into the stack. */
1904 if (cur_cfa
->offset
== 0)
1907 /* If stack is aligned, putting CFA reg into stack means
1908 we can no longer use reg + offset to represent CFA.
1909 Here we use DW_CFA_def_cfa_expression instead. The
1910 result of this expression equals to the original CFA
1913 && fde
->stack_realign
1914 && cur_cfa
->indirect
== 0
1915 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1917 gcc_assert (fde
->drap_reg
== cur_cfa
->reg
);
1919 cur_cfa
->indirect
= 1;
1920 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1921 cur_cfa
->base_offset
= offset
;
1922 cur_cfa
->offset
= 0;
1924 fde
->drap_reg_saved
= 1;
1928 /* If the source register is exactly the CFA, assume
1929 we're saving SP like any other register; this happens
1931 queue_reg_save (stack_pointer_rtx
, NULL_RTX
, offset
);
1936 /* Otherwise, we'll need to look in the stack to
1937 calculate the CFA. */
1938 rtx x
= XEXP (dest
, 0);
1942 gcc_assert (REG_P (x
));
1944 cur_cfa
->reg
= dwf_regno (x
);
1945 cur_cfa
->base_offset
= offset
;
1946 cur_cfa
->indirect
= 1;
1952 span
= targetm
.dwarf_register_span (src
);
1957 queue_reg_save (src
, NULL_RTX
, offset
);
1960 /* We have a PARALLEL describing where the contents of SRC live.
1961 Queue register saves for each piece of the PARALLEL. */
1962 HOST_WIDE_INT span_offset
= offset
;
1964 gcc_assert (GET_CODE (span
) == PARALLEL
);
1966 const int par_len
= XVECLEN (span
, 0);
1967 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1969 rtx elem
= XVECEXP (span
, 0, par_index
);
1970 queue_reg_save (elem
, NULL_RTX
, span_offset
);
1971 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1981 /* Record call frame debugging information for INSN, which either sets
1982 SP or FP (adjusting how we calculate the frame address) or saves a
1983 register to the stack. */
1986 dwarf2out_frame_debug (rtx_insn
*insn
)
1989 bool handled_one
= false;
1991 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1992 switch (REG_NOTE_KIND (note
))
1994 case REG_FRAME_RELATED_EXPR
:
1995 pat
= XEXP (note
, 0);
1998 case REG_CFA_DEF_CFA
:
1999 dwarf2out_frame_debug_def_cfa (XEXP (note
, 0));
2003 case REG_CFA_ADJUST_CFA
:
2008 if (GET_CODE (n
) == PARALLEL
)
2009 n
= XVECEXP (n
, 0, 0);
2011 dwarf2out_frame_debug_adjust_cfa (n
);
2015 case REG_CFA_OFFSET
:
2018 n
= single_set (insn
);
2019 dwarf2out_frame_debug_cfa_offset (n
);
2023 case REG_CFA_REGISTER
:
2028 if (GET_CODE (n
) == PARALLEL
)
2029 n
= XVECEXP (n
, 0, 0);
2031 dwarf2out_frame_debug_cfa_register (n
);
2035 case REG_CFA_EXPRESSION
:
2038 n
= single_set (insn
);
2039 dwarf2out_frame_debug_cfa_expression (n
);
2043 case REG_CFA_RESTORE
:
2048 if (GET_CODE (n
) == PARALLEL
)
2049 n
= XVECEXP (n
, 0, 0);
2052 dwarf2out_frame_debug_cfa_restore (n
);
2056 case REG_CFA_SET_VDRAP
:
2060 dw_fde_ref fde
= cfun
->fde
;
2063 gcc_assert (fde
->vdrap_reg
== INVALID_REGNUM
);
2065 fde
->vdrap_reg
= dwf_regno (n
);
2071 case REG_CFA_WINDOW_SAVE
:
2072 dwarf2out_frame_debug_cfa_window_save ();
2076 case REG_CFA_FLUSH_QUEUE
:
2077 /* The actual flush happens elsewhere. */
2087 pat
= PATTERN (insn
);
2089 dwarf2out_frame_debug_expr (pat
);
2091 /* Check again. A parallel can save and update the same register.
