Small data support; Windows NT attributes; windows NT call indrect fix
[official-gcc.git] / gcc / flow.c
blob1e4ff88175c638b98cee1c596db53c5f4d0709bc
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler.
23 It computes data flow information
24 which tells combine_instructions which insns to consider combining
25 and controls register allocation.
27 Additional data flow information that is too bulky to record
28 is generated during the analysis, and is used at that time to
29 create autoincrement and autodecrement addressing.
31 The first step is dividing the function into basic blocks.
32 find_basic_blocks does this. Then life_analysis determines
33 where each register is live and where it is dead.
35 ** find_basic_blocks **
37 find_basic_blocks divides the current function's rtl
38 into basic blocks. It records the beginnings and ends of the
39 basic blocks in the vectors basic_block_head and basic_block_end,
40 and the number of blocks in n_basic_blocks.
42 find_basic_blocks also finds any unreachable loops
43 and deletes them.
45 ** life_analysis **
47 life_analysis is called immediately after find_basic_blocks.
48 It uses the basic block information to determine where each
49 hard or pseudo register is live.
51 ** live-register info **
53 The information about where each register is live is in two parts:
54 the REG_NOTES of insns, and the vector basic_block_live_at_start.
56 basic_block_live_at_start has an element for each basic block,
57 and the element is a bit-vector with a bit for each hard or pseudo
58 register. The bit is 1 if the register is live at the beginning
59 of the basic block.
61 Two types of elements can be added to an insn's REG_NOTES.
62 A REG_DEAD note is added to an insn's REG_NOTES for any register
63 that meets both of two conditions: The value in the register is not
64 needed in subsequent insns and the insn does not replace the value in
65 the register (in the case of multi-word hard registers, the value in
66 each register must be replaced by the insn to avoid a REG_DEAD note).
68 In the vast majority of cases, an object in a REG_DEAD note will be
69 used somewhere in the insn. The (rare) exception to this is if an
70 insn uses a multi-word hard register and only some of the registers are
71 needed in subsequent insns. In that case, REG_DEAD notes will be
72 provided for those hard registers that are not subsequently needed.
73 Partial REG_DEAD notes of this type do not occur when an insn sets
74 only some of the hard registers used in such a multi-word operand;
75 omitting REG_DEAD notes for objects stored in an insn is optional and
76 the desire to do so does not justify the complexity of the partial
77 REG_DEAD notes.
79 REG_UNUSED notes are added for each register that is set by the insn
80 but is unused subsequently (if every register set by the insn is unused
81 and the insn does not reference memory or have some other side-effect,
82 the insn is deleted instead). If only part of a multi-word hard
83 register is used in a subsequent insn, REG_UNUSED notes are made for
84 the parts that will not be used.
86 To determine which registers are live after any insn, one can
87 start from the beginning of the basic block and scan insns, noting
88 which registers are set by each insn and which die there.
90 ** Other actions of life_analysis **
92 life_analysis sets up the LOG_LINKS fields of insns because the
93 information needed to do so is readily available.
95 life_analysis deletes insns whose only effect is to store a value
96 that is never used.
98 life_analysis notices cases where a reference to a register as
99 a memory address can be combined with a preceding or following
100 incrementation or decrementation of the register. The separate
101 instruction to increment or decrement is deleted and the address
102 is changed to a POST_INC or similar rtx.
104 Each time an incrementing or decrementing address is created,
105 a REG_INC element is added to the insn's REG_NOTES list.
107 life_analysis fills in certain vectors containing information about
108 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
109 reg_n_calls_crosses and reg_basic_block. */
111 #include <stdio.h>
112 #include "config.h"
113 #include "rtl.h"
114 #include "basic-block.h"
115 #include "insn-config.h"
116 #include "regs.h"
117 #include "hard-reg-set.h"
118 #include "flags.h"
119 #include "output.h"
121 #include "obstack.h"
122 #define obstack_chunk_alloc xmalloc
123 #define obstack_chunk_free free
125 /* List of labels that must never be deleted. */
126 extern rtx forced_labels;
128 /* Get the basic block number of an insn.
129 This info should not be expected to remain available
130 after the end of life_analysis. */
132 /* This is the limit of the allocated space in the following two arrays. */
134 static int max_uid_for_flow;
136 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
138 /* This is where the BLOCK_NUM values are really stored.
139 This is set up by find_basic_blocks and used there and in life_analysis,
140 and then freed. */
142 static int *uid_block_number;
144 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
146 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
147 static char *uid_volatile;
149 /* Number of basic blocks in the current function. */
151 int n_basic_blocks;
153 /* Maximum register number used in this function, plus one. */
155 int max_regno;
157 /* Maximum number of SCRATCH rtx's used in any basic block of this function. */
159 int max_scratch;
161 /* Number of SCRATCH rtx's in the current block. */
163 static int num_scratch;
165 /* Indexed by n, gives number of basic block that (REG n) is used in.
166 If the value is REG_BLOCK_GLOBAL (-2),
167 it means (REG n) is used in more than one basic block.
168 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
169 This information remains valid for the rest of the compilation
170 of the current function; it is used to control register allocation. */
172 int *reg_basic_block;
174 /* Indexed by n, gives number of times (REG n) is used or set, each
175 weighted by its loop-depth.
176 This information remains valid for the rest of the compilation
177 of the current function; it is used to control register allocation. */
179 int *reg_n_refs;
181 /* Indexed by N; says whether a pseudo register N was ever used
182 within a SUBREG that changes the size of the reg. Some machines prohibit
183 such objects to be in certain (usually floating-point) registers. */
185 char *reg_changes_size;
187 /* Indexed by N, gives number of places register N dies.
188 This information remains valid for the rest of the compilation
189 of the current function; it is used to control register allocation. */
191 short *reg_n_deaths;
193 /* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
194 This information remains valid for the rest of the compilation
195 of the current function; it is used to control register allocation. */
197 int *reg_n_calls_crossed;
199 /* Total number of instructions at which (REG n) is live.
200 The larger this is, the less priority (REG n) gets for
201 allocation in a real register.
202 This information remains valid for the rest of the compilation
203 of the current function; it is used to control register allocation.
205 local-alloc.c may alter this number to change the priority.
207 Negative values are special.
208 -1 is used to mark a pseudo reg which has a constant or memory equivalent
209 and is used infrequently enough that it should not get a hard register.
210 -2 is used to mark a pseudo reg for a parameter, when a frame pointer
211 is not required. global.c makes an allocno for this but does
212 not try to assign a hard register to it. */
214 int *reg_live_length;
216 /* Element N is the next insn that uses (hard or pseudo) register number N
217 within the current basic block; or zero, if there is no such insn.
218 This is valid only during the final backward scan in propagate_block. */
220 static rtx *reg_next_use;
222 /* Size of a regset for the current function,
223 in (1) bytes and (2) elements. */
225 int regset_bytes;
226 int regset_size;
228 /* Element N is first insn in basic block N.
229 This info lasts until we finish compiling the function. */
231 rtx *basic_block_head;
233 /* Element N is last insn in basic block N.
234 This info lasts until we finish compiling the function. */
236 rtx *basic_block_end;
238 /* Element N is a regset describing the registers live
239 at the start of basic block N.
240 This info lasts until we finish compiling the function. */
242 regset *basic_block_live_at_start;
244 /* Regset of regs live when calls to `setjmp'-like functions happen. */
246 regset regs_live_at_setjmp;
248 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
249 that have to go in the same hard reg.
250 The first two regs in the list are a pair, and the next two
251 are another pair, etc. */
252 rtx regs_may_share;
254 /* Element N is nonzero if control can drop into basic block N
255 from the preceding basic block. Freed after life_analysis. */
257 static char *basic_block_drops_in;
259 /* Element N is depth within loops of the last insn in basic block number N.
260 Freed after life_analysis. */
262 static short *basic_block_loop_depth;
264 /* Element N nonzero if basic block N can actually be reached.
265 Vector exists only during find_basic_blocks. */
267 static char *block_live_static;
269 /* Depth within loops of basic block being scanned for lifetime analysis,
270 plus one. This is the weight attached to references to registers. */
272 static int loop_depth;
274 /* During propagate_block, this is non-zero if the value of CC0 is live. */
276 static int cc0_live;
278 /* During propagate_block, this contains the last MEM stored into. It
279 is used to eliminate consecutive stores to the same location. */
281 static rtx last_mem_set;
283 /* Set of registers that may be eliminable. These are handled specially
284 in updating regs_ever_live. */
286 static HARD_REG_SET elim_reg_set;
288 /* Forward declarations */
289 static void find_basic_blocks PROTO((rtx, rtx));
290 static int uses_reg_or_mem PROTO((rtx));
291 static void mark_label_ref PROTO((rtx, rtx, int));
292 static void life_analysis PROTO((rtx, int));
293 void allocate_for_life_analysis PROTO((void));
294 static void init_regset_vector PROTO((regset *, regset, int, int));
295 static void propagate_block PROTO((regset, rtx, rtx, int,
296 regset, int));
297 static rtx flow_delete_insn PROTO((rtx));
298 static int insn_dead_p PROTO((rtx, regset, int));
299 static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
300 static void mark_set_regs PROTO((regset, regset, rtx,
301 rtx, regset));
302 static void mark_set_1 PROTO((regset, regset, rtx,
303 rtx, regset));
304 static void find_auto_inc PROTO((regset, rtx, rtx));
305 static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
306 static int try_pre_increment_1 PROTO((rtx));
307 static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
308 static rtx find_use_as_address PROTO((rtx, rtx, HOST_WIDE_INT));
309 void dump_flow_info PROTO((FILE *));
311 /* Find basic blocks of the current function and perform data flow analysis.
312 F is the first insn of the function and NREGS the number of register numbers
313 in use. */
315 void
316 flow_analysis (f, nregs, file)
317 rtx f;
318 int nregs;
319 FILE *file;
321 register rtx insn;
322 register int i;
323 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
325 #ifdef ELIMINABLE_REGS
326 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
327 #endif
329 /* Record which registers will be eliminated. We use this in
330 mark_used_regs. */
332 CLEAR_HARD_REG_SET (elim_reg_set);
334 #ifdef ELIMINABLE_REGS
335 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
336 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
337 #else
338 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
339 #endif
341 /* Count the basic blocks. Also find maximum insn uid value used. */
344 register RTX_CODE prev_code = JUMP_INSN;
345 register RTX_CODE code;
347 max_uid_for_flow = 0;
349 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
351 code = GET_CODE (insn);
352 if (INSN_UID (insn) > max_uid_for_flow)
353 max_uid_for_flow = INSN_UID (insn);
354 if (code == CODE_LABEL
355 || (GET_RTX_CLASS (code) == 'i'
356 && (prev_code == JUMP_INSN
357 || (prev_code == CALL_INSN
358 && nonlocal_label_list != 0)
359 || prev_code == BARRIER)))
360 i++;
361 if (code != NOTE)
362 prev_code = code;
366 #ifdef AUTO_INC_DEC
367 /* Leave space for insns we make in some cases for auto-inc. These cases
368 are rare, so we don't need too much space. */
369 max_uid_for_flow += max_uid_for_flow / 10;
370 #endif
372 /* Allocate some tables that last till end of compiling this function
373 and some needed only in find_basic_blocks and life_analysis. */
375 n_basic_blocks = i;
376 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
377 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
378 basic_block_drops_in = (char *) alloca (n_basic_blocks);
379 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
380 uid_block_number
381 = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
382 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
383 bzero (uid_volatile, max_uid_for_flow + 1);
385 find_basic_blocks (f, nonlocal_label_list);
386 life_analysis (f, nregs);
387 if (file)
388 dump_flow_info (file);
390 basic_block_drops_in = 0;
391 uid_block_number = 0;
392 basic_block_loop_depth = 0;
395 /* Find all basic blocks of the function whose first insn is F.
