2016-07-28 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / cfgloop.c
blob8f531b0c516ad5d6a5a59260446278f6a104ae97
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
35 static void flow_loops_cfg_dump (FILE *);
37 /* Dump loop related CFG information. */
39 static void
40 flow_loops_cfg_dump (FILE *file)
42 basic_block bb;
44 if (!file)
45 return;
47 FOR_EACH_BB_FN (bb, cfun)
49 edge succ;
50 edge_iterator ei;
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
64 unsigned odepth = loop_depth (outer);
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
76 unsigned ldepth = loop_depth (loop);
78 gcc_assert (depth <= ldepth);
80 if (depth == ldepth)
81 return loop;
83 return (*loop->superloops)[depth];
86 /* Returns the list of the latch edges of LOOP. */
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
101 return ret;
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
117 if (! loop || ! loop->header)
118 return;
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
139 if (loop->latch)
141 bool read_profile_p;
142 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
143 if (read_profile_p && !loop->any_estimate)
144 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
145 (uint64_t) nit);
148 fprintf (file, ";; nodes:");
149 bbs = get_loop_body (loop);
150 for (i = 0; i < loop->num_nodes; i++)
151 fprintf (file, " %d", bbs[i]->index);
152 free (bbs);
153 fprintf (file, "\n");
155 if (loop_dump_aux)
156 loop_dump_aux (loop, file, verbose);
159 /* Dump the loop information about loops to the stream FILE,
160 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
162 void
163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
165 struct loop *loop;
167 if (!current_loops || ! file)
168 return;
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
172 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
177 if (verbose)
178 flow_loops_cfg_dump (file);
181 /* Free data allocated for LOOP. */
183 void
184 flow_loop_free (struct loop *loop)
186 struct loop_exit *exit, *next;
188 vec_free (loop->superloops);
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
201 ggc_free (loop->exits);
202 ggc_free (loop);
205 /* Free all the memory allocated for LOOPS. */
207 void
208 flow_loops_free (struct loops *loops)
210 if (loops->larray)
212 unsigned i;
213 loop_p loop;
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
218 if (!loop)
219 continue;
221 flow_loop_free (loop);
224 vec_free (loops->larray);
228 /* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
232 flow_loop_nodes_find (basic_block header, struct loop *loop)
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
239 header->loop_father = loop;
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
251 while (!stack.is_empty ())
253 basic_block node;
254 edge e;
255 edge_iterator ei;
257 node = stack.pop ();
259 FOR_EACH_EDGE (e, ei, node->preds)
261 basic_block ancestor = e->src;
263 if (ancestor->loop_father != loop)
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
272 stack.release ();
274 return num_nodes;
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
304 loop->next = father->inner;
305 father->inner = loop;
307 establish_preds (loop, father);
310 /* Remove LOOP from the loop hierarchy tree. */
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
315 struct loop *prev, *father;
317 father = loop_outer (loop);
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
329 loop->superloops = NULL;
332 /* Allocates and returns new loop structure. */
334 struct loop *
335 alloc_loop (void)
337 struct loop *loop = ggc_cleared_alloc<struct loop> ();
339 loop->exits = ggc_cleared_alloc<loop_exit> ();
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
342 loop->nb_iterations_upper_bound = 0;
343 loop->nb_iterations_likely_upper_bound = 0;
344 loop->nb_iterations_estimate = 0;
345 return loop;
348 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
349 (including the root of the loop tree). */
351 void
352 init_loops_structure (struct function *fn,
353 struct loops *loops, unsigned num_loops)
355 struct loop *root;
357 memset (loops, 0, sizeof *loops);
358 vec_alloc (loops->larray, num_loops);
360 /* Dummy loop containing whole function. */
361 root = alloc_loop ();
362 root->num_nodes = n_basic_blocks_for_fn (fn);
363 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
364 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
365 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
366 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
368 loops->larray->quick_push (root);
369 loops->tree_root = root;
372 /* Returns whether HEADER is a loop header. */
374 bool
375 bb_loop_header_p (basic_block header)
377 edge_iterator ei;
378 edge e;
380 /* If we have an abnormal predecessor, do not consider the
381 loop (not worth the problems). */
382 if (bb_has_abnormal_pred (header))
383 return false;
385 /* Look for back edges where a predecessor is dominated
386 by this block. A natural loop has a single entry
387 node (header) that dominates all the nodes in the
388 loop. It also has single back edge to the header
389 from a latch node. */
390 FOR_EACH_EDGE (e, ei, header->preds)
392 basic_block latch = e->src;
393 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
394 && dominated_by_p (CDI_DOMINATORS, latch, header))
395 return true;
398 return false;
401 /* Find all the natural loops in the function and save in LOOPS structure and
402 recalculate loop_father information in basic block structures.
403 If LOOPS is non-NULL then the loop structures for already recorded loops
404 will be re-used and their number will not change. We assume that no
405 stale loops exist in LOOPS.
