* configure.ac (ACX_PROG_GNAT): Append "libgnat" to the include dir.
[official-gcc.git] / gcc / tree-complex.c
blobe2d93b78eae5e2be7017f072ced3ac1cb5f4b958
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42 #include "cfganal.h"
45 /* For each complex ssa name, a lattice value. We're interested in finding
46 out whether a complex number is degenerate in some way, having only real
47 or only complex parts. */
49 enum
51 UNINITIALIZED = 0,
52 ONLY_REAL = 1,
53 ONLY_IMAG = 2,
54 VARYING = 3
57 /* The type complex_lattice_t holds combinations of the above
58 constants. */
59 typedef int complex_lattice_t;
61 #define PAIR(a, b) ((a) << 2 | (b))
64 static vec<complex_lattice_t> complex_lattice_values;
66 /* For each complex variable, a pair of variables for the components exists in
67 the hashtable. */
68 static int_tree_htab_type *complex_variable_components;
70 /* For each complex SSA_NAME, a pair of ssa names for the components. */
71 static vec<tree> complex_ssa_name_components;
73 /* Vector of PHI triplets (original complex PHI and corresponding real and
74 imag PHIs if real and/or imag PHIs contain temporarily
75 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
76 static vec<gphi *> phis_to_revisit;
78 /* Lookup UID in the complex_variable_components hashtable and return the
79 associated tree. */
80 static tree
81 cvc_lookup (unsigned int uid)
83 struct int_tree_map in;
84 in.uid = uid;
85 return complex_variable_components->find_with_hash (in, uid).to;
88 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
90 static void
91 cvc_insert (unsigned int uid, tree to)
93 int_tree_map h;
94 int_tree_map *loc;
96 h.uid = uid;
97 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
98 loc->uid = uid;
99 loc->to = to;
102 /* Return true if T is not a zero constant. In the case of real values,
103 we're only interested in +0.0. */
105 static int
106 some_nonzerop (tree t)
108 int zerop = false;
110 /* Operations with real or imaginary part of a complex number zero
111 cannot be treated the same as operations with a real or imaginary
112 operand if we care about the signs of zeros in the result. */
113 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
114 zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
115 else if (TREE_CODE (t) == FIXED_CST)
116 zerop = fixed_zerop (t);
117 else if (TREE_CODE (t) == INTEGER_CST)
118 zerop = integer_zerop (t);
120 return !zerop;
124 /* Compute a lattice value from the components of a complex type REAL
125 and IMAG. */
127 static complex_lattice_t
128 find_lattice_value_parts (tree real, tree imag)
130 int r, i;
131 complex_lattice_t ret;
133 r = some_nonzerop (real);
134 i = some_nonzerop (imag);
135 ret = r * ONLY_REAL + i * ONLY_IMAG;
137 /* ??? On occasion we could do better than mapping 0+0i to real, but we
138 certainly don't want to leave it UNINITIALIZED, which eventually gets
139 mapped to VARYING. */
140 if (ret == UNINITIALIZED)
141 ret = ONLY_REAL;
143 return ret;
147 /* Compute a lattice value from gimple_val T. */
149 static complex_lattice_t
150 find_lattice_value (tree t)
152 tree real, imag;
154 switch (TREE_CODE (t))
156 case SSA_NAME:
157 return complex_lattice_values[SSA_NAME_VERSION (t)];
159 case COMPLEX_CST:
160 real = TREE_REALPART (t);
161 imag = TREE_IMAGPART (t);
162 break;
164 default:
165 gcc_unreachable ();
168 return find_lattice_value_parts (real, imag);
171 /* Determine if LHS is something for which we're interested in seeing
172 simulation results. */
174 static bool
175 is_complex_reg (tree lhs)
177 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
180 /* Mark the incoming parameters to the function as VARYING. */
182 static void
183 init_parameter_lattice_values (void)
185 tree parm, ssa_name;
187 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
188 if (is_complex_reg (parm)
189 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
190 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
193 /* Initialize simulation state for each statement. Return false if we
194 found no statements we want to simulate, and thus there's nothing
195 for the entire pass to do. */
197 static bool
198 init_dont_simulate_again (void)
200 basic_block bb;
201 bool saw_a_complex_op = false;
203 FOR_EACH_BB_FN (bb, cfun)
205 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
206 gsi_next (&gsi))
208 gphi *phi = gsi.phi ();
209 prop_set_simulate_again (phi,
210 is_complex_reg (gimple_phi_result (phi)));
213 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
214 gsi_next (&gsi))
216 gimple *stmt;
217 tree op0, op1;
218 bool sim_again_p;
220 stmt = gsi_stmt (gsi);
221 op0 = op1 = NULL_TREE;
223 /* Most control-altering statements must be initially
224 simulated, else we won't cover the entire cfg. */
225 sim_again_p = stmt_ends_bb_p (stmt);
227 switch (gimple_code (stmt))
229 case GIMPLE_CALL:
230 if (gimple_call_lhs (stmt))
231 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
232 break;
234 case GIMPLE_ASSIGN:
235 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
236 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
237 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
238 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
239 else
240 op0 = gimple_assign_rhs1 (stmt);
241 if (gimple_num_ops (stmt) > 2)
242 op1 = gimple_assign_rhs2 (stmt);
243 break;
245 case GIMPLE_COND:
246 op0 = gimple_cond_lhs (stmt);
247 op1 = gimple_cond_rhs (stmt);
248 break;
250 default:
251 break;
254 if (op0 || op1)
255 switch (gimple_expr_code (stmt))
257 case EQ_EXPR:
258 case NE_EXPR:
259 case PLUS_EXPR:
260 case MINUS_EXPR:
261 case MULT_EXPR:
262 case TRUNC_DIV_EXPR:
263 case CEIL_DIV_EXPR:
264 case FLOOR_DIV_EXPR:
265 case ROUND_DIV_EXPR:
266 case RDIV_EXPR:
267 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
268 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
269 saw_a_complex_op = true;
270 break;
272 case NEGATE_EXPR:
273 case CONJ_EXPR:
274 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
275 saw_a_complex_op = true;
276 break;
278 case REALPART_EXPR:
279 case IMAGPART_EXPR:
280 /* The total store transformation performed during
281 gimplification creates such uninitialized loads
282 and we need to lower the statement to be able
283 to fix things up. */
284 if (TREE_CODE (op0) == SSA_NAME
285 && ssa_undefined_value_p (op0))
286 saw_a_complex_op = true;
287 break;
289 default:
290 break;
293 prop_set_simulate_again (stmt, sim_again_p);
297 return saw_a_complex_op;
301 /* Evaluate statement STMT against the complex lattice defined above. */
303 static enum ssa_prop_result
304 complex_visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
305 tree *result_p)
307 complex_lattice_t new_l, old_l, op1_l, op2_l;
308 unsigned int ver;
309 tree lhs;
311 lhs = gimple_get_lhs (stmt);
312 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
313 if (!lhs)
314 return SSA_PROP_VARYING;
316 /* These conditions should be satisfied due to the initial filter
317 set up in init_dont_simulate_again. */
318 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
319 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
321 *result_p = lhs;
322 ver = SSA_NAME_VERSION (lhs);
323 old_l = complex_lattice_values[ver];
325 switch (gimple_expr_code (stmt))
327 case SSA_NAME:
328 case COMPLEX_CST:
329 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
330 break;
332 case COMPLEX_EXPR:
333 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
334 gimple_assign_rhs2 (stmt));
335 break;
337 case PLUS_EXPR:
338 case MINUS_EXPR:
339 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
340 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
342 /* We've set up the lattice values such that IOR neatly
343 models addition. */
344 new_l = op1_l | op2_l;
345 break;
347 case MULT_EXPR:
348 case RDIV_EXPR:
349 case TRUNC_DIV_EXPR:
350 case CEIL_DIV_EXPR:
351 case FLOOR_DIV_EXPR:
352 case ROUND_DIV_EXPR:
353 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
354 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
356 /* Obviously, if either varies, so does the result. */
357 if (op1_l == VARYING || op2_l == VARYING)
358 new_l = VARYING;
359 /* Don't prematurely promote variables if we've not yet seen
360 their inputs. */
361 else if (op1_l == UNINITIALIZED)
362 new_l = op2_l;
363 else if (op2_l == UNINITIALIZED)
364 new_l = op1_l;
365 else
367 /* At this point both numbers have only one component. If the
368 numbers are of opposite kind, the result is imaginary,
369 otherwise the result is real. The add/subtract translates
370 the real/imag from/to 0/1; the ^ performs the comparison. */
371 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
373 /* Don't allow the lattice value to flip-flop indefinitely. */
374 new_l |= old_l;
376 break;
378 case NEGATE_EXPR:
379 case CONJ_EXPR:
380 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
381 break;
383 default:
384 new_l = VARYING;
385 break;
388 /* If nothing changed this round, let the propagator know. */
389 if (new_l == old_l)
390 return SSA_PROP_NOT_INTERESTING;
392 complex_lattice_values[ver] = new_l;
393 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
396 /* Evaluate a PHI node against the complex lattice defined above. */
398 static enum ssa_prop_result
399 complex_visit_phi (gphi *phi)
401 complex_lattice_t new_l, old_l;
402 unsigned int ver;
403 tree lhs;
404 int i;
406 lhs = gimple_phi_result (phi);
408 /* This condition should be satisfied due to the initial filter
409 set up in init_dont_simulate_again. */
410 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
412 /* We've set up the lattice values such that IOR neatly models PHI meet. */
413 new_l = UNINITIALIZED;
414 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
415 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
417 ver = SSA_NAME_VERSION (lhs);
418 old_l = complex_lattice_values[ver];
420 if (new_l == old_l)
421 return SSA_PROP_NOT_INTERESTING;
423 complex_lattice_values[ver] = new_l;
424 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
427 /* Create one backing variable for a complex component of ORIG. */
429 static tree
430 create_one_component_var (tree type, tree orig, const char *prefix,
431 const char *suffix, enum tree_code code)
433 tree r = create_tmp_var (type, prefix);
435 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
436 DECL_ARTIFICIAL (r) = 1;
438 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
440 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
441 name = ACONCAT ((name, suffix, NULL));
442 DECL_NAME (r) = get_identifier (name);
444 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
445 DECL_HAS_DEBUG_EXPR_P (r) = 1;
446 DECL_IGNORED_P (r) = 0;
447 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
449 else
451 DECL_IGNORED_P (r) = 1;
452 TREE_NO_WARNING (r) = 1;
455 return r;
458 /* Retrieve a value for a complex component of VAR. */
460 static tree
461 get_component_var (tree var, bool imag_p)
463 size_t decl_index = DECL_UID (var) * 2 + imag_p;
464 tree ret = cvc_lookup (decl_index);
466 if (ret == NULL)
468 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
469 imag_p ? "CI" : "CR",
470 imag_p ? "$imag" : "$real",
471 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
472 cvc_insert (decl_index, ret);
475 return ret;
478 /* Retrieve a value for a complex component of SSA_NAME. */
480 static tree
481 get_component_ssa_name (tree ssa_name, bool imag_p)
483 complex_lattice_t lattice = find_lattice_value (ssa_name);
484 size_t ssa_name_index;
485 tree ret;