396 Store the correct data in the tables that describe the basic blocks,
397 set up the chains of references for each CODE_LABEL, and
398 delete any entire basic blocks that cannot be reached.
400 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
402 static void
403 find_basic_blocks (f, nonlocal_label_list)
404 rtx f, nonlocal_label_list;
406 register rtx insn;
407 register int i;
408 register char *block_live = (char *) alloca (n_basic_blocks);
409 register char *block_marked = (char *) alloca (n_basic_blocks);
410 /* List of label_refs to all labels whose addresses are taken
411 and used as data. */
412 rtx label_value_list;
413 rtx x, note;
414 enum rtx_code prev_code, code;
415 int depth, pass;
417 pass = 1;
418 restart:
420 label_value_list = 0;
421 block_live_static = block_live;
422 bzero (block_live, n_basic_blocks);
423 bzero (block_marked, n_basic_blocks);
425 /* Initialize with just block 0 reachable and no blocks marked. */
426 if (n_basic_blocks > 0)
427 block_live[0] = 1;
429 /* Initialize the ref chain of each label to 0. Record where all the
430 blocks start and end and their depth in loops. For each insn, record
431 the block it is in. Also mark as reachable any blocks headed by labels
432 that must not be deleted. */
434 for (insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
435 insn; insn = NEXT_INSN (insn))
437 code = GET_CODE (insn);
438 if (code == NOTE)
440 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
441 depth++;
442 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
443 depth--;
446 /* A basic block starts at label, or after something that can jump. */
447 else if (code == CODE_LABEL
448 || (GET_RTX_CLASS (code) == 'i'
449 && (prev_code == JUMP_INSN
450 || (prev_code == CALL_INSN
451 && nonlocal_label_list != 0)
452 || prev_code == BARRIER)))
454 basic_block_head[++i] = insn;
455 basic_block_end[i] = insn;
456 basic_block_loop_depth[i] = depth;
458 if (code == CODE_LABEL)
460 LABEL_REFS (insn) = insn;
461 /* Any label that cannot be deleted
462 is considered to start a reachable block. */
463 if (LABEL_PRESERVE_P (insn))
464 block_live[i] = 1;
468 else if (GET_RTX_CLASS (code) == 'i')
470 basic_block_end[i] = insn;
471 basic_block_loop_depth[i] = depth;
474 if (GET_RTX_CLASS (code) == 'i')
476 /* Make a list of all labels referred to other than by jumps. */
477 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
478 if (REG_NOTE_KIND (note) == REG_LABEL)
479 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
480 label_value_list);
483 BLOCK_NUM (insn) = i;
485 if (code != NOTE)
486 prev_code = code;
489 /* During the second pass, `n_basic_blocks' is only an upper bound.
490 Only perform the sanity check for the first pass, and on the second
491 pass ensure `n_basic_blocks' is set to the correct value. */
492 if (pass == 1 && i + 1 != n_basic_blocks)
493 abort ();
494 n_basic_blocks = i + 1;
496 /* Don't delete the labels (in this function)
497 that are referenced by non-jump instructions. */
499 for (x = label_value_list; x; x = XEXP (x, 1))
500 if (! LABEL_REF_NONLOCAL_P (x))
501 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
503 for (x = forced_labels; x; x = XEXP (x, 1))
504 if (! LABEL_REF_NONLOCAL_P (x))
505 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
507 /* Record which basic blocks control can drop in to. */
509 for (i = 0; i < n_basic_blocks; i++)
511 for (insn = PREV_INSN (basic_block_head[i]);
512 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
515 basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
518 /* Now find which basic blocks can actually be reached
519 and put all jump insns' LABEL_REFS onto the ref-chains
520 of their target labels. */
522 if (n_basic_blocks > 0)
524 int something_marked = 1;
525 int deleted;
527 /* Find all indirect jump insns and mark them as possibly jumping to all
528 the labels whose addresses are explicitly used. This is because,
529 when there are computed gotos, we can't tell which labels they jump
530 to, of all the possibilities.
532 Tablejumps and casesi insns are OK and we can recognize them by
533 a (use (label_ref)). */
535 for (insn = f; insn; insn = NEXT_INSN (insn))
536 if (GET_CODE (insn) == JUMP_INSN)
538 rtx pat = PATTERN (insn);
539 int computed_jump = 0;
541 if (GET_CODE (pat) == PARALLEL)
543 int len = XVECLEN (pat, 0);
544 int has_use_labelref = 0;
546 for (i = len - 1; i >= 0; i--)
547 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
548 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
549 == LABEL_REF))
550 has_use_labelref = 1;
552 if (! has_use_labelref)
553 for (i = len - 1; i >= 0; i--)
554 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
555 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
556 && uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
557 computed_jump = 1;
559 else if (GET_CODE (pat) == SET
560 && SET_DEST (pat) == pc_rtx
561 && uses_reg_or_mem (SET_SRC (pat)))
562 computed_jump = 1;
564 if (computed_jump)
566 for (x = label_value_list; x; x = XEXP (x, 1))
567 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
568 insn, 0);
570 for (x = forced_labels; x; x = XEXP (x, 1))
571 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
572 insn, 0);
576 /* Find all call insns and mark them as possibly jumping
577 to all the nonlocal goto handler labels. */
579 for (insn = f; insn; insn = NEXT_INSN (insn))
580 if (GET_CODE (insn) == CALL_INSN)
582 for (x = nonlocal_label_list; x; x = XEXP (x, 1))
583 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
584 insn, 0);
586 /* ??? This could be made smarter:
587 in some cases it's possible to tell that certain
588 calls will not do a nonlocal goto.
590 For example, if the nested functions that do the
591 nonlocal gotos do not have their addresses taken, then
592 only calls to those functions or to other nested
593 functions that use them could possibly do nonlocal
594 gotos. */
597 /* Pass over all blocks, marking each block that is reachable
598 and has not yet been marked.
599 Keep doing this until, in one pass, no blocks have been marked.
600 Then blocks_live and blocks_marked are identical and correct.
601 In addition, all jumps actually reachable have been marked. */
603 while (something_marked)
605 something_marked = 0;
606 for (i = 0; i < n_basic_blocks; i++)
607 if (block_live[i] && !block_marked[i])
609 block_marked[i] = 1;
610 something_marked = 1;
611 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
612 block_live[i + 1] = 1;
613 insn = basic_block_end[i];
614 if (GET_CODE (insn) == JUMP_INSN)
615 mark_label_ref (PATTERN (insn), insn, 0);
619 /* ??? See if we have a "live" basic block that is not reachable.
620 This can happen if it is headed by a label that is preserved or
621 in one of the label lists, but no call or computed jump is in
622 the loop. It's not clear if we can delete the block or not,
623 but don't for now. However, we will mess up register status if
624 it remains unreachable, so add a fake reachability from the
625 previous block. */
627 for (i = 1; i < n_basic_blocks; i++)
628 if (block_live[i] && ! basic_block_drops_in[i]
629 && GET_CODE (basic_block_head[i]) == CODE_LABEL
630 && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
631 basic_block_drops_in[i] = 1;
633 /* Now delete the code for any basic blocks that can't be reached.
634 They can occur because jump_optimize does not recognize
635 unreachable loops as unreachable. */
637 deleted = 0;
638 for (i = 0; i < n_basic_blocks; i++)
639 if (!block_live[i])
641 deleted++;
643 /* Delete the insns in a (non-live) block. We physically delete
644 every non-note insn except the start and end (so
645 basic_block_head/end needn't be updated), we turn the latter
646 into NOTE_INSN_DELETED notes.
647 We use to "delete" the insns by turning them into notes, but
648 we may be deleting lots of insns that subsequent passes would
649 otherwise have to process. Secondly, lots of deleted blocks in
650 a row can really slow down propagate_block since it will
651 otherwise process insn-turned-notes multiple times when it
652 looks for loop begin/end notes. */
653 if (basic_block_head[i] != basic_block_end[i])
655 /* It would be quicker to delete all of these with a single
656 unchaining, rather than one at a time, but we need to keep
657 the NOTE's. */
658 insn = NEXT_INSN (basic_block_head[i]);
659 while (insn != basic_block_end[i])
661 if (GET_CODE (insn) == BARRIER)
662 abort ();
663 else if (GET_CODE (insn) != NOTE)
664 insn = flow_delete_insn (insn);
665 else
666 insn = NEXT_INSN (insn);
669 insn = basic_block_head[i];
670 if (GET_CODE (insn) != NOTE)
672 /* Turn the head into a deleted insn note. */
673 if (GET_CODE (insn) == BARRIER)
674 abort ();
675 PUT_CODE (insn, NOTE);
676 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
677 NOTE_SOURCE_FILE (insn) = 0;
679 insn = basic_block_end[i];
680 if (GET_CODE (insn) != NOTE)
682 /* Turn the tail into a deleted insn note. */
683 if (GET_CODE (insn) == BARRIER)
684 abort ();
685 PUT_CODE (insn, NOTE);
686 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
687 NOTE_SOURCE_FILE (insn) = 0;
689 /* BARRIERs are between basic blocks, not part of one.
690 Delete a BARRIER if the preceding jump is deleted.
691 We cannot alter a BARRIER into a NOTE
692 because it is too short; but we can really delete
693 it because it is not part of a basic block. */
694 if (NEXT_INSN (insn) != 0
695 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
696 delete_insn (NEXT_INSN (insn));
698 /* Each time we delete some basic blocks,
699 see if there is a jump around them that is
700 being turned into a no-op. If so, delete it. */
702 if (block_live[i - 1])
704 register int j;
705 for (j = i + 1; j < n_basic_blocks; j++)
706 if (block_live[j])
708 rtx label;
709 insn = basic_block_end[i - 1];
710 if (GET_CODE (insn) == JUMP_INSN
711 /* An unconditional jump is the only possibility
712 we must check for, since a conditional one
713 would make these blocks live. */
714 && simplejump_p (insn)
715 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
716 && INSN_UID (label) != 0
717 && BLOCK_NUM (label) == j)
719 PUT_CODE (insn, NOTE);
720 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
721 NOTE_SOURCE_FILE (insn) = 0;
722 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
723 abort ();
724 delete_insn (NEXT_INSN (insn));
726 break;
731 /* There are pathological cases where one function calling hundreds of
732 nested inline functions can generate lots and lots of unreachable
733 blocks that jump can't delete. Since we don't use sparse matrices
734 a lot of memory will be needed to compile such functions.