406 When LOOPS is NULL it is allocated and re-built from scratch.
407 Return the built LOOPS structure. */
409 struct loops *
410 flow_loops_find (struct loops *loops)
412 bool from_scratch = (loops == NULL);
413 int *rc_order;
414 int b;
415 unsigned i;
417 /* Ensure that the dominators are computed. */
418 calculate_dominance_info (CDI_DOMINATORS);
420 if (!loops)
422 loops = ggc_cleared_alloc<struct loops> ();
423 init_loops_structure (cfun, loops, 1);
426 /* Ensure that loop exits were released. */
427 gcc_assert (loops->exits == NULL);
429 /* Taking care of this degenerate case makes the rest of
430 this code simpler. */
431 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
432 return loops;
434 /* The root loop node contains all basic-blocks. */
435 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
437 /* Compute depth first search order of the CFG so that outer
438 natural loops will be found before inner natural loops. */
439 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
440 pre_and_rev_post_order_compute (NULL, rc_order, false);
442 /* Gather all loop headers in reverse completion order and allocate
443 loop structures for loops that are not already present. */
444 auto_vec<loop_p> larray (loops->larray->length ());
445 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
447 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
448 if (bb_loop_header_p (header))
450 struct loop *loop;
452 /* The current active loop tree has valid loop-fathers for
453 header blocks. */
454 if (!from_scratch
455 && header->loop_father->header == header)
457 loop = header->loop_father;
458 /* If we found an existing loop remove it from the
459 loop tree. It is going to be inserted again
460 below. */
461 flow_loop_tree_node_remove (loop);
463 else
465 /* Otherwise allocate a new loop structure for the loop. */
466 loop = alloc_loop ();
467 /* ??? We could re-use unused loop slots here. */
468 loop->num = loops->larray->length ();
469 vec_safe_push (loops->larray, loop);
470 loop->header = header;
472 if (!from_scratch
473 && dump_file && (dump_flags & TDF_DETAILS))
474 fprintf (dump_file, "flow_loops_find: discovered new "
475 "loop %d with header %d\n",
476 loop->num, header->index);
478 /* Reset latch, we recompute it below. */
479 loop->latch = NULL;
480 larray.safe_push (loop);
483 /* Make blocks part of the loop root node at start. */
484 header->loop_father = loops->tree_root;
487 free (rc_order);
489 /* Now iterate over the loops found, insert them into the loop tree
490 and assign basic-block ownership. */
491 for (i = 0; i < larray.length (); ++i)
493 struct loop *loop = larray[i];
494 basic_block header = loop->header;
495 edge_iterator ei;
496 edge e;
498 flow_loop_tree_node_add (header->loop_father, loop);
499 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
501 /* Look for the latch for this header block, if it has just a
502 single one. */
503 FOR_EACH_EDGE (e, ei, header->preds)
505 basic_block latch = e->src;
507 if (flow_bb_inside_loop_p (loop, latch))
509 if (loop->latch != NULL)
511 /* More than one latch edge. */
512 loop->latch = NULL;
513 break;
515 loop->latch = latch;
520 return loops;
523 /* Ratio of frequencies of edges so that one of more latch edges is
524 considered to belong to inner loop with same header. */
525 #define HEAVY_EDGE_RATIO 8
527 /* Minimum number of samples for that we apply
528 find_subloop_latch_edge_by_profile heuristics. */
529 #define HEAVY_EDGE_MIN_SAMPLES 10
531 /* If the profile info is available, finds an edge in LATCHES that much more
532 frequent than the remaining edges. Returns such an edge, or NULL if we do
533 not find one.
535 We do not use guessed profile here, only the measured one. The guessed
536 profile is usually too flat and unreliable for this (and it is mostly based
537 on the loop structure of the program, so it does not make much sense to
538 derive the loop structure from it). */
540 static edge
541 find_subloop_latch_edge_by_profile (vec<edge> latches)
543 unsigned i;
544 edge e, me = NULL;
545 gcov_type mcount = 0, tcount = 0;
547 FOR_EACH_VEC_ELT (latches, i, e)
549 if (e->count > mcount)
551 me = e;
552 mcount = e->count;
554 tcount += e->count;
557 if (tcount < HEAVY_EDGE_MIN_SAMPLES
558 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
559 return NULL;
561 if (dump_file)
562 fprintf (dump_file,
563 "Found latch edge %d -> %d using profile information.\n",
564 me->src->index, me->dest->index);
565 return me;
568 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
569 on the structure of induction variables. Returns this edge, or NULL if we
570 do not find any.
572 We are quite conservative, and look just for an obvious simple innermost
573 loop (which is the case where we would lose the most performance by not
574 disambiguating the loop). More precisely, we look for the following
575 situation: The source of the chosen latch edge dominates sources of all
576 the other latch edges. Additionally, the header does not contain a phi node
577 such that the argument from the chosen edge is equal to the argument from
578 another edge. */
580 static edge
581 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
583 edge e, latch = latches[0];
584 unsigned i;
585 gphi *phi;
586 gphi_iterator psi;
587 tree lop;
588 basic_block bb;
590 /* Find the candidate for the latch edge. */
591 for (i = 1; latches.iterate (i, &e); i++)
592 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
593 latch = e;
595 /* Verify that it dominates all the latch edges. */
596 FOR_EACH_VEC_ELT (latches, i, e)
597 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
598 return NULL;
600 /* Check for a phi node that would deny that this is a latch edge of
601 a subloop. */
602 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
604 phi = psi.phi ();
605 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
607 /* Ignore the values that are not changed inside the subloop. */