2092 We could probably check just once, here, but this is safer than
2093 removing the check at the start of the function. */
2094 if (clobbers_queued_reg_save (pat
))
2095 dwarf2out_flush_queued_reg_saves ();
2099 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2102 change_cfi_row (dw_cfi_row
*old_row
, dw_cfi_row
*new_row
)
2104 size_t i
, n_old
, n_new
, n_max
;
2107 if (new_row
->cfa_cfi
&& !cfi_equal_p (old_row
->cfa_cfi
, new_row
->cfa_cfi
))
2108 add_cfi (new_row
->cfa_cfi
);
2111 cfi
= def_cfa_0 (&old_row
->cfa
, &new_row
->cfa
);
2116 n_old
= vec_safe_length (old_row
->reg_save
);
2117 n_new
= vec_safe_length (new_row
->reg_save
);
2118 n_max
= MAX (n_old
, n_new
);
2120 for (i
= 0; i
< n_max
; ++i
)
2122 dw_cfi_ref r_old
= NULL
, r_new
= NULL
;
2125 r_old
= (*old_row
->reg_save
)[i
];
2127 r_new
= (*new_row
->reg_save
)[i
];
2131 else if (r_new
== NULL
)
2132 add_cfi_restore (i
);
2133 else if (!cfi_equal_p (r_old
, r_new
))
2138 /* Examine CFI and return true if a cfi label and set_loc is needed
2139 beforehand. Even when generating CFI assembler instructions, we
2140 still have to add the cfi to the list so that lookup_cfa_1 works
2141 later on. When -g2 and above we even need to force emitting of
2142 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2143 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2144 and so don't use convert_cfa_to_fb_loc_list. */
2147 cfi_label_required_p (dw_cfi_ref cfi
)
2149 if (!dwarf2out_do_cfi_asm ())
2152 if (dwarf_version
== 2
2153 && debug_info_level
> DINFO_LEVEL_TERSE
2154 && (write_symbols
== DWARF2_DEBUG
2155 || write_symbols
== VMS_AND_DWARF2_DEBUG
))
2157 switch (cfi
->dw_cfi_opc
)
2159 case DW_CFA_def_cfa_offset
:
2160 case DW_CFA_def_cfa_offset_sf
:
2161 case DW_CFA_def_cfa_register
:
2162 case DW_CFA_def_cfa
:
2163 case DW_CFA_def_cfa_sf
:
2164 case DW_CFA_def_cfa_expression
:
2165 case DW_CFA_restore_state
:
2174 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2175 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2178 add_cfis_to_fde (void)
2180 dw_fde_ref fde
= cfun
->fde
;
2181 rtx_insn
*insn
, *next
;
2182 /* We always start with a function_begin label. */
2185 for (insn
= get_insns (); insn
; insn
= next
)
2187 next
= NEXT_INSN (insn
);
2189 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2191 fde
->dw_fde_switch_cfi_index
= vec_safe_length (fde
->dw_fde_cfi
);
2192 /* Don't attempt to advance_loc4 between labels
2193 in different sections. */
2197 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2199 bool required
= cfi_label_required_p (NOTE_CFI (insn
));
2201 if (NOTE_P (next
) && NOTE_KIND (next
) == NOTE_INSN_CFI
)
2203 required
|= cfi_label_required_p (NOTE_CFI (next
));
2204 next
= NEXT_INSN (next
);
2206 else if (active_insn_p (next
)
2207 || (NOTE_P (next
) && (NOTE_KIND (next
)
2208 == NOTE_INSN_SWITCH_TEXT_SECTIONS
)))
2211 next
= NEXT_INSN (next
);
2214 int num
= dwarf2out_cfi_label_num
;
2215 const char *label
= dwarf2out_cfi_label ();
2218 /* Set the location counter to the new label. */
2220 xcfi
->dw_cfi_opc
= (first
? DW_CFA_set_loc
2221 : DW_CFA_advance_loc4
);
2222 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
2223 vec_safe_push (fde
->dw_fde_cfi
, xcfi
);
2225 rtx_note
*tmp
= emit_note_before (NOTE_INSN_CFI_LABEL
, insn
);
2226 NOTE_LABEL_NUMBER (tmp
) = num
;
2231 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2232 vec_safe_push (fde
->dw_fde_cfi
, NOTE_CFI (insn
));
2233 insn
= NEXT_INSN (insn
);
2235 while (insn
!= next
);
2241 /* If LABEL is the start of a trace, then initialize the state of that
2242 trace from CUR_TRACE and CUR_ROW. */
2245 maybe_record_trace_start (rtx_insn
*start
, rtx_insn
*origin
)
2248 HOST_WIDE_INT args_size
;
2250 ti
= get_trace_info (start
);
2251 gcc_assert (ti
!= NULL
);
2255 fprintf (dump_file
, " saw edge from trace %u to %u (via %s %d)\n",
2256 cur_trace
->id
, ti
->id
,
2257 (origin
? rtx_name
[(int) GET_CODE (origin
)] : "fallthru"),
2258 (origin
? INSN_UID (origin
) : 0));
2261 args_size
= cur_trace
->end_true_args_size
;
2262 if (ti
->beg_row
== NULL
)
2264 /* This is the first time we've encountered this trace. Propagate
2265 state across the edge and push the trace onto the work list. */
2266 ti
->beg_row
= copy_cfi_row (cur_row
);
2267 ti
->beg_true_args_size
= args_size
;
2269 ti
->cfa_store
= cur_trace
->cfa_store
;
2270 ti
->cfa_temp
= cur_trace
->cfa_temp
;
2271 ti
->regs_saved_in_regs
= cur_trace
->regs_saved_in_regs
.copy ();
2273 trace_work_list
.safe_push (ti
);
2276 fprintf (dump_file
, "\tpush trace %u to worklist\n", ti
->id
);
2281 /* We ought to have the same state incoming to a given trace no
2282 matter how we arrive at the trace. Anything else means we've
2283 got some kind of optimization error. */
2284 gcc_checking_assert (cfi_row_equal_p (cur_row
, ti
->beg_row
));
2286 /* The args_size is allowed to conflict if it isn't actually used. */
2287 if (ti
->beg_true_args_size
!= args_size
)
2288 ti
->args_size_undefined
= true;
2292 /* Similarly, but handle the args_size and CFA reset across EH
2293 and non-local goto edges. */
2296 maybe_record_trace_start_abnormal (rtx_insn
*start
, rtx_insn
*origin
)
2298 HOST_WIDE_INT save_args_size
, delta
;
2299 dw_cfa_location save_cfa
;
2301 save_args_size
= cur_trace