487 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
489 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
490 if (SCALAR_FLOAT_TYPE_P (inner_type))
491 return build_real (inner_type, dconst0);
492 else
493 return build_int_cst (inner_type, 0);
496 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
497 ret = complex_ssa_name_components[ssa_name_index];
498 if (ret == NULL)
500 if (SSA_NAME_VAR (ssa_name))
501 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
502 else
503 ret = TREE_TYPE (TREE_TYPE (ssa_name));
504 ret = make_ssa_name (ret);
506 /* Copy some properties from the original. In particular, whether it
507 is used in an abnormal phi, and whether it's uninitialized. */
508 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
509 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
510 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
511 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
513 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
514 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
517 complex_ssa_name_components[ssa_name_index] = ret;
520 return ret;
523 /* Set a value for a complex component of SSA_NAME, return a
524 gimple_seq of stuff that needs doing. */
526 static gimple_seq
527 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
529 complex_lattice_t lattice = find_lattice_value (ssa_name);
530 size_t ssa_name_index;
531 tree comp;
532 gimple *last;
533 gimple_seq list;
535 /* We know the value must be zero, else there's a bug in our lattice
536 analysis. But the value may well be a variable known to contain
537 zero. We should be safe ignoring it. */
538 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
539 return NULL;
541 /* If we've already assigned an SSA_NAME to this component, then this
542 means that our walk of the basic blocks found a use before the set.
543 This is fine. Now we should create an initialization for the value
544 we created earlier. */
545 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
546 comp = complex_ssa_name_components[ssa_name_index];
547 if (comp)
550 /* If we've nothing assigned, and the value we're given is already stable,
551 then install that as the value for this SSA_NAME. This preemptively
552 copy-propagates the value, which avoids unnecessary memory allocation. */
553 else if (is_gimple_min_invariant (value)
554 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
556 complex_ssa_name_components[ssa_name_index] = value;
557 return NULL;
559 else if (TREE_CODE (value) == SSA_NAME
560 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
562 /* Replace an anonymous base value with the variable from cvc_lookup.
563 This should result in better debug info. */
564 if (SSA_NAME_VAR (ssa_name)
565 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
566 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
568 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
569 replace_ssa_name_symbol (value, comp);
572 complex_ssa_name_components[ssa_name_index] = value;
573 return NULL;
576 /* Finally, we need to stabilize the result by installing the value into
577 a new ssa name. */
578 else
579 comp = get_component_ssa_name (ssa_name, imag_p);
581 /* Do all the work to assign VALUE to COMP. */
582 list = NULL;
583 value = force_gimple_operand (value, &list, false, NULL);
584 last = gimple_build_assign (comp, value);
585 gimple_seq_add_stmt (&list, last);
586 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
588 return list;
591 /* Extract the real or imaginary part of a complex variable or constant.
592 Make sure that it's a proper gimple_val and gimplify it if not.
593 Emit any new code before gsi. */
595 static tree
596 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
597 bool gimple_p, bool phiarg_p = false)
599 switch (TREE_CODE (t))
601 case COMPLEX_CST:
602 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
604 case COMPLEX_EXPR:
605 gcc_unreachable ();
607 case BIT_FIELD_REF:
609 tree inner_type = TREE_TYPE (TREE_TYPE (t));
610 t = unshare_expr (t);
611 TREE_TYPE (t) = inner_type;
612 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
613 if (imagpart_p)
614 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
615 TYPE_SIZE (inner_type));
616 if (gimple_p)
617 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
618 GSI_SAME_STMT);
619 return t;
622 case VAR_DECL:
623 case RESULT_DECL:
624 case PARM_DECL:
625 case COMPONENT_REF:
626 case ARRAY_REF:
627 case VIEW_CONVERT_EXPR:
628 case MEM_REF:
630 tree inner_type = TREE_TYPE (TREE_TYPE (t));
632 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
633 inner_type, unshare_expr (t));
635 if (gimple_p)
636 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
637 GSI_SAME_STMT);
639 return t;
642 case SSA_NAME:
643 t = get_component_ssa_name (t, imagpart_p);
644 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
645 gcc_assert (phiarg_p);
646 return t;
648 default:
649 gcc_unreachable ();
653 /* Update the complex components of the ssa name on the lhs of STMT. */
655 static void
656 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
657 tree i)
659 tree lhs;
660 gimple_seq list;
662 lhs = gimple_get_lhs (stmt);
664 list = set_component_ssa_name (lhs, false, r);
665 if (list)
666 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
668 list = set_component_ssa_name (lhs, true, i);
669 if (list)
670 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
673 static void
674 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
676 gimple_seq list;
678 list = set_component_ssa_name (lhs, false, r);
679 if (list)
680 gsi_insert_seq_on_edge (e, list);
682 list = set_component_ssa_name (lhs, true, i);
683 if (list)
684 gsi_insert_seq_on_edge (e, list);
