[ARM] PR target/65932: stop changing signedness in PROMOTE_MODE
[official-gcc.git] / gcc / config / arm / arm.h
blobd755b729e33d9a19269d2b0f6ab5231dbf3bb552
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2016 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
42 #include "config/vxworks-dummy.h"
44 /* The architecture define. */
45 extern char arm_arch_name[];
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
50 #include "config/arm/arm-opts.h"
52 enum target_cpus
54 #define ARM_CORE(NAME, INTERNAL_IDENT, IDENT, ARCH, FLAGS, COSTS) \
55 TARGET_CPU_##INTERNAL_IDENT,
56 #include "arm-cores.def"
57 #undef ARM_CORE
58 TARGET_CPU_generic
61 /* The processor for which instructions should be scheduled. */
62 extern enum processor_type arm_tune;
64 typedef enum arm_cond_code
66 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
67 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
69 arm_cc;
71 extern arm_cc arm_current_cc;
73 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
75 /* The maximum number of instructions that is beneficial to
76 conditionally execute. */
77 #undef MAX_CONDITIONAL_EXECUTE
78 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
80 extern int arm_target_label;
81 extern int arm_ccfsm_state;
82 extern GTY(()) rtx arm_target_insn;
83 /* The label of the current constant pool. */
84 extern rtx pool_vector_label;
85 /* Set to 1 when a return insn is output, this means that the epilogue
86 is not needed. */
87 extern int return_used_this_function;
88 /* Callback to output language specific object attributes. */
89 extern void (*arm_lang_output_object_attributes_hook)(void);
91 /* Just in case configure has failed to define anything. */
92 #ifndef TARGET_CPU_DEFAULT
93 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
94 #endif
97 #undef CPP_SPEC
98 #define CPP_SPEC "%(subtarget_cpp_spec) \
99 %{mfloat-abi=soft:%{mfloat-abi=hard: \
100 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
101 %{mbig-endian:%{mlittle-endian: \
102 %e-mbig-endian and -mlittle-endian may not be used together}}"
104 #ifndef CC1_SPEC
105 #define CC1_SPEC ""
106 #endif
108 /* This macro defines names of additional specifications to put in the specs
109 that can be used in various specifications like CC1_SPEC. Its definition
110 is an initializer with a subgrouping for each command option.
112 Each subgrouping contains a string constant, that defines the
113 specification name, and a string constant that used by the GCC driver
114 program.
116 Do not define this macro if it does not need to do anything. */
117 #define EXTRA_SPECS \
118 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
119 { "asm_cpu_spec", ASM_CPU_SPEC }, \
120 SUBTARGET_EXTRA_SPECS
122 #ifndef SUBTARGET_EXTRA_SPECS
123 #define SUBTARGET_EXTRA_SPECS
124 #endif
126 #ifndef SUBTARGET_CPP_SPEC
127 #define SUBTARGET_CPP_SPEC ""
128 #endif
130 /* Tree Target Specification. */
131 #define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
132 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
133 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
134 #define TARGET_32BIT_P(flags) (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
136 /* Run-time Target Specification. */
137 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
138 /* Use hardware floating point instructions. */
139 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
140 /* Use hardware floating point calling convention. */
141 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
142 #define TARGET_VFP (TARGET_FPU_MODEL == ARM_FP_MODEL_VFP)
143 #define TARGET_IWMMXT (arm_arch_iwmmxt)
144 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
145 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
146 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
147 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
148 #define TARGET_ARM (! TARGET_THUMB)
149 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
150 #define TARGET_BACKTRACE (leaf_function_p () \
151 ? TARGET_TPCS_LEAF_FRAME \
152 : TARGET_TPCS_FRAME)
153 #define TARGET_AAPCS_BASED \
154 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
156 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
157 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
158 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
160 /* Only 16-bit thumb code. */
161 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
162 /* Arm or Thumb-2 32-bit code. */
163 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
164 /* 32-bit Thumb-2 code. */
165 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
166 /* Thumb-1 only. */
167 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
169 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
170 && !TARGET_THUMB1)
172 #define TARGET_CRC32 (arm_arch_crc)
174 /* The following two macros concern the ability to execute coprocessor
175 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
176 only ever tested when we know we are generating for VFP hardware; we need
177 to be more careful with TARGET_NEON as noted below. */
179 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
180 #define TARGET_VFPD32 (TARGET_VFP && TARGET_FPU_REGS == VFP_REG_D32)
182 /* FPU supports VFPv3 instructions. */
183 #define TARGET_VFP3 (TARGET_VFP && TARGET_FPU_REV >= 3)
185 /* FPU supports FPv5 instructions. */
186 #define TARGET_VFP5 (TARGET_VFP && TARGET_FPU_REV >= 5)
188 /* FPU only supports VFP single-precision instructions. */
189 #define TARGET_VFP_SINGLE (TARGET_VFP && TARGET_FPU_REGS == VFP_REG_SINGLE)
191 /* FPU supports VFP double-precision instructions. */
192 #define TARGET_VFP_DOUBLE (TARGET_VFP && TARGET_FPU_REGS != VFP_REG_SINGLE)
194 /* FPU supports half-precision floating-point with NEON element load/store. */
195 #define TARGET_NEON_FP16 \
196 (TARGET_VFP \
197 && ARM_FPU_FSET_HAS (TARGET_FPU_FEATURES, FPU_FL_NEON | FPU_FL_FP16))
199 /* FPU supports VFP half-precision floating-point. */
200 #define TARGET_FP16 \
201 (TARGET_VFP && ARM_FPU_FSET_HAS (TARGET_FPU_FEATURES, FPU_FL_FP16))
203 /* FPU supports fused-multiply-add operations. */
204 #define TARGET_FMA (TARGET_VFP && TARGET_FPU_REV >= 4)
206 /* FPU is ARMv8 compatible. */
207 #define TARGET_FPU_ARMV8 (TARGET_VFP && TARGET_FPU_REV >= 8)
209 /* FPU supports Crypto extensions. */
210 #define TARGET_CRYPTO \
211 (TARGET_VFP && ARM_FPU_FSET_HAS (TARGET_FPU_FEATURES, FPU_FL_CRYPTO))
213 /* FPU supports Neon instructions. The setting of this macro gets
214 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
215 and TARGET_HARD_FLOAT to ensure that NEON instructions are
216 available. */
217 #define TARGET_NEON \
218 (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP \
219 && ARM_FPU_FSET_HAS (TARGET_FPU_FEATURES, FPU_FL_NEON))
221 /* FPU supports ARMv8.1 Adv.SIMD extensions. */
222 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
224 /* Q-bit is present. */
225 #define TARGET_ARM_QBIT \
226 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
227 /* Saturation operation, e.g. SSAT. */
228 #define TARGET_ARM_SAT \
229 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
230 /* "DSP" multiply instructions, eg. SMULxy. */
231 #define TARGET_DSP_MULTIPLY \
232 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
233 /* Integer SIMD instructions, and extend-accumulate instructions. */
234 #define TARGET_INT_SIMD \
235 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
237 /* Should MOVW/MOVT be used in preference to a constant pool. */
238 #define TARGET_USE_MOVT \
239 (arm_arch_thumb2 \
240 && (arm_disable_literal_pool \
241 || (!optimize_size && !current_tune->prefer_constant_pool)))
243 /* Nonzero if this chip provides the DMB instruction. */
244 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
246 /* Nonzero if this chip implements a memory barrier via CP15. */
247 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
248 && ! TARGET_THUMB1)
250 /* Nonzero if this chip implements a memory barrier instruction. */
251 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
253 /* Nonzero if this chip supports ldrex and strex */
254 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
256 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
257 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7)
259 /* Nonzero if this chip supports ldrexd and strexd. */
260 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
261 || arm_arch7) && arm_arch_notm)
263 /* Nonzero if this chip supports load-acquire and store-release. */
264 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
266 /* Nonzero if integer division instructions supported. */
267 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
268 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
270 /* Nonzero if disallow volatile memory access in IT block. */
271 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
273 /* Should NEON be used for 64-bits bitops. */
274 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
276 /* Should constant I be slplit for OP. */
277 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
278 ((optimize >= 2) \
279 && can_create_pseudo_p () \
280 && !const_ok_for_op (i, op))
282 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
283 then TARGET_AAPCS_BASED must be true -- but the converse does not
284 hold. TARGET_BPABI implies the use of the BPABI runtime library,
285 etc., in addition to just the AAPCS calling conventions. */
286 #ifndef TARGET_BPABI
287 #define TARGET_BPABI false
288 #endif
290 /* Transform lane numbers on big endian targets. This is used to allow for the
291 endianness difference between NEON architectural lane numbers and those
292 used in RTL */
293 #define NEON_ENDIAN_LANE_N(mode, n) \
294 (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
296 /* Support for a compile-time default CPU, et cetera. The rules are:
297 --with-arch is ignored if -march or -mcpu are specified.
298 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
299 by --with-arch.