->end_true_args_size
;
2302 if (save_args_size
== 0)
2304 maybe_record_trace_start (start
, origin
);
2308 delta
= -save_args_size
;
2309 cur_trace
->end_true_args_size
= 0;
2311 save_cfa
= cur_row
->cfa
;
2312 if (cur_row
->cfa
.reg
== dw_stack_pointer_regnum
)
2314 /* Convert a change in args_size (always a positive in the
2315 direction of stack growth) to a change in stack pointer. */
2316 if (!STACK_GROWS_DOWNWARD
)
2319 cur_row
->cfa
.offset
+= delta
;
2322 maybe_record_trace_start (start
, origin
);
2324 cur_trace
->end_true_args_size
= save_args_size
;
2325 cur_row
->cfa
= save_cfa
;
2328 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2329 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2332 create_trace_edges (rtx_insn
*insn
)
2339 rtx_jump_table_data
*table
;
2341 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
2344 if (tablejump_p (insn
, NULL
, &table
))
2346 rtvec vec
= table
->get_labels ();
2348 n
= GET_NUM_ELEM (vec
);
2349 for (i
= 0; i
< n
; ++i
)
2351 rtx_insn
*lab
= as_a
<rtx_insn
*> (XEXP (RTVEC_ELT (vec
, i
), 0));
2352 maybe_record_trace_start (lab
, insn
);
2355 else if (computed_jump_p (insn
))
2357 for (rtx_insn_list
*lab
= forced_labels
; lab
; lab
= lab
->next ())
2358 maybe_record_trace_start (lab
->insn (), insn
);
2360 else if (returnjump_p (insn
))
2362 else if ((tmp
= extract_asm_operands (PATTERN (insn
))) != NULL
)
2364 n
= ASM_OPERANDS_LABEL_LENGTH (tmp
);
2365 for (i
= 0; i
< n
; ++i
)
2368 as_a
<rtx_insn
*> (XEXP (ASM_OPERANDS_LABEL (tmp
, i
), 0));
2369 maybe_record_trace_start (lab
, insn
);
2374 rtx_insn
*lab
= JUMP_LABEL_AS_INSN (insn
);
2375 gcc_assert (lab
!= NULL
);
2376 maybe_record_trace_start (lab
, insn
);
2379 else if (CALL_P (insn
))
2381 /* Sibling calls don't have edges inside this function. */
2382 if (SIBLING_CALL_P (insn
))
2385 /* Process non-local goto edges. */
2386 if (can_nonlocal_goto (insn
))
2387 for (rtx_insn_list
*lab
= nonlocal_goto_handler_labels
;
2390 maybe_record_trace_start_abnormal (lab
->insn (), insn
);
2392 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
2394 int i
, n
= seq
->len ();
2395 for (i
= 0; i
< n
; ++i
)
2396 create_trace_edges (seq
->insn (i
));
2400 /* Process EH edges. */
2401 if (CALL_P (insn
) || cfun
->can_throw_non_call_exceptions
)
2403 eh_landing_pad lp
= get_eh_landing_pad_from_rtx (insn
);
2405 maybe_record_trace_start_abnormal (lp
->landing_pad
, insn
);
2409 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2412 scan_insn_after (rtx_insn
*insn
)
2414 if (RTX_FRAME_RELATED_P (insn
))
2415 dwarf2out_frame_debug (insn
);
2416 notice_args_size (insn
);
2419 /* Scan the trace beginning at INSN and create the CFI notes for the
2420 instructions therein. */
2423 scan_trace (dw_trace_info
*trace
)
2425 rtx_insn
*prev
, *insn
= trace
->head
;
2426 dw_cfa_location this_cfa
;
2429 fprintf (dump_file
, "Processing trace %u : start at %s %d\n",
2430 trace
->id
, rtx_name
[(int) GET_CODE (insn
)],
2433 trace
->end_row
= copy_cfi_row (trace
->beg_row
);
2434 trace
->end_true_args_size
= trace
->beg_true_args_size
;
2437 cur_row
= trace
->end_row
;
2439 this_cfa
= cur_row
->cfa
;
2440 cur_cfa
= &this_cfa
;
2442 for (prev
= insn
, insn
= NEXT_INSN (insn
);
2444 prev
= insn
, insn
= NEXT_INSN (insn
))
2448 /* Do everything that happens "before" the insn. */
2449 add_cfi_insn
= prev
;
2451 /* Notice the end of a trace. */
2452 if (BARRIER_P (insn
))
2454 /* Don't bother saving the unneeded queued registers at all. */
2455 queued_reg_saves
.truncate (0);
2458 if (save_point_p (insn
))
2460 /* Propagate across fallthru edges. */
2461 dwarf2out_flush_queued_reg_saves ();
2462 maybe_record_trace_start (insn
, NULL
);
2466 if (DEBUG_INSN_P (insn
) || !inside_basic_block_p (insn
))
2469 /* Handle all changes to the row state. Sequences require special
2470 handling for the positioning of the notes. */
2471 if (rtx_sequence
*pat
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
2474 int i
, n
= pat
->len ();
2476 control
= pat
->insn (0);
2477 if (can_throw_internal (control
))
2478 notice_eh_throw (control
);
2479 dwarf2out_flush_queued_reg_saves ();
2481 if (JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
))
2483 /* ??? Hopefully multiple delay slots are not annulled. */
2484 gcc_assert (n
== 2);
2485 gcc_assert (!RTX_FRAME_RELATED_P (control
));
2486 gcc_assert (!find_reg_note (control
, REG_ARGS_SIZE
, NULL
));
2488 elt
= pat
->insn (1);
2490 if (INSN_FROM_TARGET_P (elt
))
2492 HOST_WIDE_INT restore_args_size
;
2493 cfi_vec save_row_reg_save
;
2495 /* If ELT is an instruction from target of an annulled
2496 branch, the effects are for the target only and so
2497 the args_size and CFA along the current path
2498 shouldn't change. */
2499 add_cfi_insn
= NULL
;
2500 restore_args_size
= cur_trace
->end_true_args_size
;
2501 cur_cfa
= &cur_row
->cfa
;
2502 save_row_reg_save
= vec_safe_copy (cur_row
->reg_save
);
2504 scan_insn_after (elt
);
2506 /* ??? Should we instead save the entire row state? */
2507 gcc_assert (!queued_reg_saves
.length ());
2509 create_trace_edges (control
);
2511 cur_trace
->end_true_args_size
= restore_args_size
;
2512 cur_row
->cfa
= this_cfa
;
2513 cur_row
->reg_save
= save_row_reg_save
;
2514 cur_cfa
= &this_cfa
;
2518 /* If ELT is a annulled branch-taken instruction (i.e.