608 if (TREE_CODE (lop) != SSA_NAME
609 || SSA_NAME_DEF_STMT (lop) == phi)
610 continue;
611 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
612 if (!bb || !flow_bb_inside_loop_p (loop, bb))
613 continue;
615 FOR_EACH_VEC_ELT (latches, i, e)
616 if (e != latch
617 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
618 return NULL;
621 if (dump_file)
622 fprintf (dump_file,
623 "Found latch edge %d -> %d using iv structure.\n",
624 latch->src->index, latch->dest->index);
625 return latch;
628 /* If we can determine that one of the several latch edges of LOOP behaves
629 as a latch edge of a separate subloop, returns this edge. Otherwise
630 returns NULL. */
632 static edge
633 find_subloop_latch_edge (struct loop *loop)
635 vec<edge> latches = get_loop_latch_edges (loop);
636 edge latch = NULL;
638 if (latches.length () > 1)
640 latch = find_subloop_latch_edge_by_profile (latches);
642 if (!latch
643 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
644 should use cfghook for this, but it is hard to imagine it would
645 be useful elsewhere. */
646 && current_ir_type () == IR_GIMPLE)
647 latch = find_subloop_latch_edge_by_ivs (loop, latches);
650 latches.release ();
651 return latch;
654 /* Callback for make_forwarder_block. Returns true if the edge E is marked
655 in the set MFB_REIS_SET. */
657 static hash_set<edge> *mfb_reis_set;
658 static bool
659 mfb_redirect_edges_in_set (edge e)
661 return mfb_reis_set->contains (e);
664 /* Creates a subloop of LOOP with latch edge LATCH. */
666 static void
667 form_subloop (struct loop *loop, edge latch)
669 edge_iterator ei;
670 edge e, new_entry;
671 struct loop *new_loop;
673 mfb_reis_set = new hash_set<edge>;
674 FOR_EACH_EDGE (e, ei, loop->header->preds)
676 if (e != latch)
677 mfb_reis_set->add (e);
679 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
680 NULL);
681 delete mfb_reis_set;
683 loop->header = new_entry->src;
685 /* Find the blocks and subloops that belong to the new loop, and add it to
686 the appropriate place in the loop tree. */
687 new_loop = alloc_loop ();
688 new_loop->header = new_entry->dest;
689 new_loop->latch = latch->src;
690 add_loop (new_loop, loop);
693 /* Make all the latch edges of LOOP to go to a single forwarder block --
694 a new latch of LOOP. */
696 static void
697 merge_latch_edges (struct loop *loop)
699 vec<edge> latches = get_loop_latch_edges (loop);
700 edge latch, e;
701 unsigned i;
703 gcc_assert (latches.length () > 0);
705 if (latches.length () == 1)
706 loop->latch = latches[0]->src;
707 else
709 if (dump_file)
710 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
712 mfb_reis_set = new hash_set<edge>;
713 FOR_EACH_VEC_ELT (latches, i, e)
714 mfb_reis_set->add (e);
715 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
716 NULL);
717 delete mfb_reis_set;
719 loop->header = latch->dest;
720 loop->latch = latch->src;
723 latches.release ();
726 /* LOOP may have several latch edges. Transform it into (possibly several)
727 loops with single latch edge. */
729 static void
730 disambiguate_multiple_latches (struct loop *loop)
732 edge e;
734 /* We eliminate the multiple latches by splitting the header to the forwarder
735 block F and the rest R, and redirecting the edges. There are two cases:
737 1) If there is a latch edge E that corresponds to a subloop (we guess
738 that based on profile -- if it is taken much more often than the
739 remaining edges; and on trees, using the information about induction
740 variables of the loops), we redirect E to R, all the remaining edges to
741 F, then rescan the loops and try again for the outer loop.
742 2) If there is no such edge, we redirect all latch edges to F, and the
743 entry edges to R, thus making F the single latch of the loop. */
745 if (dump_file)
746 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
747 loop->num);
749 /* During latch merging, we may need to redirect the entry edges to a new
750 block. This would cause problems if the entry edge was the one from the
751 entry block. To avoid having to handle this case specially, split
752 such entry edge. */
753 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
754 if (e)
755 split_edge (e);
757 while (1)
759 e = find_subloop_latch_edge (loop);
760 if (!e)
761 break;
763 form_subloop (loop, e);
766 merge_latch_edges (loop);
769 /* Split loops with multiple latch edges. */
771 void
772 disambiguate_loops_with_multiple_latches (void)
774 struct loop *loop;
776 FOR_EACH_LOOP (loop, 0)
778 if (!loop->latch)
779 disambiguate_multiple_latches (loop);
783 /* Return nonzero if basic block BB belongs to LOOP. */
784 bool
785 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
787 struct loop *source_loop;
789 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
790 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
791 return 0;
793 source_loop = bb->loop_father;
794 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
797 /* Enumeration predicate for get_loop_body_with_size. */
798 static bool
799 glb_enum_p (const_basic_block bb, const void *glb_loop)
801 const struct loop *const loop = (const struct loop *) glb_loop;
802 return (bb != loop->header
803 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
806 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
807 order against direction of edges from latch. Specially, if
808 header != latch, latch is the 1-st block. LOOP cannot be the fake
809 loop tree root, and its size must be at most MAX_SIZE. The blocks
810 in the LOOP body are stored to BODY, and the size of the LOOP is
811 returned. */
813 unsigned
814 get_loop_body_with_size (const struct loop *loop, basic_block *body,
815 unsigned max_size)
817 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
818 body, max_size, loop);
821 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
822 order against direction of edges from latch. Specially, if
823 header != latch, latch is the 1-st block. */