688 /* Update an assignment to a complex variable in place. */
690 static void
691 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
693 gimple *stmt;
695 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
696 stmt = gsi_stmt (*gsi);
697 update_stmt (stmt);
698 if (maybe_clean_eh_stmt (stmt))
699 gimple_purge_dead_eh_edges (gimple_bb (stmt));
701 if (gimple_in_ssa_p (cfun))
702 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
706 /* Generate code at the entry point of the function to initialize the
707 component variables for a complex parameter. */
709 static void
710 update_parameter_components (void)
712 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
713 tree parm;
715 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
717 tree type = TREE_TYPE (parm);
718 tree ssa_name, r, i;
720 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
721 continue;
723 type = TREE_TYPE (type);
724 ssa_name = ssa_default_def (cfun, parm);
725 if (!ssa_name)
726 continue;
728 r = build1 (REALPART_EXPR, type, ssa_name);
729 i = build1 (IMAGPART_EXPR, type, ssa_name);
730 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
734 /* Generate code to set the component variables of a complex variable
735 to match the PHI statements in block BB. */
737 static void
738 update_phi_components (basic_block bb)
740 gphi_iterator gsi;
742 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
744 gphi *phi = gsi.phi ();
746 if (is_complex_reg (gimple_phi_result (phi)))
748 gphi *p[2] = { NULL, NULL };
749 unsigned int i, j, n;
750 bool revisit_phi = false;
752 for (j = 0; j < 2; j++)
754 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
755 if (TREE_CODE (l) == SSA_NAME)
756 p[j] = create_phi_node (l, bb);
759 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
761 tree comp, arg = gimple_phi_arg_def (phi, i);
762 for (j = 0; j < 2; j++)
763 if (p[j])
765 comp = extract_component (NULL, arg, j > 0, false, true);
766 if (TREE_CODE (comp) == SSA_NAME
767 && SSA_NAME_DEF_STMT (comp) == NULL)
769 /* For the benefit of any gimple simplification during
770 this pass that might walk SSA_NAME def stmts,
771 don't add SSA_NAMEs without definitions into the
772 PHI arguments, but put a decl in there instead
773 temporarily, and revisit this PHI later on. */
774 if (SSA_NAME_VAR (comp))
775 comp = SSA_NAME_VAR (comp);
776 else
777 comp = create_tmp_reg (TREE_TYPE (comp),
778 get_name (comp));
779 revisit_phi = true;
781 SET_PHI_ARG_DEF (p[j], i, comp);
785 if (revisit_phi)
787 phis_to_revisit.safe_push (phi);
788 phis_to_revisit.safe_push (p[0]);
789 phis_to_revisit.safe_push (p[1]);
795 /* Expand a complex move to scalars. */
797 static void
798 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
800 tree inner_type = TREE_TYPE (type);
801 tree r, i, lhs, rhs;
802 gimple *stmt = gsi_stmt (*gsi);
804 if (is_gimple_assign (stmt))
806 lhs = gimple_assign_lhs (stmt);
807 if (gimple_num_ops (stmt) == 2)
808 rhs = gimple_assign_rhs1 (stmt);
809 else
810 rhs = NULL_TREE;
812 else if (is_gimple_call (stmt))
814 lhs = gimple_call_lhs (stmt);
815 rhs = NULL_TREE;
817 else
818 gcc_unreachable ();
820 if (TREE_CODE (lhs) == SSA_NAME)
822 if (is_ctrl_altering_stmt (stmt))
824 edge e;
826 /* The value is not assigned on the exception edges, so we need not
827 concern ourselves there. We do need to update on the fallthru
828 edge. Find it. */
829 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
830 if (!e)
831 gcc_unreachable ();
833 r = build1 (REALPART_EXPR, inner_type, lhs);
834 i = build1 (IMAGPART_EXPR, inner_type, lhs);
835 update_complex_components_on_edge (e, lhs, r, i);
837 else if (is_gimple_call (stmt)
838 || gimple_has_side_effects (stmt)
839 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
841 r = build1 (REALPART_EXPR, inner_type, lhs);
842 i = build1 (IMAGPART_EXPR, inner_type, lhs);
843 update_complex_components (gsi, stmt, r, i);
845 else
847 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
849 r = extract_component (gsi, rhs, 0, true);
850 i = extract_component (gsi, rhs, 1, true);
852 else
854 r = gimple_assign_rhs1 (stmt);
855 i = gimple_assign_rhs2 (stmt);
857 update_complex_assignment (gsi, r, i);
860 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
862 tree x;
863 gimple *t;
864 location_t loc;
866 loc = gimple_location (stmt);
867 r = extract_component (gsi, rhs, 0, false);
868 i = extract_component (gsi, rhs, 1, false);
870 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
871 t = gimple_build_assign (x, r);
872 gimple_set_location (t, loc);
873 gsi_insert_before (gsi, t, GSI_SAME_STMT);
875 if (stmt == gsi_stmt (*gsi))
877 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
878 gimple_assign_set_lhs (stmt, x);
879 gimple_assign_set_rhs1 (stmt, i);
881 else
883 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
884 t = gimple_build_assign (x, i);
885 gimple_set_location (t, loc);
886 gsi_insert_before (gsi, t, GSI_SAME_STMT);
888 stmt = gsi_stmt (*gsi);
889 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
890 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
893 update_stmt (stmt);
897 /* Expand complex addition to scalars:
898 a + b = (ar + br) + i(ai + bi)
899 a - b = (ar - br) + i(ai + bi)
902 static void
903 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
904 tree ar, tree ai, tree br, tree bi,
905 enum tree_code code,
906 complex_lattice_t al, complex_lattice_t bl)
908 tree rr, ri;
910 switch (PAIR (al, bl))
912 case PAIR (ONLY_REAL, ONLY_REAL):
913 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
914 ri = ai;
915 break;
917 case PAIR (ONLY_REAL, ONLY_IMAG):
918 rr = ar;
919 if (code == MINUS_EXPR)
920 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
921 else
922 ri = bi;
923 break;
925 case PAIR (ONLY_IMAG, ONLY_REAL):