2519 executed only when branch is not taken), the args_size
2520 and CFA should not change through the jump. */
2521 create_trace_edges (control
);
2523 /* Update and continue with the trace. */
2524 add_cfi_insn
= insn
;
2525 scan_insn_after (elt
);
2526 def_cfa_1 (&this_cfa
);
2531 /* The insns in the delay slot should all be considered to happen
2532 "before" a call insn. Consider a call with a stack pointer
2533 adjustment in the delay slot. The backtrace from the callee
2534 should include the sp adjustment. Unfortunately, that leaves
2535 us with an unavoidable unwinding error exactly at the call insn
2536 itself. For jump insns we'd prefer to avoid this error by
2537 placing the notes after the sequence. */
2538 if (JUMP_P (control
))
2539 add_cfi_insn
= insn
;
2541 for (i
= 1; i
< n
; ++i
)
2543 elt
= pat
->insn (i
);
2544 scan_insn_after (elt
);
2547 /* Make sure any register saves are visible at the jump target. */
2548 dwarf2out_flush_queued_reg_saves ();
2549 any_cfis_emitted
= false;
2551 /* However, if there is some adjustment on the call itself, e.g.
2552 a call_pop, that action should be considered to happen after
2553 the call returns. */
2554 add_cfi_insn
= insn
;
2555 scan_insn_after (control
);
2559 /* Flush data before calls and jumps, and of course if necessary. */
2560 if (can_throw_internal (insn
))
2562 notice_eh_throw (insn
);
2563 dwarf2out_flush_queued_reg_saves ();
2565 else if (!NONJUMP_INSN_P (insn
)
2566 || clobbers_queued_reg_save (insn
)
2567 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2568 dwarf2out_flush_queued_reg_saves ();
2569 any_cfis_emitted
= false;
2571 add_cfi_insn
= insn
;
2572 scan_insn_after (insn
);
2576 /* Between frame-related-p and args_size we might have otherwise
2577 emitted two cfa adjustments. Do it now. */
2578 def_cfa_1 (&this_cfa
);
2580 /* Minimize the number of advances by emitting the entire queue
2581 once anything is emitted. */
2582 if (any_cfis_emitted
2583 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2584 dwarf2out_flush_queued_reg_saves ();
2586 /* Note that a test for control_flow_insn_p does exactly the
2587 same tests as are done to actually create the edges. So
2588 always call the routine and let it not create edges for
2589 non-control-flow insns. */
2590 create_trace_edges (control
);
2593 add_cfi_insn
= NULL
;
2599 /* Scan the function and create the initial set of CFI notes. */
2602 create_cfi_notes (void)
2606 gcc_checking_assert (!queued_reg_saves
.exists ());
2607 gcc_checking_assert (!trace_work_list
.exists ());
2609 /* Always begin at the entry trace. */
2610 ti
= &trace_info
[0];
2613 while (!trace_work_list
.is_empty ())
2615 ti
= trace_work_list
.pop ();
2619 queued_reg_saves
.release ();
2620 trace_work_list
.release ();
2623 /* Return the insn before the first NOTE_INSN_CFI after START. */
2626 before_next_cfi_note (rtx_insn
*start
)
2628 rtx_insn
*prev
= start
;
2631 if (NOTE_P (start
) && NOTE_KIND (start
) == NOTE_INSN_CFI
)
2634 start
= NEXT_INSN (start
);
2639 /* Insert CFI notes between traces to properly change state between them. */
2642 connect_traces (void)
2644 unsigned i
, n
= trace_info
.length ();
2645 dw_trace_info
*prev_ti
, *ti
;
2647 /* ??? Ideally, we should have both queued and processed every trace.
2648 However the current representation of constant pools on various targets
2649 is indistinguishable from unreachable code. Assume for the moment that
2650 we can simply skip over such traces. */
2651 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2652 these are not "real" instructions, and should not be considered.
