Daily bump.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobe6d0781df4c5593e651915dfd298d95579416530
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Dist; use Exp_Dist;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Fname; use Fname;
38 with Freeze; use Freeze;
39 with Itypes; use Itypes;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Case; use Sem_Case;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch6; use Sem_Ch6;
53 with Sem_Ch7; use Sem_Ch7;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Disp; use Sem_Disp;
57 with Sem_Dist; use Sem_Dist;
58 with Sem_Elim; use Sem_Elim;
59 with Sem_Eval; use Sem_Eval;
60 with Sem_Mech; use Sem_Mech;
61 with Sem_Res; use Sem_Res;
62 with Sem_Smem; use Sem_Smem;
63 with Sem_Type; use Sem_Type;
64 with Sem_Util; use Sem_Util;
65 with Sem_Warn; use Sem_Warn;
66 with Stand; use Stand;
67 with Sinfo; use Sinfo;
68 with Snames; use Snames;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Ttypes; use Ttypes;
72 with Uintp; use Uintp;
73 with Urealp; use Urealp;
75 package body Sem_Ch3 is
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
82 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
83 -- abstract interface types implemented by a record type or a derived
84 -- record type.
86 procedure Build_Derived_Type
87 (N : Node_Id;
88 Parent_Type : Entity_Id;
89 Derived_Type : Entity_Id;
90 Is_Completion : Boolean;
91 Derive_Subps : Boolean := True);
92 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
93 -- the N_Full_Type_Declaration node containing the derived type definition.
94 -- Parent_Type is the entity for the parent type in the derived type
95 -- definition and Derived_Type the actual derived type. Is_Completion must
96 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
97 -- (ie Derived_Type = Defining_Identifier (N)). In this case N is not the
98 -- completion of a private type declaration. If Is_Completion is set to
99 -- True, N is the completion of a private type declaration and Derived_Type
100 -- is different from the defining identifier inside N (i.e. Derived_Type /=
101 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
102 -- subprograms should be derived. The only case where this parameter is
103 -- False is when Build_Derived_Type is recursively called to process an
104 -- implicit derived full type for a type derived from a private type (in
105 -- that case the subprograms must only be derived for the private view of
106 -- the type).
108 -- ??? These flags need a bit of re-examination and re-documentation:
109 -- ??? are they both necessary (both seem related to the recursion)?
111 procedure Build_Derived_Access_Type
112 (N : Node_Id;
113 Parent_Type : Entity_Id;
114 Derived_Type : Entity_Id);
115 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
116 -- create an implicit base if the parent type is constrained or if the
117 -- subtype indication has a constraint.
119 procedure Build_Derived_Array_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Concurrent_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
132 -- protected type, inherit entries and protected subprograms, check
133 -- legality of discriminant constraints if any.
135 procedure Build_Derived_Enumeration_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
140 -- type, we must create a new list of literals. Types derived from
141 -- Character and Wide_Character are special-cased.
143 procedure Build_Derived_Numeric_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
148 -- an anonymous base type, and propagate constraint to subtype if needed.
150 procedure Build_Derived_Private_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id;
154 Is_Completion : Boolean;
155 Derive_Subps : Boolean := True);
156 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
157 -- because the parent may or may not have a completion, and the derivation
158 -- may itself be a completion.
160 procedure Build_Derived_Record_Type
161 (N : Node_Id;
162 Parent_Type : Entity_Id;
163 Derived_Type : Entity_Id;
164 Derive_Subps : Boolean := True);
165 -- Subsidiary procedure for Build_Derived_Type and
166 -- Analyze_Private_Extension_Declaration used for tagged and untagged
167 -- record types. All parameters are as in Build_Derived_Type except that
168 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
169 -- N_Private_Extension_Declaration node. See the definition of this routine
170 -- for much more info. Derive_Subps indicates whether subprograms should
171 -- be derived from the parent type. The only case where Derive_Subps is
172 -- False is for an implicit derived full type for a type derived from a
173 -- private type (see Build_Derived_Type).
175 procedure Build_Discriminal (Discrim : Entity_Id);
176 -- Create the discriminal corresponding to discriminant Discrim, that is
177 -- the parameter corresponding to Discrim to be used in initialization
178 -- procedures for the type where Discrim is a discriminant. Discriminals
179 -- are not used during semantic analysis, and are not fully defined
180 -- entities until expansion. Thus they are not given a scope until
181 -- initialization procedures are built.
183 function Build_Discriminant_Constraints
184 (T : Entity_Id;
185 Def : Node_Id;
186 Derived_Def : Boolean := False) return Elist_Id;
187 -- Validate discriminant constraints and return the list of the constraints
188 -- in order of discriminant declarations, where T is the discriminated
189 -- unconstrained type. Def is the N_Subtype_Indication node where the
190 -- discriminants constraints for T are specified. Derived_Def is True
191 -- when building the discriminant constraints in a derived type definition
192 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
193 -- type and Def is the constraint "(xxx)" on T and this routine sets the
194 -- Corresponding_Discriminant field of the discriminants in the derived
195 -- type D to point to the corresponding discriminants in the parent type T.
197 procedure Build_Discriminated_Subtype
198 (T : Entity_Id;
199 Def_Id : Entity_Id;
200 Elist : Elist_Id;
201 Related_Nod : Node_Id;
202 For_Access : Boolean := False);
203 -- Subsidiary procedure to Constrain_Discriminated_Type and to
204 -- Process_Incomplete_Dependents. Given
206 -- T (a possibly discriminated base type)
207 -- Def_Id (a very partially built subtype for T),
209 -- the call completes Def_Id to be the appropriate E_*_Subtype.
211 -- The Elist is the list of discriminant constraints if any (it is set
212 -- to No_Elist if T is not a discriminated type, and to an empty list if
213 -- T has discriminants but there are no discriminant constraints). The
214 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
215 -- The For_Access says whether or not this subtype is really constraining
216 -- an access type. That is its sole purpose is the designated type of an
217 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
218 -- is built to avoid freezing T when the access subtype is frozen.
220 function Build_Scalar_Bound
221 (Bound : Node_Id;
222 Par_T : Entity_Id;
223 Der_T : Entity_Id) return Node_Id;
224 -- The bounds of a derived scalar type are conversions of the bounds of
225 -- the parent type. Optimize the representation if the bounds are literals.
226 -- Needs a more complete spec--what are the parameters exactly, and what
227 -- exactly is the returned value, and how is Bound affected???
229 procedure Build_Itype_Reference
230 (Ityp : Entity_Id;
231 Nod : Node_Id);
232 -- Create a reference to an internal type, for use by Gigi. The back-end
233 -- elaborates itypes on demand, i.e. when their first use is seen. This
234 -- can lead to scope anomalies if the first use is within a scope that is
235 -- nested within the scope that contains the point of definition of the
236 -- itype. The Itype_Reference node forces the elaboration of the itype
237 -- in the proper scope. The node is inserted after Nod, which is the
238 -- enclosing declaration that generated Ityp.
239 -- A related mechanism is used during expansion, for itypes created in
240 -- branches of conditionals. See Ensure_Defined in exp_util.
241 -- Could both mechanisms be merged ???
243 procedure Build_Underlying_Full_View
244 (N : Node_Id;
245 Typ : Entity_Id;
246 Par : Entity_Id);
247 -- If the completion of a private type is itself derived from a private
248 -- type, or if the full view of a private subtype is itself private, the
249 -- back-end has no way to compute the actual size of this type. We build
250 -- an internal subtype declaration of the proper parent type to convey
251 -- this information. This extra mechanism is needed because a full
252 -- view cannot itself have a full view (it would get clobbered during
253 -- view exchanges).
255 procedure Check_Abstract_Interfaces (N : Node_Id; Def : Node_Id);
256 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
258 procedure Check_Access_Discriminant_Requires_Limited
259 (D : Node_Id;
260 Loc : Node_Id);
261 -- Check the restriction that the type to which an access discriminant
262 -- belongs must be a concurrent type or a descendant of a type with
263 -- the reserved word 'limited' in its declaration.
265 procedure Check_Anonymous_Access_Components
266 (Typ_Decl : Node_Id;
267 Typ : Entity_Id;
268 Prev : Entity_Id;
269 Comp_List : Node_Id);
270 -- Ada 2005 AI-382: an access component in a record definition can refer to
271 -- the enclosing record, in which case it denotes the type itself, and not
272 -- the current instance of the type. We create an anonymous access type for
273 -- the component, and flag it as an access to a component, so accessibility
274 -- checks are properly performed on it. The declaration of the access type
275 -- is placed ahead of that of the record to prevent order-of-elaboration
276 -- circularity issues in Gigi. We create an incomplete type for the record
277 -- declaration, which is the designated type of the anonymous access.
279 procedure Check_Delta_Expression (E : Node_Id);
280 -- Check that the expression represented by E is suitable for use as a
281 -- delta expression, i.e. it is of real type and is static.
283 procedure Check_Digits_Expression (E : Node_Id);
284 -- Check that the expression represented by E is suitable for use as a
285 -- digits expression, i.e. it is of integer type, positive and static.
287 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
288 -- Validate the initialization of an object declaration. T is the required
289 -- type, and Exp is the initialization expression.
291 procedure Check_Or_Process_Discriminants
292 (N : Node_Id;
293 T : Entity_Id;
294 Prev : Entity_Id := Empty);
295 -- If T is the full declaration of an incomplete or private type, check the
296 -- conformance of the discriminants, otherwise process them. Prev is the
297 -- entity of the partial declaration, if any.
299 procedure Check_Real_Bound (Bound : Node_Id);
300 -- Check given bound for being of real type and static. If not, post an
301 -- appropriate message, and rewrite the bound with the real literal zero.
303 procedure Constant_Redeclaration
304 (Id : Entity_Id;
305 N : Node_Id;
306 T : out Entity_Id);
307 -- Various checks on legality of full declaration of deferred constant.
308 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
309 -- node. The caller has not yet set any attributes of this entity.
311 function Contain_Interface
312 (Iface : Entity_Id;
313 Ifaces : Elist_Id) return Boolean;
314 -- Ada 2005: Determine whether Iface is present in the list Ifaces
316 procedure Convert_Scalar_Bounds
317 (N : Node_Id;
318 Parent_Type : Entity_Id;
319 Derived_Type : Entity_Id;
320 Loc : Source_Ptr);
321 -- For derived scalar types, convert the bounds in the type definition to
322 -- the derived type, and complete their analysis. Given a constraint of the
323 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
324 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
325 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
326 -- subtype are conversions of those bounds to the derived_type, so that
327 -- their typing is consistent.
329 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array base type T2 to array base type T1. Copies
331 -- only attributes that apply to base types, but not subtypes.
333 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
334 -- Copies attributes from array subtype T2 to array subtype T1. Copies
335 -- attributes that apply to both subtypes and base types.
337 procedure Create_Constrained_Components
338 (Subt : Entity_Id;
339 Decl_Node : Node_Id;
340 Typ : Entity_Id;
341 Constraints : Elist_Id);
342 -- Build the list of entities for a constrained discriminated record
343 -- subtype. If a component depends on a discriminant, replace its subtype
344 -- using the discriminant values in the discriminant constraint. Subt is
345 -- the defining identifier for the subtype whose list of constrained
346 -- entities we will create. Decl_Node is the type declaration node where we
347 -- will attach all the itypes created. Typ is the base discriminated type
348 -- for the subtype Subt. Constraints is the list of discriminant
349 -- constraints for Typ.
351 function Constrain_Component_Type
352 (Comp : Entity_Id;
353 Constrained_Typ : Entity_Id;
354 Related_Node : Node_Id;
355 Typ : Entity_Id;
356 Constraints : Elist_Id) return Entity_Id;
357 -- Given a discriminated base type Typ, a list of discriminant constraint
358 -- Constraints for Typ and a component of Typ, with type Compon_Type,
359 -- create and return the type corresponding to Compon_type where all
360 -- discriminant references are replaced with the corresponding constraint.
361 -- If no discriminant references occur in Compon_Typ then return it as is.
362 -- Constrained_Typ is the final constrained subtype to which the
363 -- constrained Compon_Type belongs. Related_Node is the node where we will
364 -- attach all the itypes created.
365 -- Above description is confused, what is Compon_Type???
367 procedure Constrain_Access
368 (Def_Id : in out Entity_Id;
369 S : Node_Id;
370 Related_Nod : Node_Id);
371 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
372 -- an anonymous type created for a subtype indication. In that case it is
373 -- created in the procedure and attached to Related_Nod.
375 procedure Constrain_Array
376 (Def_Id : in out Entity_Id;
377 SI : Node_Id;
378 Related_Nod : Node_Id;
379 Related_Id : Entity_Id;
380 Suffix : Character);
381 -- Apply a list of index constraints to an unconstrained array type. The
382 -- first parameter is the entity for the resulting subtype. A value of
383 -- Empty for Def_Id indicates that an implicit type must be created, but
384 -- creation is delayed (and must be done by this procedure) because other
385 -- subsidiary implicit types must be created first (which is why Def_Id
386 -- is an in/out parameter). The second parameter is a subtype indication
387 -- node for the constrained array to be created (e.g. something of the
388 -- form string (1 .. 10)). Related_Nod gives the place where this type
389 -- has to be inserted in the tree. The Related_Id and Suffix parameters
390 -- are used to build the associated Implicit type name.
392 procedure Constrain_Concurrent
393 (Def_Id : in out Entity_Id;
394 SI : Node_Id;
395 Related_Nod : Node_Id;
396 Related_Id : Entity_Id;
397 Suffix : Character);
398 -- Apply list of discriminant constraints to an unconstrained concurrent
399 -- type.
401 -- SI is the N_Subtype_Indication node containing the constraint and
402 -- the unconstrained type to constrain.
404 -- Def_Id is the entity for the resulting constrained subtype. A value
405 -- of Empty for Def_Id indicates that an implicit type must be created,
406 -- but creation is delayed (and must be done by this procedure) because
407 -- other subsidiary implicit types must be created first (which is why
408 -- Def_Id is an in/out parameter).
410 -- Related_Nod gives the place where this type has to be inserted
411 -- in the tree
413 -- The last two arguments are used to create its external name if needed.
415 function Constrain_Corresponding_Record
416 (Prot_Subt : Entity_Id;
417 Corr_Rec : Entity_Id;
418 Related_Nod : Node_Id;
419 Related_Id : Entity_Id) return Entity_Id;
420 -- When constraining a protected type or task type with discriminants,
421 -- constrain the corresponding record with the same discriminant values.
423 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
424 -- Constrain a decimal fixed point type with a digits constraint and/or a
425 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
427 procedure Constrain_Discriminated_Type
428 (Def_Id : Entity_Id;
429 S : Node_Id;
430 Related_Nod : Node_Id;
431 For_Access : Boolean := False);
432 -- Process discriminant constraints of composite type. Verify that values
433 -- have been provided for all discriminants, that the original type is
434 -- unconstrained, and that the types of the supplied expressions match
435 -- the discriminant types. The first three parameters are like in routine
436 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
437 -- of For_Access.
439 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
440 -- Constrain an enumeration type with a range constraint. This is identical
441 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
443 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
444 -- Constrain a floating point type with either a digits constraint
445 -- and/or a range constraint, building a E_Floating_Point_Subtype.
447 procedure Constrain_Index
448 (Index : Node_Id;
449 S : Node_Id;
450 Related_Nod : Node_Id;
451 Related_Id : Entity_Id;
452 Suffix : Character;
453 Suffix_Index : Nat);
454 -- Process an index constraint in a constrained array declaration. The
455 -- constraint can be a subtype name, or a range with or without an explicit
456 -- subtype mark. The index is the corresponding index of the unconstrained
457 -- array. The Related_Id and Suffix parameters are used to build the
458 -- associated Implicit type name.
460 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
461 -- Build subtype of a signed or modular integer type
463 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
464 -- Constrain an ordinary fixed point type with a range constraint, and
465 -- build an E_Ordinary_Fixed_Point_Subtype entity.
467 procedure Copy_And_Swap (Priv, Full : Entity_Id);
468 -- Copy the Priv entity into the entity of its full declaration then swap
469 -- the two entities in such a manner that the former private type is now
470 -- seen as a full type.
472 procedure Decimal_Fixed_Point_Type_Declaration
473 (T : Entity_Id;
474 Def : Node_Id);
475 -- Create a new decimal fixed point type, and apply the constraint to
476 -- obtain a subtype of this new type.
478 procedure Complete_Private_Subtype
479 (Priv : Entity_Id;
480 Full : Entity_Id;
481 Full_Base : Entity_Id;
482 Related_Nod : Node_Id);
483 -- Complete the implicit full view of a private subtype by setting the
484 -- appropriate semantic fields. If the full view of the parent is a record
485 -- type, build constrained components of subtype.
487 procedure Derive_Interface_Subprograms
488 (Parent_Type : Entity_Id;
489 Tagged_Type : Entity_Id;
490 Ifaces_List : Elist_Id);
491 -- Ada 2005 (AI-251): Derive primitives of abstract interface types that
492 -- are not immediate ancestors of Tagged type and associate them their
493 -- aliased primitive. Ifaces_List contains the abstract interface
494 -- primitives that have been derived from Parent_Type.
496 procedure Derived_Standard_Character
497 (N : Node_Id;
498 Parent_Type : Entity_Id;
499 Derived_Type : Entity_Id);
500 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
501 -- derivations from types Standard.Character and Standard.Wide_Character.
503 procedure Derived_Type_Declaration
504 (T : Entity_Id;
505 N : Node_Id;
506 Is_Completion : Boolean);
507 -- Process a derived type declaration. This routine will invoke
508 -- Build_Derived_Type to process the actual derived type definition.
509 -- Parameters N and Is_Completion have the same meaning as in
510 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
511 -- defined in the N_Full_Type_Declaration node N, that is T is the derived
512 -- type.
514 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
515 -- Insert each literal in symbol table, as an overloadable identifier. Each
516 -- enumeration type is mapped into a sequence of integers, and each literal
517 -- is defined as a constant with integer value. If any of the literals are
518 -- character literals, the type is a character type, which means that
519 -- strings are legal aggregates for arrays of components of the type.
521 function Expand_To_Stored_Constraint
522 (Typ : Entity_Id;
523 Constraint : Elist_Id) return Elist_Id;
524 -- Given a Constraint (i.e. a list of expressions) on the discriminants of
525 -- Typ, expand it into a constraint on the stored discriminants and return
526 -- the new list of expressions constraining the stored discriminants.
528 function Find_Type_Of_Object
529 (Obj_Def : Node_Id;
530 Related_Nod : Node_Id) return Entity_Id;
531 -- Get type entity for object referenced by Obj_Def, attaching the
532 -- implicit types generated to Related_Nod
534 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
535 -- Create a new float, and apply the constraint to obtain subtype of it
537 function Has_Range_Constraint (N : Node_Id) return Boolean;
538 -- Given an N_Subtype_Indication node N, return True if a range constraint
539 -- is present, either directly, or as part of a digits or delta constraint.
540 -- In addition, a digits constraint in the decimal case returns True, since
541 -- it establishes a default range if no explicit range is present.
543 function Inherit_Components
544 (N : Node_Id;
545 Parent_Base : Entity_Id;
546 Derived_Base : Entity_Id;
547 Is_Tagged : Boolean;
548 Inherit_Discr : Boolean;
549 Discs : Elist_Id) return Elist_Id;
550 -- Called from Build_Derived_Record_Type to inherit the components of
551 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
552 -- For more information on derived types and component inheritance please
553 -- consult the comment above the body of Build_Derived_Record_Type.
555 -- N is the original derived type declaration
557 -- Is_Tagged is set if we are dealing with tagged types
559 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
560 -- Parent_Base, otherwise no discriminants are inherited.
562 -- Discs gives the list of constraints that apply to Parent_Base in the
563 -- derived type declaration. If Discs is set to No_Elist, then we have
564 -- the following situation:
566 -- type Parent (D1..Dn : ..) is [tagged] record ...;
567 -- type Derived is new Parent [with ...];
569 -- which gets treated as
571 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
573 -- For untagged types the returned value is an association list. The list
574 -- starts from the association (Parent_Base => Derived_Base), and then it
575 -- contains a sequence of the associations of the form
577 -- (Old_Component => New_Component),
579 -- where Old_Component is the Entity_Id of a component in Parent_Base and
580 -- New_Component is the Entity_Id of the corresponding component in
581 -- Derived_Base. For untagged records, this association list is needed when
582 -- copying the record declaration for the derived base. In the tagged case
583 -- the value returned is irrelevant.
585 function Is_Valid_Constraint_Kind
586 (T_Kind : Type_Kind;
587 Constraint_Kind : Node_Kind) return Boolean;
588 -- Returns True if it is legal to apply the given kind of constraint to the
589 -- given kind of type (index constraint to an array type, for example).
591 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
592 -- Create new modular type. Verify that modulus is in bounds and is
593 -- a power of two (implementation restriction).
595 procedure New_Concatenation_Op (Typ : Entity_Id);
596 -- Create an abbreviated declaration for an operator in order to
597 -- materialize concatenation on array types.
599 procedure Ordinary_Fixed_Point_Type_Declaration
600 (T : Entity_Id;
601 Def : Node_Id);
602 -- Create a new ordinary fixed point type, and apply the constraint to
603 -- obtain subtype of it.
605 procedure Prepare_Private_Subtype_Completion
606 (Id : Entity_Id;
607 Related_Nod : Node_Id);
608 -- Id is a subtype of some private type. Creates the full declaration
609 -- associated with Id whenever possible, i.e. when the full declaration
610 -- of the base type is already known. Records each subtype into
611 -- Private_Dependents of the base type.
613 procedure Process_Incomplete_Dependents
614 (N : Node_Id;
615 Full_T : Entity_Id;
616 Inc_T : Entity_Id);
617 -- Process all entities that depend on an incomplete type. There include
618 -- subtypes, subprogram types that mention the incomplete type in their
619 -- profiles, and subprogram with access parameters that designate the
620 -- incomplete type.
622 -- Inc_T is the defining identifier of an incomplete type declaration, its
623 -- Ekind is E_Incomplete_Type.
625 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
627 -- Full_T is N's defining identifier.
629 -- Subtypes of incomplete types with discriminants are completed when the
630 -- parent type is. This is simpler than private subtypes, because they can
631 -- only appear in the same scope, and there is no need to exchange views.
632 -- Similarly, access_to_subprogram types may have a parameter or a return
633 -- type that is an incomplete type, and that must be replaced with the
634 -- full type.
636 -- If the full type is tagged, subprogram with access parameters that
637 -- designated the incomplete may be primitive operations of the full type,
638 -- and have to be processed accordingly.
640 procedure Process_Real_Range_Specification (Def : Node_Id);
641 -- Given the type definition for a real type, this procedure processes
642 -- and checks the real range specification of this type definition if
643 -- one is present. If errors are found, error messages are posted, and
644 -- the Real_Range_Specification of Def is reset to Empty.
646 procedure Record_Type_Declaration
647 (T : Entity_Id;
648 N : Node_Id;
649 Prev : Entity_Id);
650 -- Process a record type declaration (for both untagged and tagged
651 -- records). Parameters T and N are exactly like in procedure
652 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
653 -- for this routine. If this is the completion of an incomplete type
654 -- declaration, Prev is the entity of the incomplete declaration, used for
655 -- cross-referencing. Otherwise Prev = T.
657 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
658 -- This routine is used to process the actual record type definition
659 -- (both for untagged and tagged records). Def is a record type
660 -- definition node. This procedure analyzes the components in this
661 -- record type definition. Prev_T is the entity for the enclosing record
662 -- type. It is provided so that its Has_Task flag can be set if any of
663 -- the component have Has_Task set. If the declaration is the completion
664 -- of an incomplete type declaration, Prev_T is the original incomplete
665 -- type, whose full view is the record type.
667 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
668 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
669 -- build a copy of the declaration tree of the parent, and we create
670 -- independently the list of components for the derived type. Semantic
671 -- information uses the component entities, but record representation
672 -- clauses are validated on the declaration tree. This procedure replaces
673 -- discriminants and components in the declaration with those that have
674 -- been created by Inherit_Components.
676 procedure Set_Fixed_Range
677 (E : Entity_Id;
678 Loc : Source_Ptr;
679 Lo : Ureal;
680 Hi : Ureal);
681 -- Build a range node with the given bounds and set it as the Scalar_Range
682 -- of the given fixed-point type entity. Loc is the source location used
683 -- for the constructed range. See body for further details.
685 procedure Set_Scalar_Range_For_Subtype
686 (Def_Id : Entity_Id;
687 R : Node_Id;
688 Subt : Entity_Id);
689 -- This routine is used to set the scalar range field for a subtype given
690 -- Def_Id, the entity for the subtype, and R, the range expression for the
691 -- scalar range. Subt provides the parent subtype to be used to analyze,
692 -- resolve, and check the given range.
694 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
695 -- Create a new signed integer entity, and apply the constraint to obtain
696 -- the required first named subtype of this type.
698 procedure Set_Stored_Constraint_From_Discriminant_Constraint
699 (E : Entity_Id);
700 -- E is some record type. This routine computes E's Stored_Constraint
701 -- from its Discriminant_Constraint.
703 -----------------------
704 -- Access_Definition --
705 -----------------------
707 function Access_Definition
708 (Related_Nod : Node_Id;
709 N : Node_Id) return Entity_Id
711 Loc : constant Source_Ptr := Sloc (Related_Nod);
712 Anon_Type : Entity_Id;
713 Anon_Scope : Entity_Id;
714 Desig_Type : Entity_Id;
715 Decl : Entity_Id;
717 begin
718 if Is_Entry (Current_Scope)
719 and then Is_Task_Type (Etype (Scope (Current_Scope)))
720 then
721 Error_Msg_N ("task entries cannot have access parameters", N);
722 return Empty;
723 end if;
725 -- Ada 2005: for an object declaration the corresponding anonymous
726 -- type is declared in the current scope.
728 -- If the access definition is the return type of another access to
729 -- function, scope is the current one, because it is the one of the
730 -- current type declaration.
732 if Nkind (Related_Nod) = N_Object_Declaration
733 or else Nkind (Related_Nod) = N_Access_Function_Definition
734 then
735 Anon_Scope := Current_Scope;
737 -- For the anonymous function result case, retrieve the scope of the
738 -- function specification's associated entity rather than using the
739 -- current scope. The current scope will be the function itself if the
740 -- formal part is currently being analyzed, but will be the parent scope
741 -- in the case of a parameterless function, and we always want to use
742 -- the function's parent scope. Finally, if the function is a child
743 -- unit, we must traverse the the tree to retrieve the proper entity.
745 elsif Nkind (Related_Nod) = N_Function_Specification
746 and then Nkind (Parent (N)) /= N_Parameter_Specification
747 then
748 -- If the current scope is a protected type, the anonymous access
749 -- is associated with one of the protected operations, and must
750 -- be available in the scope that encloses the protected declaration.
751 -- Otherwise the type is is in the scope enclosing the subprogram.
753 if Ekind (Current_Scope) = E_Protected_Type then
754 Anon_Scope := Scope (Scope (Defining_Entity (Related_Nod)));
755 else
756 Anon_Scope := Scope (Defining_Entity (Related_Nod));
757 end if;
759 else
760 -- For access formals, access components, and access discriminants,
761 -- the scope is that of the enclosing declaration,
763 Anon_Scope := Scope (Current_Scope);
764 end if;
766 Anon_Type :=
767 Create_Itype
768 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
770 if All_Present (N)
771 and then Ada_Version >= Ada_05
772 then
773 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
774 end if;
776 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
777 -- the corresponding semantic routine
779 if Present (Access_To_Subprogram_Definition (N)) then
780 Access_Subprogram_Declaration
781 (T_Name => Anon_Type,
782 T_Def => Access_To_Subprogram_Definition (N));
784 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
785 Set_Ekind
786 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
787 else
788 Set_Ekind
789 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
790 end if;
792 -- If the anonymous access is associated with a protected operation
793 -- create a reference to it after the enclosing protected definition
794 -- because the itype will be used in the subsequent bodies.
796 if Ekind (Current_Scope) = E_Protected_Type then
797 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
798 end if;
800 return Anon_Type;
801 end if;
803 Find_Type (Subtype_Mark (N));
804 Desig_Type := Entity (Subtype_Mark (N));
806 Set_Directly_Designated_Type
807 (Anon_Type, Desig_Type);
808 Set_Etype (Anon_Type, Anon_Type);
809 Init_Size_Align (Anon_Type);
810 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
812 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
813 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
814 -- the null value is allowed. In Ada 95 the null value is never allowed.
816 if Ada_Version >= Ada_05 then
817 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
818 else
819 Set_Can_Never_Be_Null (Anon_Type, True);
820 end if;
822 -- The anonymous access type is as public as the discriminated type or
823 -- subprogram that defines it. It is imported (for back-end purposes)
824 -- if the designated type is.
826 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
828 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
829 -- designated type comes from the limited view.
831 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
833 -- Ada 2005 (AI-231): Propagate the access-constant attribute
835 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
837 -- The context is either a subprogram declaration, object declaration,
838 -- or an access discriminant, in a private or a full type declaration.
839 -- In the case of a subprogram, if the designated type is incomplete,
840 -- the operation will be a primitive operation of the full type, to be
841 -- updated subsequently. If the type is imported through a limited_with
842 -- clause, the subprogram is not a primitive operation of the type
843 -- (which is declared elsewhere in some other scope).
845 if Ekind (Desig_Type) = E_Incomplete_Type
846 and then not From_With_Type (Desig_Type)
847 and then Is_Overloadable (Current_Scope)
848 then
849 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
850 Set_Has_Delayed_Freeze (Current_Scope);
851 end if;
853 -- Ada 2005: if the designated type is an interface that may contain
854 -- tasks, create a Master entity for the declaration. This must be done
855 -- before expansion of the full declaration, because the declaration may
856 -- include an expression that is an allocator, whose expansion needs the
857 -- proper Master for the created tasks.
859 if Nkind (Related_Nod) = N_Object_Declaration
860 and then Expander_Active
861 then
862 if Is_Interface (Desig_Type)
863 and then Is_Limited_Record (Desig_Type)
864 then
865 Build_Class_Wide_Master (Anon_Type);
867 -- Similarly, if the type is an anonymous access that designates
868 -- tasks, create a master entity for it in the current context.
870 elsif Has_Task (Desig_Type)
871 and then Comes_From_Source (Related_Nod)
872 then
873 if not Has_Master_Entity (Current_Scope) then
874 Decl :=
875 Make_Object_Declaration (Loc,
876 Defining_Identifier =>
877 Make_Defining_Identifier (Loc, Name_uMaster),
878 Constant_Present => True,
879 Object_Definition =>
880 New_Reference_To (RTE (RE_Master_Id), Loc),
881 Expression =>
882 Make_Explicit_Dereference (Loc,
883 New_Reference_To (RTE (RE_Current_Master), Loc)));
885 Insert_Before (Related_Nod, Decl);
886 Analyze (Decl);
888 Set_Master_Id (Anon_Type, Defining_Identifier (Decl));
889 Set_Has_Master_Entity (Current_Scope);
890 else
891 Build_Master_Renaming (Related_Nod, Anon_Type);
892 end if;
893 end if;
894 end if;
896 -- For a private component of a protected type, it is imperative that
897 -- the back-end elaborate the type immediately after the protected
898 -- declaration, because this type will be used in the declarations
899 -- created for the component within each protected body, so we must
900 -- create an itype reference for it now.
902 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
903 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
904 end if;
906 return Anon_Type;
907 end Access_Definition;
909 -----------------------------------
910 -- Access_Subprogram_Declaration --
911 -----------------------------------
913 procedure Access_Subprogram_Declaration
914 (T_Name : Entity_Id;
915 T_Def : Node_Id)
917 Formals : constant List_Id := Parameter_Specifications (T_Def);
918 Formal : Entity_Id;
919 D_Ityp : Node_Id;
921 Desig_Type : constant Entity_Id :=
922 Create_Itype (E_Subprogram_Type, Parent (T_Def));
924 begin
925 -- Associate the Itype node with the inner full-type declaration or
926 -- subprogram spec. This is required to handle nested anonymous
927 -- declarations. For example:
929 -- procedure P
930 -- (X : access procedure
931 -- (Y : access procedure
932 -- (Z : access T)))
934 D_Ityp := Associated_Node_For_Itype (Desig_Type);
935 while Nkind (D_Ityp) /= N_Full_Type_Declaration
936 and then Nkind (D_Ityp) /= N_Private_Type_Declaration
937 and then Nkind (D_Ityp) /= N_Private_Extension_Declaration
938 and then Nkind (D_Ityp) /= N_Procedure_Specification
939 and then Nkind (D_Ityp) /= N_Function_Specification
940 and then Nkind (D_Ityp) /= N_Object_Declaration
941 and then Nkind (D_Ityp) /= N_Object_Renaming_Declaration
942 and then Nkind (D_Ityp) /= N_Formal_Type_Declaration
943 and then Nkind (D_Ityp) /= N_Task_Type_Declaration
944 and then Nkind (D_Ityp) /= N_Protected_Type_Declaration
945 loop
946 D_Ityp := Parent (D_Ityp);
947 pragma Assert (D_Ityp /= Empty);
948 end loop;
950 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
952 if Nkind (D_Ityp) = N_Procedure_Specification
953 or else Nkind (D_Ityp) = N_Function_Specification
954 then
955 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
957 elsif Nkind (D_Ityp) = N_Full_Type_Declaration
958 or else Nkind (D_Ityp) = N_Object_Declaration
959 or else Nkind (D_Ityp) = N_Object_Renaming_Declaration
960 or else Nkind (D_Ityp) = N_Formal_Type_Declaration
961 then
962 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
963 end if;
965 if Nkind (T_Def) = N_Access_Function_Definition then
966 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
968 declare
969 Acc : constant Node_Id := Result_Definition (T_Def);
971 begin
972 if Present (Access_To_Subprogram_Definition (Acc))
973 and then
974 Protected_Present (Access_To_Subprogram_Definition (Acc))
975 then
976 Set_Etype
977 (Desig_Type,
978 Replace_Anonymous_Access_To_Protected_Subprogram
979 (T_Def));
981 else
982 Set_Etype
983 (Desig_Type,
984 Access_Definition (T_Def, Result_Definition (T_Def)));
985 end if;
986 end;
988 else
989 Analyze (Result_Definition (T_Def));
990 Set_Etype (Desig_Type, Entity (Result_Definition (T_Def)));
991 end if;
993 if not (Is_Type (Etype (Desig_Type))) then
994 Error_Msg_N
995 ("expect type in function specification",
996 Result_Definition (T_Def));
997 end if;
999 else
1000 Set_Etype (Desig_Type, Standard_Void_Type);
1001 end if;
1003 if Present (Formals) then
1004 Push_Scope (Desig_Type);
1005 Process_Formals (Formals, Parent (T_Def));
1007 -- A bit of a kludge here, End_Scope requires that the parent
1008 -- pointer be set to something reasonable, but Itypes don't have
1009 -- parent pointers. So we set it and then unset it ??? If and when
1010 -- Itypes have proper parent pointers to their declarations, this
1011 -- kludge can be removed.
1013 Set_Parent (Desig_Type, T_Name);
1014 End_Scope;
1015 Set_Parent (Desig_Type, Empty);
1016 end if;
1018 -- The return type and/or any parameter type may be incomplete. Mark
1019 -- the subprogram_type as depending on the incomplete type, so that
1020 -- it can be updated when the full type declaration is seen. This
1021 -- only applies to incomplete types declared in some enclosing scope,
1022 -- not to limited views from other packages.
1024 if Present (Formals) then
1025 Formal := First_Formal (Desig_Type);
1026 while Present (Formal) loop
1027 if Ekind (Formal) /= E_In_Parameter
1028 and then Nkind (T_Def) = N_Access_Function_Definition
1029 then
1030 Error_Msg_N ("functions can only have IN parameters", Formal);
1031 end if;
1033 if Ekind (Etype (Formal)) = E_Incomplete_Type
1034 and then In_Open_Scopes (Scope (Etype (Formal)))
1035 then
1036 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1037 Set_Has_Delayed_Freeze (Desig_Type);
1038 end if;
1040 Next_Formal (Formal);
1041 end loop;
1042 end if;
1044 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1045 and then not Has_Delayed_Freeze (Desig_Type)
1046 then
1047 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1048 Set_Has_Delayed_Freeze (Desig_Type);
1049 end if;
1051 Check_Delayed_Subprogram (Desig_Type);
1053 if Protected_Present (T_Def) then
1054 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1055 Set_Convention (Desig_Type, Convention_Protected);
1056 else
1057 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1058 end if;
1060 Set_Etype (T_Name, T_Name);
1061 Init_Size_Align (T_Name);
1062 Set_Directly_Designated_Type (T_Name, Desig_Type);
1064 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1066 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1068 Check_Restriction (No_Access_Subprograms, T_Def);
1069 end Access_Subprogram_Declaration;
1071 ----------------------------
1072 -- Access_Type_Declaration --
1073 ----------------------------
1075 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1076 S : constant Node_Id := Subtype_Indication (Def);
1077 P : constant Node_Id := Parent (Def);
1079 Desig : Entity_Id;
1080 -- Designated type
1082 begin
1083 -- Check for permissible use of incomplete type
1085 if Nkind (S) /= N_Subtype_Indication then
1086 Analyze (S);
1088 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1089 Set_Directly_Designated_Type (T, Entity (S));
1090 else
1091 Set_Directly_Designated_Type (T,
1092 Process_Subtype (S, P, T, 'P'));
1093 end if;
1095 else
1096 Set_Directly_Designated_Type (T,
1097 Process_Subtype (S, P, T, 'P'));
1098 end if;
1100 if All_Present (Def) or Constant_Present (Def) then
1101 Set_Ekind (T, E_General_Access_Type);
1102 else
1103 Set_Ekind (T, E_Access_Type);
1104 end if;
1106 if Base_Type (Designated_Type (T)) = T then
1107 Error_Msg_N ("access type cannot designate itself", S);
1109 -- In Ada 2005, the type may have a limited view through some unit
1110 -- in its own context, allowing the following circularity that cannot
1111 -- be detected earlier
1113 elsif Is_Class_Wide_Type (Designated_Type (T))
1114 and then Etype (Designated_Type (T)) = T
1115 then
1116 Error_Msg_N
1117 ("access type cannot designate its own classwide type", S);
1119 -- Clean up indication of tagged status to prevent cascaded errors
1121 Set_Is_Tagged_Type (T, False);
1122 end if;
1124 Set_Etype (T, T);
1126 -- If the type has appeared already in a with_type clause, it is
1127 -- frozen and the pointer size is already set. Else, initialize.
1129 if not From_With_Type (T) then
1130 Init_Size_Align (T);
1131 end if;
1133 Desig := Designated_Type (T);
1135 -- If designated type is an imported tagged type, indicate that the
1136 -- access type is also imported, and therefore restricted in its use.
1137 -- The access type may already be imported, so keep setting otherwise.
1139 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
1140 -- is available, use it as the designated type of the access type, so
1141 -- that the back-end gets a usable entity.
1143 if From_With_Type (Desig)
1144 and then Ekind (Desig) /= E_Access_Type
1145 then
1146 Set_From_With_Type (T);
1147 end if;
1149 -- Note that Has_Task is always false, since the access type itself
1150 -- is not a task type. See Einfo for more description on this point.
1151 -- Exactly the same consideration applies to Has_Controlled_Component.
1153 Set_Has_Task (T, False);
1154 Set_Has_Controlled_Component (T, False);
1156 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1157 -- attributes
1159 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1160 Set_Is_Access_Constant (T, Constant_Present (Def));
1161 end Access_Type_Declaration;
1163 ----------------------------------
1164 -- Add_Interface_Tag_Components --
1165 ----------------------------------
1167 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1168 Loc : constant Source_Ptr := Sloc (N);
1169 Elmt : Elmt_Id;
1170 Ext : Node_Id;
1171 L : List_Id;
1172 Last_Tag : Node_Id;
1173 Comp : Node_Id;
1175 procedure Add_Sync_Iface_Tags (T : Entity_Id);
1176 -- Local subprogram used to recursively climb through the parents
1177 -- of T to add the tags of all the progenitor interfaces.
1179 procedure Add_Tag (Iface : Entity_Id);
1180 -- Add tag for one of the progenitor interfaces
1182 -------------------------
1183 -- Add_Sync_Iface_Tags --
1184 -------------------------
1186 procedure Add_Sync_Iface_Tags (T : Entity_Id) is
1187 begin
1188 if Etype (T) /= T then
1189 Add_Sync_Iface_Tags (Etype (T));
1190 end if;
1192 Elmt := First_Elmt (Abstract_Interfaces (T));
1193 while Present (Elmt) loop
1194 Add_Tag (Node (Elmt));
1195 Next_Elmt (Elmt);
1196 end loop;
1197 end Add_Sync_Iface_Tags;
1199 -------------
1200 -- Add_Tag --
1201 -------------
1203 procedure Add_Tag (Iface : Entity_Id) is
1204 Decl : Node_Id;
1205 Def : Node_Id;
1206 Tag : Entity_Id;
1207 Offset : Entity_Id;
1209 begin
1210 pragma Assert (Is_Tagged_Type (Iface)
1211 and then Is_Interface (Iface));
1213 Def :=
1214 Make_Component_Definition (Loc,
1215 Aliased_Present => True,
1216 Subtype_Indication =>
1217 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1219 Tag := Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1221 Decl :=
1222 Make_Component_Declaration (Loc,
1223 Defining_Identifier => Tag,
1224 Component_Definition => Def);
1226 Analyze_Component_Declaration (Decl);
1228 Set_Analyzed (Decl);
1229 Set_Ekind (Tag, E_Component);
1230 Set_Is_Tag (Tag);
1231 Set_Is_Aliased (Tag);
1232 Set_Related_Interface (Tag, Iface);
1233 Init_Component_Location (Tag);
1235 pragma Assert (Is_Frozen (Iface));
1237 Set_DT_Entry_Count (Tag,
1238 DT_Entry_Count (First_Entity (Iface)));
1240 if No (Last_Tag) then
1241 Prepend (Decl, L);
1242 else
1243 Insert_After (Last_Tag, Decl);
1244 end if;
1246 Last_Tag := Decl;
1248 -- If the ancestor has discriminants we need to give special support
1249 -- to store the offset_to_top value of the secondary dispatch tables.
1250 -- For this purpose we add a supplementary component just after the
1251 -- field that contains the tag associated with each secondary DT.
1253 if Typ /= Etype (Typ)
1254 and then Has_Discriminants (Etype (Typ))
1255 then
1256 Def :=
1257 Make_Component_Definition (Loc,
1258 Subtype_Indication =>
1259 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1261 Offset :=
1262 Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1264 Decl :=
1265 Make_Component_Declaration (Loc,
1266 Defining_Identifier => Offset,
1267 Component_Definition => Def);
1269 Analyze_Component_Declaration (Decl);
1271 Set_Analyzed (Decl);
1272 Set_Ekind (Offset, E_Component);
1273 Set_Is_Aliased (Offset);
1274 Set_Related_Interface (Offset, Iface);
1275 Init_Component_Location (Offset);
1276 Insert_After (Last_Tag, Decl);
1277 Last_Tag := Decl;
1278 end if;
1279 end Add_Tag;
1281 -- Local variables
1283 Iface_List : List_Id;
1285 -- Start of processing for Add_Interface_Tag_Components
1287 begin
1288 if not RTE_Available (RE_Interface_Tag) then
1289 Error_Msg
1290 ("(Ada 2005) interface types not supported by this run-time!",
1291 Sloc (N));
1292 return;
1293 end if;
1295 if Ekind (Typ) /= E_Record_Type
1296 or else (Is_Concurrent_Record_Type (Typ)
1297 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1298 or else (not Is_Concurrent_Record_Type (Typ)
1299 and then No (Abstract_Interfaces (Typ))
1300 and then Is_Empty_Elmt_List (Abstract_Interfaces (Typ)))
1301 then
1302 return;
1303 end if;
1305 -- Find the current last tag
1307 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1308 Ext := Record_Extension_Part (Type_Definition (N));
1309 else
1310 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1311 Ext := Type_Definition (N);
1312 end if;
1314 Last_Tag := Empty;
1316 if not (Present (Component_List (Ext))) then
1317 Set_Null_Present (Ext, False);
1318 L := New_List;
1319 Set_Component_List (Ext,
1320 Make_Component_List (Loc,
1321 Component_Items => L,
1322 Null_Present => False));
1323 else
1324 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1325 L := Component_Items
1326 (Component_List
1327 (Record_Extension_Part
1328 (Type_Definition (N))));
1329 else
1330 L := Component_Items
1331 (Component_List
1332 (Type_Definition (N)));
1333 end if;
1335 -- Find the last tag component
1337 Comp := First (L);
1338 while Present (Comp) loop
1339 if Nkind (Comp) = N_Component_Declaration
1340 and then Is_Tag (Defining_Identifier (Comp))
1341 then
1342 Last_Tag := Comp;
1343 end if;
1345 Next (Comp);
1346 end loop;
1347 end if;
1349 -- At this point L references the list of components and Last_Tag
1350 -- references the current last tag (if any). Now we add the tag
1351 -- corresponding with all the interfaces that are not implemented
1352 -- by the parent.
1354 if Is_Concurrent_Record_Type (Typ) then
1355 Iface_List := Abstract_Interface_List (Typ);
1357 if Is_Non_Empty_List (Iface_List) then
1358 Add_Sync_Iface_Tags (Etype (First (Iface_List)));
1359 end if;
1360 end if;
1362 if Present (Abstract_Interfaces (Typ)) then
1363 Elmt := First_Elmt (Abstract_Interfaces (Typ));
1364 while Present (Elmt) loop
1365 Add_Tag (Node (Elmt));
1366 Next_Elmt (Elmt);
1367 end loop;
1368 end if;
1369 end Add_Interface_Tag_Components;
1371 -----------------------------------
1372 -- Analyze_Component_Declaration --
1373 -----------------------------------
1375 procedure Analyze_Component_Declaration (N : Node_Id) is
1376 Id : constant Entity_Id := Defining_Identifier (N);
1377 E : constant Node_Id := Expression (N);
1378 T : Entity_Id;
1379 P : Entity_Id;
1381 function Contains_POC (Constr : Node_Id) return Boolean;
1382 -- Determines whether a constraint uses the discriminant of a record
1383 -- type thus becoming a per-object constraint (POC).
1385 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1386 -- Typ is the type of the current component, check whether this type is
1387 -- a limited type. Used to validate declaration against that of
1388 -- enclosing record.
1390 ------------------
1391 -- Contains_POC --
1392 ------------------
1394 function Contains_POC (Constr : Node_Id) return Boolean is
1395 begin
1396 -- Prevent cascaded errors
1398 if Error_Posted (Constr) then
1399 return False;
1400 end if;
1402 case Nkind (Constr) is
1403 when N_Attribute_Reference =>
1404 return
1405 Attribute_Name (Constr) = Name_Access
1406 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1408 when N_Discriminant_Association =>
1409 return Denotes_Discriminant (Expression (Constr));
1411 when N_Identifier =>
1412 return Denotes_Discriminant (Constr);
1414 when N_Index_Or_Discriminant_Constraint =>
1415 declare
1416 IDC : Node_Id;
1418 begin
1419 IDC := First (Constraints (Constr));
1420 while Present (IDC) loop
1422 -- One per-object constraint is sufficient
1424 if Contains_POC (IDC) then
1425 return True;
1426 end if;
1428 Next (IDC);
1429 end loop;
1431 return False;
1432 end;
1434 when N_Range =>
1435 return Denotes_Discriminant (Low_Bound (Constr))
1436 or else
1437 Denotes_Discriminant (High_Bound (Constr));
1439 when N_Range_Constraint =>
1440 return Denotes_Discriminant (Range_Expression (Constr));
1442 when others =>
1443 return False;
1445 end case;
1446 end Contains_POC;
1448 ----------------------
1449 -- Is_Known_Limited --
1450 ----------------------
1452 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1453 P : constant Entity_Id := Etype (Typ);
1454 R : constant Entity_Id := Root_Type (Typ);
1456 begin
1457 if Is_Limited_Record (Typ) then
1458 return True;
1460 -- If the root type is limited (and not a limited interface)
1461 -- so is the current type
1463 elsif Is_Limited_Record (R)
1464 and then
1465 (not Is_Interface (R)
1466 or else not Is_Limited_Interface (R))
1467 then
1468 return True;
1470 -- Else the type may have a limited interface progenitor, but a
1471 -- limited record parent.
1473 elsif R /= P
1474 and then Is_Limited_Record (P)
1475 then
1476 return True;
1478 else
1479 return False;
1480 end if;
1481 end Is_Known_Limited;
1483 -- Start of processing for Analyze_Component_Declaration
1485 begin
1486 Generate_Definition (Id);
1487 Enter_Name (Id);
1489 if Present (Subtype_Indication (Component_Definition (N))) then
1490 T := Find_Type_Of_Object
1491 (Subtype_Indication (Component_Definition (N)), N);
1493 -- Ada 2005 (AI-230): Access Definition case
1495 else
1496 pragma Assert (Present
1497 (Access_Definition (Component_Definition (N))));
1499 T := Access_Definition
1500 (Related_Nod => N,
1501 N => Access_Definition (Component_Definition (N)));
1502 Set_Is_Local_Anonymous_Access (T);
1504 -- Ada 2005 (AI-254)
1506 if Present (Access_To_Subprogram_Definition
1507 (Access_Definition (Component_Definition (N))))
1508 and then Protected_Present (Access_To_Subprogram_Definition
1509 (Access_Definition
1510 (Component_Definition (N))))
1511 then
1512 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1513 end if;
1514 end if;
1516 -- If the subtype is a constrained subtype of the enclosing record,
1517 -- (which must have a partial view) the back-end does not properly
1518 -- handle the recursion. Rewrite the component declaration with an
1519 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1520 -- the tree directly because side effects have already been removed from
1521 -- discriminant constraints.
1523 if Ekind (T) = E_Access_Subtype
1524 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1525 and then Comes_From_Source (T)
1526 and then Nkind (Parent (T)) = N_Subtype_Declaration
1527 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1528 then
1529 Rewrite
1530 (Subtype_Indication (Component_Definition (N)),
1531 New_Copy_Tree (Subtype_Indication (Parent (T))));
1532 T := Find_Type_Of_Object
1533 (Subtype_Indication (Component_Definition (N)), N);
1534 end if;
1536 -- If the component declaration includes a default expression, then we
1537 -- check that the component is not of a limited type (RM 3.7(5)),
1538 -- and do the special preanalysis of the expression (see section on
1539 -- "Handling of Default and Per-Object Expressions" in the spec of
1540 -- package Sem).
1542 if Present (E) then
1543 Analyze_Per_Use_Expression (E, T);
1544 Check_Initialization (T, E);
1546 if Ada_Version >= Ada_05
1547 and then Ekind (T) = E_Anonymous_Access_Type
1548 then
1549 -- Check RM 3.9.2(9): "if the expected type for an expression is
1550 -- an anonymous access-to-specific tagged type, then the object
1551 -- designated by the expression shall not be dynamically tagged
1552 -- unless it is a controlling operand in a call on a dispatching
1553 -- operation"
1555 if Is_Tagged_Type (Directly_Designated_Type (T))
1556 and then
1557 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1558 and then
1559 Ekind (Directly_Designated_Type (Etype (E))) =
1560 E_Class_Wide_Type
1561 then
1562 Error_Msg_N
1563 ("access to specific tagged type required (RM 3.9.2(9))", E);
1564 end if;
1566 -- (Ada 2005: AI-230): Accessibility check for anonymous
1567 -- components
1569 if Type_Access_Level (Etype (E)) > Type_Access_Level (T) then
1570 Error_Msg_N
1571 ("expression has deeper access level than component " &
1572 "(RM 3.10.2 (12.2))", E);
1573 end if;
1575 -- The initialization expression is a reference to an access
1576 -- discriminant. The type of the discriminant is always deeper
1577 -- than any access type.
1579 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1580 and then Is_Entity_Name (E)
1581 and then Ekind (Entity (E)) = E_In_Parameter
1582 and then Present (Discriminal_Link (Entity (E)))
1583 then
1584 Error_Msg_N
1585 ("discriminant has deeper accessibility level than target",
1587 end if;
1588 end if;
1589 end if;
1591 -- The parent type may be a private view with unknown discriminants,
1592 -- and thus unconstrained. Regular components must be constrained.
1594 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1595 if Is_Class_Wide_Type (T) then
1596 Error_Msg_N
1597 ("class-wide subtype with unknown discriminants" &
1598 " in component declaration",
1599 Subtype_Indication (Component_Definition (N)));
1600 else
1601 Error_Msg_N
1602 ("unconstrained subtype in component declaration",
1603 Subtype_Indication (Component_Definition (N)));
1604 end if;
1606 -- Components cannot be abstract, except for the special case of
1607 -- the _Parent field (case of extending an abstract tagged type)
1609 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1610 Error_Msg_N ("type of a component cannot be abstract", N);
1611 end if;
1613 Set_Etype (Id, T);
1614 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1616 -- The component declaration may have a per-object constraint, set
1617 -- the appropriate flag in the defining identifier of the subtype.
1619 if Present (Subtype_Indication (Component_Definition (N))) then
1620 declare
1621 Sindic : constant Node_Id :=
1622 Subtype_Indication (Component_Definition (N));
1624 begin
1625 if Nkind (Sindic) = N_Subtype_Indication
1626 and then Present (Constraint (Sindic))
1627 and then Contains_POC (Constraint (Sindic))
1628 then
1629 Set_Has_Per_Object_Constraint (Id);
1630 end if;
1631 end;
1632 end if;
1634 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1635 -- out some static checks.
1637 if Ada_Version >= Ada_05
1638 and then Can_Never_Be_Null (T)
1639 then
1640 Null_Exclusion_Static_Checks (N);
1641 end if;
1643 -- If this component is private (or depends on a private type), flag the
1644 -- record type to indicate that some operations are not available.
1646 P := Private_Component (T);
1648 if Present (P) then
1650 -- Check for circular definitions
1652 if P = Any_Type then
1653 Set_Etype (Id, Any_Type);
1655 -- There is a gap in the visibility of operations only if the
1656 -- component type is not defined in the scope of the record type.
1658 elsif Scope (P) = Scope (Current_Scope) then
1659 null;
1661 elsif Is_Limited_Type (P) then
1662 Set_Is_Limited_Composite (Current_Scope);
1664 else
1665 Set_Is_Private_Composite (Current_Scope);
1666 end if;
1667 end if;
1669 if P /= Any_Type
1670 and then Is_Limited_Type (T)
1671 and then Chars (Id) /= Name_uParent
1672 and then Is_Tagged_Type (Current_Scope)
1673 then
1674 if Is_Derived_Type (Current_Scope)
1675 and then not Is_Known_Limited (Current_Scope)
1676 then
1677 Error_Msg_N
1678 ("extension of nonlimited type cannot have limited components",
1681 if Is_Interface (Root_Type (Current_Scope)) then
1682 Error_Msg_N
1683 ("\limitedness is not inherited from limited interface", N);
1684 Error_Msg_N
1685 ("\add LIMITED to type indication", N);
1686 end if;
1688 Explain_Limited_Type (T, N);
1689 Set_Etype (Id, Any_Type);
1690 Set_Is_Limited_Composite (Current_Scope, False);
1692 elsif not Is_Derived_Type (Current_Scope)
1693 and then not Is_Limited_Record (Current_Scope)
1694 and then not Is_Concurrent_Type (Current_Scope)
1695 then
1696 Error_Msg_N
1697 ("nonlimited tagged type cannot have limited components", N);
1698 Explain_Limited_Type (T, N);
1699 Set_Etype (Id, Any_Type);
1700 Set_Is_Limited_Composite (Current_Scope, False);
1701 end if;
1702 end if;
1704 Set_Original_Record_Component (Id, Id);
1705 end Analyze_Component_Declaration;
1707 --------------------------
1708 -- Analyze_Declarations --
1709 --------------------------
1711 procedure Analyze_Declarations (L : List_Id) is
1712 D : Node_Id;
1713 Freeze_From : Entity_Id := Empty;
1714 Next_Node : Node_Id;
1716 procedure Adjust_D;
1717 -- Adjust D not to include implicit label declarations, since these
1718 -- have strange Sloc values that result in elaboration check problems.
1719 -- (They have the sloc of the label as found in the source, and that
1720 -- is ahead of the current declarative part).
1722 --------------
1723 -- Adjust_D --
1724 --------------
1726 procedure Adjust_D is
1727 begin
1728 while Present (Prev (D))
1729 and then Nkind (D) = N_Implicit_Label_Declaration
1730 loop
1731 Prev (D);
1732 end loop;
1733 end Adjust_D;
1735 -- Start of processing for Analyze_Declarations
1737 begin
1738 D := First (L);
1739 while Present (D) loop
1741 -- Complete analysis of declaration
1743 Analyze (D);
1744 Next_Node := Next (D);
1746 if No (Freeze_From) then
1747 Freeze_From := First_Entity (Current_Scope);
1748 end if;
1750 -- At the end of a declarative part, freeze remaining entities
1751 -- declared in it. The end of the visible declarations of package
1752 -- specification is not the end of a declarative part if private
1753 -- declarations are present. The end of a package declaration is a
1754 -- freezing point only if it a library package. A task definition or
1755 -- protected type definition is not a freeze point either. Finally,
1756 -- we do not freeze entities in generic scopes, because there is no
1757 -- code generated for them and freeze nodes will be generated for
1758 -- the instance.
1760 -- The end of a package instantiation is not a freeze point, but
1761 -- for now we make it one, because the generic body is inserted
1762 -- (currently) immediately after. Generic instantiations will not
1763 -- be a freeze point once delayed freezing of bodies is implemented.
1764 -- (This is needed in any case for early instantiations ???).
1766 if No (Next_Node) then
1767 if Nkind (Parent (L)) = N_Component_List
1768 or else Nkind (Parent (L)) = N_Task_Definition
1769 or else Nkind (Parent (L)) = N_Protected_Definition
1770 then
1771 null;
1773 elsif Nkind (Parent (L)) /= N_Package_Specification then
1774 if Nkind (Parent (L)) = N_Package_Body then
1775 Freeze_From := First_Entity (Current_Scope);
1776 end if;
1778 Adjust_D;
1779 Freeze_All (Freeze_From, D);
1780 Freeze_From := Last_Entity (Current_Scope);
1782 elsif Scope (Current_Scope) /= Standard_Standard
1783 and then not Is_Child_Unit (Current_Scope)
1784 and then No (Generic_Parent (Parent (L)))
1785 then
1786 null;
1788 elsif L /= Visible_Declarations (Parent (L))
1789 or else No (Private_Declarations (Parent (L)))
1790 or else Is_Empty_List (Private_Declarations (Parent (L)))
1791 then
1792 Adjust_D;
1793 Freeze_All (Freeze_From, D);
1794 Freeze_From := Last_Entity (Current_Scope);
1795 end if;
1797 -- If next node is a body then freeze all types before the body.
