Small data support; Windows NT attributes; windows NT call indrect fix
[official-gcc.git] / gcc / stupid.c
blob6034b818fba7a7eb6011c1ba7bd7870a76933071
1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
25 Stupid register allocation goes in place of the the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
28 is not computed here.
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
45 #include <stdio.h>
46 #include "config.h"
47 #include "rtl.h"
48 #include "hard-reg-set.h"
49 #include "regs.h"
50 #include "flags.h"
52 /* Vector mapping INSN_UIDs to suids.
53 The suids are like uids but increase monotonically always.
54 We use them to see whether a subroutine call came
55 between a variable's birth and its death. */
57 static int *uid_suid;
59 /* Get the suid of an insn. */
61 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
63 /* Record the suid of the last CALL_INSN
64 so we can tell whether a pseudo reg crosses any calls. */
66 static int last_call_suid;
68 /* Element N is suid of insn where life span of pseudo reg N ends.
69 Element is 0 if register N has not been seen yet on backward scan. */
71 static int *reg_where_dead;
73 /* Element N is suid of insn where life span of pseudo reg N begins. */
75 static int *reg_where_born;
77 /* Numbers of pseudo-regs to be allocated, highest priority first. */
79 static int *reg_order;
81 /* Indexed by reg number (hard or pseudo), nonzero if register is live
82 at the current point in the instruction stream. */
84 static char *regs_live;
86 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
87 its size. */
89 static char *regs_change_size;
91 /* Indexed by insn's suid, the set of hard regs live after that insn. */
93 static HARD_REG_SET *after_insn_hard_regs;
95 /* Record that hard reg REGNO is live after insn INSN. */
97 #define MARK_LIVE_AFTER(INSN,REGNO) \
98 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
100 static int stupid_reg_compare PROTO((int *, int *));
101 static int stupid_find_reg PROTO((int, enum reg_class, enum machine_mode,
102 int, int, int));
103 static void stupid_mark_refs PROTO((rtx, rtx));
105 /* Stupid life analysis is for the case where only variables declared
106 `register' go in registers. For this case, we mark all
107 pseudo-registers that belong to register variables as
108 dying in the last instruction of the function, and all other
109 pseudo registers as dying in the last place they are referenced.
110 Hard registers are marked as dying in the last reference before
111 the end or before each store into them. */
113 void
114 stupid_life_analysis (f, nregs, file)
115 rtx f;
116 int nregs;
117 FILE *file;
119 register int i;
120 register rtx last, insn;
121 int max_uid, max_suid;
123 bzero (regs_ever_live, sizeof regs_ever_live);
125 regs_live = (char *) alloca (nregs);
127 /* First find the last real insn, and count the number of insns,
128 and assign insns their suids. */
130 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
131 if (INSN_UID (insn) > i)
132 i = INSN_UID (insn);
134 max_uid = i + 1;
135 uid_suid = (int *) alloca ((i + 1) * sizeof (int));
137 /* Compute the mapping from uids to suids.
138 Suids are numbers assigned to insns, like uids,
139 except that suids increase monotonically through the code. */
141 last = 0; /* In case of empty function body */
142 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
144 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
145 last = insn;
147 INSN_SUID (insn) = ++i;
150 last_call_suid = i + 1;
151 max_suid = i + 1;
153 max_regno = nregs;
155 /* Allocate tables to record info about regs. */
157 reg_where_dead = (int *) alloca (nregs * sizeof (int));
158 bzero ((char *) reg_where_dead, nregs * sizeof (int));
160 reg_where_born = (int *) alloca (nregs * sizeof (int));
161 bzero ((char *) reg_where_born, nregs * sizeof (int));
163 reg_order = (int *) alloca (nregs * sizeof (int));
164 bzero ((char *) reg_order, nregs * sizeof (int));
166 regs_change_size = (char *) alloca (nregs * sizeof (char));
167 bzero ((char *) regs_change_size, nregs * sizeof (char));
169 reg_renumber = (short *) oballoc (nregs * sizeof (short));
170 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
171 reg_renumber[i] = i;
173 for (i = FIRST_VIRTUAL_REGISTER; i < max_regno; i++)
174 reg_renumber[i] = -1;
176 after_insn_hard_regs
177 = (HARD_REG_SET *) alloca (max_suid * sizeof (HARD_REG_SET));
179 bzero ((char *) after_insn_hard_regs, max_suid * sizeof (HARD_REG_SET));
181 /* Allocate and zero out many data structures
182 that will record the data from lifetime analysis. */
184 allocate_for_life_analysis ();
186 for (i = 0; i < max_regno; i++)
187 reg_n_deaths[i] = 1;
189 bzero (regs_live, nregs);
191 /* Find where each pseudo register is born and dies,
192 by scanning all insns from the end to the start
193 and noting all mentions of the registers.