2653 This could be generically useful for tablejump data as well. */
2654 /* Remove all unprocessed traces from the list. */
2655 for (i
= n
- 1; i
> 0; --i
)
2657 ti
= &trace_info
[i
];
2658 if (ti
->beg_row
== NULL
)
2660 trace_info
.ordered_remove (i
);
2664 gcc_assert (ti
->end_row
!= NULL
);
2667 /* Work from the end back to the beginning. This lets us easily insert
2668 remember/restore_state notes in the correct order wrt other notes. */
2669 prev_ti
= &trace_info
[n
- 1];
2670 for (i
= n
- 1; i
> 0; --i
)
2672 dw_cfi_row
*old_row
;
2675 prev_ti
= &trace_info
[i
- 1];
2677 add_cfi_insn
= ti
->head
;
2679 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2680 for the portion of the function in the alternate text
2681 section. The row state at the very beginning of that
2682 new FDE will be exactly the row state from the CIE. */
2683 if (ti
->switch_sections
)
2684 old_row
= cie_cfi_row
;
2687 old_row
= prev_ti
->end_row
;
2688 /* If there's no change from the previous end state, fine. */
2689 if (cfi_row_equal_p (old_row
, ti
->beg_row
))
2691 /* Otherwise check for the common case of sharing state with
2692 the beginning of an epilogue, but not the end. Insert
2693 remember/restore opcodes in that case. */
2694 else if (cfi_row_equal_p (prev_ti
->beg_row
, ti
->beg_row
))
2698 /* Note that if we blindly insert the remember at the
2699 start of the trace, we can wind up increasing the
2700 size of the unwind info due to extra advance opcodes.
2701 Instead, put the remember immediately before the next
2702 state change. We know there must be one, because the
2703 state at the beginning and head of the trace differ. */
2704 add_cfi_insn
= before_next_cfi_note (prev_ti
->head
);
2706 cfi
->dw_cfi_opc
= DW_CFA_remember_state
;
2709 add_cfi_insn
= ti
->head
;
2711 cfi
->dw_cfi_opc
= DW_CFA_restore_state
;
2714 old_row
= prev_ti
->beg_row
;
2716 /* Otherwise, we'll simply change state from the previous end. */
2719 change_cfi_row (old_row
, ti
->beg_row
);
2721 if (dump_file
&& add_cfi_insn
!= ti
->head
)
2725 fprintf (dump_file
, "Fixup between trace %u and %u:\n",
2726 prev_ti
->id
, ti
->id
);
2731 note
= NEXT_INSN (note
);
2732 gcc_assert (NOTE_P (note
) && NOTE_KIND (note
) == NOTE_INSN_CFI
);
2733 output_cfi_directive (dump_file
, NOTE_CFI (note
));
2735 while (note
!= add_cfi_insn
);
2739 /* Connect args_size between traces that have can_throw_internal insns. */
2740 if (cfun
->eh
->lp_array
)
2742 HOST_WIDE_INT prev_args_size
= 0;
2744 for (i
= 0; i
< n
; ++i
)
2746 ti
= &trace_info
[i
];
2748 if (ti
->switch_sections
)
2750 if (ti
->eh_head
== NULL
)
2752 gcc_assert (!ti
->args_size_undefined
);
2754 if (ti
->beg_delay_args_size
!= prev_args_size
)
2756 /* ??? Search back to previous CFI note. */
2757 add_cfi_insn
= PREV_INSN (ti
->eh_head
);
2758 add_cfi_args_size (ti
->beg_delay_args_size
);
2761 prev_args_size
= ti
->end_delay_args_size
;
2766 /* Set up the pseudo-cfg of instruction traces, as described at the
2767 block comment at the top of the file. */
2770 create_pseudo_cfg (void)
2772 bool saw_barrier
, switch_sections
;
2777 /* The first trace begins at the start of the function,
2778 and begins with the CIE row state. */
2779 trace_info
.create (16);
2780 memset (&ti
, 0, sizeof (ti
));
2781 ti
.head
= get_insns ();
2782 ti
.beg_row
= cie_cfi_row
;
2783 ti
.cfa_store
= cie_cfi_row
->cfa
;
2784 ti
.cfa_temp
.reg
= INVALID_REGNUM
;
2785 trace_info
.quick_push (ti
);
2787 if (cie_return_save
)
2788 ti
.regs_saved_in_regs
.safe_push (*cie_return_save
);
2790 /* Walk all the insns, collecting start of trace locations. */
2791 saw_barrier
= false;
2792 switch_sections
= false;
2793 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2795 if (BARRIER_P (insn
))
2797 else if (NOTE_P (insn
)
2798 && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2800 /* We should have just seen a barrier. */
2801 gcc_assert (saw_barrier
);
2802 switch_sections
= true;
2804 /* Watch out for save_point notes between basic blocks.