1798 -- An exception occurs for some expander-generated bodies. If these
1799 -- are generated at places where in general language rules would not
1800 -- allow a freeze point, then we assume that the expander has
1801 -- explicitly checked that all required types are properly frozen,
1802 -- and we do not cause general freezing here. This special circuit
1803 -- is used when the encountered body is marked as having already
1804 -- been analyzed.
1806 -- In all other cases (bodies that come from source, and expander
1807 -- generated bodies that have not been analyzed yet), freeze all
1808 -- types now. Note that in the latter case, the expander must take
1809 -- care to attach the bodies at a proper place in the tree so as to
1810 -- not cause unwanted freezing at that point.
1812 elsif not Analyzed (Next_Node)
1813 and then (Nkind (Next_Node) = N_Subprogram_Body
1814 or else Nkind (Next_Node) = N_Entry_Body
1815 or else Nkind (Next_Node) = N_Package_Body
1816 or else Nkind (Next_Node) = N_Protected_Body
1817 or else Nkind (Next_Node) = N_Task_Body
1818 or else Nkind (Next_Node) in N_Body_Stub)
1819 then
1820 Adjust_D;
1821 Freeze_All (Freeze_From, D);
1822 Freeze_From := Last_Entity (Current_Scope);
1823 end if;
1825 D := Next_Node;
1826 end loop;
1827 end Analyze_Declarations;
1829 ----------------------------------
1830 -- Analyze_Incomplete_Type_Decl --
1831 ----------------------------------
1833 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1834 F : constant Boolean := Is_Pure (Current_Scope);
1835 T : Entity_Id;
1837 begin
1838 Generate_Definition (Defining_Identifier (N));
1840 -- Process an incomplete declaration. The identifier must not have been
1841 -- declared already in the scope. However, an incomplete declaration may
1842 -- appear in the private part of a package, for a private type that has
1843 -- already been declared.
1845 -- In this case, the discriminants (if any) must match
1847 T := Find_Type_Name (N);
1849 Set_Ekind (T, E_Incomplete_Type);
1850 Init_Size_Align (T);
1851 Set_Is_First_Subtype (T, True);
1852 Set_Etype (T, T);
1854 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
1855 -- incomplete types.
1857 if Tagged_Present (N) then
1858 Set_Is_Tagged_Type (T);
1859 Make_Class_Wide_Type (T);
1860 Set_Primitive_Operations (T, New_Elmt_List);
1861 end if;
1863 Push_Scope (T);
1865 Set_Stored_Constraint (T, No_Elist);
1867 if Present (Discriminant_Specifications (N)) then
1868 Process_Discriminants (N);
1869 end if;
1871 End_Scope;
1873 -- If the type has discriminants, non-trivial subtypes may be be
1874 -- declared before the full view of the type. The full views of those
1875 -- subtypes will be built after the full view of the type.
1877 Set_Private_Dependents (T, New_Elmt_List);
1878 Set_Is_Pure (T, F);
1879 end Analyze_Incomplete_Type_Decl;
1881 -----------------------------------
1882 -- Analyze_Interface_Declaration --
1883 -----------------------------------
1885 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
1886 CW : constant Entity_Id := Class_Wide_Type (T);
1888 begin
1889 Set_Is_Tagged_Type (T);
1891 Set_Is_Limited_Record (T, Limited_Present (Def)
1892 or else Task_Present (Def)
1893 or else Protected_Present (Def)
1894 or else Synchronized_Present (Def));
1896 -- Type is abstract if full declaration carries keyword, or if previous
1897 -- partial view did.
1899 Set_Is_Abstract_Type (T);
1900 Set_Is_Interface (T);
1902 -- Type is a limited interface if it includes the keyword limited, task,
1903 -- protected, or synchronized.
1905 Set_Is_Limited_Interface
1906 (T, Limited_Present (Def)
1907 or else Protected_Present (Def)
1908 or else Synchronized_Present (Def)
1909 or else Task_Present (Def));
1911 Set_Is_Protected_Interface (T, Protected_Present (Def));
1912 Set_Is_Task_Interface (T, Task_Present (Def));
1914 -- Type is a synchronized interface if it includes the keyword task,
1915 -- protected, or synchronized.
1917 Set_Is_Synchronized_Interface
1918 (T, Synchronized_Present (Def)
1919 or else Protected_Present (Def)
1920 or else Task_Present (Def));
1922 Set_Abstract_Interfaces (T, New_Elmt_List);
1923 Set_Primitive_Operations (T, New_Elmt_List);
1925 -- Complete the decoration of the class-wide entity if it was already
1926 -- built (ie. during the creation of the limited view)
1928 if Present (CW) then
1929 Set_Is_Interface (CW);
1930 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
1931 Set_Is_Protected_Interface (CW, Is_Protected_Interface (T));
1932 Set_Is_Synchronized_Interface (CW, Is_Synchronized_Interface (T));
1933 Set_Is_Task_Interface (CW, Is_Task_Interface (T));
1934 end if;
1935 end Analyze_Interface_Declaration;
1937 -----------------------------
1938 -- Analyze_Itype_Reference --
1939 -----------------------------
1941 -- Nothing to do. This node is placed in the tree only for the benefit of
1942 -- back end processing, and has no effect on the semantic processing.
1944 procedure Analyze_Itype_Reference (N : Node_Id) is
1945 begin
1946 pragma Assert (Is_Itype (Itype (N)));
1947 null;
1948 end Analyze_Itype_Reference;
1950 --------------------------------
1951 -- Analyze_Number_Declaration --
1952 --------------------------------
1954 procedure Analyze_Number_Declaration (N : Node_Id) is
1955 Id : constant Entity_Id := Defining_Identifier (N);
1956 E : constant Node_Id := Expression (N);
1957 T : Entity_Id;
1958 Index : Interp_Index;
1959 It : Interp;
1961 begin
1962 Generate_Definition (Id);
1963 Enter_Name (Id);
1965 -- This is an optimization of a common case of an integer literal
1967 if Nkind (E) = N_Integer_Literal then
1968 Set_Is_Static_Expression (E, True);
1969 Set_Etype (E, Universal_Integer);
1971 Set_Etype (Id, Universal_Integer);
1972 Set_Ekind (Id, E_Named_Integer);
1973 Set_Is_Frozen (Id, True);
1974 return;
1975 end if;
1977 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1979 -- Process expression, replacing error by integer zero, to avoid
1980 -- cascaded errors or aborts further along in the processing
1982 -- Replace Error by integer zero, which seems least likely to
1983 -- cause cascaded errors.
1985 if E = Error then
1986 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1987 Set_Error_Posted (E);
1988 end if;
1990 Analyze (E);
1992 -- Verify that the expression is static and numeric. If
1993 -- the expression is overloaded, we apply the preference
1994 -- rule that favors root numeric types.
1996 if not Is_Overloaded (E) then
1997 T := Etype (E);
1999 else
2000 T := Any_Type;
2002 Get_First_Interp (E, Index, It);
2003 while Present (It.Typ) loop
2004 if (Is_Integer_Type (It.Typ)
2005 or else Is_Real_Type (It.Typ))
2006 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2007 then
2008 if T = Any_Type then
2009 T := It.Typ;
2011 elsif It.Typ = Universal_Real
2012 or else It.Typ = Universal_Integer
2013 then
2014 -- Choose universal interpretation over any other
2016 T := It.Typ;
2017 exit;
2018 end if;
2019 end if;
2021 Get_Next_Interp (Index, It);
2022 end loop;
2023 end if;
2025 if Is_Integer_Type (T) then
2026 Resolve (E, T);
2027 Set_Etype (Id, Universal_Integer);
2028 Set_Ekind (Id, E_Named_Integer);
2030 elsif Is_Real_Type (T) then
2032 -- Because the real value is converted to universal_real, this is a
2033 -- legal context for a universal fixed expression.
2035 if T = Universal_Fixed then
2036 declare
2037 Loc : constant Source_Ptr := Sloc (N);
2038 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2039 Subtype_Mark =>
2040 New_Occurrence_Of (Universal_Real, Loc),
2041 Expression => Relocate_Node (E));
2043 begin
2044 Rewrite (E, Conv);
2045 Analyze (E);
2046 end;
2048 elsif T = Any_Fixed then
2049 Error_Msg_N ("illegal context for mixed mode operation", E);
2051 -- Expression is of the form : universal_fixed * integer. Try to
2052 -- resolve as universal_real.
2054 T := Universal_Real;
2055 Set_Etype (E, T);
2056 end if;
2058 Resolve (E, T);
2059 Set_Etype (Id, Universal_Real);
2060 Set_Ekind (Id, E_Named_Real);
2062 else
2063 Wrong_Type (E, Any_Numeric);
2064 Resolve (E, T);
2066 Set_Etype (Id, T);
2067 Set_Ekind (Id, E_Constant);
2068 Set_Never_Set_In_Source (Id, True);
2069 Set_Is_True_Constant (Id, True);
2070 return;
2071 end if;
2073 if Nkind (E) = N_Integer_Literal
2074 or else Nkind (E) = N_Real_Literal
2075 then
2076 Set_Etype (E, Etype (Id));
2077 end if;
2079 if not Is_OK_Static_Expression (E) then
2080 Flag_Non_Static_Expr
2081 ("non-static expression used in number declaration!", E);
2082 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2083 Set_Etype (E, Any_Type);
2084 end if;
2085 end Analyze_Number_Declaration;
2087 --------------------------------
2088 -- Analyze_Object_Declaration --
2089 --------------------------------
2091 procedure Analyze_Object_Declaration (N : Node_Id) is
2092 Loc : constant Source_Ptr := Sloc (N);
2093 Id : constant Entity_Id := Defining_Identifier (N);
2094 T : Entity_Id;
2095 Act_T : Entity_Id;
2097 E : Node_Id := Expression (N);
2098 -- E is set to Expression (N) throughout this routine. When
2099 -- Expression (N) is modified, E is changed accordingly.
2101 Prev_Entity : Entity_Id := Empty;
2103 function Count_Tasks (T : Entity_Id) return Uint;
2104 -- This function is called when a library level object of type is
2105 -- declared. It's function is to count the static number of tasks
2106 -- declared within the type (it is only called if Has_Tasks is set for
2107 -- T). As a side effect, if an array of tasks with non-static bounds or
2108 -- a variant record type is encountered, Check_Restrictions is called
2109 -- indicating the count is unknown.
2111 -----------------
2112 -- Count_Tasks --
2113 -----------------
2115 function Count_Tasks (T : Entity_Id) return Uint is
2116 C : Entity_Id;
2117 X : Node_Id;
2118 V : Uint;
2120 begin
2121 if Is_Task_Type (T) then
2122 return Uint_1;
2124 elsif Is_Record_Type (T) then
2125 if Has_Discriminants (T) then
2126 Check_Restriction (Max_Tasks, N);
2127 return Uint_0;
2129 else
2130 V := Uint_0;
2131 C := First_Component (T);
2132 while Present (C) loop
2133 V := V + Count_Tasks (Etype (C));
2134 Next_Component (C);
2135 end loop;
2137 return V;
2138 end if;
2140 elsif Is_Array_Type (T) then
2141 X := First_Index (T);
2142 V := Count_Tasks (Component_Type (T));
2143 while Present (X) loop
2144 C := Etype (X);
2146 if not Is_Static_Subtype (C) then
2147 Check_Restriction (Max_Tasks, N);
2148 return Uint_0;
2149 else
2150 V := V * (UI_Max (Uint_0,
2151 Expr_Value (Type_High_Bound (C)) -
2152 Expr_Value (Type_Low_Bound (C)) + Uint_1));
2153 end if;
2155 Next_Index (X);
2156 end loop;
2158 return V;
2160 else
2161 return Uint_0;
2162 end if;
2163 end Count_Tasks;
2165 -- Start of processing for Analyze_Object_Declaration
2167 begin
2168 -- There are three kinds of implicit types generated by an
2169 -- object declaration:
2171 -- 1. Those for generated by the original Object Definition
2173 -- 2. Those generated by the Expression
2175 -- 3. Those used to constrained the Object Definition with the
2176 -- expression constraints when it is unconstrained
2178 -- They must be generated in this order to avoid order of elaboration
2179 -- issues. Thus the first step (after entering the name) is to analyze
2180 -- the object definition.
2182 if Constant_Present (N) then
2183 Prev_Entity := Current_Entity_In_Scope (Id);
2185 -- If homograph is an implicit subprogram, it is overridden by the
2186 -- current declaration.
2188 if Present (Prev_Entity)
2189 and then Is_Overloadable (Prev_Entity)
2190 and then Is_Inherited_Operation (Prev_Entity)
2191 then
2192 Prev_Entity := Empty;
2193 end if;
2194 end if;
2196 if Present (Prev_Entity) then
2197 Constant_Redeclaration (Id, N, T);
2199 Generate_Reference (Prev_Entity, Id, 'c');
2200 Set_Completion_Referenced (Id);
2202 if Error_Posted (N) then
2204 -- Type mismatch or illegal redeclaration, Do not analyze
2205 -- expression to avoid cascaded errors.
2207 T := Find_Type_Of_Object (Object_Definition (N), N);
2208 Set_Etype (Id, T);
2209 Set_Ekind (Id, E_Variable);
2210 return;
2211 end if;
2213 -- In the normal case, enter identifier at the start to catch premature
2214 -- usage in the initialization expression.
2216 else
2217 Generate_Definition (Id);
2218 Enter_Name (Id);
2220 Mark_Coextensions (N, Object_Definition (N));
2222 T := Find_Type_Of_Object (Object_Definition (N), N);
2224 if Nkind (Object_Definition (N)) = N_Access_Definition
2225 and then Present
2226 (Access_To_Subprogram_Definition (Object_Definition (N)))
2227 and then Protected_Present
2228 (Access_To_Subprogram_Definition (Object_Definition (N)))
2229 then
2230 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2231 end if;
2233 if Error_Posted (Id) then
2234 Set_Etype (Id, T);
2235 Set_Ekind (Id, E_Variable);
2236 return;
2237 end if;
2238 end if;
2240 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2241 -- out some static checks
2243 if Ada_Version >= Ada_05
2244 and then Can_Never_Be_Null (T)
2245 then
2246 -- In case of aggregates we must also take care of the correct
2247 -- initialization of nested aggregates bug this is done at the
2248 -- point of the analysis of the aggregate (see sem_aggr.adb)
2250 if Present (Expression (N))
2251 and then Nkind (Expression (N)) = N_Aggregate
2252 then
2253 null;
2255 else
2256 declare
2257 Save_Typ : constant Entity_Id := Etype (Id);
2258 begin
2259 Set_Etype (Id, T); -- Temp. decoration for static checks
2260 Null_Exclusion_Static_Checks (N);
2261 Set_Etype (Id, Save_Typ);
2262 end;
2263 end if;
2264 end if;
2266 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2268 -- If deferred constant, make sure context is appropriate. We detect
2269 -- a deferred constant as a constant declaration with no expression.
2270 -- A deferred constant can appear in a package body if its completion
2271 -- is by means of an interface pragma.
2273 if Constant_Present (N)
2274 and then No (E)
2275 then
2276 -- We exclude forward references to tags
2278 if Is_Imported (Defining_Identifier (N))
2279 and then
2280 (T = RTE (RE_Tag)
2281 or else (Present (Full_View (T))
2282 and then Full_View (T) = RTE (RE_Tag)))
2283 then
2284 null;
2286 elsif not Is_Package_Or_Generic_Package (Current_Scope) then
2287 Error_Msg_N
2288 ("invalid context for deferred constant declaration (RM 7.4)",
2290 Error_Msg_N
2291 ("\declaration requires an initialization expression",
2293 Set_Constant_Present (N, False);
2295 -- In Ada 83, deferred constant must be of private type
2297 elsif not Is_Private_Type (T) then
2298 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2299 Error_Msg_N
2300 ("(Ada 83) deferred constant must be private type", N);
2301 end if;
2302 end if;
2304 -- If not a deferred constant, then object declaration freezes its type
2306 else
2307 Check_Fully_Declared (T, N);
2308 Freeze_Before (N, T);
2309 end if;
2311 -- If the object was created by a constrained array definition, then
2312 -- set the link in both the anonymous base type and anonymous subtype
2313 -- that are built to represent the array type to point to the object.
2315 if Nkind (Object_Definition (Declaration_Node (Id))) =
2316 N_Constrained_Array_Definition
2317 then
2318 Set_Related_Array_Object (T, Id);
2319 Set_Related_Array_Object (Base_Type (T), Id);
2320 end if;
2322 -- Special checks for protected objects not at library level
2324 if Is_Protected_Type (T)
2325 and then not Is_Library_Level_Entity (Id)
2326 then
2327 Check_Restriction (No_Local_Protected_Objects, Id);
2329 -- Protected objects with interrupt handlers must be at library level
2331 -- Ada 2005: this test is not needed (and the corresponding clause
2332 -- in the RM is removed) because accessibility checks are sufficient
2333 -- to make handlers not at the library level illegal.
2335 if Has_Interrupt_Handler (T)
2336 and then Ada_Version < Ada_05
2337 then
2338 Error_Msg_N
2339 ("interrupt object can only be declared at library level", Id);
2340 end if;
2341 end if;
2343 -- The actual subtype of the object is the nominal subtype, unless
2344 -- the nominal one is unconstrained and obtained from the expression.
2346 Act_T := T;
2348 -- Process initialization expression if present and not in error
2350 if Present (E) and then E /= Error then
2351 Mark_Coextensions (N, E);
2352 Analyze (E);
2354 -- In case of errors detected in the analysis of the expression,
2355 -- decorate it with the expected type to avoid cascade errors
2357 if No (Etype (E)) then
2358 Set_Etype (E, T);
2359 end if;
2361 -- If an initialization expression is present, then we set the
2362 -- Is_True_Constant flag. It will be reset if this is a variable
2363 -- and it is indeed modified.
2365 Set_Is_True_Constant (Id, True);
2367 -- If we are analyzing a constant declaration, set its completion
2368 -- flag after analyzing the expression.
2370 if Constant_Present (N) then
2371 Set_Has_Completion (Id);
2372 end if;
2374 Set_Etype (Id, T); -- may be overridden later on
2375 Resolve (E, T);
2377 if not Assignment_OK (N) then
2378 Check_Initialization (T, E);
2379 end if;
2381 Check_Unset_Reference (E);
2383 -- If this is a variable, then set current value
2385 if not Constant_Present (N) then
2386 if Compile_Time_Known_Value (E) then
2387 Set_Current_Value (Id, E);
2388 end if;
2389 end if;
2391 -- Deal with setting of null flags
2393 if Is_Access_Type (T) then
2394 if Known_Non_Null (E) then
2395 Set_Is_Known_Non_Null (Id, True);
2396 elsif Known_Null (E)
2397 and then not Can_Never_Be_Null (Id)
2398 then
2399 Set_Is_Known_Null (Id, True);
2400 end if;
2401 end if;
2403 -- Check incorrect use of dynamically tagged expressions. Note
2404 -- the use of Is_Tagged_Type (T) which seems redundant but is in
2405 -- fact important to avoid spurious errors due to expanded code
2406 -- for dispatching functions over an anonymous access type
2408 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
2409 and then Is_Tagged_Type (T)
2410 and then not Is_Class_Wide_Type (T)
2411 then
2412 Error_Msg_N ("dynamically tagged expression not allowed!", E);
2413 end if;
2415 Apply_Scalar_Range_Check (E, T);
2416 Apply_Static_Length_Check (E, T);
2417 end if;
2419 -- If the No_Streams restriction is set, check that the type of the
2420 -- object is not, and does not contain, any subtype derived from
2421 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2422 -- Has_Stream just for efficiency reasons. There is no point in
2423 -- spending time on a Has_Stream check if the restriction is not set.
2425 if Restrictions.Set (No_Streams) then
2426 if Has_Stream (T) then
2427 Check_Restriction (No_Streams, N);
2428 end if;
2429 end if;
2431 -- Abstract type is never permitted for a variable or constant.
2432 -- Note: we inhibit this check for objects that do not come from
2433 -- source because there is at least one case (the expansion of
2434 -- x'class'input where x is abstract) where we legitimately
2435 -- generate an abstract object.
2437 if Is_Abstract_Type (T) and then Comes_From_Source (N) then
2438 Error_Msg_N ("type of object cannot be abstract",
2439 Object_Definition (N));
2441 if Is_CPP_Class (T) then
2442 Error_Msg_NE ("\} may need a cpp_constructor",
2443 Object_Definition (N), T);
2444 end if;
2446 -- Case of unconstrained type
2448 elsif Is_Indefinite_Subtype (T) then
2450 -- Nothing to do in deferred constant case
2452 if Constant_Present (N) and then No (E) then
2453 null;
2455 -- Case of no initialization present
2457 elsif No (E) then
2458 if No_Initialization (N) then
2459 null;
2461 elsif Is_Class_Wide_Type (T) then
2462 Error_Msg_N
2463 ("initialization required in class-wide declaration ", N);
2465 else
2466 Error_Msg_N
2467 ("unconstrained subtype not allowed (need initialization)",
2468 Object_Definition (N));
2469 end if;
2471 -- Case of initialization present but in error. Set initial
2472 -- expression as absent (but do not make above complaints)
2474 elsif E = Error then
2475 Set_Expression (N, Empty);
2476 E := Empty;
2478 -- Case of initialization present
2480 else
2481 -- Not allowed in Ada 83
2483 if not Constant_Present (N) then
2484 if Ada_Version = Ada_83
2485 and then Comes_From_Source (Object_Definition (N))
2486 then
2487 Error_Msg_N
2488 ("(Ada 83) unconstrained variable not allowed",
2489 Object_Definition (N));
2490 end if;
2491 end if;
2493 -- Now we constrain the variable from the initializing expression
2495 -- If the expression is an aggregate, it has been expanded into
2496 -- individual assignments. Retrieve the actual type from the
2497 -- expanded construct.
2499 if Is_Array_Type (T)
2500 and then No_Initialization (N)
2501 and then Nkind (Original_Node (E)) = N_Aggregate
2502 then
2503 Act_T := Etype (E);
2505 else
2506 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
2507 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
2508 end if;
2510 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
2512 if Aliased_Present (N) then
2513 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2514 end if;
2516 Freeze_Before (N, Act_T);
2517 Freeze_Before (N, T);
2518 end if;
2520 elsif Is_Array_Type (T)
2521 and then No_Initialization (N)
2522 and then Nkind (Original_Node (E)) = N_Aggregate
2523 then
2524 if not Is_Entity_Name (Object_Definition (N)) then
2525 Act_T := Etype (E);
2526 Check_Compile_Time_Size (Act_T);
2528 if Aliased_Present (N) then
2529 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2530 end if;
2531 end if;
2533 -- When the given object definition and the aggregate are specified
2534 -- independently, and their lengths might differ do a length check.
2535 -- This cannot happen if the aggregate is of the form (others =>...)
2537 if not Is_Constrained (T) then
2538 null;
2540 elsif Nkind (E) = N_Raise_Constraint_Error then
2542 -- Aggregate is statically illegal. Place back in declaration
2544 Set_Expression (N, E);
2545 Set_No_Initialization (N, False);
2547 elsif T = Etype (E) then
2548 null;
2550 elsif Nkind (E) = N_Aggregate
2551 and then Present (Component_Associations (E))
2552 and then Present (Choices (First (Component_Associations (E))))
2553 and then Nkind (First
2554 (Choices (First (Component_Associations (E))))) = N_Others_Choice
2555 then
2556 null;
2558 else
2559 Apply_Length_Check (E, T);
2560 end if;
2562 -- If the type is limited unconstrained with defaulted discriminants
2563 -- and there is no expression, then the object is constrained by the
2564 -- defaults, so it is worthwhile building the corresponding subtype.
2566 elsif (Is_Limited_Record (T)
2567 or else Is_Concurrent_Type (T))
2568 and then not Is_Constrained (T)
2569 and then Has_Discriminants (T)
2570 then
2571 if No (E) then
2572 Act_T := Build_Default_Subtype (T, N);
2573 else
2574 -- Ada 2005: a limited object may be initialized by means of an
2575 -- aggregate. If the type has default discriminants it has an
2576 -- unconstrained nominal type, Its actual subtype will be obtained
2577 -- from the aggregate, and not from the default discriminants.
2579 Act_T := Etype (E);
2580 end if;
2582 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
2584 elsif Present (Underlying_Type (T))
2585 and then not Is_Constrained (Underlying_Type (T))
2586 and then Has_Discriminants (Underlying_Type (T))
2587 and then Nkind (E) = N_Function_Call
2588 and then Constant_Present (N)
2589 then
2590 -- The back-end has problems with constants of a discriminated type
2591 -- with defaults, if the initial value is a function call. We
2592 -- generate an intermediate temporary for the result of the call.
2593 -- It is unclear why this should make it acceptable to gcc. ???
2595 Remove_Side_Effects (E);
2596 end if;
2598 if T = Standard_Wide_Character or else T = Standard_Wide_Wide_Character
2599 or else Root_Type (T) = Standard_Wide_String
2600 or else Root_Type (T) = Standard_Wide_Wide_String
2601 then
2602 Check_Restriction (No_Wide_Characters, Object_Definition (N));
2603 end if;
2605 -- Indicate this is not set in source. Certainly true for constants,
2606 -- and true for variables so far (will be reset for a variable if and
2607 -- when we encounter a modification in the source).
2609 Set_Never_Set_In_Source (Id, True);
2611 -- Now establish the proper kind and type of the object
2613 if Constant_Present (N) then
2614 Set_Ekind (Id, E_Constant);
2615 Set_Is_True_Constant (Id, True);
2617 else
2618 Set_Ekind (Id, E_Variable);
2620 -- A variable is set as shared passive if it appears in a shared
2621 -- passive package, and is at the outer level. This is not done
2622 -- for entities generated during expansion, because those are
2623 -- always manipulated locally.
2625 if Is_Shared_Passive (Current_Scope)
2626 and then Is_Library_Level_Entity (Id)
2627 and then Comes_From_Source (Id)
2628 then
2629 Set_Is_Shared_Passive (Id);
2630 Check_Shared_Var (Id, T, N);
2631 end if;
2633 -- Set Has_Initial_Value if initializing expression present. Note
2634 -- that if there is no initializating expression, we leave the state
2635 -- of this flag unchanged (usually it will be False, but notably in
2636 -- the case of exception choice variables, it will already be true).
2638 if Present (E) then
2639 Set_Has_Initial_Value (Id, True);
2640 end if;
2641 end if;
2643 -- Initialize alignment and size
2645 Init_Alignment (Id);
2646 Init_Esize (Id);
2648 -- Deal with aliased case
2650 if Aliased_Present (N) then
2651 Set_Is_Aliased (Id);
2653 -- If the object is aliased and the type is unconstrained with
2654 -- defaulted discriminants and there is no expression, then the
2655 -- object is constrained by the defaults, so it is worthwhile
2656 -- building the corresponding subtype.
2658 -- Ada 2005 (AI-363): If the aliased object is discriminated and
2659 -- unconstrained, then only establish an actual subtype if the
2660 -- nominal subtype is indefinite. In definite cases the object is
2661 -- unconstrained in Ada 2005.
2663 if No (E)
2664 and then Is_Record_Type (T)
2665 and then not Is_Constrained (T)
2666 and then Has_Discriminants (T)
2667 and then (Ada_Version < Ada_05 or else Is_Indefinite_Subtype (T))
2668 then
2669 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
2670 end if;
2671 end if;
2673 -- Now we can set the type of the object
2675 Set_Etype (Id, Act_T);
2677 -- Deal with controlled types
2679 if Has_Controlled_Component (Etype (Id))
2680 or else Is_Controlled (Etype (Id))
2681 then
2682 if not Is_Library_Level_Entity (Id) then
2683 Check_Restriction (No_Nested_Finalization, N);
2684 else
2685 Validate_Controlled_Object (Id);
2686 end if;
2688 -- Generate a warning when an initialization causes an obvious ABE
2689 -- violation. If the init expression is a simple aggregate there
2690 -- shouldn't be any initialize/adjust call generated. This will be
2691 -- true as soon as aggregates are built in place when possible.
2693 -- ??? at the moment we do not generate warnings for temporaries
2694 -- created for those aggregates although Program_Error might be
2695 -- generated if compiled with -gnato.
2697 if Is_Controlled (Etype (Id))
2698 and then Comes_From_Source (Id)
2699 then
2700 declare
2701 BT : constant Entity_Id := Base_Type (Etype (Id));
2703 Implicit_Call : Entity_Id;
2704 pragma Warnings (Off, Implicit_Call);
2705 -- ??? what is this for (never referenced!)
2707 function Is_Aggr (N : Node_Id) return Boolean;
2708 -- Check that N is an aggregate
2710 -------------
2711 -- Is_Aggr --
2712 -------------
2714 function Is_Aggr (N : Node_Id) return Boolean is
2715 begin
2716 case Nkind (Original_Node (N)) is
2717 when N_Aggregate | N_Extension_Aggregate =>
2718 return True;
2720 when N_Qualified_Expression |
2721 N_Type_Conversion |
2722 N_Unchecked_Type_Conversion =>
2723 return Is_Aggr (Expression (Original_Node (N)));
2725 when others =>
2726 return False;
2727 end case;
2728 end Is_Aggr;
2730 begin
2731 -- If no underlying type, we already are in an error situation.
2732 -- Do not try to add a warning since we do not have access to
2733 -- prim-op list.
2735 if No (Underlying_Type (BT)) then
2736 Implicit_Call := Empty;
2738 -- A generic type does not have usable primitive operators.
2739 -- Initialization calls are built for instances.
2741 elsif Is_Generic_Type (BT) then
2742 Implicit_Call := Empty;
2744 -- If the init expression is not an aggregate, an adjust call
2745 -- will be generated
2747 elsif Present (E) and then not Is_Aggr (E) then
2748 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
2750 -- If no init expression and we are not in the deferred
2751 -- constant case, an Initialize call will be generated
2753 elsif No (E) and then not Constant_Present (N) then
2754 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
2756 else
2757 Implicit_Call := Empty;
2758 end if;
2759 end;
2760 end if;
2761 end if;
2763 if Has_Task (Etype (Id)) then
2764 Check_Restriction (No_Tasking, N);
2766 if Is_Library_Level_Entity (Id) then
2767 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
2768 else
2769 Check_Restriction (Max_Tasks, N);
2770 Check_Restriction (No_Task_Hierarchy, N);
2771 Check_Potentially_Blocking_Operation (N);
2772 end if;
2774 -- A rather specialized test. If we see two tasks being declared
2775 -- of the same type in the same object declaration, and the task
2776 -- has an entry with an address clause, we know that program error
2777 -- will be raised at run-time since we can't have two tasks with
2778 -- entries at the same address.
2780 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
2781 declare
2782 E : Entity_Id;
2784 begin
2785 E := First_Entity (Etype (Id));
2786 while Present (E) loop
2787 if Ekind (E) = E_Entry
2788 and then Present (Get_Attribute_Definition_Clause
2789 (E, Attribute_Address))
2790 then
2791 Error_Msg_N
2792 ("?more than one task with same entry address", N);
2793 Error_Msg_N
2794 ("\?Program_Error will be raised at run time", N);
2795 Insert_Action (N,
2796 Make_Raise_Program_Error (Loc,
2797 Reason => PE_Duplicated_Entry_Address));
2798 exit;
2799 end if;
2801 Next_Entity (E);
2802 end loop;
2803 end;
2804 end if;
2805 end if;
2807 -- Some simple constant-propagation: if the expression is a constant
2808 -- string initialized with a literal, share the literal. This avoids
2809 -- a run-time copy.
2811 if Present (E)
2812 and then Is_Entity_Name (E)
2813 and then Ekind (Entity (E)) = E_Constant
2814 and then Base_Type (Etype (E)) = Standard_String
2815 then
2816 declare
2817 Val : constant Node_Id := Constant_Value (Entity (E));
2818 begin
2819 if Present (Val)
2820 and then Nkind (Val) = N_String_Literal
2821 then
2822 Rewrite (E, New_Copy (Val));
2823 end if;
2824 end;
2825 end if;
2827 -- Another optimization: if the nominal subtype is unconstrained and
2828 -- the expression is a function call that returns an unconstrained
2829 -- type, rewrite the declaration as a renaming of the result of the
2830 -- call. The exceptions below are cases where the copy is expected,
2831 -- either by the back end (Aliased case) or by the semantics, as for
2832 -- initializing controlled types or copying tags for classwide types.
2834 if Present (E)
2835 and then Nkind (E) = N_Explicit_Dereference
2836 and then Nkind (Original_Node (E)) = N_Function_Call
2837 and then not Is_Library_Level_Entity (Id)
2838 and then not Is_Constrained (Underlying_Type (T))
2839 and then not Is_Aliased (Id)
2840 and then not Is_Class_Wide_Type (T)
2841 and then not Is_Controlled (T)
2842 and then not Has_Controlled_Component (Base_Type (T))
2843 and then Expander_Active
2844 then
2845 Rewrite (N,
2846 Make_Object_Renaming_Declaration (Loc,
2847 Defining_Identifier => Id,
2848 Access_Definition => Empty,
2849 Subtype_Mark => New_Occurrence_Of
2850 (Base_Type (Etype (Id)), Loc),
2851 Name => E));
2853 Set_Renamed_Object (Id, E);
2855 -- Force generation of debugging information for the constant and for
2856 -- the renamed function call.
2858 Set_Needs_Debug_Info (Id);
2859 Set_Needs_Debug_Info (Entity (Prefix (E)));
2860 end if;
2862 if Present (Prev_Entity)
2863 and then Is_Frozen (Prev_Entity)
2864 and then not Error_Posted (Id)
2865 then
2866 Error_Msg_N ("full constant declaration appears too late", N);
2867 end if;
2869 Check_Eliminated (Id);
2871 -- Deal with setting In_Private_Part flag if in private part
2873 if Ekind (Scope (Id)) = E_Package
2874 and then In_Private_Part (Scope (Id))
2875 then
2876 Set_In_Private_Part (Id);
2877 end if;
2878 end Analyze_Object_Declaration;
2880 ---------------------------
2881 -- Analyze_Others_Choice --
2882 ---------------------------
2884 -- Nothing to do for the others choice node itself, the semantic analysis
2885 -- of the others choice will occur as part of the processing of the parent
2887 procedure Analyze_Others_Choice (N : Node_Id) is
2888 pragma Warnings (Off, N);
2889 begin
2890 null;
2891 end Analyze_Others_Choice;
2893 --------------------------------
2894 -- Analyze_Per_Use_Expression --
2895 --------------------------------
2897 procedure Analyze_Per_Use_Expression (N : Node_Id; T : Entity_Id) is
2898 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
2899 begin
2900 In_Default_Expression := True;
2901 Pre_Analyze_And_Resolve (N, T);
2902 In_Default_Expression := Save_In_Default_Expression;
2903 end Analyze_Per_Use_Expression;
2905 -------------------------------------------
2906 -- Analyze_Private_Extension_Declaration --
2907 -------------------------------------------
2909 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
2910 T : constant Entity_Id := Defining_Identifier (N);
2911 Indic : constant Node_Id := Subtype_Indication (N);
2912 Parent_Type : Entity_Id;
2913 Parent_Base : Entity_Id;
2915 begin
2916 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
2918 if Is_Non_Empty_List (Interface_List (N)) then
2919 declare
2920 Intf : Node_Id;
2921 T : Entity_Id;
2923 begin
2924 Intf := First (Interface_List (N));
2925 while Present (Intf) loop
2926 T := Find_Type_Of_Subtype_Indic (Intf);
2928 if not Is_Interface (T) then
2929 Error_Msg_NE ("(Ada 2005) & must be an interface", Intf, T);
2930 end if;
2932 Next (Intf);
2933 end loop;
2934 end;
2935 end if;
2937 Generate_Definition (T);
2938 Enter_Name (T);
2940 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
2941 Parent_Base := Base_Type (Parent_Type);
2943 if Parent_Type = Any_Type
2944 or else Etype (Parent_Type) = Any_Type
2945 then
2946 Set_Ekind (T, Ekind (Parent_Type));
2947 Set_Etype (T, Any_Type);
2948 return;
2950 elsif not Is_Tagged_Type (Parent_Type) then
2951 Error_Msg_N
2952 ("parent of type extension must be a tagged type ", Indic);
2953 return;
2955 elsif Ekind (Parent_Type) = E_Void
2956 or else Ekind (Parent_Type) = E_Incomplete_Type
2957 then
2958 Error_Msg_N ("premature derivation of incomplete type", Indic);
2959 return;
2961 elsif Is_Concurrent_Type (Parent_Type) then
2962 Error_Msg_N
2963 ("parent type of a private extension cannot be "
2964 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
2966 Set_Etype (T, Any_Type);
2967 Set_Ekind (T, E_Limited_Private_Type);
2968 Set_Private_Dependents (T, New_Elmt_List);
2969 Set_Error_Posted (T);
2970 return;
2971 end if;
2973 -- Perhaps the parent type should be changed to the class-wide type's
2974 -- specific type in this case to prevent cascading errors ???
2976 if Is_Class_Wide_Type (Parent_Type) then
2977 Error_Msg_N
2978 ("parent of type extension must not be a class-wide type", Indic);
2979 return;
2980 end if;
2982 if (not Is_Package_Or_Generic_Package (Current_Scope)
2983 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
2984 or else In_Private_Part (Current_Scope)
2986 then
2987 Error_Msg_N ("invalid context for private extension", N);
2988 end if;
2990 -- Set common attributes
2992 Set_Is_Pure (T, Is_Pure (Current_Scope));
2993 Set_Scope (T, Current_Scope);
2994 Set_Ekind (T, E_Record_Type_With_Private);
2995 Init_Size_Align (T);
2997 Set_Etype (T, Parent_Base);
2998 Set_Has_Task (T, Has_Task (Parent_Base));
3000 Set_Convention (T, Convention (Parent_Type));
3001 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
3002 Set_Is_First_Subtype (T);
3003 Make_Class_Wide_Type (T);
3005 if Unknown_Discriminants_Present (N) then
3006 Set_Discriminant_Constraint (T, No_Elist);
3007 end if;
3009 Build_Derived_Record_Type (N, Parent_Type, T);
3011 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3012 -- synchronized formal derived type.
3014 if Ada_Version >= Ada_05
3015 and then Synchronized_Present (N)
3016 then
3017 Set_Is_Limited_Record (T);
3019 -- Formal derived type case
3021 if Is_Generic_Type (T) then
3023 -- The parent must be a tagged limited type or a synchronized
3024 -- interface.
3026 if (not Is_Tagged_Type (Parent_Type)
3027 or else not Is_Limited_Type (Parent_Type))
3028 and then
3029 (not Is_Interface (Parent_Type)
3030 or else not Is_Synchronized_Interface (Parent_Type))
3031 then
3032 Error_Msg_NE ("parent type of & must be tagged limited " &
3033 "or synchronized", N, T);
3034 end if;
3036 -- The progenitors (if any) must be limited or synchronized
3037 -- interfaces.
3039 if Present (Abstract_Interfaces (T)) then
3040 declare
3041 Iface : Entity_Id;
3042 Iface_Elmt : Elmt_Id;
3044 begin
3045 Iface_Elmt := First_Elmt (Abstract_Interfaces (T));
3046 while Present (Iface_Elmt) loop
3047 Iface := Node (Iface_Elmt);
3049 if not Is_Limited_Interface (Iface)
3050 and then not Is_Synchronized_Interface (Iface)
3051 then
3052 Error_Msg_NE ("progenitor & must be limited " &
3053 "or synchronized", N, Iface);
3054 end if;
3056 Next_Elmt (Iface_Elmt);
3057 end loop;
3058 end;
3059 end if;
3061 -- Regular derived extension, the parent must be a limited or
3062 -- synchronized interface.
3064 else
3065 if not Is_Interface (Parent_Type)
3066 or else (not Is_Limited_Interface (Parent_Type)
3067 and then
3068 not Is_Synchronized_Interface (Parent_Type))
3069 then
3070 Error_Msg_NE
3071 ("parent type of & must be limited interface", N, T);
3072 end if;
3073 end if;
3075 elsif Limited_Present (N) then
3076 Set_Is_Limited_Record (T);
3078 if not Is_Limited_Type (Parent_Type)
3079 and then
3080 (not Is_Interface (Parent_Type)
3081 or else not Is_Limited_Interface (Parent_Type))
3082 then
3083 Error_Msg_NE ("parent type& of limited extension must be limited",
3084 N, Parent_Type);
3085 end if;
3086 end if;
3087 end Analyze_Private_Extension_Declaration;
3089 ---------------------------------
3090 -- Analyze_Subtype_Declaration --
3091 ---------------------------------
3093 procedure Analyze_Subtype_Declaration
3094 (N : Node_Id;
3095 Skip : Boolean := False)
3097 Id : constant Entity_Id := Defining_Identifier (N);
3098 T : Entity_Id;
3099 R_Checks : Check_Result;
3101 begin
3102 Generate_Definition (Id);
3103 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3104 Init_Size_Align (Id);
3106 -- The following guard condition on Enter_Name is to handle cases where
3107 -- the defining identifier has already been entered into the scope but
3108 -- the declaration as a whole needs to be analyzed.
3110 -- This case in particular happens for derived enumeration types. The
3111 -- derived enumeration type is processed as an inserted enumeration type
3112 -- declaration followed by a rewritten subtype declaration. The defining
3113 -- identifier, however, is entered into the name scope very early in the
3114 -- processing of the original type declaration and therefore needs to be
3115 -- avoided here, when the created subtype declaration is analyzed. (See
3116 -- Build_Derived_Types)
3118 -- This also happens when the full view of a private type is derived
3119 -- type with constraints. In this case the entity has been introduced
3120 -- in the private declaration.
3122 if Skip
3123 or else (Present (Etype (Id))
3124 and then (Is_Private_Type (Etype (Id))
3125 or else Is_Task_Type (Etype (Id))
3126 or else Is_Rewrite_Substitution (N)))
3127 then
3128 null;
3130 else
3131 Enter_Name (Id);
3132 end if;
3134 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
3136 -- Inherit common attributes
3138 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
3139 Set_Is_Volatile (Id, Is_Volatile (T));
3140 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
3141 Set_Is_Atomic (Id, Is_Atomic (T));
3142 Set_Is_Ada_2005_Only (Id, Is_Ada_2005_Only (T));
3144 -- In the case where there is no constraint given in the subtype
3145 -- indication, Process_Subtype just returns the Subtype_Mark, so its
3146 -- semantic attributes must be established here.
3148 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
3149 Set_Etype (Id, Base_Type (T));
3151 case Ekind (T) is
3152 when Array_Kind =>
3153 Set_Ekind (Id, E_Array_Subtype);
3154 Copy_Array_Subtype_Attributes (Id, T);
3156 when Decimal_Fixed_Point_Kind =>
3157 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
3158 Set_Digits_Value (Id, Digits_Value (T));
3159 Set_Delta_Value (Id, Delta_Value (T));
3160 Set_Scale_Value (Id, Scale_Value (T));
3161 Set_Small_Value (Id, Small_Value (T));
3162 Set_Scalar_Range (Id, Scalar_Range (T));
3163 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
3164 Set_Is_Constrained (Id, Is_Constrained (T));
3165 Set_RM_Size (Id, RM_Size (T));
3167 when Enumeration_Kind =>
3168 Set_Ekind (Id, E_Enumeration_Subtype);
3169 Set_First_Literal (Id, First_Literal (Base_Type (T)));
3170 Set_Scalar_Range (Id, Scalar_Range (T));
3171 Set_Is_Character_Type (Id, Is_Character_Type (T));
3172 Set_Is_Constrained (Id, Is_Constrained (T));
3173 Set_RM_Size (Id, RM_Size (T));
3175 when Ordinary_Fixed_Point_Kind =>
3176 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
3177 Set_Scalar_Range (Id, Scalar_Range (T));
3178 Set_Small_Value (Id, Small_Value (T));
3179 Set_Delta_Value (Id, Delta_Value (T));
3180 Set_Is_Constrained (Id, Is_Constrained (T));
3181 Set_RM_Size (Id, RM_Size (T));
3183 when Float_Kind =>
3184 Set_Ekind (Id, E_Floating_Point_Subtype);
3185 Set_Scalar_Range (Id, Scalar_Range (T));
3186 Set_Digits_Value (Id, Digits_Value (T));
3187 Set_Is_Constrained (Id, Is_Constrained (T));
3189 when Signed_Integer_Kind =>
3190 Set_Ekind (Id, E_Signed_Integer_Subtype);
3191 Set_Scalar_Range (Id, Scalar_Range (T));
3192 Set_Is_Constrained (Id, Is_Constrained (T));
3193 Set_RM_Size (Id, RM_Size (T));
3195 when Modular_Integer_Kind =>
3196 Set_Ekind (Id, E_Modular_Integer_Subtype);
3197 Set_Scalar_Range (Id, Scalar_Range (T));
3198 Set_Is_Constrained (Id, Is_Constrained (T));
3199 Set_RM_Size (Id, RM_Size (T));
3201 when Class_Wide_Kind =>
3202 Set_Ekind (Id, E_Class_Wide_Subtype);
3203 Set_First_Entity (Id, First_Entity (T));
3204 Set_Last_Entity (Id, Last_Entity (T));
3205 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3206 Set_Cloned_Subtype (Id, T);
3207 Set_Is_Tagged_Type (Id, True);
3208 Set_Has_Unknown_Discriminants
3209 (Id, True);
3211 if Ekind (T) = E_Class_Wide_Subtype then
3212 Set_Equivalent_Type (Id, Equivalent_Type (T));
3213 end if;
3215 when E_Record_Type | E_Record_Subtype =>
3216 Set_Ekind (Id, E_Record_Subtype);
3218 if Ekind (T) = E_Record_Subtype
3219 and then Present (Cloned_Subtype (T))
3220 then
3221 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
3222 else
3223 Set_Cloned_Subtype (Id, T);
3224 end if;
3226 Set_First_Entity (Id, First_Entity (T));
3227 Set_Last_Entity (Id, Last_Entity (T));
3228 Set_Has_Discriminants (Id, Has_Discriminants (T));
3229 Set_Is_Constrained (Id, Is_Constrained (T));
3230 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3231 Set_Has_Unknown_Discriminants
3232 (Id, Has_Unknown_Discriminants (T));
3234 if Has_Discriminants (T) then
3235 Set_Discriminant_Constraint
3236 (Id, Discriminant_Constraint (T));
3237 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3239 elsif Has_Unknown_Discriminants (Id) then
3240 Set_Discriminant_Constraint (Id, No_Elist);
3241 end if;
3243 if Is_Tagged_Type (T) then
3244 Set_Is_Tagged_Type (Id);
3245 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3246 Set_Primitive_Operations
3247 (Id, Primitive_Operations (T));
3248 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3250 if Is_Interface (T) then
3251 Set_Is_Interface (Id);
3252 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
3253 end if;
3254 end if;
3256 when Private_Kind =>
3257 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3258 Set_Has_Discriminants (Id, Has_Discriminants (T));
3259 Set_Is_Constrained (Id, Is_Constrained (T));
3260 Set_First_Entity (Id, First_Entity (T));
3261 Set_Last_Entity (Id, Last_Entity (T));
3262 Set_Private_Dependents (Id, New_Elmt_List);
3263 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3264 Set_Has_Unknown_Discriminants
3265 (Id, Has_Unknown_Discriminants (T));
3267 if Is_Tagged_Type (T) then
3268 Set_Is_Tagged_Type (Id);
3269 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3270 Set_Primitive_Operations (Id, Primitive_Operations (T));
3271 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3272 end if;
3274 -- In general the attributes of the subtype of a private type
3275 -- are the attributes of the partial view of parent. However,
3276 -- the full view may be a discriminated type, and the subtype
3277 -- must share the discriminant constraint to generate correct
3278 -- calls to initialization procedures.
3280 if Has_Discriminants (T) then
3281 Set_Discriminant_Constraint
3282 (Id, Discriminant_Constraint (T));
3283 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3285 elsif Present (Full_View (T))
3286 and then Has_Discriminants (Full_View (T))
3287 then
3288 Set_Discriminant_Constraint
3289 (Id, Discriminant_Constraint (Full_View (T)));
3290 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3292 -- This would seem semantically correct, but apparently
3293 -- confuses the back-end (4412-009). To be explained ???
3295 -- Set_Has_Discriminants (Id);
3296 end if;
3298 Prepare_Private_Subtype_Completion (Id, N);
3300 when Access_Kind =>
3301 Set_Ekind (Id, E_Access_Subtype);
3302 Set_Is_Constrained (Id, Is_Constrained (T));
3303 Set_Is_Access_Constant
3304 (Id, Is_Access_Constant (T));
3305 Set_Directly_Designated_Type
3306 (Id, Designated_Type (T));
3307 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
3309 -- A Pure library_item must not contain the declaration of a
3310 -- named access type, except within a subprogram, generic
3311 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
3313 if Comes_From_Source (Id)
3314 and then In_Pure_Unit
3315 and then not In_Subprogram_Task_Protected_Unit
3316 then
3317 Error_Msg_N
3318 ("named access types not allowed in pure unit", N);
3319 end if;
3321 when Concurrent_Kind =>
3322 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3323 Set_Corresponding_Record_Type (Id,
3324 Corresponding_Record_Type (T));
3325 Set_First_Entity (Id, First_Entity (T));
3326 Set_First_Private_Entity (Id, First_Private_Entity (T));
3327 Set_Has_Discriminants (Id, Has_Discriminants (T));
3328 Set_Is_Constrained (Id, Is_Constrained (T));
3329 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
3330 Set_Last_Entity (Id, Last_Entity (T));
3332 if Has_Discriminants (T) then
3333 Set_Discriminant_Constraint (Id,
3334 Discriminant_Constraint (T));
3335 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3336 end if;
3338 when E_Incomplete_Type =>
3339 if Ada_Version >= Ada_05 then
3340 Set_Ekind (Id, E_Incomplete_Subtype);
3342 -- Ada 2005 (AI-412): Decorate an incomplete subtype
3343 -- of an incomplete type visible through a limited
3344 -- with clause.
3346 if From_With_Type (T)
3347 and then Present (Non_Limited_View (T))
3348 then
3349 Set_From_With_Type (Id);
3350 Set_Non_Limited_View (Id, Non_Limited_View (T));
3352 -- Ada 2005 (AI-412): Add the regular incomplete subtype
3353 -- to the private dependents of the original incomplete
3354 -- type for future transformation.
3356 else
3357 Append_Elmt (Id, Private_Dependents (T));
3358 end if;
3360 -- If the subtype name denotes an incomplete type an error
3361 -- was already reported by Process_Subtype.
3363 else
3364 Set_Etype (Id, Any_Type);
3365 end if;
3367 when others =>
3368 raise Program_Error;
3369 end case;
3370 end if;
3372 if Etype (Id) = Any_Type then
3373 return;
3374 end if;
3376 -- Some common processing on all types
3378 Set_Size_Info (Id, T);
3379 Set_First_Rep_Item (Id, First_Rep_Item (T));
3381 T := Etype (Id);
3383 Set_Is_Immediately_Visible (Id, True);
3384 Set_Depends_On_Private (Id, Has_Private_Component (T));
3385 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
3387 if Is_Interface (T) then
3388 Set_Is_Interface (Id);
3389 end if;
3391 if Present (Generic_Parent_Type (N))
3392 and then
3393 (Nkind
3394 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
3395 or else Nkind
3396 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
3397 /= N_Formal_Private_Type_Definition)
3398 then
3399 if Is_Tagged_Type (Id) then
3401 -- If this is a generic actual subtype for a synchronized type,
3402 -- the primitive operations are those of the corresponding record
3403 -- for which there is a separate subtype declaration.
3405 if Is_Concurrent_Type (Id) then
3406 null;
3407 elsif Is_Class_Wide_Type (Id) then
3408 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
3409 else
3410 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
3411 end if;
3413 elsif Scope (Etype (Id)) /= Standard_Standard then
3414 Derive_Subprograms (Generic_Parent_Type (N), Id);
3415 end if;
3416 end if;
3418 if Is_Private_Type (T)
3419 and then Present (Full_View (T))
3420 then
3421 Conditional_Delay (Id, Full_View (T));
3423 -- The subtypes of components or subcomponents of protected types
3424 -- do not need freeze nodes, which would otherwise appear in the
3425 -- wrong scope (before the freeze node for the protected type). The
3426 -- proper subtypes are those of the subcomponents of the corresponding
3427 -- record.
3429 elsif Ekind (Scope (Id)) /= E_Protected_Type
3430 and then Present (Scope (Scope (Id))) -- error defense!
3431 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
3432 then
3433 Conditional_Delay (Id, T);
3434 end if;
3436 -- Check that constraint_error is raised for a scalar subtype
3437 -- indication when the lower or upper bound of a non-null range
3438 -- lies outside the range of the type mark.
3440 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
3441 if Is_Scalar_Type (Etype (Id))
3442 and then Scalar_Range (Id) /=
3443 Scalar_Range (Etype (Subtype_Mark
3444 (Subtype_Indication (N))))
3445 then
3446 Apply_Range_Check
3447 (Scalar_Range (Id),
3448 Etype (Subtype_Mark (Subtype_Indication (N))));
3450 elsif Is_Array_Type (Etype (Id))
3451 and then Present (First_Index (Id))
3452 then
3453 -- This really should be a subprogram that finds the indications
3454 -- to check???
3456 if ((Nkind (First_Index (Id)) = N_Identifier
3457 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
3458 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
3459 and then
3460 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
3461 then
3462 declare
3463 Target_Typ : constant Entity_Id :=
3464 Etype
3465 (First_Index (Etype
3466 (Subtype_Mark (Subtype_Indication (N)))));
3467 begin
3468 R_Checks :=
3469 Get_Range_Checks
3470 (Scalar_Range (Etype (First_Index (Id))),
3471 Target_Typ,
3472 Etype (First_Index (Id)),
3473 Defining_Identifier (N));
3475 Insert_Range_Checks
3476 (R_Checks,
3478 Target_Typ,
3479 Sloc (Defining_Identifier (N)));
3480 end;
3481 end if;
3482 end if;
3483 end if;
3485 Check_Eliminated (Id);
3486 end Analyze_Subtype_Declaration;
3488 --------------------------------
3489 -- Analyze_Subtype_Indication --
3490 --------------------------------
3492 procedure Analyze_Subtype_Indication (N : Node_Id) is
3493 T : constant Entity_Id := Subtype_Mark (N);
3494 R : constant Node_Id := Range_Expression (Constraint (N));
3496 begin
3497 Analyze (T);
3499 if R /= Error then
3500 Analyze (R);
3501 Set_Etype (N, Etype (R));
3502 Resolve (R, Entity (T));
3503 else
3504 Set_Error_Posted (R);
3505 Set_Error_Posted (T);
3506 end if;
3507 end Analyze_Subtype_Indication;
3509 ------------------------------
3510 -- Analyze_Type_Declaration --
3511 ------------------------------
3513 procedure Analyze_Type_Declaration (N : Node_Id) is
3514 Def : constant Node_Id := Type_Definition (N);
3515 Def_Id : constant Entity_Id := Defining_Identifier (N);
3516 T : Entity_Id;
3517 Prev : Entity_Id;
3519 Is_Remote : constant Boolean :=
3520 (Is_Remote_Types (Current_Scope)
3521 or else Is_Remote_Call_Interface (Current_Scope))
3522 and then not (In_Private_Part (Current_Scope)
3523 or else In_Package_Body (Current_Scope));
3525 procedure Check_Ops_From_Incomplete_Type;
3526 -- If there is a tagged incomplete partial view of the type, transfer
3527 -- its operations to the full view, and indicate that the type of the
3528 -- controlling parameter (s) is this full view.
3530 ------------------------------------
3531 -- Check_Ops_From_Incomplete_Type --
3532 ------------------------------------
3534 procedure Check_Ops_From_Incomplete_Type is
3535 Elmt : Elmt_Id;
3536 Formal : Entity_Id;
3537 Op : Entity_Id;
3539 begin
3540 if Prev /= T
3541 and then Ekind (Prev) = E_Incomplete_Type
3542 and then Is_Tagged_Type (Prev)
3543 and then Is_Tagged_Type (T)
3544 then
3545 Elmt := First_Elmt (Primitive_Operations (Prev));
3546 while Present (Elmt) loop
3547 Op := Node (Elmt);
3548 Prepend_Elmt (Op, Primitive_Operations (T));
3550 Formal := First_Formal (Op);
3551 while Present (Formal) loop
3552 if Etype (Formal) = Prev then
3553 Set_Etype (Formal, T);
3554 end if;
3556 Next_Formal (Formal);
3557 end loop;
3559 if Etype (Op) = Prev then
3560 Set_Etype (Op, T);
3561 end if;
3563 Next_Elmt (Elmt);
3564 end loop;
3565 end if;
3566 end Check_Ops_From_Incomplete_Type;
3568 -- Start of processing for Analyze_Type_Declaration
3570 begin
3571 Prev := Find_Type_Name (N);
3573 -- The full view, if present, now points to the current type
3575 -- Ada 2005 (AI-50217): If the type was previously decorated when
3576 -- imported through a LIMITED WITH clause, it appears as incomplete
3577 -- but has no full view.
3578 -- If the incomplete view is tagged, a class_wide type has been
3579 -- created already. Use it for the full view as well, to prevent
3580 -- multiple incompatible class-wide types that may be created for
3581 -- self-referential anonymous access components.
3583 if Ekind (Prev) = E_Incomplete_Type
3584 and then Present (Full_View (Prev))
3585 then
3586 T := Full_View (Prev);
3588 if Is_Tagged_Type (Prev)
3589 and then Present (Class_Wide_Type (Prev))
3590 then
3591 Set_Ekind (T, Ekind (Prev)); -- will be reset later
3592 Set_Class_Wide_Type (T, Class_Wide_Type (Prev));
3593 Set_Etype (Class_Wide_Type (T), T);
3594 end if;
3596 else
3597 T := Prev;
3598 end if;
3600 Set_Is_Pure (T, Is_Pure (Current_Scope));
3602 -- We set the flag Is_First_Subtype here. It is needed to set the
3603 -- corresponding flag for the Implicit class-wide-type created
3604 -- during tagged types processing.
3606 Set_Is_First_Subtype (T, True);
3608 -- Only composite types other than array types are allowed to have
3609 -- discriminants.
3611 case Nkind (Def) is
3613 -- For derived types, the rule will be checked once we've figured
3614 -- out the parent type.
3616 when N_Derived_Type_Definition =>
3617 null;
3619 -- For record types, discriminants are allowed
3621 when N_Record_Definition =>
3622 null;
3624 when others =>
3625 if Present (Discriminant_Specifications (N)) then
3626 Error_Msg_N
3627 ("elementary or array type cannot have discriminants",
3628 Defining_Identifier
3629 (First (Discriminant_Specifications (N))));
3630 end if;
3631 end case;
3633 -- Elaborate the type definition according to kind, and generate
3634 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3635 -- already done (this happens during the reanalysis that follows a call
3636 -- to the high level optimizer).
3638 if not Analyzed (T) then
3639 Set_Analyzed (T);
3641 case Nkind (Def) is
3643 when N_Access_To_Subprogram_Definition =>
3644 Access_Subprogram_Declaration (T, Def);
3646 -- If this is a remote access to subprogram, we must create the
3647 -- equivalent fat pointer type, and related subprograms.