300 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
301 by -march).
302 --with-float is ignored if -mfloat-abi is specified.
303 --with-fpu is ignored if -mfpu is specified.
304 --with-abi is ignored if -mabi is specified.
305 --with-tls is ignored if -mtls-dialect is specified. */
306 #define OPTION_DEFAULT_SPECS \
307 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
308 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
309 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
310 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
311 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
312 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
313 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
314 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
316 /* FPU feature sets. */
318 typedef unsigned long arm_fpu_feature_set;
320 /* Test for an FPU feature. */
321 #define ARM_FPU_FSET_HAS(S,F) (((S) & (F)) == (F))
323 /* FPU Features. */
324 #define FPU_FL_NONE (0)
325 #define FPU_FL_NEON (1 << 0) /* NEON instructions. */
326 #define FPU_FL_FP16 (1 << 1) /* Half-precision. */
327 #define FPU_FL_CRYPTO (1 << 2) /* Crypto extensions. */
329 /* Which floating point model to use. */
330 enum arm_fp_model
332 ARM_FP_MODEL_UNKNOWN,
333 /* VFP floating point model. */
334 ARM_FP_MODEL_VFP
337 enum vfp_reg_type
339 VFP_NONE = 0,
340 VFP_REG_D16,
341 VFP_REG_D32,
342 VFP_REG_SINGLE
345 extern const struct arm_fpu_desc
347 const char *name;
348 enum arm_fp_model model;
349 int rev;
350 enum vfp_reg_type regs;
351 arm_fpu_feature_set features;
352 } all_fpus[];
354 /* Accessors. */
356 #define TARGET_FPU_NAME (all_fpus[arm_fpu_index].name)
357 #define TARGET_FPU_MODEL (all_fpus[arm_fpu_index].model)
358 #define TARGET_FPU_REV (all_fpus[arm_fpu_index].rev)
359 #define TARGET_FPU_REGS (all_fpus[arm_fpu_index].regs)
360 #define TARGET_FPU_FEATURES (all_fpus[arm_fpu_index].features)
362 /* Which floating point hardware to schedule for. */
363 extern int arm_fpu_attr;
365 #ifndef TARGET_DEFAULT_FLOAT_ABI
366 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
367 #endif
369 #ifndef ARM_DEFAULT_ABI
370 #define ARM_DEFAULT_ABI ARM_ABI_APCS
371 #endif
373 /* Map each of the micro-architecture variants to their corresponding
374 major architecture revision. */
376 enum base_architecture
378 BASE_ARCH_0 = 0,
379 BASE_ARCH_2 = 2,
380 BASE_ARCH_3 = 3,
381 BASE_ARCH_3M = 3,
382 BASE_ARCH_4 = 4,
383 BASE_ARCH_4T = 4,
384 BASE_ARCH_5 = 5,
385 BASE_ARCH_5E = 5,
386 BASE_ARCH_5T = 5,
387 BASE_ARCH_5TE = 5,
388 BASE_ARCH_5TEJ = 5,
389 BASE_ARCH_6 = 6,
390 BASE_ARCH_6J = 6,
391 BASE_ARCH_6KZ = 6,
392 BASE_ARCH_6K = 6,
393 BASE_ARCH_6T2 = 6,
394 BASE_ARCH_6M = 6,
395 BASE_ARCH_6Z = 6,
396 BASE_ARCH_7 = 7,
397 BASE_ARCH_7A = 7,
398 BASE_ARCH_7R = 7,
399 BASE_ARCH_7M = 7,
400 BASE_ARCH_7EM = 7,
401 BASE_ARCH_8A = 8
404 /* The major revision number of the ARM Architecture implemented by the target. */
405 extern enum base_architecture arm_base_arch;
407 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
408 extern int arm_arch3m;
410 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
411 extern int arm_arch4;
413 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
414 extern int arm_arch4t;
416 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
417 extern int arm_arch5;
419 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
420 extern int arm_arch5e;
422 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
423 extern int arm_arch6;
425 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
426 extern int arm_arch6k;
428 /* Nonzero if instructions present in ARMv6-M can be used. */
429 extern int arm_arch6m;
431 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
432 extern int arm_arch7;
434 /* Nonzero if instructions not present in the 'M' profile can be used. */
435 extern int arm_arch_notm;
437 /* Nonzero if instructions present in ARMv7E-M can be used. */
438 extern int arm_arch7em;
440 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
441 extern int arm_arch8;
443 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions. */
444 extern int arm_arch8_1;
446 /* Nonzero if this chip can benefit from load scheduling. */
447 extern int arm_ld_sched;
449 /* Nonzero if this chip is a StrongARM. */
450 extern int arm_tune_strongarm;
452 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
453 extern int arm_arch_iwmmxt;
455 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
456 extern int arm_arch_iwmmxt2;
458 /* Nonzero if this chip is an XScale. */
459 extern int arm_arch_xscale;
461 /* Nonzero if tuning for XScale. */
462 extern int arm_tune_xscale;
464 /* Nonzero if tuning for stores via the write buffer. */
465 extern int arm_tune_wbuf;
467 /* Nonzero if tuning for Cortex-A9. */
468 extern int arm_tune_cortex_a9;
470 /* Nonzero if we should define __THUMB_INTERWORK__ in the
471 preprocessor.
472 XXX This is a bit of a hack, it's intended to help work around
473 problems in GLD which doesn't understand that armv5t code is
474 interworking clean. */
475 extern int arm_cpp_interwork;
477 /* Nonzero if chip supports Thumb 2. */
478 extern int arm_arch_thumb2;
480 /* Nonzero if chip supports integer division instruction in ARM mode. */
481 extern int arm_arch_arm_hwdiv;
483 /* Nonzero if chip supports integer division instruction in Thumb mode. */
484 extern int arm_arch_thumb_hwdiv;
486 /* Nonzero if chip disallows volatile memory access in IT block. */
487 extern int arm_arch_no_volatile_ce;
489 /* Nonzero if we should use Neon to handle 64-bits operations rather
490 than core registers. */
491 extern int prefer_neon_for_64bits;
493 /* Nonzero if we shouldn't use literal pools. */
494 #ifndef USED_FOR_TARGET
495 extern bool arm_disable_literal_pool;
496 #endif
498 /* Nonzero if chip supports the ARMv8 CRC instructions. */
499 extern int arm_arch_crc;
501 #ifndef TARGET_DEFAULT
502 #define TARGET_DEFAULT (MASK_APCS_FRAME)
503 #endif
505 /* Nonzero if PIC code requires explicit qualifiers to generate
506 PLT and GOT relocs rather than the assembler doing so implicitly.
507 Subtargets can override these if required. */
508 #ifndef NEED_GOT_RELOC
509 #define NEED_GOT_RELOC 0
510 #endif
511 #ifndef NEED_PLT_RELOC
512 #define NEED_PLT_RELOC 0
513 #endif
515 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
516 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
517 #endif
519 /* Nonzero if we need to refer to the GOT with a PC-relative
520 offset. In other words, generate
522 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
524 rather than
526 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
528 The default is true, which matches NetBSD. Subtargets can
529 override this if required. */
530 #ifndef GOT_PCREL
531 #define GOT_PCREL 1
532 #endif
534 /* Target machine storage Layout. */
537 /* Define this macro if it is advisable to hold scalars in registers
538 in a wider mode than that declared by the program. In such cases,
539 the value is constrained to be within the bounds of the declared
540 type, but kept valid in the wider mode. The signedness of the
541 extension may differ from that of the type. */
543 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
544 if (GET_MODE_CLASS (MODE) == MODE_INT \
545 && GET_MODE_SIZE (MODE) < 4) \
547 (MODE) = SImode; \
550 /* Define this if most significant bit is lowest numbered
551 in instructions that operate on numbered bit-fields. */
552 #define BITS_BIG_ENDIAN 0
554 /* Define this if most significant byte of a word is the lowest numbered.