825 basic_block *
826 get_loop_body (const struct loop *loop)
828 basic_block *body, bb;
829 unsigned tv = 0;
831 gcc_assert (loop->num_nodes);
833 body = XNEWVEC (basic_block, loop->num_nodes);
835 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
837 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
838 special-case the fake loop that contains the whole function. */
839 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
840 body[tv++] = loop->header;
841 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
842 FOR_EACH_BB_FN (bb, cfun)
843 body[tv++] = bb;
845 else
846 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
848 gcc_assert (tv == loop->num_nodes);
849 return body;
852 /* Fills dominance descendants inside LOOP of the basic block BB into
853 array TOVISIT from index *TV. */
855 static void
856 fill_sons_in_loop (const struct loop *loop, basic_block bb,
857 basic_block *tovisit, int *tv)
859 basic_block son, postpone = NULL;
861 tovisit[(*tv)++] = bb;
862 for (son = first_dom_son (CDI_DOMINATORS, bb);
863 son;
864 son = next_dom_son (CDI_DOMINATORS, son))
866 if (!flow_bb_inside_loop_p (loop, son))
867 continue;
869 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
871 postpone = son;
872 continue;
874 fill_sons_in_loop (loop, son, tovisit, tv);
877 if (postpone)
878 fill_sons_in_loop (loop, postpone, tovisit, tv);
881 /* Gets body of a LOOP (that must be different from the outermost loop)
882 sorted by dominance relation. Additionally, if a basic block s dominates
883 the latch, then only blocks dominated by s are be after it. */
885 basic_block *
886 get_loop_body_in_dom_order (const struct loop *loop)
888 basic_block *tovisit;
889 int tv;
891 gcc_assert (loop->num_nodes);
893 tovisit = XNEWVEC (basic_block, loop->num_nodes);
895 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
897 tv = 0;
898 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
900 gcc_assert (tv == (int) loop->num_nodes);
902 return tovisit;
905 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
907 basic_block *
908 get_loop_body_in_custom_order (const struct loop *loop,
909 int (*bb_comparator) (const void *, const void *))
911 basic_block *bbs = get_loop_body (loop);
913 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
915 return bbs;
918 /* Get body of a LOOP in breadth first sort order. */
920 basic_block *
921 get_loop_body_in_bfs_order (const struct loop *loop)
923 basic_block *blocks;
924 basic_block bb;
925 bitmap visited;
926 unsigned int i = 1;
927 unsigned int vc = 0;
929 gcc_assert (loop->num_nodes);
930 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
932 blocks = XNEWVEC (basic_block, loop->num_nodes);
933 visited = BITMAP_ALLOC (NULL);
934 blocks[0] = loop->header;
935 bitmap_set_bit (visited, loop->header->index);
936 while (i < loop->num_nodes)
938 edge e;
939 edge_iterator ei;
940 gcc_assert (i > vc);
941 bb = blocks[vc++];
943 FOR_EACH_EDGE (e, ei, bb->succs)
945 if (flow_bb_inside_loop_p (loop, e->dest))
947 /* This bb is now visited. */
948 if (bitmap_set_bit (visited, e->dest->index))
949 blocks[i++] = e->dest;
954 BITMAP_FREE (visited);
955 return blocks;
958 /* Hash function for struct loop_exit. */
960 hashval_t
961 loop_exit_hasher::hash (loop_exit *exit)
963 return htab_hash_pointer (exit->e);
966 /* Equality function for struct loop_exit. Compares with edge. */
968 bool
969 loop_exit_hasher::equal (loop_exit *exit, edge e)
971 return exit->e == e;
974 /* Frees the list of loop exit descriptions EX. */
976 void
977 loop_exit_hasher::remove (loop_exit *exit)
979 loop_exit *next;
980 for (; exit; exit = next)
982 next = exit->next_e;
984 exit->next->prev = exit->prev;
985 exit->prev->next = exit->next;
987 ggc_free (exit);
991 /* Returns the list of records for E as an exit of a loop. */
993 static struct loop_exit *
994 get_exit_descriptions (edge e)
996 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
999 /* Updates the lists of loop exits in that E appears.
1000 If REMOVED is true, E is being removed, and we
1001 just remove it from the lists of exits.
1002 If NEW_EDGE is true and E is not a loop exit, we
1003 do not try to remove it from loop exit lists. */
1005 void
1006 rescan_loop_exit (edge e, bool new_edge, bool removed)
1008 struct loop_exit *exits = NULL, *exit;
1009 struct loop *aloop, *cloop;
1011 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1012 return;
1014 if (!removed
1015 && e->src->loop_father != NULL
1016 && e->dest->loop_father != NULL
1017 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1019 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1020 for (aloop = e->src->loop_father;
1021 aloop != cloop;
1022 aloop = loop_outer (aloop))
1024 exit = ggc_alloc<loop_exit> ();
1025 exit->e = e;
1027 exit->next = aloop->exits->next;
1028 exit->prev = aloop->exits;
1029 exit->next->prev = exit;
1030 exit->prev->next = exit;
1032 exit->next_e = exits;
1033 exits = exit;
1037 if (!exits && new_edge)
1038 return;
1040 loop_exit **slot
1041 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1042 exits ? INSERT : NO_INSERT);
1043 if (!slot)
1044 return;
1046 if (exits)
1048 if (*slot)
1049 loop_exit_hasher::remove (*slot);
1050 *slot = exits;
1052 else
1053 current_loops->exits->clear_slot (slot);
1056 /* For each loop, record list of exit edges, and start maintaining these
1057 lists. */
1059 void
1060 record_loop_exits (void)
1062 basic_block bb;
1063 edge_iterator ei;
1064 edge e;
1066 if (!current_loops)
1067 return;
1069 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1070 return;
1071 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1073 gcc_assert (current_loops->exits == NULL);
1074 current_loops->exits
1075 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1077 FOR_EACH_BB_FN (bb, cfun)
1079 FOR_EACH_EDGE (e, ei, bb->succs)
1081 rescan_loop_exit (e, true, false);
1086 /* Dumps information about the exit in *SLOT to FILE.