3649 if Is_Remote then
3650 Process_Remote_AST_Declaration (N);
3651 end if;
3653 -- Validate categorization rule against access type declaration
3654 -- usually a violation in Pure unit, Shared_Passive unit.
3656 Validate_Access_Type_Declaration (T, N);
3658 when N_Access_To_Object_Definition =>
3659 Access_Type_Declaration (T, Def);
3661 -- Validate categorization rule against access type declaration
3662 -- usually a violation in Pure unit, Shared_Passive unit.
3664 Validate_Access_Type_Declaration (T, N);
3666 -- If we are in a Remote_Call_Interface package and define
3667 -- a RACW, Read and Write attribute must be added.
3669 if Is_Remote
3670 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3671 then
3672 Add_RACW_Features (Def_Id);
3673 end if;
3675 -- Set no strict aliasing flag if config pragma seen
3677 if Opt.No_Strict_Aliasing then
3678 Set_No_Strict_Aliasing (Base_Type (Def_Id));
3679 end if;
3681 when N_Array_Type_Definition =>
3682 Array_Type_Declaration (T, Def);
3684 when N_Derived_Type_Definition =>
3685 Derived_Type_Declaration (T, N, T /= Def_Id);
3687 when N_Enumeration_Type_Definition =>
3688 Enumeration_Type_Declaration (T, Def);
3690 when N_Floating_Point_Definition =>
3691 Floating_Point_Type_Declaration (T, Def);
3693 when N_Decimal_Fixed_Point_Definition =>
3694 Decimal_Fixed_Point_Type_Declaration (T, Def);
3696 when N_Ordinary_Fixed_Point_Definition =>
3697 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3699 when N_Signed_Integer_Type_Definition =>
3700 Signed_Integer_Type_Declaration (T, Def);
3702 when N_Modular_Type_Definition =>
3703 Modular_Type_Declaration (T, Def);
3705 when N_Record_Definition =>
3706 Record_Type_Declaration (T, N, Prev);
3708 when others =>
3709 raise Program_Error;
3711 end case;
3712 end if;
3714 if Etype (T) = Any_Type then
3715 return;
3716 end if;
3718 -- Some common processing for all types
3720 Set_Depends_On_Private (T, Has_Private_Component (T));
3721 Check_Ops_From_Incomplete_Type;
3723 -- Both the declared entity, and its anonymous base type if one
3724 -- was created, need freeze nodes allocated.
3726 declare
3727 B : constant Entity_Id := Base_Type (T);
3729 begin
3730 -- In the case where the base type is different from the first
3731 -- subtype, we pre-allocate a freeze node, and set the proper link
3732 -- to the first subtype. Freeze_Entity will use this preallocated
3733 -- freeze node when it freezes the entity.
3735 if B /= T then
3736 Ensure_Freeze_Node (B);
3737 Set_First_Subtype_Link (Freeze_Node (B), T);
3738 end if;
3740 if not From_With_Type (T) then
3741 Set_Has_Delayed_Freeze (T);
3742 end if;
3743 end;
3745 -- Case of T is the full declaration of some private type which has
3746 -- been swapped in Defining_Identifier (N).
3748 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3749 Process_Full_View (N, T, Def_Id);
3751 -- Record the reference. The form of this is a little strange,
3752 -- since the full declaration has been swapped in. So the first
3753 -- parameter here represents the entity to which a reference is
3754 -- made which is the "real" entity, i.e. the one swapped in,
3755 -- and the second parameter provides the reference location.
3757 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3758 -- since we don't want a complaint about the full type being an
3759 -- unwanted reference to the private type
3761 declare
3762 B : constant Boolean := Has_Pragma_Unreferenced (T);
3763 begin
3764 Set_Has_Pragma_Unreferenced (T, False);
3765 Generate_Reference (T, T, 'c');
3766 Set_Has_Pragma_Unreferenced (T, B);
3767 end;
3769 Set_Completion_Referenced (Def_Id);
3771 -- For completion of incomplete type, process incomplete dependents
3772 -- and always mark the full type as referenced (it is the incomplete
3773 -- type that we get for any real reference).
3775 elsif Ekind (Prev) = E_Incomplete_Type then
3776 Process_Incomplete_Dependents (N, T, Prev);
3777 Generate_Reference (Prev, Def_Id, 'c');
3778 Set_Completion_Referenced (Def_Id);
3780 -- If not private type or incomplete type completion, this is a real
3781 -- definition of a new entity, so record it.
3783 else
3784 Generate_Definition (Def_Id);
3785 end if;
3787 if Chars (Scope (Def_Id)) = Name_System
3788 and then Chars (Def_Id) = Name_Address
3789 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
3790 then
3791 Set_Is_Descendent_Of_Address (Def_Id);
3792 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
3793 Set_Is_Descendent_Of_Address (Prev);
3794 end if;
3796 Check_Eliminated (Def_Id);
3797 end Analyze_Type_Declaration;
3799 --------------------------
3800 -- Analyze_Variant_Part --
3801 --------------------------
3803 procedure Analyze_Variant_Part (N : Node_Id) is
3805 procedure Non_Static_Choice_Error (Choice : Node_Id);
3806 -- Error routine invoked by the generic instantiation below when
3807 -- the variant part has a non static choice.
3809 procedure Process_Declarations (Variant : Node_Id);
3810 -- Analyzes all the declarations associated with a Variant.
3811 -- Needed by the generic instantiation below.
3813 package Variant_Choices_Processing is new
3814 Generic_Choices_Processing
3815 (Get_Alternatives => Variants,
3816 Get_Choices => Discrete_Choices,
3817 Process_Empty_Choice => No_OP,
3818 Process_Non_Static_Choice => Non_Static_Choice_Error,
3819 Process_Associated_Node => Process_Declarations);
3820 use Variant_Choices_Processing;
3821 -- Instantiation of the generic choice processing package
3823 -----------------------------
3824 -- Non_Static_Choice_Error --
3825 -----------------------------
3827 procedure Non_Static_Choice_Error (Choice : Node_Id) is
3828 begin
3829 Flag_Non_Static_Expr
3830 ("choice given in variant part is not static!", Choice);
3831 end Non_Static_Choice_Error;
3833 --------------------------
3834 -- Process_Declarations --
3835 --------------------------
3837 procedure Process_Declarations (Variant : Node_Id) is
3838 begin
3839 if not Null_Present (Component_List (Variant)) then
3840 Analyze_Declarations (Component_Items (Component_List (Variant)));
3842 if Present (Variant_Part (Component_List (Variant))) then
3843 Analyze (Variant_Part (Component_List (Variant)));
3844 end if;
3845 end if;
3846 end Process_Declarations;
3848 -- Variables local to Analyze_Case_Statement
3850 Discr_Name : Node_Id;
3851 Discr_Type : Entity_Id;
3853 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
3854 Last_Choice : Nat;
3855 Dont_Care : Boolean;
3856 Others_Present : Boolean := False;
3858 -- Start of processing for Analyze_Variant_Part
3860 begin
3861 Discr_Name := Name (N);
3862 Analyze (Discr_Name);
3864 if Etype (Discr_Name) = Any_Type then
3866 -- Prevent cascaded errors
3868 return;
3870 elsif Ekind (Entity (Discr_Name)) /= E_Discriminant then
3871 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
3872 end if;
3874 Discr_Type := Etype (Entity (Discr_Name));
3876 if not Is_Discrete_Type (Discr_Type) then
3877 Error_Msg_N
3878 ("discriminant in a variant part must be of a discrete type",
3879 Name (N));
3880 return;
3881 end if;
3883 -- Call the instantiated Analyze_Choices which does the rest of the work
3885 Analyze_Choices
3886 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
3887 end Analyze_Variant_Part;
3889 ----------------------------
3890 -- Array_Type_Declaration --
3891 ----------------------------
3893 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
3894 Component_Def : constant Node_Id := Component_Definition (Def);
3895 Element_Type : Entity_Id;
3896 Implicit_Base : Entity_Id;
3897 Index : Node_Id;
3898 Related_Id : Entity_Id := Empty;
3899 Nb_Index : Nat;
3900 P : constant Node_Id := Parent (Def);
3901 Priv : Entity_Id;
3903 begin
3904 if Nkind (Def) = N_Constrained_Array_Definition then
3905 Index := First (Discrete_Subtype_Definitions (Def));
3906 else
3907 Index := First (Subtype_Marks (Def));
3908 end if;
3910 -- Find proper names for the implicit types which may be public.
3911 -- in case of anonymous arrays we use the name of the first object
3912 -- of that type as prefix.
3914 if No (T) then
3915 Related_Id := Defining_Identifier (P);
3916 else
3917 Related_Id := T;
3918 end if;
3920 Nb_Index := 1;
3921 while Present (Index) loop
3922 Analyze (Index);
3924 -- Add a subtype declaration for each index of private array type
3925 -- declaration whose etype is also private. For example:
3927 -- package Pkg is
3928 -- type Index is private;
3929 -- private
3930 -- type Table is array (Index) of ...
3931 -- end;
3933 -- This is currently required by the expander to generate the
3934 -- internally generated equality subprogram of records with variant
3935 -- parts in which the etype of some component is such private type.
3937 if Ekind (Current_Scope) = E_Package
3938 and then In_Private_Part (Current_Scope)
3939 and then Has_Private_Declaration (Etype (Index))
3940 then
3941 declare
3942 Loc : constant Source_Ptr := Sloc (Def);
3943 New_E : Entity_Id;
3944 Decl : Entity_Id;
3946 begin
3947 New_E :=
3948 Make_Defining_Identifier (Loc,
3949 Chars => New_Internal_Name ('T'));
3950 Set_Is_Internal (New_E);
3952 Decl :=
3953 Make_Subtype_Declaration (Loc,
3954 Defining_Identifier => New_E,
3955 Subtype_Indication =>
3956 New_Occurrence_Of (Etype (Index), Loc));
3958 Insert_Before (Parent (Def), Decl);
3959 Analyze (Decl);
3960 Set_Etype (Index, New_E);
3962 -- If the index is a range the Entity attribute is not
3963 -- available. Example:
3965 -- package Pkg is
3966 -- type T is private;
3967 -- private
3968 -- type T is new Natural;
3969 -- Table : array (T(1) .. T(10)) of Boolean;
3970 -- end Pkg;
3972 if Nkind (Index) /= N_Range then
3973 Set_Entity (Index, New_E);
3974 end if;
3975 end;
3976 end if;
3978 Make_Index (Index, P, Related_Id, Nb_Index);
3979 Next_Index (Index);
3980 Nb_Index := Nb_Index + 1;
3981 end loop;
3983 -- Process subtype indication if one is present
3985 if Present (Subtype_Indication (Component_Def)) then
3986 Element_Type :=
3987 Process_Subtype
3988 (Subtype_Indication (Component_Def), P, Related_Id, 'C');
3990 -- Ada 2005 (AI-230): Access Definition case
3992 else pragma Assert (Present (Access_Definition (Component_Def)));
3994 -- Indicate that the anonymous access type is created by the
3995 -- array type declaration.
3997 Element_Type := Access_Definition
3998 (Related_Nod => P,
3999 N => Access_Definition (Component_Def));
4000 Set_Is_Local_Anonymous_Access (Element_Type);
4002 -- Propagate the parent. This field is needed if we have to generate
4003 -- the master_id associated with an anonymous access to task type
4004 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4006 Set_Parent (Element_Type, Parent (T));
4008 -- Ada 2005 (AI-230): In case of components that are anonymous
4009 -- access types the level of accessibility depends on the enclosing
4010 -- type declaration
4012 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
4014 -- Ada 2005 (AI-254)
4016 declare
4017 CD : constant Node_Id :=
4018 Access_To_Subprogram_Definition
4019 (Access_Definition (Component_Def));
4020 begin
4021 if Present (CD) and then Protected_Present (CD) then
4022 Element_Type :=
4023 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
4024 end if;
4025 end;
4026 end if;
4028 -- Constrained array case
4030 if No (T) then
4031 T := Create_Itype (E_Void, P, Related_Id, 'T');
4032 end if;
4034 if Nkind (Def) = N_Constrained_Array_Definition then
4036 -- Establish Implicit_Base as unconstrained base type
4038 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
4040 Init_Size_Align (Implicit_Base);
4041 Set_Etype (Implicit_Base, Implicit_Base);
4042 Set_Scope (Implicit_Base, Current_Scope);
4043 Set_Has_Delayed_Freeze (Implicit_Base);
4045 -- The constrained array type is a subtype of the unconstrained one
4047 Set_Ekind (T, E_Array_Subtype);
4048 Init_Size_Align (T);
4049 Set_Etype (T, Implicit_Base);
4050 Set_Scope (T, Current_Scope);
4051 Set_Is_Constrained (T, True);
4052 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
4053 Set_Has_Delayed_Freeze (T);
4055 -- Complete setup of implicit base type
4057 Set_First_Index (Implicit_Base, First_Index (T));
4058 Set_Component_Type (Implicit_Base, Element_Type);
4059 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
4060 Set_Component_Size (Implicit_Base, Uint_0);
4061 Set_Packed_Array_Type (Implicit_Base, Empty);
4062 Set_Has_Controlled_Component
4063 (Implicit_Base, Has_Controlled_Component
4064 (Element_Type)
4065 or else Is_Controlled
4066 (Element_Type));
4067 Set_Finalize_Storage_Only
4068 (Implicit_Base, Finalize_Storage_Only
4069 (Element_Type));
4071 -- Unconstrained array case
4073 else
4074 Set_Ekind (T, E_Array_Type);
4075 Init_Size_Align (T);
4076 Set_Etype (T, T);
4077 Set_Scope (T, Current_Scope);
4078 Set_Component_Size (T, Uint_0);
4079 Set_Is_Constrained (T, False);
4080 Set_First_Index (T, First (Subtype_Marks (Def)));
4081 Set_Has_Delayed_Freeze (T, True);
4082 Set_Has_Task (T, Has_Task (Element_Type));
4083 Set_Has_Controlled_Component (T, Has_Controlled_Component
4084 (Element_Type)
4085 or else
4086 Is_Controlled (Element_Type));
4087 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
4088 (Element_Type));
4089 end if;
4091 -- Common attributes for both cases
4093 Set_Component_Type (Base_Type (T), Element_Type);
4094 Set_Packed_Array_Type (T, Empty);
4096 if Aliased_Present (Component_Definition (Def)) then
4097 Set_Has_Aliased_Components (Etype (T));
4098 end if;
4100 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4101 -- array type to ensure that objects of this type are initialized.
4103 if Ada_Version >= Ada_05
4104 and then Can_Never_Be_Null (Element_Type)
4105 then
4106 Set_Can_Never_Be_Null (T);
4108 if Null_Exclusion_Present (Component_Definition (Def))
4110 -- No need to check itypes because in their case this check
4111 -- was done at their point of creation
4113 and then not Is_Itype (Element_Type)
4114 then
4115 Error_Msg_N
4116 ("`NOT NULL` not allowed (null already excluded)",
4117 Subtype_Indication (Component_Definition (Def)));
4118 end if;
4119 end if;
4121 Priv := Private_Component (Element_Type);
4123 if Present (Priv) then
4125 -- Check for circular definitions
4127 if Priv = Any_Type then
4128 Set_Component_Type (Etype (T), Any_Type);
4130 -- There is a gap in the visibility of operations on the composite
4131 -- type only if the component type is defined in a different scope.
4133 elsif Scope (Priv) = Current_Scope then
4134 null;
4136 elsif Is_Limited_Type (Priv) then
4137 Set_Is_Limited_Composite (Etype (T));
4138 Set_Is_Limited_Composite (T);
4139 else
4140 Set_Is_Private_Composite (Etype (T));
4141 Set_Is_Private_Composite (T);
4142 end if;
4143 end if;
4145 -- A syntax error in the declaration itself may lead to an empty
4146 -- index list, in which case do a minimal patch.
4148 if No (First_Index (T)) then
4149 Error_Msg_N ("missing index definition in array type declaration", T);
4151 declare
4152 Indices : constant List_Id :=
4153 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
4154 begin
4155 Set_Discrete_Subtype_Definitions (Def, Indices);
4156 Set_First_Index (T, First (Indices));
4157 return;
4158 end;
4159 end if;
4161 -- Create a concatenation operator for the new type. Internal array
4162 -- types created for packed entities do not need such, they are
4163 -- compatible with the user-defined type.
4165 if Number_Dimensions (T) = 1
4166 and then not Is_Packed_Array_Type (T)
4167 then
4168 New_Concatenation_Op (T);
4169 end if;
4171 -- In the case of an unconstrained array the parser has already verified
4172 -- that all the indices are unconstrained but we still need to make sure
4173 -- that the element type is constrained.
4175 if Is_Indefinite_Subtype (Element_Type) then
4176 Error_Msg_N
4177 ("unconstrained element type in array declaration",
4178 Subtype_Indication (Component_Def));
4180 elsif Is_Abstract_Type (Element_Type) then
4181 Error_Msg_N
4182 ("the type of a component cannot be abstract",
4183 Subtype_Indication (Component_Def));
4184 end if;
4186 end Array_Type_Declaration;
4188 ------------------------------------------------------
4189 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4190 ------------------------------------------------------
4192 function Replace_Anonymous_Access_To_Protected_Subprogram
4193 (N : Node_Id) return Entity_Id
4195 Loc : constant Source_Ptr := Sloc (N);
4197 Curr_Scope : constant Scope_Stack_Entry :=
4198 Scope_Stack.Table (Scope_Stack.Last);
4200 Anon : constant Entity_Id :=
4201 Make_Defining_Identifier (Loc,
4202 Chars => New_Internal_Name ('S'));
4204 Acc : Node_Id;
4205 Comp : Node_Id;
4206 Decl : Node_Id;
4207 P : Node_Id;
4209 begin
4210 Set_Is_Internal (Anon);
4212 case Nkind (N) is
4213 when N_Component_Declaration |
4214 N_Unconstrained_Array_Definition |
4215 N_Constrained_Array_Definition =>
4216 Comp := Component_Definition (N);
4217 Acc := Access_Definition (Comp);
4219 when N_Discriminant_Specification =>
4220 Comp := Discriminant_Type (N);
4221 Acc := Comp;
4223 when N_Parameter_Specification =>
4224 Comp := Parameter_Type (N);
4225 Acc := Comp;
4227 when N_Access_Function_Definition =>
4228 Comp := Result_Definition (N);
4229 Acc := Comp;
4231 when N_Object_Declaration =>
4232 Comp := Object_Definition (N);
4233 Acc := Comp;
4235 when others =>
4236 raise Program_Error;
4237 end case;
4239 Decl := Make_Full_Type_Declaration (Loc,
4240 Defining_Identifier => Anon,
4241 Type_Definition =>
4242 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
4244 Mark_Rewrite_Insertion (Decl);
4246 -- Insert the new declaration in the nearest enclosing scope
4248 P := Parent (N);
4249 while Present (P) and then not Has_Declarations (P) loop
4250 P := Parent (P);
4251 end loop;
4253 pragma Assert (Present (P));
4255 if Nkind (P) = N_Package_Specification then
4256 Prepend (Decl, Visible_Declarations (P));
4257 else
4258 Prepend (Decl, Declarations (P));
4259 end if;
4261 -- Replace the anonymous type with an occurrence of the new declaration.
4262 -- In all cases the rewritten node does not have the null-exclusion
4263 -- attribute because (if present) it was already inherited by the
4264 -- anonymous entity (Anon). Thus, in case of components we do not
4265 -- inherit this attribute.
4267 if Nkind (N) = N_Parameter_Specification then
4268 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4269 Set_Etype (Defining_Identifier (N), Anon);
4270 Set_Null_Exclusion_Present (N, False);
4272 elsif Nkind (N) = N_Object_Declaration then
4273 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4274 Set_Etype (Defining_Identifier (N), Anon);
4276 elsif Nkind (N) = N_Access_Function_Definition then
4277 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4279 else
4280 Rewrite (Comp,
4281 Make_Component_Definition (Loc,
4282 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
4283 end if;
4285 Mark_Rewrite_Insertion (Comp);
4287 -- Temporarily remove the current scope from the stack to add the new
4288 -- declarations to the enclosing scope
4290 if Nkind (N) = N_Object_Declaration
4291 or else Nkind (N) = N_Access_Function_Definition
4292 then
4293 Analyze (Decl);
4295 else
4296 Scope_Stack.Decrement_Last;
4297 Analyze (Decl);
4298 Set_Is_Itype (Anon);
4299 Scope_Stack.Append (Curr_Scope);
4300 end if;
4302 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
4303 return Anon;
4304 end Replace_Anonymous_Access_To_Protected_Subprogram;
4306 -------------------------------
4307 -- Build_Derived_Access_Type --
4308 -------------------------------
4310 procedure Build_Derived_Access_Type
4311 (N : Node_Id;
4312 Parent_Type : Entity_Id;
4313 Derived_Type : Entity_Id)
4315 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
4317 Desig_Type : Entity_Id;
4318 Discr : Entity_Id;
4319 Discr_Con_Elist : Elist_Id;
4320 Discr_Con_El : Elmt_Id;
4321 Subt : Entity_Id;
4323 begin
4324 -- Set the designated type so it is available in case this is an access
4325 -- to a self-referential type, e.g. a standard list type with a next
4326 -- pointer. Will be reset after subtype is built.
4328 Set_Directly_Designated_Type
4329 (Derived_Type, Designated_Type (Parent_Type));
4331 Subt := Process_Subtype (S, N);
4333 if Nkind (S) /= N_Subtype_Indication
4334 and then Subt /= Base_Type (Subt)
4335 then
4336 Set_Ekind (Derived_Type, E_Access_Subtype);
4337 end if;
4339 if Ekind (Derived_Type) = E_Access_Subtype then
4340 declare
4341 Pbase : constant Entity_Id := Base_Type (Parent_Type);
4342 Ibase : constant Entity_Id :=
4343 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
4344 Svg_Chars : constant Name_Id := Chars (Ibase);
4345 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
4347 begin
4348 Copy_Node (Pbase, Ibase);
4350 Set_Chars (Ibase, Svg_Chars);
4351 Set_Next_Entity (Ibase, Svg_Next_E);
4352 Set_Sloc (Ibase, Sloc (Derived_Type));
4353 Set_Scope (Ibase, Scope (Derived_Type));
4354 Set_Freeze_Node (Ibase, Empty);
4355 Set_Is_Frozen (Ibase, False);
4356 Set_Comes_From_Source (Ibase, False);
4357 Set_Is_First_Subtype (Ibase, False);
4359 Set_Etype (Ibase, Pbase);
4360 Set_Etype (Derived_Type, Ibase);
4361 end;
4362 end if;
4364 Set_Directly_Designated_Type
4365 (Derived_Type, Designated_Type (Subt));
4367 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
4368 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
4369 Set_Size_Info (Derived_Type, Parent_Type);
4370 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
4371 Set_Depends_On_Private (Derived_Type,
4372 Has_Private_Component (Derived_Type));
4373 Conditional_Delay (Derived_Type, Subt);
4375 -- Ada 2005 (AI-231). Set the null-exclusion attribute
4377 if Null_Exclusion_Present (Type_Definition (N))
4378 or else Can_Never_Be_Null (Parent_Type)
4379 then
4380 Set_Can_Never_Be_Null (Derived_Type);
4381 end if;
4383 -- Note: we do not copy the Storage_Size_Variable, since we always go to
4384 -- the root type for this information.
4386 -- Apply range checks to discriminants for derived record case
4387 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
4389 Desig_Type := Designated_Type (Derived_Type);
4390 if Is_Composite_Type (Desig_Type)
4391 and then (not Is_Array_Type (Desig_Type))
4392 and then Has_Discriminants (Desig_Type)
4393 and then Base_Type (Desig_Type) /= Desig_Type
4394 then
4395 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
4396 Discr_Con_El := First_Elmt (Discr_Con_Elist);
4398 Discr := First_Discriminant (Base_Type (Desig_Type));
4399 while Present (Discr_Con_El) loop
4400 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
4401 Next_Elmt (Discr_Con_El);
4402 Next_Discriminant (Discr);
4403 end loop;
4404 end if;
4405 end Build_Derived_Access_Type;
4407 ------------------------------
4408 -- Build_Derived_Array_Type --
4409 ------------------------------
4411 procedure Build_Derived_Array_Type
4412 (N : Node_Id;
4413 Parent_Type : Entity_Id;
4414 Derived_Type : Entity_Id)
4416 Loc : constant Source_Ptr := Sloc (N);
4417 Tdef : constant Node_Id := Type_Definition (N);
4418 Indic : constant Node_Id := Subtype_Indication (Tdef);
4419 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
4420 Implicit_Base : Entity_Id;
4421 New_Indic : Node_Id;
4423 procedure Make_Implicit_Base;
4424 -- If the parent subtype is constrained, the derived type is a subtype
4425 -- of an implicit base type derived from the parent base.
4427 ------------------------
4428 -- Make_Implicit_Base --
4429 ------------------------
4431 procedure Make_Implicit_Base is
4432 begin
4433 Implicit_Base :=
4434 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
4436 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
4437 Set_Etype (Implicit_Base, Parent_Base);
4439 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
4440 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
4442 Set_Has_Delayed_Freeze (Implicit_Base, True);
4443 end Make_Implicit_Base;
4445 -- Start of processing for Build_Derived_Array_Type
4447 begin
4448 if not Is_Constrained (Parent_Type) then
4449 if Nkind (Indic) /= N_Subtype_Indication then
4450 Set_Ekind (Derived_Type, E_Array_Type);
4452 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4453 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
4455 Set_Has_Delayed_Freeze (Derived_Type, True);
4457 else
4458 Make_Implicit_Base;
4459 Set_Etype (Derived_Type, Implicit_Base);
4461 New_Indic :=
4462 Make_Subtype_Declaration (Loc,
4463 Defining_Identifier => Derived_Type,
4464 Subtype_Indication =>
4465 Make_Subtype_Indication (Loc,
4466 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
4467 Constraint => Constraint (Indic)));
4469 Rewrite (N, New_Indic);
4470 Analyze (N);
4471 end if;
4473 else
4474 if Nkind (Indic) /= N_Subtype_Indication then
4475 Make_Implicit_Base;
4477 Set_Ekind (Derived_Type, Ekind (Parent_Type));
4478 Set_Etype (Derived_Type, Implicit_Base);
4479 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4481 else
4482 Error_Msg_N ("illegal constraint on constrained type", Indic);
4483 end if;
4484 end if;
4486 -- If parent type is not a derived type itself, and is declared in
4487 -- closed scope (e.g. a subprogram), then we must explicitly introduce
4488 -- the new type's concatenation operator since Derive_Subprograms
4489 -- will not inherit the parent's operator. If the parent type is
4490 -- unconstrained, the operator is of the unconstrained base type.
4492 if Number_Dimensions (Parent_Type) = 1
4493 and then not Is_Limited_Type (Parent_Type)
4494 and then not Is_Derived_Type (Parent_Type)
4495 and then not Is_Package_Or_Generic_Package
4496 (Scope (Base_Type (Parent_Type)))
4497 then
4498 if not Is_Constrained (Parent_Type)
4499 and then Is_Constrained (Derived_Type)
4500 then
4501 New_Concatenation_Op (Implicit_Base);
4502 else
4503 New_Concatenation_Op (Derived_Type);
4504 end if;
4505 end if;
4506 end Build_Derived_Array_Type;
4508 -----------------------------------
4509 -- Build_Derived_Concurrent_Type --
4510 -----------------------------------
4512 procedure Build_Derived_Concurrent_Type
4513 (N : Node_Id;
4514 Parent_Type : Entity_Id;
4515 Derived_Type : Entity_Id)
4517 D_Constraint : Node_Id;
4518 Disc_Spec : Node_Id;
4519 Old_Disc : Entity_Id;
4520 New_Disc : Entity_Id;
4522 Constraint_Present : constant Boolean :=
4523 Nkind (Subtype_Indication (Type_Definition (N)))
4524 = N_Subtype_Indication;
4526 begin
4527 Set_Stored_Constraint (Derived_Type, No_Elist);
4529 if Is_Task_Type (Parent_Type) then
4530 Set_Storage_Size_Variable (Derived_Type,
4531 Storage_Size_Variable (Parent_Type));
4532 end if;
4534 if Present (Discriminant_Specifications (N)) then
4535 Push_Scope (Derived_Type);
4536 Check_Or_Process_Discriminants (N, Derived_Type);
4537 End_Scope;
4539 elsif Constraint_Present then
4541 -- Build constrained subtype and derive from it
4543 declare
4544 Loc : constant Source_Ptr := Sloc (N);
4545 Anon : constant Entity_Id :=
4546 Make_Defining_Identifier (Loc,
4547 New_External_Name (Chars (Derived_Type), 'T'));
4548 Decl : Node_Id;
4550 begin
4551 Decl :=
4552 Make_Subtype_Declaration (Loc,
4553 Defining_Identifier => Anon,
4554 Subtype_Indication =>
4555 Subtype_Indication (Type_Definition (N)));
4556 Insert_Before (N, Decl);
4557 Analyze (Decl);
4559 Rewrite (Subtype_Indication (Type_Definition (N)),
4560 New_Occurrence_Of (Anon, Loc));
4561 Set_Analyzed (Derived_Type, False);
4562 Analyze (N);
4563 return;
4564 end;
4565 end if;
4567 -- All attributes are inherited from parent. In particular,
4568 -- entries and the corresponding record type are the same.
4569 -- Discriminants may be renamed, and must be treated separately.
4571 Set_Has_Discriminants
4572 (Derived_Type, Has_Discriminants (Parent_Type));
4573 Set_Corresponding_Record_Type
4574 (Derived_Type, Corresponding_Record_Type (Parent_Type));
4576 if Constraint_Present then
4577 if not Has_Discriminants (Parent_Type) then
4578 Error_Msg_N ("untagged parent must have discriminants", N);
4580 elsif Present (Discriminant_Specifications (N)) then
4582 -- Verify that new discriminants are used to constrain old ones
4584 D_Constraint :=
4585 First
4586 (Constraints
4587 (Constraint (Subtype_Indication (Type_Definition (N)))));
4589 Old_Disc := First_Discriminant (Parent_Type);
4590 New_Disc := First_Discriminant (Derived_Type);
4591 Disc_Spec := First (Discriminant_Specifications (N));
4592 while Present (Old_Disc) and then Present (Disc_Spec) loop
4593 if Nkind (Discriminant_Type (Disc_Spec)) /=
4594 N_Access_Definition
4595 then
4596 Analyze (Discriminant_Type (Disc_Spec));
4598 if not Subtypes_Statically_Compatible (
4599 Etype (Discriminant_Type (Disc_Spec)),
4600 Etype (Old_Disc))
4601 then
4602 Error_Msg_N
4603 ("not statically compatible with parent discriminant",
4604 Discriminant_Type (Disc_Spec));
4605 end if;
4606 end if;
4608 if Nkind (D_Constraint) = N_Identifier
4609 and then Chars (D_Constraint) /=
4610 Chars (Defining_Identifier (Disc_Spec))
4611 then
4612 Error_Msg_N ("new discriminants must constrain old ones",
4613 D_Constraint);
4614 else
4615 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
4616 end if;
4618 Next_Discriminant (Old_Disc);
4619 Next_Discriminant (New_Disc);
4620 Next (Disc_Spec);
4621 end loop;
4623 if Present (Old_Disc) or else Present (Disc_Spec) then
4624 Error_Msg_N ("discriminant mismatch in derivation", N);
4625 end if;
4627 end if;
4629 elsif Present (Discriminant_Specifications (N)) then
4630 Error_Msg_N
4631 ("missing discriminant constraint in untagged derivation",
4633 end if;
4635 if Present (Discriminant_Specifications (N)) then
4636 Old_Disc := First_Discriminant (Parent_Type);
4637 while Present (Old_Disc) loop
4639 if No (Next_Entity (Old_Disc))
4640 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
4641 then
4642 Set_Next_Entity (Last_Entity (Derived_Type),
4643 Next_Entity (Old_Disc));
4644 exit;
4645 end if;
4647 Next_Discriminant (Old_Disc);
4648 end loop;
4650 else
4651 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
4652 if Has_Discriminants (Parent_Type) then
4653 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4654 Set_Discriminant_Constraint (
4655 Derived_Type, Discriminant_Constraint (Parent_Type));
4656 end if;
4657 end if;
4659 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
4661 Set_Has_Completion (Derived_Type);
4662 end Build_Derived_Concurrent_Type;
4664 ------------------------------------
4665 -- Build_Derived_Enumeration_Type --
4666 ------------------------------------
4668 procedure Build_Derived_Enumeration_Type
4669 (N : Node_Id;
4670 Parent_Type : Entity_Id;
4671 Derived_Type : Entity_Id)
4673 Loc : constant Source_Ptr := Sloc (N);
4674 Def : constant Node_Id := Type_Definition (N);
4675 Indic : constant Node_Id := Subtype_Indication (Def);
4676 Implicit_Base : Entity_Id;
4677 Literal : Entity_Id;
4678 New_Lit : Entity_Id;
4679 Literals_List : List_Id;
4680 Type_Decl : Node_Id;
4681 Hi, Lo : Node_Id;
4682 Rang_Expr : Node_Id;
4684 begin
4685 -- Since types Standard.Character and Standard.Wide_Character do
4686 -- not have explicit literals lists we need to process types derived
4687 -- from them specially. This is handled by Derived_Standard_Character.
4688 -- If the parent type is a generic type, there are no literals either,
4689 -- and we construct the same skeletal representation as for the generic
4690 -- parent type.
4692 if Root_Type (Parent_Type) = Standard_Character
4693 or else Root_Type (Parent_Type) = Standard_Wide_Character
4694 or else Root_Type (Parent_Type) = Standard_Wide_Wide_Character
4695 then
4696 Derived_Standard_Character (N, Parent_Type, Derived_Type);
4698 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
4699 declare
4700 Lo : Node_Id;
4701 Hi : Node_Id;
4703 begin
4704 Lo :=
4705 Make_Attribute_Reference (Loc,
4706 Attribute_Name => Name_First,
4707 Prefix => New_Reference_To (Derived_Type, Loc));
4708 Set_Etype (Lo, Derived_Type);
4710 Hi :=
4711 Make_Attribute_Reference (Loc,
4712 Attribute_Name => Name_Last,
4713 Prefix => New_Reference_To (Derived_Type, Loc));
4714 Set_Etype (Hi, Derived_Type);
4716 Set_Scalar_Range (Derived_Type,
4717 Make_Range (Loc,
4718 Low_Bound => Lo,
4719 High_Bound => Hi));
4720 end;
4722 else
4723 -- If a constraint is present, analyze the bounds to catch
4724 -- premature usage of the derived literals.
4726 if Nkind (Indic) = N_Subtype_Indication
4727 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
4728 then
4729 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
4730 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
4731 end if;
4733 -- Introduce an implicit base type for the derived type even if there
4734 -- is no constraint attached to it, since this seems closer to the
4735 -- Ada semantics. Build a full type declaration tree for the derived
4736 -- type using the implicit base type as the defining identifier. The
4737 -- build a subtype declaration tree which applies the constraint (if
4738 -- any) have it replace the derived type declaration.
4740 Literal := First_Literal (Parent_Type);
4741 Literals_List := New_List;
4742 while Present (Literal)
4743 and then Ekind (Literal) = E_Enumeration_Literal
4744 loop
4745 -- Literals of the derived type have the same representation as
4746 -- those of the parent type, but this representation can be
4747 -- overridden by an explicit representation clause. Indicate
4748 -- that there is no explicit representation given yet. These
4749 -- derived literals are implicit operations of the new type,
4750 -- and can be overridden by explicit ones.
4752 if Nkind (Literal) = N_Defining_Character_Literal then
4753 New_Lit :=
4754 Make_Defining_Character_Literal (Loc, Chars (Literal));
4755 else
4756 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
4757 end if;
4759 Set_Ekind (New_Lit, E_Enumeration_Literal);
4760 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
4761 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
4762 Set_Enumeration_Rep_Expr (New_Lit, Empty);
4763 Set_Alias (New_Lit, Literal);
4764 Set_Is_Known_Valid (New_Lit, True);
4766 Append (New_Lit, Literals_List);
4767 Next_Literal (Literal);
4768 end loop;
4770 Implicit_Base :=
4771 Make_Defining_Identifier (Sloc (Derived_Type),
4772 New_External_Name (Chars (Derived_Type), 'B'));
4774 -- Indicate the proper nature of the derived type. This must be done
4775 -- before analysis of the literals, to recognize cases when a literal
4776 -- may be hidden by a previous explicit function definition (cf.
4777 -- c83031a).
4779 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
4780 Set_Etype (Derived_Type, Implicit_Base);
4782 Type_Decl :=
4783 Make_Full_Type_Declaration (Loc,
4784 Defining_Identifier => Implicit_Base,
4785 Discriminant_Specifications => No_List,
4786 Type_Definition =>
4787 Make_Enumeration_Type_Definition (Loc, Literals_List));
4789 Mark_Rewrite_Insertion (Type_Decl);
4790 Insert_Before (N, Type_Decl);
4791 Analyze (Type_Decl);
4793 -- After the implicit base is analyzed its Etype needs to be changed
4794 -- to reflect the fact that it is derived from the parent type which
4795 -- was ignored during analysis. We also set the size at this point.
4797 Set_Etype (Implicit_Base, Parent_Type);
4799 Set_Size_Info (Implicit_Base, Parent_Type);
4800 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
4801 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
4803 Set_Has_Non_Standard_Rep
4804 (Implicit_Base, Has_Non_Standard_Rep
4805 (Parent_Type));
4806 Set_Has_Delayed_Freeze (Implicit_Base);
4808 -- Process the subtype indication including a validation check on the
4809 -- constraint, if any. If a constraint is given, its bounds must be
4810 -- implicitly converted to the new type.
4812 if Nkind (Indic) = N_Subtype_Indication then
4813 declare
4814 R : constant Node_Id :=
4815 Range_Expression (Constraint (Indic));
4817 begin
4818 if Nkind (R) = N_Range then
4819 Hi := Build_Scalar_Bound
4820 (High_Bound (R), Parent_Type, Implicit_Base);
4821 Lo := Build_Scalar_Bound
4822 (Low_Bound (R), Parent_Type, Implicit_Base);
4824 else
4825 -- Constraint is a Range attribute. Replace with explicit
4826 -- mention of the bounds of the prefix, which must be a
4827 -- subtype.
4829 Analyze (Prefix (R));
4830 Hi :=
4831 Convert_To (Implicit_Base,
4832 Make_Attribute_Reference (Loc,
4833 Attribute_Name => Name_Last,
4834 Prefix =>
4835 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
4837 Lo :=
4838 Convert_To (Implicit_Base,
4839 Make_Attribute_Reference (Loc,
4840 Attribute_Name => Name_First,
4841 Prefix =>
4842 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
4843 end if;
4844 end;
4846 else
4847 Hi :=
4848 Build_Scalar_Bound
4849 (Type_High_Bound (Parent_Type),
4850 Parent_Type, Implicit_Base);
4851 Lo :=
4852 Build_Scalar_Bound
4853 (Type_Low_Bound (Parent_Type),
4854 Parent_Type, Implicit_Base);
4855 end if;
4857 Rang_Expr :=
4858 Make_Range (Loc,
4859 Low_Bound => Lo,
4860 High_Bound => Hi);
4862 -- If we constructed a default range for the case where no range
4863 -- was given, then the expressions in the range must not freeze
4864 -- since they do not correspond to expressions in the source.
4866 if Nkind (Indic) /= N_Subtype_Indication then
4867 Set_Must_Not_Freeze (Lo);
4868 Set_Must_Not_Freeze (Hi);
4869 Set_Must_Not_Freeze (Rang_Expr);
4870 end if;
4872 Rewrite (N,
4873 Make_Subtype_Declaration (Loc,
4874 Defining_Identifier => Derived_Type,
4875 Subtype_Indication =>
4876 Make_Subtype_Indication (Loc,
4877 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
4878 Constraint =>
4879 Make_Range_Constraint (Loc,
4880 Range_Expression => Rang_Expr))));
4882 Analyze (N);
4884 -- If pragma Discard_Names applies on the first subtype of the parent
4885 -- type, then it must be applied on this subtype as well.
4887 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
4888 Set_Discard_Names (Derived_Type);
4889 end if;
4891 -- Apply a range check. Since this range expression doesn't have an
4892 -- Etype, we have to specifically pass the Source_Typ parameter. Is
4893 -- this right???
4895 if Nkind (Indic) = N_Subtype_Indication then
4896 Apply_Range_Check (Range_Expression (Constraint (Indic)),
4897 Parent_Type,
4898 Source_Typ => Entity (Subtype_Mark (Indic)));
4899 end if;
4900 end if;
4901 end Build_Derived_Enumeration_Type;
4903 --------------------------------
4904 -- Build_Derived_Numeric_Type --
4905 --------------------------------
4907 procedure Build_Derived_Numeric_Type
4908 (N : Node_Id;
4909 Parent_Type : Entity_Id;
4910 Derived_Type : Entity_Id)
4912 Loc : constant Source_Ptr := Sloc (N);
4913 Tdef : constant Node_Id := Type_Definition (N);
4914 Indic : constant Node_Id := Subtype_Indication (Tdef);
4915 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
4916 No_Constraint : constant Boolean := Nkind (Indic) /=
4917 N_Subtype_Indication;
4918 Implicit_Base : Entity_Id;
4920 Lo : Node_Id;
4921 Hi : Node_Id;
4923 begin
4924 -- Process the subtype indication including a validation check on
4925 -- the constraint if any.
4927 Discard_Node (Process_Subtype (Indic, N));
4929 -- Introduce an implicit base type for the derived type even if there
4930 -- is no constraint attached to it, since this seems closer to the Ada
4931 -- semantics.
4933 Implicit_Base :=
4934 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
4936 Set_Etype (Implicit_Base, Parent_Base);
4937 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
4938 Set_Size_Info (Implicit_Base, Parent_Base);
4939 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
4940 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
4941 Set_Parent (Implicit_Base, Parent (Derived_Type));
4943 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
4944 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
4945 end if;
4947 Set_Has_Delayed_Freeze (Implicit_Base);
4949 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
4950 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
4952 Set_Scalar_Range (Implicit_Base,
4953 Make_Range (Loc,
4954 Low_Bound => Lo,
4955 High_Bound => Hi));
4957 if Has_Infinities (Parent_Base) then
4958 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
4959 end if;
4961 -- The Derived_Type, which is the entity of the declaration, is a
4962 -- subtype of the implicit base. Its Ekind is a subtype, even in the
4963 -- absence of an explicit constraint.
4965 Set_Etype (Derived_Type, Implicit_Base);
4967 -- If we did not have a constraint, then the Ekind is set from the
4968 -- parent type (otherwise Process_Subtype has set the bounds)
4970 if No_Constraint then
4971 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
4972 end if;
4974 -- If we did not have a range constraint, then set the range from the
4975 -- parent type. Otherwise, the call to Process_Subtype has set the
4976 -- bounds.
4978 if No_Constraint
4979 or else not Has_Range_Constraint (Indic)
4980 then
4981 Set_Scalar_Range (Derived_Type,
4982 Make_Range (Loc,
4983 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
4984 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
4985 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4987 if Has_Infinities (Parent_Type) then
4988 Set_Includes_Infinities (Scalar_Range (Derived_Type));
4989 end if;
4990 end if;
4992 Set_Is_Descendent_Of_Address (Derived_Type,
4993 Is_Descendent_Of_Address (Parent_Type));
4994 Set_Is_Descendent_Of_Address (Implicit_Base,
4995 Is_Descendent_Of_Address (Parent_Type));
4997 -- Set remaining type-specific fields, depending on numeric type
4999 if Is_Modular_Integer_Type (Parent_Type) then
5000 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
5002 Set_Non_Binary_Modulus
5003 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
5005 elsif Is_Floating_Point_Type (Parent_Type) then
5007 -- Digits of base type is always copied from the digits value of
5008 -- the parent base type, but the digits of the derived type will
5009 -- already have been set if there was a constraint present.
5011 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5012 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
5014 if No_Constraint then
5015 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
5016 end if;
5018 elsif Is_Fixed_Point_Type (Parent_Type) then
5020 -- Small of base type and derived type are always copied from the
5021 -- parent base type, since smalls never change. The delta of the
5022 -- base type is also copied from the parent base type. However the
5023 -- delta of the derived type will have been set already if a
5024 -- constraint was present.
5026 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
5027 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
5028 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
5030 if No_Constraint then
5031 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
5032 end if;
5034 -- The scale and machine radix in the decimal case are always
5035 -- copied from the parent base type.
5037 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
5038 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
5039 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
5041 Set_Machine_Radix_10
5042 (Derived_Type, Machine_Radix_10 (Parent_Base));
5043 Set_Machine_Radix_10
5044 (Implicit_Base, Machine_Radix_10 (Parent_Base));
5046 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5048 if No_Constraint then
5049 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
5051 else
5052 -- the analysis of the subtype_indication sets the
5053 -- digits value of the derived type.
5055 null;
5056 end if;
5057 end if;
5058 end if;
5060 -- The type of the bounds is that of the parent type, and they
5061 -- must be converted to the derived type.
5063 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
5065 -- The implicit_base should be frozen when the derived type is frozen,
5066 -- but note that it is used in the conversions of the bounds. For fixed
5067 -- types we delay the determination of the bounds until the proper
5068 -- freezing point. For other numeric types this is rejected by GCC, for
5069 -- reasons that are currently unclear (???), so we choose to freeze the
5070 -- implicit base now. In the case of integers and floating point types
5071 -- this is harmless because subsequent representation clauses cannot
5072 -- affect anything, but it is still baffling that we cannot use the
5073 -- same mechanism for all derived numeric types.
5075 -- There is a further complication: actually *some* representation
5076 -- clauses can affect the implicit base type. Namely, attribute
5077 -- definition clauses for stream-oriented attributes need to set the
5078 -- corresponding TSS entries on the base type, and this normally cannot
5079 -- be done after the base type is frozen, so the circuitry in
5080 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
5081 -- not use Set_TSS in this case.
5083 if Is_Fixed_Point_Type (Parent_Type) then
5084 Conditional_Delay (Implicit_Base, Parent_Type);
5085 else
5086 Freeze_Before (N, Implicit_Base);
5087 end if;
5088 end Build_Derived_Numeric_Type;
5090 --------------------------------
5091 -- Build_Derived_Private_Type --
5092 --------------------------------
5094 procedure Build_Derived_Private_Type
5095 (N : Node_Id;
5096 Parent_Type : Entity_Id;
5097 Derived_Type : Entity_Id;
5098 Is_Completion : Boolean;
5099 Derive_Subps : Boolean := True)
5101 Der_Base : Entity_Id;
5102 Discr : Entity_Id;
5103 Full_Decl : Node_Id := Empty;
5104 Full_Der : Entity_Id;
5105 Full_P : Entity_Id;
5106 Last_Discr : Entity_Id;
5107 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
5108 Swapped : Boolean := False;
5110 procedure Copy_And_Build;
5111 -- Copy derived type declaration, replace parent with its full view,
5112 -- and analyze new declaration.
5114 --------------------
5115 -- Copy_And_Build --
5116 --------------------
5118 procedure Copy_And_Build is
5119 Full_N : Node_Id;
5121 begin
5122 if Ekind (Parent_Type) in Record_Kind
5123 or else
5124 (Ekind (Parent_Type) in Enumeration_Kind
5125 and then Root_Type (Parent_Type) /= Standard_Character
5126 and then Root_Type (Parent_Type) /= Standard_Wide_Character
5127 and then Root_Type (Parent_Type) /= Standard_Wide_Wide_Character
5128 and then not Is_Generic_Type (Root_Type (Parent_Type)))
5129 then
5130 Full_N := New_Copy_Tree (N);
5131 Insert_After (N, Full_N);
5132 Build_Derived_Type (
5133 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
5135 else
5136 Build_Derived_Type (
5137 N, Parent_Type, Full_Der, True, Derive_Subps => False);
5138 end if;
5139 end Copy_And_Build;
5141 -- Start of processing for Build_Derived_Private_Type
5143 begin
5144 if Is_Tagged_Type (Parent_Type) then
5145 Build_Derived_Record_Type
5146 (N, Parent_Type, Derived_Type, Derive_Subps);
5147 return;
5149 elsif Has_Discriminants (Parent_Type) then
5150 if Present (Full_View (Parent_Type)) then
5151 if not Is_Completion then
5153 -- Copy declaration for subsequent analysis, to provide a
5154 -- completion for what is a private declaration. Indicate that
5155 -- the full type is internally generated.
5157 Full_Decl := New_Copy_Tree (N);
5158 Full_Der := New_Copy (Derived_Type);
5159 Set_Comes_From_Source (Full_Decl, False);
5160 Set_Comes_From_Source (Full_Der, False);
5162 Insert_After (N, Full_Decl);
5164 else
5165 -- If this is a completion, the full view being built is
5166 -- itself private. We build a subtype of the parent with
5167 -- the same constraints as this full view, to convey to the
5168 -- back end the constrained components and the size of this
5169 -- subtype. If the parent is constrained, its full view can
5170 -- serve as the underlying full view of the derived type.
5172 if No (Discriminant_Specifications (N)) then
5173 if Nkind (Subtype_Indication (Type_Definition (N))) =
5174 N_Subtype_Indication
5175 then
5176 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
5178 elsif Is_Constrained (Full_View (Parent_Type)) then
5179 Set_Underlying_Full_View (Derived_Type,
5180 Full_View (Parent_Type));
5181 end if;
5183 else
5184 -- If there are new discriminants, the parent subtype is
5185 -- constrained by them, but it is not clear how to build
5186 -- the underlying_full_view in this case ???
5188 null;
5189 end if;
5190 end if;
5191 end if;
5193 -- Build partial view of derived type from partial view of parent
5195 Build_Derived_Record_Type
5196 (N, Parent_Type, Derived_Type, Derive_Subps);
5198 if Present (Full_View (Parent_Type))
5199 and then not Is_Completion
5200 then
5201 if not In_Open_Scopes (Par_Scope)
5202 or else not In_Same_Source_Unit (N, Parent_Type)
5203 then
5204 -- Swap partial and full views temporarily
5206 Install_Private_Declarations (Par_Scope);
5207 Install_Visible_Declarations (Par_Scope);
5208 Swapped := True;
5209 end if;
5211 -- Build full view of derived type from full view of parent which
5212 -- is now installed. Subprograms have been derived on the partial
5213 -- view, the completion does not derive them anew.
5215 if not Is_Tagged_Type (Parent_Type) then
5217 -- If the parent is itself derived from another private type,
5218 -- installing the private declarations has not affected its
5219 -- privacy status, so use its own full view explicitly.
5221 if Is_Private_Type (Parent_Type) then
5222 Build_Derived_Record_Type
5223 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
5224 else
5225 Build_Derived_Record_Type
5226 (Full_Decl, Parent_Type, Full_Der, False);
5227 end if;
5229 else
5230 -- If full view of parent is tagged, the completion
5231 -- inherits the proper primitive operations.
5233 Set_Defining_Identifier (Full_Decl, Full_Der);
5234 Build_Derived_Record_Type
5235 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
5236 Set_Analyzed (Full_Decl);
5237 end if;
5239 if Swapped then
5240 Uninstall_Declarations (Par_Scope);
5242 if In_Open_Scopes (Par_Scope) then
5243 Install_Visible_Declarations (Par_Scope);
5244 end if;
5245 end if;
5247 Der_Base := Base_Type (Derived_Type);
5248 Set_Full_View (Derived_Type, Full_Der);
5249 Set_Full_View (Der_Base, Base_Type (Full_Der));
5251 -- Copy the discriminant list from full view to the partial views
5252 -- (base type and its subtype). Gigi requires that the partial
5253 -- and full views have the same discriminants.
5255 -- Note that since the partial view is pointing to discriminants
5256 -- in the full view, their scope will be that of the full view.
5257 -- This might cause some front end problems and need
5258 -- adjustment???
5260 Discr := First_Discriminant (Base_Type (Full_Der));
5261 Set_First_Entity (Der_Base, Discr);
5263 loop
5264 Last_Discr := Discr;
5265 Next_Discriminant (Discr);
5266 exit when No (Discr);
5267 end loop;
5269 Set_Last_Entity (Der_Base, Last_Discr);
5271 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
5272 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
5273 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
5275 else
5276 -- If this is a completion, the derived type stays private
5277 -- and there is no need to create a further full view, except
5278 -- in the unusual case when the derivation is nested within a
5279 -- child unit, see below.
5281 null;
5282 end if;
5284 elsif Present (Full_View (Parent_Type))
5285 and then Has_Discriminants (Full_View (Parent_Type))
5286 then
5287 if Has_Unknown_Discriminants (Parent_Type)
5288 and then Nkind (Subtype_Indication (Type_Definition (N)))
5289 = N_Subtype_Indication
5290 then
5291 Error_Msg_N
5292 ("cannot constrain type with unknown discriminants",
5293 Subtype_Indication (Type_Definition (N)));
5294 return;
5295 end if;
5297 -- If full view of parent is a record type, Build full view as
5298 -- a derivation from the parent's full view. Partial view remains
5299 -- private. For code generation and linking, the full view must
5300 -- have the same public status as the partial one. This full view
5301 -- is only needed if the parent type is in an enclosing scope, so
5302 -- that the full view may actually become visible, e.g. in a child
5303 -- unit. This is both more efficient, and avoids order of freezing
5304 -- problems with the added entities.
5306 if not Is_Private_Type (Full_View (Parent_Type))
5307 and then (In_Open_Scopes (Scope (Parent_Type)))
5308 then
5309 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
5310 Chars (Derived_Type));
5311 Set_Is_Itype (Full_Der);
5312 Set_Has_Private_Declaration (Full_Der);
5313 Set_Has_Private_Declaration (Derived_Type);
5314 Set_Associated_Node_For_Itype (Full_Der, N);
5315 Set_Parent (Full_Der, Parent (Derived_Type));
5316 Set_Full_View (Derived_Type, Full_Der);
5317 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
5318 Full_P := Full_View (Parent_Type);
5319 Exchange_Declarations (Parent_Type);
5320 Copy_And_Build;
5321 Exchange_Declarations (Full_P);
5323 else
5324 Build_Derived_Record_Type
5325 (N, Full_View (Parent_Type), Derived_Type,
5326 Derive_Subps => False);
5327 end if;
5329 -- In any case, the primitive operations are inherited from
5330 -- the parent type, not from the internal full view.
5332 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
5334 if Derive_Subps then
5335 Derive_Subprograms (Parent_Type, Derived_Type);
5336 end if;
5338 else
5339 -- Untagged type, No discriminants on either view
5341 if Nkind (Subtype_Indication (Type_Definition (N))) =
5342 N_Subtype_Indication
5343 then
5344 Error_Msg_N
5345 ("illegal constraint on type without discriminants", N);
5346 end if;
5348 if Present (Discriminant_Specifications (N))
5349 and then Present (Full_View (Parent_Type))
5350 and then not Is_Tagged_Type (Full_View (Parent_Type))
5351 then
5352 Error_Msg_N
5353 ("cannot add discriminants to untagged type", N);
5354 end if;
5356 Set_Stored_Constraint (Derived_Type, No_Elist);
5357 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5358 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
5359 Set_Has_Controlled_Component
5360 (Derived_Type, Has_Controlled_Component
5361 (Parent_Type));
5363 -- Direct controlled types do not inherit Finalize_Storage_Only flag
5365 if not Is_Controlled (Parent_Type) then
5366 Set_Finalize_Storage_Only
5367 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
5368 end if;
5370 -- Construct the implicit full view by deriving from full view of
5371 -- the parent type. In order to get proper visibility, we install
5372 -- the parent scope and its declarations.
5374 -- ??? if the parent is untagged private and its completion is
5375 -- tagged, this mechanism will not work because we cannot derive
5376 -- from the tagged full view unless we have an extension
5378 if Present (Full_View (Parent_Type))
5379 and then not Is_Tagged_Type (Full_View (Parent_Type))
5380 and then not Is_Completion
5381 then
5382 Full_Der :=
5383 Make_Defining_Identifier (Sloc (Derived_Type),
5384 Chars => Chars (Derived_Type));
5385 Set_Is_Itype (Full_Der);
5386 Set_Has_Private_Declaration (Full_Der);
5387 Set_Has_Private_Declaration (Derived_Type);
5388 Set_Associated_Node_For_Itype (Full_Der, N);
5389 Set_Parent (Full_Der, Parent (Derived_Type));
5390 Set_Full_View (Derived_Type, Full_Der);
5392 if not In_Open_Scopes (Par_Scope) then
5393 Install_Private_Declarations (Par_Scope);
5394 Install_Visible_Declarations (Par_Scope);
5395 Copy_And_Build;
5396 Uninstall_Declarations (Par_Scope);
5398 -- If parent scope is open and in another unit, and parent has a
5399 -- completion, then the derivation is taking place in the visible
5400 -- part of a child unit. In that case retrieve the full view of
5401 -- the parent momentarily.
5403 elsif not In_Same_Source_Unit (N, Parent_Type) then
5404 Full_P := Full_View (Parent_Type);
5405 Exchange_Declarations (Parent_Type);
5406 Copy_And_Build;
5407 Exchange_Declarations (Full_P);
5409 -- Otherwise it is a local derivation
5411 else
5412 Copy_And_Build;
5413 end if;
5415 Set_Scope (Full_Der, Current_Scope);
5416 Set_Is_First_Subtype (Full_Der,
5417 Is_First_Subtype (Derived_Type));
5418 Set_Has_Size_Clause (Full_Der, False);
5419 Set_Has_Alignment_Clause (Full_Der, False);
5420 Set_Next_Entity (Full_Der, Empty);
5421 Set_Has_Delayed_Freeze (Full_Der);
5422 Set_Is_Frozen (Full_Der, False);
5423 Set_Freeze_Node (Full_Der, Empty);
5424 Set_Depends_On_Private (Full_Der,
5425 Has_Private_Component (Full_Der));
5426 Set_Public_Status (Full_Der);
5427 end if;
5428 end if;
5430 Set_Has_Unknown_Discriminants (Derived_Type,
5431 Has_Unknown_Discriminants (Parent_Type));
5433 if Is_Private_Type (Derived_Type) then
5434 Set_Private_Dependents (Derived_Type, New_Elmt_List);
5435 end if;
5437 if Is_Private_Type (Parent_Type)
5438 and then Base_Type (Parent_Type) = Parent_Type
5439 and then In_Open_Scopes (Scope (Parent_Type))
5440 then
5441 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
5443 if Is_Child_Unit (Scope (Current_Scope))
5444 and then Is_Completion
5445 and then In_Private_Part (Current_Scope)
5446 and then Scope (Parent_Type) /= Current_Scope
5447 then
5448 -- This is the unusual case where a type completed by a private
5449 -- derivation occurs within a package nested in a child unit,
5450 -- and the parent is declared in an ancestor. In this case, the
5451 -- full view of the parent type will become visible in the body
5452 -- of the enclosing child, and only then will the current type
5453 -- be possibly non-private. We build a underlying full view that
5454 -- will be installed when the enclosing child body is compiled.