735 Implementing sparse matrices is a fair bit of work and it is not
736 clear that they win more than they lose (we don't want to
737 unnecessarily slow down compilation of normal code). By making
738 another pass for the pathological case, we can greatly speed up
739 their compilation without hurting normal code. This works because
740 all the insns in the unreachable blocks have either been deleted or
741 turned into notes.
742 Note that we're talking about reducing memory usage by 10's of
743 megabytes and reducing compilation time by several minutes. */
744 /* ??? The choice of when to make another pass is a bit arbitrary,
745 and was derived from empirical data. */
746 if (pass == 1
747 && deleted > 200)
749 pass++;
750 n_basic_blocks -= deleted;
751 /* `n_basic_blocks' may not be correct at this point: two previously
752 separate blocks may now be merged. That's ok though as we
753 recalculate it during the second pass. It certainly can't be
754 any larger than the current value. */
755 goto restart;
760 /* Subroutines of find_basic_blocks. */
762 /* Return 1 if X contain a REG or MEM that is not in the constant pool. */
764 static int
765 uses_reg_or_mem (x)
766 rtx x;
768 enum rtx_code code = GET_CODE (x);
769 int i, j;
770 char *fmt;
772 if (code == REG
773 || (code == MEM
774 && ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
775 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))))
776 return 1;
778 fmt = GET_RTX_FORMAT (code);
779 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
781 if (fmt[i] == 'e'
782 && uses_reg_or_mem (XEXP (x, i)))
783 return 1;
785 if (fmt[i] == 'E')
786 for (j = 0; j < XVECLEN (x, i); j++)
787 if (uses_reg_or_mem (XVECEXP (x, i, j)))
788 return 1;
791 return 0;
794 /* Check expression X for label references;
795 if one is found, add INSN to the label's chain of references.
797 CHECKDUP means check for and avoid creating duplicate references
798 from the same insn. Such duplicates do no serious harm but
799 can slow life analysis. CHECKDUP is set only when duplicates
800 are likely. */
802 static void
803 mark_label_ref (x, insn, checkdup)
804 rtx x, insn;
805 int checkdup;
807 register RTX_CODE code;
808 register int i;
809 register char *fmt;
811 /* We can be called with NULL when scanning label_value_list. */
812 if (x == 0)
813 return;
815 code = GET_CODE (x);
816 if (code == LABEL_REF)
818 register rtx label = XEXP (x, 0);
819 register rtx y;
820 if (GET_CODE (label) != CODE_LABEL)
821 abort ();
822 /* If the label was never emitted, this insn is junk,
823 but avoid a crash trying to refer to BLOCK_NUM (label).
824 This can happen as a result of a syntax error
825 and a diagnostic has already been printed. */
826 if (INSN_UID (label) == 0)
827 return;
828 CONTAINING_INSN (x) = insn;
829 /* if CHECKDUP is set, check for duplicate ref from same insn
830 and don't insert. */
831 if (checkdup)
832 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
833 if (CONTAINING_INSN (y) == insn)
834 return;
835 LABEL_NEXTREF (x) = LABEL_REFS (label);
836 LABEL_REFS (label) = x;
837 block_live_static[BLOCK_NUM (label)] = 1;
838 return;
841 fmt = GET_RTX_FORMAT (code);
842 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
844 if (fmt[i] == 'e')
845 mark_label_ref (XEXP (x, i), insn, 0);
846 if (fmt[i] == 'E')
848 register int j;
849 for (j = 0; j < XVECLEN (x, i); j++)
850 mark_label_ref (XVECEXP (x, i, j), insn, 1);
855 /* Delete INSN by patching it out.
856 Return the next insn. */
858 static rtx
859 flow_delete_insn (insn)
860 rtx insn;
862 /* ??? For the moment we assume we don't have to watch for NULLs here
863 since the start/end of basic blocks aren't deleted like this. */
864 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
865 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
866 return NEXT_INSN (insn);
869 /* Determine which registers are live at the start of each
870 basic block of the function whose first insn is F.
871 NREGS is the number of registers used in F.
872 We allocate the vector basic_block_live_at_start
873 and the regsets that it points to, and fill them with the data.
874 regset_size and regset_bytes are also set here. */
876 static void
877 life_analysis (f, nregs)
878 rtx f;
879 int nregs;
881 register regset tem;
882 int first_pass;
883 int changed;
884 /* For each basic block, a bitmask of regs
885 live on exit from the block. */
886 regset *basic_block_live_at_end;
887 /* For each basic block, a bitmask of regs
888 live on entry to a successor-block of this block.
889 If this does not match basic_block_live_at_end,
890 that must be updated, and the block must be rescanned. */
891 regset *basic_block_new_live_at_end;
892 /* For each basic block, a bitmask of regs
893 whose liveness at the end of the basic block
894 can make a difference in which regs are live on entry to the block.
895 These are the regs that are set within the basic block,
896 possibly excluding those that are used after they are set. */
897 regset *basic_block_significant;
898 register int i;
899 rtx insn;
901 struct obstack flow_obstack;
903 gcc_obstack_init (&flow_obstack);
905 max_regno = nregs;
907 bzero (regs_ever_live, sizeof regs_ever_live);
909 /* Allocate and zero out many data structures
910 that will record the data from lifetime analysis. */
912 allocate_for_life_analysis ();
914 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
915 bzero ((char *) reg_next_use, nregs * sizeof (rtx));
917 /* Set up several regset-vectors used internally within this function.
918 Their meanings are documented above, with their declarations. */
920 basic_block_live_at_end
921 = (regset *) alloca (n_basic_blocks * sizeof (regset));
923 /* Don't use alloca since that leads to a crash rather than an error message
924 if there isn't enough space.
925 Don't use oballoc since we may need to allocate other things during
926 this function on the temporary obstack. */
927 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
928 bzero ((char *) tem, n_basic_blocks * regset_bytes);
929 init_regset_vector (basic_block_live_at_end, tem,
930 n_basic_blocks, regset_bytes);
932 basic_block_new_live_at_end
933 = (regset *) alloca (n_basic_blocks * sizeof (regset));
934 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
935 bzero ((char *) tem, n_basic_blocks * regset_bytes);
936 init_regset_vector (basic_block_new_live_at_end, tem,
937 n_basic_blocks, regset_bytes);
939 basic_block_significant
940 = (regset *) alloca (n_basic_blocks * sizeof (regset));
941 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
942 bzero ((char *) tem, n_basic_blocks * regset_bytes);
943 init_regset_vector (basic_block_significant, tem,
944 n_basic_blocks, regset_bytes);
946 /* Record which insns refer to any volatile memory
947 or for any reason can't be deleted just because they are dead stores.
948 Also, delete any insns that copy a register to itself. */
950 for (insn = f; insn; insn = NEXT_INSN (insn))
952 enum rtx_code code1 = GET_CODE (insn);
953 if (code1 == CALL_INSN)
954 INSN_VOLATILE (insn) = 1;
955 else if (code1 == INSN || code1 == JUMP_INSN)
957 /* Delete (in effect) any obvious no-op moves. */
958 if (GET_CODE (PATTERN (insn)) == SET
959 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
960 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
961 && REGNO (SET_DEST (PATTERN (insn))) ==
962 REGNO (SET_SRC (PATTERN (insn)))
963 /* Insns carrying these notes are useful later on. */
964 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
966 PUT_CODE (insn, NOTE);
967 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
968 NOTE_SOURCE_FILE (insn) = 0;
970 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
972 /* If nothing but SETs of registers to themselves,
973 this insn can also be deleted. */
974 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
976 rtx tem = XVECEXP (PATTERN (insn), 0, i);
978 if (GET_CODE (tem) == USE
979 || GET_CODE (tem) == CLOBBER)
980 continue;
982 if (GET_CODE (tem) != SET
983 || GET_CODE (SET_DEST (tem)) != REG
984 || GET_CODE (SET_SRC (tem)) != REG
985 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
986 break;
989 if (i == XVECLEN (PATTERN (insn), 0)
990 /* Insns carrying these notes are useful later on. */
991 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
993 PUT_CODE (insn, NOTE);
994 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
995 NOTE_SOURCE_FILE (insn) = 0;
997 else
998 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1000 else if (GET_CODE (PATTERN (insn)) != USE)
1001 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1002 /* A SET that makes space on the stack cannot be dead.
1003 (Such SETs occur only for allocating variable-size data,
1004 so they will always have a PLUS or MINUS according to the
1005 direction of stack growth.)
1006 Even if this function never uses this stack pointer value,
1007 signal handlers do! */
1008 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
1009 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1010 #ifdef STACK_GROWS_DOWNWARD
1011 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
1012 #else
1013 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1014 #endif
1015 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
1016 INSN_VOLATILE (insn) = 1;
1020 if (n_basic_blocks > 0)
1021 #ifdef EXIT_IGNORE_STACK
1022 if (! EXIT_IGNORE_STACK
1023 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
1024 #endif
1026 /* If exiting needs the right stack value,
1027 consider the stack pointer live at the end of the function. */
1028 basic_block_live_at_end[n_basic_blocks - 1]
1029 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1030 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1031 basic_block_new_live_at_end[n_basic_blocks - 1]
1032 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1033 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1036 /* Mark the frame pointer is needed at the end of the function. If
1037 we end up eliminating it, it will be removed from the live list
1038 of each basic block by reload. */
1040 if (n_basic_blocks > 0)
1042 basic_block_live_at_end[n_basic_blocks - 1]
1043 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1044 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1045 basic_block_new_live_at_end[n_basic_blocks - 1]
1046 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1047 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1048 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1049 /* If they are different, also mark the hard frame pointer as live */
1050 basic_block_live_at_end[n_basic_blocks - 1]
1051 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1052 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1053 % REGSET_ELT_BITS);
1054 basic_block_new_live_at_end[n_basic_blocks - 1]
1055 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1056 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1057 % REGSET_ELT_BITS);
1058 #endif
1061 /* Mark all global registers as being live at the end of the function
1062 since they may be referenced by our caller. */
1064 if (n_basic_blocks > 0)
1065 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1066 if (global_regs[i])
1068 basic_block_live_at_end[n_basic_blocks - 1]
1069 [i / REGSET_ELT_BITS]
1070 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1071 basic_block_new_live_at_end[n_basic_blocks - 1]
1072 [i / REGSET_ELT_BITS]
1073 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1076 /* Propagate life info through the basic blocks
1077 around the graph of basic blocks.
1079 This is a relaxation process: each time a new register
1080 is live at the end of the basic block, we must scan the block
1081 to determine which registers are, as a consequence, live at the beginning
1082 of that block. These registers must then be marked live at the ends
1083 of all the blocks that can transfer control to that block.