2805 In particular, a note after a barrier. Do not record these,
2806 delaying trace creation until the label. */
2807 else if (save_point_p (insn
)
2808 && (LABEL_P (insn
) || !saw_barrier
))
2810 memset (&ti
, 0, sizeof (ti
));
2812 ti
.switch_sections
= switch_sections
;
2813 ti
.id
= trace_info
.length ();
2814 trace_info
.safe_push (ti
);
2816 saw_barrier
= false;
2817 switch_sections
= false;
2821 /* Create the trace index after we've finished building trace_info,
2822 avoiding stale pointer problems due to reallocation. */
2824 = new hash_table
<trace_info_hasher
> (trace_info
.length ());
2826 FOR_EACH_VEC_ELT (trace_info
, i
, tp
)
2828 dw_trace_info
**slot
;
2831 fprintf (dump_file
, "Creating trace %u : start at %s %d%s\n", tp
->id
,
2832 rtx_name
[(int) GET_CODE (tp
->head
)], INSN_UID (tp
->head
),
2833 tp
->switch_sections
? " (section switch)" : "");
2835 slot
= trace_index
->find_slot_with_hash (tp
, INSN_UID (tp
->head
), INSERT
);
2836 gcc_assert (*slot
== NULL
);
2841 /* Record the initial position of the return address. RTL is
2842 INCOMING_RETURN_ADDR_RTX. */
2845 initial_return_save (rtx rtl
)
2847 unsigned int reg
= INVALID_REGNUM
;
2848 HOST_WIDE_INT offset
= 0;
2850 switch (GET_CODE (rtl
))
2853 /* RA is in a register. */
2854 reg
= dwf_regno (rtl
);
2858 /* RA is on the stack. */
2859 rtl
= XEXP (rtl
, 0);
2860 switch (GET_CODE (rtl
))
2863 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
2868 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2869 offset
= INTVAL (XEXP (rtl
, 1));
2873 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2874 offset
= -INTVAL (XEXP (rtl
, 1));
2884 /* The return address is at some offset from any value we can
2885 actually load. For instance, on the SPARC it is in %i7+8. Just
2886 ignore the offset for now; it doesn't matter for unwinding frames. */
2887 gcc_assert (CONST_INT_P (XEXP (rtl
, 1)));
2888 initial_return_save (XEXP (rtl
, 0));
2895 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
2897 if (reg
!= INVALID_REGNUM
)
2898 record_reg_saved_in_reg (rtl
, pc_rtx
);
2899 reg_save (DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cur_row
->cfa
.offset
);
2904 create_cie_data (void)
2906 dw_cfa_location loc
;
2907 dw_trace_info cie_trace
;
2909 dw_stack_pointer_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
2911 memset (&cie_trace
, 0, sizeof (cie_trace
));
2912 cur_trace
= &cie_trace
;
2914 add_cfi_vec
= &cie_cfi_vec
;
2915 cie_cfi_row
= cur_row
= new_cfi_row ();
2917 /* On entry, the Canonical Frame Address is at SP. */
2918 memset (&loc
, 0, sizeof (loc
));
2919 loc
.reg
= dw_stack_pointer_regnum
;
2920 loc
.offset
= INCOMING_FRAME_SP_OFFSET
;
2923 if (targetm
.debug_unwind_info () == UI_DWARF2
2924 || targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
2926 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2928 /* For a few targets, we have the return address incoming into a
2929 register, but choose a different return column. This will result
2930 in a DW_CFA_register for the return, and an entry in
2931 regs_saved_in_regs to match. If the target later stores that
2932 return address register to the stack, we want to be able to emit
2933 the DW_CFA_offset against the return column, not the intermediate
2934 save register. Save the contents of regs_saved_in_regs so that
2935 we can re-initialize it at the start of each function. */
2936 switch (cie_trace
.regs_saved_in_regs
.length ())
2941 cie_return_save
= ggc_alloc
<reg_saved_in_data
> ();
2942 *cie_return_save
= cie_trace
.regs_saved_in_regs
[0];
2943 cie_trace
.regs_saved_in_regs
.release ();
2955 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2956 state at each location within the function. These notes will be
2957 emitted during pass_final. */
2960 execute_dwarf2_frame (void)
2962 /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */
2963 dw_frame_pointer_regnum
= DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
);
2965 /* The first time we're called, compute the incoming frame state. */
2966 if (cie_cfi_vec
== NULL
)
2969 dwarf2out_alloc_current_fde ();
2971 create_pseudo_cfg ();
2974 create_cfi_notes ();
2978 /* Free all the data we allocated. */
2983 FOR_EACH_VEC_ELT (trace_info
, i
, ti
)
2984 ti
->regs_saved_in_regs
.release ();
2986 trace_info
.release ();
2994 /* Convert a DWARF call frame info. operation to its string name */
2997 dwarf_cfi_name (unsigned int cfi_opc
)
2999 const char *name
= get_DW_CFA_name (cfi_opc
);
3004 return "DW_CFA_<unknown>";
3007 /* This routine will generate the correct assembly data for a location
3008 description based on a cfi entry with a complex address. */
3011 output_cfa_loc (dw_cfi_ref cfi
, int for_eh
)
3013 dw_loc_descr_ref loc
;
3016 if (cfi
->dw_cfi_opc
== DW_CFA_expression
)
3019 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3020 dw2_asm_output_data (1, r
, NULL
);
3021 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3024 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3026 /* Output the size of the block. */
3027 size
= size_of_locs (loc
);
3028 dw2_asm_output_data_uleb128 (size
, NULL
);
3030 /* Now output the operations themselves. */
3031 output_loc_sequence (loc
, for_eh
);
3034 /* Similar, but used for .cfi_escape. */
3037 output_cfa_loc_raw (dw_cfi_ref cfi
)
3039 dw_loc_descr_ref loc
;
3042 if (cfi
->dw_cfi_opc
== DW_CFA_expression
)
3045 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3046 fprintf (asm_out_file
, "%#x,", r
);
3047 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3050 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3052 /* Output the size of the block. */