5456 Full_Der :=
5457 Make_Defining_Identifier (Sloc (Derived_Type),
5458 Chars => Chars (Derived_Type));
5459 Set_Is_Itype (Full_Der);
5460 Build_Itype_Reference (Full_Der, N);
5462 -- The full view will be used to swap entities on entry/exit to
5463 -- the body, and must appear in the entity list for the package.
5465 Append_Entity (Full_Der, Scope (Derived_Type));
5466 Set_Has_Private_Declaration (Full_Der);
5467 Set_Has_Private_Declaration (Derived_Type);
5468 Set_Associated_Node_For_Itype (Full_Der, N);
5469 Set_Parent (Full_Der, Parent (Derived_Type));
5470 Full_P := Full_View (Parent_Type);
5471 Exchange_Declarations (Parent_Type);
5472 Copy_And_Build;
5473 Exchange_Declarations (Full_P);
5474 Set_Underlying_Full_View (Derived_Type, Full_Der);
5475 end if;
5476 end if;
5477 end Build_Derived_Private_Type;
5479 -------------------------------
5480 -- Build_Derived_Record_Type --
5481 -------------------------------
5483 -- 1. INTRODUCTION
5485 -- Ideally we would like to use the same model of type derivation for
5486 -- tagged and untagged record types. Unfortunately this is not quite
5487 -- possible because the semantics of representation clauses is different
5488 -- for tagged and untagged records under inheritance. Consider the
5489 -- following:
5491 -- type R (...) is [tagged] record ... end record;
5492 -- type T (...) is new R (...) [with ...];
5494 -- The representation clauses for T can specify a completely different
5495 -- record layout from R's. Hence the same component can be placed in two
5496 -- very different positions in objects of type T and R. If R and are tagged
5497 -- types, representation clauses for T can only specify the layout of non
5498 -- inherited components, thus components that are common in R and T have
5499 -- the same position in objects of type R and T.
5501 -- This has two implications. The first is that the entire tree for R's
5502 -- declaration needs to be copied for T in the untagged case, so that T
5503 -- can be viewed as a record type of its own with its own representation
5504 -- clauses. The second implication is the way we handle discriminants.
5505 -- Specifically, in the untagged case we need a way to communicate to Gigi
5506 -- what are the real discriminants in the record, while for the semantics
5507 -- we need to consider those introduced by the user to rename the
5508 -- discriminants in the parent type. This is handled by introducing the
5509 -- notion of stored discriminants. See below for more.
5511 -- Fortunately the way regular components are inherited can be handled in
5512 -- the same way in tagged and untagged types.
5514 -- To complicate things a bit more the private view of a private extension
5515 -- cannot be handled in the same way as the full view (for one thing the
5516 -- semantic rules are somewhat different). We will explain what differs
5517 -- below.
5519 -- 2. DISCRIMINANTS UNDER INHERITANCE
5521 -- The semantic rules governing the discriminants of derived types are
5522 -- quite subtle.
5524 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
5525 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
5527 -- If parent type has discriminants, then the discriminants that are
5528 -- declared in the derived type are [3.4 (11)]:
5530 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
5531 -- there is one;
5533 -- o Otherwise, each discriminant of the parent type (implicitly declared
5534 -- in the same order with the same specifications). In this case, the
5535 -- discriminants are said to be "inherited", or if unknown in the parent
5536 -- are also unknown in the derived type.
5538 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
5540 -- o The parent subtype shall be constrained;
5542 -- o If the parent type is not a tagged type, then each discriminant of
5543 -- the derived type shall be used in the constraint defining a parent
5544 -- subtype. [Implementation note: This ensures that the new discriminant
5545 -- can share storage with an existing discriminant.]
5547 -- For the derived type each discriminant of the parent type is either
5548 -- inherited, constrained to equal some new discriminant of the derived
5549 -- type, or constrained to the value of an expression.
5551 -- When inherited or constrained to equal some new discriminant, the
5552 -- parent discriminant and the discriminant of the derived type are said
5553 -- to "correspond".
5555 -- If a discriminant of the parent type is constrained to a specific value
5556 -- in the derived type definition, then the discriminant is said to be
5557 -- "specified" by that derived type definition.
5559 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
5561 -- We have spoken about stored discriminants in point 1 (introduction)
5562 -- above. There are two sort of stored discriminants: implicit and
5563 -- explicit. As long as the derived type inherits the same discriminants as
5564 -- the root record type, stored discriminants are the same as regular
5565 -- discriminants, and are said to be implicit. However, if any discriminant
5566 -- in the root type was renamed in the derived type, then the derived
5567 -- type will contain explicit stored discriminants. Explicit stored
5568 -- discriminants are discriminants in addition to the semantically visible
5569 -- discriminants defined for the derived type. Stored discriminants are
5570 -- used by Gigi to figure out what are the physical discriminants in
5571 -- objects of the derived type (see precise definition in einfo.ads).
5572 -- As an example, consider the following:
5574 -- type R (D1, D2, D3 : Int) is record ... end record;
5575 -- type T1 is new R;
5576 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
5577 -- type T3 is new T2;
5578 -- type T4 (Y : Int) is new T3 (Y, 99);
5580 -- The following table summarizes the discriminants and stored
5581 -- discriminants in R and T1 through T4.
5583 -- Type Discrim Stored Discrim Comment
5584 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
5585 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
5586 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
5587 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
5588 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
5590 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
5591 -- find the corresponding discriminant in the parent type, while
5592 -- Original_Record_Component (abbreviated ORC below), the actual physical
5593 -- component that is renamed. Finally the field Is_Completely_Hidden
5594 -- (abbreviated ICH below) is set for all explicit stored discriminants
5595 -- (see einfo.ads for more info). For the above example this gives:
5597 -- Discrim CD ORC ICH
5598 -- ^^^^^^^ ^^ ^^^ ^^^
5599 -- D1 in R empty itself no
5600 -- D2 in R empty itself no
5601 -- D3 in R empty itself no
5603 -- D1 in T1 D1 in R itself no
5604 -- D2 in T1 D2 in R itself no
5605 -- D3 in T1 D3 in R itself no
5607 -- X1 in T2 D3 in T1 D3 in T2 no
5608 -- X2 in T2 D1 in T1 D1 in T2 no
5609 -- D1 in T2 empty itself yes
5610 -- D2 in T2 empty itself yes
5611 -- D3 in T2 empty itself yes
5613 -- X1 in T3 X1 in T2 D3 in T3 no
5614 -- X2 in T3 X2 in T2 D1 in T3 no
5615 -- D1 in T3 empty itself yes
5616 -- D2 in T3 empty itself yes
5617 -- D3 in T3 empty itself yes
5619 -- Y in T4 X1 in T3 D3 in T3 no
5620 -- D1 in T3 empty itself yes
5621 -- D2 in T3 empty itself yes
5622 -- D3 in T3 empty itself yes
5624 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
5626 -- Type derivation for tagged types is fairly straightforward. If no
5627 -- discriminants are specified by the derived type, these are inherited
5628 -- from the parent. No explicit stored discriminants are ever necessary.
5629 -- The only manipulation that is done to the tree is that of adding a
5630 -- _parent field with parent type and constrained to the same constraint
5631 -- specified for the parent in the derived type definition. For instance:
5633 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
5634 -- type T1 is new R with null record;
5635 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
5637 -- are changed into:
5639 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
5640 -- _parent : R (D1, D2, D3);
5641 -- end record;
5643 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
5644 -- _parent : T1 (X2, 88, X1);
5645 -- end record;
5647 -- The discriminants actually present in R, T1 and T2 as well as their CD,
5648 -- ORC and ICH fields are:
5650 -- Discrim CD ORC ICH
5651 -- ^^^^^^^ ^^ ^^^ ^^^
5652 -- D1 in R empty itself no
5653 -- D2 in R empty itself no
5654 -- D3 in R empty itself no
5656 -- D1 in T1 D1 in R D1 in R no
5657 -- D2 in T1 D2 in R D2 in R no
5658 -- D3 in T1 D3 in R D3 in R no
5660 -- X1 in T2 D3 in T1 D3 in R no
5661 -- X2 in T2 D1 in T1 D1 in R no
5663 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
5665 -- Regardless of whether we dealing with a tagged or untagged type
5666 -- we will transform all derived type declarations of the form
5668 -- type T is new R (...) [with ...];
5669 -- or
5670 -- subtype S is R (...);
5671 -- type T is new S [with ...];
5672 -- into
5673 -- type BT is new R [with ...];
5674 -- subtype T is BT (...);
5676 -- That is, the base derived type is constrained only if it has no
5677 -- discriminants. The reason for doing this is that GNAT's semantic model
5678 -- assumes that a base type with discriminants is unconstrained.
5680 -- Note that, strictly speaking, the above transformation is not always
5681 -- correct. Consider for instance the following excerpt from ACVC b34011a:
5683 -- procedure B34011A is
5684 -- type REC (D : integer := 0) is record
5685 -- I : Integer;
5686 -- end record;
5688 -- package P is
5689 -- type T6 is new Rec;
5690 -- function F return T6;
5691 -- end P;
5693 -- use P;
5694 -- package Q6 is
5695 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
5696 -- end Q6;
5698 -- The definition of Q6.U is illegal. However transforming Q6.U into
5700 -- type BaseU is new T6;
5701 -- subtype U is BaseU (Q6.F.I)
5703 -- turns U into a legal subtype, which is incorrect. To avoid this problem
5704 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
5705 -- the transformation described above.
5707 -- There is another instance where the above transformation is incorrect.
5708 -- Consider:
5710 -- package Pack is
5711 -- type Base (D : Integer) is tagged null record;
5712 -- procedure P (X : Base);
5714 -- type Der is new Base (2) with null record;
5715 -- procedure P (X : Der);
5716 -- end Pack;
5718 -- Then the above transformation turns this into
5720 -- type Der_Base is new Base with null record;
5721 -- -- procedure P (X : Base) is implicitly inherited here
5722 -- -- as procedure P (X : Der_Base).
5724 -- subtype Der is Der_Base (2);
5725 -- procedure P (X : Der);
5726 -- -- The overriding of P (X : Der_Base) is illegal since we
5727 -- -- have a parameter conformance problem.
5729 -- To get around this problem, after having semantically processed Der_Base
5730 -- and the rewritten subtype declaration for Der, we copy Der_Base field
5731 -- Discriminant_Constraint from Der so that when parameter conformance is
5732 -- checked when P is overridden, no semantic errors are flagged.
5734 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
5736 -- Regardless of whether we are dealing with a tagged or untagged type
5737 -- we will transform all derived type declarations of the form
5739 -- type R (D1, .., Dn : ...) is [tagged] record ...;
5740 -- type T is new R [with ...];
5741 -- into
5742 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
5744 -- The reason for such transformation is that it allows us to implement a
5745 -- very clean form of component inheritance as explained below.
5747 -- Note that this transformation is not achieved by direct tree rewriting
5748 -- and manipulation, but rather by redoing the semantic actions that the
5749 -- above transformation will entail. This is done directly in routine
5750 -- Inherit_Components.
5752 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
5754 -- In both tagged and untagged derived types, regular non discriminant
5755 -- components are inherited in the derived type from the parent type. In
5756 -- the absence of discriminants component, inheritance is straightforward
5757 -- as components can simply be copied from the parent.
5759 -- If the parent has discriminants, inheriting components constrained with
5760 -- these discriminants requires caution. Consider the following example:
5762 -- type R (D1, D2 : Positive) is [tagged] record
5763 -- S : String (D1 .. D2);
5764 -- end record;
5766 -- type T1 is new R [with null record];
5767 -- type T2 (X : positive) is new R (1, X) [with null record];
5769 -- As explained in 6. above, T1 is rewritten as
5770 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
5771 -- which makes the treatment for T1 and T2 identical.
5773 -- What we want when inheriting S, is that references to D1 and D2 in R are
5774 -- replaced with references to their correct constraints, ie D1 and D2 in
5775 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
5776 -- with either discriminant references in the derived type or expressions.
5777 -- This replacement is achieved as follows: before inheriting R's
5778 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
5779 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
5780 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
5781 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
5782 -- by String (1 .. X).
5784 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
5786 -- We explain here the rules governing private type extensions relevant to
5787 -- type derivation. These rules are explained on the following example:
5789 -- type D [(...)] is new A [(...)] with private; <-- partial view
5790 -- type D [(...)] is new P [(...)] with null record; <-- full view
5792 -- Type A is called the ancestor subtype of the private extension.
5793 -- Type P is the parent type of the full view of the private extension. It
5794 -- must be A or a type derived from A.
5796 -- The rules concerning the discriminants of private type extensions are
5797 -- [7.3(10-13)]:
5799 -- o If a private extension inherits known discriminants from the ancestor
5800 -- subtype, then the full view shall also inherit its discriminants from
5801 -- the ancestor subtype and the parent subtype of the full view shall be
5802 -- constrained if and only if the ancestor subtype is constrained.
5804 -- o If a partial view has unknown discriminants, then the full view may
5805 -- define a definite or an indefinite subtype, with or without
5806 -- discriminants.
5808 -- o If a partial view has neither known nor unknown discriminants, then
5809 -- the full view shall define a definite subtype.
5811 -- o If the ancestor subtype of a private extension has constrained
5812 -- discriminants, then the parent subtype of the full view shall impose a
5813 -- statically matching constraint on those discriminants.
5815 -- This means that only the following forms of private extensions are
5816 -- allowed:
5818 -- type D is new A with private; <-- partial view
5819 -- type D is new P with null record; <-- full view
5821 -- If A has no discriminants than P has no discriminants, otherwise P must
5822 -- inherit A's discriminants.
5824 -- type D is new A (...) with private; <-- partial view
5825 -- type D is new P (:::) with null record; <-- full view
5827 -- P must inherit A's discriminants and (...) and (:::) must statically
5828 -- match.
5830 -- subtype A is R (...);
5831 -- type D is new A with private; <-- partial view
5832 -- type D is new P with null record; <-- full view
5834 -- P must have inherited R's discriminants and must be derived from A or
5835 -- any of its subtypes.
5837 -- type D (..) is new A with private; <-- partial view
5838 -- type D (..) is new P [(:::)] with null record; <-- full view
5840 -- No specific constraints on P's discriminants or constraint (:::).
5841 -- Note that A can be unconstrained, but the parent subtype P must either
5842 -- be constrained or (:::) must be present.
5844 -- type D (..) is new A [(...)] with private; <-- partial view
5845 -- type D (..) is new P [(:::)] with null record; <-- full view
5847 -- P's constraints on A's discriminants must statically match those
5848 -- imposed by (...).
5850 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
5852 -- The full view of a private extension is handled exactly as described
5853 -- above. The model chose for the private view of a private extension is
5854 -- the same for what concerns discriminants (ie they receive the same
5855 -- treatment as in the tagged case). However, the private view of the
5856 -- private extension always inherits the components of the parent base,
5857 -- without replacing any discriminant reference. Strictly speaking this is
5858 -- incorrect. However, Gigi never uses this view to generate code so this
5859 -- is a purely semantic issue. In theory, a set of transformations similar
5860 -- to those given in 5. and 6. above could be applied to private views of
5861 -- private extensions to have the same model of component inheritance as
5862 -- for non private extensions. However, this is not done because it would
5863 -- further complicate private type processing. Semantically speaking, this
5864 -- leaves us in an uncomfortable situation. As an example consider:
5866 -- package Pack is
5867 -- type R (D : integer) is tagged record
5868 -- S : String (1 .. D);
5869 -- end record;
5870 -- procedure P (X : R);
5871 -- type T is new R (1) with private;
5872 -- private
5873 -- type T is new R (1) with null record;
5874 -- end;
5876 -- This is transformed into:
5878 -- package Pack is
5879 -- type R (D : integer) is tagged record
5880 -- S : String (1 .. D);
5881 -- end record;
5882 -- procedure P (X : R);
5883 -- type T is new R (1) with private;
5884 -- private
5885 -- type BaseT is new R with null record;
5886 -- subtype T is BaseT (1);
5887 -- end;
5889 -- (strictly speaking the above is incorrect Ada)
5891 -- From the semantic standpoint the private view of private extension T
5892 -- should be flagged as constrained since one can clearly have
5894 -- Obj : T;
5896 -- in a unit withing Pack. However, when deriving subprograms for the
5897 -- private view of private extension T, T must be seen as unconstrained
5898 -- since T has discriminants (this is a constraint of the current
5899 -- subprogram derivation model). Thus, when processing the private view of
5900 -- a private extension such as T, we first mark T as unconstrained, we
5901 -- process it, we perform program derivation and just before returning from
5902 -- Build_Derived_Record_Type we mark T as constrained.
5904 -- ??? Are there are other uncomfortable cases that we will have to
5905 -- deal with.
5907 -- 10. RECORD_TYPE_WITH_PRIVATE complications
5909 -- Types that are derived from a visible record type and have a private
5910 -- extension present other peculiarities. They behave mostly like private
5911 -- types, but if they have primitive operations defined, these will not
5912 -- have the proper signatures for further inheritance, because other
5913 -- primitive operations will use the implicit base that we define for
5914 -- private derivations below. This affect subprogram inheritance (see
5915 -- Derive_Subprograms for details). We also derive the implicit base from
5916 -- the base type of the full view, so that the implicit base is a record
5917 -- type and not another private type, This avoids infinite loops.
5919 procedure Build_Derived_Record_Type
5920 (N : Node_Id;
5921 Parent_Type : Entity_Id;
5922 Derived_Type : Entity_Id;
5923 Derive_Subps : Boolean := True)
5925 Loc : constant Source_Ptr := Sloc (N);
5926 Parent_Base : Entity_Id;
5927 Type_Def : Node_Id;
5928 Indic : Node_Id;
5929 Discrim : Entity_Id;
5930 Last_Discrim : Entity_Id;
5931 Constrs : Elist_Id;
5933 Discs : Elist_Id := New_Elmt_List;
5934 -- An empty Discs list means that there were no constraints in the
5935 -- subtype indication or that there was an error processing it.
5937 Assoc_List : Elist_Id;
5938 New_Discrs : Elist_Id;
5939 New_Base : Entity_Id;
5940 New_Decl : Node_Id;
5941 New_Indic : Node_Id;
5943 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
5944 Discriminant_Specs : constant Boolean :=
5945 Present (Discriminant_Specifications (N));
5946 Private_Extension : constant Boolean :=
5947 (Nkind (N) = N_Private_Extension_Declaration);
5949 Constraint_Present : Boolean;
5950 Inherit_Discrims : Boolean := False;
5951 Save_Etype : Entity_Id;
5952 Save_Discr_Constr : Elist_Id;
5953 Save_Next_Entity : Entity_Id;
5955 begin
5956 if Ekind (Parent_Type) = E_Record_Type_With_Private
5957 and then Present (Full_View (Parent_Type))
5958 and then Has_Discriminants (Parent_Type)
5959 then
5960 Parent_Base := Base_Type (Full_View (Parent_Type));
5961 else
5962 Parent_Base := Base_Type (Parent_Type);
5963 end if;
5965 -- Before we start the previously documented transformations, here is
5966 -- little fix for size and alignment of tagged types. Normally when we
5967 -- derive type D from type P, we copy the size and alignment of P as the
5968 -- default for D, and in the absence of explicit representation clauses
5969 -- for D, the size and alignment are indeed the same as the parent.
5971 -- But this is wrong for tagged types, since fields may be added, and
5972 -- the default size may need to be larger, and the default alignment may
5973 -- need to be larger.
5975 -- We therefore reset the size and alignment fields in the tagged case.
5976 -- Note that the size and alignment will in any case be at least as
5977 -- large as the parent type (since the derived type has a copy of the
5978 -- parent type in the _parent field)
5980 -- The type is also marked as being tagged here, which is needed when
5981 -- processing components with a self-referential anonymous access type
5982 -- in the call to Check_Anonymous_Access_Components below. Note that
5983 -- this flag is also set later on for completeness.
5985 if Is_Tagged then
5986 Set_Is_Tagged_Type (Derived_Type);
5987 Init_Size_Align (Derived_Type);
5988 end if;
5990 -- STEP 0a: figure out what kind of derived type declaration we have
5992 if Private_Extension then
5993 Type_Def := N;
5994 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
5996 else
5997 Type_Def := Type_Definition (N);
5999 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
6000 -- Parent_Base can be a private type or private extension. However,
6001 -- for tagged types with an extension the newly added fields are
6002 -- visible and hence the Derived_Type is always an E_Record_Type.
6003 -- (except that the parent may have its own private fields).
6004 -- For untagged types we preserve the Ekind of the Parent_Base.
6006 if Present (Record_Extension_Part (Type_Def)) then
6007 Set_Ekind (Derived_Type, E_Record_Type);
6009 -- Create internal access types for components with anonymous
6010 -- access types.
6012 if Ada_Version >= Ada_05 then
6013 Check_Anonymous_Access_Components
6014 (N, Derived_Type, Derived_Type,
6015 Component_List (Record_Extension_Part (Type_Def)));
6016 end if;
6018 else
6019 Set_Ekind (Derived_Type, Ekind (Parent_Base));
6020 end if;
6021 end if;
6023 -- Indic can either be an N_Identifier if the subtype indication
6024 -- contains no constraint or an N_Subtype_Indication if the subtype
6025 -- indication has a constraint.
6027 Indic := Subtype_Indication (Type_Def);
6028 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
6030 -- Check that the type has visible discriminants. The type may be
6031 -- a private type with unknown discriminants whose full view has
6032 -- discriminants which are invisible.
6034 if Constraint_Present then
6035 if not Has_Discriminants (Parent_Base)
6036 or else
6037 (Has_Unknown_Discriminants (Parent_Base)
6038 and then Is_Private_Type (Parent_Base))
6039 then
6040 Error_Msg_N
6041 ("invalid constraint: type has no discriminant",
6042 Constraint (Indic));
6044 Constraint_Present := False;
6045 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6047 elsif Is_Constrained (Parent_Type) then
6048 Error_Msg_N
6049 ("invalid constraint: parent type is already constrained",
6050 Constraint (Indic));
6052 Constraint_Present := False;
6053 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6054 end if;
6055 end if;
6057 -- STEP 0b: If needed, apply transformation given in point 5. above
6059 if not Private_Extension
6060 and then Has_Discriminants (Parent_Type)
6061 and then not Discriminant_Specs
6062 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
6063 then
6064 -- First, we must analyze the constraint (see comment in point 5.)
6066 if Constraint_Present then
6067 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
6069 if Has_Discriminants (Derived_Type)
6070 and then Has_Private_Declaration (Derived_Type)
6071 and then Present (Discriminant_Constraint (Derived_Type))
6072 then
6073 -- Verify that constraints of the full view conform to those
6074 -- given in partial view.
6076 declare
6077 C1, C2 : Elmt_Id;
6079 begin
6080 C1 := First_Elmt (New_Discrs);
6081 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
6082 while Present (C1) and then Present (C2) loop
6083 if not
6084 Fully_Conformant_Expressions (Node (C1), Node (C2))
6085 then
6086 Error_Msg_N (
6087 "constraint not conformant to previous declaration",
6088 Node (C1));
6089 end if;
6091 Next_Elmt (C1);
6092 Next_Elmt (C2);
6093 end loop;
6094 end;
6095 end if;
6096 end if;
6098 -- Insert and analyze the declaration for the unconstrained base type
6100 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
6102 New_Decl :=
6103 Make_Full_Type_Declaration (Loc,
6104 Defining_Identifier => New_Base,
6105 Type_Definition =>
6106 Make_Derived_Type_Definition (Loc,
6107 Abstract_Present => Abstract_Present (Type_Def),
6108 Subtype_Indication =>
6109 New_Occurrence_Of (Parent_Base, Loc),
6110 Record_Extension_Part =>
6111 Relocate_Node (Record_Extension_Part (Type_Def))));
6113 Set_Parent (New_Decl, Parent (N));
6114 Mark_Rewrite_Insertion (New_Decl);
6115 Insert_Before (N, New_Decl);
6117 -- Note that this call passes False for the Derive_Subps parameter
6118 -- because subprogram derivation is deferred until after creating
6119 -- the subtype (see below).
6121 Build_Derived_Type
6122 (New_Decl, Parent_Base, New_Base,
6123 Is_Completion => True, Derive_Subps => False);
6125 -- ??? This needs re-examination to determine whether the
6126 -- above call can simply be replaced by a call to Analyze.
6128 Set_Analyzed (New_Decl);
6130 -- Insert and analyze the declaration for the constrained subtype
6132 if Constraint_Present then
6133 New_Indic :=
6134 Make_Subtype_Indication (Loc,
6135 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6136 Constraint => Relocate_Node (Constraint (Indic)));
6138 else
6139 declare
6140 Constr_List : constant List_Id := New_List;
6141 C : Elmt_Id;
6142 Expr : Node_Id;
6144 begin
6145 C := First_Elmt (Discriminant_Constraint (Parent_Type));
6146 while Present (C) loop
6147 Expr := Node (C);
6149 -- It is safe here to call New_Copy_Tree since
6150 -- Force_Evaluation was called on each constraint in
6151 -- Build_Discriminant_Constraints.
6153 Append (New_Copy_Tree (Expr), To => Constr_List);
6155 Next_Elmt (C);
6156 end loop;
6158 New_Indic :=
6159 Make_Subtype_Indication (Loc,
6160 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6161 Constraint =>
6162 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
6163 end;
6164 end if;
6166 Rewrite (N,
6167 Make_Subtype_Declaration (Loc,
6168 Defining_Identifier => Derived_Type,
6169 Subtype_Indication => New_Indic));
6171 Analyze (N);
6173 -- Derivation of subprograms must be delayed until the full subtype
6174 -- has been established to ensure proper overriding of subprograms
6175 -- inherited by full types. If the derivations occurred as part of
6176 -- the call to Build_Derived_Type above, then the check for type
6177 -- conformance would fail because earlier primitive subprograms
6178 -- could still refer to the full type prior the change to the new
6179 -- subtype and hence would not match the new base type created here.
6181 Derive_Subprograms (Parent_Type, Derived_Type);
6183 -- For tagged types the Discriminant_Constraint of the new base itype
6184 -- is inherited from the first subtype so that no subtype conformance
6185 -- problem arise when the first subtype overrides primitive
6186 -- operations inherited by the implicit base type.
6188 if Is_Tagged then
6189 Set_Discriminant_Constraint
6190 (New_Base, Discriminant_Constraint (Derived_Type));
6191 end if;
6193 return;
6194 end if;
6196 -- If we get here Derived_Type will have no discriminants or it will be
6197 -- a discriminated unconstrained base type.
6199 -- STEP 1a: perform preliminary actions/checks for derived tagged types
6201 if Is_Tagged then
6203 -- The parent type is frozen for non-private extensions (RM 13.14(7))
6204 -- The declaration of a specific descendant of an interface type
6205 -- freezes the interface type (RM 13.14).
6207 if not Private_Extension
6208 or else Is_Interface (Parent_Base)
6209 then
6210 Freeze_Before (N, Parent_Type);
6211 end if;
6213 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
6214 -- cannot be declared at a deeper level than its parent type is
6215 -- removed. The check on derivation within a generic body is also
6216 -- relaxed, but there's a restriction that a derived tagged type
6217 -- cannot be declared in a generic body if it's derived directly
6218 -- or indirectly from a formal type of that generic.
6220 if Ada_Version >= Ada_05 then
6221 if Present (Enclosing_Generic_Body (Derived_Type)) then
6222 declare
6223 Ancestor_Type : Entity_Id;
6225 begin
6226 -- Check to see if any ancestor of the derived type is a
6227 -- formal type.
6229 Ancestor_Type := Parent_Type;
6230 while not Is_Generic_Type (Ancestor_Type)
6231 and then Etype (Ancestor_Type) /= Ancestor_Type
6232 loop
6233 Ancestor_Type := Etype (Ancestor_Type);
6234 end loop;
6236 -- If the derived type does have a formal type as an
6237 -- ancestor, then it's an error if the derived type is
6238 -- declared within the body of the generic unit that
6239 -- declares the formal type in its generic formal part. It's
6240 -- sufficient to check whether the ancestor type is declared
6241 -- inside the same generic body as the derived type (such as
6242 -- within a nested generic spec), in which case the
6243 -- derivation is legal. If the formal type is declared
6244 -- outside of that generic body, then it's guaranteed that
6245 -- the derived type is declared within the generic body of
6246 -- the generic unit declaring the formal type.
6248 if Is_Generic_Type (Ancestor_Type)
6249 and then Enclosing_Generic_Body (Ancestor_Type) /=
6250 Enclosing_Generic_Body (Derived_Type)
6251 then
6252 Error_Msg_NE
6253 ("parent type of& must not be descendant of formal type"
6254 & " of an enclosing generic body",
6255 Indic, Derived_Type);
6256 end if;
6257 end;
6258 end if;
6260 elsif Type_Access_Level (Derived_Type) /=
6261 Type_Access_Level (Parent_Type)
6262 and then not Is_Generic_Type (Derived_Type)
6263 then
6264 if Is_Controlled (Parent_Type) then
6265 Error_Msg_N
6266 ("controlled type must be declared at the library level",
6267 Indic);
6268 else
6269 Error_Msg_N
6270 ("type extension at deeper accessibility level than parent",
6271 Indic);
6272 end if;
6274 else
6275 declare
6276 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
6278 begin
6279 if Present (GB)
6280 and then GB /= Enclosing_Generic_Body (Parent_Base)
6281 then
6282 Error_Msg_NE
6283 ("parent type of& must not be outside generic body"
6284 & " (RM 3.9.1(4))",
6285 Indic, Derived_Type);
6286 end if;
6287 end;
6288 end if;
6289 end if;
6291 -- Ada 2005 (AI-251)
6293 if Ada_Version = Ada_05
6294 and then Is_Tagged
6295 then
6296 -- "The declaration of a specific descendant of an interface type
6297 -- freezes the interface type" (RM 13.14).
6299 declare
6300 Iface : Node_Id;
6301 begin
6302 if Is_Non_Empty_List (Interface_List (Type_Def)) then
6303 Iface := First (Interface_List (Type_Def));
6304 while Present (Iface) loop
6305 Freeze_Before (N, Etype (Iface));
6306 Next (Iface);
6307 end loop;
6308 end if;
6309 end;
6310 end if;
6312 -- STEP 1b : preliminary cleanup of the full view of private types
6314 -- If the type is already marked as having discriminants, then it's the
6315 -- completion of a private type or private extension and we need to
6316 -- retain the discriminants from the partial view if the current
6317 -- declaration has Discriminant_Specifications so that we can verify
6318 -- conformance. However, we must remove any existing components that
6319 -- were inherited from the parent (and attached in Copy_And_Swap)
6320 -- because the full type inherits all appropriate components anyway, and
6321 -- we do not want the partial view's components interfering.
6323 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
6324 Discrim := First_Discriminant (Derived_Type);
6325 loop
6326 Last_Discrim := Discrim;
6327 Next_Discriminant (Discrim);
6328 exit when No (Discrim);
6329 end loop;
6331 Set_Last_Entity (Derived_Type, Last_Discrim);
6333 -- In all other cases wipe out the list of inherited components (even
6334 -- inherited discriminants), it will be properly rebuilt here.
6336 else
6337 Set_First_Entity (Derived_Type, Empty);
6338 Set_Last_Entity (Derived_Type, Empty);
6339 end if;
6341 -- STEP 1c: Initialize some flags for the Derived_Type
6343 -- The following flags must be initialized here so that
6344 -- Process_Discriminants can check that discriminants of tagged types do
6345 -- not have a default initial value and that access discriminants are
6346 -- only specified for limited records. For completeness, these flags are
6347 -- also initialized along with all the other flags below.
6349 -- AI-419: Limitedness is not inherited from an interface parent, so to
6350 -- be limited in that case the type must be explicitly declared as
6351 -- limited. However, task and protected interfaces are always limited.
6353 if Limited_Present (Type_Def) then
6354 Set_Is_Limited_Record (Derived_Type);
6356 elsif Is_Limited_Record (Parent_Type) then
6357 if not Is_Interface (Parent_Type)
6358 or else Is_Synchronized_Interface (Parent_Type)
6359 or else Is_Protected_Interface (Parent_Type)
6360 or else Is_Task_Interface (Parent_Type)
6361 then
6362 Set_Is_Limited_Record (Derived_Type);
6363 end if;
6364 end if;
6366 -- STEP 2a: process discriminants of derived type if any
6368 Push_Scope (Derived_Type);
6370 if Discriminant_Specs then
6371 Set_Has_Unknown_Discriminants (Derived_Type, False);
6373 -- The following call initializes fields Has_Discriminants and
6374 -- Discriminant_Constraint, unless we are processing the completion
6375 -- of a private type declaration.
6377 Check_Or_Process_Discriminants (N, Derived_Type);
6379 -- For non-tagged types the constraint on the Parent_Type must be
6380 -- present and is used to rename the discriminants.
6382 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
6383 Error_Msg_N ("untagged parent must have discriminants", Indic);
6385 elsif not Is_Tagged and then not Constraint_Present then
6386 Error_Msg_N
6387 ("discriminant constraint needed for derived untagged records",
6388 Indic);
6390 -- Otherwise the parent subtype must be constrained unless we have a
6391 -- private extension.
6393 elsif not Constraint_Present
6394 and then not Private_Extension
6395 and then not Is_Constrained (Parent_Type)
6396 then
6397 Error_Msg_N
6398 ("unconstrained type not allowed in this context", Indic);
6400 elsif Constraint_Present then
6401 -- The following call sets the field Corresponding_Discriminant
6402 -- for the discriminants in the Derived_Type.
6404 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
6406 -- For untagged types all new discriminants must rename
6407 -- discriminants in the parent. For private extensions new
6408 -- discriminants cannot rename old ones (implied by [7.3(13)]).
6410 Discrim := First_Discriminant (Derived_Type);
6411 while Present (Discrim) loop
6412 if not Is_Tagged
6413 and then No (Corresponding_Discriminant (Discrim))
6414 then
6415 Error_Msg_N
6416 ("new discriminants must constrain old ones", Discrim);
6418 elsif Private_Extension
6419 and then Present (Corresponding_Discriminant (Discrim))
6420 then
6421 Error_Msg_N
6422 ("only static constraints allowed for parent"
6423 & " discriminants in the partial view", Indic);
6424 exit;
6425 end if;
6427 -- If a new discriminant is used in the constraint, then its
6428 -- subtype must be statically compatible with the parent
6429 -- discriminant's subtype (3.7(15)).
6431 if Present (Corresponding_Discriminant (Discrim))
6432 and then
6433 not Subtypes_Statically_Compatible
6434 (Etype (Discrim),
6435 Etype (Corresponding_Discriminant (Discrim)))
6436 then
6437 Error_Msg_N
6438 ("subtype must be compatible with parent discriminant",
6439 Discrim);
6440 end if;
6442 Next_Discriminant (Discrim);
6443 end loop;
6445 -- Check whether the constraints of the full view statically
6446 -- match those imposed by the parent subtype [7.3(13)].
6448 if Present (Stored_Constraint (Derived_Type)) then
6449 declare
6450 C1, C2 : Elmt_Id;
6452 begin
6453 C1 := First_Elmt (Discs);
6454 C2 := First_Elmt (Stored_Constraint (Derived_Type));
6455 while Present (C1) and then Present (C2) loop
6456 if not
6457 Fully_Conformant_Expressions (Node (C1), Node (C2))
6458 then
6459 Error_Msg_N
6460 ("not conformant with previous declaration",
6461 Node (C1));
6462 end if;
6464 Next_Elmt (C1);
6465 Next_Elmt (C2);
6466 end loop;
6467 end;
6468 end if;
6469 end if;
6471 -- STEP 2b: No new discriminants, inherit discriminants if any
6473 else
6474 if Private_Extension then
6475 Set_Has_Unknown_Discriminants
6476 (Derived_Type,
6477 Has_Unknown_Discriminants (Parent_Type)
6478 or else Unknown_Discriminants_Present (N));
6480 -- The partial view of the parent may have unknown discriminants,
6481 -- but if the full view has discriminants and the parent type is
6482 -- in scope they must be inherited.
6484 elsif Has_Unknown_Discriminants (Parent_Type)
6485 and then
6486 (not Has_Discriminants (Parent_Type)
6487 or else not In_Open_Scopes (Scope (Parent_Type)))
6488 then
6489 Set_Has_Unknown_Discriminants (Derived_Type);
6490 end if;
6492 if not Has_Unknown_Discriminants (Derived_Type)
6493 and then not Has_Unknown_Discriminants (Parent_Base)
6494 and then Has_Discriminants (Parent_Type)
6495 then
6496 Inherit_Discrims := True;
6497 Set_Has_Discriminants
6498 (Derived_Type, True);
6499 Set_Discriminant_Constraint
6500 (Derived_Type, Discriminant_Constraint (Parent_Base));
6501 end if;
6503 -- The following test is true for private types (remember
6504 -- transformation 5. is not applied to those) and in an error
6505 -- situation.
6507 if Constraint_Present then
6508 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
6509 end if;
6511 -- For now mark a new derived type as constrained only if it has no
6512 -- discriminants. At the end of Build_Derived_Record_Type we properly
6513 -- set this flag in the case of private extensions. See comments in
6514 -- point 9. just before body of Build_Derived_Record_Type.
6516 Set_Is_Constrained
6517 (Derived_Type,
6518 not (Inherit_Discrims
6519 or else Has_Unknown_Discriminants (Derived_Type)));
6520 end if;
6522 -- STEP 3: initialize fields of derived type
6524 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
6525 Set_Stored_Constraint (Derived_Type, No_Elist);
6527 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
6528 -- but cannot be interfaces
6530 if not Private_Extension
6531 and then Ekind (Derived_Type) /= E_Private_Type
6532 and then Ekind (Derived_Type) /= E_Limited_Private_Type
6533 then
6534 if Interface_Present (Type_Def) then
6535 Analyze_Interface_Declaration (Derived_Type, Type_Def);
6536 end if;
6538 Set_Abstract_Interfaces (Derived_Type, No_Elist);
6539 end if;
6541 -- Fields inherited from the Parent_Type
6543 Set_Discard_Names
6544 (Derived_Type, Einfo.Discard_Names (Parent_Type));
6545 Set_Has_Specified_Layout
6546 (Derived_Type, Has_Specified_Layout (Parent_Type));
6547 Set_Is_Limited_Composite
6548 (Derived_Type, Is_Limited_Composite (Parent_Type));
6549 Set_Is_Private_Composite
6550 (Derived_Type, Is_Private_Composite (Parent_Type));
6552 -- Fields inherited from the Parent_Base
6554 Set_Has_Controlled_Component
6555 (Derived_Type, Has_Controlled_Component (Parent_Base));
6556 Set_Has_Non_Standard_Rep
6557 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
6558 Set_Has_Primitive_Operations
6559 (Derived_Type, Has_Primitive_Operations (Parent_Base));
6561 -- For non-private case, we also inherit Has_Complex_Representation
6563 if Ekind (Derived_Type) = E_Record_Type then
6564 Set_Has_Complex_Representation
6565 (Derived_Type, Has_Complex_Representation (Parent_Base));
6566 end if;
6568 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6570 if not Is_Controlled (Parent_Type) then
6571 Set_Finalize_Storage_Only
6572 (Derived_Type, Finalize_Storage_Only (Parent_Type));
6573 end if;
6575 -- Set fields for private derived types
6577 if Is_Private_Type (Derived_Type) then
6578 Set_Depends_On_Private (Derived_Type, True);
6579 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6581 -- Inherit fields from non private record types. If this is the
6582 -- completion of a derivation from a private type, the parent itself
6583 -- is private, and the attributes come from its full view, which must
6584 -- be present.
6586 else
6587 if Is_Private_Type (Parent_Base)
6588 and then not Is_Record_Type (Parent_Base)
6589 then
6590 Set_Component_Alignment
6591 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
6592 Set_C_Pass_By_Copy
6593 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
6594 else
6595 Set_Component_Alignment
6596 (Derived_Type, Component_Alignment (Parent_Base));
6598 Set_C_Pass_By_Copy
6599 (Derived_Type, C_Pass_By_Copy (Parent_Base));
6600 end if;
6601 end if;
6603 -- Set fields for tagged types
6605 if Is_Tagged then
6606 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
6608 -- All tagged types defined in Ada.Finalization are controlled
6610 if Chars (Scope (Derived_Type)) = Name_Finalization
6611 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
6612 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
6613 then
6614 Set_Is_Controlled (Derived_Type);
6615 else
6616 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
6617 end if;
6619 Make_Class_Wide_Type (Derived_Type);
6620 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
6622 if Has_Discriminants (Derived_Type)
6623 and then Constraint_Present
6624 then
6625 Set_Stored_Constraint
6626 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
6627 end if;
6629 if Ada_Version >= Ada_05 then
6630 declare
6631 Ifaces_List : Elist_Id;
6633 begin
6634 -- Checks rules 3.9.4 (13/2 and 14/2)
6636 if Comes_From_Source (Derived_Type)
6637 and then not Is_Private_Type (Derived_Type)
6638 and then Is_Interface (Parent_Type)
6639 and then not Is_Interface (Derived_Type)
6640 then
6641 if Is_Task_Interface (Parent_Type) then
6642 Error_Msg_N
6643 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
6644 Derived_Type);
6646 elsif Is_Protected_Interface (Parent_Type) then
6647 Error_Msg_N
6648 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
6649 Derived_Type);
6650 end if;
6651 end if;
6653 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
6655 Check_Abstract_Interfaces (N, Type_Def);
6657 -- Ada 2005 (AI-251): Collect the list of progenitors that are
6658 -- not already in the parents.
6660 Collect_Abstract_Interfaces
6661 (T => Derived_Type,
6662 Ifaces_List => Ifaces_List,
6663 Exclude_Parent_Interfaces => True);
6664 Set_Abstract_Interfaces (Derived_Type, Ifaces_List);
6665 end;
6666 end if;
6668 else
6669 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
6670 Set_Has_Non_Standard_Rep
6671 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
6672 end if;
6674 -- STEP 4: Inherit components from the parent base and constrain them.
6675 -- Apply the second transformation described in point 6. above.
6677 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
6678 or else not Has_Discriminants (Parent_Type)
6679 or else not Is_Constrained (Parent_Type)
6680 then
6681 Constrs := Discs;
6682 else
6683 Constrs := Discriminant_Constraint (Parent_Type);
6684 end if;
6686 Assoc_List :=
6687 Inherit_Components
6688 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
6690 -- STEP 5a: Copy the parent record declaration for untagged types
6692 if not Is_Tagged then
6694 -- Discriminant_Constraint (Derived_Type) has been properly
6695 -- constructed. Save it and temporarily set it to Empty because we
6696 -- do not want the call to New_Copy_Tree below to mess this list.
6698 if Has_Discriminants (Derived_Type) then
6699 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
6700 Set_Discriminant_Constraint (Derived_Type, No_Elist);
6701 else
6702 Save_Discr_Constr := No_Elist;
6703 end if;
6705 -- Save the Etype field of Derived_Type. It is correctly set now,
6706 -- but the call to New_Copy tree may remap it to point to itself,
6707 -- which is not what we want. Ditto for the Next_Entity field.
6709 Save_Etype := Etype (Derived_Type);
6710 Save_Next_Entity := Next_Entity (Derived_Type);
6712 -- Assoc_List maps all stored discriminants in the Parent_Base to
6713 -- stored discriminants in the Derived_Type. It is fundamental that
6714 -- no types or itypes with discriminants other than the stored
6715 -- discriminants appear in the entities declared inside
6716 -- Derived_Type, since the back end cannot deal with it.
6718 New_Decl :=
6719 New_Copy_Tree
6720 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
6722 -- Restore the fields saved prior to the New_Copy_Tree call
6723 -- and compute the stored constraint.
6725 Set_Etype (Derived_Type, Save_Etype);
6726 Set_Next_Entity (Derived_Type, Save_Next_Entity);
6728 if Has_Discriminants (Derived_Type) then
6729 Set_Discriminant_Constraint
6730 (Derived_Type, Save_Discr_Constr);
6731 Set_Stored_Constraint
6732 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
6733 Replace_Components (Derived_Type, New_Decl);
6734 end if;
6736 -- Insert the new derived type declaration
6738 Rewrite (N, New_Decl);
6740 -- STEP 5b: Complete the processing for record extensions in generics
6742 -- There is no completion for record extensions declared in the
6743 -- parameter part of a generic, so we need to complete processing for
6744 -- these generic record extensions here. The Record_Type_Definition call
6745 -- will change the Ekind of the components from E_Void to E_Component.
6747 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
6748 Record_Type_Definition (Empty, Derived_Type);
6750 -- STEP 5c: Process the record extension for non private tagged types
6752 elsif not Private_Extension then
6754 -- Add the _parent field in the derived type
6756 Expand_Record_Extension (Derived_Type, Type_Def);
6758 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
6759 -- implemented interfaces if we are in expansion mode
6761 if Expander_Active
6762 and then Has_Abstract_Interfaces (Derived_Type)
6763 then
6764 Add_Interface_Tag_Components (N, Derived_Type);
6765 end if;
6767 -- Analyze the record extension
6769 Record_Type_Definition
6770 (Record_Extension_Part (Type_Def), Derived_Type);
6771 end if;
6773 End_Scope;
6775 -- Nothing else to do if there is an error in the derivation.
6776 -- An unusual case: the full view may be derived from a type in an
6777 -- instance, when the partial view was used illegally as an actual
6778 -- in that instance, leading to a circular definition.
6780 if Etype (Derived_Type) = Any_Type
6781 or else Etype (Parent_Type) = Derived_Type
6782 then
6783 return;
6784 end if;
6786 -- Set delayed freeze and then derive subprograms, we need to do
6787 -- this in this order so that derived subprograms inherit the
6788 -- derived freeze if necessary.
6790 Set_Has_Delayed_Freeze (Derived_Type);
6792 if Derive_Subps then
6793 Derive_Subprograms (Parent_Type, Derived_Type);
6794 end if;
6796 -- If we have a private extension which defines a constrained derived
6797 -- type mark as constrained here after we have derived subprograms. See
6798 -- comment on point 9. just above the body of Build_Derived_Record_Type.
6800 if Private_Extension and then Inherit_Discrims then
6801 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
6802 Set_Is_Constrained (Derived_Type, True);
6803 Set_Discriminant_Constraint (Derived_Type, Discs);
6805 elsif Is_Constrained (Parent_Type) then
6806 Set_Is_Constrained
6807 (Derived_Type, True);
6808 Set_Discriminant_Constraint
6809 (Derived_Type, Discriminant_Constraint (Parent_Type));
6810 end if;
6811 end if;
6813 -- Update the class_wide type, which shares the now-completed
6814 -- entity list with its specific type.
6816 if Is_Tagged then
6817 Set_First_Entity
6818 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
6819 Set_Last_Entity
6820 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
6821 end if;
6823 -- Update the scope of anonymous access types of discriminants and other
6824 -- components, to prevent scope anomalies in gigi, when the derivation
6825 -- appears in a scope nested within that of the parent.
6827 declare
6828 D : Entity_Id;
6830 begin
6831 D := First_Entity (Derived_Type);
6832 while Present (D) loop
6833 if Ekind (D) = E_Discriminant
6834 or else Ekind (D) = E_Component
6835 then
6836 if Is_Itype (Etype (D))
6837 and then Ekind (Etype (D)) = E_Anonymous_Access_Type
6838 then
6839 Set_Scope (Etype (D), Current_Scope);
6840 end if;
6841 end if;
6843 Next_Entity (D);
6844 end loop;
6845 end;
6846 end Build_Derived_Record_Type;
6848 ------------------------
6849 -- Build_Derived_Type --
6850 ------------------------
6852 procedure Build_Derived_Type
6853 (N : Node_Id;
6854 Parent_Type : Entity_Id;
6855 Derived_Type : Entity_Id;
6856 Is_Completion : Boolean;
6857 Derive_Subps : Boolean := True)
6859 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6861 begin
6862 -- Set common attributes
6864 Set_Scope (Derived_Type, Current_Scope);
6866 Set_Ekind (Derived_Type, Ekind (Parent_Base));
6867 Set_Etype (Derived_Type, Parent_Base);
6868 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
6870 Set_Size_Info (Derived_Type, Parent_Type);
6871 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6872 Set_Convention (Derived_Type, Convention (Parent_Type));
6873 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6875 -- The derived type inherits the representation clauses of the parent.
6876 -- However, for a private type that is completed by a derivation, there
6877 -- may be operation attributes that have been specified already (stream
6878 -- attributes and External_Tag) and those must be provided. Finally,
6879 -- if the partial view is a private extension, the representation items
6880 -- of the parent have been inherited already, and should not be chained
6881 -- twice to the derived type.
6883 if Is_Tagged_Type (Parent_Type)
6884 and then Present (First_Rep_Item (Derived_Type))
6885 then
6886 -- The existing items are either operational items or items inherited
6887 -- from a private extension declaration.
6889 declare
6890 Rep : Node_Id;
6891 -- Used to iterate over representation items of the derived type
6893 Last_Rep : Node_Id;
6894 -- Last representation item of the (non-empty) representation
6895 -- item list of the derived type.
6897 Found : Boolean := False;
6899 begin
6900 Rep := First_Rep_Item (Derived_Type);
6901 Last_Rep := Rep;
6902 while Present (Rep) loop
6903 if Rep = First_Rep_Item (Parent_Type) then
6904 Found := True;
6905 exit;
6907 else
6908 Rep := Next_Rep_Item (Rep);
6910 if Present (Rep) then
6911 Last_Rep := Rep;
6912 end if;
6913 end if;
6914 end loop;
6916 -- Here if we either encountered the parent type's first rep
6917 -- item on the derived type's rep item list (in which case
6918 -- Found is True, and we have nothing else to do), or if we
6919 -- reached the last rep item of the derived type, which is
6920 -- Last_Rep, in which case we further chain the parent type's
6921 -- rep items to those of the derived type.
6923 if not Found then
6924 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
6925 end if;
6926 end;
6928 else
6929 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
6930 end if;
6932 case Ekind (Parent_Type) is
6933 when Numeric_Kind =>
6934 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
6936 when Array_Kind =>
6937 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
6939 when E_Record_Type
6940 | E_Record_Subtype
6941 | Class_Wide_Kind =>
6942 Build_Derived_Record_Type
6943 (N, Parent_Type, Derived_Type, Derive_Subps);
6944 return;
6946 when Enumeration_Kind =>
6947 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
6949 when Access_Kind =>
6950 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
6952 when Incomplete_Or_Private_Kind =>
6953 Build_Derived_Private_Type
6954 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
6956 -- For discriminated types, the derivation includes deriving
6957 -- primitive operations. For others it is done below.
6959 if Is_Tagged_Type (Parent_Type)
6960 or else Has_Discriminants (Parent_Type)
6961 or else (Present (Full_View (Parent_Type))
6962 and then Has_Discriminants (Full_View (Parent_Type)))
6963 then
6964 return;
6965 end if;
6967 when Concurrent_Kind =>
6968 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
6970 when others =>
6971 raise Program_Error;
6972 end case;
6974 if Etype (Derived_Type) = Any_Type then
6975 return;
6976 end if;
6978 -- Set delayed freeze and then derive subprograms, we need to do this
6979 -- in this order so that derived subprograms inherit the derived freeze
6980 -- if necessary.
6982 Set_Has_Delayed_Freeze (Derived_Type);
6983 if Derive_Subps then
6984 Derive_Subprograms (Parent_Type, Derived_Type);
6985 end if;
6987 Set_Has_Primitive_Operations
6988 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
6989 end Build_Derived_Type;
6991 -----------------------
6992 -- Build_Discriminal --
6993 -----------------------
6995 procedure Build_Discriminal (Discrim : Entity_Id) is
6996 D_Minal : Entity_Id;
6997 CR_Disc : Entity_Id;
6999 begin
7000 -- A discriminal has the same name as the discriminant
7002 D_Minal :=
7003 Make_Defining_Identifier (Sloc (Discrim),
7004 Chars => Chars (Discrim));
7006 Set_Ekind (D_Minal, E_In_Parameter);
7007 Set_Mechanism (D_Minal, Default_Mechanism);
7008 Set_Etype (D_Minal, Etype (Discrim));
7010 Set_Discriminal (Discrim, D_Minal);
7011 Set_Discriminal_Link (D_Minal, Discrim);
7013 -- For task types, build at once the discriminants of the corresponding
7014 -- record, which are needed if discriminants are used in entry defaults
7015 -- and in family bounds.
7017 if Is_Concurrent_Type (Current_Scope)
7018 or else Is_Limited_Type (Current_Scope)
7019 then
7020 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
7022 Set_Ekind (CR_Disc, E_In_Parameter);
7023 Set_Mechanism (CR_Disc, Default_Mechanism);
7024 Set_Etype (CR_Disc, Etype (Discrim));
7025 Set_Discriminal_Link (CR_Disc, Discrim);
7026 Set_CR_Discriminant (Discrim, CR_Disc);
7027 end if;
7028 end Build_Discriminal;
7030 ------------------------------------
7031 -- Build_Discriminant_Constraints --
7032 ------------------------------------
7034 function Build_Discriminant_Constraints
7035 (T : Entity_Id;
7036 Def : Node_Id;
7037 Derived_Def : Boolean := False) return Elist_Id
7039 C : constant Node_Id := Constraint (Def);
7040 Nb_Discr : constant Nat := Number_Discriminants (T);
7042 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
7043 -- Saves the expression corresponding to a given discriminant in T
7045 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
7046 -- Return the Position number within array Discr_Expr of a discriminant
7047 -- D within the discriminant list of the discriminated type T.
7049 ------------------
7050 -- Pos_Of_Discr --
7051 ------------------
7053 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
7054 Disc : Entity_Id;
7056 begin
7057 Disc := First_Discriminant (T);
7058 for J in Discr_Expr'Range loop
7059 if Disc = D then
7060 return J;
7061 end if;
7063 Next_Discriminant (Disc);
7064 end loop;
7066 -- Note: Since this function is called on discriminants that are
7067 -- known to belong to the discriminated type, falling through the
7068 -- loop with no match signals an internal compiler error.
7070 raise Program_Error;
7071 end Pos_Of_Discr;
7073 -- Declarations local to Build_Discriminant_Constraints
7075 Discr : Entity_Id;
7076 E : Entity_Id;
7077 Elist : constant Elist_Id := New_Elmt_List;
7079 Constr : Node_Id;
7080 Expr : Node_Id;
7081 Id : Node_Id;
7082 Position : Nat;
7083 Found : Boolean;
7085 Discrim_Present : Boolean := False;
7087 -- Start of processing for Build_Discriminant_Constraints
7089 begin
7090 -- The following loop will process positional associations only.
7091 -- For a positional association, the (single) discriminant is
7092 -- implicitly specified by position, in textual order (RM 3.7.2).
7094 Discr := First_Discriminant (T);
7095 Constr := First (Constraints (C));
7096 for D in Discr_Expr'Range loop
7097 exit when Nkind (Constr) = N_Discriminant_Association;
7099 if No (Constr) then
7100 Error_Msg_N ("too few discriminants given in constraint", C);
7101 return New_Elmt_List;
7103 elsif Nkind (Constr) = N_Range
7104 or else (Nkind (Constr) = N_Attribute_Reference
7105 and then
7106 Attribute_Name (Constr) = Name_Range)
7107 then
7108 Error_Msg_N
7109 ("a range is not a valid discriminant constraint", Constr);
7110 Discr_Expr (D) := Error;
7112 else
7113 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
7114 Discr_Expr (D) := Constr;
7115 end if;
7117 Next_Discriminant (Discr);
7118 Next (Constr);
7119 end loop;
7121 if No (Discr) and then Present (Constr) then
7122 Error_Msg_N ("too many discriminants given in constraint", Constr);
7123 return New_Elmt_List;
7124 end if;
7126 -- Named associations can be given in any order, but if both positional
7127 -- and named associations are used in the same discriminant constraint,
7128 -- then positional associations must occur first, at their normal
7129 -- position. Hence once a named association is used, the rest of the
7130 -- discriminant constraint must use only named associations.
7132 while Present (Constr) loop
7134 -- Positional association forbidden after a named association
7136 if Nkind (Constr) /= N_Discriminant_Association then
7137 Error_Msg_N ("positional association follows named one", Constr);
7138 return New_Elmt_List;
7140 -- Otherwise it is a named association
7142 else
7143 -- E records the type of the discriminants in the named
7144 -- association. All the discriminants specified in the same name
7145 -- association must have the same type.
7147 E := Empty;
7149 -- Search the list of discriminants in T to see if the simple name
7150 -- given in the constraint matches any of them.
7152 Id := First (Selector_Names (Constr));
7153 while Present (Id) loop
7154 Found := False;
7156 -- If Original_Discriminant is present, we are processing a
7157 -- generic instantiation and this is an instance node. We need
7158 -- to find the name of the corresponding discriminant in the
7159 -- actual record type T and not the name of the discriminant in
7160 -- the generic formal. Example:
7162 -- generic
7163 -- type G (D : int) is private;
7164 -- package P is
7165 -- subtype W is G (D => 1);
7166 -- end package;
7167 -- type Rec (X : int) is record ... end record;
7168 -- package Q is new P (G => Rec);
7170 -- At the point of the instantiation, formal type G is Rec
7171 -- and therefore when reanalyzing "subtype W is G (D => 1);"
7172 -- which really looks like "subtype W is Rec (D => 1);" at
7173 -- the point of instantiation, we want to find the discriminant
7174 -- that corresponds to D in Rec, ie X.
7176 if Present (Original_Discriminant (Id)) then
7177 Discr := Find_Corresponding_Discriminant (Id, T);
7178 Found := True;
7180 else
7181 Discr := First_Discriminant (T);
7182 while Present (Discr) loop
7183 if Chars (Discr) = Chars (Id) then
7184 Found := True;
7185 exit;
7186 end if;
7188 Next_Discriminant (Discr);
7189 end loop;
7191 if not Found then
7192 Error_Msg_N ("& does not match any discriminant", Id);
7193 return New_Elmt_List;
7195 -- The following is only useful for the benefit of generic
7196 -- instances but it does not interfere with other
7197 -- processing for the non-generic case so we do it in all
7198 -- cases (for generics this statement is executed when
7199 -- processing the generic definition, see comment at the
7200 -- beginning of this if statement).
7202 else
7203 Set_Original_Discriminant (Id, Discr);
7204 end if;
7205 end if;
7207 Position := Pos_Of_Discr (T, Discr);
7209 if Present (Discr_Expr (Position)) then
7210 Error_Msg_N ("duplicate constraint for discriminant&", Id);
7212 else
7213 -- Each discriminant specified in the same named association
7214 -- must be associated with a separate copy of the
7215 -- corresponding expression.
7217 if Present (Next (Id)) then
7218 Expr := New_Copy_Tree (Expression (Constr));
7219 Set_Parent (Expr, Parent (Expression (Constr)));
7220 else
7221 Expr := Expression (Constr);
7222 end if;
7224 Discr_Expr (Position) := Expr;
7225 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
7226 end if;
7228 -- A discriminant association with more than one discriminant
7229 -- name is only allowed if the named discriminants are all of
7230 -- the same type (RM 3.7.1(8)).