1084 The process continues until it reaches a fixed point. */
1086 first_pass = 1;
1087 changed = 1;
1088 while (changed)
1090 changed = 0;
1091 for (i = n_basic_blocks - 1; i >= 0; i--)
1093 int consider = first_pass;
1094 int must_rescan = first_pass;
1095 register int j;
1097 if (!first_pass)
1099 /* Set CONSIDER if this block needs thinking about at all
1100 (that is, if the regs live now at the end of it
1101 are not the same as were live at the end of it when
1102 we last thought about it).
1103 Set must_rescan if it needs to be thought about
1104 instruction by instruction (that is, if any additional
1105 reg that is live at the end now but was not live there before
1106 is one of the significant regs of this basic block). */
1108 for (j = 0; j < regset_size; j++)
1110 register REGSET_ELT_TYPE x
1111 = (basic_block_new_live_at_end[i][j]
1112 & ~basic_block_live_at_end[i][j]);
1113 if (x)
1114 consider = 1;
1115 if (x & basic_block_significant[i][j])
1117 must_rescan = 1;
1118 consider = 1;
1119 break;
1123 if (! consider)
1124 continue;
1127 /* The live_at_start of this block may be changing,
1128 so another pass will be required after this one. */
1129 changed = 1;
1131 if (! must_rescan)
1133 /* No complete rescan needed;
1134 just record those variables newly known live at end
1135 as live at start as well. */
1136 for (j = 0; j < regset_size; j++)
1138 register REGSET_ELT_TYPE x
1139 = (basic_block_new_live_at_end[i][j]
1140 & ~basic_block_live_at_end[i][j]);
1141 basic_block_live_at_start[i][j] |= x;
1142 basic_block_live_at_end[i][j] |= x;
1145 else
1147 /* Update the basic_block_live_at_start
1148 by propagation backwards through the block. */
1149 bcopy ((char *) basic_block_new_live_at_end[i],
1150 (char *) basic_block_live_at_end[i], regset_bytes);
1151 bcopy ((char *) basic_block_live_at_end[i],
1152 (char *) basic_block_live_at_start[i], regset_bytes);
1153 propagate_block (basic_block_live_at_start[i],
1154 basic_block_head[i], basic_block_end[i], 0,
1155 first_pass ? basic_block_significant[i]
1156 : (regset) 0,
1161 register rtx jump, head;
1163 /* Update the basic_block_new_live_at_end's of the block
1164 that falls through into this one (if any). */
1165 head = basic_block_head[i];
1166 if (basic_block_drops_in[i])
1168 register int j;
1169 for (j = 0; j < regset_size; j++)
1170 basic_block_new_live_at_end[i-1][j]
1171 |= basic_block_live_at_start[i][j];
1174 /* Update the basic_block_new_live_at_end's of
1175 all the blocks that jump to this one. */
1176 if (GET_CODE (head) == CODE_LABEL)
1177 for (jump = LABEL_REFS (head);
1178 jump != head;
1179 jump = LABEL_NEXTREF (jump))
1181 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
1182 register int j;
1183 for (j = 0; j < regset_size; j++)
1184 basic_block_new_live_at_end[from_block][j]
1185 |= basic_block_live_at_start[i][j];
1188 #ifdef USE_C_ALLOCA
1189 alloca (0);
1190 #endif
1192 first_pass = 0;
1195 /* The only pseudos that are live at the beginning of the function are
1196 those that were not set anywhere in the function. local-alloc doesn't
1197 know how to handle these correctly, so mark them as not local to any
1198 one basic block. */
1200 if (n_basic_blocks > 0)
1201 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1202 if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
1203 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1204 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1206 /* Now the life information is accurate.
1207 Make one more pass over each basic block
1208 to delete dead stores, create autoincrement addressing
1209 and record how many times each register is used, is set, or dies.
1211 To save time, we operate directly in basic_block_live_at_end[i],
1212 thus destroying it (in fact, converting it into a copy of
1213 basic_block_live_at_start[i]). This is ok now because
1214 basic_block_live_at_end[i] is no longer used past this point. */
1216 max_scratch = 0;
1218 for (i = 0; i < n_basic_blocks; i++)
1220 propagate_block (basic_block_live_at_end[i],
1221 basic_block_head[i], basic_block_end[i], 1,
1222 (regset) 0, i);
1223 #ifdef USE_C_ALLOCA
1224 alloca (0);
1225 #endif
1228 #if 0
1229 /* Something live during a setjmp should not be put in a register
1230 on certain machines which restore regs from stack frames
1231 rather than from the jmpbuf.
1232 But we don't need to do this for the user's variables, since
1233 ANSI says only volatile variables need this. */
1234 #ifdef LONGJMP_RESTORE_FROM_STACK
1235 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1236 if (regs_live_at_setjmp[i / REGSET_ELT_BITS]
1237 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))
1238 && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1240 reg_live_length[i] = -1;
1241 reg_basic_block[i] = -1;
1243 #endif
1244 #endif
1246 /* We have a problem with any pseudoreg that
1247 lives across the setjmp. ANSI says that if a
1248 user variable does not change in value
1249 between the setjmp and the longjmp, then the longjmp preserves it.
1250 This includes longjmp from a place where the pseudo appears dead.
1251 (In principle, the value still exists if it is in scope.)
1252 If the pseudo goes in a hard reg, some other value may occupy
1253 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1254 Conclusion: such a pseudo must not go in a hard reg. */
1255 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1256 if ((regs_live_at_setjmp[i / REGSET_ELT_BITS]
1257 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1258 && regno_reg_rtx[i] != 0)
1260 reg_live_length[i] = -1;
1261 reg_basic_block[i] = -1;
1264 obstack_free (&flow_obstack, NULL_PTR);
1267 /* Subroutines of life analysis. */
1269 /* Allocate the permanent data structures that represent the results
1270 of life analysis. Not static since used also for stupid life analysis. */
1272 void
1273 allocate_for_life_analysis ()
1275 register int i;
1276 register regset tem;
1278 regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
1279 regset_bytes = regset_size * sizeof (*(regset)0);
1281 reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
1282 bzero ((char *) reg_n_refs, max_regno * sizeof (int));
1284 reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
1285 bzero ((char *) reg_n_sets, max_regno * sizeof (short));
1287 reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
1288 bzero ((char *) reg_n_deaths, max_regno * sizeof (short));
1290 reg_changes_size = (char *) oballoc (max_regno * sizeof (char));
1291 bzero (reg_changes_size, max_regno * sizeof (char));;
1293 reg_live_length = (int *) oballoc (max_regno * sizeof (int));
1294 bzero ((char *) reg_live_length, max_regno * sizeof (int));
1296 reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
1297 bzero ((char *) reg_n_calls_crossed, max_regno * sizeof (int));
1299 reg_basic_block = (int *) oballoc (max_regno * sizeof (int));
1300 for (i = 0; i < max_regno; i++)
1301 reg_basic_block[i] = REG_BLOCK_UNKNOWN;
1303 basic_block_live_at_start
1304 = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1305 tem = (regset) oballoc (n_basic_blocks * regset_bytes);
1306 bzero ((char *) tem, n_basic_blocks * regset_bytes);
1307 init_regset_vector (basic_block_live_at_start, tem,
1308 n_basic_blocks, regset_bytes);
1310 regs_live_at_setjmp = (regset) oballoc (regset_bytes);
1311 bzero ((char *) regs_live_at_setjmp, regset_bytes);
1314 /* Make each element of VECTOR point at a regset,
1315 taking the space for all those regsets from SPACE.
1316 SPACE is of type regset, but it is really as long as NELTS regsets.
1317 BYTES_PER_ELT is the number of bytes in one regset. */
1319 static void
1320 init_regset_vector (vector, space, nelts, bytes_per_elt)
1321 regset *vector;
1322 regset space;
1323 int nelts;
1324 int bytes_per_elt;
1326 register int i;
1327 register regset p = space;
1329 for (i = 0; i < nelts; i++)
1331 vector[i] = p;
1332 p += bytes_per_elt / sizeof (*p);
1336 /* Compute the registers live at the beginning of a basic block
1337 from those live at the end.
1339 When called, OLD contains those live at the end.
1340 On return, it contains those live at the beginning.
1341 FIRST and LAST are the first and last insns of the basic block.
1343 FINAL is nonzero if we are doing the final pass which is not
1344 for computing the life info (since that has already been done)
1345 but for acting on it. On this pass, we delete dead stores,
1346 set up the logical links and dead-variables lists of instructions,
1347 and merge instructions for autoincrement and autodecrement addresses.
1349 SIGNIFICANT is nonzero only the first time for each basic block.
1350 If it is nonzero, it points to a regset in which we store
1351 a 1 for each register that is set within the block.
1353 BNUM is the number of the basic block. */
1355 static void
1356 propagate_block (old, first, last, final, significant, bnum)
1357 register regset old;
1358 rtx first;
1359 rtx last;
1360 int final;
1361 regset significant;
1362 int bnum;
1364 register rtx insn;
1365 rtx prev;
1366 regset live;
1367 regset dead;
1369 /* The following variables are used only if FINAL is nonzero. */
1370 /* This vector gets one element for each reg that has been live
1371 at any point in the basic block that has been scanned so far.
1372 SOMETIMES_MAX says how many elements are in use so far.
1373 In each element, OFFSET is the byte-number within a regset
1374 for the register described by the element, and BIT is a mask
1375 for that register's bit within the byte. */
1376 register struct sometimes { short offset; short bit; } *regs_sometimes_live;
1377 int sometimes_max = 0;
1378 /* This regset has 1 for each reg that we have seen live so far.
1379 It and REGS_SOMETIMES_LIVE are updated together. */
1380 regset maxlive;
1382 /* The loop depth may change in the middle of a basic block. Since we
1383 scan from end to beginning, we start with the depth at the end of the
1384 current basic block, and adjust as we pass ends and starts of loops. */
1385 loop_depth = basic_block_loop_depth[bnum];
1387 dead = (regset) alloca (regset_bytes);
1388 live = (regset) alloca (regset_bytes);
1390 cc0_live = 0;
1391 last_mem_set = 0;
1393 /* Include any notes at the end of the block in the scan.
1394 This is in case the block ends with a call to setjmp. */
1396 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1398 /* Look for loop boundaries, we are going forward here. */
1399 last = NEXT_INSN (last);
1400 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1401 loop_depth++;
1402 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1403 loop_depth--;
1406 if (final)
1408 register int i, offset;
1409 REGSET_ELT_TYPE bit;
1411 num_scratch = 0;
1412 maxlive = (regset) alloca (regset_bytes);
1413 bcopy ((char *) old, (char *) maxlive, regset_bytes);
1414 regs_sometimes_live
1415 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
1417 /* Process the regs live at the end of the block.