1087 Callback for htab_traverse. */
1090 dump_recorded_exit (loop_exit **slot, FILE *file)
1092 struct loop_exit *exit = *slot;
1093 unsigned n = 0;
1094 edge e = exit->e;
1096 for (; exit != NULL; exit = exit->next_e)
1097 n++;
1099 fprintf (file, "Edge %d->%d exits %u loops\n",
1100 e->src->index, e->dest->index, n);
1102 return 1;
1105 /* Dumps the recorded exits of loops to FILE. */
1107 extern void dump_recorded_exits (FILE *);
1108 void
1109 dump_recorded_exits (FILE *file)
1111 if (!current_loops->exits)
1112 return;
1113 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1116 /* Releases lists of loop exits. */
1118 void
1119 release_recorded_exits (function *fn)
1121 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1122 loops_for_fn (fn)->exits->empty ();
1123 loops_for_fn (fn)->exits = NULL;
1124 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1127 /* Returns the list of the exit edges of a LOOP. */
1129 vec<edge>
1130 get_loop_exit_edges (const struct loop *loop)
1132 vec<edge> edges = vNULL;
1133 edge e;
1134 unsigned i;
1135 basic_block *body;
1136 edge_iterator ei;
1137 struct loop_exit *exit;
1139 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1141 /* If we maintain the lists of exits, use them. Otherwise we must
1142 scan the body of the loop. */
1143 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1145 for (exit = loop->exits->next; exit->e; exit = exit->next)
1146 edges.safe_push (exit->e);
1148 else
1150 body = get_loop_body (loop);
1151 for (i = 0; i < loop->num_nodes; i++)
1152 FOR_EACH_EDGE (e, ei, body[i]->succs)
1154 if (!flow_bb_inside_loop_p (loop, e->dest))
1155 edges.safe_push (e);
1157 free (body);
1160 return edges;
1163 /* Counts the number of conditional branches inside LOOP. */
1165 unsigned
1166 num_loop_branches (const struct loop *loop)
1168 unsigned i, n;
1169 basic_block * body;
1171 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1173 body = get_loop_body (loop);
1174 n = 0;
1175 for (i = 0; i < loop->num_nodes; i++)
1176 if (EDGE_COUNT (body[i]->succs) >= 2)
1177 n++;
1178 free (body);
1180 return n;
1183 /* Adds basic block BB to LOOP. */
1184 void
1185 add_bb_to_loop (basic_block bb, struct loop *loop)
1187 unsigned i;
1188 loop_p ploop;
1189 edge_iterator ei;
1190 edge e;
1192 gcc_assert (bb->loop_father == NULL);
1193 bb->loop_father = loop;
1194 loop->num_nodes++;
1195 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1196 ploop->num_nodes++;
1198 FOR_EACH_EDGE (e, ei, bb->succs)
1200 rescan_loop_exit (e, true, false);
1202 FOR_EACH_EDGE (e, ei, bb->preds)
1204 rescan_loop_exit (e, true, false);
1208 /* Remove basic block BB from loops. */
1209 void
1210 remove_bb_from_loops (basic_block bb)
1212 unsigned i;
1213 struct loop *loop = bb->loop_father;
1214 loop_p ploop;
1215 edge_iterator ei;
1216 edge e;
1218 gcc_assert (loop != NULL);
1219 loop->num_nodes--;
1220 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1221 ploop->num_nodes--;
1222 bb->loop_father = NULL;
1224 FOR_EACH_EDGE (e, ei, bb->succs)
1226 rescan_loop_exit (e, false, true);
1228 FOR_EACH_EDGE (e, ei, bb->preds)
1230 rescan_loop_exit (e, false, true);
1234 /* Finds nearest common ancestor in loop tree for given loops. */
1235 struct loop *
1236 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1238 unsigned sdepth, ddepth;
1240 if (!loop_s) return loop_d;
1241 if (!loop_d) return loop_s;
1243 sdepth = loop_depth (loop_s);
1244 ddepth = loop_depth (loop_d);
1246 if (sdepth < ddepth)
1247 loop_d = (*loop_d->superloops)[sdepth];
1248 else if (sdepth > ddepth)
1249 loop_s = (*loop_s->superloops)[ddepth];
1251 while (loop_s != loop_d)
1253 loop_s = loop_outer (loop_s);
1254 loop_d = loop_outer (loop_d);
1256 return loop_s;
1259 /* Removes LOOP from structures and frees its data. */
1261 void
1262 delete_loop (struct loop *loop)
1264 /* Remove the loop from structure. */
1265 flow_loop_tree_node_remove (loop);
1267 /* Remove loop from loops array. */
1268 (*current_loops->larray)[loop->num] = NULL;
1270 /* Free loop data. */
1271 flow_loop_free (loop);
1274 /* Cancels the LOOP; it must be innermost one. */
1276 static void
1277 cancel_loop (struct loop *loop)
1279 basic_block *bbs;
1280 unsigned i;
1281 struct loop *outer = loop_outer (loop);
1283 gcc_assert (!loop->inner);
1285 /* Move blocks up one level (they should be removed as soon as possible). */
1286 bbs = get_loop_body (loop);
1287 for (i = 0; i < loop->num_nodes; i++)
1288 bbs[i]->loop_father = outer;
1290 free (bbs);
1291 delete_loop (loop);
1294 /* Cancels LOOP and all its subloops. */
1295 void
1296 cancel_loop_tree (struct loop *loop)
1298 while (loop->inner)
1299 cancel_loop_tree (loop->inner);
1300 cancel_loop (loop);
1303 /* Checks that information about loops is correct
1304 -- sizes of loops are all right
1305 -- results of get_loop_body really belong to the loop
1306 -- loop header have just single entry edge and single latch edge
1307 -- loop latches have only single successor that is header of their loop
1308 -- irreducible loops are correctly marked
1309 -- the cached loop depth and loop father of each bb is correct
1311 DEBUG_FUNCTION void
1312 verify_loop_structure (void)
1314 unsigned *sizes, i, j;
1315 basic_block bb, *bbs;
1316 struct loop *loop;
1317 int err = 0;
1318 edge e;
1319 unsigned num = number_of_loops (cfun);
1320 struct loop_exit *exit, *mexit;
1321 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1323 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1325 error ("loop verification on loop tree that needs fixup");