555 Most ARM processors are run in little endian mode, so that is the default.
556 If you want to have it run-time selectable, change the definition in a
557 cover file to be TARGET_BIG_ENDIAN. */
558 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
560 /* Define this if most significant word of a multiword number is the lowest
561 numbered. */
562 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
564 #define UNITS_PER_WORD 4
566 /* True if natural alignment is used for doubleword types. */
567 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
569 #define DOUBLEWORD_ALIGNMENT 64
571 #define PARM_BOUNDARY 32
573 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
575 #define PREFERRED_STACK_BOUNDARY \
576 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
578 #define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
579 #define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
581 /* The lowest bit is used to indicate Thumb-mode functions, so the
582 vbit must go into the delta field of pointers to member
583 functions. */
584 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
586 #define EMPTY_FIELD_BOUNDARY 32
588 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
590 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
592 /* XXX Blah -- this macro is used directly by libobjc. Since it
593 supports no vector modes, cut out the complexity and fall back
594 on BIGGEST_FIELD_ALIGNMENT. */
595 #ifdef IN_TARGET_LIBS
596 #define BIGGEST_FIELD_ALIGNMENT 64
597 #endif
599 /* Make strings word-aligned so strcpy from constants will be faster. */
600 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
602 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
603 ((TREE_CODE (EXP) == STRING_CST \
604 && !optimize_size \
605 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
606 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
608 /* Align definitions of arrays, unions and structures so that
609 initializations and copies can be made more efficient. This is not
610 ABI-changing, so it only affects places where we can see the
611 definition. Increasing the alignment tends to introduce padding,
612 so don't do this when optimizing for size/conserving stack space. */
613 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
614 (((COND) && ((ALIGN) < BITS_PER_WORD) \
615 && (TREE_CODE (EXP) == ARRAY_TYPE \
616 || TREE_CODE (EXP) == UNION_TYPE \
617 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
619 /* Align global data. */
620 #define DATA_ALIGNMENT(EXP, ALIGN) \
621 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
623 /* Similarly, make sure that objects on the stack are sensibly aligned. */
624 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
625 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
627 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
628 value set in previous versions of this toolchain was 8, which produces more
629 compact structures. The command line option -mstructure_size_boundary=<n>
630 can be used to change this value. For compatibility with the ARM SDK
631 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
632 0020D) page 2-20 says "Structures are aligned on word boundaries".
633 The AAPCS specifies a value of 8. */
634 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
636 /* This is the value used to initialize arm_structure_size_boundary. If a
637 particular arm target wants to change the default value it should change
638 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
639 for an example of this. */
640 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
641 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
642 #endif
644 /* Nonzero if move instructions will actually fail to work
645 when given unaligned data. */
646 #define STRICT_ALIGNMENT 1
648 /* wchar_t is unsigned under the AAPCS. */
649 #ifndef WCHAR_TYPE
650 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
652 #define WCHAR_TYPE_SIZE BITS_PER_WORD
653 #endif
655 /* Sized for fixed-point types. */
657 #define SHORT_FRACT_TYPE_SIZE 8
658 #define FRACT_TYPE_SIZE 16
659 #define LONG_FRACT_TYPE_SIZE 32
660 #define LONG_LONG_FRACT_TYPE_SIZE 64
662 #define SHORT_ACCUM_TYPE_SIZE 16
663 #define ACCUM_TYPE_SIZE 32
664 #define LONG_ACCUM_TYPE_SIZE 64
665 #define LONG_LONG_ACCUM_TYPE_SIZE 64
667 #define MAX_FIXED_MODE_SIZE 64
669 #ifndef SIZE_TYPE
670 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
671 #endif
673 #ifndef PTRDIFF_TYPE
674 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
675 #endif
677 /* AAPCS requires that structure alignment is affected by bitfields. */
678 #ifndef PCC_BITFIELD_TYPE_MATTERS
679 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
680 #endif
682 /* The maximum size of the sync library functions supported. */
683 #ifndef MAX_SYNC_LIBFUNC_SIZE
684 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
685 #endif
688 /* Standard register usage. */
690 /* Register allocation in ARM Procedure Call Standard
691 (S - saved over call).
693 r0 * argument word/integer result
694 r1-r3 argument word
696 r4-r8 S register variable
697 r9 S (rfp) register variable (real frame pointer)
699 r10 F S (sl) stack limit (used by -mapcs-stack-check)
700 r11 F S (fp) argument pointer
701 r12 (ip) temp workspace
702 r13 F S (sp) lower end of current stack frame
703 r14 (lr) link address/workspace
704 r15 F (pc) program counter
706 cc This is NOT a real register, but is used internally
707 to represent things that use or set the condition
708 codes.
709 sfp This isn't either. It is used during rtl generation
710 since the offset between the frame pointer and the
711 auto's isn't known until after register allocation.
712 afp Nor this, we only need this because of non-local
713 goto. Without it fp appears to be used and the
714 elimination code won't get rid of sfp. It tracks
715 fp exactly at all times.
717 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
719 /* s0-s15 VFP scratch (aka d0-d7).
720 s16-s31 S VFP variable (aka d8-d15).
721 vfpcc Not a real register. Represents the VFP condition
722 code flags. */
724 /* The stack backtrace structure is as follows:
725 fp points to here: | save code pointer | [fp]
726 | return link value | [fp, #-4]
727 | return sp value | [fp, #-8]
728 | return fp value | [fp, #-12]
729 [| saved r10 value |]
730 [| saved r9 value |]
731 [| saved r8 value |]
732 [| saved r7 value |]
733 [| saved r6 value |]
734 [| saved r5 value |]
735 [| saved r4 value |]
736 [| saved r3 value |]
737 [| saved r2 value |]
738 [| saved r1 value |]
739 [| saved r0 value |]
740 r0-r3 are not normally saved in a C function. */
742 /* 1 for registers that have pervasive standard uses
743 and are not available for the register allocator. */
744 #define FIXED_REGISTERS \
746 /* Core regs. */ \
747 0,0,0,0,0,0,0,0, \
748 0,0,0,0,0,1,0,1, \
749 /* VFP regs. */ \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1,1,1,1,1, \
756 1,1,1,1,1,1,1,1, \
757 1,1,1,1,1,1,1,1, \
758 /* IWMMXT regs. */ \
759 1,1,1,1,1,1,1,1, \
760 1,1,1,1,1,1,1,1, \
761 1,1,1,1, \
762 /* Specials. */ \
763 1,1,1,1 \
766 /* 1 for registers not available across function calls.
767 These must include the FIXED_REGISTERS and also any
768 registers that can be used without being saved.
769 The latter must include the registers where values are returned
770 and the register where structure-value addresses are passed.
771 Aside from that, you can include as many other registers as you like.
772 The CC is not preserved over function calls on the ARM 6, so it is
773 easier to assume this for all. SFP is preserved, since FP is. */
774 #define CALL_USED_REGISTERS \
776 /* Core regs. */ \
777 1,1,1,1,0,0,0,0, \
778 0,0,0,0,1,1,1,1, \
779 /* VFP Regs. */ \
780 1,1,1,1,1,1,1,1, \
781 1,1,1,1,1,1,1,1, \
782 1,1,1,1,1,1,1,1, \
783 1,1,1,1,1,1,1,1, \
784 1,1,1,1,1,1,1,1, \
785 1,1,1,1,1,1,1,1, \
786 1,1,1,1,1,1,1,1, \
787 1,1,1,1,1,1,1,1, \
788 /* IWMMXT regs. */ \
789 1,1,1,1,1,1,1,1, \
790 1,1,1,1,1,1,1,1, \
791 1,1,1,1, \
792 /* Specials. */ \
793 1,1,1,1 \
796 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
797 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
798 #endif
800 /* These are a couple of extensions to the formats accepted
801 by asm_fprintf:
802 %@ prints out ASM_COMMENT_START
803 %r prints out REGISTER_PREFIX reg_names[arg] */
804 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
805 case '@': \
806 fputs (ASM_COMMENT_START, FILE); \
807 break; \
809 case 'r': \
810 fputs (REGISTER_PREFIX, FILE); \
811 fputs (reg_names [va_arg (ARGS, int)], FILE); \
812 break;
814 /* Round X up to the nearest word. */
815 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
817 /* Convert fron bytes to ints. */
818 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
820 /* The number of (integer) registers required to hold a quantity of type MODE.
821 Also used for VFP registers. */
822 #define ARM_NUM_REGS(MODE) \
823 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
825 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
826 #define ARM_NUM_REGS2(MODE, TYPE) \
827 ARM_NUM_INTS ((MODE) == BLKmode ? \
828 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
830 /* The number of (integer) argument register available. */
831 #define NUM_ARG_REGS 4
833 /* And similarly for the VFP. */
834 #define NUM_VFP_ARG_REGS 16
836 /* Return the register number of the N'th (integer) argument. */
837 #define ARG_REGISTER(N) (N - 1)
839 /* Specify the registers used for certain standard purposes.
840 The values of these macros are register numbers. */
842 /* The number of the last argument register. */
843 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
845 /* The numbers of the Thumb register ranges. */
846 #define FIRST_LO_REGNUM 0
847 #define LAST_LO_REGNUM 7
848 #define FIRST_HI_REGNUM 8
849 #define LAST_HI_REGNUM 11
851 /* Overridden by config/arm/bpabi.h. */
852 #ifndef ARM_UNWIND_INFO
853 #define ARM_UNWIND_INFO 0
854 #endif
856 /* Use r0 and r1 to pass exception handling information. */
857 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
859 /* The register that holds the return address in exception handlers. */
860 #define ARM_EH_STACKADJ_REGNUM 2
861 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
863 #ifndef ARM_TARGET2_DWARF_FORMAT
864 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
865 #endif
867 /* ttype entries (the only interesting data references used)
868 use TARGET2 relocations. */
869 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
870 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
871 : DW_EH_PE_absptr)
873 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
874 as an invisible last argument (possible since varargs don't exist in
875 Pascal), so the following is not true. */
876 #define STATIC_CHAIN_REGNUM 12
878 /* Define this to be where the real frame pointer is if it is not possible to
879 work out the offset between the frame pointer and the automatic variables
880 until after register allocation has taken place. FRAME_POINTER_REGNUM
881 should point to a special register that we will make sure is eliminated.