926 if (code == MINUS_EXPR)
927 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
928 else
929 rr = br;
930 ri = ai;
931 break;
933 case PAIR (ONLY_IMAG, ONLY_IMAG):
934 rr = ar;
935 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
936 break;
938 case PAIR (VARYING, ONLY_REAL):
939 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
940 ri = ai;
941 break;
943 case PAIR (VARYING, ONLY_IMAG):
944 rr = ar;
945 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
946 break;
948 case PAIR (ONLY_REAL, VARYING):
949 if (code == MINUS_EXPR)
950 goto general;
951 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
952 ri = bi;
953 break;
955 case PAIR (ONLY_IMAG, VARYING):
956 if (code == MINUS_EXPR)
957 goto general;
958 rr = br;
959 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
960 break;
962 case PAIR (VARYING, VARYING):
963 general:
964 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
965 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
966 break;
968 default:
969 gcc_unreachable ();
972 update_complex_assignment (gsi, rr, ri);
975 /* Expand a complex multiplication or division to a libcall to the c99
976 compliant routines. */
978 static void
979 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
980 tree br, tree bi, enum tree_code code)
982 machine_mode mode;
983 enum built_in_function bcode;
984 tree fn, type, lhs;
985 gimple *old_stmt;
986 gcall *stmt;
988 old_stmt = gsi_stmt (*gsi);
989 lhs = gimple_assign_lhs (old_stmt);
990 type = TREE_TYPE (lhs);
992 mode = TYPE_MODE (type);
993 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
995 if (code == MULT_EXPR)
996 bcode = ((enum built_in_function)
997 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
998 else if (code == RDIV_EXPR)
999 bcode = ((enum built_in_function)
1000 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1001 else
1002 gcc_unreachable ();
1003 fn = builtin_decl_explicit (bcode);
1005 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1006 gimple_call_set_lhs (stmt, lhs);
1007 update_stmt (stmt);
1008 gsi_replace (gsi, stmt, false);
1010 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1011 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
1013 if (gimple_in_ssa_p (cfun))
1015 type = TREE_TYPE (type);
1016 update_complex_components (gsi, stmt,
1017 build1 (REALPART_EXPR, type, lhs),
1018 build1 (IMAGPART_EXPR, type, lhs));
1019 SSA_NAME_DEF_STMT (lhs) = stmt;
1023 /* Expand complex multiplication to scalars:
1024 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1027 static void
1028 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
1029 tree ar, tree ai, tree br, tree bi,
1030 complex_lattice_t al, complex_lattice_t bl)
1032 tree rr, ri;
1034 if (al < bl)
1036 complex_lattice_t tl;
1037 rr = ar, ar = br, br = rr;
1038 ri = ai, ai = bi, bi = ri;
1039 tl = al, al = bl, bl = tl;
1042 switch (PAIR (al, bl))
1044 case PAIR (ONLY_REAL, ONLY_REAL):
1045 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1046 ri = ai;
1047 break;
1049 case PAIR (ONLY_IMAG, ONLY_REAL):
1050 rr = ar;
1051 if (TREE_CODE (ai) == REAL_CST
1052 && real_identical (&TREE_REAL_CST (ai), &dconst1))
1053 ri = br;
1054 else
1055 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1056 break;
1058 case PAIR (ONLY_IMAG, ONLY_IMAG):
1059 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1060 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1061 ri = ar;
1062 break;
1064 case PAIR (VARYING, ONLY_REAL):
1065 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1066 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1067 break;
1069 case PAIR (VARYING, ONLY_IMAG):
1070 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1071 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1072 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1073 break;
1075 case PAIR (VARYING, VARYING):
1076 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1078 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1079 return;
1081 else
1083 tree t1, t2, t3, t4;
1085 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1086 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1087 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1089 /* Avoid expanding redundant multiplication for the common
1090 case of squaring a complex number. */
1091 if (ar == br && ai == bi)
1092 t4 = t3;
1093 else
1094 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1096 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1097 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1099 break;
1101 default:
1102 gcc_unreachable ();
1105 update_complex_assignment (gsi, rr, ri);
1108 /* Keep this algorithm in sync with fold-const.c:const_binop().
1110 Expand complex division to scalars, straightforward algorithm.
1111 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1112 t = br*br + bi*bi
1115 static void
1116 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1117 tree ar, tree ai, tree br, tree bi,
1118 enum tree_code code)
1120 tree rr, ri, div, t1, t2, t3;
1122 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1123 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1124 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1126 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1127 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1128 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1129 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1131 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1132 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1133 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1134 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1136 update_complex_assignment (gsi, rr, ri);
1139 /* Keep this algorithm in sync with fold-const.c:const_binop().