3053 size
= size_of_locs (loc
);
3054 dw2_asm_output_data_uleb128_raw (size
);
3055 fputc (',', asm_out_file
);
3057 /* Now output the operations themselves. */
3058 output_loc_sequence_raw (loc
);
3061 /* Output a Call Frame Information opcode and its operand(s). */
3064 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
3069 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
3070 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
3071 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
3072 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
3073 ((unsigned HOST_WIDE_INT
)
3074 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
));
3075 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
3077 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3078 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3079 "DW_CFA_offset, column %#lx", r
);
3080 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3081 dw2_asm_output_data_uleb128 (off
, NULL
);
3083 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
3085 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3086 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3087 "DW_CFA_restore, column %#lx", r
);
3091 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
3092 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
3094 switch (cfi
->dw_cfi_opc
)
3096 case DW_CFA_set_loc
:
3098 dw2_asm_output_encoded_addr_rtx (
3099 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3100 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
3103 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
3104 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
3105 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3108 case DW_CFA_advance_loc1
:
3109 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3110 fde
->dw_fde_current_label
, NULL
);
3111 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3114 case DW_CFA_advance_loc2
:
3115 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3116 fde
->dw_fde_current_label
, NULL
);
3117 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3120 case DW_CFA_advance_loc4
:
3121 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3122 fde
->dw_fde_current_label
, NULL
);
3123 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3126 case DW_CFA_MIPS_advance_loc8
:
3127 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3128 fde
->dw_fde_current_label
, NULL
);
3129 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3132 case DW_CFA_offset_extended
:
3133 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3134 dw2_asm_output_data_uleb128 (r
, NULL
);
3135 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3136 dw2_asm_output_data_uleb128 (off
, NULL
);
3139 case DW_CFA_def_cfa
:
3140 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3141 dw2_asm_output_data_uleb128 (r
, NULL
);
3142 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
3145 case DW_CFA_offset_extended_sf
:
3146 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3147 dw2_asm_output_data_uleb128 (r
, NULL
);
3148 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3149 dw2_asm_output_data_sleb128 (off
, NULL
);
3152 case DW_CFA_def_cfa_sf
:
3153 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3154 dw2_asm_output_data_uleb128 (r
, NULL
);
3155 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3156 dw2_asm_output_data_sleb128 (off
, NULL
);
3159 case DW_CFA_restore_extended
:
3160 case DW_CFA_undefined
:
3161 case DW_CFA_same_value
:
3162 case DW_CFA_def_cfa_register
:
3163 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3164 dw2_asm_output_data_uleb128 (r
, NULL
);
3167 case DW_CFA_register
:
3168 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3169 dw2_asm_output_data_uleb128 (r
, NULL
);
3170 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
3171 dw2_asm_output_data_uleb128 (r
, NULL
);
3174 case DW_CFA_def_cfa_offset
:
3175 case DW_CFA_GNU_args_size
:
3176 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
3179 case DW_CFA_def_cfa_offset_sf
:
3180 off
= div_data_align (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3181 dw2_asm_output_data_sleb128 (off
, NULL
);
3184 case DW_CFA_GNU_window_save
:
3187 case DW_CFA_def_cfa_expression
:
3188 case DW_CFA_expression
:
3189 output_cfa_loc (cfi
, for_eh
);
3192 case DW_CFA_GNU_negative_offset_extended
:
3193 /* Obsoleted by DW_CFA_offset_extended_sf. */
3202 /* Similar, but do it via assembler directives instead. */
3205 output_cfi_directive (FILE *f
, dw_cfi_ref cfi
)
3207 unsigned long r
, r2
;
3209 switch (cfi
->dw_cfi_opc
)
3211 case DW_CFA_advance_loc
:
3212 case DW_CFA_advance_loc1
:
3213 case DW_CFA_advance_loc2
:
3214 case DW_CFA_advance_loc4
:
3215 case DW_CFA_MIPS_advance_loc8
:
3216 case DW_CFA_set_loc
:
3217 /* Should only be created in a code path not followed when emitting
3218 via directives. The assembler is going to take care of this for
3219 us. But this routines is also used for debugging dumps, so
3221 gcc_assert (f
!= asm_out_file
);
3222 fprintf (f
, "\t.cfi_advance_loc\n");
3226 case DW_CFA_offset_extended
:
3227 case DW_CFA_offset_extended_sf
:
3228 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3229 fprintf (f
, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC
"\n",
3230 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3233 case DW_CFA_restore
:
3234 case DW_CFA_restore_extended
:
3235 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3236 fprintf (f
, "\t.cfi_restore %lu\n", r
);
3239 case DW_CFA_undefined
:
3240 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3241 fprintf (f
, "\t.cfi_undefined %lu\n", r
);