883 For the Thumb we have another problem. The TPCS defines the frame pointer
884 as r11, and GCC believes that it is always possible to use the frame pointer
885 as base register for addressing purposes. (See comments in
886 find_reloads_address()). But - the Thumb does not allow high registers,
887 including r11, to be used as base address registers. Hence our problem.
889 The solution used here, and in the old thumb port is to use r7 instead of
890 r11 as the hard frame pointer and to have special code to generate
891 backtrace structures on the stack (if required to do so via a command line
892 option) using r11. This is the only 'user visible' use of r11 as a frame
893 pointer. */
894 #define ARM_HARD_FRAME_POINTER_REGNUM 11
895 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
897 #define HARD_FRAME_POINTER_REGNUM \
898 (TARGET_ARM \
899 ? ARM_HARD_FRAME_POINTER_REGNUM \
900 : THUMB_HARD_FRAME_POINTER_REGNUM)
902 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
903 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
905 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
907 /* Register to use for pushing function arguments. */
908 #define STACK_POINTER_REGNUM SP_REGNUM
910 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
911 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
913 /* Need to sync with WCGR in iwmmxt.md. */
914 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
915 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
917 #define IS_IWMMXT_REGNUM(REGNUM) \
918 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
919 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
920 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
922 /* Base register for access to local variables of the function. */
923 #define FRAME_POINTER_REGNUM 102
925 /* Base register for access to arguments of the function. */
926 #define ARG_POINTER_REGNUM 103
928 #define FIRST_VFP_REGNUM 16
929 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
930 #define LAST_VFP_REGNUM \
931 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
933 #define IS_VFP_REGNUM(REGNUM) \
934 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
936 /* VFP registers are split into two types: those defined by VFP versions < 3
937 have D registers overlaid on consecutive pairs of S registers. VFP version 3
938 defines 16 new D registers (d16-d31) which, for simplicity and correctness
939 in various parts of the backend, we implement as "fake" single-precision
940 registers (which would be S32-S63, but cannot be used in that way). The
941 following macros define these ranges of registers. */
942 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
943 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
944 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
946 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
947 ((REGNUM) <= LAST_LO_VFP_REGNUM)
949 /* DFmode values are only valid in even register pairs. */
950 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
951 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
953 /* Neon Quad values must start at a multiple of four registers. */
954 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
955 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
957 /* Neon structures of vectors must be in even register pairs and there
958 must be enough registers available. Because of various patterns
959 requiring quad registers, we require them to start at a multiple of
960 four. */
961 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
962 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
963 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
965 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
966 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
967 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
968 #define FIRST_PSEUDO_REGISTER 104
970 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
972 /* Value should be nonzero if functions must have frame pointers.
973 Zero means the frame pointer need not be set up (and parms may be accessed
974 via the stack pointer) in functions that seem suitable.
975 If we have to have a frame pointer we might as well make use of it.
976 APCS says that the frame pointer does not need to be pushed in leaf
977 functions, or simple tail call functions. */
979 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
980 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
981 #endif
983 /* Return number of consecutive hard regs needed starting at reg REGNO
984 to hold something of mode MODE.
985 This is ordinarily the length in words of a value of mode MODE
986 but can be less for certain modes in special long registers.
988 On the ARM core regs are UNITS_PER_WORD bits wide. */
989 #define HARD_REGNO_NREGS(REGNO, MODE) \
990 ((TARGET_32BIT \
991 && REGNO > PC_REGNUM \
992 && REGNO != FRAME_POINTER_REGNUM \
993 && REGNO != ARG_POINTER_REGNUM) \
994 && !IS_VFP_REGNUM (REGNO) \
995 ? 1 : ARM_NUM_REGS (MODE))
997 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
998 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
999 arm_hard_regno_mode_ok ((REGNO), (MODE))
1001 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1003 #define VALID_IWMMXT_REG_MODE(MODE) \
1004 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1006 /* Modes valid for Neon D registers. */
1007 #define VALID_NEON_DREG_MODE(MODE) \
1008 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1009 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1011 /* Modes valid for Neon Q registers. */
1012 #define VALID_NEON_QREG_MODE(MODE) \
1013 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1014 || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
1016 /* Structure modes valid for Neon registers. */
1017 #define VALID_NEON_STRUCT_MODE(MODE) \
1018 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1019 || (MODE) == CImode || (MODE) == XImode)
1021 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1022 extern int arm_regs_in_sequence[];
1024 /* The order in which register should be allocated. It is good to use ip
1025 since no saving is required (though calls clobber it) and it never contains
1026 function parameters. It is quite good to use lr since other calls may
1027 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1028 least likely to contain a function parameter; in addition results are
1029 returned in r0.
1030 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1031 then D8-D15. The reason for doing this is to attempt to reduce register
1032 pressure when both single- and double-precision registers are used in a
1033 function. */
1035 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1036 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1037 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1039 #define REG_ALLOC_ORDER \
1041 /* General registers. */ \
1042 3, 2, 1, 0, 12, 14, 4, 5, \
1043 6, 7, 8, 9, 10, 11, \
1044 /* High VFP registers. */ \
1045 VREG(32), VREG(33), VREG(34), VREG(35), \
1046 VREG(36), VREG(37), VREG(38), VREG(39), \
1047 VREG(40), VREG(41), VREG(42), VREG(43), \
1048 VREG(44), VREG(45), VREG(46), VREG(47), \
1049 VREG(48), VREG(49), VREG(50), VREG(51), \
1050 VREG(52), VREG(53), VREG(54), VREG(55), \
1051 VREG(56), VREG(57), VREG(58), VREG(59), \
1052 VREG(60), VREG(61), VREG(62), VREG(63), \
1053 /* VFP argument registers. */ \
1054 VREG(15), VREG(14), VREG(13), VREG(12), \
1055 VREG(11), VREG(10), VREG(9), VREG(8), \
1056 VREG(7), VREG(6), VREG(5), VREG(4), \
1057 VREG(3), VREG(2), VREG(1), VREG(0), \
1058 /* VFP call-saved registers. */ \
1059 VREG(16), VREG(17), VREG(18), VREG(19), \
1060 VREG(20), VREG(21), VREG(22), VREG(23), \
1061 VREG(24), VREG(25), VREG(26), VREG(27), \
1062 VREG(28), VREG(29), VREG(30), VREG(31), \
1063 /* IWMMX registers. */ \
1064 WREG(0), WREG(1), WREG(2), WREG(3), \
1065 WREG(4), WREG(5), WREG(6), WREG(7), \
1066 WREG(8), WREG(9), WREG(10), WREG(11), \
1067 WREG(12), WREG(13), WREG(14), WREG(15), \
1068 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1069 /* Registers not for general use. */ \
1070 CC_REGNUM, VFPCC_REGNUM, \
1071 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1072 SP_REGNUM, PC_REGNUM \
1075 /* Use different register alloc ordering for Thumb. */
1076 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1078 /* Tell IRA to use the order we define rather than messing it up with its
1079 own cost calculations. */
1080 #define HONOR_REG_ALLOC_ORDER 1
1082 /* Interrupt functions can only use registers that have already been
1083 saved by the prologue, even if they would normally be
1084 call-clobbered. */
1085 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1086 (! IS_INTERRUPT (cfun->machine->func_type) || \
1087 df_regs_ever_live_p (DST))
1089 /* Register and constant classes. */
1091 /* Register classes. */
1092 enum reg_class
1094 NO_REGS,
1095 LO_REGS,
1096 STACK_REG,
1097 BASE_REGS,
1098 HI_REGS,
1099 CALLER_SAVE_REGS,
1100 GENERAL_REGS,
1101 CORE_REGS,
1102 VFP_D0_D7_REGS,
1103 VFP_LO_REGS,
1104 VFP_HI_REGS,
1105 VFP_REGS,
1106 IWMMXT_REGS,
1107 IWMMXT_GR_REGS,
1108 CC_REG,
1109 VFPCC_REG,
1110 SFP_REG,
1111 AFP_REG,
1112 ALL_REGS,
1113 LIM_REG_CLASSES
1116 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1118 /* Give names of register classes as strings for dump file. */
1119 #define REG_CLASS_NAMES \
1121 "NO_REGS", \
1122 "LO_REGS", \
1123 "STACK_REG", \
1124 "BASE_REGS", \
1125 "HI_REGS", \
1126 "CALLER_SAVE_REGS", \
1127 "GENERAL_REGS", \
1128 "CORE_REGS", \
1129 "VFP_D0_D7_REGS", \
1130 "VFP_LO_REGS", \
1131 "VFP_HI_REGS", \
1132 "VFP_REGS", \
1133 "IWMMXT_REGS", \
1134 "IWMMXT_GR_REGS", \
1135 "CC_REG", \
1136 "VFPCC_REG", \
1137 "SFP_REG", \
1138 "AFP_REG", \
1139 "ALL_REGS" \
1142 /* Define which registers fit in which classes.