195 Also find where each hard register is live
196 and record that info in after_insn_hard_regs.
197 regs_live[I] is 1 if hard reg I is live
198 at the current point in the scan. */
200 for (insn = last; insn; insn = PREV_INSN (insn))
202 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
204 /* Copy the info in regs_live into the element of after_insn_hard_regs
205 for the current position in the rtl code. */
207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
208 if (regs_live[i])
209 SET_HARD_REG_BIT (*p, i);
211 /* Update which hard regs are currently live
212 and also the birth and death suids of pseudo regs
213 based on the pattern of this insn. */
215 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
216 stupid_mark_refs (PATTERN (insn), insn);
218 /* Mark all call-clobbered regs as live after each call insn
219 so that a pseudo whose life span includes this insn
220 will not go in one of them.
221 Then mark those regs as all dead for the continuing scan
222 of the insns before the call. */
224 if (GET_CODE (insn) == CALL_INSN)
226 last_call_suid = INSN_SUID (insn);
227 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
228 call_used_reg_set);
230 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
231 if (call_used_regs[i])
232 regs_live[i] = 0;
234 /* It is important that this be done after processing the insn's
235 pattern because we want the function result register to still
236 be live if it's also used to pass arguments. */
237 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn), insn);
241 /* Now decide the order in which to allocate the pseudo registers. */
243 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
244 reg_order[i] = i;
246 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
247 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
248 stupid_reg_compare);
250 /* Now, in that order, try to find hard registers for those pseudo regs. */
252 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
254 register int r = reg_order[i];
256 /* Some regnos disappear from the rtl. Ignore them to avoid crash. */
257 if (regno_reg_rtx[r] == 0)
258 continue;
260 /* Now find the best hard-register class for this pseudo register */
261 if (N_REG_CLASSES > 1)
262 reg_renumber[r] = stupid_find_reg (reg_n_calls_crossed[r],
263 reg_preferred_class (r),
264 PSEUDO_REGNO_MODE (r),
265 reg_where_born[r],
266 reg_where_dead[r],
267 regs_change_size[r]);
269 /* If no reg available in that class, try alternate class. */
270 if (reg_renumber[r] == -1 && reg_alternate_class (r) != NO_REGS)
271 reg_renumber[r] = stupid_find_reg (reg_n_calls_crossed[r],
272 reg_alternate_class (r),
273 PSEUDO_REGNO_MODE (r),
274 reg_where_born[r],
275 reg_where_dead[r],
276 regs_change_size[r]);
279 if (file)
280 dump_flow_info (file);
283 /* Comparison function for qsort.