1326 err = 1;
1329 /* We need up-to-date dominators, compute or verify them. */
1330 if (!dom_available)
1331 calculate_dominance_info (CDI_DOMINATORS);
1332 else
1333 verify_dominators (CDI_DOMINATORS);
1335 /* Check the loop tree root. */
1336 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1337 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1338 || (current_loops->tree_root->num_nodes
1339 != (unsigned) n_basic_blocks_for_fn (cfun)))
1341 error ("corrupt loop tree root");
1342 err = 1;
1345 /* Check the headers. */
1346 FOR_EACH_BB_FN (bb, cfun)
1347 if (bb_loop_header_p (bb))
1349 if (bb->loop_father->header == NULL)
1351 error ("loop with header %d marked for removal", bb->index);
1352 err = 1;
1354 else if (bb->loop_father->header != bb)
1356 error ("loop with header %d not in loop tree", bb->index);
1357 err = 1;
1360 else if (bb->loop_father->header == bb)
1362 error ("non-loop with header %d not marked for removal", bb->index);
1363 err = 1;
1366 /* Check the recorded loop father and sizes of loops. */
1367 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1368 bitmap_clear (visited);
1369 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1370 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1372 unsigned n;
1374 if (loop->header == NULL)
1376 error ("removed loop %d in loop tree", loop->num);
1377 err = 1;
1378 continue;
1381 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1382 if (loop->num_nodes != n)
1384 error ("size of loop %d should be %d, not %d",
1385 loop->num, n, loop->num_nodes);
1386 err = 1;
1389 for (j = 0; j < n; j++)
1391 bb = bbs[j];
1393 if (!flow_bb_inside_loop_p (loop, bb))
1395 error ("bb %d does not belong to loop %d",
1396 bb->index, loop->num);
1397 err = 1;
1400 /* Ignore this block if it is in an inner loop. */
1401 if (bitmap_bit_p (visited, bb->index))
1402 continue;
1403 bitmap_set_bit (visited, bb->index);
1405 if (bb->loop_father != loop)
1407 error ("bb %d has father loop %d, should be loop %d",
1408 bb->index, bb->loop_father->num, loop->num);
1409 err = 1;
1413 free (bbs);
1415 /* Check headers and latches. */
1416 FOR_EACH_LOOP (loop, 0)
1418 i = loop->num;
1419 if (loop->header == NULL)
1420 continue;
1421 if (!bb_loop_header_p (loop->header))
1423 error ("loop %d%'s header is not a loop header", i);
1424 err = 1;
1426 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1427 && EDGE_COUNT (loop->header->preds) != 2)
1429 error ("loop %d%'s header does not have exactly 2 entries", i);
1430 err = 1;
1432 if (loop->latch)
1434 if (!find_edge (loop->latch, loop->header))
1436 error ("loop %d%'s latch does not have an edge to its header", i);
1437 err = 1;
1439 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1441 error ("loop %d%'s latch is not dominated by its header", i);
1442 err = 1;
1445 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1447 if (!single_succ_p (loop->latch))
1449 error ("loop %d%'s latch does not have exactly 1 successor", i);
1450 err = 1;
1452 if (single_succ (loop->latch) != loop->header)
1454 error ("loop %d%'s latch does not have header as successor", i);
1455 err = 1;
1457 if (loop->latch->loop_father != loop)
1459 error ("loop %d%'s latch does not belong directly to it", i);
1460 err = 1;
1463 if (loop->header->loop_father != loop)
1465 error ("loop %d%'s header does not belong directly to it", i);
1466 err = 1;
1468 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1469 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1471 error ("loop %d%'s latch is marked as part of irreducible region", i);
1472 err = 1;
1476 /* Check irreducible loops. */
1477 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1479 /* Record old info. */
1480 auto_sbitmap irreds (last_basic_block_for_fn (cfun));
1481 FOR_EACH_BB_FN (bb, cfun)
1483 edge_iterator ei;
1484 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1485 bitmap_set_bit (irreds, bb->index);
1486 else
1487 bitmap_clear_bit (irreds, bb->index);
1488 FOR_EACH_EDGE (e, ei, bb->succs)
1489 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1490 e->flags |= EDGE_ALL_FLAGS + 1;
1493 /* Recount it. */
1494 mark_irreducible_loops ();
1496 /* Compare. */
1497 FOR_EACH_BB_FN (bb, cfun)
1499 edge_iterator ei;
1501 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1502 && !bitmap_bit_p (irreds, bb->index))
1504 error ("basic block %d should be marked irreducible", bb->index);
1505 err = 1;
1507 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1508 && bitmap_bit_p (irreds, bb->index))
1510 error ("basic block %d should not be marked irreducible", bb->index);
1511 err = 1;
1513 FOR_EACH_EDGE (e, ei, bb->succs)
1515 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1516 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1518 error ("edge from %d to %d should be marked irreducible",
1519 e->src->index, e->dest->index);
1520 err = 1;
1522 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1523 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1525 error ("edge from %d to %d should not be marked irreducible",
1526 e->src->index, e->dest->index);
1527 err = 1;
1529 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1534 /* Check the recorded loop exits. */
1535 FOR_EACH_LOOP (loop, 0)
1537 if (!loop->exits || loop->exits->e != NULL)
1539 error ("corrupted head of the exits list of loop %d",
1540 loop->num);
1541 err = 1;
1543 else
1545 /* Check that the list forms a cycle, and all elements except
1546 for the head are nonnull. */