1418 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1419 Also mark them as not local to any one basic block. */
1421 for (offset = 0, i = 0; offset < regset_size; offset++)
1422 for (bit = 1; bit; bit <<= 1, i++)
1424 if (i == max_regno)
1425 break;
1426 if (old[offset] & bit)
1428 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1429 regs_sometimes_live[sometimes_max].offset = offset;
1430 regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
1431 sometimes_max++;
1436 /* Scan the block an insn at a time from end to beginning. */
1438 for (insn = last; ; insn = prev)
1440 prev = PREV_INSN (insn);
1442 if (GET_CODE (insn) == NOTE)
1444 /* Look for loop boundaries, remembering that we are going
1445 backwards. */
1446 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1447 loop_depth++;
1448 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1449 loop_depth--;
1451 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1452 Abort now rather than setting register status incorrectly. */
1453 if (loop_depth == 0)
1454 abort ();
1456 /* If this is a call to `setjmp' et al,
1457 warn if any non-volatile datum is live. */
1459 if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1461 int i;
1462 for (i = 0; i < regset_size; i++)
1463 regs_live_at_setjmp[i] |= old[i];
1467 /* Update the life-status of regs for this insn.
1468 First DEAD gets which regs are set in this insn
1469 then LIVE gets which regs are used in this insn.
1470 Then the regs live before the insn
1471 are those live after, with DEAD regs turned off,
1472 and then LIVE regs turned on. */
1474 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1476 register int i;
1477 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1478 int insn_is_dead
1479 = (insn_dead_p (PATTERN (insn), old, 0)
1480 /* Don't delete something that refers to volatile storage! */
1481 && ! INSN_VOLATILE (insn));
1482 int libcall_is_dead
1483 = (insn_is_dead && note != 0
1484 && libcall_dead_p (PATTERN (insn), old, note, insn));
1486 /* If an instruction consists of just dead store(s) on final pass,
1487 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1488 We could really delete it with delete_insn, but that
1489 can cause trouble for first or last insn in a basic block. */
1490 if (final && insn_is_dead)
1492 PUT_CODE (insn, NOTE);
1493 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1494 NOTE_SOURCE_FILE (insn) = 0;
1496 /* CC0 is now known to be dead. Either this insn used it,
1497 in which case it doesn't anymore, or clobbered it,
1498 so the next insn can't use it. */
1499 cc0_live = 0;
1501 /* If this insn is copying the return value from a library call,
1502 delete the entire library call. */
1503 if (libcall_is_dead)
1505 rtx first = XEXP (note, 0);
1506 rtx p = insn;
1507 while (INSN_DELETED_P (first))
1508 first = NEXT_INSN (first);
1509 while (p != first)
1511 p = PREV_INSN (p);
1512 PUT_CODE (p, NOTE);
1513 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1514 NOTE_SOURCE_FILE (p) = 0;
1517 goto flushed;
1520 for (i = 0; i < regset_size; i++)
1522 dead[i] = 0; /* Faster than bzero here */
1523 live[i] = 0; /* since regset_size is usually small */
1526 /* See if this is an increment or decrement that can be
1527 merged into a following memory address. */
1528 #ifdef AUTO_INC_DEC
1530 register rtx x = PATTERN (insn);
1531 /* Does this instruction increment or decrement a register? */
1532 if (final && GET_CODE (x) == SET
1533 && GET_CODE (SET_DEST (x)) == REG
1534 && (GET_CODE (SET_SRC (x)) == PLUS
1535 || GET_CODE (SET_SRC (x)) == MINUS)
1536 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1537 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1538 /* Ok, look for a following memory ref we can combine with.
1539 If one is found, change the memory ref to a PRE_INC
1540 or PRE_DEC, cancel this insn, and return 1.
1541 Return 0 if nothing has been done. */
1542 && try_pre_increment_1 (insn))
1543 goto flushed;
1545 #endif /* AUTO_INC_DEC */
1547 /* If this is not the final pass, and this insn is copying the
1548 value of a library call and it's dead, don't scan the
1549 insns that perform the library call, so that the call's
1550 arguments are not marked live. */
1551 if (libcall_is_dead)
1553 /* Mark the dest reg as `significant'. */
1554 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
1556 insn = XEXP (note, 0);
1557 prev = PREV_INSN (insn);
1559 else if (GET_CODE (PATTERN (insn)) == SET
1560 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1561 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1562 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1563 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1564 /* We have an insn to pop a constant amount off the stack.
1565 (Such insns use PLUS regardless of the direction of the stack,
1566 and any insn to adjust the stack by a constant is always a pop.)
1567 These insns, if not dead stores, have no effect on life. */
1569 else
1571 /* LIVE gets the regs used in INSN;
1572 DEAD gets those set by it. Dead insns don't make anything
1573 live. */
1575 mark_set_regs (old, dead, PATTERN (insn),
1576 final ? insn : NULL_RTX, significant);
1578 /* If an insn doesn't use CC0, it becomes dead since we
1579 assume that every insn clobbers it. So show it dead here;
1580 mark_used_regs will set it live if it is referenced. */
1581 cc0_live = 0;
1583 if (! insn_is_dead)
1584 mark_used_regs (old, live, PATTERN (insn), final, insn);
1586 /* Sometimes we may have inserted something before INSN (such as
1587 a move) when we make an auto-inc. So ensure we will scan
1588 those insns. */
1589 #ifdef AUTO_INC_DEC
1590 prev = PREV_INSN (insn);
1591 #endif
1593 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1595 register int i;
1597 rtx note;
1599 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1600 note;
1601 note = XEXP (note, 1))
1602 if (GET_CODE (XEXP (note, 0)) == USE)
1603 mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
1604 final, insn);
1606 /* Each call clobbers all call-clobbered regs that are not
1607 global. Note that the function-value reg is a
1608 call-clobbered reg, and mark_set_regs has already had
1609 a chance to handle it. */
1611 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1612 if (call_used_regs[i] && ! global_regs[i])
1613 dead[i / REGSET_ELT_BITS]
1614 |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
1616 /* The stack ptr is used (honorarily) by a CALL insn. */
1617 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1618 |= ((REGSET_ELT_TYPE) 1
1619 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
1621 /* Calls may also reference any of the global registers,
1622 so they are made live. */
1623 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1624 if (global_regs[i])
1625 mark_used_regs (old, live,
1626 gen_rtx (REG, reg_raw_mode[i], i),
1627 final, insn);
1629 /* Calls also clobber memory. */
1630 last_mem_set = 0;
1633 /* Update OLD for the registers used or set. */
1634 for (i = 0; i < regset_size; i++)
1636 old[i] &= ~dead[i];
1637 old[i] |= live[i];
1640 if (GET_CODE (insn) == CALL_INSN && final)
1642 /* Any regs live at the time of a call instruction
1643 must not go in a register clobbered by calls.
1644 Find all regs now live and record this for them. */
1646 register struct sometimes *p = regs_sometimes_live;
1648 for (i = 0; i < sometimes_max; i++, p++)
1649 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1650 reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
1654 /* On final pass, add any additional sometimes-live regs
1655 into MAXLIVE and REGS_SOMETIMES_LIVE.
1656 Also update counts of how many insns each reg is live at. */
1658 if (final)
1660 for (i = 0; i < regset_size; i++)
1662 register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
1664 if (diff)
1666 register int regno;
1667 maxlive[i] |= diff;
1668 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
1669 if (diff & ((REGSET_ELT_TYPE) 1 << regno))
1671 regs_sometimes_live[sometimes_max].offset = i;
1672 regs_sometimes_live[sometimes_max].bit = regno;
1673 diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
1674 sometimes_max++;
1680 register struct sometimes *p = regs_sometimes_live;
1681 for (i = 0; i < sometimes_max; i++, p++)
1683 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1684 reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
1689 flushed: ;
1690 if (insn == first)
1691 break;
1694 if (num_scratch > max_scratch)
1695 max_scratch = num_scratch;
1698 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1699 (SET expressions whose destinations are registers dead after the insn).
1700 NEEDED is the regset that says which regs are alive after the insn.
1702 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1704 static int
1705 insn_dead_p (x, needed, call_ok)
1706 rtx x;
1707 regset needed;
1708 int call_ok;
1710 register RTX_CODE code = GET_CODE (x);
1711 /* If setting something that's a reg or part of one,
1712 see if that register's altered value will be live. */
1714 if (code == SET)
1716 register rtx r = SET_DEST (x);
1717 /* A SET that is a subroutine call cannot be dead. */
1718 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1719 return 0;
1721 #ifdef HAVE_cc0
1722 if (GET_CODE (r) == CC0)
1723 return ! cc0_live;
1724 #endif
1726 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1727 && rtx_equal_p (r, last_mem_set))
1728 return 1;
1730 while (GET_CODE (r) == SUBREG
1731 || GET_CODE (r) == STRICT_LOW_PART
1732 || GET_CODE (r) == ZERO_EXTRACT
1733 || GET_CODE (r) == SIGN_EXTRACT)
1734 r = SUBREG_REG (r);
1736 if (GET_CODE (r) == REG)
1738 register int regno = REGNO (r);
1739 register int offset = regno / REGSET_ELT_BITS;
1740 register REGSET_ELT_TYPE bit
1741 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1743 /* Don't delete insns to set global regs. */
1744 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1745 /* Make sure insns to set frame pointer aren't deleted. */
1746 || regno == FRAME_POINTER_REGNUM
1747 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1748 || regno == HARD_FRAME_POINTER_REGNUM
1749 #endif
1750 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1751 /* Make sure insns to set arg pointer are never deleted
1752 (if the arg pointer isn't fixed, there will be a USE for
1753 it, so we can treat it normally). */
1754 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1755 #endif
1756 || (needed[offset] & bit) != 0)
1757 return 0;
1759 /* If this is a hard register, verify that subsequent words are
1760 not needed. */
1761 if (regno < FIRST_PSEUDO_REGISTER)
1763 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1765 while (--n > 0)
1766 if ((needed[(regno + n) / REGSET_ELT_BITS]
1767 & ((REGSET_ELT_TYPE) 1
1768 << ((regno + n) % REGSET_ELT_BITS))) != 0)
1769 return 0;
1772 return 1;
1775 /* If performing several activities,
1776 insn is dead if each activity is individually dead.
1777 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1778 that's inside a PARALLEL doesn't make the insn worth keeping. */
1779 else if (code == PARALLEL)
1781 register int i = XVECLEN (x, 0);
1782 for (i--; i >= 0; i--)
1784 rtx elt = XVECEXP (x, 0, i);
1785 if (!insn_dead_p (elt, needed, call_ok)
1786 && GET_CODE (elt) != CLOBBER
1787 && GET_CODE (elt) != USE)
1788 return 0;
1790 return 1;
1792 /* We do not check CLOBBER or USE here.
1793 An insn consisting of just a CLOBBER or just a USE
1794 should not be deleted. */
1795 return 0;
1798 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1799 return 1 if the entire library call is dead.
1800 This is true if X copies a register (hard or pseudo)
1801 and if the hard return reg of the call insn is dead.
1802 (The caller should have tested the destination of X already for death.)
1804 If this insn doesn't just copy a register, then we don't
1805 have an ordinary libcall. In that case, cse could not have
1806 managed to substitute the source for the dest later on,
1807 so we can assume the libcall is dead.