1143 This is an initializer for a vector of HARD_REG_SET
1144 of length N_REG_CLASSES. */
1145 #define REG_CLASS_CONTENTS \
1147 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1148 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1149 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1150 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1151 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1152 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1153 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1154 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1155 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1156 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1157 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1158 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1159 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1160 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1161 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1162 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1163 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1164 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1165 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1168 /* Any of the VFP register classes. */
1169 #define IS_VFP_CLASS(X) \
1170 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1171 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1173 /* The same information, inverted:
1174 Return the class number of the smallest class containing
1175 reg number REGNO. This could be a conditional expression
1176 or could index an array. */
1177 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1179 /* In VFPv1, VFP registers could only be accessed in the mode they
1180 were set, so subregs would be invalid there. However, we don't
1181 support VFPv1 at the moment, and the restriction was lifted in
1182 VFPv2.
1183 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1184 VFP registers in little-endian order. We can't describe that accurately to
1185 GCC, so avoid taking subregs of such values.
1186 The only exception is going from a 128-bit to a 64-bit type. In that case
1187 the data layout happens to be consistent for big-endian, so we explicitly allow
1188 that case. */
1189 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1190 (TARGET_VFP && TARGET_BIG_END \
1191 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \
1192 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1193 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1194 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1196 /* The class value for index registers, and the one for base regs. */
1197 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1198 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1200 /* For the Thumb the high registers cannot be used as base registers
1201 when addressing quantities in QI or HI mode; if we don't know the
1202 mode, then we must be conservative. */
1203 #define MODE_BASE_REG_CLASS(MODE) \
1204 (TARGET_32BIT ? CORE_REGS \
1205 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1206 : LO_REGS)
1208 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1209 instead of BASE_REGS. */
1210 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1212 /* When this hook returns true for MODE, the compiler allows
1213 registers explicitly used in the rtl to be used as spill registers
1214 but prevents the compiler from extending the lifetime of these
1215 registers. */
1216 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1217 arm_small_register_classes_for_mode_p
1219 /* Must leave BASE_REGS reloads alone */
1220 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1221 (lra_in_progress ? NO_REGS \
1222 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1223 ? ((true_regnum (X) == -1 ? LO_REGS \
1224 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1225 : NO_REGS)) \
1226 : NO_REGS))
1228 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1229 (lra_in_progress ? NO_REGS \
1230 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1231 ? ((true_regnum (X) == -1 ? LO_REGS \
1232 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1233 : NO_REGS)) \
1234 : NO_REGS)
1236 /* Return the register class of a scratch register needed to copy IN into
1237 or out of a register in CLASS in MODE. If it can be done directly,
1238 NO_REGS is returned. */
1239 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1240 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1241 ((TARGET_VFP && TARGET_HARD_FLOAT \
1242 && IS_VFP_CLASS (CLASS)) \
1243 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1244 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1245 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1246 : TARGET_32BIT \
1247 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1248 ? GENERAL_REGS : NO_REGS) \
1249 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1251 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1252 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1253 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1254 ((TARGET_VFP && TARGET_HARD_FLOAT \
1255 && IS_VFP_CLASS (CLASS)) \
1256 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1257 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1258 coproc_secondary_reload_class (MODE, X, TRUE) : \
1259 (TARGET_32BIT ? \
1260 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1261 && CONSTANT_P (X)) \
1262 ? GENERAL_REGS : \
1263 (((MODE) == HImode && ! arm_arch4 \
1264 && (MEM_P (X) \
1265 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1266 && true_regnum (X) == -1))) \
1267 ? GENERAL_REGS : NO_REGS) \
1268 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1270 /* Return the maximum number of consecutive registers
1271 needed to represent mode MODE in a register of class CLASS.
1272 ARM regs are UNITS_PER_WORD bits.
1273 FIXME: Is this true for iWMMX? */
1274 #define CLASS_MAX_NREGS(CLASS, MODE) \
1275 (ARM_NUM_REGS (MODE))
1277 /* If defined, gives a class of registers that cannot be used as the
1278 operand of a SUBREG that changes the mode of the object illegally. */
1280 /* Stack layout; function entry, exit and calling. */
1282 /* Define this if pushing a word on the stack
1283 makes the stack pointer a smaller address. */
1284 #define STACK_GROWS_DOWNWARD 1
1286 /* Define this to nonzero if the nominal address of the stack frame
1287 is at the high-address end of the local variables;
1288 that is, each additional local variable allocated
1289 goes at a more negative offset in the frame. */
1290 #define FRAME_GROWS_DOWNWARD 1
1292 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1293 When present, it is one word in size, and sits at the top of the frame,
1294 between the soft frame pointer and either r7 or r11.
1296 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1297 and only then if some outgoing arguments are passed on the stack. It would
1298 be tempting to also check whether the stack arguments are passed by indirect
1299 calls, but there seems to be no reason in principle why a post-reload pass
1300 couldn't convert a direct call into an indirect one. */
1301 #define CALLER_INTERWORKING_SLOT_SIZE \
1302 (TARGET_CALLER_INTERWORKING \
1303 && crtl->outgoing_args_size != 0 \
1304 ? UNITS_PER_WORD : 0)
1306 /* Offset within stack frame to start allocating local variables at.
1307 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1308 first local allocated. Otherwise, it is the offset to the BEGINNING
1309 of the first local allocated. */
1310 #define STARTING_FRAME_OFFSET 0
1312 /* If we generate an insn to push BYTES bytes,
1313 this says how many the stack pointer really advances by. */
1314 /* The push insns do not do this rounding implicitly.
1315 So don't define this. */
1316 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1318 /* Define this if the maximum size of all the outgoing args is to be
1319 accumulated and pushed during the prologue. The amount can be
1320 found in the variable crtl->outgoing_args_size. */
1321 #define ACCUMULATE_OUTGOING_ARGS 1
1323 /* Offset of first parameter from the argument pointer register value. */
1324 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1326 /* Amount of memory needed for an untyped call to save all possible return
1327 registers. */
1328 #define APPLY_RESULT_SIZE arm_apply_result_size()
1330 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1331 values must be in memory. On the ARM, they need only do so if larger
1332 than a word, or if they contain elements offset from zero in the struct. */
1333 #define DEFAULT_PCC_STRUCT_RETURN 0
1335 /* These bits describe the different types of function supported
1336 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1337 normal function and an interworked function, for example. Knowing the
1338 type of a function is important for determining its prologue and
1339 epilogue sequences.
1340 Note value 7 is currently unassigned. Also note that the interrupt
1341 function types all have bit 2 set, so that they can be tested for easily.
1342 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1343 machine_function structure is initialized (to zero) func_type will
1344 default to unknown. This will force the first use of arm_current_func_type
1345 to call arm_compute_func_type. */
1346 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1347 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1348 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1349 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1350 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1351 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1353 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1355 /* In addition functions can have several type modifiers,
1356 outlined by these bit masks: */
1357 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1358 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1359 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1360 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1361 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1363 /* Some macros to test these flags. */
1364 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1365 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1366 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1367 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1368 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1369 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1372 /* Structure used to hold the function stack frame layout. Offsets are
1373 relative to the stack pointer on function entry. Positive offsets are
1374 in the direction of stack growth.
1375 Only soft_frame is used in thumb mode. */
1377 typedef struct GTY(()) arm_stack_offsets
1379 int saved_args; /* ARG_POINTER_REGNUM. */
1380 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1381 int saved_regs;
1382 int soft_frame; /* FRAME_POINTER_REGNUM. */
1383 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1384 int outgoing_args; /* STACK_POINTER_REGNUM. */
1385 unsigned int saved_regs_mask;
1387 arm_stack_offsets;
1389 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1390 /* A C structure for machine-specific, per-function data.