284 Returns -1 (1) if register *R1P is higher priority than *R2P. */
286 static int
287 stupid_reg_compare (r1p, r2p)
288 int *r1p, *r2p;
290 register int r1 = *r1p, r2 = *r2p;
291 register int len1 = reg_where_dead[r1] - reg_where_born[r1];
292 register int len2 = reg_where_dead[r2] - reg_where_born[r2];
293 int tem;
295 tem = len2 - len1;
296 if (tem != 0)
297 return tem;
299 tem = reg_n_refs[r1] - reg_n_refs[r2];
300 if (tem != 0)
301 return tem;
303 /* If regs are equally good, sort by regno,
304 so that the results of qsort leave nothing to chance. */
305 return r1 - r2;
308 /* Find a block of SIZE words of hard registers in reg_class CLASS
309 that can hold a value of machine-mode MODE
310 (but actually we test only the first of the block for holding MODE)
311 currently free from after insn whose suid is BORN_INSN
312 through the insn whose suid is DEAD_INSN,
313 and return the number of the first of them.
314 Return -1 if such a block cannot be found.
316 If CALL_PRESERVED is nonzero, insist on registers preserved
317 over subroutine calls, and return -1 if cannot find such.
319 If CHANGES_SIZE is nonzero, it means this register was used as the
320 operand of a SUBREG that changes its size. */
322 static int
323 stupid_find_reg (call_preserved, class, mode,
324 born_insn, dead_insn, changes_size)
325 int call_preserved;
326 enum reg_class class;
327 enum machine_mode mode;
328 int born_insn, dead_insn;
329 int changes_size;
331 register int i, ins;
332 #ifdef HARD_REG_SET
333 register /* Declare them register if they are scalars. */
334 #endif
335 HARD_REG_SET used, this_reg;
336 #ifdef ELIMINABLE_REGS
337 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
338 #endif
340 /* If this register's life is more than 5,000 insns, we probably
341 can't allocate it, so don't waste the time trying. This avoid
342 quadratic behavior on programs that have regularly-occurring
343 SAVE_EXPRs. */
344 if (dead_insn > born_insn + 5000)
345 return -1;
347 COPY_HARD_REG_SET (used,
348 call_preserved ? call_used_reg_set : fixed_reg_set);
350 #ifdef ELIMINABLE_REGS
351 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
352 SET_HARD_REG_BIT (used, eliminables[i].from);
353 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
354 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
355 #endif
356 #else
357 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
358 #endif
360 for (ins = born_insn; ins < dead_insn; ins++)
361 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
363 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
365 #ifdef CLASS_CANNOT_CHANGE_SIZE
366 if (changes_size)
367 IOR_HARD_REG_SET (used,
368 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
369 #endif
371 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
373 #ifdef REG_ALLOC_ORDER
374 int regno = reg_alloc_order[i];
375 #else
376 int regno = i;
377 #endif
379 /* If a register has screwy overlap problems,
380 don't use it at all if not optimizing.
381 Actually this is only for the 387 stack register,
382 and it's because subsequent code won't work. */
383 #ifdef OVERLAPPING_REGNO_P
384 if (OVERLAPPING_REGNO_P (regno))
385 continue;
386 #endif
388 if (! TEST_HARD_REG_BIT (used, regno)
389 && HARD_REGNO_MODE_OK (regno, mode))
391 register int j;
392 register int size1 = HARD_REGNO_NREGS (regno, mode);
393 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
394 if (j == size1)
396 CLEAR_HARD_REG_SET (this_reg);
397 while (--j >= 0)
398 SET_HARD_REG_BIT (this_reg, regno + j);
399 for (ins = born_insn; ins < dead_insn; ins++)
401 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
403 return regno;
405 #ifndef REG_ALLOC_ORDER
406 i += j; /* Skip starting points we know will lose */
407 #endif
411 return -1;
414 /* Walk X, noting all assignments and references to registers
415 and recording what they imply about life spans.