1141 Expand complex division to scalars, modified algorithm to minimize
1142 overflow with wide input ranges. */
1144 static void
1145 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1146 tree ar, tree ai, tree br, tree bi,
1147 enum tree_code code)
1149 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1150 basic_block bb_cond, bb_true, bb_false, bb_join;
1151 gimple *stmt;
1153 /* Examine |br| < |bi|, and branch. */
1154 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1155 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1156 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1157 LT_EXPR, boolean_type_node, t1, t2);
1158 STRIP_NOPS (compare);
1160 bb_cond = bb_true = bb_false = bb_join = NULL;
1161 rr = ri = tr = ti = NULL;
1162 if (TREE_CODE (compare) != INTEGER_CST)
1164 edge e;
1165 gimple *stmt;
1166 tree cond, tmp;
1168 tmp = create_tmp_var (boolean_type_node);
1169 stmt = gimple_build_assign (tmp, compare);
1170 if (gimple_in_ssa_p (cfun))
1172 tmp = make_ssa_name (tmp, stmt);
1173 gimple_assign_set_lhs (stmt, tmp);
1176 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1178 cond = fold_build2_loc (gimple_location (stmt),
1179 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1180 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1181 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1183 /* Split the original block, and create the TRUE and FALSE blocks. */
1184 e = split_block (gsi_bb (*gsi), stmt);
1185 bb_cond = e->src;
1186 bb_join = e->dest;
1187 bb_true = create_empty_bb (bb_cond);
1188 bb_false = create_empty_bb (bb_true);
1189 bb_true->frequency = bb_false->frequency = bb_cond->frequency / 2;
1190 bb_true->count = bb_false->count
1191 = bb_cond->count.apply_probability (profile_probability::even ());
1193 /* Wire the blocks together. */
1194 e->flags = EDGE_TRUE_VALUE;
1195 /* TODO: With value profile we could add an historgram to determine real
1196 branch outcome. */
1197 e->probability = profile_probability::even ();
1198 redirect_edge_succ (e, bb_true);
1199 edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1200 e2->probability = profile_probability::even ();
1201 make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1202 make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
1203 add_bb_to_loop (bb_true, bb_cond->loop_father);
1204 add_bb_to_loop (bb_false, bb_cond->loop_father);
1206 /* Update dominance info. Note that bb_join's data was
1207 updated by split_block. */
1208 if (dom_info_available_p (CDI_DOMINATORS))
1210 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1211 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1214 rr = create_tmp_reg (inner_type);
1215 ri = create_tmp_reg (inner_type);
1218 /* In the TRUE branch, we compute
1219 ratio = br/bi;
1220 div = (br * ratio) + bi;
1221 tr = (ar * ratio) + ai;
1222 ti = (ai * ratio) - ar;
1223 tr = tr / div;
1224 ti = ti / div; */
1225 if (bb_true || integer_nonzerop (compare))
1227 if (bb_true)
1229 *gsi = gsi_last_bb (bb_true);
1230 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1233 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1235 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1236 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1238 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1239 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1241 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1242 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1244 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1245 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1247 if (bb_true)
1249 stmt = gimple_build_assign (rr, tr);
1250 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1251 stmt = gimple_build_assign (ri, ti);
1252 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1253 gsi_remove (gsi, true);
1257 /* In the FALSE branch, we compute
1258 ratio = d/c;
1259 divisor = (d * ratio) + c;
1260 tr = (b * ratio) + a;
1261 ti = b - (a * ratio);
1262 tr = tr / div;
1263 ti = ti / div; */
1264 if (bb_false || integer_zerop (compare))
1266 if (bb_false)
1268 *gsi = gsi_last_bb (bb_false);
1269 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1272 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1274 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1275 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1277 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1278 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1280 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1281 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1283 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1284 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1286 if (bb_false)
1288 stmt = gimple_build_assign (rr, tr);
1289 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1290 stmt = gimple_build_assign (ri, ti);
1291 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1292 gsi_remove (gsi, true);
1296 if (bb_join)
1297 *gsi = gsi_start_bb (bb_join);
1298 else
1299 rr = tr, ri = ti;
1301 update_complex_assignment (gsi, rr, ri);
1304 /* Expand complex division to scalars. */
1306 static void
1307 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1308 tree ar, tree ai, tree br, tree bi,
1309 enum tree_code code,
1310 complex_lattice_t al, complex_lattice_t bl)
1312 tree rr, ri;
1314 switch (PAIR (al, bl))
1316 case PAIR (ONLY_REAL, ONLY_REAL):
1317 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1318 ri = ai;
1319 break;
1321 case PAIR (ONLY_REAL, ONLY_IMAG):
1322 rr = ai;
1323 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1324 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1325 break;
1327 case PAIR (ONLY_IMAG, ONLY_REAL):
1328 rr = ar;
1329 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1330 break;
1332 case PAIR (ONLY_IMAG, ONLY_IMAG):