1391 This is added to the cfun structure. */
1392 typedef struct GTY(()) machine_function
1394 /* Additional stack adjustment in __builtin_eh_throw. */
1395 rtx eh_epilogue_sp_ofs;
1396 /* Records if LR has to be saved for far jumps. */
1397 int far_jump_used;
1398 /* Records if ARG_POINTER was ever live. */
1399 int arg_pointer_live;
1400 /* Records if the save of LR has been eliminated. */
1401 int lr_save_eliminated;
1402 /* The size of the stack frame. Only valid after reload. */
1403 arm_stack_offsets stack_offsets;
1404 /* Records the type of the current function. */
1405 unsigned long func_type;
1406 /* Record if the function has a variable argument list. */
1407 int uses_anonymous_args;
1408 /* Records if sibcalls are blocked because an argument
1409 register is needed to preserve stack alignment. */
1410 int sibcall_blocked;
1411 /* The PIC register for this function. This might be a pseudo. */
1412 rtx pic_reg;
1413 /* Labels for per-function Thumb call-via stubs. One per potential calling
1414 register. We can never call via LR or PC. We can call via SP if a
1415 trampoline happens to be on the top of the stack. */
1416 rtx call_via[14];
1417 /* Set to 1 when a return insn is output, this means that the epilogue
1418 is not needed. */
1419 int return_used_this_function;
1420 /* When outputting Thumb-1 code, record the last insn that provides
1421 information about condition codes, and the comparison operands. */
1422 rtx thumb1_cc_insn;
1423 rtx thumb1_cc_op0;
1424 rtx thumb1_cc_op1;
1425 /* Also record the CC mode that is supported. */
1426 machine_mode thumb1_cc_mode;
1427 /* Set to 1 after arm_reorg has started. */
1428 int after_arm_reorg;
1430 machine_function;
1431 #endif
1433 /* As in the machine_function, a global set of call-via labels, for code
1434 that is in text_section. */
1435 extern GTY(()) rtx thumb_call_via_label[14];
1437 /* The number of potential ways of assigning to a co-processor. */
1438 #define ARM_NUM_COPROC_SLOTS 1
1440 /* Enumeration of procedure calling standard variants. We don't really
1441 support all of these yet. */
1442 enum arm_pcs
1444 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1445 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1446 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1447 /* This must be the last AAPCS variant. */
1448 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1449 ARM_PCS_ATPCS, /* ATPCS. */
1450 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1451 ARM_PCS_UNKNOWN
1454 /* Default procedure calling standard of current compilation unit. */
1455 extern enum arm_pcs arm_pcs_default;
1457 #if !defined (USED_FOR_TARGET)
1458 /* A C type for declaring a variable that is used as the first argument of
1459 `FUNCTION_ARG' and other related values. */
1460 typedef struct
1462 /* This is the number of registers of arguments scanned so far. */
1463 int nregs;
1464 /* This is the number of iWMMXt register arguments scanned so far. */
1465 int iwmmxt_nregs;
1466 int named_count;
1467 int nargs;
1468 /* Which procedure call variant to use for this call. */
1469 enum arm_pcs pcs_variant;
1471 /* AAPCS related state tracking. */
1472 int aapcs_arg_processed; /* No need to lay out this argument again. */
1473 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1474 this argument, or -1 if using core
1475 registers. */
1476 int aapcs_ncrn;
1477 int aapcs_next_ncrn;
1478 rtx aapcs_reg; /* Register assigned to this argument. */
1479 int aapcs_partial; /* How many bytes are passed in regs (if
1480 split between core regs and stack.
1481 Zero otherwise. */
1482 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1483 int can_split; /* Argument can be split between core regs
1484 and the stack. */
1485 /* Private data for tracking VFP register allocation */
1486 unsigned aapcs_vfp_regs_free;
1487 unsigned aapcs_vfp_reg_alloc;
1488 int aapcs_vfp_rcount;
1489 MACHMODE aapcs_vfp_rmode;
1490 } CUMULATIVE_ARGS;
1491 #endif
1493 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1494 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1496 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1497 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1499 /* For AAPCS, padding should never be below the argument. For other ABIs,
1500 * mimic the default. */
1501 #define PAD_VARARGS_DOWN \
1502 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1504 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1505 for a call to a function whose data type is FNTYPE.
1506 For a library call, FNTYPE is 0.
1507 On the ARM, the offset starts at 0. */
1508 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1509 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1511 /* 1 if N is a possible register number for function argument passing.
1512 On the ARM, r0-r3 are used to pass args. */
1513 #define FUNCTION_ARG_REGNO_P(REGNO) \
1514 (IN_RANGE ((REGNO), 0, 3) \
1515 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1516 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1517 || (TARGET_IWMMXT_ABI \
1518 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1521 /* If your target environment doesn't prefix user functions with an
1522 underscore, you may wish to re-define this to prevent any conflicts. */
1523 #ifndef ARM_MCOUNT_NAME
1524 #define ARM_MCOUNT_NAME "*mcount"
1525 #endif
1527 /* Call the function profiler with a given profile label. The Acorn
1528 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1529 On the ARM the full profile code will look like:
1530 .data
1532 .word 0
1533 .text
1534 mov ip, lr
1535 bl mcount
1536 .word LP1
1538 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1539 will output the .text section.
1541 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1542 ``prof'' doesn't seem to mind about this!
1544 Note - this version of the code is designed to work in both ARM and
1545 Thumb modes. */
1546 #ifndef ARM_FUNCTION_PROFILER
1547 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1549 char temp[20]; \
1550 rtx sym; \
1552 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1553 IP_REGNUM, LR_REGNUM); \
1554 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1555 fputc ('\n', STREAM); \
1556 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1557 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1558 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1560 #endif
1562 #ifdef THUMB_FUNCTION_PROFILER
1563 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1564 if (TARGET_ARM) \
1565 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1566 else \
1567 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1568 #else
1569 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1570 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1571 #endif
1573 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1574 the stack pointer does not matter. The value is tested only in
1575 functions that have frame pointers.
1576 No definition is equivalent to always zero.
1578 On the ARM, the function epilogue recovers the stack pointer from the
1579 frame. */
1580 #define EXIT_IGNORE_STACK 1
1582 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1584 /* Determine if the epilogue should be output as RTL.
1585 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1586 #define USE_RETURN_INSN(ISCOND) \
1587 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1589 /* Definitions for register eliminations.
1591 This is an array of structures. Each structure initializes one pair
1592 of eliminable registers. The "from" register number is given first,
1593 followed by "to". Eliminations of the same "from" register are listed
1594 in order of preference.
1596 We have two registers that can be eliminated on the ARM. First, the
1597 arg pointer register can often be eliminated in favor of the stack
1598 pointer register. Secondly, the pseudo frame pointer register can always
1599 be eliminated; it is replaced with either the stack or the real frame
1600 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1601 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1603 #define ELIMINABLE_REGS \
1604 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1605 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1606 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1607 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1608 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1609 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1610 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1612 /* Define the offset between two registers, one to be eliminated, and the
1613 other its replacement, at the start of a routine. */
1614 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1615 if (TARGET_ARM) \
1616 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1617 else \
1618 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1620 /* Special case handling of the location of arguments passed on the stack. */
1621 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1623 /* Initialize data used by insn expanders. This is called from insn_emit,
1624 once for every function before code is generated. */
1625 #define INIT_EXPANDERS arm_init_expanders ()
1627 /* Length in units of the trampoline for entering a nested function. */
1628 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1630 /* Alignment required for a trampoline in bits. */
1631 #define TRAMPOLINE_ALIGNMENT 32
1633 /* Addressing modes, and classification of registers for them. */
1634 #define HAVE_POST_INCREMENT 1
1635 #define HAVE_PRE_INCREMENT TARGET_32BIT
1636 #define HAVE_POST_DECREMENT TARGET_32BIT
1637 #define HAVE_PRE_DECREMENT TARGET_32BIT
1638 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1639 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1640 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1641 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1643 enum arm_auto_incmodes
1645 ARM_POST_INC,
1646 ARM_PRE_INC,
1647 ARM_POST_DEC,
1648 ARM_PRE_DEC
1651 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1652 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1653 #define USE_LOAD_POST_INCREMENT(mode) \
1654 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1655 #define USE_LOAD_PRE_INCREMENT(mode) \
1656 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1657 #define USE_LOAD_POST_DECREMENT(mode) \
1658 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1659 #define USE_LOAD_PRE_DECREMENT(mode) \
1660 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1662 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1663 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1664 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1665 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1667 /* Macros to check register numbers against specific register classes. */
1669 /* These assume that REGNO is a hard or pseudo reg number.
1670 They give nonzero only if REGNO is a hard reg of the suitable class
1671 or a pseudo reg currently allocated to a suitable hard reg.
1672 Since they use reg_renumber, they are safe only once reg_renumber
1673 has been allocated, which happens in reginfo.c during register
1674 allocation. */
1675 #define TEST_REGNO(R, TEST, VALUE) \
1676 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1678 /* Don't allow the pc to be used. */
1679 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1680 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1681 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1682 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1684 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1685 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1686 || (GET_MODE_SIZE (MODE) >= 4 \
1687 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1689 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1690 (TARGET_THUMB1 \
1691 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1692 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1694 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1695 For Thumb, we can not use SP + reg, so reject SP. */
1696 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1697 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1699 /* For ARM code, we don't care about the mode, but for Thumb, the index
1700 must be suitable for use in a QImode load. */
1701 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1702 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1703 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1705 /* Maximum number of registers that can appear in a valid memory address.