7232 if E = Empty then
7233 E := Base_Type (Etype (Discr));
7235 elsif Base_Type (Etype (Discr)) /= E then
7236 Error_Msg_N
7237 ("all discriminants in an association " &
7238 "must have the same type", Id);
7239 end if;
7241 Next (Id);
7242 end loop;
7243 end if;
7245 Next (Constr);
7246 end loop;
7248 -- A discriminant constraint must provide exactly one value for each
7249 -- discriminant of the type (RM 3.7.1(8)).
7251 for J in Discr_Expr'Range loop
7252 if No (Discr_Expr (J)) then
7253 Error_Msg_N ("too few discriminants given in constraint", C);
7254 return New_Elmt_List;
7255 end if;
7256 end loop;
7258 -- Determine if there are discriminant expressions in the constraint
7260 for J in Discr_Expr'Range loop
7261 if Denotes_Discriminant
7262 (Discr_Expr (J), Check_Concurrent => True)
7263 then
7264 Discrim_Present := True;
7265 end if;
7266 end loop;
7268 -- Build an element list consisting of the expressions given in the
7269 -- discriminant constraint and apply the appropriate checks. The list
7270 -- is constructed after resolving any named discriminant associations
7271 -- and therefore the expressions appear in the textual order of the
7272 -- discriminants.
7274 Discr := First_Discriminant (T);
7275 for J in Discr_Expr'Range loop
7276 if Discr_Expr (J) /= Error then
7277 Append_Elmt (Discr_Expr (J), Elist);
7279 -- If any of the discriminant constraints is given by a
7280 -- discriminant and we are in a derived type declaration we
7281 -- have a discriminant renaming. Establish link between new
7282 -- and old discriminant.
7284 if Denotes_Discriminant (Discr_Expr (J)) then
7285 if Derived_Def then
7286 Set_Corresponding_Discriminant
7287 (Entity (Discr_Expr (J)), Discr);
7288 end if;
7290 -- Force the evaluation of non-discriminant expressions.
7291 -- If we have found a discriminant in the constraint 3.4(26)
7292 -- and 3.8(18) demand that no range checks are performed are
7293 -- after evaluation. If the constraint is for a component
7294 -- definition that has a per-object constraint, expressions are
7295 -- evaluated but not checked either. In all other cases perform
7296 -- a range check.
7298 else
7299 if Discrim_Present then
7300 null;
7302 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
7303 and then
7304 Has_Per_Object_Constraint
7305 (Defining_Identifier (Parent (Parent (Def))))
7306 then
7307 null;
7309 elsif Is_Access_Type (Etype (Discr)) then
7310 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
7312 else
7313 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
7314 end if;
7316 Force_Evaluation (Discr_Expr (J));
7317 end if;
7319 -- Check that the designated type of an access discriminant's
7320 -- expression is not a class-wide type unless the discriminant's
7321 -- designated type is also class-wide.
7323 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
7324 and then not Is_Class_Wide_Type
7325 (Designated_Type (Etype (Discr)))
7326 and then Etype (Discr_Expr (J)) /= Any_Type
7327 and then Is_Class_Wide_Type
7328 (Designated_Type (Etype (Discr_Expr (J))))
7329 then
7330 Wrong_Type (Discr_Expr (J), Etype (Discr));
7331 end if;
7332 end if;
7334 Next_Discriminant (Discr);
7335 end loop;
7337 return Elist;
7338 end Build_Discriminant_Constraints;
7340 ---------------------------------
7341 -- Build_Discriminated_Subtype --
7342 ---------------------------------
7344 procedure Build_Discriminated_Subtype
7345 (T : Entity_Id;
7346 Def_Id : Entity_Id;
7347 Elist : Elist_Id;
7348 Related_Nod : Node_Id;
7349 For_Access : Boolean := False)
7351 Has_Discrs : constant Boolean := Has_Discriminants (T);
7352 Constrained : constant Boolean :=
7353 (Has_Discrs
7354 and then not Is_Empty_Elmt_List (Elist)
7355 and then not Is_Class_Wide_Type (T))
7356 or else Is_Constrained (T);
7358 begin
7359 if Ekind (T) = E_Record_Type then
7360 if For_Access then
7361 Set_Ekind (Def_Id, E_Private_Subtype);
7362 Set_Is_For_Access_Subtype (Def_Id, True);
7363 else
7364 Set_Ekind (Def_Id, E_Record_Subtype);
7365 end if;
7367 elsif Ekind (T) = E_Task_Type then
7368 Set_Ekind (Def_Id, E_Task_Subtype);
7370 elsif Ekind (T) = E_Protected_Type then
7371 Set_Ekind (Def_Id, E_Protected_Subtype);
7373 elsif Is_Private_Type (T) then
7374 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
7376 elsif Is_Class_Wide_Type (T) then
7377 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
7379 else
7380 -- Incomplete type. Attach subtype to list of dependents, to be
7381 -- completed with full view of parent type, unless is it the
7382 -- designated subtype of a record component within an init_proc.
7383 -- This last case arises for a component of an access type whose
7384 -- designated type is incomplete (e.g. a Taft Amendment type).
7385 -- The designated subtype is within an inner scope, and needs no
7386 -- elaboration, because only the access type is needed in the
7387 -- initialization procedure.
7389 Set_Ekind (Def_Id, Ekind (T));
7391 if For_Access and then Within_Init_Proc then
7392 null;
7393 else
7394 Append_Elmt (Def_Id, Private_Dependents (T));
7395 end if;
7396 end if;
7398 Set_Etype (Def_Id, T);
7399 Init_Size_Align (Def_Id);
7400 Set_Has_Discriminants (Def_Id, Has_Discrs);
7401 Set_Is_Constrained (Def_Id, Constrained);
7403 Set_First_Entity (Def_Id, First_Entity (T));
7404 Set_Last_Entity (Def_Id, Last_Entity (T));
7405 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7407 if Is_Tagged_Type (T) then
7408 Set_Is_Tagged_Type (Def_Id);
7409 Make_Class_Wide_Type (Def_Id);
7410 end if;
7412 Set_Stored_Constraint (Def_Id, No_Elist);
7414 if Has_Discrs then
7415 Set_Discriminant_Constraint (Def_Id, Elist);
7416 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
7417 end if;
7419 if Is_Tagged_Type (T) then
7421 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
7422 -- concurrent record type (which has the list of primitive
7423 -- operations).
7425 if Ada_Version >= Ada_05
7426 and then Is_Concurrent_Type (T)
7427 then
7428 Set_Corresponding_Record_Type (Def_Id,
7429 Corresponding_Record_Type (T));
7430 else
7431 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
7432 end if;
7434 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
7435 end if;
7437 -- Subtypes introduced by component declarations do not need to be
7438 -- marked as delayed, and do not get freeze nodes, because the semantics
7439 -- verifies that the parents of the subtypes are frozen before the
7440 -- enclosing record is frozen.
7442 if not Is_Type (Scope (Def_Id)) then
7443 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
7445 if Is_Private_Type (T)
7446 and then Present (Full_View (T))
7447 then
7448 Conditional_Delay (Def_Id, Full_View (T));
7449 else
7450 Conditional_Delay (Def_Id, T);
7451 end if;
7452 end if;
7454 if Is_Record_Type (T) then
7455 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
7457 if Has_Discrs
7458 and then not Is_Empty_Elmt_List (Elist)
7459 and then not For_Access
7460 then
7461 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
7462 elsif not For_Access then
7463 Set_Cloned_Subtype (Def_Id, T);
7464 end if;
7465 end if;
7466 end Build_Discriminated_Subtype;
7468 ---------------------------
7469 -- Build_Itype_Reference --
7470 ---------------------------
7472 procedure Build_Itype_Reference
7473 (Ityp : Entity_Id;
7474 Nod : Node_Id)
7476 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
7477 begin
7478 Set_Itype (IR, Ityp);
7479 Insert_After (Nod, IR);
7480 end Build_Itype_Reference;
7482 ------------------------
7483 -- Build_Scalar_Bound --
7484 ------------------------
7486 function Build_Scalar_Bound
7487 (Bound : Node_Id;
7488 Par_T : Entity_Id;
7489 Der_T : Entity_Id) return Node_Id
7491 New_Bound : Entity_Id;
7493 begin
7494 -- Note: not clear why this is needed, how can the original bound
7495 -- be unanalyzed at this point? and if it is, what business do we
7496 -- have messing around with it? and why is the base type of the
7497 -- parent type the right type for the resolution. It probably is
7498 -- not! It is OK for the new bound we are creating, but not for
7499 -- the old one??? Still if it never happens, no problem!
7501 Analyze_And_Resolve (Bound, Base_Type (Par_T));
7503 if Nkind (Bound) = N_Integer_Literal
7504 or else Nkind (Bound) = N_Real_Literal
7505 then
7506 New_Bound := New_Copy (Bound);
7507 Set_Etype (New_Bound, Der_T);
7508 Set_Analyzed (New_Bound);
7510 elsif Is_Entity_Name (Bound) then
7511 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
7513 -- The following is almost certainly wrong. What business do we have
7514 -- relocating a node (Bound) that is presumably still attached to
7515 -- the tree elsewhere???
7517 else
7518 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
7519 end if;
7521 Set_Etype (New_Bound, Der_T);
7522 return New_Bound;
7523 end Build_Scalar_Bound;
7525 --------------------------------
7526 -- Build_Underlying_Full_View --
7527 --------------------------------
7529 procedure Build_Underlying_Full_View
7530 (N : Node_Id;
7531 Typ : Entity_Id;
7532 Par : Entity_Id)
7534 Loc : constant Source_Ptr := Sloc (N);
7535 Subt : constant Entity_Id :=
7536 Make_Defining_Identifier
7537 (Loc, New_External_Name (Chars (Typ), 'S'));
7539 Constr : Node_Id;
7540 Indic : Node_Id;
7541 C : Node_Id;
7542 Id : Node_Id;
7544 procedure Set_Discriminant_Name (Id : Node_Id);
7545 -- If the derived type has discriminants, they may rename discriminants
7546 -- of the parent. When building the full view of the parent, we need to
7547 -- recover the names of the original discriminants if the constraint is
7548 -- given by named associations.
7550 ---------------------------
7551 -- Set_Discriminant_Name --
7552 ---------------------------
7554 procedure Set_Discriminant_Name (Id : Node_Id) is
7555 Disc : Entity_Id;
7557 begin
7558 Set_Original_Discriminant (Id, Empty);
7560 if Has_Discriminants (Typ) then
7561 Disc := First_Discriminant (Typ);
7562 while Present (Disc) loop
7563 if Chars (Disc) = Chars (Id)
7564 and then Present (Corresponding_Discriminant (Disc))
7565 then
7566 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
7567 end if;
7568 Next_Discriminant (Disc);
7569 end loop;
7570 end if;
7571 end Set_Discriminant_Name;
7573 -- Start of processing for Build_Underlying_Full_View
7575 begin
7576 if Nkind (N) = N_Full_Type_Declaration then
7577 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
7579 elsif Nkind (N) = N_Subtype_Declaration then
7580 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
7582 elsif Nkind (N) = N_Component_Declaration then
7583 Constr :=
7584 New_Copy_Tree
7585 (Constraint (Subtype_Indication (Component_Definition (N))));
7587 else
7588 raise Program_Error;
7589 end if;
7591 C := First (Constraints (Constr));
7592 while Present (C) loop
7593 if Nkind (C) = N_Discriminant_Association then
7594 Id := First (Selector_Names (C));
7595 while Present (Id) loop
7596 Set_Discriminant_Name (Id);
7597 Next (Id);
7598 end loop;
7599 end if;
7601 Next (C);
7602 end loop;
7604 Indic :=
7605 Make_Subtype_Declaration (Loc,
7606 Defining_Identifier => Subt,
7607 Subtype_Indication =>
7608 Make_Subtype_Indication (Loc,
7609 Subtype_Mark => New_Reference_To (Par, Loc),
7610 Constraint => New_Copy_Tree (Constr)));
7612 -- If this is a component subtype for an outer itype, it is not
7613 -- a list member, so simply set the parent link for analysis: if
7614 -- the enclosing type does not need to be in a declarative list,
7615 -- neither do the components.
7617 if Is_List_Member (N)
7618 and then Nkind (N) /= N_Component_Declaration
7619 then
7620 Insert_Before (N, Indic);
7621 else
7622 Set_Parent (Indic, Parent (N));
7623 end if;
7625 Analyze (Indic);
7626 Set_Underlying_Full_View (Typ, Full_View (Subt));
7627 end Build_Underlying_Full_View;
7629 -------------------------------
7630 -- Check_Abstract_Interfaces --
7631 -------------------------------
7633 procedure Check_Abstract_Interfaces (N : Node_Id; Def : Node_Id) is
7635 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
7636 -- Local subprogram used to avoid code duplication. In case of error
7637 -- the message will be associated to Error_Node.
7639 ------------------
7640 -- Check_Ifaces --
7641 ------------------
7643 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
7644 begin
7645 -- Ada 2005 (AI-345): Protected interfaces can only inherit from
7646 -- limited, synchronized or protected interfaces.
7648 if Protected_Present (Def) then
7649 if Limited_Present (Iface_Def)
7650 or else Synchronized_Present (Iface_Def)
7651 or else Protected_Present (Iface_Def)
7652 then
7653 null;
7655 elsif Task_Present (Iface_Def) then
7656 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
7657 & " from task interface", Error_Node);
7659 else
7660 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
7661 & " from non-limited interface", Error_Node);
7662 end if;
7664 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
7665 -- limited and synchronized.
7667 elsif Synchronized_Present (Def) then
7668 if Limited_Present (Iface_Def)
7669 or else Synchronized_Present (Iface_Def)
7670 then
7671 null;
7673 elsif Protected_Present (Iface_Def) then
7674 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
7675 & " from protected interface", Error_Node);
7677 elsif Task_Present (Iface_Def) then
7678 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
7679 & " from task interface", Error_Node);
7681 else
7682 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
7683 & " from non-limited interface", Error_Node);
7684 end if;
7686 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
7687 -- synchronized or task interfaces.
7689 elsif Task_Present (Def) then
7690 if Limited_Present (Iface_Def)
7691 or else Synchronized_Present (Iface_Def)
7692 or else Task_Present (Iface_Def)
7693 then
7694 null;
7696 elsif Protected_Present (Iface_Def) then
7697 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
7698 & " protected interface", Error_Node);
7700 else
7701 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
7702 & " non-limited interface", Error_Node);
7703 end if;
7704 end if;
7705 end Check_Ifaces;
7707 -- Local variables
7709 Iface : Node_Id;
7710 Iface_Def : Node_Id;
7711 Iface_Typ : Entity_Id;
7712 Parent_Node : Node_Id;
7714 -- Start of processing for Check_Abstract_Interfaces
7716 begin
7717 -- Why is this still unsupported???
7719 if Nkind (N) = N_Private_Extension_Declaration then
7720 return;
7721 end if;
7723 -- Check the parent in case of derivation of interface type
7725 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
7726 and then Is_Interface (Etype (Defining_Identifier (N)))
7727 then
7728 Parent_Node := Parent (Etype (Defining_Identifier (N)));
7730 Check_Ifaces
7731 (Iface_Def => Type_Definition (Parent_Node),
7732 Error_Node => Subtype_Indication (Type_Definition (N)));
7733 end if;
7735 Iface := First (Interface_List (Def));
7736 while Present (Iface) loop
7737 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
7739 Parent_Node := Parent (Base_Type (Iface_Typ));
7740 Iface_Def := Type_Definition (Parent_Node);
7742 if not Is_Interface (Iface_Typ) then
7743 Error_Msg_NE ("(Ada 2005) & must be an interface",
7744 Iface, Iface_Typ);
7746 else
7747 -- "The declaration of a specific descendant of an interface
7748 -- type freezes the interface type" RM 13.14
7750 Freeze_Before (N, Iface_Typ);
7751 Check_Ifaces (Iface_Def, Error_Node => Iface);
7752 end if;
7754 Next (Iface);
7755 end loop;
7756 end Check_Abstract_Interfaces;
7758 -------------------------------
7759 -- Check_Abstract_Overriding --
7760 -------------------------------
7762 procedure Check_Abstract_Overriding (T : Entity_Id) is
7763 Alias_Subp : Entity_Id;
7764 Elmt : Elmt_Id;
7765 Op_List : Elist_Id;
7766 Subp : Entity_Id;
7767 Type_Def : Node_Id;
7769 begin
7770 Op_List := Primitive_Operations (T);
7772 -- Loop to check primitive operations
7774 Elmt := First_Elmt (Op_List);
7775 while Present (Elmt) loop
7776 Subp := Node (Elmt);
7777 Alias_Subp := Alias (Subp);
7779 -- Inherited subprograms are identified by the fact that they do not
7780 -- come from source, and the associated source location is the
7781 -- location of the first subtype of the derived type.
7783 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
7784 -- subprograms that "require overriding".
7786 -- Special exception, do not complain about failure to override the
7787 -- stream routines _Input and _Output, as well as the primitive
7788 -- operations used in dispatching selects since we always provide
7789 -- automatic overridings for these subprograms.
7791 -- Also ignore this rule for convention CIL since .NET libraries
7792 -- do bizarre things with interfaces???
7794 -- The partial view of T may have been a private extension, for
7795 -- which inherited functions dispatching on result are abstract.
7796 -- If the full view is a null extension, there is no need for
7797 -- overriding in Ada2005, but wrappers need to be built for them
7798 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
7800 -- Use elseif here and avoid above goto???
7802 if Is_Null_Extension (T)
7803 and then Has_Controlling_Result (Subp)
7804 and then Ada_Version >= Ada_05
7805 and then Present (Alias (Subp))
7806 and then not Comes_From_Source (Subp)
7807 and then not Is_Abstract_Subprogram (Alias (Subp))
7808 then
7809 goto Next_Subp;
7810 end if;
7812 if (Is_Abstract_Subprogram (Subp)
7813 or else Requires_Overriding (Subp)
7814 or else (Has_Controlling_Result (Subp)
7815 and then Present (Alias_Subp)
7816 and then not Comes_From_Source (Subp)
7817 and then Sloc (Subp) = Sloc (First_Subtype (T))))
7818 and then not Is_TSS (Subp, TSS_Stream_Input)
7819 and then not Is_TSS (Subp, TSS_Stream_Output)
7820 and then not Is_Abstract_Type (T)
7821 and then Convention (T) /= Convention_CIL
7822 and then Chars (Subp) /= Name_uDisp_Asynchronous_Select
7823 and then Chars (Subp) /= Name_uDisp_Conditional_Select
7824 and then Chars (Subp) /= Name_uDisp_Get_Prim_Op_Kind
7825 and then Chars (Subp) /= Name_uDisp_Timed_Select
7827 -- Ada 2005 (AI-251): Do not consider hidden entities associated
7828 -- with abstract interface types because the check will be done
7829 -- with the aliased entity (otherwise we generate a duplicated
7830 -- error message).
7832 and then not Present (Abstract_Interface_Alias (Subp))
7833 then
7834 if Present (Alias_Subp) then
7836 -- Only perform the check for a derived subprogram when the
7837 -- type has an explicit record extension. This avoids
7838 -- incorrectly flagging abstract subprograms for the case of a
7839 -- type without an extension derived from a formal type with a
7840 -- tagged actual (can occur within a private part).
7842 -- Ada 2005 (AI-391): In the case of an inherited function with
7843 -- a controlling result of the type, the rule does not apply if
7844 -- the type is a null extension (unless the parent function
7845 -- itself is abstract, in which case the function must still be
7846 -- be overridden). The expander will generate an overriding
7847 -- wrapper function calling the parent subprogram (see
7848 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
7850 Type_Def := Type_Definition (Parent (T));
7851 if Nkind (Type_Def) = N_Derived_Type_Definition
7852 and then Present (Record_Extension_Part (Type_Def))
7853 and then
7854 (Ada_Version < Ada_05
7855 or else not Is_Null_Extension (T)
7856 or else Ekind (Subp) = E_Procedure
7857 or else not Has_Controlling_Result (Subp)
7858 or else Is_Abstract_Subprogram (Alias_Subp)
7859 or else Requires_Overriding (Subp)
7860 or else Is_Access_Type (Etype (Subp)))
7861 then
7862 Error_Msg_NE
7863 ("type must be declared abstract or & overridden",
7864 T, Subp);
7866 -- Traverse the whole chain of aliased subprograms to
7867 -- complete the error notification. This is especially
7868 -- useful for traceability of the chain of entities when the
7869 -- subprogram corresponds with an interface subprogram
7870 -- (which might be defined in another package)
7872 if Present (Alias_Subp) then
7873 declare
7874 E : Entity_Id;
7876 begin
7877 E := Subp;
7878 while Present (Alias (E)) loop
7879 Error_Msg_Sloc := Sloc (E);
7880 Error_Msg_NE ("\& has been inherited #", T, Subp);
7881 E := Alias (E);
7882 end loop;
7884 Error_Msg_Sloc := Sloc (E);
7885 Error_Msg_NE
7886 ("\& has been inherited from subprogram #", T, Subp);
7887 end;
7888 end if;
7890 -- Ada 2005 (AI-345): Protected or task type implementing
7891 -- abstract interfaces.
7893 elsif Is_Concurrent_Record_Type (T)
7894 and then Present (Abstract_Interfaces (T))
7895 then
7896 -- The controlling formal of Subp must be of mode "out",
7897 -- "in out" or an access-to-variable to be overridden.
7899 -- Error message below needs rewording (remember comma
7900 -- in -gnatj mode) ???
7902 if Ekind (First_Formal (Subp)) = E_In_Parameter then
7903 Error_Msg_NE
7904 ("first formal of & must be of mode `OUT`, `IN OUT` " &
7905 "or access-to-variable", T, Subp);
7906 Error_Msg_N
7907 ("\to be overridden by protected procedure or " &
7908 "entry (RM 9.4(11.9/2))", T);
7910 -- Some other kind of overriding failure
7912 else
7913 Error_Msg_NE
7914 ("interface subprogram & must be overridden",
7915 T, Subp);
7916 end if;
7917 end if;
7919 else
7920 Error_Msg_Node_2 := T;
7921 Error_Msg_N
7922 ("abstract subprogram& not allowed for type&", Subp);
7924 -- Also post unconditional warning on the type (unconditional
7925 -- so that if there are more than one of these cases, we get
7926 -- them all, and not just the first one).
7928 Error_Msg_Node_2 := Subp;
7929 Error_Msg_N
7930 ("nonabstract type& has abstract subprogram&!", T);
7931 end if;
7932 end if;
7934 <<Next_Subp>>
7935 Next_Elmt (Elmt);
7936 end loop;
7937 end Check_Abstract_Overriding;
7939 ------------------------------------------------
7940 -- Check_Access_Discriminant_Requires_Limited --
7941 ------------------------------------------------
7943 procedure Check_Access_Discriminant_Requires_Limited
7944 (D : Node_Id;
7945 Loc : Node_Id)
7947 begin
7948 -- A discriminant_specification for an access discriminant shall appear
7949 -- only in the declaration for a task or protected type, or for a type
7950 -- with the reserved word 'limited' in its definition or in one of its
7951 -- ancestors. (RM 3.7(10))
7953 if Nkind (Discriminant_Type (D)) = N_Access_Definition
7954 and then not Is_Concurrent_Type (Current_Scope)
7955 and then not Is_Concurrent_Record_Type (Current_Scope)
7956 and then not Is_Limited_Record (Current_Scope)
7957 and then Ekind (Current_Scope) /= E_Limited_Private_Type
7958 then
7959 Error_Msg_N
7960 ("access discriminants allowed only for limited types", Loc);
7961 end if;
7962 end Check_Access_Discriminant_Requires_Limited;
7964 -----------------------------------
7965 -- Check_Aliased_Component_Types --
7966 -----------------------------------
7968 procedure Check_Aliased_Component_Types (T : Entity_Id) is
7969 C : Entity_Id;
7971 begin
7972 -- ??? Also need to check components of record extensions, but not
7973 -- components of protected types (which are always limited).
7975 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
7976 -- types to be unconstrained. This is safe because it is illegal to
7977 -- create access subtypes to such types with explicit discriminant
7978 -- constraints.
7980 if not Is_Limited_Type (T) then
7981 if Ekind (T) = E_Record_Type then
7982 C := First_Component (T);
7983 while Present (C) loop
7984 if Is_Aliased (C)
7985 and then Has_Discriminants (Etype (C))
7986 and then not Is_Constrained (Etype (C))
7987 and then not In_Instance_Body
7988 and then Ada_Version < Ada_05
7989 then
7990 Error_Msg_N
7991 ("aliased component must be constrained (RM 3.6(11))",
7993 end if;
7995 Next_Component (C);
7996 end loop;
7998 elsif Ekind (T) = E_Array_Type then
7999 if Has_Aliased_Components (T)
8000 and then Has_Discriminants (Component_Type (T))
8001 and then not Is_Constrained (Component_Type (T))
8002 and then not In_Instance_Body
8003 and then Ada_Version < Ada_05
8004 then
8005 Error_Msg_N
8006 ("aliased component type must be constrained (RM 3.6(11))",
8008 end if;
8009 end if;
8010 end if;
8011 end Check_Aliased_Component_Types;
8013 ----------------------
8014 -- Check_Completion --
8015 ----------------------
8017 procedure Check_Completion (Body_Id : Node_Id := Empty) is
8018 E : Entity_Id;
8020 procedure Post_Error;
8021 -- Post error message for lack of completion for entity E
8023 ----------------
8024 -- Post_Error --
8025 ----------------
8027 procedure Post_Error is
8028 begin
8029 if not Comes_From_Source (E) then
8031 if Ekind (E) = E_Task_Type
8032 or else Ekind (E) = E_Protected_Type
8033 then
8034 -- It may be an anonymous protected type created for a
8035 -- single variable. Post error on variable, if present.
8037 declare
8038 Var : Entity_Id;
8040 begin
8041 Var := First_Entity (Current_Scope);
8042 while Present (Var) loop
8043 exit when Etype (Var) = E
8044 and then Comes_From_Source (Var);
8046 Next_Entity (Var);
8047 end loop;
8049 if Present (Var) then
8050 E := Var;
8051 end if;
8052 end;
8053 end if;
8054 end if;
8056 -- If a generated entity has no completion, then either previous
8057 -- semantic errors have disabled the expansion phase, or else we had
8058 -- missing subunits, or else we are compiling without expansion,
8059 -- or else something is very wrong.
8061 if not Comes_From_Source (E) then
8062 pragma Assert
8063 (Serious_Errors_Detected > 0
8064 or else Configurable_Run_Time_Violations > 0
8065 or else Subunits_Missing
8066 or else not Expander_Active);
8067 return;
8069 -- Here for source entity
8071 else
8072 -- Here if no body to post the error message, so we post the error
8073 -- on the declaration that has no completion. This is not really
8074 -- the right place to post it, think about this later ???
8076 if No (Body_Id) then
8077 if Is_Type (E) then
8078 Error_Msg_NE
8079 ("missing full declaration for }", Parent (E), E);
8080 else
8081 Error_Msg_NE
8082 ("missing body for &", Parent (E), E);
8083 end if;
8085 -- Package body has no completion for a declaration that appears
8086 -- in the corresponding spec. Post error on the body, with a
8087 -- reference to the non-completed declaration.
8089 else
8090 Error_Msg_Sloc := Sloc (E);
8092 if Is_Type (E) then
8093 Error_Msg_NE
8094 ("missing full declaration for }!", Body_Id, E);
8096 elsif Is_Overloadable (E)
8097 and then Current_Entity_In_Scope (E) /= E
8098 then
8099 -- It may be that the completion is mistyped and appears
8100 -- as a distinct overloading of the entity.
8102 declare
8103 Candidate : constant Entity_Id :=
8104 Current_Entity_In_Scope (E);
8105 Decl : constant Node_Id :=
8106 Unit_Declaration_Node (Candidate);
8108 begin
8109 if Is_Overloadable (Candidate)
8110 and then Ekind (Candidate) = Ekind (E)
8111 and then Nkind (Decl) = N_Subprogram_Body
8112 and then Acts_As_Spec (Decl)
8113 then
8114 Check_Type_Conformant (Candidate, E);
8116 else
8117 Error_Msg_NE ("missing body for & declared#!",
8118 Body_Id, E);
8119 end if;
8120 end;
8121 else
8122 Error_Msg_NE ("missing body for & declared#!",
8123 Body_Id, E);
8124 end if;
8125 end if;
8126 end if;
8127 end Post_Error;
8129 -- Start processing for Check_Completion
8131 begin
8132 E := First_Entity (Current_Scope);
8133 while Present (E) loop
8134 if Is_Intrinsic_Subprogram (E) then
8135 null;
8137 -- The following situation requires special handling: a child
8138 -- unit that appears in the context clause of the body of its
8139 -- parent:
8141 -- procedure Parent.Child (...);
8143 -- with Parent.Child;
8144 -- package body Parent is
8146 -- Here Parent.Child appears as a local entity, but should not
8147 -- be flagged as requiring completion, because it is a
8148 -- compilation unit.
8150 -- Ignore missing completion for a subprogram that does not come from
8151 -- source (including the _Call primitive operation of RAS types,
8152 -- which has to have the flag Comes_From_Source for other purposes):
8153 -- we assume that the expander will provide the missing completion.
8155 elsif Ekind (E) = E_Function
8156 or else Ekind (E) = E_Procedure
8157 or else Ekind (E) = E_Generic_Function
8158 or else Ekind (E) = E_Generic_Procedure
8159 then
8160 if not Has_Completion (E)
8161 and then not (Is_Subprogram (E)
8162 and then Is_Abstract_Subprogram (E))
8163 and then not (Is_Subprogram (E)
8164 and then
8165 (not Comes_From_Source (E)
8166 or else Chars (E) = Name_uCall))
8167 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
8168 N_Compilation_Unit
8169 and then Chars (E) /= Name_uSize
8170 then
8171 Post_Error;
8172 end if;
8174 elsif Is_Entry (E) then
8175 if not Has_Completion (E) and then
8176 (Ekind (Scope (E)) = E_Protected_Object
8177 or else Ekind (Scope (E)) = E_Protected_Type)
8178 then
8179 Post_Error;
8180 end if;
8182 elsif Is_Package_Or_Generic_Package (E) then
8183 if Unit_Requires_Body (E) then
8184 if not Has_Completion (E)
8185 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
8186 N_Compilation_Unit
8187 then
8188 Post_Error;
8189 end if;
8191 elsif not Is_Child_Unit (E) then
8192 May_Need_Implicit_Body (E);
8193 end if;
8195 elsif Ekind (E) = E_Incomplete_Type
8196 and then No (Underlying_Type (E))
8197 then
8198 Post_Error;
8200 elsif (Ekind (E) = E_Task_Type or else
8201 Ekind (E) = E_Protected_Type)
8202 and then not Has_Completion (E)
8203 then
8204 Post_Error;
8206 -- A single task declared in the current scope is a constant, verify
8207 -- that the body of its anonymous type is in the same scope. If the
8208 -- task is defined elsewhere, this may be a renaming declaration for
8209 -- which no completion is needed.
8211 elsif Ekind (E) = E_Constant
8212 and then Ekind (Etype (E)) = E_Task_Type
8213 and then not Has_Completion (Etype (E))
8214 and then Scope (Etype (E)) = Current_Scope
8215 then
8216 Post_Error;
8218 elsif Ekind (E) = E_Protected_Object
8219 and then not Has_Completion (Etype (E))
8220 then
8221 Post_Error;
8223 elsif Ekind (E) = E_Record_Type then
8224 if Is_Tagged_Type (E) then
8225 Check_Abstract_Overriding (E);
8226 Check_Conventions (E);
8227 end if;
8229 Check_Aliased_Component_Types (E);
8231 elsif Ekind (E) = E_Array_Type then
8232 Check_Aliased_Component_Types (E);
8234 end if;
8236 Next_Entity (E);
8237 end loop;
8238 end Check_Completion;
8240 ----------------------------
8241 -- Check_Delta_Expression --
8242 ----------------------------
8244 procedure Check_Delta_Expression (E : Node_Id) is
8245 begin
8246 if not (Is_Real_Type (Etype (E))) then
8247 Wrong_Type (E, Any_Real);
8249 elsif not Is_OK_Static_Expression (E) then
8250 Flag_Non_Static_Expr
8251 ("non-static expression used for delta value!", E);
8253 elsif not UR_Is_Positive (Expr_Value_R (E)) then
8254 Error_Msg_N ("delta expression must be positive", E);
8256 else
8257 return;
8258 end if;
8260 -- If any of above errors occurred, then replace the incorrect
8261 -- expression by the real 0.1, which should prevent further errors.
8263 Rewrite (E,
8264 Make_Real_Literal (Sloc (E), Ureal_Tenth));
8265 Analyze_And_Resolve (E, Standard_Float);
8266 end Check_Delta_Expression;
8268 -----------------------------
8269 -- Check_Digits_Expression --
8270 -----------------------------
8272 procedure Check_Digits_Expression (E : Node_Id) is
8273 begin
8274 if not (Is_Integer_Type (Etype (E))) then
8275 Wrong_Type (E, Any_Integer);
8277 elsif not Is_OK_Static_Expression (E) then
8278 Flag_Non_Static_Expr
8279 ("non-static expression used for digits value!", E);
8281 elsif Expr_Value (E) <= 0 then
8282 Error_Msg_N ("digits value must be greater than zero", E);
8284 else
8285 return;
8286 end if;
8288 -- If any of above errors occurred, then replace the incorrect
8289 -- expression by the integer 1, which should prevent further errors.
8291 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
8292 Analyze_And_Resolve (E, Standard_Integer);
8294 end Check_Digits_Expression;
8296 --------------------------
8297 -- Check_Initialization --
8298 --------------------------
8300 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
8301 begin
8302 if Is_Limited_Type (T)
8303 and then not In_Instance
8304 and then not In_Inlined_Body
8305 then
8306 if not OK_For_Limited_Init (Exp) then
8308 -- In GNAT mode, this is just a warning, to allow it to be evilly
8309 -- turned off. Otherwise it is a real error.
8311 if GNAT_Mode then
8312 Error_Msg_N
8313 ("?cannot initialize entities of limited type!", Exp);
8315 elsif Ada_Version < Ada_05 then
8316 Error_Msg_N
8317 ("cannot initialize entities of limited type", Exp);
8318 Explain_Limited_Type (T, Exp);
8320 else
8321 -- Specialize error message according to kind of illegal
8322 -- initial expression.
8324 if Nkind (Exp) = N_Type_Conversion
8325 and then Nkind (Expression (Exp)) = N_Function_Call
8326 then
8327 Error_Msg_N
8328 ("illegal context for call"
8329 & " to function with limited result", Exp);
8331 else
8332 Error_Msg_N
8333 ("initialization of limited object requires agggregate "
8334 & "or function call", Exp);
8335 end if;
8336 end if;
8337 end if;
8338 end if;
8339 end Check_Initialization;
8341 ------------------------------------
8342 -- Check_Or_Process_Discriminants --
8343 ------------------------------------
8345 -- If an incomplete or private type declaration was already given for the
8346 -- type, the discriminants may have already been processed if they were
8347 -- present on the incomplete declaration. In this case a full conformance
8348 -- check is performed otherwise just process them.
8350 procedure Check_Or_Process_Discriminants
8351 (N : Node_Id;
8352 T : Entity_Id;
8353 Prev : Entity_Id := Empty)
8355 begin
8356 if Has_Discriminants (T) then
8358 -- Make the discriminants visible to component declarations
8360 declare
8361 D : Entity_Id;
8362 Prev : Entity_Id;
8364 begin
8365 D := First_Discriminant (T);
8366 while Present (D) loop
8367 Prev := Current_Entity (D);
8368 Set_Current_Entity (D);
8369 Set_Is_Immediately_Visible (D);
8370 Set_Homonym (D, Prev);
8372 -- Ada 2005 (AI-230): Access discriminant allowed in
8373 -- non-limited record types.
8375 if Ada_Version < Ada_05 then
8377 -- This restriction gets applied to the full type here. It
8378 -- has already been applied earlier to the partial view.
8380 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
8381 end if;
8383 Next_Discriminant (D);
8384 end loop;
8385 end;
8387 elsif Present (Discriminant_Specifications (N)) then
8388 Process_Discriminants (N, Prev);
8389 end if;
8390 end Check_Or_Process_Discriminants;
8392 ----------------------
8393 -- Check_Real_Bound --
8394 ----------------------
8396 procedure Check_Real_Bound (Bound : Node_Id) is
8397 begin
8398 if not Is_Real_Type (Etype (Bound)) then
8399 Error_Msg_N
8400 ("bound in real type definition must be of real type", Bound);
8402 elsif not Is_OK_Static_Expression (Bound) then
8403 Flag_Non_Static_Expr
8404 ("non-static expression used for real type bound!", Bound);
8406 else
8407 return;
8408 end if;
8410 Rewrite
8411 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
8412 Analyze (Bound);
8413 Resolve (Bound, Standard_Float);
8414 end Check_Real_Bound;
8416 ------------------------------
8417 -- Complete_Private_Subtype --
8418 ------------------------------
8420 procedure Complete_Private_Subtype
8421 (Priv : Entity_Id;
8422 Full : Entity_Id;
8423 Full_Base : Entity_Id;
8424 Related_Nod : Node_Id)
8426 Save_Next_Entity : Entity_Id;
8427 Save_Homonym : Entity_Id;
8429 begin
8430 -- Set semantic attributes for (implicit) private subtype completion.
8431 -- If the full type has no discriminants, then it is a copy of the full
8432 -- view of the base. Otherwise, it is a subtype of the base with a
8433 -- possible discriminant constraint. Save and restore the original
8434 -- Next_Entity field of full to ensure that the calls to Copy_Node
8435 -- do not corrupt the entity chain.
8437 -- Note that the type of the full view is the same entity as the type of
8438 -- the partial view. In this fashion, the subtype has access to the
8439 -- correct view of the parent.
8441 Save_Next_Entity := Next_Entity (Full);
8442 Save_Homonym := Homonym (Priv);
8444 case Ekind (Full_Base) is
8445 when E_Record_Type |
8446 E_Record_Subtype |
8447 Class_Wide_Kind |
8448 Private_Kind |
8449 Task_Kind |
8450 Protected_Kind =>
8451 Copy_Node (Priv, Full);
8453 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
8454 Set_First_Entity (Full, First_Entity (Full_Base));
8455 Set_Last_Entity (Full, Last_Entity (Full_Base));
8457 when others =>
8458 Copy_Node (Full_Base, Full);
8459 Set_Chars (Full, Chars (Priv));
8460 Conditional_Delay (Full, Priv);
8461 Set_Sloc (Full, Sloc (Priv));
8462 end case;
8464 Set_Next_Entity (Full, Save_Next_Entity);
8465 Set_Homonym (Full, Save_Homonym);
8466 Set_Associated_Node_For_Itype (Full, Related_Nod);
8468 -- Set common attributes for all subtypes
8470 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
8472 -- The Etype of the full view is inconsistent. Gigi needs to see the
8473 -- structural full view, which is what the current scheme gives:
8474 -- the Etype of the full view is the etype of the full base. However,
8475 -- if the full base is a derived type, the full view then looks like
8476 -- a subtype of the parent, not a subtype of the full base. If instead
8477 -- we write:
8479 -- Set_Etype (Full, Full_Base);
8481 -- then we get inconsistencies in the front-end (confusion between
8482 -- views). Several outstanding bugs are related to this ???
8484 Set_Is_First_Subtype (Full, False);
8485 Set_Scope (Full, Scope (Priv));
8486 Set_Size_Info (Full, Full_Base);
8487 Set_RM_Size (Full, RM_Size (Full_Base));
8488 Set_Is_Itype (Full);
8490 -- A subtype of a private-type-without-discriminants, whose full-view
8491 -- has discriminants with default expressions, is not constrained!
8493 if not Has_Discriminants (Priv) then
8494 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
8496 if Has_Discriminants (Full_Base) then
8497 Set_Discriminant_Constraint
8498 (Full, Discriminant_Constraint (Full_Base));
8500 -- The partial view may have been indefinite, the full view
8501 -- might not be.
8503 Set_Has_Unknown_Discriminants
8504 (Full, Has_Unknown_Discriminants (Full_Base));
8505 end if;
8506 end if;
8508 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
8509 Set_Depends_On_Private (Full, Has_Private_Component (Full));
8511 -- Freeze the private subtype entity if its parent is delayed, and not
8512 -- already frozen. We skip this processing if the type is an anonymous
8513 -- subtype of a record component, or is the corresponding record of a
8514 -- protected type, since ???
8516 if not Is_Type (Scope (Full)) then
8517 Set_Has_Delayed_Freeze (Full,
8518 Has_Delayed_Freeze (Full_Base)
8519 and then (not Is_Frozen (Full_Base)));
8520 end if;
8522 Set_Freeze_Node (Full, Empty);
8523 Set_Is_Frozen (Full, False);
8524 Set_Full_View (Priv, Full);
8526 if Has_Discriminants (Full) then
8527 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
8528 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
8530 if Has_Unknown_Discriminants (Full) then
8531 Set_Discriminant_Constraint (Full, No_Elist);
8532 end if;
8533 end if;
8535 if Ekind (Full_Base) = E_Record_Type
8536 and then Has_Discriminants (Full_Base)
8537 and then Has_Discriminants (Priv) -- might not, if errors
8538 and then not Has_Unknown_Discriminants (Priv)
8539 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
8540 then
8541 Create_Constrained_Components
8542 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
8544 -- If the full base is itself derived from private, build a congruent
8545 -- subtype of its underlying type, for use by the back end. For a
8546 -- constrained record component, the declaration cannot be placed on
8547 -- the component list, but it must nevertheless be built an analyzed, to
8548 -- supply enough information for Gigi to compute the size of component.
8550 elsif Ekind (Full_Base) in Private_Kind
8551 and then Is_Derived_Type (Full_Base)
8552 and then Has_Discriminants (Full_Base)
8553 and then (Ekind (Current_Scope) /= E_Record_Subtype)
8554 then
8555 if not Is_Itype (Priv)
8556 and then
8557 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
8558 then
8559 Build_Underlying_Full_View
8560 (Parent (Priv), Full, Etype (Full_Base));
8562 elsif Nkind (Related_Nod) = N_Component_Declaration then
8563 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
8564 end if;
8566 elsif Is_Record_Type (Full_Base) then
8568 -- Show Full is simply a renaming of Full_Base
8570 Set_Cloned_Subtype (Full, Full_Base);
8571 end if;
8573 -- It is unsafe to share to bounds of a scalar type, because the Itype
8574 -- is elaborated on demand, and if a bound is non-static then different
8575 -- orders of elaboration in different units will lead to different
8576 -- external symbols.
8578 if Is_Scalar_Type (Full_Base) then
8579 Set_Scalar_Range (Full,
8580 Make_Range (Sloc (Related_Nod),
8581 Low_Bound =>
8582 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
8583 High_Bound =>
8584 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
8586 -- This completion inherits the bounds of the full parent, but if
8587 -- the parent is an unconstrained floating point type, so is the
8588 -- completion.
8590 if Is_Floating_Point_Type (Full_Base) then
8591 Set_Includes_Infinities
8592 (Scalar_Range (Full), Has_Infinities (Full_Base));
8593 end if;
8594 end if;
8596 -- ??? It seems that a lot of fields are missing that should be copied
8597 -- from Full_Base to Full. Here are some that are introduced in a
8598 -- non-disruptive way but a cleanup is necessary.
8600 if Is_Tagged_Type (Full_Base) then
8601 Set_Is_Tagged_Type (Full);
8602 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
8603 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
8605 -- If this is a subtype of a protected or task type, constrain its
8606 -- corresponding record, unless this is a subtype without constraints,
8607 -- i.e. a simple renaming as with an actual subtype in an instance.
8609 elsif Is_Concurrent_Type (Full_Base) then
8610 if Has_Discriminants (Full)
8611 and then Present (Corresponding_Record_Type (Full_Base))
8612 and then
8613 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
8614 then
8615 Set_Corresponding_Record_Type (Full,
8616 Constrain_Corresponding_Record
8617 (Full, Corresponding_Record_Type (Full_Base),
8618 Related_Nod, Full_Base));
8620 else
8621 Set_Corresponding_Record_Type (Full,
8622 Corresponding_Record_Type (Full_Base));
8623 end if;
8624 end if;
8625 end Complete_Private_Subtype;
8627 ----------------------------
8628 -- Constant_Redeclaration --
8629 ----------------------------
8631 procedure Constant_Redeclaration
8632 (Id : Entity_Id;
8633 N : Node_Id;
8634 T : out Entity_Id)
8636 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
8637 Obj_Def : constant Node_Id := Object_Definition (N);
8638 New_T : Entity_Id;
8640 procedure Check_Possible_Deferred_Completion
8641 (Prev_Id : Entity_Id;
8642 Prev_Obj_Def : Node_Id;
8643 Curr_Obj_Def : Node_Id);
8644 -- Determine whether the two object definitions describe the partial
8645 -- and the full view of a constrained deferred constant. Generate
8646 -- a subtype for the full view and verify that it statically matches
8647 -- the subtype of the partial view.
8649 procedure Check_Recursive_Declaration (Typ : Entity_Id);
8650 -- If deferred constant is an access type initialized with an allocator,
8651 -- check whether there is an illegal recursion in the definition,
8652 -- through a default value of some record subcomponent. This is normally
8653 -- detected when generating init procs, but requires this additional
8654 -- mechanism when expansion is disabled.
8656 ----------------------------------------
8657 -- Check_Possible_Deferred_Completion --
8658 ----------------------------------------
8660 procedure Check_Possible_Deferred_Completion
8661 (Prev_Id : Entity_Id;
8662 Prev_Obj_Def : Node_Id;
8663 Curr_Obj_Def : Node_Id)
8665 begin
8666 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
8667 and then Present (Constraint (Prev_Obj_Def))
8668 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
8669 and then Present (Constraint (Curr_Obj_Def))
8670 then
8671 declare
8672 Loc : constant Source_Ptr := Sloc (N);
8673 Def_Id : constant Entity_Id :=
8674 Make_Defining_Identifier (Loc,
8675 New_Internal_Name ('S'));
8676 Decl : constant Node_Id :=
8677 Make_Subtype_Declaration (Loc,
8678 Defining_Identifier =>
8679 Def_Id,
8680 Subtype_Indication =>
8681 Relocate_Node (Curr_Obj_Def));
8683 begin
8684 Insert_Before_And_Analyze (N, Decl);
8685 Set_Etype (Id, Def_Id);
8687 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
8688 Error_Msg_Sloc := Sloc (Prev_Id);
8689 Error_Msg_N ("subtype does not statically match deferred " &
8690 "declaration#", N);
8691 end if;
8692 end;
8693 end if;
8694 end Check_Possible_Deferred_Completion;
8696 ---------------------------------
8697 -- Check_Recursive_Declaration --
8698 ---------------------------------
8700 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
8701 Comp : Entity_Id;
8703 begin
8704 if Is_Record_Type (Typ) then
8705 Comp := First_Component (Typ);
8706 while Present (Comp) loop
8707 if Comes_From_Source (Comp) then
8708 if Present (Expression (Parent (Comp)))
8709 and then Is_Entity_Name (Expression (Parent (Comp)))
8710 and then Entity (Expression (Parent (Comp))) = Prev
8711 then
8712 Error_Msg_Sloc := Sloc (Parent (Comp));
8713 Error_Msg_NE
8714 ("illegal circularity with declaration for&#",
8715 N, Comp);
8716 return;
8718 elsif Is_Record_Type (Etype (Comp)) then
8719 Check_Recursive_Declaration (Etype (Comp));
8720 end if;
8721 end if;
8723 Next_Component (Comp);
8724 end loop;
8725 end if;
8726 end Check_Recursive_Declaration;
8728 -- Start of processing for Constant_Redeclaration
8730 begin
8731 if Nkind (Parent (Prev)) = N_Object_Declaration then
8732 if Nkind (Object_Definition
8733 (Parent (Prev))) = N_Subtype_Indication
8734 then
8735 -- Find type of new declaration. The constraints of the two
8736 -- views must match statically, but there is no point in
8737 -- creating an itype for the full view.
8739 if Nkind (Obj_Def) = N_Subtype_Indication then
8740 Find_Type (Subtype_Mark (Obj_Def));
8741 New_T := Entity (Subtype_Mark (Obj_Def));
8743 else
8744 Find_Type (Obj_Def);
8745 New_T := Entity (Obj_Def);
8746 end if;
8748 T := Etype (Prev);
8750 else
8751 -- The full view may impose a constraint, even if the partial
8752 -- view does not, so construct the subtype.
8754 New_T := Find_Type_Of_Object (Obj_Def, N);
8755 T := New_T;
8756 end if;
8758 else
8759 -- Current declaration is illegal, diagnosed below in Enter_Name
8761 T := Empty;
8762 New_T := Any_Type;
8763 end if;
8765 -- If previous full declaration exists, or if a homograph is present,
8766 -- let Enter_Name handle it, either with an error, or with the removal
8767 -- of an overridden implicit subprogram.
8769 if Ekind (Prev) /= E_Constant
8770 or else Present (Expression (Parent (Prev)))
8771 or else Present (Full_View (Prev))
8772 then
8773 Enter_Name (Id);
8775 -- Verify that types of both declarations match, or else that both types
8776 -- are anonymous access types whose designated subtypes statically match
8777 -- (as allowed in Ada 2005 by AI-385).
8779 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
8780 and then
8781 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
8782 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
8783 or else not Subtypes_Statically_Match
8784 (Designated_Type (Etype (Prev)),
8785 Designated_Type (Etype (New_T))))
8786 then
8787 Error_Msg_Sloc := Sloc (Prev);
8788 Error_Msg_N ("type does not match declaration#", N);
8789 Set_Full_View (Prev, Id);
8790 Set_Etype (Id, Any_Type);
8792 -- If so, process the full constant declaration
8794 else
8795 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
8796 -- the deferred declaration is constrained, then the subtype defined
8797 -- by the subtype_indication in the full declaration shall match it
8798 -- statically.
8800 Check_Possible_Deferred_Completion
8801 (Prev_Id => Prev,
8802 Prev_Obj_Def => Object_Definition (Parent (Prev)),
8803 Curr_Obj_Def => Obj_Def);
8805 Set_Full_View (Prev, Id);
8806 Set_Is_Public (Id, Is_Public (Prev));
8807 Set_Is_Internal (Id);
8808 Append_Entity (Id, Current_Scope);
8810 -- Check ALIASED present if present before (RM 7.4(7))
8812 if Is_Aliased (Prev)
8813 and then not Aliased_Present (N)
8814 then
8815 Error_Msg_Sloc := Sloc (Prev);
8816 Error_Msg_N ("ALIASED required (see declaration#)", N);
8817 end if;
8819 -- Allow incomplete declaration of tags (used to handle forward
8820 -- references to tags). The check on Ada_Tags avoids cicularities
8821 -- when rebuilding the compiler.
8823 if RTU_Loaded (Ada_Tags)
8824 and then T = RTE (RE_Tag)
8825 then
8826 null;
8828 -- Check that placement is in private part and that the incomplete
8829 -- declaration appeared in the visible part.
8831 elsif Ekind (Current_Scope) = E_Package
8832 and then not In_Private_Part (Current_Scope)
8833 then
8834 Error_Msg_Sloc := Sloc (Prev);
8835 Error_Msg_N ("full constant for declaration#"
8836 & " must be in private part", N);
8838 elsif Ekind (Current_Scope) = E_Package
8839 and then List_Containing (Parent (Prev))
8840 /= Visible_Declarations
8841 (Specification (Unit_Declaration_Node (Current_Scope)))
8842 then
8843 Error_Msg_N
8844 ("deferred constant must be declared in visible part",
8845 Parent (Prev));
8846 end if;
8848 if Is_Access_Type (T)
8849 and then Nkind (Expression (N)) = N_Allocator
8850 then
8851 Check_Recursive_Declaration (Designated_Type (T));
8852 end if;
8853 end if;
8854 end Constant_Redeclaration;
8856 ----------------------
8857 -- Constrain_Access --
8858 ----------------------
8860 procedure Constrain_Access
8861 (Def_Id : in out Entity_Id;
8862 S : Node_Id;
8863 Related_Nod : Node_Id)
8865 T : constant Entity_Id := Entity (Subtype_Mark (S));
8866 Desig_Type : constant Entity_Id := Designated_Type (T);
8867 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
8868 Constraint_OK : Boolean := True;
8870 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
8871 -- Simple predicate to test for defaulted discriminants
8872 -- Shouldn't this be in sem_util???
8874 ---------------------------------
8875 -- Has_Defaulted_Discriminants --
8876 ---------------------------------
8878 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
8879 begin
8880 return Has_Discriminants (Typ)
8881 and then Present (First_Discriminant (Typ))
8882 and then Present
8883 (Discriminant_Default_Value (First_Discriminant (Typ)));
8884 end Has_Defaulted_Discriminants;
8886 -- Start of processing for Constrain_Access
8888 begin
8889 if Is_Array_Type (Desig_Type) then
8890 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
8892 elsif (Is_Record_Type (Desig_Type)
8893 or else Is_Incomplete_Or_Private_Type (Desig_Type))
8894 and then not Is_Constrained (Desig_Type)
8895 then
8896 -- ??? The following code is a temporary kludge to ignore a
8897 -- discriminant constraint on access type if it is constraining
8898 -- the current record. Avoid creating the implicit subtype of the
8899 -- record we are currently compiling since right now, we cannot
8900 -- handle these. For now, just return the access type itself.
8902 if Desig_Type = Current_Scope
8903 and then No (Def_Id)
8904 then
8905 Set_Ekind (Desig_Subtype, E_Record_Subtype);
8906 Def_Id := Entity (Subtype_Mark (S));
8908 -- This call added to ensure that the constraint is analyzed
8909 -- (needed for a B test). Note that we still return early from
8910 -- this procedure to avoid recursive processing. ???
8912 Constrain_Discriminated_Type
8913 (Desig_Subtype, S, Related_Nod, For_Access => True);
8914 return;
8915 end if;
8917 if Ekind (T) = E_General_Access_Type
8918 and then Has_Private_Declaration (Desig_Type)
8919 and then In_Open_Scopes (Scope (Desig_Type))
8920 then
8921 -- Enforce rule that the constraint is illegal if there is
8922 -- an unconstrained view of the designated type. This means
8923 -- that the partial view (either a private type declaration or
8924 -- a derivation from a private type) has no discriminants.
8925 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
8926 -- by ACATS B371001).
8928 -- Rule updated for Ada 2005: the private type is said to have
8929 -- a constrained partial view, given that objects of the type
8930 -- can be declared.
8932 declare
8933 Pack : constant Node_Id :=
8934 Unit_Declaration_Node (Scope (Desig_Type));
8935 Decls : List_Id;
8936 Decl : Node_Id;
8938 begin
8939 if Nkind (Pack) = N_Package_Declaration then
8940 Decls := Visible_Declarations (Specification (Pack));
8941 Decl := First (Decls);
8942 while Present (Decl) loop
8943 if (Nkind (Decl) = N_Private_Type_Declaration
8944 and then
8945 Chars (Defining_Identifier (Decl)) =
8946 Chars (Desig_Type))
8948 or else
8949 (Nkind (Decl) = N_Full_Type_Declaration
8950 and then
8951 Chars (Defining_Identifier (Decl)) =
8952 Chars (Desig_Type)
8953 and then Is_Derived_Type (Desig_Type)
8954 and then
8955 Has_Private_Declaration (Etype (Desig_Type)))
8956 then
8957 if No (Discriminant_Specifications (Decl)) then
8958 Error_Msg_N
8959 ("cannot constrain general access type if " &
8960 "designated type has constrained partial view",
8962 end if;
8964 exit;
8965 end if;
8967 Next (Decl);
8968 end loop;
8969 end if;
8970 end;
8971 end if;
8973 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
8974 For_Access => True);
8976 elsif (Is_Task_Type (Desig_Type)
8977 or else Is_Protected_Type (Desig_Type))
8978 and then not Is_Constrained (Desig_Type)
8979 then
8980 Constrain_Concurrent
8981 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
8983 else
8984 Error_Msg_N ("invalid constraint on access type", S);
8985 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
8986 Constraint_OK := False;
8987 end if;
8989 if No (Def_Id) then
8990 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
8991 else
8992 Set_Ekind (Def_Id, E_Access_Subtype);
8993 end if;
8995 if Constraint_OK then
8996 Set_Etype (Def_Id, Base_Type (T));
8998 if Is_Private_Type (Desig_Type) then
8999 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
9000 end if;
9001 else
9002 Set_Etype (Def_Id, Any_Type);
9003 end if;
9005 Set_Size_Info (Def_Id, T);
9006 Set_Is_Constrained (Def_Id, Constraint_OK);
9007 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
9008 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
9009 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
9011 Conditional_Delay (Def_Id, T);
9013 -- AI-363 : Subtypes of general access types whose designated types have
9014 -- default discriminants are disallowed. In instances, the rule has to
9015 -- be checked against the actual, of which T is the subtype. In a
9016 -- generic body, the rule is checked assuming that the actual type has
9017 -- defaulted discriminants.