3244 case DW_CFA_same_value
:
3245 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3246 fprintf (f
, "\t.cfi_same_value %lu\n", r
);
3249 case DW_CFA_def_cfa
:
3250 case DW_CFA_def_cfa_sf
:
3251 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3252 fprintf (f
, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC
"\n",
3253 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3256 case DW_CFA_def_cfa_register
:
3257 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3258 fprintf (f
, "\t.cfi_def_cfa_register %lu\n", r
);
3261 case DW_CFA_register
:
3262 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3263 r2
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, 1);
3264 fprintf (f
, "\t.cfi_register %lu, %lu\n", r
, r2
);
3267 case DW_CFA_def_cfa_offset
:
3268 case DW_CFA_def_cfa_offset_sf
:
3269 fprintf (f
, "\t.cfi_def_cfa_offset "
3270 HOST_WIDE_INT_PRINT_DEC
"\n",
3271 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3274 case DW_CFA_remember_state
:
3275 fprintf (f
, "\t.cfi_remember_state\n");
3277 case DW_CFA_restore_state
:
3278 fprintf (f
, "\t.cfi_restore_state\n");
3281 case DW_CFA_GNU_args_size
:
3282 if (f
== asm_out_file
)
3284 fprintf (f
, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size
);
3285 dw2_asm_output_data_uleb128_raw (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3287 fprintf (f
, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC
,
3288 ASM_COMMENT_START
, cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3293 fprintf (f
, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC
"\n",
3294 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3298 case DW_CFA_GNU_window_save
:
3299 fprintf (f
, "\t.cfi_window_save\n");
3302 case DW_CFA_def_cfa_expression
:
3303 if (f
!= asm_out_file
)
3305 fprintf (f
, "\t.cfi_def_cfa_expression ...\n");
3309 case DW_CFA_expression
:
3310 if (f
!= asm_out_file
)
3312 fprintf (f
, "\t.cfi_cfa_expression ...\n");
3315 fprintf (f
, "\t.cfi_escape %#x,", cfi
->dw_cfi_opc
);
3316 output_cfa_loc_raw (cfi
);
3326 dwarf2out_emit_cfi (dw_cfi_ref cfi
)
3328 if (dwarf2out_do_cfi_asm ())
3329 output_cfi_directive (asm_out_file
, cfi
);
3333 dump_cfi_row (FILE *f
, dw_cfi_row
*row
)
3341 dw_cfa_location dummy
;
3342 memset (&dummy
, 0, sizeof (dummy
));
3343 dummy
.reg
= INVALID_REGNUM
;
3344 cfi
= def_cfa_0 (&dummy
, &row
->cfa
);
3346 output_cfi_directive (f
, cfi
);
3348 FOR_EACH_VEC_SAFE_ELT (row
->reg_save
, i
, cfi
)
3350 output_cfi_directive (f
, cfi
);
3353 void debug_cfi_row (dw_cfi_row
*row
);
3356 debug_cfi_row (dw_cfi_row
*row
)
3358 dump_cfi_row (stderr
, row
);
3362 /* Save the result of dwarf2out_do_frame across PCH.
3363 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3364 static GTY(()) signed char saved_do_cfi_asm
= 0;
3366 /* Decide whether we want to emit frame unwind information for the current
3367 translation unit. */
3370 dwarf2out_do_frame (void)
3372 /* We want to emit correct CFA location expressions or lists, so we
3373 have to return true if we're going to output debug info, even if
3374 we're not going to output frame or unwind info. */
3375 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3378 if (saved_do_cfi_asm
> 0)
3381 if (targetm
.debug_unwind_info () == UI_DWARF2
)
3384 if ((flag_unwind_tables
|| flag_exceptions
)
3385 && targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
3391 /* Decide whether to emit frame unwind via assembler directives. */
3394 dwarf2out_do_cfi_asm (void)
3398 if (saved_do_cfi_asm
!= 0)
3399 return saved_do_cfi_asm
> 0;
3401 /* Assume failure for a moment. */
3402 saved_do_cfi_asm
= -1;
3404 if (!flag_dwarf2_cfi_asm
|| !dwarf2out_do_frame ())
3406 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE
)
3409 /* Make sure the personality encoding is one the assembler can support.
3410 In particular, aligned addresses can't be handled. */
3411 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3412 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3414 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3415 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3418 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3419 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3420 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3421 && !flag_unwind_tables
&& !flag_exceptions
3422 && targetm_common
.except_unwind_info (&global_options
) != UI_DWARF2
)
3426 saved_do_cfi_asm
= 1;
3432 const pass_data pass_data_dwarf2_frame
=
3434 RTL_PASS
, /* type */
3435 "dwarf2", /* name */
3436 OPTGROUP_NONE
, /* optinfo_flags */
3437 TV_FINAL
, /* tv_id */
3438 0, /* properties_required */
3439 0, /* properties_provided */
3440 0, /* properties_destroyed */
3441 0, /* todo_flags_start */
3442 0, /* todo_flags_finish */
3445 class pass_dwarf2_frame
: public rtl_opt_pass
3448 pass_dwarf2_frame (gcc::context
*ctxt
)
3449 : rtl_opt_pass (pass_data_dwarf2_frame
, ctxt
)
3452 /* opt_pass methods: */
3453 virtual bool gate (function
*);
3454 virtual unsigned int execute (function
*) { return execute_dwarf2_frame (); }
3456 }; // class pass_dwarf2_frame
3459 pass_dwarf2_frame::gate (function
*)
3461 /* Targets which still implement the prologue in assembler text
3462 cannot use the generic dwarf2 unwinding. */
3463 if (!targetm
.have_prologue ())
3466 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3467 from the optimized shrink-wrapping annotations that we will compute.
3468 For now, only produce the CFI notes for dwarf2. */
3469 return dwarf2out_do_frame ();
3475 make_pass_dwarf2_frame (gcc::context
*ctxt
)
3477 return new pass_dwarf2_frame (ctxt
);
3480 #include "gt-dwarf2cfi.h"