1333 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1334 ri = ar;
1335 break;
1337 case PAIR (VARYING, ONLY_REAL):
1338 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1339 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1340 break;
1342 case PAIR (VARYING, ONLY_IMAG):
1343 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1344 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1345 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1346 break;
1348 case PAIR (ONLY_REAL, VARYING):
1349 case PAIR (ONLY_IMAG, VARYING):
1350 case PAIR (VARYING, VARYING):
1351 switch (flag_complex_method)
1353 case 0:
1354 /* straightforward implementation of complex divide acceptable. */
1355 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1356 break;
1358 case 2:
1359 if (SCALAR_FLOAT_TYPE_P (inner_type))
1361 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1362 break;
1364 /* FALLTHRU */
1366 case 1:
1367 /* wide ranges of inputs must work for complex divide. */
1368 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1369 break;
1371 default:
1372 gcc_unreachable ();
1374 return;
1376 default:
1377 gcc_unreachable ();
1380 update_complex_assignment (gsi, rr, ri);
1383 /* Expand complex negation to scalars:
1384 -a = (-ar) + i(-ai)
1387 static void
1388 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1389 tree ar, tree ai)
1391 tree rr, ri;
1393 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1394 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1396 update_complex_assignment (gsi, rr, ri);
1399 /* Expand complex conjugate to scalars:
1400 ~a = (ar) + i(-ai)
1403 static void
1404 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1405 tree ar, tree ai)
1407 tree ri;
1409 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1411 update_complex_assignment (gsi, ar, ri);
1414 /* Expand complex comparison (EQ or NE only). */
1416 static void
1417 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1418 tree br, tree bi, enum tree_code code)
1420 tree cr, ci, cc, type;
1421 gimple *stmt;
1423 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1424 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1425 cc = gimplify_build2 (gsi,
1426 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1427 boolean_type_node, cr, ci);
1429 stmt = gsi_stmt (*gsi);
1431 switch (gimple_code (stmt))
1433 case GIMPLE_RETURN:
1435 greturn *return_stmt = as_a <greturn *> (stmt);
1436 type = TREE_TYPE (gimple_return_retval (return_stmt));
1437 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1439 break;
1441 case GIMPLE_ASSIGN:
1442 type = TREE_TYPE (gimple_assign_lhs (stmt));
1443 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1444 stmt = gsi_stmt (*gsi);
1445 break;
1447 case GIMPLE_COND:
1449 gcond *cond_stmt = as_a <gcond *> (stmt);
1450 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1451 gimple_cond_set_lhs (cond_stmt, cc);
1452 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1454 break;
1456 default:
1457 gcc_unreachable ();
1460 update_stmt (stmt);
1463 /* Expand inline asm that sets some complex SSA_NAMEs. */
1465 static void
1466 expand_complex_asm (gimple_stmt_iterator *gsi)
1468 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1469 unsigned int i;
1471 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1473 tree link = gimple_asm_output_op (stmt, i);
1474 tree op = TREE_VALUE (link);
1475 if (TREE_CODE (op) == SSA_NAME
1476 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1478 tree type = TREE_TYPE (op);
1479 tree inner_type = TREE_TYPE (type);
1480 tree r = build1 (REALPART_EXPR, inner_type, op);
1481 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1482 gimple_seq list = set_component_ssa_name (op, false, r);
1484 if (list)
1485 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1487 list = set_component_ssa_name (op, true, i);
1488 if (list)
1489 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1494 /* Process one statement. If we identify a complex operation, expand it. */
1496 static void
1497 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1499 gimple *stmt = gsi_stmt (*gsi);
1500 tree type, inner_type, lhs;
1501 tree ac, ar, ai, bc, br, bi;
1502 complex_lattice_t al, bl;
1503 enum tree_code code;
1505 if (gimple_code (stmt) == GIMPLE_ASM)
1507 expand_complex_asm (gsi);
1508 return;
1511 lhs = gimple_get_lhs (stmt);
1512 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1513 return;
1515 type = TREE_TYPE (gimple_op (stmt, 0));
1516 code = gimple_expr_code (stmt);
1518 /* Initial filter for operations we handle. */
1519 switch (code)
1521 case PLUS_EXPR:
1522 case MINUS_EXPR:
1523 case MULT_EXPR:
1524 case TRUNC_DIV_EXPR:
1525 case CEIL_DIV_EXPR:
1526 case FLOOR_DIV_EXPR:
1527 case ROUND_DIV_EXPR:
1528 case RDIV_EXPR:
1529 case NEGATE_EXPR:
1530 case CONJ_EXPR:
1531 if (TREE_CODE (type) != COMPLEX_TYPE)
1532 return;
1533 inner_type = TREE_TYPE (type);
1534 break;
1536 case EQ_EXPR:
1537 case NE_EXPR:
1538 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1539 subcode, so we need to access the operands using gimple_op. */
1540 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1541 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1542 return;
1543 break;
1545 default:
1547 tree rhs;
1549 /* GIMPLE_COND may also fallthru here, but we do not need to
1550 do anything with it. */
1551 if (gimple_code (stmt) == GIMPLE_COND)
1552 return;
1554 if (TREE_CODE (type) == COMPLEX_TYPE)
1555 expand_complex_move (gsi, type);
1556 else if (is_gimple_assign (stmt)
1557 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1558 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1559 && TREE_CODE (lhs) == SSA_NAME)
1561 rhs = gimple_assign_rhs1 (stmt);
1562 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1563 gimple_assign_rhs_code (stmt)