1809 NEEDED is the bit vector of pseudoregs live before this insn.
1810 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1812 static int
1813 libcall_dead_p (x, needed, note, insn)
1814 rtx x;
1815 regset needed;
1816 rtx note;
1817 rtx insn;
1819 register RTX_CODE code = GET_CODE (x);
1821 if (code == SET)
1823 register rtx r = SET_SRC (x);
1824 if (GET_CODE (r) == REG)
1826 rtx call = XEXP (note, 0);
1827 register int i;
1829 /* Find the call insn. */
1830 while (call != insn && GET_CODE (call) != CALL_INSN)
1831 call = NEXT_INSN (call);
1833 /* If there is none, do nothing special,
1834 since ordinary death handling can understand these insns. */
1835 if (call == insn)
1836 return 0;
1838 /* See if the hard reg holding the value is dead.
1839 If this is a PARALLEL, find the call within it. */
1840 call = PATTERN (call);
1841 if (GET_CODE (call) == PARALLEL)
1843 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1844 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1845 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1846 break;
1848 /* This may be a library call that is returning a value
1849 via invisible pointer. Do nothing special, since
1850 ordinary death handling can understand these insns. */
1851 if (i < 0)
1852 return 0;
1854 call = XVECEXP (call, 0, i);
1857 return insn_dead_p (call, needed, 1);
1860 return 1;
1863 /* Return 1 if register REGNO was used before it was set.
1864 In other words, if it is live at function entry.
1865 Don't count global register variables, though. */
1868 regno_uninitialized (regno)
1869 int regno;
1871 if (n_basic_blocks == 0
1872 || (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1873 return 0;
1875 return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1876 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)));
1879 /* 1 if register REGNO was alive at a place where `setjmp' was called
1880 and was set more than once or is an argument.
1881 Such regs may be clobbered by `longjmp'. */
1884 regno_clobbered_at_setjmp (regno)
1885 int regno;
1887 if (n_basic_blocks == 0)
1888 return 0;
1890 return ((reg_n_sets[regno] > 1
1891 || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1892 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
1893 && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
1894 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))));
1897 /* Process the registers that are set within X.
1898 Their bits are set to 1 in the regset DEAD,
1899 because they are dead prior to this insn.
1901 If INSN is nonzero, it is the insn being processed
1902 and the fact that it is nonzero implies this is the FINAL pass
1903 in propagate_block. In this case, various info about register
1904 usage is stored, LOG_LINKS fields of insns are set up. */
1906 static void
1907 mark_set_regs (needed, dead, x, insn, significant)
1908 regset needed;
1909 regset dead;
1910 rtx x;
1911 rtx insn;
1912 regset significant;
1914 register RTX_CODE code = GET_CODE (x);
1916 if (code == SET || code == CLOBBER)
1917 mark_set_1 (needed, dead, x, insn, significant);
1918 else if (code == PARALLEL)
1920 register int i;
1921 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1923 code = GET_CODE (XVECEXP (x, 0, i));
1924 if (code == SET || code == CLOBBER)
1925 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1930 /* Process a single SET rtx, X. */
1932 static void
1933 mark_set_1 (needed, dead, x, insn, significant)
1934 regset needed;
1935 regset dead;
1936 rtx x;
1937 rtx insn;
1938 regset significant;
1940 register int regno;
1941 register rtx reg = SET_DEST (x);
1943 /* Modifying just one hardware register of a multi-reg value
1944 or just a byte field of a register
1945 does not mean the value from before this insn is now dead.
1946 But it does mean liveness of that register at the end of the block
1947 is significant.
1949 Within mark_set_1, however, we treat it as if the register is
1950 indeed modified. mark_used_regs will, however, also treat this
1951 register as being used. Thus, we treat these insns as setting a
1952 new value for the register as a function of its old value. This
1953 cases LOG_LINKS to be made appropriately and this will help combine. */
1955 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1956 || GET_CODE (reg) == SIGN_EXTRACT
1957 || GET_CODE (reg) == STRICT_LOW_PART)
1958 reg = XEXP (reg, 0);
1960 /* If we are writing into memory or into a register mentioned in the
1961 address of the last thing stored into memory, show we don't know
1962 what the last store was. If we are writing memory, save the address
1963 unless it is volatile. */
1964 if (GET_CODE (reg) == MEM
1965 || (GET_CODE (reg) == REG
1966 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1967 last_mem_set = 0;
1969 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
1970 /* There are no REG_INC notes for SP, so we can't assume we'll see
1971 everything that invalidates it. To be safe, don't eliminate any
1972 stores though SP; none of them should be redundant anyway. */
1973 && ! reg_mentioned_p (stack_pointer_rtx, reg))
1974 last_mem_set = reg;
1976 if (GET_CODE (reg) == REG
1977 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
1978 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1979 && regno != HARD_FRAME_POINTER_REGNUM
1980 #endif
1981 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1982 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1983 #endif
1984 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1985 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1987 register int offset = regno / REGSET_ELT_BITS;
1988 register REGSET_ELT_TYPE bit
1989 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1990 REGSET_ELT_TYPE all_needed = (needed[offset] & bit);
1991 REGSET_ELT_TYPE some_needed = (needed[offset] & bit);
1993 /* Mark it as a significant register for this basic block. */
1994 if (significant)
1995 significant[offset] |= bit;
1997 /* Mark it as as dead before this insn. */
1998 dead[offset] |= bit;
2000 /* A hard reg in a wide mode may really be multiple registers.
2001 If so, mark all of them just like the first. */
2002 if (regno < FIRST_PSEUDO_REGISTER)
2004 int n;
2006 /* Nothing below is needed for the stack pointer; get out asap.
2007 Eg, log links aren't needed, since combine won't use them. */
2008 if (regno == STACK_POINTER_REGNUM)
2009 return;
2011 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2012 while (--n > 0)
2014 if (significant)
2015 significant[(regno + n) / REGSET_ELT_BITS]
2016 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2017 dead[(regno + n) / REGSET_ELT_BITS]
2018 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2019 some_needed
2020 |= (needed[(regno + n) / REGSET_ELT_BITS]
2021 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2022 all_needed
2023 &= (needed[(regno + n) / REGSET_ELT_BITS]
2024 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2027 /* Additional data to record if this is the final pass. */
2028 if (insn)
2030 register rtx y = reg_next_use[regno];
2031 register int blocknum = BLOCK_NUM (insn);
2033 /* If this is a hard reg, record this function uses the reg. */
2035 if (regno < FIRST_PSEUDO_REGISTER)
2037 register int i;
2038 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
2040 for (i = regno; i < endregno; i++)
2042 /* The next use is no longer "next", since a store
2043 intervenes. */
2044 reg_next_use[i] = 0;
2046 regs_ever_live[i] = 1;
2047 reg_n_sets[i]++;
2050 else
2052 /* The next use is no longer "next", since a store
2053 intervenes. */
2054 reg_next_use[regno] = 0;
2056 /* Keep track of which basic blocks each reg appears in. */
2058 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2059 reg_basic_block[regno] = blocknum;
2060 else if (reg_basic_block[regno] != blocknum)
2061 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2063 /* Count (weighted) references, stores, etc. This counts a
2064 register twice if it is modified, but that is correct. */
2065 reg_n_sets[regno]++;
2067 reg_n_refs[regno] += loop_depth;
2069 /* The insns where a reg is live are normally counted
2070 elsewhere, but we want the count to include the insn
2071 where the reg is set, and the normal counting mechanism
2072 would not count it. */
2073 reg_live_length[regno]++;
2076 if (all_needed)
2078 /* Make a logical link from the next following insn
2079 that uses this register, back to this insn.
2080 The following insns have already been processed.
2082 We don't build a LOG_LINK for hard registers containing
2083 in ASM_OPERANDs. If these registers get replaced,
2084 we might wind up changing the semantics of the insn,
2085 even if reload can make what appear to be valid assignments
2086 later. */
2087 if (y && (BLOCK_NUM (y) == blocknum)
2088 && (regno >= FIRST_PSEUDO_REGISTER
2089 || asm_noperands (PATTERN (y)) < 0))
2090 LOG_LINKS (y)
2091 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
2093 else if (! some_needed)
2095 /* Note that dead stores have already been deleted when possible
2096 If we get here, we have found a dead store that cannot
2097 be eliminated (because the same insn does something useful).
2098 Indicate this by marking the reg being set as dying here. */
2099 REG_NOTES (insn)
2100 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2101 reg_n_deaths[REGNO (reg)]++;
2103 else
2105 /* This is a case where we have a multi-word hard register
2106 and some, but not all, of the words of the register are
2107 needed in subsequent insns. Write REG_UNUSED notes
2108 for those parts that were not needed. This case should
2109 be rare. */
2111 int i;
2113 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
2114 i >= 0; i--)
2115 if ((needed[(regno + i) / REGSET_ELT_BITS]
2116 & ((REGSET_ELT_TYPE) 1
2117 << ((regno + i) % REGSET_ELT_BITS))) == 0)
2118 REG_NOTES (insn)
2119 = gen_rtx (EXPR_LIST, REG_UNUSED,
2120 gen_rtx (REG, reg_raw_mode[regno + i],
2121 regno + i),
2122 REG_NOTES (insn));
2126 else if (GET_CODE (reg) == REG)
2127 reg_next_use[regno] = 0;
2129 /* If this is the last pass and this is a SCRATCH, show it will be dying
2130 here and count it. */
2131 else if (GET_CODE (reg) == SCRATCH && insn != 0)
2133 REG_NOTES (insn)
2134 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2135 num_scratch++;
2139 #ifdef AUTO_INC_DEC
2141 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
2142 reference. */
2144 static void
2145 find_auto_inc (needed, x, insn)
2146 regset needed;
2147 rtx x;
2148 rtx insn;
2150 rtx addr = XEXP (x, 0);
2151 HOST_WIDE_INT offset = 0;
2152 rtx set;
2154 /* Here we detect use of an index register which might be good for
2155 postincrement, postdecrement, preincrement, or predecrement. */
2157 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2158 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
2160 if (GET_CODE (addr) == REG)
2162 register rtx y;
2163 register int size = GET_MODE_SIZE (GET_MODE (x));
2164 rtx use;
2165 rtx incr;
2166 int regno = REGNO (addr);
2168 /* Is the next use an increment that might make auto-increment? */
2169 if ((incr = reg_next_use[regno]) != 0
2170 && (set = single_set (incr)) != 0
2171 && GET_CODE (set) == SET
2172 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
2173 /* Can't add side effects to jumps; if reg is spilled and
2174 reloaded, there's no way to store back the altered value. */
2175 && GET_CODE (insn) != JUMP_INSN
2176 && (y = SET_SRC (set), GET_CODE (y) == PLUS)
2177 && XEXP (y, 0) == addr
2178 && GET_CODE (XEXP (y, 1)) == CONST_INT
2179 && (0
2180 #ifdef HAVE_POST_INCREMENT
2181 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
2182 #endif
2183 #ifdef HAVE_POST_DECREMENT
2184 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
2185 #endif
2186 #ifdef HAVE_PRE_INCREMENT
2187 || (INTVAL (XEXP (y, 1)) == size && offset == size)
2188 #endif
2189 #ifdef HAVE_PRE_DECREMENT
2190 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
2191 #endif
2193 /* Make sure this reg appears only once in this insn. */
2194 && (use = find_use_as_address (PATTERN (insn), addr, offset),
2195 use != 0 && use != (rtx) 1))
2197 rtx q = SET_DEST (set);
2198 enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
2199 ? (offset ? PRE_INC : POST_INC)
2200 : (offset ? PRE_DEC : POST_DEC));
2202 if (dead_or_set_p (incr, addr))
2204 /* This is the simple case. Try to make the auto-inc. If
2205 we can't, we are done. Otherwise, we will do any
2206 needed updates below. */
2207 if (! validate_change (insn, &XEXP (x, 0),
2208 gen_rtx (inc_code, Pmode, addr),
2210 return;
2212 else if (GET_CODE (q) == REG
2213 /* PREV_INSN used here to check the semi-open interval
2214 [insn,incr). */
2215 && ! reg_used_between_p (q, PREV_INSN (insn), incr))
2217 /* We have *p followed sometime later by q = p+size.