416 INSN is the current insn, supplied so we can find its suid. */
418 static void
419 stupid_mark_refs (x, insn)
420 rtx x, insn;
422 register RTX_CODE code;
423 register char *fmt;
424 register int regno, i;
426 if (x == 0)
427 return;
429 code = GET_CODE (x);
431 if (code == SET || code == CLOBBER)
433 if (SET_DEST (x) != 0
434 && (GET_CODE (SET_DEST (x)) == REG
435 || (GET_CODE (SET_DEST (x)) == SUBREG
436 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
437 && (REGNO (SUBREG_REG (SET_DEST (x)))
438 >= FIRST_PSEUDO_REGISTER))))
440 /* Register is being assigned. */
441 /* If setting a SUBREG, we treat the entire reg as being set. */
442 if (GET_CODE (SET_DEST (x)) == SUBREG)
443 regno = REGNO (SUBREG_REG (SET_DEST (x)));
444 else
445 regno = REGNO (SET_DEST (x));
447 /* For hard regs, update the where-live info. */
448 if (regno < FIRST_PSEUDO_REGISTER)
450 register int j
451 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
453 while (--j >= 0)
455 regs_ever_live[regno+j] = 1;
456 regs_live[regno+j] = 0;
458 /* The following line is for unused outputs;
459 they do get stored even though never used again. */
460 MARK_LIVE_AFTER (insn, regno+j);
462 /* When a hard reg is clobbered, mark it in use
463 just before this insn, so it is live all through. */
464 if (code == CLOBBER && INSN_SUID (insn) > 0)
465 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
466 regno+j);
469 /* For pseudo regs, record where born, where dead, number of
470 times used, and whether live across a call. */
471 else
473 /* Update the life-interval bounds of this pseudo reg. */
475 /* When a pseudo-reg is CLOBBERed, it is born just before
476 the clobbering insn. When setting, just after. */
477 int where_born = INSN_SUID (insn) - (code == CLOBBER);
479 reg_where_born[regno] = where_born;
481 /* The reg must live at least one insn even
482 in it is never again used--because it has to go
483 in SOME hard reg. Mark it as dying after the current
484 insn so that it will conflict with any other outputs of
485 this insn. */
486 if (reg_where_dead[regno] < where_born + 2)
488 reg_where_dead[regno] = where_born + 2;
489 regs_live[regno] = 1;
492 /* Count the refs of this reg. */
493 reg_n_refs[regno]++;
495 if (last_call_suid < reg_where_dead[regno])
496 reg_n_calls_crossed[regno] += 1;
500 /* Record references from the value being set,
501 or from addresses in the place being set if that's not a reg.
502 If setting a SUBREG, we treat the entire reg as *used*. */
503 if (code == SET)
505 stupid_mark_refs (SET_SRC (x), insn);
506 if (GET_CODE (SET_DEST (x)) != REG)
507 stupid_mark_refs (SET_DEST (x), insn);
509 return;
512 else if (code == SUBREG
513 && GET_CODE (SUBREG_REG (x)) == REG
514 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
515 && (GET_MODE_SIZE (GET_MODE (x))
516 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
517 && (INTEGRAL_MODE_P (GET_MODE (x))
518 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x)))))
519 regs_change_size[REGNO (SUBREG_REG (x))] = 1;
521 /* Register value being used, not set. */
523 else if (code == REG)
525 regno = REGNO (x);
526 if (regno < FIRST_PSEUDO_REGISTER)
528 /* Hard reg: mark it live for continuing scan of previous insns. */
529 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
530 while (--j >= 0)
532 regs_ever_live[regno+j] = 1;
533 regs_live[regno+j] = 1;
536 else
538 /* Pseudo reg: record first use, last use and number of uses. */
540 reg_where_born[regno] = INSN_SUID (insn);
541 reg_n_refs[regno]++;
542 if (regs_live[regno] == 0)
544 regs_live[regno] = 1;
545 reg_where_dead[regno] = INSN_SUID (insn);
548 return;
551 /* Recursive scan of all other rtx's. */
553 fmt = GET_RTX_FORMAT (code);
554 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
556 if (fmt[i] == 'e')
557 stupid_mark_refs (XEXP (x, i), insn);
558 if (fmt[i] == 'E')
560 register int j;
561 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
562 stupid_mark_refs (XVECEXP (x, i, j), insn);