1564 == IMAGPART_EXPR,
1565 false);
1566 gimple_assign_set_rhs_from_tree (gsi, rhs);
1567 stmt = gsi_stmt (*gsi);
1568 update_stmt (stmt);
1571 return;
1574 /* Extract the components of the two complex values. Make sure and
1575 handle the common case of the same value used twice specially. */
1576 if (is_gimple_assign (stmt))
1578 ac = gimple_assign_rhs1 (stmt);
1579 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1581 /* GIMPLE_CALL can not get here. */
1582 else
1584 ac = gimple_cond_lhs (stmt);
1585 bc = gimple_cond_rhs (stmt);
1588 ar = extract_component (gsi, ac, false, true);
1589 ai = extract_component (gsi, ac, true, true);
1591 if (ac == bc)
1592 br = ar, bi = ai;
1593 else if (bc)
1595 br = extract_component (gsi, bc, 0, true);
1596 bi = extract_component (gsi, bc, 1, true);
1598 else
1599 br = bi = NULL_TREE;
1601 if (gimple_in_ssa_p (cfun))
1603 al = find_lattice_value (ac);
1604 if (al == UNINITIALIZED)
1605 al = VARYING;
1607 if (TREE_CODE_CLASS (code) == tcc_unary)
1608 bl = UNINITIALIZED;
1609 else if (ac == bc)
1610 bl = al;
1611 else
1613 bl = find_lattice_value (bc);
1614 if (bl == UNINITIALIZED)
1615 bl = VARYING;
1618 else
1619 al = bl = VARYING;
1621 switch (code)
1623 case PLUS_EXPR:
1624 case MINUS_EXPR:
1625 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1626 break;
1628 case MULT_EXPR:
1629 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1630 break;
1632 case TRUNC_DIV_EXPR:
1633 case CEIL_DIV_EXPR:
1634 case FLOOR_DIV_EXPR:
1635 case ROUND_DIV_EXPR:
1636 case RDIV_EXPR:
1637 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1638 break;
1640 case NEGATE_EXPR:
1641 expand_complex_negation (gsi, inner_type, ar, ai);
1642 break;
1644 case CONJ_EXPR:
1645 expand_complex_conjugate (gsi, inner_type, ar, ai);
1646 break;
1648 case EQ_EXPR:
1649 case NE_EXPR:
1650 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1651 break;
1653 default:
1654 gcc_unreachable ();
1659 /* Entry point for complex operation lowering during optimization. */
1661 static unsigned int
1662 tree_lower_complex (void)
1664 gimple_stmt_iterator gsi;
1665 basic_block bb;
1666 int n_bbs, i;
1667 int *rpo;
1669 if (!init_dont_simulate_again ())
1670 return 0;
1672 complex_lattice_values.create (num_ssa_names);
1673 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1675 init_parameter_lattice_values ();
1676 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1678 complex_variable_components = new int_tree_htab_type (10);
1680 complex_ssa_name_components.create (2 * num_ssa_names);
1681 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1683 update_parameter_components ();
1685 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1686 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1687 for (i = 0; i < n_bbs; i++)
1689 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1690 update_phi_components (bb);
1691 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1692 expand_complex_operations_1 (&gsi);
1695 free (rpo);
1697 if (!phis_to_revisit.is_empty ())
1699 unsigned int n = phis_to_revisit.length ();
1700 for (unsigned int j = 0; j < n; j += 3)
1701 for (unsigned int k = 0; k < 2; k++)
1702 if (gphi *phi = phis_to_revisit[j + k + 1])
1704 unsigned int m = gimple_phi_num_args (phi);
1705 for (unsigned int l = 0; l < m; ++l)
1707 tree op = gimple_phi_arg_def (phi, l);
1708 if (TREE_CODE (op) == SSA_NAME
1709 || is_gimple_min_invariant (op))
1710 continue;
1711 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1712 op = extract_component (NULL, arg, k > 0, false, false);
1713 SET_PHI_ARG_DEF (phi, l, op);
1716 phis_to_revisit.release ();
1719 gsi_commit_edge_inserts ();
1721 delete complex_variable_components;
1722 complex_variable_components = NULL;
1723 complex_ssa_name_components.release ();
1724 complex_lattice_values.release ();
1725 return 0;
1728 namespace {
1730 const pass_data pass_data_lower_complex =
1732 GIMPLE_PASS, /* type */
1733 "cplxlower", /* name */
1734 OPTGROUP_NONE, /* optinfo_flags */
1735 TV_NONE, /* tv_id */
1736 PROP_ssa, /* properties_required */
1737 PROP_gimple_lcx, /* properties_provided */
1738 0, /* properties_destroyed */
1739 0, /* todo_flags_start */
1740 TODO_update_ssa, /* todo_flags_finish */
1743 class pass_lower_complex : public gimple_opt_pass
1745 public:
1746 pass_lower_complex (gcc::context *ctxt)
1747 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1750 /* opt_pass methods: */
1751 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1752 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1754 }; // class pass_lower_complex
1756 } // anon namespace
1758 gimple_opt_pass *
1759 make_pass_lower_complex (gcc::context *ctxt)
1761 return new pass_lower_complex (ctxt);
1765 namespace {
1767 const pass_data pass_data_lower_complex_O0 =
1769 GIMPLE_PASS, /* type */
1770 "cplxlower0", /* name */
1771 OPTGROUP_NONE, /* optinfo_flags */
1772 TV_NONE, /* tv_id */
1773 PROP_cfg, /* properties_required */
1774 PROP_gimple_lcx, /* properties_provided */
1775 0, /* properties_destroyed */
1776 0, /* todo_flags_start */
1777 TODO_update_ssa, /* todo_flags_finish */
1780 class pass_lower_complex_O0 : public gimple_opt_pass
1782 public:
1783 pass_lower_complex_O0 (gcc::context *ctxt)
1784 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1787 /* opt_pass methods: */
1788 virtual bool gate (function *fun)
1790 /* With errors, normal optimization passes are not run. If we don't
1791 lower complex operations at all, rtl expansion will abort. */
1792 return !(fun->curr_properties & PROP_gimple_lcx);
1795 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1797 }; // class pass_lower_complex_O0
1799 } // anon namespace
1801 gimple_opt_pass *
1802 make_pass_lower_complex_O0 (gcc::context *ctxt)
1804 return new pass_lower_complex_O0 (ctxt);