1547 for (mexit = loop->exits, exit = mexit->next, i = 0;
1548 exit->e && exit != mexit;
1549 exit = exit->next)
1551 if (i++ & 1)
1552 mexit = mexit->next;
1555 if (exit != loop->exits)
1557 error ("corrupted exits list of loop %d", loop->num);
1558 err = 1;
1562 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1564 if (loop->exits->next != loop->exits)
1566 error ("nonempty exits list of loop %d, but exits are not recorded",
1567 loop->num);
1568 err = 1;
1573 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1575 unsigned n_exits = 0, eloops;
1577 sizes = XCNEWVEC (unsigned, num);
1578 memset (sizes, 0, sizeof (unsigned) * num);
1579 FOR_EACH_BB_FN (bb, cfun)
1581 edge_iterator ei;
1582 if (bb->loop_father == current_loops->tree_root)
1583 continue;
1584 FOR_EACH_EDGE (e, ei, bb->succs)
1586 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1587 continue;
1589 n_exits++;
1590 exit = get_exit_descriptions (e);
1591 if (!exit)
1593 error ("exit %d->%d not recorded",
1594 e->src->index, e->dest->index);
1595 err = 1;
1597 eloops = 0;
1598 for (; exit; exit = exit->next_e)
1599 eloops++;
1601 for (loop = bb->loop_father;
1602 loop != e->dest->loop_father
1603 /* When a loop exit is also an entry edge which
1604 can happen when avoiding CFG manipulations
1605 then the last loop exited is the outer loop
1606 of the loop entered. */
1607 && loop != loop_outer (e->dest->loop_father);
1608 loop = loop_outer (loop))
1610 eloops--;
1611 sizes[loop->num]++;
1614 if (eloops != 0)
1616 error ("wrong list of exited loops for edge %d->%d",
1617 e->src->index, e->dest->index);
1618 err = 1;
1623 if (n_exits != current_loops->exits->elements ())
1625 error ("too many loop exits recorded");
1626 err = 1;
1629 FOR_EACH_LOOP (loop, 0)
1631 eloops = 0;
1632 for (exit = loop->exits->next; exit->e; exit = exit->next)
1633 eloops++;
1634 if (eloops != sizes[loop->num])
1636 error ("%d exits recorded for loop %d (having %d exits)",
1637 eloops, loop->num, sizes[loop->num]);
1638 err = 1;
1642 free (sizes);
1645 gcc_assert (!err);
1647 if (!dom_available)
1648 free_dominance_info (CDI_DOMINATORS);
1651 /* Returns latch edge of LOOP. */
1652 edge
1653 loop_latch_edge (const struct loop *loop)
1655 return find_edge (loop->latch, loop->header);
1658 /* Returns preheader edge of LOOP. */
1659 edge
1660 loop_preheader_edge (const struct loop *loop)
1662 edge e;
1663 edge_iterator ei;
1665 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1667 FOR_EACH_EDGE (e, ei, loop->header->preds)
1668 if (e->src != loop->latch)
1669 break;
1671 return e;
1674 /* Returns true if E is an exit of LOOP. */
1676 bool
1677 loop_exit_edge_p (const struct loop *loop, const_edge e)
1679 return (flow_bb_inside_loop_p (loop, e->src)
1680 && !flow_bb_inside_loop_p (loop, e->dest));
1683 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1684 or more than one exit. If loops do not have the exits recorded, NULL
1685 is returned always. */
1687 edge
1688 single_exit (const struct loop *loop)
1690 struct loop_exit *exit = loop->exits->next;
1692 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1693 return NULL;
1695 if (exit->e && exit->next == loop->exits)
1696 return exit->e;
1697 else
1698 return NULL;
1701 /* Returns true when BB has an incoming edge exiting LOOP. */
1703 bool
1704 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1706 edge e;
1707 edge_iterator ei;
1709 FOR_EACH_EDGE (e, ei, bb->preds)
1710 if (loop_exit_edge_p (loop, e))
1711 return true;
1713 return false;
1716 /* Returns true when BB has an outgoing edge exiting LOOP. */
1718 bool
1719 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1721 edge e;
1722 edge_iterator ei;
1724 FOR_EACH_EDGE (e, ei, bb->succs)
1725 if (loop_exit_edge_p (loop, e))
1726 return true;
1728 return false;
1731 /* Return location corresponding to the loop control condition if possible. */
1733 location_t
1734 get_loop_location (struct loop *loop)
1736 rtx_insn *insn = NULL;
1737 struct niter_desc *desc = NULL;
1738 edge exit;
1740 /* For a for or while loop, we would like to return the location
1741 of the for or while statement, if possible. To do this, look
1742 for the branch guarding the loop back-edge. */
1744 /* If this is a simple loop with an in_edge, then the loop control
1745 branch is typically at the end of its source. */
1746 desc = get_simple_loop_desc (loop);
1747 if (desc->in_edge)
1749 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1751 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1752 return INSN_LOCATION (insn);
1755 /* If loop has a single exit, then the loop control branch
1756 must be at the end of its source. */
1757 if ((exit = single_exit (loop)))
1759 FOR_BB_INSNS_REVERSE (exit->src, insn)
1761 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1762 return INSN_LOCATION (insn);
1765 /* Next check the latch, to see if it is non-empty. */
1766 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1768 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1769 return INSN_LOCATION (insn);
1771 /* Finally, if none of the above identifies the loop control branch,
1772 return the first location in the loop header. */
1773 FOR_BB_INSNS (loop->header, insn)
1775 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1776 return INSN_LOCATION (insn);
1778 /* If all else fails, simply return the current function location. */
1779 return DECL_SOURCE_LOCATION (current_function_decl);
1782 /* Records that every statement in LOOP is executed I_BOUND times.