9019 if Ada_Version >= Ada_05 or else Warn_On_Ada_2005_Compatibility then
9020 if Ekind (Base_Type (T)) = E_General_Access_Type
9021 and then Has_Defaulted_Discriminants (Desig_Type)
9022 then
9023 if Ada_Version < Ada_05 then
9024 Error_Msg_N
9025 ("access subtype of general access type would not " &
9026 "be allowed in Ada 2005?", S);
9027 else
9028 Error_Msg_N
9029 ("access subype of general access type not allowed", S);
9030 end if;
9032 Error_Msg_N ("\discriminants have defaults", S);
9034 elsif Is_Access_Type (T)
9035 and then Is_Generic_Type (Desig_Type)
9036 and then Has_Discriminants (Desig_Type)
9037 and then In_Package_Body (Current_Scope)
9038 then
9039 if Ada_Version < Ada_05 then
9040 Error_Msg_N
9041 ("access subtype would not be allowed in generic body " &
9042 "in Ada 2005?", S);
9043 else
9044 Error_Msg_N
9045 ("access subtype not allowed in generic body", S);
9046 end if;
9048 Error_Msg_N
9049 ("\designated type is a discriminated formal", S);
9050 end if;
9051 end if;
9052 end Constrain_Access;
9054 ---------------------
9055 -- Constrain_Array --
9056 ---------------------
9058 procedure Constrain_Array
9059 (Def_Id : in out Entity_Id;
9060 SI : Node_Id;
9061 Related_Nod : Node_Id;
9062 Related_Id : Entity_Id;
9063 Suffix : Character)
9065 C : constant Node_Id := Constraint (SI);
9066 Number_Of_Constraints : Nat := 0;
9067 Index : Node_Id;
9068 S, T : Entity_Id;
9069 Constraint_OK : Boolean := True;
9071 begin
9072 T := Entity (Subtype_Mark (SI));
9074 if Ekind (T) in Access_Kind then
9075 T := Designated_Type (T);
9076 end if;
9078 -- If an index constraint follows a subtype mark in a subtype indication
9079 -- then the type or subtype denoted by the subtype mark must not already
9080 -- impose an index constraint. The subtype mark must denote either an
9081 -- unconstrained array type or an access type whose designated type
9082 -- is such an array type... (RM 3.6.1)
9084 if Is_Constrained (T) then
9085 Error_Msg_N
9086 ("array type is already constrained", Subtype_Mark (SI));
9087 Constraint_OK := False;
9089 else
9090 S := First (Constraints (C));
9091 while Present (S) loop
9092 Number_Of_Constraints := Number_Of_Constraints + 1;
9093 Next (S);
9094 end loop;
9096 -- In either case, the index constraint must provide a discrete
9097 -- range for each index of the array type and the type of each
9098 -- discrete range must be the same as that of the corresponding
9099 -- index. (RM 3.6.1)
9101 if Number_Of_Constraints /= Number_Dimensions (T) then
9102 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
9103 Constraint_OK := False;
9105 else
9106 S := First (Constraints (C));
9107 Index := First_Index (T);
9108 Analyze (Index);
9110 -- Apply constraints to each index type
9112 for J in 1 .. Number_Of_Constraints loop
9113 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
9114 Next (Index);
9115 Next (S);
9116 end loop;
9118 end if;
9119 end if;
9121 if No (Def_Id) then
9122 Def_Id :=
9123 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
9124 Set_Parent (Def_Id, Related_Nod);
9126 else
9127 Set_Ekind (Def_Id, E_Array_Subtype);
9128 end if;
9130 Set_Size_Info (Def_Id, (T));
9131 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9132 Set_Etype (Def_Id, Base_Type (T));
9134 if Constraint_OK then
9135 Set_First_Index (Def_Id, First (Constraints (C)));
9136 else
9137 Set_First_Index (Def_Id, First_Index (T));
9138 end if;
9140 Set_Is_Constrained (Def_Id, True);
9141 Set_Is_Aliased (Def_Id, Is_Aliased (T));
9142 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
9144 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
9145 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
9147 -- A subtype does not inherit the packed_array_type of is parent. We
9148 -- need to initialize the attribute because if Def_Id is previously
9149 -- analyzed through a limited_with clause, it will have the attributes
9150 -- of an incomplete type, one of which is an Elist that overlaps the
9151 -- Packed_Array_Type field.
9153 Set_Packed_Array_Type (Def_Id, Empty);
9155 -- Build a freeze node if parent still needs one. Also make sure that
9156 -- the Depends_On_Private status is set because the subtype will need
9157 -- reprocessing at the time the base type does, and also we must set a
9158 -- conditional delay.
9160 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9161 Conditional_Delay (Def_Id, T);
9162 end Constrain_Array;
9164 ------------------------------
9165 -- Constrain_Component_Type --
9166 ------------------------------
9168 function Constrain_Component_Type
9169 (Comp : Entity_Id;
9170 Constrained_Typ : Entity_Id;
9171 Related_Node : Node_Id;
9172 Typ : Entity_Id;
9173 Constraints : Elist_Id) return Entity_Id
9175 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
9176 Compon_Type : constant Entity_Id := Etype (Comp);
9178 function Build_Constrained_Array_Type
9179 (Old_Type : Entity_Id) return Entity_Id;
9180 -- If Old_Type is an array type, one of whose indices is constrained
9181 -- by a discriminant, build an Itype whose constraint replaces the
9182 -- discriminant with its value in the constraint.
9184 function Build_Constrained_Discriminated_Type
9185 (Old_Type : Entity_Id) return Entity_Id;
9186 -- Ditto for record components
9188 function Build_Constrained_Access_Type
9189 (Old_Type : Entity_Id) return Entity_Id;
9190 -- Ditto for access types. Makes use of previous two functions, to
9191 -- constrain designated type.
9193 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
9194 -- T is an array or discriminated type, C is a list of constraints
9195 -- that apply to T. This routine builds the constrained subtype.
9197 function Is_Discriminant (Expr : Node_Id) return Boolean;
9198 -- Returns True if Expr is a discriminant
9200 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
9201 -- Find the value of discriminant Discrim in Constraint
9203 -----------------------------------
9204 -- Build_Constrained_Access_Type --
9205 -----------------------------------
9207 function Build_Constrained_Access_Type
9208 (Old_Type : Entity_Id) return Entity_Id
9210 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
9211 Itype : Entity_Id;
9212 Desig_Subtype : Entity_Id;
9213 Scop : Entity_Id;
9215 begin
9216 -- if the original access type was not embedded in the enclosing
9217 -- type definition, there is no need to produce a new access
9218 -- subtype. In fact every access type with an explicit constraint
9219 -- generates an itype whose scope is the enclosing record.
9221 if not Is_Type (Scope (Old_Type)) then
9222 return Old_Type;
9224 elsif Is_Array_Type (Desig_Type) then
9225 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
9227 elsif Has_Discriminants (Desig_Type) then
9229 -- This may be an access type to an enclosing record type for
9230 -- which we are constructing the constrained components. Return
9231 -- the enclosing record subtype. This is not always correct,
9232 -- but avoids infinite recursion. ???
9234 Desig_Subtype := Any_Type;
9236 for J in reverse 0 .. Scope_Stack.Last loop
9237 Scop := Scope_Stack.Table (J).Entity;
9239 if Is_Type (Scop)
9240 and then Base_Type (Scop) = Base_Type (Desig_Type)
9241 then
9242 Desig_Subtype := Scop;
9243 end if;
9245 exit when not Is_Type (Scop);
9246 end loop;
9248 if Desig_Subtype = Any_Type then
9249 Desig_Subtype :=
9250 Build_Constrained_Discriminated_Type (Desig_Type);
9251 end if;
9253 else
9254 return Old_Type;
9255 end if;
9257 if Desig_Subtype /= Desig_Type then
9259 -- The Related_Node better be here or else we won't be able
9260 -- to attach new itypes to a node in the tree.
9262 pragma Assert (Present (Related_Node));
9264 Itype := Create_Itype (E_Access_Subtype, Related_Node);
9266 Set_Etype (Itype, Base_Type (Old_Type));
9267 Set_Size_Info (Itype, (Old_Type));
9268 Set_Directly_Designated_Type (Itype, Desig_Subtype);
9269 Set_Depends_On_Private (Itype, Has_Private_Component
9270 (Old_Type));
9271 Set_Is_Access_Constant (Itype, Is_Access_Constant
9272 (Old_Type));
9274 -- The new itype needs freezing when it depends on a not frozen
9275 -- type and the enclosing subtype needs freezing.
9277 if Has_Delayed_Freeze (Constrained_Typ)
9278 and then not Is_Frozen (Constrained_Typ)
9279 then
9280 Conditional_Delay (Itype, Base_Type (Old_Type));
9281 end if;
9283 return Itype;
9285 else
9286 return Old_Type;
9287 end if;
9288 end Build_Constrained_Access_Type;
9290 ----------------------------------
9291 -- Build_Constrained_Array_Type --
9292 ----------------------------------
9294 function Build_Constrained_Array_Type
9295 (Old_Type : Entity_Id) return Entity_Id
9297 Lo_Expr : Node_Id;
9298 Hi_Expr : Node_Id;
9299 Old_Index : Node_Id;
9300 Range_Node : Node_Id;
9301 Constr_List : List_Id;
9303 Need_To_Create_Itype : Boolean := False;
9305 begin
9306 Old_Index := First_Index (Old_Type);
9307 while Present (Old_Index) loop
9308 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
9310 if Is_Discriminant (Lo_Expr)
9311 or else Is_Discriminant (Hi_Expr)
9312 then
9313 Need_To_Create_Itype := True;
9314 end if;
9316 Next_Index (Old_Index);
9317 end loop;
9319 if Need_To_Create_Itype then
9320 Constr_List := New_List;
9322 Old_Index := First_Index (Old_Type);
9323 while Present (Old_Index) loop
9324 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
9326 if Is_Discriminant (Lo_Expr) then
9327 Lo_Expr := Get_Discr_Value (Lo_Expr);
9328 end if;
9330 if Is_Discriminant (Hi_Expr) then
9331 Hi_Expr := Get_Discr_Value (Hi_Expr);
9332 end if;
9334 Range_Node :=
9335 Make_Range
9336 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
9338 Append (Range_Node, To => Constr_List);
9340 Next_Index (Old_Index);
9341 end loop;
9343 return Build_Subtype (Old_Type, Constr_List);
9345 else
9346 return Old_Type;
9347 end if;
9348 end Build_Constrained_Array_Type;
9350 ------------------------------------------
9351 -- Build_Constrained_Discriminated_Type --
9352 ------------------------------------------
9354 function Build_Constrained_Discriminated_Type
9355 (Old_Type : Entity_Id) return Entity_Id
9357 Expr : Node_Id;
9358 Constr_List : List_Id;
9359 Old_Constraint : Elmt_Id;
9361 Need_To_Create_Itype : Boolean := False;
9363 begin
9364 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
9365 while Present (Old_Constraint) loop
9366 Expr := Node (Old_Constraint);
9368 if Is_Discriminant (Expr) then
9369 Need_To_Create_Itype := True;
9370 end if;
9372 Next_Elmt (Old_Constraint);
9373 end loop;
9375 if Need_To_Create_Itype then
9376 Constr_List := New_List;
9378 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
9379 while Present (Old_Constraint) loop
9380 Expr := Node (Old_Constraint);
9382 if Is_Discriminant (Expr) then
9383 Expr := Get_Discr_Value (Expr);
9384 end if;
9386 Append (New_Copy_Tree (Expr), To => Constr_List);
9388 Next_Elmt (Old_Constraint);
9389 end loop;
9391 return Build_Subtype (Old_Type, Constr_List);
9393 else
9394 return Old_Type;
9395 end if;
9396 end Build_Constrained_Discriminated_Type;
9398 -------------------
9399 -- Build_Subtype --
9400 -------------------
9402 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
9403 Indic : Node_Id;
9404 Subtyp_Decl : Node_Id;
9405 Def_Id : Entity_Id;
9406 Btyp : Entity_Id := Base_Type (T);
9408 begin
9409 -- The Related_Node better be here or else we won't be able to
9410 -- attach new itypes to a node in the tree.
9412 pragma Assert (Present (Related_Node));
9414 -- If the view of the component's type is incomplete or private
9415 -- with unknown discriminants, then the constraint must be applied
9416 -- to the full type.
9418 if Has_Unknown_Discriminants (Btyp)
9419 and then Present (Underlying_Type (Btyp))
9420 then
9421 Btyp := Underlying_Type (Btyp);
9422 end if;
9424 Indic :=
9425 Make_Subtype_Indication (Loc,
9426 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
9427 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
9429 Def_Id := Create_Itype (Ekind (T), Related_Node);
9431 Subtyp_Decl :=
9432 Make_Subtype_Declaration (Loc,
9433 Defining_Identifier => Def_Id,
9434 Subtype_Indication => Indic);
9436 Set_Parent (Subtyp_Decl, Parent (Related_Node));
9438 -- Itypes must be analyzed with checks off (see package Itypes)
9440 Analyze (Subtyp_Decl, Suppress => All_Checks);
9442 return Def_Id;
9443 end Build_Subtype;
9445 ---------------------
9446 -- Get_Discr_Value --
9447 ---------------------
9449 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
9450 D : Entity_Id;
9451 E : Elmt_Id;
9452 G : Elmt_Id;
9454 begin
9455 -- The discriminant may be declared for the type, in which case we
9456 -- find it by iterating over the list of discriminants. If the
9457 -- discriminant is inherited from a parent type, it appears as the
9458 -- corresponding discriminant of the current type. This will be the
9459 -- case when constraining an inherited component whose constraint is
9460 -- given by a discriminant of the parent.
9462 D := First_Discriminant (Typ);
9463 E := First_Elmt (Constraints);
9465 while Present (D) loop
9466 if D = Entity (Discrim)
9467 or else D = CR_Discriminant (Entity (Discrim))
9468 or else Corresponding_Discriminant (D) = Entity (Discrim)
9469 then
9470 return Node (E);
9471 end if;
9473 Next_Discriminant (D);
9474 Next_Elmt (E);
9475 end loop;
9477 -- The corresponding_Discriminant mechanism is incomplete, because
9478 -- the correspondence between new and old discriminants is not one
9479 -- to one: one new discriminant can constrain several old ones. In
9480 -- that case, scan sequentially the stored_constraint, the list of
9481 -- discriminants of the parents, and the constraints.
9483 if Is_Derived_Type (Typ)
9484 and then Present (Stored_Constraint (Typ))
9485 and then Scope (Entity (Discrim)) = Etype (Typ)
9486 then
9487 D := First_Discriminant (Etype (Typ));
9488 E := First_Elmt (Constraints);
9489 G := First_Elmt (Stored_Constraint (Typ));
9490 while Present (D) loop
9491 if D = Entity (Discrim) then
9492 return Node (E);
9493 end if;
9495 Next_Discriminant (D);
9496 Next_Elmt (E);
9497 Next_Elmt (G);
9498 end loop;
9499 end if;
9501 -- Something is wrong if we did not find the value
9503 raise Program_Error;
9504 end Get_Discr_Value;
9506 ---------------------
9507 -- Is_Discriminant --
9508 ---------------------
9510 function Is_Discriminant (Expr : Node_Id) return Boolean is
9511 Discrim_Scope : Entity_Id;
9513 begin
9514 if Denotes_Discriminant (Expr) then
9515 Discrim_Scope := Scope (Entity (Expr));
9517 -- Either we have a reference to one of Typ's discriminants,
9519 pragma Assert (Discrim_Scope = Typ
9521 -- or to the discriminants of the parent type, in the case
9522 -- of a derivation of a tagged type with variants.
9524 or else Discrim_Scope = Etype (Typ)
9525 or else Full_View (Discrim_Scope) = Etype (Typ)
9527 -- or same as above for the case where the discriminants
9528 -- were declared in Typ's private view.
9530 or else (Is_Private_Type (Discrim_Scope)
9531 and then Chars (Discrim_Scope) = Chars (Typ))
9533 -- or else we are deriving from the full view and the
9534 -- discriminant is declared in the private entity.
9536 or else (Is_Private_Type (Typ)
9537 and then Chars (Discrim_Scope) = Chars (Typ))
9539 -- Or we are constrained the corresponding record of a
9540 -- synchronized type that completes a private declaration.
9542 or else (Is_Concurrent_Record_Type (Typ)
9543 and then
9544 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
9546 -- or we have a class-wide type, in which case make sure the
9547 -- discriminant found belongs to the root type.
9549 or else (Is_Class_Wide_Type (Typ)
9550 and then Etype (Typ) = Discrim_Scope));
9552 return True;
9553 end if;
9555 -- In all other cases we have something wrong
9557 return False;
9558 end Is_Discriminant;
9560 -- Start of processing for Constrain_Component_Type
9562 begin
9563 if Nkind (Parent (Comp)) = N_Component_Declaration
9564 and then Comes_From_Source (Parent (Comp))
9565 and then Comes_From_Source
9566 (Subtype_Indication (Component_Definition (Parent (Comp))))
9567 and then
9568 Is_Entity_Name
9569 (Subtype_Indication (Component_Definition (Parent (Comp))))
9570 then
9571 return Compon_Type;
9573 elsif Is_Array_Type (Compon_Type) then
9574 return Build_Constrained_Array_Type (Compon_Type);
9576 elsif Has_Discriminants (Compon_Type) then
9577 return Build_Constrained_Discriminated_Type (Compon_Type);
9579 elsif Is_Access_Type (Compon_Type) then
9580 return Build_Constrained_Access_Type (Compon_Type);
9582 else
9583 return Compon_Type;
9584 end if;
9585 end Constrain_Component_Type;
9587 --------------------------
9588 -- Constrain_Concurrent --
9589 --------------------------
9591 -- For concurrent types, the associated record value type carries the same
9592 -- discriminants, so when we constrain a concurrent type, we must constrain
9593 -- the corresponding record type as well.
9595 procedure Constrain_Concurrent
9596 (Def_Id : in out Entity_Id;
9597 SI : Node_Id;
9598 Related_Nod : Node_Id;
9599 Related_Id : Entity_Id;
9600 Suffix : Character)
9602 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
9603 T_Val : Entity_Id;
9605 begin
9606 if Ekind (T_Ent) in Access_Kind then
9607 T_Ent := Designated_Type (T_Ent);
9608 end if;
9610 T_Val := Corresponding_Record_Type (T_Ent);
9612 if Present (T_Val) then
9614 if No (Def_Id) then
9615 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
9616 end if;
9618 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
9620 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
9621 Set_Corresponding_Record_Type (Def_Id,
9622 Constrain_Corresponding_Record
9623 (Def_Id, T_Val, Related_Nod, Related_Id));
9625 else
9626 -- If there is no associated record, expansion is disabled and this
9627 -- is a generic context. Create a subtype in any case, so that
9628 -- semantic analysis can proceed.
9630 if No (Def_Id) then
9631 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
9632 end if;
9634 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
9635 end if;
9636 end Constrain_Concurrent;
9638 ------------------------------------
9639 -- Constrain_Corresponding_Record --
9640 ------------------------------------
9642 function Constrain_Corresponding_Record
9643 (Prot_Subt : Entity_Id;
9644 Corr_Rec : Entity_Id;
9645 Related_Nod : Node_Id;
9646 Related_Id : Entity_Id) return Entity_Id
9648 T_Sub : constant Entity_Id :=
9649 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
9651 begin
9652 Set_Etype (T_Sub, Corr_Rec);
9653 Init_Size_Align (T_Sub);
9654 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
9655 Set_Is_Constrained (T_Sub, True);
9656 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
9657 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
9659 -- As elsewhere, we do not want to create a freeze node for this itype
9660 -- if it is created for a constrained component of an enclosing record
9661 -- because references to outer discriminants will appear out of scope.
9663 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
9664 Conditional_Delay (T_Sub, Corr_Rec);
9665 else
9666 Set_Is_Frozen (T_Sub);
9667 end if;
9669 if Has_Discriminants (Prot_Subt) then -- False only if errors.
9670 Set_Discriminant_Constraint
9671 (T_Sub, Discriminant_Constraint (Prot_Subt));
9672 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
9673 Create_Constrained_Components
9674 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
9675 end if;
9677 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
9679 return T_Sub;
9680 end Constrain_Corresponding_Record;
9682 -----------------------
9683 -- Constrain_Decimal --
9684 -----------------------
9686 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
9687 T : constant Entity_Id := Entity (Subtype_Mark (S));
9688 C : constant Node_Id := Constraint (S);
9689 Loc : constant Source_Ptr := Sloc (C);
9690 Range_Expr : Node_Id;
9691 Digits_Expr : Node_Id;
9692 Digits_Val : Uint;
9693 Bound_Val : Ureal;
9695 begin
9696 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
9698 if Nkind (C) = N_Range_Constraint then
9699 Range_Expr := Range_Expression (C);
9700 Digits_Val := Digits_Value (T);
9702 else
9703 pragma Assert (Nkind (C) = N_Digits_Constraint);
9704 Digits_Expr := Digits_Expression (C);
9705 Analyze_And_Resolve (Digits_Expr, Any_Integer);
9707 Check_Digits_Expression (Digits_Expr);
9708 Digits_Val := Expr_Value (Digits_Expr);
9710 if Digits_Val > Digits_Value (T) then
9711 Error_Msg_N
9712 ("digits expression is incompatible with subtype", C);
9713 Digits_Val := Digits_Value (T);
9714 end if;
9716 if Present (Range_Constraint (C)) then
9717 Range_Expr := Range_Expression (Range_Constraint (C));
9718 else
9719 Range_Expr := Empty;
9720 end if;
9721 end if;
9723 Set_Etype (Def_Id, Base_Type (T));
9724 Set_Size_Info (Def_Id, (T));
9725 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9726 Set_Delta_Value (Def_Id, Delta_Value (T));
9727 Set_Scale_Value (Def_Id, Scale_Value (T));
9728 Set_Small_Value (Def_Id, Small_Value (T));
9729 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
9730 Set_Digits_Value (Def_Id, Digits_Val);
9732 -- Manufacture range from given digits value if no range present
9734 if No (Range_Expr) then
9735 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
9736 Range_Expr :=
9737 Make_Range (Loc,
9738 Low_Bound =>
9739 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
9740 High_Bound =>
9741 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
9742 end if;
9744 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
9745 Set_Discrete_RM_Size (Def_Id);
9747 -- Unconditionally delay the freeze, since we cannot set size
9748 -- information in all cases correctly until the freeze point.
9750 Set_Has_Delayed_Freeze (Def_Id);
9751 end Constrain_Decimal;
9753 ----------------------------------
9754 -- Constrain_Discriminated_Type --
9755 ----------------------------------
9757 procedure Constrain_Discriminated_Type
9758 (Def_Id : Entity_Id;
9759 S : Node_Id;
9760 Related_Nod : Node_Id;
9761 For_Access : Boolean := False)
9763 E : constant Entity_Id := Entity (Subtype_Mark (S));
9764 T : Entity_Id;
9765 C : Node_Id;
9766 Elist : Elist_Id := New_Elmt_List;
9768 procedure Fixup_Bad_Constraint;
9769 -- This is called after finding a bad constraint, and after having
9770 -- posted an appropriate error message. The mission is to leave the
9771 -- entity T in as reasonable state as possible!
9773 --------------------------
9774 -- Fixup_Bad_Constraint --
9775 --------------------------
9777 procedure Fixup_Bad_Constraint is
9778 begin
9779 -- Set a reasonable Ekind for the entity. For an incomplete type,
9780 -- we can't do much, but for other types, we can set the proper
9781 -- corresponding subtype kind.
9783 if Ekind (T) = E_Incomplete_Type then
9784 Set_Ekind (Def_Id, Ekind (T));
9785 else
9786 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9787 end if;
9789 Set_Etype (Def_Id, Any_Type);
9790 Set_Error_Posted (Def_Id);
9791 end Fixup_Bad_Constraint;
9793 -- Start of processing for Constrain_Discriminated_Type
9795 begin
9796 C := Constraint (S);
9798 -- A discriminant constraint is only allowed in a subtype indication,
9799 -- after a subtype mark. This subtype mark must denote either a type
9800 -- with discriminants, or an access type whose designated type is a
9801 -- type with discriminants. A discriminant constraint specifies the
9802 -- values of these discriminants (RM 3.7.2(5)).
9804 T := Base_Type (Entity (Subtype_Mark (S)));
9806 if Ekind (T) in Access_Kind then
9807 T := Designated_Type (T);
9808 end if;
9810 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
9811 -- Avoid generating an error for access-to-incomplete subtypes.
9813 if Ada_Version >= Ada_05
9814 and then Ekind (T) = E_Incomplete_Type
9815 and then Nkind (Parent (S)) = N_Subtype_Declaration
9816 and then not Is_Itype (Def_Id)
9817 then
9818 -- A little sanity check, emit an error message if the type
9819 -- has discriminants to begin with. Type T may be a regular
9820 -- incomplete type or imported via a limited with clause.
9822 if Has_Discriminants (T)
9823 or else
9824 (From_With_Type (T)
9825 and then Present (Non_Limited_View (T))
9826 and then Nkind (Parent (Non_Limited_View (T))) =
9827 N_Full_Type_Declaration
9828 and then Present (Discriminant_Specifications
9829 (Parent (Non_Limited_View (T)))))
9830 then
9831 Error_Msg_N
9832 ("(Ada 2005) incomplete subtype may not be constrained", C);
9833 else
9834 Error_Msg_N
9835 ("invalid constraint: type has no discriminant", C);
9836 end if;
9838 Fixup_Bad_Constraint;
9839 return;
9841 -- Check that the type has visible discriminants. The type may be
9842 -- a private type with unknown discriminants whose full view has
9843 -- discriminants which are invisible.
9845 elsif not Has_Discriminants (T)
9846 or else
9847 (Has_Unknown_Discriminants (T)
9848 and then Is_Private_Type (T))
9849 then
9850 Error_Msg_N ("invalid constraint: type has no discriminant", C);
9851 Fixup_Bad_Constraint;
9852 return;
9854 elsif Is_Constrained (E)
9855 or else (Ekind (E) = E_Class_Wide_Subtype
9856 and then Present (Discriminant_Constraint (E)))
9857 then
9858 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
9859 Fixup_Bad_Constraint;
9860 return;
9861 end if;
9863 -- T may be an unconstrained subtype (e.g. a generic actual).
9864 -- Constraint applies to the base type.
9866 T := Base_Type (T);
9868 Elist := Build_Discriminant_Constraints (T, S);
9870 -- If the list returned was empty we had an error in building the
9871 -- discriminant constraint. We have also already signalled an error
9872 -- in the incomplete type case
9874 if Is_Empty_Elmt_List (Elist) then
9875 Fixup_Bad_Constraint;
9876 return;
9877 end if;
9879 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
9880 end Constrain_Discriminated_Type;
9882 ---------------------------
9883 -- Constrain_Enumeration --
9884 ---------------------------
9886 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
9887 T : constant Entity_Id := Entity (Subtype_Mark (S));
9888 C : constant Node_Id := Constraint (S);
9890 begin
9891 Set_Ekind (Def_Id, E_Enumeration_Subtype);
9893 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
9895 Set_Etype (Def_Id, Base_Type (T));
9896 Set_Size_Info (Def_Id, (T));
9897 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9898 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
9900 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9902 Set_Discrete_RM_Size (Def_Id);
9903 end Constrain_Enumeration;
9905 ----------------------
9906 -- Constrain_Float --
9907 ----------------------
9909 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
9910 T : constant Entity_Id := Entity (Subtype_Mark (S));
9911 C : Node_Id;
9912 D : Node_Id;
9913 Rais : Node_Id;
9915 begin
9916 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
9918 Set_Etype (Def_Id, Base_Type (T));
9919 Set_Size_Info (Def_Id, (T));
9920 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9922 -- Process the constraint
9924 C := Constraint (S);
9926 -- Digits constraint present
9928 if Nkind (C) = N_Digits_Constraint then
9929 Check_Restriction (No_Obsolescent_Features, C);
9931 if Warn_On_Obsolescent_Feature then
9932 Error_Msg_N
9933 ("subtype digits constraint is an " &
9934 "obsolescent feature (RM J.3(8))?", C);
9935 end if;
9937 D := Digits_Expression (C);
9938 Analyze_And_Resolve (D, Any_Integer);
9939 Check_Digits_Expression (D);
9940 Set_Digits_Value (Def_Id, Expr_Value (D));
9942 -- Check that digits value is in range. Obviously we can do this
9943 -- at compile time, but it is strictly a runtime check, and of
9944 -- course there is an ACVC test that checks this!
9946 if Digits_Value (Def_Id) > Digits_Value (T) then
9947 Error_Msg_Uint_1 := Digits_Value (T);
9948 Error_Msg_N ("?digits value is too large, maximum is ^", D);
9949 Rais :=
9950 Make_Raise_Constraint_Error (Sloc (D),
9951 Reason => CE_Range_Check_Failed);
9952 Insert_Action (Declaration_Node (Def_Id), Rais);
9953 end if;
9955 C := Range_Constraint (C);
9957 -- No digits constraint present
9959 else
9960 Set_Digits_Value (Def_Id, Digits_Value (T));
9961 end if;
9963 -- Range constraint present
9965 if Nkind (C) = N_Range_Constraint then
9966 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9968 -- No range constraint present
9970 else
9971 pragma Assert (No (C));
9972 Set_Scalar_Range (Def_Id, Scalar_Range (T));
9973 end if;
9975 Set_Is_Constrained (Def_Id);
9976 end Constrain_Float;
9978 ---------------------
9979 -- Constrain_Index --
9980 ---------------------
9982 procedure Constrain_Index
9983 (Index : Node_Id;
9984 S : Node_Id;
9985 Related_Nod : Node_Id;
9986 Related_Id : Entity_Id;
9987 Suffix : Character;
9988 Suffix_Index : Nat)
9990 Def_Id : Entity_Id;
9991 R : Node_Id := Empty;
9992 T : constant Entity_Id := Etype (Index);
9994 begin
9995 if Nkind (S) = N_Range
9996 or else
9997 (Nkind (S) = N_Attribute_Reference
9998 and then Attribute_Name (S) = Name_Range)
9999 then
10000 -- A Range attribute will transformed into N_Range by Resolve
10002 Analyze (S);
10003 Set_Etype (S, T);
10004 R := S;
10006 Process_Range_Expr_In_Decl (R, T, Empty_List);
10008 if not Error_Posted (S)
10009 and then
10010 (Nkind (S) /= N_Range
10011 or else not Covers (T, (Etype (Low_Bound (S))))
10012 or else not Covers (T, (Etype (High_Bound (S)))))
10013 then
10014 if Base_Type (T) /= Any_Type
10015 and then Etype (Low_Bound (S)) /= Any_Type
10016 and then Etype (High_Bound (S)) /= Any_Type
10017 then
10018 Error_Msg_N ("range expected", S);
10019 end if;
10020 end if;
10022 elsif Nkind (S) = N_Subtype_Indication then
10024 -- The parser has verified that this is a discrete indication
10026 Resolve_Discrete_Subtype_Indication (S, T);
10027 R := Range_Expression (Constraint (S));
10029 elsif Nkind (S) = N_Discriminant_Association then
10031 -- Syntactically valid in subtype indication
10033 Error_Msg_N ("invalid index constraint", S);
10034 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
10035 return;
10037 -- Subtype_Mark case, no anonymous subtypes to construct
10039 else
10040 Analyze (S);
10042 if Is_Entity_Name (S) then
10043 if not Is_Type (Entity (S)) then
10044 Error_Msg_N ("expect subtype mark for index constraint", S);
10046 elsif Base_Type (Entity (S)) /= Base_Type (T) then
10047 Wrong_Type (S, Base_Type (T));
10048 end if;
10050 return;
10052 else
10053 Error_Msg_N ("invalid index constraint", S);
10054 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
10055 return;
10056 end if;
10057 end if;
10059 Def_Id :=
10060 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
10062 Set_Etype (Def_Id, Base_Type (T));
10064 if Is_Modular_Integer_Type (T) then
10065 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
10067 elsif Is_Integer_Type (T) then
10068 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
10070 else
10071 Set_Ekind (Def_Id, E_Enumeration_Subtype);
10072 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
10073 end if;
10075 Set_Size_Info (Def_Id, (T));
10076 Set_RM_Size (Def_Id, RM_Size (T));
10077 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10079 Set_Scalar_Range (Def_Id, R);
10081 Set_Etype (S, Def_Id);
10082 Set_Discrete_RM_Size (Def_Id);
10083 end Constrain_Index;
10085 -----------------------
10086 -- Constrain_Integer --
10087 -----------------------
10089 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
10090 T : constant Entity_Id := Entity (Subtype_Mark (S));
10091 C : constant Node_Id := Constraint (S);
10093 begin
10094 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
10096 if Is_Modular_Integer_Type (T) then
10097 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
10098 else
10099 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
10100 end if;
10102 Set_Etype (Def_Id, Base_Type (T));
10103 Set_Size_Info (Def_Id, (T));
10104 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10105 Set_Discrete_RM_Size (Def_Id);
10106 end Constrain_Integer;
10108 ------------------------------
10109 -- Constrain_Ordinary_Fixed --
10110 ------------------------------
10112 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
10113 T : constant Entity_Id := Entity (Subtype_Mark (S));
10114 C : Node_Id;
10115 D : Node_Id;
10116 Rais : Node_Id;
10118 begin
10119 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
10120 Set_Etype (Def_Id, Base_Type (T));
10121 Set_Size_Info (Def_Id, (T));
10122 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10123 Set_Small_Value (Def_Id, Small_Value (T));
10125 -- Process the constraint
10127 C := Constraint (S);
10129 -- Delta constraint present
10131 if Nkind (C) = N_Delta_Constraint then
10132 Check_Restriction (No_Obsolescent_Features, C);
10134 if Warn_On_Obsolescent_Feature then
10135 Error_Msg_S
10136 ("subtype delta constraint is an " &
10137 "obsolescent feature (RM J.3(7))?");
10138 end if;
10140 D := Delta_Expression (C);
10141 Analyze_And_Resolve (D, Any_Real);
10142 Check_Delta_Expression (D);
10143 Set_Delta_Value (Def_Id, Expr_Value_R (D));
10145 -- Check that delta value is in range. Obviously we can do this
10146 -- at compile time, but it is strictly a runtime check, and of
10147 -- course there is an ACVC test that checks this!
10149 if Delta_Value (Def_Id) < Delta_Value (T) then
10150 Error_Msg_N ("?delta value is too small", D);
10151 Rais :=
10152 Make_Raise_Constraint_Error (Sloc (D),
10153 Reason => CE_Range_Check_Failed);
10154 Insert_Action (Declaration_Node (Def_Id), Rais);
10155 end if;
10157 C := Range_Constraint (C);
10159 -- No delta constraint present
10161 else
10162 Set_Delta_Value (Def_Id, Delta_Value (T));
10163 end if;
10165 -- Range constraint present
10167 if Nkind (C) = N_Range_Constraint then
10168 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
10170 -- No range constraint present
10172 else
10173 pragma Assert (No (C));
10174 Set_Scalar_Range (Def_Id, Scalar_Range (T));
10176 end if;
10178 Set_Discrete_RM_Size (Def_Id);
10180 -- Unconditionally delay the freeze, since we cannot set size
10181 -- information in all cases correctly until the freeze point.
10183 Set_Has_Delayed_Freeze (Def_Id);
10184 end Constrain_Ordinary_Fixed;
10186 -----------------------
10187 -- Contain_Interface --
10188 -----------------------
10190 function Contain_Interface
10191 (Iface : Entity_Id;
10192 Ifaces : Elist_Id) return Boolean
10194 Iface_Elmt : Elmt_Id;
10196 begin
10197 if Present (Ifaces) then
10198 Iface_Elmt := First_Elmt (Ifaces);
10199 while Present (Iface_Elmt) loop
10200 if Node (Iface_Elmt) = Iface then
10201 return True;
10202 end if;
10204 Next_Elmt (Iface_Elmt);
10205 end loop;
10206 end if;
10208 return False;
10209 end Contain_Interface;
10211 ---------------------------
10212 -- Convert_Scalar_Bounds --
10213 ---------------------------
10215 procedure Convert_Scalar_Bounds
10216 (N : Node_Id;
10217 Parent_Type : Entity_Id;
10218 Derived_Type : Entity_Id;
10219 Loc : Source_Ptr)
10221 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
10223 Lo : Node_Id;
10224 Hi : Node_Id;
10225 Rng : Node_Id;
10227 begin
10228 Lo := Build_Scalar_Bound
10229 (Type_Low_Bound (Derived_Type),
10230 Parent_Type, Implicit_Base);
10232 Hi := Build_Scalar_Bound
10233 (Type_High_Bound (Derived_Type),
10234 Parent_Type, Implicit_Base);
10236 Rng :=
10237 Make_Range (Loc,
10238 Low_Bound => Lo,
10239 High_Bound => Hi);
10241 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
10243 Set_Parent (Rng, N);
10244 Set_Scalar_Range (Derived_Type, Rng);
10246 -- Analyze the bounds
10248 Analyze_And_Resolve (Lo, Implicit_Base);
10249 Analyze_And_Resolve (Hi, Implicit_Base);
10251 -- Analyze the range itself, except that we do not analyze it if
10252 -- the bounds are real literals, and we have a fixed-point type.
10253 -- The reason for this is that we delay setting the bounds in this
10254 -- case till we know the final Small and Size values (see circuit
10255 -- in Freeze.Freeze_Fixed_Point_Type for further details).
10257 if Is_Fixed_Point_Type (Parent_Type)
10258 and then Nkind (Lo) = N_Real_Literal
10259 and then Nkind (Hi) = N_Real_Literal
10260 then
10261 return;
10263 -- Here we do the analysis of the range
10265 -- Note: we do this manually, since if we do a normal Analyze and
10266 -- Resolve call, there are problems with the conversions used for
10267 -- the derived type range.
10269 else
10270 Set_Etype (Rng, Implicit_Base);
10271 Set_Analyzed (Rng, True);
10272 end if;
10273 end Convert_Scalar_Bounds;
10275 -------------------
10276 -- Copy_And_Swap --
10277 -------------------
10279 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
10280 begin
10281 -- Initialize new full declaration entity by copying the pertinent
10282 -- fields of the corresponding private declaration entity.
10284 -- We temporarily set Ekind to a value appropriate for a type to
10285 -- avoid assert failures in Einfo from checking for setting type
10286 -- attributes on something that is not a type. Ekind (Priv) is an
10287 -- appropriate choice, since it allowed the attributes to be set
10288 -- in the first place. This Ekind value will be modified later.
10290 Set_Ekind (Full, Ekind (Priv));
10292 -- Also set Etype temporarily to Any_Type, again, in the absence
10293 -- of errors, it will be properly reset, and if there are errors,
10294 -- then we want a value of Any_Type to remain.
10296 Set_Etype (Full, Any_Type);
10298 -- Now start copying attributes
10300 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
10302 if Has_Discriminants (Full) then
10303 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
10304 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
10305 end if;
10307 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10308 Set_Homonym (Full, Homonym (Priv));
10309 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
10310 Set_Is_Public (Full, Is_Public (Priv));
10311 Set_Is_Pure (Full, Is_Pure (Priv));
10312 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
10313 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
10314 Set_Has_Pragma_Unreferenced_Objects
10315 (Full, Has_Pragma_Unreferenced_Objects
10316 (Priv));
10318 Conditional_Delay (Full, Priv);
10320 if Is_Tagged_Type (Full) then
10321 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
10323 if Priv = Base_Type (Priv) then
10324 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
10325 end if;
10326 end if;
10328 Set_Is_Volatile (Full, Is_Volatile (Priv));
10329 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
10330 Set_Scope (Full, Scope (Priv));
10331 Set_Next_Entity (Full, Next_Entity (Priv));
10332 Set_First_Entity (Full, First_Entity (Priv));
10333 Set_Last_Entity (Full, Last_Entity (Priv));
10335 -- If access types have been recorded for later handling, keep them in
10336 -- the full view so that they get handled when the full view freeze
10337 -- node is expanded.
10339 if Present (Freeze_Node (Priv))
10340 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
10341 then
10342 Ensure_Freeze_Node (Full);
10343 Set_Access_Types_To_Process
10344 (Freeze_Node (Full),
10345 Access_Types_To_Process (Freeze_Node (Priv)));
10346 end if;
10348 -- Swap the two entities. Now Privat is the full type entity and
10349 -- Full is the private one. They will be swapped back at the end
10350 -- of the private part. This swapping ensures that the entity that
10351 -- is visible in the private part is the full declaration.
10353 Exchange_Entities (Priv, Full);
10354 Append_Entity (Full, Scope (Full));
10355 end Copy_And_Swap;
10357 -------------------------------------
10358 -- Copy_Array_Base_Type_Attributes --
10359 -------------------------------------
10361 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
10362 begin
10363 Set_Component_Alignment (T1, Component_Alignment (T2));
10364 Set_Component_Type (T1, Component_Type (T2));
10365 Set_Component_Size (T1, Component_Size (T2));
10366 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
10367 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
10368 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
10369 Set_Has_Task (T1, Has_Task (T2));
10370 Set_Is_Packed (T1, Is_Packed (T2));
10371 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
10372 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
10373 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
10374 end Copy_Array_Base_Type_Attributes;
10376 -----------------------------------
10377 -- Copy_Array_Subtype_Attributes --
10378 -----------------------------------
10380 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
10381 begin
10382 Set_Size_Info (T1, T2);
10384 Set_First_Index (T1, First_Index (T2));
10385 Set_Is_Aliased (T1, Is_Aliased (T2));
10386 Set_Is_Atomic (T1, Is_Atomic (T2));
10387 Set_Is_Volatile (T1, Is_Volatile (T2));
10388 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
10389 Set_Is_Constrained (T1, Is_Constrained (T2));
10390 Set_Depends_On_Private (T1, Has_Private_Component (T2));
10391 Set_First_Rep_Item (T1, First_Rep_Item (T2));
10392 Set_Convention (T1, Convention (T2));
10393 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
10394 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
10395 end Copy_Array_Subtype_Attributes;
10397 -----------------------------------
10398 -- Create_Constrained_Components --
10399 -----------------------------------
10401 procedure Create_Constrained_Components
10402 (Subt : Entity_Id;
10403 Decl_Node : Node_Id;
10404 Typ : Entity_Id;
10405 Constraints : Elist_Id)
10407 Loc : constant Source_Ptr := Sloc (Subt);
10408 Comp_List : constant Elist_Id := New_Elmt_List;
10409 Parent_Type : constant Entity_Id := Etype (Typ);
10410 Assoc_List : constant List_Id := New_List;
10411 Discr_Val : Elmt_Id;
10412 Errors : Boolean;
10413 New_C : Entity_Id;
10414 Old_C : Entity_Id;
10415 Is_Static : Boolean := True;
10417 procedure Collect_Fixed_Components (Typ : Entity_Id);
10418 -- Collect parent type components that do not appear in a variant part
10420 procedure Create_All_Components;
10421 -- Iterate over Comp_List to create the components of the subtype
10423 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
10424 -- Creates a new component from Old_Compon, copying all the fields from
10425 -- it, including its Etype, inserts the new component in the Subt entity
10426 -- chain and returns the new component.
10428 function Is_Variant_Record (T : Entity_Id) return Boolean;
10429 -- If true, and discriminants are static, collect only components from
10430 -- variants selected by discriminant values.
10432 ------------------------------
10433 -- Collect_Fixed_Components --
10434 ------------------------------
10436 procedure Collect_Fixed_Components (Typ : Entity_Id) is
10437 begin
10438 -- Build association list for discriminants, and find components of the
10439 -- variant part selected by the values of the discriminants.
10441 Old_C := First_Discriminant (Typ);
10442 Discr_Val := First_Elmt (Constraints);
10443 while Present (Old_C) loop
10444 Append_To (Assoc_List,
10445 Make_Component_Association (Loc,
10446 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
10447 Expression => New_Copy (Node (Discr_Val))));
10449 Next_Elmt (Discr_Val);
10450 Next_Discriminant (Old_C);
10451 end loop;
10453 -- The tag, and the possible parent and controller components
10454 -- are unconditionally in the subtype.
10456 if Is_Tagged_Type (Typ)
10457 or else Has_Controlled_Component (Typ)
10458 then
10459 Old_C := First_Component (Typ);
10460 while Present (Old_C) loop
10461 if Chars ((Old_C)) = Name_uTag
10462 or else Chars ((Old_C)) = Name_uParent
10463 or else Chars ((Old_C)) = Name_uController
10464 then
10465 Append_Elmt (Old_C, Comp_List);
10466 end if;
10468 Next_Component (Old_C);
10469 end loop;
10470 end if;
10471 end Collect_Fixed_Components;
10473 ---------------------------
10474 -- Create_All_Components --
10475 ---------------------------
10477 procedure Create_All_Components is
10478 Comp : Elmt_Id;
10480 begin
10481 Comp := First_Elmt (Comp_List);
10482 while Present (Comp) loop
10483 Old_C := Node (Comp);
10484 New_C := Create_Component (Old_C);
10486 Set_Etype
10487 (New_C,
10488 Constrain_Component_Type
10489 (Old_C, Subt, Decl_Node, Typ, Constraints));
10490 Set_Is_Public (New_C, Is_Public (Subt));
10492 Next_Elmt (Comp);
10493 end loop;
10494 end Create_All_Components;
10496 ----------------------
10497 -- Create_Component --
10498 ----------------------
10500 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
10501 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
10503 begin
10504 if Ekind (Old_Compon) = E_Discriminant
10505 and then Is_Completely_Hidden (Old_Compon)
10506 then
10507 -- This is a shadow discriminant created for a discriminant of
10508 -- the parent type that is one of several renamed by the same
10509 -- new discriminant. Give the shadow discriminant an internal
10510 -- name that cannot conflict with that of visible components.
10512 Set_Chars (New_Compon, New_Internal_Name ('C'));
10513 end if;
10515 -- Set the parent so we have a proper link for freezing etc. This is
10516 -- not a real parent pointer, since of course our parent does not own
10517 -- up to us and reference us, we are an illegitimate child of the
10518 -- original parent!
10520 Set_Parent (New_Compon, Parent (Old_Compon));
10522 -- If the old component's Esize was already determined and is a
10523 -- static value, then the new component simply inherits it. Otherwise
10524 -- the old component's size may require run-time determination, but
10525 -- the new component's size still might be statically determinable
10526 -- (if, for example it has a static constraint). In that case we want
10527 -- Layout_Type to recompute the component's size, so we reset its
10528 -- size and positional fields.
10530 if Frontend_Layout_On_Target
10531 and then not Known_Static_Esize (Old_Compon)
10532 then
10533 Set_Esize (New_Compon, Uint_0);
10534 Init_Normalized_First_Bit (New_Compon);
10535 Init_Normalized_Position (New_Compon);
10536 Init_Normalized_Position_Max (New_Compon);
10537 end if;
10539 -- We do not want this node marked as Comes_From_Source, since
10540 -- otherwise it would get first class status and a separate cross-
10541 -- reference line would be generated. Illegitimate children do not
10542 -- rate such recognition.
10544 Set_Comes_From_Source (New_Compon, False);
10546 -- But it is a real entity, and a birth certificate must be properly
10547 -- registered by entering it into the entity list.
10549 Enter_Name (New_Compon);
10551 return New_Compon;
10552 end Create_Component;
10554 -----------------------
10555 -- Is_Variant_Record --
10556 -----------------------
10558 function Is_Variant_Record (T : Entity_Id) return Boolean is
10559 begin
10560 return Nkind (Parent (T)) = N_Full_Type_Declaration
10561 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
10562 and then Present (Component_List (Type_Definition (Parent (T))))
10563 and then
10564 Present
10565 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
10566 end Is_Variant_Record;
10568 -- Start of processing for Create_Constrained_Components
10570 begin
10571 pragma Assert (Subt /= Base_Type (Subt));
10572 pragma Assert (Typ = Base_Type (Typ));
10574 Set_First_Entity (Subt, Empty);
10575 Set_Last_Entity (Subt, Empty);
10577 -- Check whether constraint is fully static, in which case we can
10578 -- optimize the list of components.
10580 Discr_Val := First_Elmt (Constraints);
10581 while Present (Discr_Val) loop
10582 if not Is_OK_Static_Expression (Node (Discr_Val)) then
10583 Is_Static := False;
10584 exit;
10585 end if;
10587 Next_Elmt (Discr_Val);
10588 end loop;
10590 Set_Has_Static_Discriminants (Subt, Is_Static);
10592 Push_Scope (Subt);
10594 -- Inherit the discriminants of the parent type
10596 Add_Discriminants : declare
10597 Num_Disc : Int;
10598 Num_Gird : Int;
10600 begin
10601 Num_Disc := 0;
10602 Old_C := First_Discriminant (Typ);
10604 while Present (Old_C) loop
10605 Num_Disc := Num_Disc + 1;
10606 New_C := Create_Component (Old_C);
10607 Set_Is_Public (New_C, Is_Public (Subt));
10608 Next_Discriminant (Old_C);
10609 end loop;
10611 -- For an untagged derived subtype, the number of discriminants may
10612 -- be smaller than the number of inherited discriminants, because
10613 -- several of them may be renamed by a single new discriminant.
10614 -- In this case, add the hidden discriminants back into the subtype,
10615 -- because otherwise the size of the subtype is computed incorrectly
10616 -- in GCC 4.1.
10618 Num_Gird := 0;
10620 if Is_Derived_Type (Typ)
10621 and then not Is_Tagged_Type (Typ)
10622 then
10623 Old_C := First_Stored_Discriminant (Typ);
10625 while Present (Old_C) loop
10626 Num_Gird := Num_Gird + 1;
10627 Next_Stored_Discriminant (Old_C);
10628 end loop;
10629 end if;
10631 if Num_Gird > Num_Disc then
10633 -- Find out multiple uses of new discriminants, and add hidden
10634 -- components for the extra renamed discriminants. We recognize
10635 -- multiple uses through the Corresponding_Discriminant of a
10636 -- new discriminant: if it constrains several old discriminants,
10637 -- this field points to the last one in the parent type. The
10638 -- stored discriminants of the derived type have the same name
10639 -- as those of the parent.
10641 declare
10642 Constr : Elmt_Id;
10643 New_Discr : Entity_Id;
10644 Old_Discr : Entity_Id;
10646 begin
10647 Constr := First_Elmt (Stored_Constraint (Typ));
10648 Old_Discr := First_Stored_Discriminant (Typ);
10649 while Present (Constr) loop
10650 if Is_Entity_Name (Node (Constr))
10651 and then Ekind (Entity (Node (Constr))) = E_Discriminant
10652 then
10653 New_Discr := Entity (Node (Constr));
10655 if Chars (Corresponding_Discriminant (New_Discr)) /=
10656 Chars (Old_Discr)
10657 then
10658 -- The new discriminant has been used to rename a
10659 -- subsequent old discriminant. Introduce a shadow
10660 -- component for the current old discriminant.
10662 New_C := Create_Component (Old_Discr);
10663 Set_Original_Record_Component (New_C, Old_Discr);
10664 end if;
10665 end if;
10667 Next_Elmt (Constr);
10668 Next_Stored_Discriminant (Old_Discr);
10669 end loop;
10670 end;
10671 end if;
10672 end Add_Discriminants;
10674 if Is_Static
10675 and then Is_Variant_Record (Typ)
10676 then
10677 Collect_Fixed_Components (Typ);
10679 Gather_Components (
10680 Typ,
10681 Component_List (Type_Definition (Parent (Typ))),
10682 Governed_By => Assoc_List,
10683 Into => Comp_List,
10684 Report_Errors => Errors);
10685 pragma Assert (not Errors);
10687 Create_All_Components;
10689 -- If the subtype declaration is created for a tagged type derivation
10690 -- with constraints, we retrieve the record definition of the parent
10691 -- type to select the components of the proper variant.
10693 elsif Is_Static
10694 and then Is_Tagged_Type (Typ)
10695 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
10696 and then
10697 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
10698 and then Is_Variant_Record (Parent_Type)
10699 then
10700 Collect_Fixed_Components (Typ);
10702 Gather_Components (
10703 Typ,
10704 Component_List (Type_Definition (Parent (Parent_Type))),
10705 Governed_By => Assoc_List,
10706 Into => Comp_List,
10707 Report_Errors => Errors);
10708 pragma Assert (not Errors);
10710 -- If the tagged derivation has a type extension, collect all the
10711 -- new components therein.
10713 if Present
10714 (Record_Extension_Part (Type_Definition (Parent (Typ))))
10715 then
10716 Old_C := First_Component (Typ);
10717 while Present (Old_C) loop
10718 if Original_Record_Component (Old_C) = Old_C
10719 and then Chars (Old_C) /= Name_uTag
10720 and then Chars (Old_C) /= Name_uParent
10721 and then Chars (Old_C) /= Name_uController
10722 then
10723 Append_Elmt (Old_C, Comp_List);
10724 end if;
10726 Next_Component (Old_C);
10727 end loop;
10728 end if;
10730 Create_All_Components;
10732 else
10733 -- If discriminants are not static, or if this is a multi-level type
10734 -- extension, we have to include all components of the parent type.
10736 Old_C := First_Component (Typ);
10737 while Present (Old_C) loop
10738 New_C := Create_Component (Old_C);
10740 Set_Etype
10741 (New_C,
10742 Constrain_Component_Type
10743 (Old_C, Subt, Decl_Node, Typ, Constraints));
10744 Set_Is_Public (New_C, Is_Public (Subt));
10746 Next_Component (Old_C);
10747 end loop;
10748 end if;
10750 End_Scope;
10751 end Create_Constrained_Components;
10753 ------------------------------------------
10754 -- Decimal_Fixed_Point_Type_Declaration --
10755 ------------------------------------------
10757 procedure Decimal_Fixed_Point_Type_Declaration
10758 (T : Entity_Id;
10759 Def : Node_Id)
10761 Loc : constant Source_Ptr := Sloc (Def);
10762 Digs_Expr : constant Node_Id := Digits_Expression (Def);
10763 Delta_Expr : constant Node_Id := Delta_Expression (Def);
10764 Implicit_Base : Entity_Id;
10765 Digs_Val : Uint;
10766 Delta_Val : Ureal;
10767 Scale_Val : Uint;
10768 Bound_Val : Ureal;
10770 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
10772 begin
10773 Check_Restriction (No_Fixed_Point, Def);
10775 -- Create implicit base type
10777 Implicit_Base :=
10778 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
10779 Set_Etype (Implicit_Base, Implicit_Base);
10781 -- Analyze and process delta expression
10783 Analyze_And_Resolve (Delta_Expr, Universal_Real);
10785 Check_Delta_Expression (Delta_Expr);
10786 Delta_Val := Expr_Value_R (Delta_Expr);
10788 -- Check delta is power of 10, and determine scale value from it
10790 declare
10791 Val : Ureal;
10793 begin
10794 Scale_Val := Uint_0;
10795 Val := Delta_Val;
10797 if Val < Ureal_1 then
10798 while Val < Ureal_1 loop
10799 Val := Val * Ureal_10;
10800 Scale_Val := Scale_Val + 1;
10801 end loop;
10803 if Scale_Val > 18 then
10804 Error_Msg_N ("scale exceeds maximum value of 18", Def);
10805 Scale_Val := UI_From_Int (+18);
10806 end if;
10808 else
10809 while Val > Ureal_1 loop
10810 Val := Val / Ureal_10;
10811 Scale_Val := Scale_Val - 1;
10812 end loop;
10814 if Scale_Val < -18 then
10815 Error_Msg_N ("scale is less than minimum value of -18", Def);
10816 Scale_Val := UI_From_Int (-18);
10817 end if;
10818 end if;
10820 if Val /= Ureal_1 then
10821 Error_Msg_N ("delta expression must be a power of 10", Def);
10822 Delta_Val := Ureal_10 ** (-Scale_Val);
10823 end if;
10824 end;
10826 -- Set delta, scale and small (small = delta for decimal type)
10828 Set_Delta_Value (Implicit_Base, Delta_Val);
10829 Set_Scale_Value (Implicit_Base, Scale_Val);
10830 Set_Small_Value (Implicit_Base, Delta_Val);
10832 -- Analyze and process digits expression
10834 Analyze_And_Resolve (Digs_Expr, Any_Integer);
10835 Check_Digits_Expression (Digs_Expr);
10836 Digs_Val := Expr_Value (Digs_Expr);
10838 if Digs_Val > 18 then
10839 Digs_Val := UI_From_Int (+18);
10840 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
10841 end if;
10843 Set_Digits_Value (Implicit_Base, Digs_Val);
10844 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
10846 -- Set range of base type from digits value for now. This will be
10847 -- expanded to represent the true underlying base range by Freeze.
10849 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
10851 -- Set size to zero for now, size will be set at freeze time. We have
10852 -- to do this for ordinary fixed-point, because the size depends on
10853 -- the specified small, and we might as well do the same for decimal
10854 -- fixed-point.
10856 Init_Size_Align (Implicit_Base);
10858 -- If there are bounds given in the declaration use them as the
10859 -- bounds of the first named subtype.
10861 if Present (Real_Range_Specification (Def)) then
10862 declare
10863 RRS : constant Node_Id := Real_Range_Specification (Def);
10864 Low : constant Node_Id := Low_Bound (RRS);
10865 High : constant Node_Id := High_Bound (RRS);
10866 Low_Val : Ureal;
10867 High_Val : Ureal;
10869 begin
10870 Analyze_And_Resolve (Low, Any_Real);
10871 Analyze_And_Resolve (High, Any_Real);
10872 Check_Real_Bound (Low);
10873 Check_Real_Bound (High);
10874 Low_Val := Expr_Value_R (Low);
10875 High_Val := Expr_Value_R (High);
10877 if Low_Val < (-Bound_Val) then
10878 Error_Msg_N
10879 ("range low bound too small for digits value", Low);
10880 Low_Val := -Bound_Val;
10881 end if;
10883 if High_Val > Bound_Val then
10884 Error_Msg_N
10885 ("range high bound too large for digits value", High);
10886 High_Val := Bound_Val;
10887 end if;
10889 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
10890 end;
10892 -- If no explicit range, use range that corresponds to given
10893 -- digits value. This will end up as the final range for the
10894 -- first subtype.
10896 else
10897 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
10898 end if;
10900 -- Complete entity for first subtype
10902 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
10903 Set_Etype (T, Implicit_Base);
10904 Set_Size_Info (T, Implicit_Base);
10905 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
10906 Set_Digits_Value (T, Digs_Val);
10907 Set_Delta_Value (T, Delta_Val);
10908 Set_Small_Value (T, Delta_Val);
10909 Set_Scale_Value (T, Scale_Val);
10910 Set_Is_Constrained (T);
10911 end Decimal_Fixed_Point_Type_Declaration;
10913 ----------------------------------
10914 -- Derive_Interface_Subprograms --
10915 ----------------------------------
10917 procedure Derive_Interface_Subprograms
10918 (Parent_Type : Entity_Id;
10919 Tagged_Type : Entity_Id;
10920 Ifaces_List : Elist_Id)
10922 function Collect_Interface_Primitives
10923 (Tagged_Type : Entity_Id) return Elist_Id;
10924 -- Ada 2005 (AI-251): Collect the primitives of all the implemented
10925 -- interfaces.