1706 Shifts in addresses can't be by a register. */
1707 #define MAX_REGS_PER_ADDRESS 2
1709 /* Recognize any constant value that is a valid address. */
1710 /* XXX We can address any constant, eventually... */
1711 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1712 #define CONSTANT_ADDRESS_P(X) \
1713 (GET_CODE (X) == SYMBOL_REF \
1714 && (CONSTANT_POOL_ADDRESS_P (X) \
1715 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1717 /* True if SYMBOL + OFFSET constants must refer to something within
1718 SYMBOL's section. */
1719 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1721 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1722 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1723 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1724 #endif
1726 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1727 #define SUBTARGET_NAME_ENCODING_LENGTHS
1728 #endif
1730 /* This is a C fragment for the inside of a switch statement.
1731 Each case label should return the number of characters to
1732 be stripped from the start of a function's name, if that
1733 name starts with the indicated character. */
1734 #define ARM_NAME_ENCODING_LENGTHS \
1735 case '*': return 1; \
1736 SUBTARGET_NAME_ENCODING_LENGTHS
1738 /* This is how to output a reference to a user-level label named NAME.
1739 `assemble_name' uses this. */
1740 #undef ASM_OUTPUT_LABELREF
1741 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1742 arm_asm_output_labelref (FILE, NAME)
1744 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1745 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1746 if (TARGET_THUMB2) \
1747 thumb2_asm_output_opcode (STREAM);
1749 /* The EABI specifies that constructors should go in .init_array.
1750 Other targets use .ctors for compatibility. */
1751 #ifndef ARM_EABI_CTORS_SECTION_OP
1752 #define ARM_EABI_CTORS_SECTION_OP \
1753 "\t.section\t.init_array,\"aw\",%init_array"
1754 #endif
1755 #ifndef ARM_EABI_DTORS_SECTION_OP
1756 #define ARM_EABI_DTORS_SECTION_OP \
1757 "\t.section\t.fini_array,\"aw\",%fini_array"
1758 #endif
1759 #define ARM_CTORS_SECTION_OP \
1760 "\t.section\t.ctors,\"aw\",%progbits"
1761 #define ARM_DTORS_SECTION_OP \
1762 "\t.section\t.dtors,\"aw\",%progbits"
1764 /* Define CTORS_SECTION_ASM_OP. */
1765 #undef CTORS_SECTION_ASM_OP
1766 #undef DTORS_SECTION_ASM_OP
1767 #ifndef IN_LIBGCC2
1768 # define CTORS_SECTION_ASM_OP \
1769 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1770 # define DTORS_SECTION_ASM_OP \
1771 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1772 #else /* !defined (IN_LIBGCC2) */
1773 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1774 so we cannot use the definition above. */
1775 # ifdef __ARM_EABI__
1776 /* The .ctors section is not part of the EABI, so we do not define
1777 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1778 from trying to use it. We do define it when doing normal
1779 compilation, as .init_array can be used instead of .ctors. */
1780 /* There is no need to emit begin or end markers when using
1781 init_array; the dynamic linker will compute the size of the
1782 array itself based on special symbols created by the static
1783 linker. However, we do need to arrange to set up
1784 exception-handling here. */
1785 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1786 # define CTOR_LIST_END /* empty */
1787 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1788 # define DTOR_LIST_END /* empty */
1789 # else /* !defined (__ARM_EABI__) */
1790 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1791 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1792 # endif /* !defined (__ARM_EABI__) */
1793 #endif /* !defined (IN_LIBCC2) */
1795 /* True if the operating system can merge entities with vague linkage
1796 (e.g., symbols in COMDAT group) during dynamic linking. */
1797 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1798 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1799 #endif
1801 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1803 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1804 and check its validity for a certain class.
1805 We have two alternate definitions for each of them.
1806 The usual definition accepts all pseudo regs; the other rejects
1807 them unless they have been allocated suitable hard regs.
1808 The symbol REG_OK_STRICT causes the latter definition to be used.
1809 Thumb-2 has the same restrictions as arm. */
1810 #ifndef REG_OK_STRICT
1812 #define ARM_REG_OK_FOR_BASE_P(X) \
1813 (REGNO (X) <= LAST_ARM_REGNUM \
1814 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1815 || REGNO (X) == FRAME_POINTER_REGNUM \
1816 || REGNO (X) == ARG_POINTER_REGNUM)
1818 #define ARM_REG_OK_FOR_INDEX_P(X) \
1819 ((REGNO (X) <= LAST_ARM_REGNUM \
1820 && REGNO (X) != STACK_POINTER_REGNUM) \
1821 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1822 || REGNO (X) == FRAME_POINTER_REGNUM \
1823 || REGNO (X) == ARG_POINTER_REGNUM)
1825 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1826 (REGNO (X) <= LAST_LO_REGNUM \
1827 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1828 || (GET_MODE_SIZE (MODE) >= 4 \
1829 && (REGNO (X) == STACK_POINTER_REGNUM \
1830 || (X) == hard_frame_pointer_rtx \
1831 || (X) == arg_pointer_rtx)))
1833 #define REG_STRICT_P 0
1835 #else /* REG_OK_STRICT */
1837 #define ARM_REG_OK_FOR_BASE_P(X) \
1838 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1840 #define ARM_REG_OK_FOR_INDEX_P(X) \
1841 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1843 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1844 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1846 #define REG_STRICT_P 1
1848 #endif /* REG_OK_STRICT */
1850 /* Now define some helpers in terms of the above. */
1852 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1853 (TARGET_THUMB1 \
1854 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1855 : ARM_REG_OK_FOR_BASE_P (X))
1857 /* For 16-bit Thumb, a valid index register is anything that can be used in
1858 a byte load instruction. */
1859 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1860 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1862 /* Nonzero if X is a hard reg that can be used as an index
1863 or if it is a pseudo reg. On the Thumb, the stack pointer
1864 is not suitable. */
1865 #define REG_OK_FOR_INDEX_P(X) \
1866 (TARGET_THUMB1 \
1867 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1868 : ARM_REG_OK_FOR_INDEX_P (X))
1870 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1871 For Thumb, we can not use SP + reg, so reject SP. */
1872 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1873 REG_OK_FOR_INDEX_P (X)
1875 #define ARM_BASE_REGISTER_RTX_P(X) \
1876 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1878 #define ARM_INDEX_REGISTER_RTX_P(X) \
1879 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1881 /* Specify the machine mode that this machine uses
1882 for the index in the tablejump instruction. */
1883 #define CASE_VECTOR_MODE Pmode
1885 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1886 || (TARGET_THUMB1 \
1887 && (optimize_size || flag_pic)))
1889 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1890 (TARGET_THUMB1 \
1891 ? (min >= 0 && max < 512 \
1892 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1893 : min >= -256 && max < 256 \
1894 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1895 : min >= 0 && max < 8192 \
1896 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1897 : min >= -4096 && max < 4096 \
1898 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1899 : SImode) \
1900 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1901 : (max >= 0x200) ? HImode \
1902 : QImode))
1904 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1905 unsigned is probably best, but may break some code. */
1906 #ifndef DEFAULT_SIGNED_CHAR
1907 #define DEFAULT_SIGNED_CHAR 0
1908 #endif
1910 /* Max number of bytes we can move from memory to memory
1911 in one reasonably fast instruction. */
1912 #define MOVE_MAX 4
1914 #undef MOVE_RATIO
1915 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1917 /* Define if operations between registers always perform the operation
1918 on the full register even if a narrower mode is specified. */
1919 #define WORD_REGISTER_OPERATIONS 1
1921 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1922 will either zero-extend or sign-extend. The value of this macro should
1923 be the code that says which one of the two operations is implicitly
1924 done, UNKNOWN if none. */
1925 #define LOAD_EXTEND_OP(MODE) \
1926 (TARGET_THUMB ? ZERO_EXTEND : \
1927 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1928 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1930 /* Nonzero if access to memory by bytes is slow and undesirable. */
1931 #define SLOW_BYTE_ACCESS 0
1933 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1935 /* Immediate shift counts are truncated by the output routines (or was it
1936 the assembler?). Shift counts in a register are truncated by ARM. Note
1937 that the native compiler puts too large (> 32) immediate shift counts
1938 into a register and shifts by the register, letting the ARM decide what
1939 to do instead of doing that itself. */
1940 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1941 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1942 On the arm, Y in a register is used modulo 256 for the shift. Only for
1943 rotates is modulo 32 used. */
1944 /* #define SHIFT_COUNT_TRUNCATED 1 */
1946 /* All integers have the same format so truncation is easy. */
1947 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1949 /* Calling from registers is a massive pain. */
1950 #define NO_FUNCTION_CSE 1
1952 /* The machine modes of pointers and functions */
1953 #define Pmode SImode
1954 #define FUNCTION_MODE Pmode
1956 #define ARM_FRAME_RTX(X) \
1957 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1958 || (X) == arg_pointer_rtx)
1960 /* Try to generate sequences that don't involve branches, we can then use
1961 conditional instructions. */
1962 #define BRANCH_COST(speed_p, predictable_p) \
1963 (current_tune->branch_cost (speed_p, predictable_p))
1965 /* False if short circuit operation is preferred. */
1966 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
1967 ((optimize_size) \
1968 ? (TARGET_THUMB ? false : true) \
1969 : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
1970 : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
1973 /* Position Independent Code. */
1974 /* We decide which register to use based on the compilation options and
1975 the assembler in use; this is more general than the APCS restriction of
1976 using sb (r9) all the time. */
1977 extern unsigned arm_pic_register;
1979 /* The register number of the register used to address a table of static
1980 data addresses in memory. */
1981 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1983 /* We can't directly access anything that contains a symbol,
1984 nor can we indirect via the constant pool. One exception is
1985 UNSPEC_TLS, which is always PIC. */
1986 #define LEGITIMATE_PIC_OPERAND_P(X) \
1987 (!(symbol_mentioned_p (X) \
1988 || label_mentioned_p (X) \
1989 || (GET_CODE (X) == SYMBOL_REF \
1990 && CONSTANT_POOL_ADDRESS_P (X) \
1991 && (symbol_mentioned_p (get_pool_constant (X)) \
1992 || label_mentioned_p (get_pool_constant (X))))) \
1993 || tls_mentioned_p (X))
1995 /* We need to know when we are making a constant pool; this determines
1996 whether data needs to be in the GOT or can be referenced via a GOT
1997 offset. */
1998 extern int making_const_table;
2000 /* Handle pragmas for compatibility with Intel's compilers. */
2001 /* Also abuse this to register additional C specific EABI attributes. */
2002 #define REGISTER_TARGET_PRAGMAS() do { \
2003 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2004 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2005 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2006 arm_lang_object_attributes_init(); \
2007 arm_register_target_pragmas(); \
2008 } while (0)
2010 /* Condition code information. */
2011 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2012 return the mode to be used for the comparison. */
2014 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2016 #define REVERSIBLE_CC_MODE(MODE) 1
2018 #define REVERSE_CONDITION(CODE,MODE) \
2019 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2020 ? reverse_condition_maybe_unordered (code) \
2021 : reverse_condition (code))
2023 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2024 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2025 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2026 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2028 #define CC_STATUS_INIT \
2029 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2031 #undef ASM_APP_ON
2032 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2033 "\t.syntax divided\n")
2035 #undef ASM_APP_OFF
2036 #define ASM_APP_OFF "\t.syntax unified\n"
2038 /* Output a push or a pop instruction (only used when profiling).