2218 Both p and q must be live afterward,
2219 and q is not used between INSN and it's assignment.
2220 Change it to q = p, ...*q..., q = q+size.
2221 Then fall into the usual case. */
2222 rtx insns, temp;
2224 start_sequence ();
2225 emit_move_insn (q, addr);
2226 insns = get_insns ();
2227 end_sequence ();
2229 /* If anything in INSNS have UID's that don't fit within the
2230 extra space we allocate earlier, we can't make this auto-inc.
2231 This should never happen. */
2232 for (temp = insns; temp; temp = NEXT_INSN (temp))
2234 if (INSN_UID (temp) > max_uid_for_flow)
2235 return;
2236 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2239 /* If we can't make the auto-inc, or can't make the
2240 replacement into Y, exit. There's no point in making
2241 the change below if we can't do the auto-inc and doing
2242 so is not correct in the pre-inc case. */
2244 validate_change (insn, &XEXP (x, 0),
2245 gen_rtx (inc_code, Pmode, q),
2247 validate_change (incr, &XEXP (y, 0), q, 1);
2248 if (! apply_change_group ())
2249 return;
2251 /* We now know we'll be doing this change, so emit the
2252 new insn(s) and do the updates. */
2253 emit_insns_before (insns, insn);
2255 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2256 basic_block_head[BLOCK_NUM (insn)] = insns;
2258 /* INCR will become a NOTE and INSN won't contain a
2259 use of ADDR. If a use of ADDR was just placed in
2260 the insn before INSN, make that the next use.
2261 Otherwise, invalidate it. */
2262 if (GET_CODE (PREV_INSN (insn)) == INSN
2263 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2264 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2265 reg_next_use[regno] = PREV_INSN (insn);
2266 else
2267 reg_next_use[regno] = 0;
2269 addr = q;
2270 regno = REGNO (q);
2272 /* REGNO is now used in INCR which is below INSN, but
2273 it previously wasn't live here. If we don't mark
2274 it as needed, we'll put a REG_DEAD note for it
2275 on this insn, which is incorrect. */
2276 needed[regno / REGSET_ELT_BITS]
2277 |= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2279 /* If there are any calls between INSN and INCR, show
2280 that REGNO now crosses them. */
2281 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2282 if (GET_CODE (temp) == CALL_INSN)
2283 reg_n_calls_crossed[regno]++;
2285 else
2286 return;
2288 /* If we haven't returned, it means we were able to make the
2289 auto-inc, so update the status. First, record that this insn
2290 has an implicit side effect. */
2292 REG_NOTES (insn)
2293 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2295 /* Modify the old increment-insn to simply copy
2296 the already-incremented value of our register. */
2297 if (! validate_change (incr, &SET_SRC (set), addr, 0))
2298 abort ();
2300 /* If that makes it a no-op (copying the register into itself) delete
2301 it so it won't appear to be a "use" and a "set" of this
2302 register. */
2303 if (SET_DEST (set) == addr)
2305 PUT_CODE (incr, NOTE);
2306 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2307 NOTE_SOURCE_FILE (incr) = 0;
2310 if (regno >= FIRST_PSEUDO_REGISTER)
2312 /* Count an extra reference to the reg. When a reg is
2313 incremented, spilling it is worse, so we want to make
2314 that less likely. */
2315 reg_n_refs[regno] += loop_depth;
2317 /* Count the increment as a setting of the register,
2318 even though it isn't a SET in rtl. */
2319 reg_n_sets[regno]++;
2324 #endif /* AUTO_INC_DEC */
2326 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2327 This is done assuming the registers needed from X
2328 are those that have 1-bits in NEEDED.
2330 On the final pass, FINAL is 1. This means try for autoincrement
2331 and count the uses and deaths of each pseudo-reg.
2333 INSN is the containing instruction. If INSN is dead, this function is not
2334 called. */
2336 static void
2337 mark_used_regs (needed, live, x, final, insn)
2338 regset needed;
2339 regset live;
2340 rtx x;
2341 int final;
2342 rtx insn;
2344 register RTX_CODE code;
2345 register int regno;
2346 int i;
2348 retry:
2349 code = GET_CODE (x);
2350 switch (code)
2352 case LABEL_REF:
2353 case SYMBOL_REF:
2354 case CONST_INT:
2355 case CONST:
2356 case CONST_DOUBLE:
2357 case PC:
2358 case ADDR_VEC:
2359 case ADDR_DIFF_VEC:
2360 case ASM_INPUT:
2361 return;
2363 #ifdef HAVE_cc0
2364 case CC0:
2365 cc0_live = 1;
2366 return;
2367 #endif
2369 case CLOBBER:
2370 /* If we are clobbering a MEM, mark any registers inside the address
2371 as being used. */
2372 if (GET_CODE (XEXP (x, 0)) == MEM)
2373 mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
2374 return;
2376 case MEM:
2377 /* Invalidate the data for the last MEM stored. We could do this only
2378 if the addresses conflict, but this doesn't seem worthwhile. */
2379 last_mem_set = 0;
2381 #ifdef AUTO_INC_DEC
2382 if (final)
2383 find_auto_inc (needed, x, insn);
2384 #endif
2385 break;
2387 case SUBREG:
2388 if (GET_CODE (SUBREG_REG (x)) == REG
2389 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
2390 && (GET_MODE_SIZE (GET_MODE (x))
2391 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2392 reg_changes_size[REGNO (SUBREG_REG (x))] = 1;
2394 /* While we're here, optimize this case. */
2395 x = SUBREG_REG (x);
2397 /* In case the SUBREG is not of a register, don't optimize */
2398 if (GET_CODE (x) != REG)
2400 mark_used_regs (needed, live, x, final, insn);
2401 return;
2404 /* ... fall through ... */
2406 case REG:
2407 /* See a register other than being set
2408 => mark it as needed. */
2410 regno = REGNO (x);
2412 register int offset = regno / REGSET_ELT_BITS;
2413 register REGSET_ELT_TYPE bit
2414 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2415 REGSET_ELT_TYPE all_needed = needed[offset] & bit;
2416 REGSET_ELT_TYPE some_needed = needed[offset] & bit;
2418 live[offset] |= bit;
2419 /* A hard reg in a wide mode may really be multiple registers.
2420 If so, mark all of them just like the first. */
2421 if (regno < FIRST_PSEUDO_REGISTER)
2423 int n;
2425 /* For stack ptr or fixed arg pointer,
2426 nothing below can be necessary, so waste no more time. */
2427 if (regno == STACK_POINTER_REGNUM
2428 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2429 || regno == HARD_FRAME_POINTER_REGNUM
2430 #endif
2431 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2432 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2433 #endif
2434 || regno == FRAME_POINTER_REGNUM)
2436 /* If this is a register we are going to try to eliminate,
2437 don't mark it live here. If we are successful in
2438 eliminating it, it need not be live unless it is used for
2439 pseudos, in which case it will have been set live when
2440 it was allocated to the pseudos. If the register will not
2441 be eliminated, reload will set it live at that point. */
2443 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2444 regs_ever_live[regno] = 1;
2445 return;
2447 /* No death notes for global register variables;
2448 their values are live after this function exits. */
2449 if (global_regs[regno])
2451 if (final)
2452 reg_next_use[regno] = insn;
2453 return;
2456 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2457 while (--n > 0)
2459 live[(regno + n) / REGSET_ELT_BITS]
2460 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2461 some_needed
2462 |= (needed[(regno + n) / REGSET_ELT_BITS]
2463 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2464 all_needed
2465 &= (needed[(regno + n) / REGSET_ELT_BITS]
2466 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2469 if (final)
2471 /* Record where each reg is used, so when the reg
2472 is set we know the next insn that uses it. */
2474 reg_next_use[regno] = insn;
2476 if (regno < FIRST_PSEUDO_REGISTER)
2478 /* If a hard reg is being used,
2479 record that this function does use it. */
2481 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2482 if (i == 0)
2483 i = 1;
2485 regs_ever_live[regno + --i] = 1;
2486 while (i > 0);
2488 else
2490 /* Keep track of which basic block each reg appears in. */
2492 register int blocknum = BLOCK_NUM (insn);
2494 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2495 reg_basic_block[regno] = blocknum;
2496 else if (reg_basic_block[regno] != blocknum)
2497 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2499 /* Count (weighted) number of uses of each reg. */
2501 reg_n_refs[regno] += loop_depth;
2504 /* Record and count the insns in which a reg dies.
2505 If it is used in this insn and was dead below the insn
2506 then it dies in this insn. If it was set in this insn,
2507 we do not make a REG_DEAD note; likewise if we already
2508 made such a note. */
2510 if (! all_needed
2511 && ! dead_or_set_p (insn, x)
2512 #if 0
2513 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2514 #endif
2517 /* Check for the case where the register dying partially
2518 overlaps the register set by this insn. */
2519 if (regno < FIRST_PSEUDO_REGISTER
2520 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2522 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2523 while (--n >= 0)
2524 some_needed |= dead_or_set_regno_p (insn, regno + n);
2527 /* If none of the words in X is needed, make a REG_DEAD
2528 note. Otherwise, we must make partial REG_DEAD notes. */
2529 if (! some_needed)
2531 REG_NOTES (insn)
2532 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2533 reg_n_deaths[regno]++;
2535 else
2537 int i;
2539 /* Don't make a REG_DEAD note for a part of a register
2540 that is set in the insn. */
2542 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2543 i >= 0; i--)
2544 if ((needed[(regno + i) / REGSET_ELT_BITS]
2545 & ((REGSET_ELT_TYPE) 1
2546 << ((regno + i) % REGSET_ELT_BITS))) == 0
2547 && ! dead_or_set_regno_p (insn, regno + i))
2548 REG_NOTES (insn)
2549 = gen_rtx (EXPR_LIST, REG_DEAD,
2550 gen_rtx (REG, reg_raw_mode[regno + i],
2551 regno + i),
2552 REG_NOTES (insn));
2557 return;
2559 case SET:
2561 register rtx testreg = SET_DEST (x);
2562 int mark_dest = 0;
2564 /* If storing into MEM, don't show it as being used. But do
2565 show the address as being used. */
2566 if (GET_CODE (testreg) == MEM)
2568 #ifdef AUTO_INC_DEC
2569 if (final)
2570 find_auto_inc (needed, testreg, insn);
2571 #endif
2572 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2573 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2574 return;
2577 /* Storing in STRICT_LOW_PART is like storing in a reg
2578 in that this SET might be dead, so ignore it in TESTREG.