10927 function In_List (L : Elist_Id; Subp : Entity_Id) return Boolean;
10928 -- Determine if Subp already in the list L
10930 procedure Remove_Homonym (E : Entity_Id);
10931 -- Removes E from the homonym chain
10933 ----------------------------------
10934 -- Collect_Interface_Primitives --
10935 ----------------------------------
10937 function Collect_Interface_Primitives
10938 (Tagged_Type : Entity_Id) return Elist_Id
10940 Op_List : constant Elist_Id := New_Elmt_List;
10941 Elmt : Elmt_Id;
10942 Ifaces_List : Elist_Id;
10943 Iface_Elmt : Elmt_Id;
10944 Prim : Entity_Id;
10946 begin
10947 pragma Assert (Is_Tagged_Type (Tagged_Type)
10948 and then Has_Abstract_Interfaces (Tagged_Type));
10950 Collect_Abstract_Interfaces (Tagged_Type, Ifaces_List);
10952 Iface_Elmt := First_Elmt (Ifaces_List);
10953 while Present (Iface_Elmt) loop
10954 Elmt := First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
10956 while Present (Elmt) loop
10957 Prim := Node (Elmt);
10959 if not Is_Predefined_Dispatching_Operation (Prim) then
10960 Append_Elmt (Prim, Op_List);
10961 end if;
10963 Next_Elmt (Elmt);
10964 end loop;
10966 Next_Elmt (Iface_Elmt);
10967 end loop;
10969 return Op_List;
10970 end Collect_Interface_Primitives;
10972 -------------
10973 -- In_List --
10974 -------------
10976 function In_List (L : Elist_Id; Subp : Entity_Id) return Boolean is
10977 Elmt : Elmt_Id;
10978 begin
10979 Elmt := First_Elmt (L);
10980 while Present (Elmt) loop
10981 if Node (Elmt) = Subp then
10982 return True;
10983 end if;
10985 Next_Elmt (Elmt);
10986 end loop;
10988 return False;
10989 end In_List;
10991 --------------------
10992 -- Remove_Homonym --
10993 --------------------
10995 procedure Remove_Homonym (E : Entity_Id) is
10996 Prev : Entity_Id := Empty;
10997 H : Entity_Id;
10999 begin
11000 if E = Current_Entity (E) then
11001 Set_Current_Entity (Homonym (E));
11002 else
11003 H := Current_Entity (E);
11004 while Present (H) and then H /= E loop
11005 Prev := H;
11006 H := Homonym (H);
11007 end loop;
11009 Set_Homonym (Prev, Homonym (E));
11010 end if;
11011 end Remove_Homonym;
11013 -- Local Variables
11015 E : Entity_Id;
11016 Elmt : Elmt_Id;
11017 Iface : Entity_Id;
11018 Iface_Subp : Entity_Id;
11019 New_Subp : Entity_Id := Empty;
11020 Op_List : Elist_Id;
11021 Parent_Base : Entity_Id;
11022 Subp : Entity_Id;
11024 -- Start of processing for Derive_Interface_Subprograms
11026 begin
11027 if Ada_Version < Ada_05
11028 or else not Is_Record_Type (Tagged_Type)
11029 or else not Is_Tagged_Type (Tagged_Type)
11030 or else not Has_Abstract_Interfaces (Tagged_Type)
11031 then
11032 return;
11033 end if;
11035 -- Add to the list of interface subprograms all the primitives inherited
11036 -- from abstract interfaces that are not immediate ancestors and also
11037 -- add their derivation to the list of interface primitives.
11039 Op_List := Collect_Interface_Primitives (Tagged_Type);
11041 Elmt := First_Elmt (Op_List);
11042 while Present (Elmt) loop
11043 Subp := Node (Elmt);
11044 Iface := Find_Dispatching_Type (Subp);
11046 if Is_Concurrent_Record_Type (Tagged_Type) then
11047 if not Present (Abstract_Interface_Alias (Subp)) then
11048 Derive_Subprogram (New_Subp, Subp, Tagged_Type, Iface);
11049 Append_Elmt (New_Subp, Ifaces_List);
11050 end if;
11052 elsif not Is_Parent (Iface, Tagged_Type) then
11053 Derive_Subprogram (New_Subp, Subp, Tagged_Type, Iface);
11054 Append_Elmt (New_Subp, Ifaces_List);
11055 end if;
11057 Next_Elmt (Elmt);
11058 end loop;
11060 -- Complete the derivation of the interface subprograms. Assignate to
11061 -- each entity associated with abstract interfaces their aliased entity
11062 -- and complete their decoration as hidden interface entities that will
11063 -- be used later to build the secondary dispatch tables.
11065 if not Is_Empty_Elmt_List (Ifaces_List) then
11066 if Ekind (Parent_Type) = E_Record_Type_With_Private
11067 and then Has_Discriminants (Parent_Type)
11068 and then Present (Full_View (Parent_Type))
11069 then
11070 Parent_Base := Full_View (Parent_Type);
11071 else
11072 Parent_Base := Parent_Type;
11073 end if;
11075 Elmt := First_Elmt (Ifaces_List);
11076 while Present (Elmt) loop
11077 Iface_Subp := Node (Elmt);
11079 -- Look for the first overriding entity in the homonym chain.
11080 -- In this way if we are in the private part of a package spec
11081 -- we get the last overriding subprogram.
11083 E := Current_Entity_In_Scope (Iface_Subp);
11084 while Present (E) loop
11085 if Is_Dispatching_Operation (E)
11086 and then Scope (E) = Scope (Iface_Subp)
11087 and then Type_Conformant (E, Iface_Subp)
11088 and then not In_List (Ifaces_List, E)
11089 then
11090 exit;
11091 end if;
11093 E := Homonym (E);
11094 end loop;
11096 -- Create an overriding entity if not found in the homonym chain
11098 if not Present (E) then
11099 Derive_Subprogram
11100 (E, Alias (Iface_Subp), Tagged_Type, Parent_Base);
11102 elsif not In_List (Primitive_Operations (Tagged_Type), E) then
11104 -- Inherit the operation from the private view
11106 Append_Elmt (E, Primitive_Operations (Tagged_Type));
11107 end if;
11109 -- Complete the decoration of the hidden interface entity
11111 Set_Is_Hidden (Iface_Subp);
11112 Set_Abstract_Interface_Alias (Iface_Subp, Alias (Iface_Subp));
11113 Set_Alias (Iface_Subp, E);
11114 Set_Is_Abstract_Subprogram (Iface_Subp,
11115 Is_Abstract_Subprogram (E));
11116 Remove_Homonym (Iface_Subp);
11118 -- Hidden entities associated with interfaces must have set the
11119 -- Has_Delay_Freeze attribute to ensure that the corresponding
11120 -- entry of the secondary dispatch table is filled when such
11121 -- entity is frozen.
11123 Set_Has_Delayed_Freeze (Iface_Subp);
11125 Next_Elmt (Elmt);
11126 end loop;
11127 end if;
11128 end Derive_Interface_Subprograms;
11130 -----------------------
11131 -- Derive_Subprogram --
11132 -----------------------
11134 procedure Derive_Subprogram
11135 (New_Subp : in out Entity_Id;
11136 Parent_Subp : Entity_Id;
11137 Derived_Type : Entity_Id;
11138 Parent_Type : Entity_Id;
11139 Actual_Subp : Entity_Id := Empty)
11141 Formal : Entity_Id;
11142 New_Formal : Entity_Id;
11143 Visible_Subp : Entity_Id := Parent_Subp;
11145 function Is_Private_Overriding return Boolean;
11146 -- If Subp is a private overriding of a visible operation, the in-
11147 -- herited operation derives from the overridden op (even though
11148 -- its body is the overriding one) and the inherited operation is
11149 -- visible now. See sem_disp to see the details of the handling of
11150 -- the overridden subprogram, which is removed from the list of
11151 -- primitive operations of the type. The overridden subprogram is
11152 -- saved locally in Visible_Subp, and used to diagnose abstract
11153 -- operations that need overriding in the derived type.
11155 procedure Replace_Type (Id, New_Id : Entity_Id);
11156 -- When the type is an anonymous access type, create a new access type
11157 -- designating the derived type.
11159 procedure Set_Derived_Name;
11160 -- This procedure sets the appropriate Chars name for New_Subp. This
11161 -- is normally just a copy of the parent name. An exception arises for
11162 -- type support subprograms, where the name is changed to reflect the
11163 -- name of the derived type, e.g. if type foo is derived from type bar,
11164 -- then a procedure barDA is derived with a name fooDA.
11166 ---------------------------
11167 -- Is_Private_Overriding --
11168 ---------------------------
11170 function Is_Private_Overriding return Boolean is
11171 Prev : Entity_Id;
11173 begin
11174 -- If the parent is not a dispatching operation there is no
11175 -- need to investigate overridings
11177 if not Is_Dispatching_Operation (Parent_Subp) then
11178 return False;
11179 end if;
11181 -- The visible operation that is overridden is a homonym of the
11182 -- parent subprogram. We scan the homonym chain to find the one
11183 -- whose alias is the subprogram we are deriving.
11185 Prev := Current_Entity (Parent_Subp);
11186 while Present (Prev) loop
11187 if Ekind (Prev) = Ekind (Parent_Subp)
11188 and then Alias (Prev) = Parent_Subp
11189 and then Scope (Parent_Subp) = Scope (Prev)
11190 and then not Is_Hidden (Prev)
11191 then
11192 Visible_Subp := Prev;
11193 return True;
11194 end if;
11196 Prev := Homonym (Prev);
11197 end loop;
11199 return False;
11200 end Is_Private_Overriding;
11202 ------------------
11203 -- Replace_Type --
11204 ------------------
11206 procedure Replace_Type (Id, New_Id : Entity_Id) is
11207 Acc_Type : Entity_Id;
11208 Par : constant Node_Id := Parent (Derived_Type);
11210 begin
11211 -- When the type is an anonymous access type, create a new access
11212 -- type designating the derived type. This itype must be elaborated
11213 -- at the point of the derivation, not on subsequent calls that may
11214 -- be out of the proper scope for Gigi, so we insert a reference to
11215 -- it after the derivation.
11217 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
11218 declare
11219 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
11221 begin
11222 if Ekind (Desig_Typ) = E_Record_Type_With_Private
11223 and then Present (Full_View (Desig_Typ))
11224 and then not Is_Private_Type (Parent_Type)
11225 then
11226 Desig_Typ := Full_View (Desig_Typ);
11227 end if;
11229 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
11231 -- Ada 2005 (AI-251): Handle also derivations of abstract
11232 -- interface primitives.
11234 or else (Is_Interface (Desig_Typ)
11235 and then not Is_Class_Wide_Type (Desig_Typ))
11236 then
11237 Acc_Type := New_Copy (Etype (Id));
11238 Set_Etype (Acc_Type, Acc_Type);
11239 Set_Scope (Acc_Type, New_Subp);
11241 -- Compute size of anonymous access type
11243 if Is_Array_Type (Desig_Typ)
11244 and then not Is_Constrained (Desig_Typ)
11245 then
11246 Init_Size (Acc_Type, 2 * System_Address_Size);
11247 else
11248 Init_Size (Acc_Type, System_Address_Size);
11249 end if;
11251 Init_Alignment (Acc_Type);
11252 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
11254 Set_Etype (New_Id, Acc_Type);
11255 Set_Scope (New_Id, New_Subp);
11257 -- Create a reference to it
11258 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
11260 else
11261 Set_Etype (New_Id, Etype (Id));
11262 end if;
11263 end;
11265 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
11266 or else
11267 (Ekind (Etype (Id)) = E_Record_Type_With_Private
11268 and then Present (Full_View (Etype (Id)))
11269 and then
11270 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
11271 then
11272 -- Constraint checks on formals are generated during expansion,
11273 -- based on the signature of the original subprogram. The bounds
11274 -- of the derived type are not relevant, and thus we can use
11275 -- the base type for the formals. However, the return type may be
11276 -- used in a context that requires that the proper static bounds
11277 -- be used (a case statement, for example) and for those cases
11278 -- we must use the derived type (first subtype), not its base.
11280 -- If the derived_type_definition has no constraints, we know that
11281 -- the derived type has the same constraints as the first subtype
11282 -- of the parent, and we can also use it rather than its base,
11283 -- which can lead to more efficient code.
11285 if Etype (Id) = Parent_Type then
11286 if Is_Scalar_Type (Parent_Type)
11287 and then
11288 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
11289 then
11290 Set_Etype (New_Id, Derived_Type);
11292 elsif Nkind (Par) = N_Full_Type_Declaration
11293 and then
11294 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
11295 and then
11296 Is_Entity_Name
11297 (Subtype_Indication (Type_Definition (Par)))
11298 then
11299 Set_Etype (New_Id, Derived_Type);
11301 else
11302 Set_Etype (New_Id, Base_Type (Derived_Type));
11303 end if;
11305 else
11306 Set_Etype (New_Id, Base_Type (Derived_Type));
11307 end if;
11309 -- Ada 2005 (AI-251): Handle derivations of abstract interface
11310 -- primitives.
11312 elsif Is_Interface (Etype (Id))
11313 and then not Is_Class_Wide_Type (Etype (Id))
11314 then
11315 Set_Etype (New_Id, Derived_Type);
11317 else
11318 Set_Etype (New_Id, Etype (Id));
11319 end if;
11320 end Replace_Type;
11322 ----------------------
11323 -- Set_Derived_Name --
11324 ----------------------
11326 procedure Set_Derived_Name is
11327 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
11328 begin
11329 if Nm = TSS_Null then
11330 Set_Chars (New_Subp, Chars (Parent_Subp));
11331 else
11332 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
11333 end if;
11334 end Set_Derived_Name;
11336 -- Start of processing for Derive_Subprogram
11338 begin
11339 New_Subp :=
11340 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
11341 Set_Ekind (New_Subp, Ekind (Parent_Subp));
11343 -- Check whether the inherited subprogram is a private operation that
11344 -- should be inherited but not yet made visible. Such subprograms can
11345 -- become visible at a later point (e.g., the private part of a public
11346 -- child unit) via Declare_Inherited_Private_Subprograms. If the
11347 -- following predicate is true, then this is not such a private
11348 -- operation and the subprogram simply inherits the name of the parent
11349 -- subprogram. Note the special check for the names of controlled
11350 -- operations, which are currently exempted from being inherited with
11351 -- a hidden name because they must be findable for generation of
11352 -- implicit run-time calls.
11354 if not Is_Hidden (Parent_Subp)
11355 or else Is_Internal (Parent_Subp)
11356 or else Is_Private_Overriding
11357 or else Is_Internal_Name (Chars (Parent_Subp))
11358 or else Chars (Parent_Subp) = Name_Initialize
11359 or else Chars (Parent_Subp) = Name_Adjust
11360 or else Chars (Parent_Subp) = Name_Finalize
11361 then
11362 Set_Derived_Name;
11364 -- If parent is hidden, this can be a regular derivation if the
11365 -- parent is immediately visible in a non-instantiating context,
11366 -- or if we are in the private part of an instance. This test
11367 -- should still be refined ???
11369 -- The test for In_Instance_Not_Visible avoids inheriting the derived
11370 -- operation as a non-visible operation in cases where the parent
11371 -- subprogram might not be visible now, but was visible within the
11372 -- original generic, so it would be wrong to make the inherited
11373 -- subprogram non-visible now. (Not clear if this test is fully
11374 -- correct; are there any cases where we should declare the inherited
11375 -- operation as not visible to avoid it being overridden, e.g., when
11376 -- the parent type is a generic actual with private primitives ???)
11378 -- (they should be treated the same as other private inherited
11379 -- subprograms, but it's not clear how to do this cleanly). ???
11381 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
11382 and then Is_Immediately_Visible (Parent_Subp)
11383 and then not In_Instance)
11384 or else In_Instance_Not_Visible
11385 then
11386 Set_Derived_Name;
11388 -- Ada 2005 (AI-251): Hidden entity associated with abstract interface
11389 -- primitive
11391 elsif Present (Abstract_Interface_Alias (Parent_Subp)) then
11392 Set_Derived_Name;
11394 -- The type is inheriting a private operation, so enter
11395 -- it with a special name so it can't be overridden.
11397 else
11398 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
11399 end if;
11401 Set_Parent (New_Subp, Parent (Derived_Type));
11402 Replace_Type (Parent_Subp, New_Subp);
11403 Conditional_Delay (New_Subp, Parent_Subp);
11405 Formal := First_Formal (Parent_Subp);
11406 while Present (Formal) loop
11407 New_Formal := New_Copy (Formal);
11409 -- Normally we do not go copying parents, but in the case of
11410 -- formals, we need to link up to the declaration (which is the
11411 -- parameter specification), and it is fine to link up to the
11412 -- original formal's parameter specification in this case.
11414 Set_Parent (New_Formal, Parent (Formal));
11416 Append_Entity (New_Formal, New_Subp);
11418 Replace_Type (Formal, New_Formal);
11419 Next_Formal (Formal);
11420 end loop;
11422 -- If this derivation corresponds to a tagged generic actual, then
11423 -- primitive operations rename those of the actual. Otherwise the
11424 -- primitive operations rename those of the parent type, If the
11425 -- parent renames an intrinsic operator, so does the new subprogram.
11426 -- We except concatenation, which is always properly typed, and does
11427 -- not get expanded as other intrinsic operations.
11429 if No (Actual_Subp) then
11430 if Is_Intrinsic_Subprogram (Parent_Subp) then
11431 Set_Is_Intrinsic_Subprogram (New_Subp);
11433 if Present (Alias (Parent_Subp))
11434 and then Chars (Parent_Subp) /= Name_Op_Concat
11435 then
11436 Set_Alias (New_Subp, Alias (Parent_Subp));
11437 else
11438 Set_Alias (New_Subp, Parent_Subp);
11439 end if;
11441 else
11442 Set_Alias (New_Subp, Parent_Subp);
11443 end if;
11445 else
11446 Set_Alias (New_Subp, Actual_Subp);
11447 end if;
11449 -- Derived subprograms of a tagged type must inherit the convention
11450 -- of the parent subprogram (a requirement of AI-117). Derived
11451 -- subprograms of untagged types simply get convention Ada by default.
11453 if Is_Tagged_Type (Derived_Type) then
11454 Set_Convention (New_Subp, Convention (Parent_Subp));
11455 end if;
11457 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
11458 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
11460 if Ekind (Parent_Subp) = E_Procedure then
11461 Set_Is_Valued_Procedure
11462 (New_Subp, Is_Valued_Procedure (Parent_Subp));
11463 end if;
11465 -- No_Return must be inherited properly. If this is overridden in the
11466 -- case of a dispatching operation, then a check is made in Sem_Disp
11467 -- that the overriding operation is also No_Return (no such check is
11468 -- required for the case of non-dispatching operation.
11470 Set_No_Return (New_Subp, No_Return (Parent_Subp));
11472 -- A derived function with a controlling result is abstract. If the
11473 -- Derived_Type is a nonabstract formal generic derived type, then
11474 -- inherited operations are not abstract: the required check is done at
11475 -- instantiation time. If the derivation is for a generic actual, the
11476 -- function is not abstract unless the actual is.
11478 if Is_Generic_Type (Derived_Type)
11479 and then not Is_Abstract_Type (Derived_Type)
11480 then
11481 null;
11483 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
11484 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
11486 elsif Ada_Version >= Ada_05
11487 and then (Is_Abstract_Subprogram (Alias (New_Subp))
11488 or else (Is_Tagged_Type (Derived_Type)
11489 and then Etype (New_Subp) = Derived_Type
11490 and then not Is_Null_Extension (Derived_Type))
11491 or else (Is_Tagged_Type (Derived_Type)
11492 and then Ekind (Etype (New_Subp)) =
11493 E_Anonymous_Access_Type
11494 and then Designated_Type (Etype (New_Subp)) =
11495 Derived_Type
11496 and then not Is_Null_Extension (Derived_Type)))
11497 and then No (Actual_Subp)
11498 then
11499 if not Is_Tagged_Type (Derived_Type)
11500 or else Is_Abstract_Type (Derived_Type)
11501 or else Is_Abstract_Subprogram (Alias (New_Subp))
11502 then
11503 Set_Is_Abstract_Subprogram (New_Subp);
11504 else
11505 Set_Requires_Overriding (New_Subp);
11506 end if;
11508 elsif Ada_Version < Ada_05
11509 and then (Is_Abstract_Subprogram (Alias (New_Subp))
11510 or else (Is_Tagged_Type (Derived_Type)
11511 and then Etype (New_Subp) = Derived_Type
11512 and then No (Actual_Subp)))
11513 then
11514 Set_Is_Abstract_Subprogram (New_Subp);
11516 -- Finally, if the parent type is abstract we must verify that all
11517 -- inherited operations are either non-abstract or overridden, or
11518 -- that the derived type itself is abstract (this check is performed
11519 -- at the end of a package declaration, in Check_Abstract_Overriding).
11520 -- A private overriding in the parent type will not be visible in the
11521 -- derivation if we are not in an inner package or in a child unit of
11522 -- the parent type, in which case the abstractness of the inherited
11523 -- operation is carried to the new subprogram.
11525 elsif Is_Abstract_Type (Parent_Type)
11526 and then not In_Open_Scopes (Scope (Parent_Type))
11527 and then Is_Private_Overriding
11528 and then Is_Abstract_Subprogram (Visible_Subp)
11529 then
11530 if No (Actual_Subp) then
11531 Set_Alias (New_Subp, Visible_Subp);
11532 Set_Is_Abstract_Subprogram
11533 (New_Subp, True);
11534 else
11535 -- If this is a derivation for an instance of a formal derived
11536 -- type, abstractness comes from the primitive operation of the
11537 -- actual, not from the operation inherited from the ancestor.
11539 Set_Is_Abstract_Subprogram
11540 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
11541 end if;
11542 end if;
11544 New_Overloaded_Entity (New_Subp, Derived_Type);
11546 -- Check for case of a derived subprogram for the instantiation of a
11547 -- formal derived tagged type, if so mark the subprogram as dispatching
11548 -- and inherit the dispatching attributes of the parent subprogram. The
11549 -- derived subprogram is effectively renaming of the actual subprogram,
11550 -- so it needs to have the same attributes as the actual.
11552 if Present (Actual_Subp)
11553 and then Is_Dispatching_Operation (Parent_Subp)
11554 then
11555 Set_Is_Dispatching_Operation (New_Subp);
11557 if Present (DTC_Entity (Parent_Subp)) then
11558 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
11559 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
11560 end if;
11561 end if;
11563 -- Indicate that a derived subprogram does not require a body and that
11564 -- it does not require processing of default expressions.
11566 Set_Has_Completion (New_Subp);
11567 Set_Default_Expressions_Processed (New_Subp);
11569 if Ekind (New_Subp) = E_Function then
11570 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
11571 end if;
11572 end Derive_Subprogram;
11574 ------------------------
11575 -- Derive_Subprograms --
11576 ------------------------
11578 procedure Derive_Subprograms
11579 (Parent_Type : Entity_Id;
11580 Derived_Type : Entity_Id;
11581 Generic_Actual : Entity_Id := Empty)
11583 Op_List : constant Elist_Id :=
11584 Collect_Primitive_Operations (Parent_Type);
11585 Ifaces_List : constant Elist_Id := New_Elmt_List;
11586 Act_List : Elist_Id;
11587 Act_Elmt : Elmt_Id;
11588 Elmt : Elmt_Id;
11589 New_Subp : Entity_Id := Empty;
11590 Parent_Base : Entity_Id;
11591 Subp : Entity_Id;
11593 begin
11594 if Ekind (Parent_Type) = E_Record_Type_With_Private
11595 and then Has_Discriminants (Parent_Type)
11596 and then Present (Full_View (Parent_Type))
11597 then
11598 Parent_Base := Full_View (Parent_Type);
11599 else
11600 Parent_Base := Parent_Type;
11601 end if;
11603 -- Derive primitives inherited from the parent
11605 if Present (Generic_Actual) then
11606 Act_List := Collect_Primitive_Operations (Generic_Actual);
11607 Act_Elmt := First_Elmt (Act_List);
11608 else
11609 Act_Elmt := No_Elmt;
11610 end if;
11612 -- Literals are derived earlier in the process of building the derived
11613 -- type, and are skipped here.
11615 Elmt := First_Elmt (Op_List);
11616 while Present (Elmt) loop
11617 Subp := Node (Elmt);
11619 if Ekind (Subp) /= E_Enumeration_Literal then
11621 if Ada_Version >= Ada_05
11622 and then Present (Abstract_Interface_Alias (Subp))
11623 then
11624 null;
11626 elsif No (Generic_Actual) then
11627 Derive_Subprogram (New_Subp, Subp, Derived_Type, Parent_Base);
11629 -- Ada 2005 (AI-251): Add the derivation of an abstract
11630 -- interface primitive to the list of entities to which
11631 -- we have to associate an aliased entity.
11633 if Ada_Version >= Ada_05
11634 and then Is_Dispatching_Operation (Subp)
11635 and then Present (Find_Dispatching_Type (Subp))
11636 and then Is_Interface (Find_Dispatching_Type (Subp))
11637 and then not Is_Predefined_Dispatching_Operation (Subp)
11638 then
11639 Append_Elmt (New_Subp, Ifaces_List);
11640 end if;
11642 else
11643 -- If the generic parent type is present, the derived type
11644 -- is an instance of a formal derived type, and within the
11645 -- instance its operations are those of the actual. We derive
11646 -- from the formal type but make the inherited operations
11647 -- aliases of the corresponding operations of the actual.
11649 if Is_Interface (Parent_Type)
11650 and then Root_Type (Derived_Type) /= Parent_Type
11651 then
11652 -- Find the corresponding operation in the generic actual.
11653 -- Given that the actual is not a direct descendant of the
11654 -- parent, as in Ada 95, the primitives are not necessarily
11655 -- in the same order, so we have to traverse the list of
11656 -- primitive operations of the actual to find the one that
11657 -- implements the interface operation.
11659 -- Note that if the parent type is the direct ancestor of
11660 -- the derived type, then even if it is an interface the
11661 -- operations are inherited from the primary dispatch table
11662 -- and are in the proper order.
11664 Act_Elmt := First_Elmt (Act_List);
11665 while Present (Act_Elmt) loop
11666 exit when
11667 Abstract_Interface_Alias (Node (Act_Elmt)) = Subp;
11668 Next_Elmt (Act_Elmt);
11669 end loop;
11670 end if;
11672 -- If the formal is not an interface, the actual is a direct
11673 -- descendant and the common primitive operations appear in
11674 -- the same order.
11676 Derive_Subprogram
11677 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
11679 if Present (Act_Elmt) then
11680 Next_Elmt (Act_Elmt);
11681 end if;
11682 end if;
11683 end if;
11685 Next_Elmt (Elmt);
11686 end loop;
11688 -- Inherit additional operations from progenitor interfaces.
11689 -- However, if the derived type is a generic actual, there
11690 -- are not new primitive operations for the type, because
11691 -- it has those of the actual, so nothing needs to be done.
11692 -- The renamings generated above are not primitive operations,
11693 -- and their purpose is simply to make the proper operations
11694 -- visible within an instantiation.
11696 if Ada_Version >= Ada_05
11697 and then Is_Tagged_Type (Derived_Type)
11698 and then No (Generic_Actual)
11699 then
11700 Derive_Interface_Subprograms (Parent_Type, Derived_Type, Ifaces_List);
11701 end if;
11702 end Derive_Subprograms;
11704 --------------------------------
11705 -- Derived_Standard_Character --
11706 --------------------------------
11708 procedure Derived_Standard_Character
11709 (N : Node_Id;
11710 Parent_Type : Entity_Id;
11711 Derived_Type : Entity_Id)
11713 Loc : constant Source_Ptr := Sloc (N);
11714 Def : constant Node_Id := Type_Definition (N);
11715 Indic : constant Node_Id := Subtype_Indication (Def);
11716 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
11717 Implicit_Base : constant Entity_Id :=
11718 Create_Itype
11719 (E_Enumeration_Type, N, Derived_Type, 'B');
11721 Lo : Node_Id;
11722 Hi : Node_Id;
11724 begin
11725 Discard_Node (Process_Subtype (Indic, N));
11727 Set_Etype (Implicit_Base, Parent_Base);
11728 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
11729 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
11731 Set_Is_Character_Type (Implicit_Base, True);
11732 Set_Has_Delayed_Freeze (Implicit_Base);
11734 -- The bounds of the implicit base are the bounds of the parent base.
11735 -- Note that their type is the parent base.
11737 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
11738 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
11740 Set_Scalar_Range (Implicit_Base,
11741 Make_Range (Loc,
11742 Low_Bound => Lo,
11743 High_Bound => Hi));
11745 Conditional_Delay (Derived_Type, Parent_Type);
11747 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
11748 Set_Etype (Derived_Type, Implicit_Base);
11749 Set_Size_Info (Derived_Type, Parent_Type);
11751 if Unknown_RM_Size (Derived_Type) then
11752 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
11753 end if;
11755 Set_Is_Character_Type (Derived_Type, True);
11757 if Nkind (Indic) /= N_Subtype_Indication then
11759 -- If no explicit constraint, the bounds are those
11760 -- of the parent type.
11762 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
11763 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
11764 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
11765 end if;
11767 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
11769 -- Because the implicit base is used in the conversion of the bounds,
11770 -- we have to freeze it now. This is similar to what is done for
11771 -- numeric types, and it equally suspicious, but otherwise a non-
11772 -- static bound will have a reference to an unfrozen type, which is
11773 -- rejected by Gigi (???). This requires specific care for definition
11774 -- of stream attributes. For details, see comments at the end of
11775 -- Build_Derived_Numeric_Type.
11777 Freeze_Before (N, Implicit_Base);
11778 end Derived_Standard_Character;
11780 ------------------------------
11781 -- Derived_Type_Declaration --
11782 ------------------------------
11784 procedure Derived_Type_Declaration
11785 (T : Entity_Id;
11786 N : Node_Id;
11787 Is_Completion : Boolean)
11789 Parent_Type : Entity_Id;
11791 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
11792 -- Check whether the parent type is a generic formal, or derives
11793 -- directly or indirectly from one.
11795 ------------------------
11796 -- Comes_From_Generic --
11797 ------------------------
11799 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
11800 begin
11801 if Is_Generic_Type (Typ) then
11802 return True;
11804 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
11805 return True;
11807 elsif Is_Private_Type (Typ)
11808 and then Present (Full_View (Typ))
11809 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
11810 then
11811 return True;
11813 elsif Is_Generic_Actual_Type (Typ) then
11814 return True;
11816 else
11817 return False;
11818 end if;
11819 end Comes_From_Generic;
11821 -- Local variables
11823 Def : constant Node_Id := Type_Definition (N);
11824 Iface_Def : Node_Id;
11825 Indic : constant Node_Id := Subtype_Indication (Def);
11826 Extension : constant Node_Id := Record_Extension_Part (Def);
11827 Parent_Node : Node_Id;
11828 Parent_Scope : Entity_Id;
11829 Taggd : Boolean;
11831 -- Start of processing for Derived_Type_Declaration
11833 begin
11834 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
11836 -- Ada 2005 (AI-251): In case of interface derivation check that the
11837 -- parent is also an interface.
11839 if Interface_Present (Def) then
11840 if not Is_Interface (Parent_Type) then
11841 Error_Msg_NE
11842 ("(Ada 2005) & must be an interface", Indic, Parent_Type);
11844 else
11845 Parent_Node := Parent (Base_Type (Parent_Type));
11846 Iface_Def := Type_Definition (Parent_Node);
11848 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
11849 -- other limited interfaces.
11851 if Limited_Present (Def) then
11852 if Limited_Present (Iface_Def) then
11853 null;
11855 elsif Protected_Present (Iface_Def) then
11856 Error_Msg_N
11857 ("(Ada 2005) limited interface cannot "
11858 & "inherit from protected interface", Indic);
11860 elsif Synchronized_Present (Iface_Def) then
11861 Error_Msg_N
11862 ("(Ada 2005) limited interface cannot "
11863 & "inherit from synchronized interface", Indic);
11865 elsif Task_Present (Iface_Def) then
11866 Error_Msg_N
11867 ("(Ada 2005) limited interface cannot "
11868 & "inherit from task interface", Indic);
11870 else
11871 Error_Msg_N
11872 ("(Ada 2005) limited interface cannot "
11873 & "inherit from non-limited interface", Indic);
11874 end if;
11876 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
11877 -- from non-limited or limited interfaces.
11879 elsif not Protected_Present (Def)
11880 and then not Synchronized_Present (Def)
11881 and then not Task_Present (Def)
11882 then
11883 if Limited_Present (Iface_Def) then
11884 null;
11886 elsif Protected_Present (Iface_Def) then
11887 Error_Msg_N
11888 ("(Ada 2005) non-limited interface cannot "
11889 & "inherit from protected interface", Indic);
11891 elsif Synchronized_Present (Iface_Def) then
11892 Error_Msg_N
11893 ("(Ada 2005) non-limited interface cannot "
11894 & "inherit from synchronized interface", Indic);
11896 elsif Task_Present (Iface_Def) then
11897 Error_Msg_N
11898 ("(Ada 2005) non-limited interface cannot "
11899 & "inherit from task interface", Indic);
11901 else
11902 null;
11903 end if;
11904 end if;
11905 end if;
11906 end if;
11908 if Is_Tagged_Type (Parent_Type)
11909 and then Is_Concurrent_Type (Parent_Type)
11910 and then not Is_Interface (Parent_Type)
11911 then
11912 Error_Msg_N
11913 ("parent type of a record extension cannot be "
11914 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
11915 Set_Etype (T, Any_Type);
11916 return;
11917 end if;
11919 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
11920 -- interfaces
11922 if Is_Tagged_Type (Parent_Type)
11923 and then Is_Non_Empty_List (Interface_List (Def))
11924 then
11925 declare
11926 Intf : Node_Id;
11927 T : Entity_Id;
11929 begin
11930 Intf := First (Interface_List (Def));
11931 while Present (Intf) loop
11932 T := Find_Type_Of_Subtype_Indic (Intf);
11934 if not Is_Interface (T) then
11935 Error_Msg_NE ("(Ada 2005) & must be an interface", Intf, T);
11937 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
11938 -- a limited type from having a nonlimited progenitor.
11940 elsif (Limited_Present (Def)
11941 or else (not Is_Interface (Parent_Type)
11942 and then Is_Limited_Type (Parent_Type)))
11943 and then not Is_Limited_Interface (T)
11944 then
11945 Error_Msg_NE
11946 ("progenitor interface& of limited type must be limited",
11947 N, T);
11948 end if;
11950 Next (Intf);
11951 end loop;
11952 end;
11953 end if;
11955 if Parent_Type = Any_Type
11956 or else Etype (Parent_Type) = Any_Type
11957 or else (Is_Class_Wide_Type (Parent_Type)
11958 and then Etype (Parent_Type) = T)
11959 then
11960 -- If Parent_Type is undefined or illegal, make new type into a
11961 -- subtype of Any_Type, and set a few attributes to prevent cascaded
11962 -- errors. If this is a self-definition, emit error now.
11964 if T = Parent_Type
11965 or else T = Etype (Parent_Type)
11966 then
11967 Error_Msg_N ("type cannot be used in its own definition", Indic);
11968 end if;
11970 Set_Ekind (T, Ekind (Parent_Type));
11971 Set_Etype (T, Any_Type);
11972 Set_Scalar_Range (T, Scalar_Range (Any_Type));
11974 if Is_Tagged_Type (T) then
11975 Set_Primitive_Operations (T, New_Elmt_List);
11976 end if;
11978 return;
11979 end if;
11981 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
11982 -- an interface is special because the list of interfaces in the full
11983 -- view can be given in any order. For example:
11985 -- type A is interface;
11986 -- type B is interface and A;
11987 -- type D is new B with private;
11988 -- private
11989 -- type D is new A and B with null record; -- 1 --
11991 -- In this case we perform the following transformation of -1-:
11993 -- type D is new B and A with null record;
11995 -- If the parent of the full-view covers the parent of the partial-view
11996 -- we have two possible cases:
11998 -- 1) They have the same parent
11999 -- 2) The parent of the full-view implements some further interfaces
12001 -- In both cases we do not need to perform the transformation. In the
12002 -- first case the source program is correct and the transformation is
12003 -- not needed; in the second case the source program does not fulfill
12004 -- the no-hidden interfaces rule (AI-396) and the error will be reported
12005 -- later.
12007 -- This transformation not only simplifies the rest of the analysis of
12008 -- this type declaration but also simplifies the correct generation of
12009 -- the object layout to the expander.
12011 if In_Private_Part (Current_Scope)
12012 and then Is_Interface (Parent_Type)
12013 then
12014 declare
12015 Iface : Node_Id;
12016 Partial_View : Entity_Id;
12017 Partial_View_Parent : Entity_Id;
12018 New_Iface : Node_Id;
12020 begin
12021 -- Look for the associated private type declaration
12023 Partial_View := First_Entity (Current_Scope);
12024 loop
12025 exit when No (Partial_View)
12026 or else (Has_Private_Declaration (Partial_View)
12027 and then Full_View (Partial_View) = T);
12029 Next_Entity (Partial_View);
12030 end loop;
12032 -- If the partial view was not found then the source code has
12033 -- errors and the transformation is not needed.
12035 if Present (Partial_View) then
12036 Partial_View_Parent := Etype (Partial_View);
12038 -- If the parent of the full-view covers the parent of the
12039 -- partial-view we have nothing else to do.
12041 if Interface_Present_In_Ancestor
12042 (Parent_Type, Partial_View_Parent)
12043 then
12044 null;
12046 -- Traverse the list of interfaces of the full-view to look
12047 -- for the parent of the partial-view and perform the tree
12048 -- transformation.
12050 else
12051 Iface := First (Interface_List (Def));
12052 while Present (Iface) loop
12053 if Etype (Iface) = Etype (Partial_View) then
12054 Rewrite (Subtype_Indication (Def),
12055 New_Copy (Subtype_Indication
12056 (Parent (Partial_View))));
12058 New_Iface := Make_Identifier (Sloc (N),
12059 Chars (Parent_Type));
12060 Append (New_Iface, Interface_List (Def));
12062 -- Analyze the transformed code
12064 Derived_Type_Declaration (T, N, Is_Completion);
12065 return;
12066 end if;
12068 Next (Iface);
12069 end loop;
12070 end if;
12071 end if;
12072 end;
12073 end if;
12075 -- Only composite types other than array types are allowed to have
12076 -- discriminants.
12078 if Present (Discriminant_Specifications (N))
12079 and then (Is_Elementary_Type (Parent_Type)
12080 or else Is_Array_Type (Parent_Type))
12081 and then not Error_Posted (N)
12082 then
12083 Error_Msg_N
12084 ("elementary or array type cannot have discriminants",
12085 Defining_Identifier (First (Discriminant_Specifications (N))));
12086 Set_Has_Discriminants (T, False);
12087 end if;
12089 -- In Ada 83, a derived type defined in a package specification cannot
12090 -- be used for further derivation until the end of its visible part.
12091 -- Note that derivation in the private part of the package is allowed.
12093 if Ada_Version = Ada_83
12094 and then Is_Derived_Type (Parent_Type)
12095 and then In_Visible_Part (Scope (Parent_Type))
12096 then
12097 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
12098 Error_Msg_N
12099 ("(Ada 83): premature use of type for derivation", Indic);
12100 end if;
12101 end if;
12103 -- Check for early use of incomplete or private type
12105 if Ekind (Parent_Type) = E_Void
12106 or else Ekind (Parent_Type) = E_Incomplete_Type
12107 then
12108 Error_Msg_N ("premature derivation of incomplete type", Indic);
12109 return;
12111 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
12112 and then not Comes_From_Generic (Parent_Type))
12113 or else Has_Private_Component (Parent_Type)
12114 then
12115 -- The ancestor type of a formal type can be incomplete, in which
12116 -- case only the operations of the partial view are available in
12117 -- the generic. Subsequent checks may be required when the full
12118 -- view is analyzed, to verify that derivation from a tagged type
12119 -- has an extension.
12121 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
12122 null;
12124 elsif No (Underlying_Type (Parent_Type))
12125 or else Has_Private_Component (Parent_Type)
12126 then
12127 Error_Msg_N
12128 ("premature derivation of derived or private type", Indic);
12130 -- Flag the type itself as being in error, this prevents some
12131 -- nasty problems with subsequent uses of the malformed type.
12133 Set_Error_Posted (T);
12135 -- Check that within the immediate scope of an untagged partial
12136 -- view it's illegal to derive from the partial view if the
12137 -- full view is tagged. (7.3(7))
12139 -- We verify that the Parent_Type is a partial view by checking
12140 -- that it is not a Full_Type_Declaration (i.e. a private type or
12141 -- private extension declaration), to distinguish a partial view
12142 -- from a derivation from a private type which also appears as
12143 -- E_Private_Type.
12145 elsif Present (Full_View (Parent_Type))
12146 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
12147 and then not Is_Tagged_Type (Parent_Type)
12148 and then Is_Tagged_Type (Full_View (Parent_Type))
12149 then
12150 Parent_Scope := Scope (T);
12151 while Present (Parent_Scope)
12152 and then Parent_Scope /= Standard_Standard
12153 loop
12154 if Parent_Scope = Scope (Parent_Type) then
12155 Error_Msg_N
12156 ("premature derivation from type with tagged full view",
12157 Indic);
12158 end if;
12160 Parent_Scope := Scope (Parent_Scope);
12161 end loop;
12162 end if;
12163 end if;
12165 -- Check that form of derivation is appropriate
12167 Taggd := Is_Tagged_Type (Parent_Type);
12169 -- Perhaps the parent type should be changed to the class-wide type's
12170 -- specific type in this case to prevent cascading errors ???
12172 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
12173 Error_Msg_N ("parent type must not be a class-wide type", Indic);
12174 return;
12175 end if;
12177 if Present (Extension) and then not Taggd then
12178 Error_Msg_N
12179 ("type derived from untagged type cannot have extension", Indic);
12181 elsif No (Extension) and then Taggd then
12183 -- If this declaration is within a private part (or body) of a
12184 -- generic instantiation then the derivation is allowed (the parent
12185 -- type can only appear tagged in this case if it's a generic actual
12186 -- type, since it would otherwise have been rejected in the analysis
12187 -- of the generic template).
12189 if not Is_Generic_Actual_Type (Parent_Type)
12190 or else In_Visible_Part (Scope (Parent_Type))
12191 then
12192 Error_Msg_N
12193 ("type derived from tagged type must have extension", Indic);
12194 end if;
12195 end if;
12197 -- AI-443: Synchronized formal derived types require a private
12198 -- extension. There is no point in checking the ancestor type or
12199 -- the progenitors since the construct is wrong to begin with.
12201 if Ada_Version >= Ada_05
12202 and then Is_Generic_Type (T)
12203 and then Present (Original_Node (N))
12204 then
12205 declare
12206 Decl : constant Node_Id := Original_Node (N);
12208 begin
12209 if Nkind (Decl) = N_Formal_Type_Declaration
12210 and then Nkind (Formal_Type_Definition (Decl)) =
12211 N_Formal_Derived_Type_Definition
12212 and then Synchronized_Present (Formal_Type_Definition (Decl))
12213 and then No (Extension)
12215 -- Avoid emitting a duplicate error message
12217 and then not Error_Posted (Indic)
12218 then
12219 Error_Msg_N
12220 ("synchronized derived type must have extension", N);
12221 end if;
12222 end;
12223 end if;
12225 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
12227 -- AI-419: The parent type of an explicitly limited derived type must
12228 -- be a limited type or a limited interface.
12230 if Limited_Present (Def) then
12231 Set_Is_Limited_Record (T);
12233 if Is_Interface (T) then
12234 Set_Is_Limited_Interface (T);
12235 end if;
12237 if not Is_Limited_Type (Parent_Type)
12238 and then
12239 (not Is_Interface (Parent_Type)
12240 or else not Is_Limited_Interface (Parent_Type))
12241 then
12242 Error_Msg_NE ("parent type& of limited type must be limited",
12243 N, Parent_Type);
12244 end if;
12245 end if;
12246 end Derived_Type_Declaration;
12248 ----------------------------------
12249 -- Enumeration_Type_Declaration --
12250 ----------------------------------
12252 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
12253 Ev : Uint;
12254 L : Node_Id;
12255 R_Node : Node_Id;
12256 B_Node : Node_Id;
12258 begin
12259 -- Create identifier node representing lower bound
12261 B_Node := New_Node (N_Identifier, Sloc (Def));
12262 L := First (Literals (Def));
12263 Set_Chars (B_Node, Chars (L));
12264 Set_Entity (B_Node, L);
12265 Set_Etype (B_Node, T);
12266 Set_Is_Static_Expression (B_Node, True);
12268 R_Node := New_Node (N_Range, Sloc (Def));
12269 Set_Low_Bound (R_Node, B_Node);
12271 Set_Ekind (T, E_Enumeration_Type);
12272 Set_First_Literal (T, L);
12273 Set_Etype (T, T);
12274 Set_Is_Constrained (T);
12276 Ev := Uint_0;
12278 -- Loop through literals of enumeration type setting pos and rep values
12279 -- except that if the Ekind is already set, then it means that the
12280 -- literal was already constructed (case of a derived type declaration
12281 -- and we should not disturb the Pos and Rep values.
12283 while Present (L) loop
12284 if Ekind (L) /= E_Enumeration_Literal then
12285 Set_Ekind (L, E_Enumeration_Literal);
12286 Set_Enumeration_Pos (L, Ev);
12287 Set_Enumeration_Rep (L, Ev);
12288 Set_Is_Known_Valid (L, True);
12289 end if;
12291 Set_Etype (L, T);
12292 New_Overloaded_Entity (L);
12293 Generate_Definition (L);
12294 Set_Convention (L, Convention_Intrinsic);
12296 if Nkind (L) = N_Defining_Character_Literal then
12297 Set_Is_Character_Type (T, True);
12298 end if;
12300 Ev := Ev + 1;
12301 Next (L);
12302 end loop;
12304 -- Now create a node representing upper bound
12306 B_Node := New_Node (N_Identifier, Sloc (Def));
12307 Set_Chars (B_Node, Chars (Last (Literals (Def))));
12308 Set_Entity (B_Node, Last (Literals (Def)));
12309 Set_Etype (B_Node, T);
12310 Set_Is_Static_Expression (B_Node, True);
12312 Set_High_Bound (R_Node, B_Node);
12314 -- Initialize various fields of the type. Some of this information
12315 -- may be overwritten later through rep.clauses.
12317 Set_Scalar_Range (T, R_Node);
12318 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
12319 Set_Enum_Esize (T);
12320 Set_Enum_Pos_To_Rep (T, Empty);
12322 -- Set Discard_Names if configuration pragma set, or if there is
12323 -- a parameterless pragma in the current declarative region
12325 if Global_Discard_Names
12326 or else Discard_Names (Scope (T))
12327 then
12328 Set_Discard_Names (T);
12329 end if;
12331 -- Process end label if there is one
12333 if Present (Def) then
12334 Process_End_Label (Def, 'e', T);
12335 end if;
12336 end Enumeration_Type_Declaration;
12338 ---------------------------------
12339 -- Expand_To_Stored_Constraint --
12340 ---------------------------------
12342 function Expand_To_Stored_Constraint
12343 (Typ : Entity_Id;
12344 Constraint : Elist_Id) return Elist_Id
12346 Explicitly_Discriminated_Type : Entity_Id;
12347 Expansion : Elist_Id;
12348 Discriminant : Entity_Id;
12350 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
12351 -- Find the nearest type that actually specifies discriminants
12353 ---------------------------------
12354 -- Type_With_Explicit_Discrims --
12355 ---------------------------------
12357 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
12358 Typ : constant E := Base_Type (Id);
12360 begin
12361 if Ekind (Typ) in Incomplete_Or_Private_Kind then
12362 if Present (Full_View (Typ)) then
12363 return Type_With_Explicit_Discrims (Full_View (Typ));
12364 end if;
12366 else
12367 if Has_Discriminants (Typ) then
12368 return Typ;
12369 end if;
12370 end if;
12372 if Etype (Typ) = Typ then
12373 return Empty;
12374 elsif Has_Discriminants (Typ) then
12375 return Typ;
12376 else
12377 return Type_With_Explicit_Discrims (Etype (Typ));
12378 end if;
12380 end Type_With_Explicit_Discrims;
12382 -- Start of processing for Expand_To_Stored_Constraint
12384 begin
12385 if No (Constraint)
12386 or else Is_Empty_Elmt_List (Constraint)
12387 then
12388 return No_Elist;
12389 end if;
12391 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
12393 if No (Explicitly_Discriminated_Type) then
12394 return No_Elist;
12395 end if;
12397 Expansion := New_Elmt_List;
12399 Discriminant :=
12400 First_Stored_Discriminant (Explicitly_Discriminated_Type);
12401 while Present (Discriminant) loop
12402 Append_Elmt (
12403 Get_Discriminant_Value (
12404 Discriminant, Explicitly_Discriminated_Type, Constraint),
12405 Expansion);
12406 Next_Stored_Discriminant (Discriminant);
12407 end loop;
12409 return Expansion;
12410 end Expand_To_Stored_Constraint;
12412 ---------------------------
12413 -- Find_Hidden_Interface --
12414 ---------------------------
12416 function Find_Hidden_Interface
12417 (Src : Elist_Id;
12418 Dest : Elist_Id) return Entity_Id
12420 Iface : Entity_Id;
12421 Iface_Elmt : Elmt_Id;
12423 begin
12424 if Present (Src) and then Present (Dest) then
12425 Iface_Elmt := First_Elmt (Src);
12426 while Present (Iface_Elmt) loop
12427 Iface := Node (Iface_Elmt);
12429 if Is_Interface (Iface)
12430 and then not Contain_Interface (Iface, Dest)
12431 then
12432 return Iface;
12433 end if;
12435 Next_Elmt (Iface_Elmt);
12436 end loop;
12437 end if;
12439 return Empty;
12440 end Find_Hidden_Interface;
12442 --------------------
12443 -- Find_Type_Name --
12444 --------------------
12446 function Find_Type_Name (N : Node_Id) return Entity_Id is
12447 Id : constant Entity_Id := Defining_Identifier (N);
12448 Prev : Entity_Id;
12449 New_Id : Entity_Id;
12450 Prev_Par : Node_Id;
12452 begin
12453 -- Find incomplete declaration, if one was given
12455 Prev := Current_Entity_In_Scope (Id);
12457 if Present (Prev) then
12459 -- Previous declaration exists. Error if not incomplete/private case
12460 -- except if previous declaration is implicit, etc. Enter_Name will
12461 -- emit error if appropriate.
12463 Prev_Par := Parent (Prev);
12465 if not Is_Incomplete_Or_Private_Type (Prev) then
12466 Enter_Name (Id);
12467 New_Id := Id;
12469 elsif Nkind (N) /= N_Full_Type_Declaration
12470 and then Nkind (N) /= N_Task_Type_Declaration
12471 and then Nkind (N) /= N_Protected_Type_Declaration
12472 then
12473 -- Completion must be a full type declarations (RM 7.3(4))
12475 Error_Msg_Sloc := Sloc (Prev);
12476 Error_Msg_NE ("invalid completion of }", Id, Prev);
12478 -- Set scope of Id to avoid cascaded errors. Entity is never
12479 -- examined again, except when saving globals in generics.
12481 Set_Scope (Id, Current_Scope);
12482 New_Id := Id;
12484 -- Case of full declaration of incomplete type
12486 elsif Ekind (Prev) = E_Incomplete_Type then
12488 -- Indicate that the incomplete declaration has a matching full
12489 -- declaration. The defining occurrence of the incomplete
12490 -- declaration remains the visible one, and the procedure
12491 -- Get_Full_View dereferences it whenever the type is used.
12493 if Present (Full_View (Prev)) then
12494 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
12495 end if;
12497 Set_Full_View (Prev, Id);
12498 Append_Entity (Id, Current_Scope);
12499 Set_Is_Public (Id, Is_Public (Prev));
12500 Set_Is_Internal (Id);
12501 New_Id := Prev;
12503 -- Case of full declaration of private type
12505 else
12506 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
12507 if Etype (Prev) /= Prev then
12509 -- Prev is a private subtype or a derived type, and needs
12510 -- no completion.
12512 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
12513 New_Id := Id;
12515 elsif Ekind (Prev) = E_Private_Type
12516 and then
12517 (Nkind (N) = N_Task_Type_Declaration
12518 or else Nkind (N) = N_Protected_Type_Declaration)
12519 then
12520 Error_Msg_N
12521 ("completion of nonlimited type cannot be limited", N);
12523 elsif Ekind (Prev) = E_Record_Type_With_Private
12524 and then
12525 (Nkind (N) = N_Task_Type_Declaration
12526 or else Nkind (N) = N_Protected_Type_Declaration)
12527 then
12528 if not Is_Limited_Record (Prev) then
12529 Error_Msg_N
12530 ("completion of nonlimited type cannot be limited", N);
12532 elsif No (Interface_List (N)) then
12533 Error_Msg_N
12534 ("completion of tagged private type must be tagged",
12536 end if;
12537 end if;
12539 -- Ada 2005 (AI-251): Private extension declaration of a task
12540 -- type or a protected type. This case arises when covering
12541 -- interface types.
12543 elsif Nkind (N) = N_Task_Type_Declaration
12544 or else Nkind (N) = N_Protected_Type_Declaration
12545 then
12546 null;
12548 elsif Nkind (N) /= N_Full_Type_Declaration
12549 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
12550 then
12551 Error_Msg_N
12552 ("full view of private extension must be an extension", N);
12554 elsif not (Abstract_Present (Parent (Prev)))
12555 and then Abstract_Present (Type_Definition (N))
12556 then
12557 Error_Msg_N
12558 ("full view of non-abstract extension cannot be abstract", N);
12559 end if;
12561 if not In_Private_Part (Current_Scope) then
12562 Error_Msg_N
12563 ("declaration of full view must appear in private part", N);
12564 end if;
12566 Copy_And_Swap (Prev, Id);
12567 Set_Has_Private_Declaration (Prev);
12568 Set_Has_Private_Declaration (Id);
12570 -- If no error, propagate freeze_node from private to full view.
12571 -- It may have been generated for an early operational item.
12573 if Present (Freeze_Node (Id))
12574 and then Serious_Errors_Detected = 0
12575 and then No (Full_View (Id))
12576 then
12577 Set_Freeze_Node (Prev, Freeze_Node (Id));
12578 Set_Freeze_Node (Id, Empty);
12579 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
12580 end if;
12582 Set_Full_View (Id, Prev);
12583 New_Id := Prev;
12584 end if;
12586 -- Verify that full declaration conforms to incomplete one
12588 if Is_Incomplete_Or_Private_Type (Prev)
12589 and then Present (Discriminant_Specifications (Prev_Par))
12590 then
12591 if Present (Discriminant_Specifications (N)) then
12592 if Ekind (Prev) = E_Incomplete_Type then
12593 Check_Discriminant_Conformance (N, Prev, Prev);
12594 else
12595 Check_Discriminant_Conformance (N, Prev, Id);
12596 end if;
12598 else
12599 Error_Msg_N
12600 ("missing discriminants in full type declaration", N);
12602 -- To avoid cascaded errors on subsequent use, share the
12603 -- discriminants of the partial view.
12605 Set_Discriminant_Specifications (N,
12606 Discriminant_Specifications (Prev_Par));
12607 end if;
12608 end if;
12610 -- A prior untagged private type can have an associated class-wide
12611 -- type due to use of the class attribute, and in this case also the
12612 -- full type is required to be tagged.
12614 if Is_Type (Prev)
12615 and then (Is_Tagged_Type (Prev)
12616 or else Present (Class_Wide_Type (Prev)))
12617 and then (Nkind (N) /= N_Task_Type_Declaration
12618 and then Nkind (N) /= N_Protected_Type_Declaration)
12619 then
12620 -- The full declaration is either a tagged record or an
12621 -- extension otherwise this is an error
12623 if Nkind (Type_Definition (N)) = N_Record_Definition then
12624 if not Tagged_Present (Type_Definition (N)) then
12625 Error_Msg_NE
12626 ("full declaration of } must be tagged", Prev, Id);
12627 Set_Is_Tagged_Type (Id);
12628 Set_Primitive_Operations (Id, New_Elmt_List);
12629 end if;
12631 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
12632 if No (Record_Extension_Part (Type_Definition (N))) then
12633 Error_Msg_NE (
12634 "full declaration of } must be a record extension",
12635 Prev, Id);
12636 Set_Is_Tagged_Type (Id);
12637 Set_Primitive_Operations (Id, New_Elmt_List);
12638 end if;
12640 else
12641 Error_Msg_NE
12642 ("full declaration of } must be a tagged type", Prev, Id);
12644 end if;
12645 end if;
12647 return New_Id;
12649 else
12650 -- New type declaration
12652 Enter_Name (Id);
12653 return Id;
12654 end if;
12655 end Find_Type_Name;
12657 -------------------------
12658 -- Find_Type_Of_Object --
12659 -------------------------
12661 function Find_Type_Of_Object
12662 (Obj_Def : Node_Id;
12663 Related_Nod : Node_Id) return Entity_Id
12665 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
12666 P : Node_Id := Parent (Obj_Def);
12667 T : Entity_Id;
12668 Nam : Name_Id;
12670 begin
12671 -- If the parent is a component_definition node we climb to the
12672 -- component_declaration node
12674 if Nkind (P) = N_Component_Definition then
12675 P := Parent (P);
12676 end if;
12678 -- Case of an anonymous array subtype
12680 if Def_Kind = N_Constrained_Array_Definition
12681 or else Def_Kind = N_Unconstrained_Array_Definition
12682 then
12683 T := Empty;
12684 Array_Type_Declaration (T, Obj_Def);
12686 -- Create an explicit subtype whenever possible
12688 elsif Nkind (P) /= N_Component_Declaration
12689 and then Def_Kind = N_Subtype_Indication
12690 then
12691 -- Base name of subtype on object name, which will be unique in
12692 -- the current scope.
12694 -- If this is a duplicate declaration, return base type, to avoid
12695 -- generating duplicate anonymous types.
12697 if Error_Posted (P) then
12698 Analyze (Subtype_Mark (Obj_Def));
12699 return Entity (Subtype_Mark (Obj_Def));
12700 end if;
12702 Nam :=
12703 New_External_Name
12704 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
12706 T := Make_Defining_Identifier (Sloc (P), Nam);
12708 Insert_Action (Obj_Def,
12709 Make_Subtype_Declaration (Sloc (P),
12710 Defining_Identifier => T,
12711 Subtype_Indication => Relocate_Node (Obj_Def)));
12713 -- This subtype may need freezing, and this will not be done
12714 -- automatically if the object declaration is not in declarative
12715 -- part. Since this is an object declaration, the type cannot always
12716 -- be frozen here. Deferred constants do not freeze their type
12717 -- (which often enough will be private).
12719 if Nkind (P) = N_Object_Declaration
12720 and then Constant_Present (P)
12721 and then No (Expression (P))
12722 then
12723 null;
12724 else
12725 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
12726 end if;
12728 -- Ada 2005 AI-406: the object definition in an object declaration
12729 -- can be an access definition.