1783 REALISTIC is true if I_BOUND is expected to be close to the real number
1784 of iterations. UPPER is true if we are sure the loop iterates at most
1785 I_BOUND times. */
1787 void
1788 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1789 bool realistic, bool upper)
1791 /* Update the bounds only when there is no previous estimation, or when the
1792 current estimation is smaller. */
1793 if (upper
1794 && (!loop->any_upper_bound
1795 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1797 loop->any_upper_bound = true;
1798 loop->nb_iterations_upper_bound = i_bound;
1799 if (!loop->any_likely_upper_bound)
1801 loop->any_likely_upper_bound = true;
1802 loop->nb_iterations_likely_upper_bound = i_bound;
1805 if (realistic
1806 && (!loop->any_estimate
1807 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1809 loop->any_estimate = true;
1810 loop->nb_iterations_estimate = i_bound;
1812 if (!realistic
1813 && (!loop->any_likely_upper_bound
1814 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1816 loop->any_likely_upper_bound = true;
1817 loop->nb_iterations_likely_upper_bound = i_bound;
1820 /* If an upper bound is smaller than the realistic estimate of the
1821 number of iterations, use the upper bound instead. */
1822 if (loop->any_upper_bound
1823 && loop->any_estimate
1824 && wi::ltu_p (loop->nb_iterations_upper_bound,
1825 loop->nb_iterations_estimate))
1826 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1827 if (loop->any_upper_bound
1828 && loop->any_likely_upper_bound
1829 && wi::ltu_p (loop->nb_iterations_upper_bound,
1830 loop->nb_iterations_likely_upper_bound))
1831 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1834 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1835 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1836 on the number of iterations of LOOP could not be derived, returns -1. */
1838 HOST_WIDE_INT
1839 get_estimated_loop_iterations_int (struct loop *loop)
1841 widest_int nit;
1842 HOST_WIDE_INT hwi_nit;
1844 if (!get_estimated_loop_iterations (loop, &nit))
1845 return -1;
1847 if (!wi::fits_shwi_p (nit))
1848 return -1;
1849 hwi_nit = nit.to_shwi ();
1851 return hwi_nit < 0 ? -1 : hwi_nit;
1854 /* Returns an upper bound on the number of executions of statements
1855 in the LOOP. For statements before the loop exit, this exceeds
1856 the number of execution of the latch by one. */
1858 HOST_WIDE_INT
1859 max_stmt_executions_int (struct loop *loop)
1861 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1862 HOST_WIDE_INT snit;
1864 if (nit == -1)
1865 return -1;
1867 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1869 /* If the computation overflows, return -1. */
1870 return snit < 0 ? -1 : snit;
1873 /* Returns an likely upper bound on the number of executions of statements
1874 in the LOOP. For statements before the loop exit, this exceeds
1875 the number of execution of the latch by one. */
1877 HOST_WIDE_INT
1878 likely_max_stmt_executions_int (struct loop *loop)
1880 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1881 HOST_WIDE_INT snit;
1883 if (nit == -1)
1884 return -1;
1886 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1888 /* If the computation overflows, return -1. */
1889 return snit < 0 ? -1 : snit;
1892 /* Sets NIT to the estimated number of executions of the latch of the
1893 LOOP. If we have no reliable estimate, the function returns false, otherwise
1894 returns true. */
1896 bool
1897 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1899 /* Even if the bound is not recorded, possibly we can derrive one from
1900 profile. */
1901 if (!loop->any_estimate)
1903 if (loop->header->count)
1905 *nit = gcov_type_to_wide_int
1906 (expected_loop_iterations_unbounded (loop) + 1);
1907 return true;
1909 return false;
1912 *nit = loop->nb_iterations_estimate;
1913 return true;
1916 /* Sets NIT to an upper bound for the maximum number of executions of the
1917 latch of the LOOP. If we have no reliable estimate, the function returns
1918 false, otherwise returns true. */
1920 bool
1921 get_max_loop_iterations (const struct loop *loop, widest_int *nit)
1923 if (!loop->any_upper_bound)
1924 return false;
1926 *nit = loop->nb_iterations_upper_bound;
1927 return true;
1930 /* Similar to get_max_loop_iterations, but returns the estimate only
1931 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1932 on the number of iterations of LOOP could not be derived, returns -1. */
1934 HOST_WIDE_INT
1935 get_max_loop_iterations_int (const struct loop *loop)
1937 widest_int nit;
1938 HOST_WIDE_INT hwi_nit;
1940 if (!get_max_loop_iterations (loop, &nit))
1941 return -1;
1943 if (!wi::fits_shwi_p (nit))
1944 return -1;
1945 hwi_nit = nit.to_shwi ();
1947 return hwi_nit < 0 ? -1 : hwi_nit;
1950 /* Sets NIT to an upper bound for the maximum number of executions of the
1951 latch of the LOOP. If we have no reliable estimate, the function returns
1952 false, otherwise returns true. */
1954 bool
1955 get_likely_max_loop_iterations (struct loop *loop, widest_int *nit)
1957 if (!loop->any_likely_upper_bound)
1958 return false;
1960 *nit = loop->nb_iterations_likely_upper_bound;
1961 return true;
1964 /* Similar to get_max_loop_iterations, but returns the estimate only
1965 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1966 on the number of iterations of LOOP could not be derived, returns -1. */
1968 HOST_WIDE_INT
1969 get_likely_max_loop_iterations_int (struct loop *loop)
1971 widest_int nit;
1972 HOST_WIDE_INT hwi_nit;
1974 if (!get_likely_max_loop_iterations (loop, &nit))
1975 return -1;
1977 if (!wi::fits_shwi_p (nit))
1978 return -1;
1979 hwi_nit = nit.to_shwi ();
1981 return hwi_nit < 0 ? -1 : hwi_nit;
1984 /* Returns the loop depth of the loop BB belongs to. */
1987 bb_loop_depth (const_basic_block bb)
1989 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1992 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1994 void
1995 mark_loop_for_removal (loop_p loop)
1997 if (loop->header == NULL)
1998 return;
1999 loop->former_header = loop->header;
2000 loop->header = NULL;
2001 loop->latch = NULL;
2002 loops_state_set (LOOPS_NEED_FIXUP);