2579 but in some other ways it is like using the reg.
2581 Storing in a SUBREG or a bit field is like storing the entire
2582 register in that if the register's value is not used
2583 then this SET is not needed. */
2584 while (GET_CODE (testreg) == STRICT_LOW_PART
2585 || GET_CODE (testreg) == ZERO_EXTRACT
2586 || GET_CODE (testreg) == SIGN_EXTRACT
2587 || GET_CODE (testreg) == SUBREG)
2589 if (GET_CODE (testreg) == SUBREG
2590 && GET_CODE (SUBREG_REG (testreg)) == REG
2591 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
2592 && (GET_MODE_SIZE (GET_MODE (testreg))
2593 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
2594 reg_changes_size[REGNO (SUBREG_REG (testreg))] = 1;
2596 /* Modifying a single register in an alternate mode
2597 does not use any of the old value. But these other
2598 ways of storing in a register do use the old value. */
2599 if (GET_CODE (testreg) == SUBREG
2600 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2602 else
2603 mark_dest = 1;
2605 testreg = XEXP (testreg, 0);
2608 /* If this is a store into a register,
2609 recursively scan the value being stored. */
2611 if (GET_CODE (testreg) == REG
2612 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2613 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2614 && regno != HARD_FRAME_POINTER_REGNUM
2615 #endif
2616 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2617 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2618 #endif
2620 /* We used to exclude global_regs here, but that seems wrong.
2621 Storing in them is like storing in mem. */
2623 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2624 if (mark_dest)
2625 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2626 return;
2629 break;
2631 case RETURN:
2632 /* If exiting needs the right stack value, consider this insn as
2633 using the stack pointer. In any event, consider it as using
2634 all global registers. */
2636 #ifdef EXIT_IGNORE_STACK
2637 if (! EXIT_IGNORE_STACK
2638 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2639 #endif
2640 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
2641 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
2643 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2644 if (global_regs[i])
2645 live[i / REGSET_ELT_BITS]
2646 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
2647 break;
2650 /* Recursively scan the operands of this expression. */
2653 register char *fmt = GET_RTX_FORMAT (code);
2654 register int i;
2656 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2658 if (fmt[i] == 'e')
2660 /* Tail recursive case: save a function call level. */
2661 if (i == 0)
2663 x = XEXP (x, 0);
2664 goto retry;
2666 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2668 else if (fmt[i] == 'E')
2670 register int j;
2671 for (j = 0; j < XVECLEN (x, i); j++)
2672 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2678 #ifdef AUTO_INC_DEC
2680 static int
2681 try_pre_increment_1 (insn)
2682 rtx insn;
2684 /* Find the next use of this reg. If in same basic block,
2685 make it do pre-increment or pre-decrement if appropriate. */
2686 rtx x = PATTERN (insn);
2687 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2688 * INTVAL (XEXP (SET_SRC (x), 1)));
2689 int regno = REGNO (SET_DEST (x));
2690 rtx y = reg_next_use[regno];
2691 if (y != 0
2692 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2693 /* Don't do this if the reg dies, or gets set in y; a standard addressing
2694 mode would be better. */
2695 && ! dead_or_set_p (y, SET_DEST (x))
2696 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
2697 amount))
2699 /* We have found a suitable auto-increment
2700 and already changed insn Y to do it.
2701 So flush this increment-instruction. */
2702 PUT_CODE (insn, NOTE);
2703 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2704 NOTE_SOURCE_FILE (insn) = 0;
2705 /* Count a reference to this reg for the increment
2706 insn we are deleting. When a reg is incremented.
2707 spilling it is worse, so we want to make that
2708 less likely. */
2709 if (regno >= FIRST_PSEUDO_REGISTER)
2711 reg_n_refs[regno] += loop_depth;
2712 reg_n_sets[regno]++;
2714 return 1;
2716 return 0;
2719 /* Try to change INSN so that it does pre-increment or pre-decrement
2720 addressing on register REG in order to add AMOUNT to REG.
2721 AMOUNT is negative for pre-decrement.
2722 Returns 1 if the change could be made.
2723 This checks all about the validity of the result of modifying INSN. */
2725 static int
2726 try_pre_increment (insn, reg, amount)
2727 rtx insn, reg;
2728 HOST_WIDE_INT amount;
2730 register rtx use;
2732 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2733 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2734 int pre_ok = 0;
2735 /* Nonzero if we can try to make a post-increment or post-decrement.
2736 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2737 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2738 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2739 int post_ok = 0;
2741 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2742 int do_post = 0;
2744 /* From the sign of increment, see which possibilities are conceivable
2745 on this target machine. */
2746 #ifdef HAVE_PRE_INCREMENT
2747 if (amount > 0)
2748 pre_ok = 1;
2749 #endif
2750 #ifdef HAVE_POST_INCREMENT
2751 if (amount > 0)
2752 post_ok = 1;
2753 #endif
2755 #ifdef HAVE_PRE_DECREMENT
2756 if (amount < 0)
2757 pre_ok = 1;
2758 #endif
2759 #ifdef HAVE_POST_DECREMENT
2760 if (amount < 0)
2761 post_ok = 1;
2762 #endif
2764 if (! (pre_ok || post_ok))
2765 return 0;
2767 /* It is not safe to add a side effect to a jump insn
2768 because if the incremented register is spilled and must be reloaded
2769 there would be no way to store the incremented value back in memory. */
2771 if (GET_CODE (insn) == JUMP_INSN)
2772 return 0;
2774 use = 0;
2775 if (pre_ok)
2776 use = find_use_as_address (PATTERN (insn), reg, 0);
2777 if (post_ok && (use == 0 || use == (rtx) 1))
2779 use = find_use_as_address (PATTERN (insn), reg, -amount);
2780 do_post = 1;
2783 if (use == 0 || use == (rtx) 1)
2784 return 0;
2786 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2787 return 0;
2789 /* See if this combination of instruction and addressing mode exists. */
2790 if (! validate_change (insn, &XEXP (use, 0),
2791 gen_rtx (amount > 0
2792 ? (do_post ? POST_INC : PRE_INC)
2793 : (do_post ? POST_DEC : PRE_DEC),
2794 Pmode, reg), 0))
2795 return 0;
2797 /* Record that this insn now has an implicit side effect on X. */
2798 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2799 return 1;
2802 #endif /* AUTO_INC_DEC */
2804 /* Find the place in the rtx X where REG is used as a memory address.
2805 Return the MEM rtx that so uses it.
2806 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2807 (plus REG (const_int PLUSCONST)).
2809 If such an address does not appear, return 0.
2810 If REG appears more than once, or is used other than in such an address,
2811 return (rtx)1. */
2813 static rtx
2814 find_use_as_address (x, reg, plusconst)
2815 register rtx x;
2816 rtx reg;
2817 HOST_WIDE_INT plusconst;
2819 enum rtx_code code = GET_CODE (x);
2820 char *fmt = GET_RTX_FORMAT (code);
2821 register int i;
2822 register rtx value = 0;
2823 register rtx tem;
2825 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2826 return x;
2828 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2829 && XEXP (XEXP (x, 0), 0) == reg
2830 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2831 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2832 return x;
2834 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2836 /* If REG occurs inside a MEM used in a bit-field reference,
2837 that is unacceptable. */
2838 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2839 return (rtx) (HOST_WIDE_INT) 1;
2842 if (x == reg)
2843 return (rtx) (HOST_WIDE_INT) 1;
2845 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2847 if (fmt[i] == 'e')
2849 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2850 if (value == 0)
2851 value = tem;
2852 else if (tem != 0)
2853 return (rtx) (HOST_WIDE_INT) 1;
2855 if (fmt[i] == 'E')
2857 register int j;
2858 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2860 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2861 if (value == 0)
2862 value = tem;
2863 else if (tem != 0)
2864 return (rtx) (HOST_WIDE_INT) 1;
2869 return value;
2872 /* Write information about registers and basic blocks into FILE.
2873 This is part of making a debugging dump. */
2875 void
2876 dump_flow_info (file)
2877 FILE *file;
2879 register int i;
2880 static char *reg_class_names[] = REG_CLASS_NAMES;
2882 fprintf (file, "%d registers.\n", max_regno);
2884 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2885 if (reg_n_refs[i])
2887 enum reg_class class, altclass;
2888 fprintf (file, "\nRegister %d used %d times across %d insns",
2889 i, reg_n_refs[i], reg_live_length[i]);
2890 if (reg_basic_block[i] >= 0)
2891 fprintf (file, " in block %d", reg_basic_block[i]);
2892 if (reg_n_deaths[i] != 1)
2893 fprintf (file, "; dies in %d places", reg_n_deaths[i]);
2894 if (reg_n_calls_crossed[i] == 1)
2895 fprintf (file, "; crosses 1 call");
2896 else if (reg_n_calls_crossed[i])
2897 fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
2898 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2899 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2900 class = reg_preferred_class (i);
2901 altclass = reg_alternate_class (i);
2902 if (class != GENERAL_REGS || altclass != ALL_REGS)
2904 if (altclass == ALL_REGS || class == ALL_REGS)
2905 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2906 else if (altclass == NO_REGS)
2907 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2908 else
2909 fprintf (file, "; pref %s, else %s",
2910 reg_class_names[(int) class],
2911 reg_class_names[(int) altclass]);
2913 if (REGNO_POINTER_FLAG (i))
2914 fprintf (file, "; pointer");
2915 fprintf (file, ".\n");
2917 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2918 for (i = 0; i < n_basic_blocks; i++)
2920 register rtx head, jump;
2921 register int regno;
2922 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2924 INSN_UID (basic_block_head[i]),
2925 INSN_UID (basic_block_end[i]));
2926 /* The control flow graph's storage is freed
2927 now when flow_analysis returns.
2928 Don't try to print it if it is gone. */
2929 if (basic_block_drops_in)
2931 fprintf (file, "Reached from blocks: ");
2932 head = basic_block_head[i];
2933 if (GET_CODE (head) == CODE_LABEL)
2934 for (jump = LABEL_REFS (head);
2935 jump != head;
2936 jump = LABEL_NEXTREF (jump))
2938 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2939 fprintf (file, " %d", from_block);
2941 if (basic_block_drops_in[i])
2942 fprintf (file, " previous");
2944 fprintf (file, "\nRegisters live at start:");
2945 for (regno = 0; regno < max_regno; regno++)
2947 register int offset = regno / REGSET_ELT_BITS;
2948 register REGSET_ELT_TYPE bit
2949 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2950 if (basic_block_live_at_start[i][offset] & bit)
2951 fprintf (file, " %d", regno);
2953 fprintf (file, "\n");
2955 fprintf (file, "\n");