2039 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2040 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2041 that r7 isn't used by the function profiler, so we can use it as a
2042 scratch reg. WARNING: This isn't safe in the general case! It may be
2043 sensitive to future changes in final.c:profile_function. */
2044 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2045 do \
2047 if (TARGET_THUMB1 \
2048 && (REGNO) == STATIC_CHAIN_REGNUM) \
2050 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2051 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2052 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2054 else \
2055 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2056 } while (0)
2059 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2060 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2061 do \
2063 if (TARGET_THUMB1 \
2064 && (REGNO) == STATIC_CHAIN_REGNUM) \
2066 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2067 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2068 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2070 else \
2071 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2072 } while (0)
2074 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2075 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2077 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2078 default alignment from elfos.h. */
2079 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2080 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2082 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2083 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2084 ? 1 : 0)
2086 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2087 arm_declare_function_name ((STREAM), (NAME), (DECL));
2089 /* For aliases of functions we use .thumb_set instead. */
2090 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2091 do \
2093 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2094 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2096 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2098 fprintf (FILE, "\t.thumb_set "); \
2099 assemble_name (FILE, LABEL1); \
2100 fprintf (FILE, ","); \
2101 assemble_name (FILE, LABEL2); \
2102 fprintf (FILE, "\n"); \
2104 else \
2105 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2107 while (0)
2109 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2110 /* To support -falign-* switches we need to use .p2align so
2111 that alignment directives in code sections will be padded
2112 with no-op instructions, rather than zeroes. */
2113 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2114 if ((LOG) != 0) \
2116 if ((MAX_SKIP) == 0) \
2117 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2118 else \
2119 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2120 (int) (LOG), (int) (MAX_SKIP)); \
2122 #endif
2124 /* Add two bytes to the length of conditionally executed Thumb-2
2125 instructions for the IT instruction. */
2126 #define ADJUST_INSN_LENGTH(insn, length) \
2127 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2128 length += 2;
2130 /* Only perform branch elimination (by making instructions conditional) if
2131 we're optimizing. For Thumb-2 check if any IT instructions need
2132 outputting. */
2133 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2134 if (TARGET_ARM && optimize) \
2135 arm_final_prescan_insn (INSN); \
2136 else if (TARGET_THUMB2) \
2137 thumb2_final_prescan_insn (INSN); \
2138 else if (TARGET_THUMB1) \
2139 thumb1_final_prescan_insn (INSN)
2141 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2142 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2143 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2144 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2145 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2146 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2147 : 0))))
2149 /* A C expression whose value is RTL representing the value of the return
2150 address for the frame COUNT steps up from the current frame. */
2152 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2153 arm_return_addr (COUNT, FRAME)
2155 /* Mask of the bits in the PC that contain the real return address
2156 when running in 26-bit mode. */
2157 #define RETURN_ADDR_MASK26 (0x03fffffc)
2159 /* Pick up the return address upon entry to a procedure. Used for
2160 dwarf2 unwind information. This also enables the table driven
2161 mechanism. */
2162 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2163 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2165 /* Used to mask out junk bits from the return address, such as
2166 processor state, interrupt status, condition codes and the like. */
2167 #define MASK_RETURN_ADDR \
2168 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2169 in 26 bit mode, the condition codes must be masked out of the \
2170 return address. This does not apply to ARM6 and later processors \
2171 when running in 32 bit mode. */ \
2172 ((arm_arch4 || TARGET_THUMB) \
2173 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2174 : arm_gen_return_addr_mask ())
2177 /* Do not emit .note.GNU-stack by default. */
2178 #ifndef NEED_INDICATE_EXEC_STACK
2179 #define NEED_INDICATE_EXEC_STACK 0
2180 #endif
2182 #define TARGET_ARM_ARCH \
2183 (arm_base_arch) \
2185 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2186 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2188 /* The highest Thumb instruction set version supported by the chip. */
2189 #define TARGET_ARM_ARCH_ISA_THUMB \
2190 (arm_arch_thumb2 ? 2 \
2191 : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2193 /* Expands to an upper-case char of the target's architectural
2194 profile. */
2195 #define TARGET_ARM_ARCH_PROFILE \
2196 (!arm_arch_notm \
2197 ? 'M' \
2198 : (arm_arch7 \
2199 ? (strlen (arm_arch_name) >=3 \
2200 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \
2201 : 0) \
2202 : 0))
2204 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2205 Bit 0 for bytes, up to bit 3 for double-words. */
2206 #define TARGET_ARM_FEATURE_LDREX \
2207 ((TARGET_HAVE_LDREX ? 4 : 0) \
2208 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2209 | (TARGET_HAVE_LDREXD ? 8 : 0))
2211 /* Set as a bit mask indicating the available widths of hardware floating
2212 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2213 32-bit support, bit 3 indicates 64-bit support. */
2214 #define TARGET_ARM_FP \
2215 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2216 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2217 : 0)
2220 /* Set as a bit mask indicating the available widths of floating point
2221 types for hardware NEON floating point. This is the same as
2222 TARGET_ARM_FP without the 64-bit bit set. */
2223 #define TARGET_NEON_FP \
2224 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2225 : 0)
2227 /* The maximum number of parallel loads or stores we support in an ldm/stm
2228 instruction. */
2229 #define MAX_LDM_STM_OPS 4
2231 #define BIG_LITTLE_SPEC \
2232 " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2234 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2235 #define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2236 { "rewrite_mcpu", arm_rewrite_mcpu },
2238 #define ASM_CPU_SPEC \
2239 " %{mcpu=generic-*:-march=%*;" \
2240 " :%{march=*:-march=%*}}" \
2241 BIG_LITTLE_SPEC
2243 /* -mcpu=native handling only makes sense with compiler running on
2244 an ARM chip. */
2245 #if defined(__arm__)
2246 extern const char *host_detect_local_cpu (int argc, const char **argv);
2247 # define EXTRA_SPEC_FUNCTIONS \
2248 { "local_cpu_detect", host_detect_local_cpu }, \
2249 BIG_LITTLE_CPU_SPEC_FUNCTIONS
2251 # define MCPU_MTUNE_NATIVE_SPECS \
2252 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2253 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2254 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2255 #else
2256 # define MCPU_MTUNE_NATIVE_SPECS ""
2257 # define EXTRA_SPEC_FUNCTIONS BIG_LITTLE_CPU_SPEC_FUNCTIONS
2258 #endif
2260 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2261 #define TARGET_SUPPORTS_WIDE_INT 1
2263 /* For switching between functions with different target attributes. */
2264 #define SWITCHABLE_TARGET 1
2266 #endif /* ! GCC_ARM_H */