12731 elsif Def_Kind = N_Access_Definition then
12732 T := Access_Definition (Related_Nod, Obj_Def);
12733 Set_Is_Local_Anonymous_Access (T);
12735 -- Otherwise, the object definition is just a subtype_mark
12737 else
12738 T := Process_Subtype (Obj_Def, Related_Nod);
12739 end if;
12741 return T;
12742 end Find_Type_Of_Object;
12744 --------------------------------
12745 -- Find_Type_Of_Subtype_Indic --
12746 --------------------------------
12748 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
12749 Typ : Entity_Id;
12751 begin
12752 -- Case of subtype mark with a constraint
12754 if Nkind (S) = N_Subtype_Indication then
12755 Find_Type (Subtype_Mark (S));
12756 Typ := Entity (Subtype_Mark (S));
12758 if not
12759 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
12760 then
12761 Error_Msg_N
12762 ("incorrect constraint for this kind of type", Constraint (S));
12763 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
12764 end if;
12766 -- Otherwise we have a subtype mark without a constraint
12768 elsif Error_Posted (S) then
12769 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
12770 return Any_Type;
12772 else
12773 Find_Type (S);
12774 Typ := Entity (S);
12775 end if;
12777 if Typ = Standard_Wide_Character
12778 or else Typ = Standard_Wide_Wide_Character
12779 or else Typ = Standard_Wide_String
12780 or else Typ = Standard_Wide_Wide_String
12781 then
12782 Check_Restriction (No_Wide_Characters, S);
12783 end if;
12785 return Typ;
12786 end Find_Type_Of_Subtype_Indic;
12788 -------------------------------------
12789 -- Floating_Point_Type_Declaration --
12790 -------------------------------------
12792 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
12793 Digs : constant Node_Id := Digits_Expression (Def);
12794 Digs_Val : Uint;
12795 Base_Typ : Entity_Id;
12796 Implicit_Base : Entity_Id;
12797 Bound : Node_Id;
12799 function Can_Derive_From (E : Entity_Id) return Boolean;
12800 -- Find if given digits value allows derivation from specified type
12802 ---------------------
12803 -- Can_Derive_From --
12804 ---------------------
12806 function Can_Derive_From (E : Entity_Id) return Boolean is
12807 Spec : constant Entity_Id := Real_Range_Specification (Def);
12809 begin
12810 if Digs_Val > Digits_Value (E) then
12811 return False;
12812 end if;
12814 if Present (Spec) then
12815 if Expr_Value_R (Type_Low_Bound (E)) >
12816 Expr_Value_R (Low_Bound (Spec))
12817 then
12818 return False;
12819 end if;
12821 if Expr_Value_R (Type_High_Bound (E)) <
12822 Expr_Value_R (High_Bound (Spec))
12823 then
12824 return False;
12825 end if;
12826 end if;
12828 return True;
12829 end Can_Derive_From;
12831 -- Start of processing for Floating_Point_Type_Declaration
12833 begin
12834 Check_Restriction (No_Floating_Point, Def);
12836 -- Create an implicit base type
12838 Implicit_Base :=
12839 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
12841 -- Analyze and verify digits value
12843 Analyze_And_Resolve (Digs, Any_Integer);
12844 Check_Digits_Expression (Digs);
12845 Digs_Val := Expr_Value (Digs);
12847 -- Process possible range spec and find correct type to derive from
12849 Process_Real_Range_Specification (Def);
12851 if Can_Derive_From (Standard_Short_Float) then
12852 Base_Typ := Standard_Short_Float;
12853 elsif Can_Derive_From (Standard_Float) then
12854 Base_Typ := Standard_Float;
12855 elsif Can_Derive_From (Standard_Long_Float) then
12856 Base_Typ := Standard_Long_Float;
12857 elsif Can_Derive_From (Standard_Long_Long_Float) then
12858 Base_Typ := Standard_Long_Long_Float;
12860 -- If we can't derive from any existing type, use long_long_float
12861 -- and give appropriate message explaining the problem.
12863 else
12864 Base_Typ := Standard_Long_Long_Float;
12866 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
12867 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
12868 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
12870 else
12871 Error_Msg_N
12872 ("range too large for any predefined type",
12873 Real_Range_Specification (Def));
12874 end if;
12875 end if;
12877 -- If there are bounds given in the declaration use them as the bounds
12878 -- of the type, otherwise use the bounds of the predefined base type
12879 -- that was chosen based on the Digits value.
12881 if Present (Real_Range_Specification (Def)) then
12882 Set_Scalar_Range (T, Real_Range_Specification (Def));
12883 Set_Is_Constrained (T);
12885 -- The bounds of this range must be converted to machine numbers
12886 -- in accordance with RM 4.9(38).
12888 Bound := Type_Low_Bound (T);
12890 if Nkind (Bound) = N_Real_Literal then
12891 Set_Realval
12892 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
12893 Set_Is_Machine_Number (Bound);
12894 end if;
12896 Bound := Type_High_Bound (T);
12898 if Nkind (Bound) = N_Real_Literal then
12899 Set_Realval
12900 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
12901 Set_Is_Machine_Number (Bound);
12902 end if;
12904 else
12905 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
12906 end if;
12908 -- Complete definition of implicit base and declared first subtype
12910 Set_Etype (Implicit_Base, Base_Typ);
12912 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
12913 Set_Size_Info (Implicit_Base, (Base_Typ));
12914 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
12915 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
12916 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
12917 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
12919 Set_Ekind (T, E_Floating_Point_Subtype);
12920 Set_Etype (T, Implicit_Base);
12922 Set_Size_Info (T, (Implicit_Base));
12923 Set_RM_Size (T, RM_Size (Implicit_Base));
12924 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
12925 Set_Digits_Value (T, Digs_Val);
12926 end Floating_Point_Type_Declaration;
12928 ----------------------------
12929 -- Get_Discriminant_Value --
12930 ----------------------------
12932 -- This is the situation:
12934 -- There is a non-derived type
12936 -- type T0 (Dx, Dy, Dz...)
12938 -- There are zero or more levels of derivation, with each derivation
12939 -- either purely inheriting the discriminants, or defining its own.
12941 -- type Ti is new Ti-1
12942 -- or
12943 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
12944 -- or
12945 -- subtype Ti is ...
12947 -- The subtype issue is avoided by the use of Original_Record_Component,
12948 -- and the fact that derived subtypes also derive the constraints.
12950 -- This chain leads back from
12952 -- Typ_For_Constraint
12954 -- Typ_For_Constraint has discriminants, and the value for each
12955 -- discriminant is given by its corresponding Elmt of Constraints.
12957 -- Discriminant is some discriminant in this hierarchy
12959 -- We need to return its value
12961 -- We do this by recursively searching each level, and looking for
12962 -- Discriminant. Once we get to the bottom, we start backing up
12963 -- returning the value for it which may in turn be a discriminant
12964 -- further up, so on the backup we continue the substitution.
12966 function Get_Discriminant_Value
12967 (Discriminant : Entity_Id;
12968 Typ_For_Constraint : Entity_Id;
12969 Constraint : Elist_Id) return Node_Id
12971 function Search_Derivation_Levels
12972 (Ti : Entity_Id;
12973 Discrim_Values : Elist_Id;
12974 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
12975 -- This is the routine that performs the recursive search of levels
12976 -- as described above.
12978 ------------------------------
12979 -- Search_Derivation_Levels --
12980 ------------------------------
12982 function Search_Derivation_Levels
12983 (Ti : Entity_Id;
12984 Discrim_Values : Elist_Id;
12985 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
12987 Assoc : Elmt_Id;
12988 Disc : Entity_Id;
12989 Result : Node_Or_Entity_Id;
12990 Result_Entity : Node_Id;
12992 begin
12993 -- If inappropriate type, return Error, this happens only in
12994 -- cascaded error situations, and we want to avoid a blow up.
12996 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
12997 return Error;
12998 end if;
13000 -- Look deeper if possible. Use Stored_Constraints only for
13001 -- untagged types. For tagged types use the given constraint.
13002 -- This asymmetry needs explanation???
13004 if not Stored_Discrim_Values
13005 and then Present (Stored_Constraint (Ti))
13006 and then not Is_Tagged_Type (Ti)
13007 then
13008 Result :=
13009 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
13010 else
13011 declare
13012 Td : constant Entity_Id := Etype (Ti);
13014 begin
13015 if Td = Ti then
13016 Result := Discriminant;
13018 else
13019 if Present (Stored_Constraint (Ti)) then
13020 Result :=
13021 Search_Derivation_Levels
13022 (Td, Stored_Constraint (Ti), True);
13023 else
13024 Result :=
13025 Search_Derivation_Levels
13026 (Td, Discrim_Values, Stored_Discrim_Values);
13027 end if;
13028 end if;
13029 end;
13030 end if;
13032 -- Extra underlying places to search, if not found above. For
13033 -- concurrent types, the relevant discriminant appears in the
13034 -- corresponding record. For a type derived from a private type
13035 -- without discriminant, the full view inherits the discriminants
13036 -- of the full view of the parent.
13038 if Result = Discriminant then
13039 if Is_Concurrent_Type (Ti)
13040 and then Present (Corresponding_Record_Type (Ti))
13041 then
13042 Result :=
13043 Search_Derivation_Levels (
13044 Corresponding_Record_Type (Ti),
13045 Discrim_Values,
13046 Stored_Discrim_Values);
13048 elsif Is_Private_Type (Ti)
13049 and then not Has_Discriminants (Ti)
13050 and then Present (Full_View (Ti))
13051 and then Etype (Full_View (Ti)) /= Ti
13052 then
13053 Result :=
13054 Search_Derivation_Levels (
13055 Full_View (Ti),
13056 Discrim_Values,
13057 Stored_Discrim_Values);
13058 end if;
13059 end if;
13061 -- If Result is not a (reference to a) discriminant, return it,
13062 -- otherwise set Result_Entity to the discriminant.
13064 if Nkind (Result) = N_Defining_Identifier then
13065 pragma Assert (Result = Discriminant);
13066 Result_Entity := Result;
13068 else
13069 if not Denotes_Discriminant (Result) then
13070 return Result;
13071 end if;
13073 Result_Entity := Entity (Result);
13074 end if;
13076 -- See if this level of derivation actually has discriminants
13077 -- because tagged derivations can add them, hence the lower
13078 -- levels need not have any.
13080 if not Has_Discriminants (Ti) then
13081 return Result;
13082 end if;
13084 -- Scan Ti's discriminants for Result_Entity,
13085 -- and return its corresponding value, if any.
13087 Result_Entity := Original_Record_Component (Result_Entity);
13089 Assoc := First_Elmt (Discrim_Values);
13091 if Stored_Discrim_Values then
13092 Disc := First_Stored_Discriminant (Ti);
13093 else
13094 Disc := First_Discriminant (Ti);
13095 end if;
13097 while Present (Disc) loop
13098 pragma Assert (Present (Assoc));
13100 if Original_Record_Component (Disc) = Result_Entity then
13101 return Node (Assoc);
13102 end if;
13104 Next_Elmt (Assoc);
13106 if Stored_Discrim_Values then
13107 Next_Stored_Discriminant (Disc);
13108 else
13109 Next_Discriminant (Disc);
13110 end if;
13111 end loop;
13113 -- Could not find it
13115 return Result;
13116 end Search_Derivation_Levels;
13118 Result : Node_Or_Entity_Id;
13120 -- Start of processing for Get_Discriminant_Value
13122 begin
13123 -- ??? This routine is a gigantic mess and will be deleted. For the
13124 -- time being just test for the trivial case before calling recurse.
13126 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
13127 declare
13128 D : Entity_Id;
13129 E : Elmt_Id;
13131 begin
13132 D := First_Discriminant (Typ_For_Constraint);
13133 E := First_Elmt (Constraint);
13134 while Present (D) loop
13135 if Chars (D) = Chars (Discriminant) then
13136 return Node (E);
13137 end if;
13139 Next_Discriminant (D);
13140 Next_Elmt (E);
13141 end loop;
13142 end;
13143 end if;
13145 Result := Search_Derivation_Levels
13146 (Typ_For_Constraint, Constraint, False);
13148 -- ??? hack to disappear when this routine is gone
13150 if Nkind (Result) = N_Defining_Identifier then
13151 declare
13152 D : Entity_Id;
13153 E : Elmt_Id;
13155 begin
13156 D := First_Discriminant (Typ_For_Constraint);
13157 E := First_Elmt (Constraint);
13158 while Present (D) loop
13159 if Corresponding_Discriminant (D) = Discriminant then
13160 return Node (E);
13161 end if;
13163 Next_Discriminant (D);
13164 Next_Elmt (E);
13165 end loop;
13166 end;
13167 end if;
13169 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
13170 return Result;
13171 end Get_Discriminant_Value;
13173 --------------------------
13174 -- Has_Range_Constraint --
13175 --------------------------
13177 function Has_Range_Constraint (N : Node_Id) return Boolean is
13178 C : constant Node_Id := Constraint (N);
13180 begin
13181 if Nkind (C) = N_Range_Constraint then
13182 return True;
13184 elsif Nkind (C) = N_Digits_Constraint then
13185 return
13186 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
13187 or else
13188 Present (Range_Constraint (C));
13190 elsif Nkind (C) = N_Delta_Constraint then
13191 return Present (Range_Constraint (C));
13193 else
13194 return False;
13195 end if;
13196 end Has_Range_Constraint;
13198 ------------------------
13199 -- Inherit_Components --
13200 ------------------------
13202 function Inherit_Components
13203 (N : Node_Id;
13204 Parent_Base : Entity_Id;
13205 Derived_Base : Entity_Id;
13206 Is_Tagged : Boolean;
13207 Inherit_Discr : Boolean;
13208 Discs : Elist_Id) return Elist_Id
13210 Assoc_List : constant Elist_Id := New_Elmt_List;
13212 procedure Inherit_Component
13213 (Old_C : Entity_Id;
13214 Plain_Discrim : Boolean := False;
13215 Stored_Discrim : Boolean := False);
13216 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
13217 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
13218 -- True, Old_C is a stored discriminant. If they are both false then
13219 -- Old_C is a regular component.
13221 -----------------------
13222 -- Inherit_Component --
13223 -----------------------
13225 procedure Inherit_Component
13226 (Old_C : Entity_Id;
13227 Plain_Discrim : Boolean := False;
13228 Stored_Discrim : Boolean := False)
13230 New_C : constant Entity_Id := New_Copy (Old_C);
13232 Discrim : Entity_Id;
13233 Corr_Discrim : Entity_Id;
13235 begin
13236 pragma Assert (not Is_Tagged or else not Stored_Discrim);
13238 Set_Parent (New_C, Parent (Old_C));
13240 -- Regular discriminants and components must be inserted in the scope
13241 -- of the Derived_Base. Do it here.
13243 if not Stored_Discrim then
13244 Enter_Name (New_C);
13245 end if;
13247 -- For tagged types the Original_Record_Component must point to
13248 -- whatever this field was pointing to in the parent type. This has
13249 -- already been achieved by the call to New_Copy above.
13251 if not Is_Tagged then
13252 Set_Original_Record_Component (New_C, New_C);
13253 end if;
13255 -- If we have inherited a component then see if its Etype contains
13256 -- references to Parent_Base discriminants. In this case, replace
13257 -- these references with the constraints given in Discs. We do not
13258 -- do this for the partial view of private types because this is
13259 -- not needed (only the components of the full view will be used
13260 -- for code generation) and cause problem. We also avoid this
13261 -- transformation in some error situations.
13263 if Ekind (New_C) = E_Component then
13264 if (Is_Private_Type (Derived_Base)
13265 and then not Is_Generic_Type (Derived_Base))
13266 or else (Is_Empty_Elmt_List (Discs)
13267 and then not Expander_Active)
13268 then
13269 Set_Etype (New_C, Etype (Old_C));
13271 else
13272 -- The current component introduces a circularity of the
13273 -- following kind:
13275 -- limited with Pack_2;
13276 -- package Pack_1 is
13277 -- type T_1 is tagged record
13278 -- Comp : access Pack_2.T_2;
13279 -- ...
13280 -- end record;
13281 -- end Pack_1;
13283 -- with Pack_1;
13284 -- package Pack_2 is
13285 -- type T_2 is new Pack_1.T_1 with ...;
13286 -- end Pack_2;
13288 Set_Etype
13289 (New_C,
13290 Constrain_Component_Type
13291 (Old_C, Derived_Base, N, Parent_Base, Discs));
13292 end if;
13293 end if;
13295 -- In derived tagged types it is illegal to reference a non
13296 -- discriminant component in the parent type. To catch this, mark
13297 -- these components with an Ekind of E_Void. This will be reset in
13298 -- Record_Type_Definition after processing the record extension of
13299 -- the derived type.
13301 -- If the declaration is a private extension, there is no further
13302 -- record extension to process, and the components retain their
13303 -- current kind, because they are visible at this point.
13305 if Is_Tagged and then Ekind (New_C) = E_Component
13306 and then Nkind (N) /= N_Private_Extension_Declaration
13307 then
13308 Set_Ekind (New_C, E_Void);
13309 end if;
13311 if Plain_Discrim then
13312 Set_Corresponding_Discriminant (New_C, Old_C);
13313 Build_Discriminal (New_C);
13315 -- If we are explicitly inheriting a stored discriminant it will be
13316 -- completely hidden.
13318 elsif Stored_Discrim then
13319 Set_Corresponding_Discriminant (New_C, Empty);
13320 Set_Discriminal (New_C, Empty);
13321 Set_Is_Completely_Hidden (New_C);
13323 -- Set the Original_Record_Component of each discriminant in the
13324 -- derived base to point to the corresponding stored that we just
13325 -- created.
13327 Discrim := First_Discriminant (Derived_Base);
13328 while Present (Discrim) loop
13329 Corr_Discrim := Corresponding_Discriminant (Discrim);
13331 -- Corr_Discrim could be missing in an error situation
13333 if Present (Corr_Discrim)
13334 and then Original_Record_Component (Corr_Discrim) = Old_C
13335 then
13336 Set_Original_Record_Component (Discrim, New_C);
13337 end if;
13339 Next_Discriminant (Discrim);
13340 end loop;
13342 Append_Entity (New_C, Derived_Base);
13343 end if;
13345 if not Is_Tagged then
13346 Append_Elmt (Old_C, Assoc_List);
13347 Append_Elmt (New_C, Assoc_List);
13348 end if;
13349 end Inherit_Component;
13351 -- Variables local to Inherit_Component
13353 Loc : constant Source_Ptr := Sloc (N);
13355 Parent_Discrim : Entity_Id;
13356 Stored_Discrim : Entity_Id;
13357 D : Entity_Id;
13358 Component : Entity_Id;
13360 -- Start of processing for Inherit_Components
13362 begin
13363 if not Is_Tagged then
13364 Append_Elmt (Parent_Base, Assoc_List);
13365 Append_Elmt (Derived_Base, Assoc_List);
13366 end if;
13368 -- Inherit parent discriminants if needed
13370 if Inherit_Discr then
13371 Parent_Discrim := First_Discriminant (Parent_Base);
13372 while Present (Parent_Discrim) loop
13373 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
13374 Next_Discriminant (Parent_Discrim);
13375 end loop;
13376 end if;
13378 -- Create explicit stored discrims for untagged types when necessary
13380 if not Has_Unknown_Discriminants (Derived_Base)
13381 and then Has_Discriminants (Parent_Base)
13382 and then not Is_Tagged
13383 and then
13384 (not Inherit_Discr
13385 or else First_Discriminant (Parent_Base) /=
13386 First_Stored_Discriminant (Parent_Base))
13387 then
13388 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
13389 while Present (Stored_Discrim) loop
13390 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
13391 Next_Stored_Discriminant (Stored_Discrim);
13392 end loop;
13393 end if;
13395 -- See if we can apply the second transformation for derived types, as
13396 -- explained in point 6. in the comments above Build_Derived_Record_Type
13397 -- This is achieved by appending Derived_Base discriminants into Discs,
13398 -- which has the side effect of returning a non empty Discs list to the
13399 -- caller of Inherit_Components, which is what we want. This must be
13400 -- done for private derived types if there are explicit stored
13401 -- discriminants, to ensure that we can retrieve the values of the
13402 -- constraints provided in the ancestors.
13404 if Inherit_Discr
13405 and then Is_Empty_Elmt_List (Discs)
13406 and then Present (First_Discriminant (Derived_Base))
13407 and then
13408 (not Is_Private_Type (Derived_Base)
13409 or else Is_Completely_Hidden
13410 (First_Stored_Discriminant (Derived_Base))
13411 or else Is_Generic_Type (Derived_Base))
13412 then
13413 D := First_Discriminant (Derived_Base);
13414 while Present (D) loop
13415 Append_Elmt (New_Reference_To (D, Loc), Discs);
13416 Next_Discriminant (D);
13417 end loop;
13418 end if;
13420 -- Finally, inherit non-discriminant components unless they are not
13421 -- visible because defined or inherited from the full view of the
13422 -- parent. Don't inherit the _parent field of the parent type.
13424 Component := First_Entity (Parent_Base);
13425 while Present (Component) loop
13427 -- Ada 2005 (AI-251): Do not inherit components associated with
13428 -- secondary tags of the parent.
13430 if Ekind (Component) = E_Component
13431 and then Present (Related_Interface (Component))
13432 then
13433 null;
13435 elsif Ekind (Component) /= E_Component
13436 or else Chars (Component) = Name_uParent
13437 then
13438 null;
13440 -- If the derived type is within the parent type's declarative
13441 -- region, then the components can still be inherited even though
13442 -- they aren't visible at this point. This can occur for cases
13443 -- such as within public child units where the components must
13444 -- become visible upon entering the child unit's private part.
13446 elsif not Is_Visible_Component (Component)
13447 and then not In_Open_Scopes (Scope (Parent_Base))
13448 then
13449 null;
13451 elsif Ekind (Derived_Base) = E_Private_Type
13452 or else Ekind (Derived_Base) = E_Limited_Private_Type
13453 then
13454 null;
13456 else
13457 Inherit_Component (Component);
13458 end if;
13460 Next_Entity (Component);
13461 end loop;
13463 -- For tagged derived types, inherited discriminants cannot be used in
13464 -- component declarations of the record extension part. To achieve this
13465 -- we mark the inherited discriminants as not visible.
13467 if Is_Tagged and then Inherit_Discr then
13468 D := First_Discriminant (Derived_Base);
13469 while Present (D) loop
13470 Set_Is_Immediately_Visible (D, False);
13471 Next_Discriminant (D);
13472 end loop;
13473 end if;
13475 return Assoc_List;
13476 end Inherit_Components;
13478 -----------------------
13479 -- Is_Null_Extension --
13480 -----------------------
13482 function Is_Null_Extension (T : Entity_Id) return Boolean is
13483 Type_Decl : constant Node_Id := Parent (T);
13484 Comp_List : Node_Id;
13485 Comp : Node_Id;
13487 begin
13488 if Nkind (Type_Decl) /= N_Full_Type_Declaration
13489 or else not Is_Tagged_Type (T)
13490 or else Nkind (Type_Definition (Type_Decl)) /=
13491 N_Derived_Type_Definition
13492 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
13493 then
13494 return False;
13495 end if;
13497 Comp_List :=
13498 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
13500 if Present (Discriminant_Specifications (Type_Decl)) then
13501 return False;
13503 elsif Present (Comp_List)
13504 and then Is_Non_Empty_List (Component_Items (Comp_List))
13505 then
13506 Comp := First (Component_Items (Comp_List));
13508 -- Only user-defined components are relevant. The component list
13509 -- may also contain a parent component and internal components
13510 -- corresponding to secondary tags, but these do not determine
13511 -- whether this is a null extension.
13513 while Present (Comp) loop
13514 if Comes_From_Source (Comp) then
13515 return False;
13516 end if;
13518 Next (Comp);
13519 end loop;
13521 return True;
13522 else
13523 return True;
13524 end if;
13525 end Is_Null_Extension;
13527 ------------------------------
13528 -- Is_Valid_Constraint_Kind --
13529 ------------------------------
13531 function Is_Valid_Constraint_Kind
13532 (T_Kind : Type_Kind;
13533 Constraint_Kind : Node_Kind) return Boolean
13535 begin
13536 case T_Kind is
13537 when Enumeration_Kind |
13538 Integer_Kind =>
13539 return Constraint_Kind = N_Range_Constraint;
13541 when Decimal_Fixed_Point_Kind =>
13542 return
13543 Constraint_Kind = N_Digits_Constraint
13544 or else
13545 Constraint_Kind = N_Range_Constraint;
13547 when Ordinary_Fixed_Point_Kind =>
13548 return
13549 Constraint_Kind = N_Delta_Constraint
13550 or else
13551 Constraint_Kind = N_Range_Constraint;
13553 when Float_Kind =>
13554 return
13555 Constraint_Kind = N_Digits_Constraint
13556 or else
13557 Constraint_Kind = N_Range_Constraint;
13559 when Access_Kind |
13560 Array_Kind |
13561 E_Record_Type |
13562 E_Record_Subtype |
13563 Class_Wide_Kind |
13564 E_Incomplete_Type |
13565 Private_Kind |
13566 Concurrent_Kind =>
13567 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
13569 when others =>
13570 return True; -- Error will be detected later
13571 end case;
13572 end Is_Valid_Constraint_Kind;
13574 --------------------------
13575 -- Is_Visible_Component --
13576 --------------------------
13578 function Is_Visible_Component (C : Entity_Id) return Boolean is
13579 Original_Comp : Entity_Id := Empty;
13580 Original_Scope : Entity_Id;
13581 Type_Scope : Entity_Id;
13583 function Is_Local_Type (Typ : Entity_Id) return Boolean;
13584 -- Check whether parent type of inherited component is declared locally,
13585 -- possibly within a nested package or instance. The current scope is
13586 -- the derived record itself.
13588 -------------------
13589 -- Is_Local_Type --
13590 -------------------
13592 function Is_Local_Type (Typ : Entity_Id) return Boolean is
13593 Scop : Entity_Id;
13595 begin
13596 Scop := Scope (Typ);
13597 while Present (Scop)
13598 and then Scop /= Standard_Standard
13599 loop
13600 if Scop = Scope (Current_Scope) then
13601 return True;
13602 end if;
13604 Scop := Scope (Scop);
13605 end loop;
13607 return False;
13608 end Is_Local_Type;
13610 -- Start of processing for Is_Visible_Component
13612 begin
13613 if Ekind (C) = E_Component
13614 or else Ekind (C) = E_Discriminant
13615 then
13616 Original_Comp := Original_Record_Component (C);
13617 end if;
13619 if No (Original_Comp) then
13621 -- Premature usage, or previous error
13623 return False;
13625 else
13626 Original_Scope := Scope (Original_Comp);
13627 Type_Scope := Scope (Base_Type (Scope (C)));
13628 end if;
13630 -- This test only concerns tagged types
13632 if not Is_Tagged_Type (Original_Scope) then
13633 return True;
13635 -- If it is _Parent or _Tag, there is no visibility issue
13637 elsif not Comes_From_Source (Original_Comp) then
13638 return True;
13640 -- If we are in the body of an instantiation, the component is visible
13641 -- even when the parent type (possibly defined in an enclosing unit or
13642 -- in a parent unit) might not.
13644 elsif In_Instance_Body then
13645 return True;
13647 -- Discriminants are always visible
13649 elsif Ekind (Original_Comp) = E_Discriminant
13650 and then not Has_Unknown_Discriminants (Original_Scope)
13651 then
13652 return True;
13654 -- If the component has been declared in an ancestor which is currently
13655 -- a private type, then it is not visible. The same applies if the
13656 -- component's containing type is not in an open scope and the original
13657 -- component's enclosing type is a visible full view of a private type
13658 -- (which can occur in cases where an attempt is being made to reference
13659 -- a component in a sibling package that is inherited from a visible
13660 -- component of a type in an ancestor package; the component in the
13661 -- sibling package should not be visible even though the component it
13662 -- inherited from is visible). This does not apply however in the case
13663 -- where the scope of the type is a private child unit, or when the
13664 -- parent comes from a local package in which the ancestor is currently
13665 -- visible. The latter suppression of visibility is needed for cases
13666 -- that are tested in B730006.
13668 elsif Is_Private_Type (Original_Scope)
13669 or else
13670 (not Is_Private_Descendant (Type_Scope)
13671 and then not In_Open_Scopes (Type_Scope)
13672 and then Has_Private_Declaration (Original_Scope))
13673 then
13674 -- If the type derives from an entity in a formal package, there
13675 -- are no additional visible components.
13677 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
13678 N_Formal_Package_Declaration
13679 then
13680 return False;
13682 -- if we are not in the private part of the current package, there
13683 -- are no additional visible components.
13685 elsif Ekind (Scope (Current_Scope)) = E_Package
13686 and then not In_Private_Part (Scope (Current_Scope))
13687 then
13688 return False;
13689 else
13690 return
13691 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
13692 and then In_Open_Scopes (Scope (Original_Scope))
13693 and then Is_Local_Type (Type_Scope);
13694 end if;
13696 -- There is another weird way in which a component may be invisible
13697 -- when the private and the full view are not derived from the same
13698 -- ancestor. Here is an example :
13700 -- type A1 is tagged record F1 : integer; end record;
13701 -- type A2 is new A1 with record F2 : integer; end record;
13702 -- type T is new A1 with private;
13703 -- private
13704 -- type T is new A2 with null record;
13706 -- In this case, the full view of T inherits F1 and F2 but the private
13707 -- view inherits only F1
13709 else
13710 declare
13711 Ancestor : Entity_Id := Scope (C);
13713 begin
13714 loop
13715 if Ancestor = Original_Scope then
13716 return True;
13717 elsif Ancestor = Etype (Ancestor) then
13718 return False;
13719 end if;
13721 Ancestor := Etype (Ancestor);
13722 end loop;
13724 return True;
13725 end;
13726 end if;
13727 end Is_Visible_Component;
13729 --------------------------
13730 -- Make_Class_Wide_Type --
13731 --------------------------
13733 procedure Make_Class_Wide_Type (T : Entity_Id) is
13734 CW_Type : Entity_Id;
13735 CW_Name : Name_Id;
13736 Next_E : Entity_Id;
13738 begin
13739 -- The class wide type can have been defined by the partial view, in
13740 -- which case everything is already done.
13742 if Present (Class_Wide_Type (T)) then
13743 return;
13744 end if;
13746 CW_Type :=
13747 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
13749 -- Inherit root type characteristics
13751 CW_Name := Chars (CW_Type);
13752 Next_E := Next_Entity (CW_Type);
13753 Copy_Node (T, CW_Type);
13754 Set_Comes_From_Source (CW_Type, False);
13755 Set_Chars (CW_Type, CW_Name);
13756 Set_Parent (CW_Type, Parent (T));
13757 Set_Next_Entity (CW_Type, Next_E);
13759 -- Ensure we have a new freeze node for the class-wide type. The partial
13760 -- view may have freeze action of its own, requiring a proper freeze
13761 -- node, and the same freeze node cannot be shared between the two
13762 -- types.
13764 Set_Has_Delayed_Freeze (CW_Type);
13765 Set_Freeze_Node (CW_Type, Empty);
13767 -- Customize the class-wide type: It has no prim. op., it cannot be
13768 -- abstract and its Etype points back to the specific root type.
13770 Set_Ekind (CW_Type, E_Class_Wide_Type);
13771 Set_Is_Tagged_Type (CW_Type, True);
13772 Set_Primitive_Operations (CW_Type, New_Elmt_List);
13773 Set_Is_Abstract_Type (CW_Type, False);
13774 Set_Is_Constrained (CW_Type, False);
13775 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
13776 Init_Size_Align (CW_Type);
13778 if Ekind (T) = E_Class_Wide_Subtype then
13779 Set_Etype (CW_Type, Etype (Base_Type (T)));
13780 else
13781 Set_Etype (CW_Type, T);
13782 end if;
13784 -- If this is the class_wide type of a constrained subtype, it does
13785 -- not have discriminants.
13787 Set_Has_Discriminants (CW_Type,
13788 Has_Discriminants (T) and then not Is_Constrained (T));
13790 Set_Has_Unknown_Discriminants (CW_Type, True);
13791 Set_Class_Wide_Type (T, CW_Type);
13792 Set_Equivalent_Type (CW_Type, Empty);
13794 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
13796 Set_Class_Wide_Type (CW_Type, CW_Type);
13797 end Make_Class_Wide_Type;
13799 ----------------
13800 -- Make_Index --
13801 ----------------
13803 procedure Make_Index
13804 (I : Node_Id;
13805 Related_Nod : Node_Id;
13806 Related_Id : Entity_Id := Empty;
13807 Suffix_Index : Nat := 1)
13809 R : Node_Id;
13810 T : Entity_Id;
13811 Def_Id : Entity_Id := Empty;
13812 Found : Boolean := False;
13814 begin
13815 -- For a discrete range used in a constrained array definition and
13816 -- defined by a range, an implicit conversion to the predefined type
13817 -- INTEGER is assumed if each bound is either a numeric literal, a named
13818 -- number, or an attribute, and the type of both bounds (prior to the
13819 -- implicit conversion) is the type universal_integer. Otherwise, both
13820 -- bounds must be of the same discrete type, other than universal
13821 -- integer; this type must be determinable independently of the
13822 -- context, but using the fact that the type must be discrete and that
13823 -- both bounds must have the same type.
13825 -- Character literals also have a universal type in the absence of
13826 -- of additional context, and are resolved to Standard_Character.
13828 if Nkind (I) = N_Range then
13830 -- The index is given by a range constraint. The bounds are known
13831 -- to be of a consistent type.
13833 if not Is_Overloaded (I) then
13834 T := Etype (I);
13836 -- For universal bounds, choose the specific predefined type
13838 if T = Universal_Integer then
13839 T := Standard_Integer;
13841 elsif T = Any_Character then
13842 Ambiguous_Character (Low_Bound (I));
13844 T := Standard_Character;
13845 end if;
13847 else
13848 T := Any_Type;
13850 declare
13851 Ind : Interp_Index;
13852 It : Interp;
13854 begin
13855 Get_First_Interp (I, Ind, It);
13856 while Present (It.Typ) loop
13857 if Is_Discrete_Type (It.Typ) then
13859 if Found
13860 and then not Covers (It.Typ, T)
13861 and then not Covers (T, It.Typ)
13862 then
13863 Error_Msg_N ("ambiguous bounds in discrete range", I);
13864 exit;
13865 else
13866 T := It.Typ;
13867 Found := True;
13868 end if;
13869 end if;
13871 Get_Next_Interp (Ind, It);
13872 end loop;
13874 if T = Any_Type then
13875 Error_Msg_N ("discrete type required for range", I);
13876 Set_Etype (I, Any_Type);
13877 return;
13879 elsif T = Universal_Integer then
13880 T := Standard_Integer;
13881 end if;
13882 end;
13883 end if;
13885 if not Is_Discrete_Type (T) then
13886 Error_Msg_N ("discrete type required for range", I);
13887 Set_Etype (I, Any_Type);
13888 return;
13889 end if;
13891 if Nkind (Low_Bound (I)) = N_Attribute_Reference
13892 and then Attribute_Name (Low_Bound (I)) = Name_First
13893 and then Is_Entity_Name (Prefix (Low_Bound (I)))
13894 and then Is_Type (Entity (Prefix (Low_Bound (I))))
13895 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
13896 then
13897 -- The type of the index will be the type of the prefix, as long
13898 -- as the upper bound is 'Last of the same type.
13900 Def_Id := Entity (Prefix (Low_Bound (I)));
13902 if Nkind (High_Bound (I)) /= N_Attribute_Reference
13903 or else Attribute_Name (High_Bound (I)) /= Name_Last
13904 or else not Is_Entity_Name (Prefix (High_Bound (I)))
13905 or else Entity (Prefix (High_Bound (I))) /= Def_Id
13906 then
13907 Def_Id := Empty;
13908 end if;
13909 end if;
13911 R := I;
13912 Process_Range_Expr_In_Decl (R, T);
13914 elsif Nkind (I) = N_Subtype_Indication then
13916 -- The index is given by a subtype with a range constraint
13918 T := Base_Type (Entity (Subtype_Mark (I)));
13920 if not Is_Discrete_Type (T) then
13921 Error_Msg_N ("discrete type required for range", I);
13922 Set_Etype (I, Any_Type);
13923 return;
13924 end if;
13926 R := Range_Expression (Constraint (I));
13928 Resolve (R, T);
13929 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
13931 elsif Nkind (I) = N_Attribute_Reference then
13933 -- The parser guarantees that the attribute is a RANGE attribute
13935 -- If the node denotes the range of a type mark, that is also the
13936 -- resulting type, and we do no need to create an Itype for it.
13938 if Is_Entity_Name (Prefix (I))
13939 and then Comes_From_Source (I)
13940 and then Is_Type (Entity (Prefix (I)))
13941 and then Is_Discrete_Type (Entity (Prefix (I)))
13942 then
13943 Def_Id := Entity (Prefix (I));
13944 end if;
13946 Analyze_And_Resolve (I);
13947 T := Etype (I);
13948 R := I;
13950 -- If none of the above, must be a subtype. We convert this to a
13951 -- range attribute reference because in the case of declared first
13952 -- named subtypes, the types in the range reference can be different
13953 -- from the type of the entity. A range attribute normalizes the
13954 -- reference and obtains the correct types for the bounds.
13956 -- This transformation is in the nature of an expansion, is only
13957 -- done if expansion is active. In particular, it is not done on
13958 -- formal generic types, because we need to retain the name of the
13959 -- original index for instantiation purposes.
13961 else
13962 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
13963 Error_Msg_N ("invalid subtype mark in discrete range ", I);
13964 Set_Etype (I, Any_Integer);
13965 return;
13967 else
13968 -- The type mark may be that of an incomplete type. It is only
13969 -- now that we can get the full view, previous analysis does
13970 -- not look specifically for a type mark.
13972 Set_Entity (I, Get_Full_View (Entity (I)));
13973 Set_Etype (I, Entity (I));
13974 Def_Id := Entity (I);
13976 if not Is_Discrete_Type (Def_Id) then
13977 Error_Msg_N ("discrete type required for index", I);
13978 Set_Etype (I, Any_Type);
13979 return;
13980 end if;
13981 end if;
13983 if Expander_Active then
13984 Rewrite (I,
13985 Make_Attribute_Reference (Sloc (I),
13986 Attribute_Name => Name_Range,
13987 Prefix => Relocate_Node (I)));
13989 -- The original was a subtype mark that does not freeze. This
13990 -- means that the rewritten version must not freeze either.
13992 Set_Must_Not_Freeze (I);
13993 Set_Must_Not_Freeze (Prefix (I));
13995 -- Is order critical??? if so, document why, if not
13996 -- use Analyze_And_Resolve
13998 Analyze_And_Resolve (I);
13999 T := Etype (I);
14000 R := I;
14002 -- If expander is inactive, type is legal, nothing else to construct
14004 else
14005 return;
14006 end if;
14007 end if;
14009 if not Is_Discrete_Type (T) then
14010 Error_Msg_N ("discrete type required for range", I);
14011 Set_Etype (I, Any_Type);
14012 return;
14014 elsif T = Any_Type then
14015 Set_Etype (I, Any_Type);
14016 return;
14017 end if;
14019 -- We will now create the appropriate Itype to describe the range, but
14020 -- first a check. If we originally had a subtype, then we just label
14021 -- the range with this subtype. Not only is there no need to construct
14022 -- a new subtype, but it is wrong to do so for two reasons:
14024 -- 1. A legality concern, if we have a subtype, it must not freeze,
14025 -- and the Itype would cause freezing incorrectly
14027 -- 2. An efficiency concern, if we created an Itype, it would not be
14028 -- recognized as the same type for the purposes of eliminating
14029 -- checks in some circumstances.
14031 -- We signal this case by setting the subtype entity in Def_Id
14033 if No (Def_Id) then
14034 Def_Id :=
14035 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
14036 Set_Etype (Def_Id, Base_Type (T));
14038 if Is_Signed_Integer_Type (T) then
14039 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14041 elsif Is_Modular_Integer_Type (T) then
14042 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14044 else
14045 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14046 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14047 Set_First_Literal (Def_Id, First_Literal (T));
14048 end if;
14050 Set_Size_Info (Def_Id, (T));
14051 Set_RM_Size (Def_Id, RM_Size (T));
14052 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14054 Set_Scalar_Range (Def_Id, R);
14055 Conditional_Delay (Def_Id, T);
14057 -- In the subtype indication case, if the immediate parent of the
14058 -- new subtype is non-static, then the subtype we create is non-
14059 -- static, even if its bounds are static.
14061 if Nkind (I) = N_Subtype_Indication
14062 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
14063 then
14064 Set_Is_Non_Static_Subtype (Def_Id);
14065 end if;
14066 end if;
14068 -- Final step is to label the index with this constructed type
14070 Set_Etype (I, Def_Id);
14071 end Make_Index;
14073 ------------------------------
14074 -- Modular_Type_Declaration --
14075 ------------------------------
14077 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
14078 Mod_Expr : constant Node_Id := Expression (Def);
14079 M_Val : Uint;
14081 procedure Set_Modular_Size (Bits : Int);
14082 -- Sets RM_Size to Bits, and Esize to normal word size above this
14084 ----------------------
14085 -- Set_Modular_Size --
14086 ----------------------
14088 procedure Set_Modular_Size (Bits : Int) is
14089 begin
14090 Set_RM_Size (T, UI_From_Int (Bits));
14092 if Bits <= 8 then
14093 Init_Esize (T, 8);
14095 elsif Bits <= 16 then
14096 Init_Esize (T, 16);
14098 elsif Bits <= 32 then
14099 Init_Esize (T, 32);
14101 else
14102 Init_Esize (T, System_Max_Binary_Modulus_Power);
14103 end if;
14104 end Set_Modular_Size;
14106 -- Start of processing for Modular_Type_Declaration
14108 begin
14109 Analyze_And_Resolve (Mod_Expr, Any_Integer);
14110 Set_Etype (T, T);
14111 Set_Ekind (T, E_Modular_Integer_Type);
14112 Init_Alignment (T);
14113 Set_Is_Constrained (T);
14115 if not Is_OK_Static_Expression (Mod_Expr) then
14116 Flag_Non_Static_Expr
14117 ("non-static expression used for modular type bound!", Mod_Expr);
14118 M_Val := 2 ** System_Max_Binary_Modulus_Power;
14119 else
14120 M_Val := Expr_Value (Mod_Expr);
14121 end if;
14123 if M_Val < 1 then
14124 Error_Msg_N ("modulus value must be positive", Mod_Expr);
14125 M_Val := 2 ** System_Max_Binary_Modulus_Power;
14126 end if;
14128 Set_Modulus (T, M_Val);
14130 -- Create bounds for the modular type based on the modulus given in
14131 -- the type declaration and then analyze and resolve those bounds.
14133 Set_Scalar_Range (T,
14134 Make_Range (Sloc (Mod_Expr),
14135 Low_Bound =>
14136 Make_Integer_Literal (Sloc (Mod_Expr), 0),
14137 High_Bound =>
14138 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
14140 -- Properly analyze the literals for the range. We do this manually
14141 -- because we can't go calling Resolve, since we are resolving these
14142 -- bounds with the type, and this type is certainly not complete yet!
14144 Set_Etype (Low_Bound (Scalar_Range (T)), T);
14145 Set_Etype (High_Bound (Scalar_Range (T)), T);
14146 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
14147 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
14149 -- Loop through powers of two to find number of bits required
14151 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
14153 -- Binary case
14155 if M_Val = 2 ** Bits then
14156 Set_Modular_Size (Bits);
14157 return;
14159 -- Non-binary case
14161 elsif M_Val < 2 ** Bits then
14162 Set_Non_Binary_Modulus (T);
14164 if Bits > System_Max_Nonbinary_Modulus_Power then
14165 Error_Msg_Uint_1 :=
14166 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
14167 Error_Msg_F
14168 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
14169 Set_Modular_Size (System_Max_Binary_Modulus_Power);
14170 return;
14172 else
14173 -- In the non-binary case, set size as per RM 13.3(55)
14175 Set_Modular_Size (Bits);
14176 return;
14177 end if;
14178 end if;
14180 end loop;
14182 -- If we fall through, then the size exceed System.Max_Binary_Modulus
14183 -- so we just signal an error and set the maximum size.
14185 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
14186 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
14188 Set_Modular_Size (System_Max_Binary_Modulus_Power);
14189 Init_Alignment (T);
14191 end Modular_Type_Declaration;
14193 --------------------------
14194 -- New_Concatenation_Op --
14195 --------------------------
14197 procedure New_Concatenation_Op (Typ : Entity_Id) is
14198 Loc : constant Source_Ptr := Sloc (Typ);
14199 Op : Entity_Id;
14201 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
14202 -- Create abbreviated declaration for the formal of a predefined
14203 -- Operator 'Op' of type 'Typ'
14205 --------------------
14206 -- Make_Op_Formal --
14207 --------------------
14209 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
14210 Formal : Entity_Id;
14211 begin
14212 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
14213 Set_Etype (Formal, Typ);
14214 Set_Mechanism (Formal, Default_Mechanism);
14215 return Formal;
14216 end Make_Op_Formal;
14218 -- Start of processing for New_Concatenation_Op
14220 begin
14221 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
14223 Set_Ekind (Op, E_Operator);
14224 Set_Scope (Op, Current_Scope);
14225 Set_Etype (Op, Typ);
14226 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
14227 Set_Is_Immediately_Visible (Op);
14228 Set_Is_Intrinsic_Subprogram (Op);
14229 Set_Has_Completion (Op);
14230 Append_Entity (Op, Current_Scope);
14232 Set_Name_Entity_Id (Name_Op_Concat, Op);
14234 Append_Entity (Make_Op_Formal (Typ, Op), Op);
14235 Append_Entity (Make_Op_Formal (Typ, Op), Op);
14236 end New_Concatenation_Op;
14238 -------------------------
14239 -- OK_For_Limited_Init --
14240 -------------------------
14242 -- ???Check all calls of this, and compare the conditions under which it's
14243 -- called.
14245 function OK_For_Limited_Init (Exp : Node_Id) return Boolean is
14246 begin
14247 return Ada_Version >= Ada_05
14248 and then not Debug_Flag_Dot_L
14249 and then OK_For_Limited_Init_In_05 (Exp);
14250 end OK_For_Limited_Init;
14252 -------------------------------
14253 -- OK_For_Limited_Init_In_05 --
14254 -------------------------------
14256 function OK_For_Limited_Init_In_05 (Exp : Node_Id) return Boolean is
14257 begin
14259 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
14260 -- case of limited aggregates (including extension aggregates), and
14261 -- function calls. The function call may have been give in prefixed
14262 -- notation, in which case the original node is an indexed component.
14264 case Nkind (Original_Node (Exp)) is
14265 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
14266 return True;
14268 when N_Qualified_Expression =>
14269 return
14270 OK_For_Limited_Init_In_05 (Expression (Original_Node (Exp)));
14272 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
14273 -- with a function call, the expander has rewritten the call into an
14274 -- N_Type_Conversion node to force displacement of the pointer to
14275 -- reference the component containing the secondary dispatch table.
14276 -- Otherwise a type conversion is not a legal context.
14278 when N_Type_Conversion =>
14279 return not Comes_From_Source (Exp)
14280 and then
14281 OK_For_Limited_Init_In_05 (Expression (Original_Node (Exp)));
14283 when N_Indexed_Component | N_Selected_Component =>
14284 return Nkind (Exp) = N_Function_Call;
14286 -- A use of 'Input is a function call, hence allowed. Normally the
14287 -- attribute will be changed to a call, but the attribute by itself
14288 -- can occur with -gnatc.
14290 when N_Attribute_Reference =>
14291 return Attribute_Name (Original_Node (Exp)) = Name_Input;
14293 when others =>
14294 return False;
14295 end case;
14296 end OK_For_Limited_Init_In_05;
14298 -------------------------------------------
14299 -- Ordinary_Fixed_Point_Type_Declaration --
14300 -------------------------------------------
14302 procedure Ordinary_Fixed_Point_Type_Declaration
14303 (T : Entity_Id;
14304 Def : Node_Id)
14306 Loc : constant Source_Ptr := Sloc (Def);
14307 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14308 RRS : constant Node_Id := Real_Range_Specification (Def);
14309 Implicit_Base : Entity_Id;
14310 Delta_Val : Ureal;
14311 Small_Val : Ureal;
14312 Low_Val : Ureal;
14313 High_Val : Ureal;
14315 begin
14316 Check_Restriction (No_Fixed_Point, Def);
14318 -- Create implicit base type
14320 Implicit_Base :=
14321 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
14322 Set_Etype (Implicit_Base, Implicit_Base);
14324 -- Analyze and process delta expression
14326 Analyze_And_Resolve (Delta_Expr, Any_Real);
14328 Check_Delta_Expression (Delta_Expr);
14329 Delta_Val := Expr_Value_R (Delta_Expr);
14331 Set_Delta_Value (Implicit_Base, Delta_Val);
14333 -- Compute default small from given delta, which is the largest power
14334 -- of two that does not exceed the given delta value.
14336 declare
14337 Tmp : Ureal;
14338 Scale : Int;
14340 begin
14341 Tmp := Ureal_1;
14342 Scale := 0;
14344 if Delta_Val < Ureal_1 then
14345 while Delta_Val < Tmp loop
14346 Tmp := Tmp / Ureal_2;
14347 Scale := Scale + 1;
14348 end loop;
14350 else
14351 loop
14352 Tmp := Tmp * Ureal_2;
14353 exit when Tmp > Delta_Val;
14354 Scale := Scale - 1;
14355 end loop;
14356 end if;
14358 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
14359 end;
14361 Set_Small_Value (Implicit_Base, Small_Val);
14363 -- If no range was given, set a dummy range
14365 if RRS <= Empty_Or_Error then
14366 Low_Val := -Small_Val;
14367 High_Val := Small_Val;
14369 -- Otherwise analyze and process given range
14371 else
14372 declare
14373 Low : constant Node_Id := Low_Bound (RRS);
14374 High : constant Node_Id := High_Bound (RRS);
14376 begin
14377 Analyze_And_Resolve (Low, Any_Real);
14378 Analyze_And_Resolve (High, Any_Real);
14379 Check_Real_Bound (Low);
14380 Check_Real_Bound (High);
14382 -- Obtain and set the range
14384 Low_Val := Expr_Value_R (Low);
14385 High_Val := Expr_Value_R (High);
14387 if Low_Val > High_Val then
14388 Error_Msg_NE ("?fixed point type& has null range", Def, T);
14389 end if;
14390 end;
14391 end if;
14393 -- The range for both the implicit base and the declared first subtype
14394 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
14395 -- set a temporary range in place. Note that the bounds of the base
14396 -- type will be widened to be symmetrical and to fill the available
14397 -- bits when the type is frozen.
14399 -- We could do this with all discrete types, and probably should, but
14400 -- we absolutely have to do it for fixed-point, since the end-points
14401 -- of the range and the size are determined by the small value, which
14402 -- could be reset before the freeze point.
14404 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
14405 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14407 Init_Size_Align (Implicit_Base);
14409 -- Complete definition of first subtype
14411 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
14412 Set_Etype (T, Implicit_Base);
14413 Init_Size_Align (T);
14414 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
14415 Set_Small_Value (T, Small_Val);
14416 Set_Delta_Value (T, Delta_Val);
14417 Set_Is_Constrained (T);
14419 end Ordinary_Fixed_Point_Type_Declaration;
14421 ----------------------------------------
14422 -- Prepare_Private_Subtype_Completion --
14423 ----------------------------------------
14425 procedure Prepare_Private_Subtype_Completion
14426 (Id : Entity_Id;
14427 Related_Nod : Node_Id)
14429 Id_B : constant Entity_Id := Base_Type (Id);
14430 Full_B : constant Entity_Id := Full_View (Id_B);
14431 Full : Entity_Id;
14433 begin
14434 if Present (Full_B) then
14436 -- The Base_Type is already completed, we can complete the subtype
14437 -- now. We have to create a new entity with the same name, Thus we
14438 -- can't use Create_Itype.
14440 -- This is messy, should be fixed ???
14442 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
14443 Set_Is_Itype (Full);
14444 Set_Associated_Node_For_Itype (Full, Related_Nod);
14445 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
14446 end if;
14448 -- The parent subtype may be private, but the base might not, in some
14449 -- nested instances. In that case, the subtype does not need to be
14450 -- exchanged. It would still be nice to make private subtypes and their
14451 -- bases consistent at all times ???
14453 if Is_Private_Type (Id_B) then
14454 Append_Elmt (Id, Private_Dependents (Id_B));
14455 end if;
14457 end Prepare_Private_Subtype_Completion;
14459 ---------------------------
14460 -- Process_Discriminants --
14461 ---------------------------
14463 procedure Process_Discriminants
14464 (N : Node_Id;
14465 Prev : Entity_Id := Empty)
14467 Elist : constant Elist_Id := New_Elmt_List;
14468 Id : Node_Id;
14469 Discr : Node_Id;
14470 Discr_Number : Uint;
14471 Discr_Type : Entity_Id;
14472 Default_Present : Boolean := False;
14473 Default_Not_Present : Boolean := False;
14475 begin
14476 -- A composite type other than an array type can have discriminants.
14477 -- On entry, the current scope is the composite type.
14479 -- The discriminants are initially entered into the scope of the type
14480 -- via Enter_Name with the default Ekind of E_Void to prevent premature
14481 -- use, as explained at the end of this procedure.
14483 Discr := First (Discriminant_Specifications (N));
14484 while Present (Discr) loop
14485 Enter_Name (Defining_Identifier (Discr));
14487 -- For navigation purposes we add a reference to the discriminant
14488 -- in the entity for the type. If the current declaration is a
14489 -- completion, place references on the partial view. Otherwise the
14490 -- type is the current scope.
14492 if Present (Prev) then
14494 -- The references go on the partial view, if present. If the
14495 -- partial view has discriminants, the references have been
14496 -- generated already.
14498 if not Has_Discriminants (Prev) then
14499 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
14500 end if;
14501 else
14502 Generate_Reference
14503 (Current_Scope, Defining_Identifier (Discr), 'd');
14504 end if;
14506 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
14507 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
14509 -- Ada 2005 (AI-254)
14511 if Present (Access_To_Subprogram_Definition
14512 (Discriminant_Type (Discr)))
14513 and then Protected_Present (Access_To_Subprogram_Definition
14514 (Discriminant_Type (Discr)))
14515 then
14516 Discr_Type :=
14517 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
14518 end if;
14520 else
14521 Find_Type (Discriminant_Type (Discr));
14522 Discr_Type := Etype (Discriminant_Type (Discr));
14524 if Error_Posted (Discriminant_Type (Discr)) then
14525 Discr_Type := Any_Type;
14526 end if;
14527 end if;
14529 if Is_Access_Type (Discr_Type) then
14531 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
14532 -- record types
14534 if Ada_Version < Ada_05 then
14535 Check_Access_Discriminant_Requires_Limited
14536 (Discr, Discriminant_Type (Discr));
14537 end if;
14539 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
14540 Error_Msg_N
14541 ("(Ada 83) access discriminant not allowed", Discr);
14542 end if;
14544 elsif not Is_Discrete_Type (Discr_Type) then
14545 Error_Msg_N ("discriminants must have a discrete or access type",
14546 Discriminant_Type (Discr));
14547 end if;
14549 Set_Etype (Defining_Identifier (Discr), Discr_Type);
14551 -- If a discriminant specification includes the assignment compound
14552 -- delimiter followed by an expression, the expression is the default
14553 -- expression of the discriminant; the default expression must be of
14554 -- the type of the discriminant. (RM 3.7.1) Since this expression is
14555 -- a default expression, we do the special preanalysis, since this
14556 -- expression does not freeze (see "Handling of Default and Per-
14557 -- Object Expressions" in spec of package Sem).
14559 if Present (Expression (Discr)) then
14560 Analyze_Per_Use_Expression (Expression (Discr), Discr_Type);
14562 if Nkind (N) = N_Formal_Type_Declaration then
14563 Error_Msg_N
14564 ("discriminant defaults not allowed for formal type",
14565 Expression (Discr));
14567 -- Tagged types cannot have defaulted discriminants, but a
14568 -- non-tagged private type with defaulted discriminants
14569 -- can have a tagged completion.
14571 elsif Is_Tagged_Type (Current_Scope)
14572 and then Comes_From_Source (N)
14573 then
14574 Error_Msg_N
14575 ("discriminants of tagged type cannot have defaults",
14576 Expression (Discr));
14578 else
14579 Default_Present := True;
14580 Append_Elmt (Expression (Discr), Elist);
14582 -- Tag the defining identifiers for the discriminants with
14583 -- their corresponding default expressions from the tree.
14585 Set_Discriminant_Default_Value
14586 (Defining_Identifier (Discr), Expression (Discr));
14587 end if;
14589 else
14590 Default_Not_Present := True;
14591 end if;
14593 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
14594 -- Discr_Type but with the null-exclusion attribute
14596 if Ada_Version >= Ada_05 then
14598 -- Ada 2005 (AI-231): Static checks
14600 if Can_Never_Be_Null (Discr_Type) then
14601 Null_Exclusion_Static_Checks (Discr);
14603 elsif Is_Access_Type (Discr_Type)
14604 and then Null_Exclusion_Present (Discr)
14606 -- No need to check itypes because in their case this check
14607 -- was done at their point of creation
14609 and then not Is_Itype (Discr_Type)
14610 then
14611 if Can_Never_Be_Null (Discr_Type) then
14612 Error_Msg_NE
14613 ("`NOT NULL` not allowed (& already excludes null)",
14614 Discr,
14615 Discr_Type);
14616 end if;
14618 Set_Etype (Defining_Identifier (Discr),
14619 Create_Null_Excluding_Itype
14620 (T => Discr_Type,
14621 Related_Nod => Discr));
14622 end if;
14624 -- Ada 2005 (AI-402): access discriminants of nonlimited types
14625 -- can't have defaults
14627 if Is_Access_Type (Discr_Type) then
14628 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
14629 or else not Default_Present
14630 or else Is_Limited_Record (Current_Scope)
14631 or else Is_Concurrent_Type (Current_Scope)
14632 or else Is_Concurrent_Record_Type (Current_Scope)
14633 or else Ekind (Current_Scope) = E_Limited_Private_Type
14634 then
14635 null;
14637 elsif Present (Expression (Discr)) then
14638 Error_Msg_N
14639 ("(Ada 2005) access discriminants of nonlimited types",
14640 Expression (Discr));
14641 Error_Msg_N ("\cannot have defaults", Expression (Discr));
14642 end if;
14643 end if;
14644 end if;
14646 Next (Discr);
14647 end loop;
14649 -- An element list consisting of the default expressions of the
14650 -- discriminants is constructed in the above loop and used to set
14651 -- the Discriminant_Constraint attribute for the type. If an object
14652 -- is declared of this (record or task) type without any explicit
14653 -- discriminant constraint given, this element list will form the
14654 -- actual parameters for the corresponding initialization procedure
14655 -- for the type.
14657 Set_Discriminant_Constraint (Current_Scope, Elist);
14658 Set_Stored_Constraint (Current_Scope, No_Elist);
14660 -- Default expressions must be provided either for all or for none
14661 -- of the discriminants of a discriminant part. (RM 3.7.1)
14663 if Default_Present and then Default_Not_Present then
14664 Error_Msg_N
14665 ("incomplete specification of defaults for discriminants", N);
14666 end if;
14668 -- The use of the name of a discriminant is not allowed in default
14669 -- expressions of a discriminant part if the specification of the
14670 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
14672 -- To detect this, the discriminant names are entered initially with an
14673 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
14674 -- attempt to use a void entity (for example in an expression that is
14675 -- type-checked) produces the error message: premature usage. Now after
14676 -- completing the semantic analysis of the discriminant part, we can set
14677 -- the Ekind of all the discriminants appropriately.
14679 Discr := First (Discriminant_Specifications (N));
14680 Discr_Number := Uint_1;
14681 while Present (Discr) loop
14682 Id := Defining_Identifier (Discr);
14683 Set_Ekind (Id, E_Discriminant);
14684 Init_Component_Location (Id);
14685 Init_Esize (Id);
14686 Set_Discriminant_Number (Id, Discr_Number);
14688 -- Make sure this is always set, even in illegal programs
14690 Set_Corresponding_Discriminant (Id, Empty);
14692 -- Initialize the Original_Record_Component to the entity itself.
14693 -- Inherit_Components will propagate the right value to
14694 -- discriminants in derived record types.
14696 Set_Original_Record_Component (Id, Id);
14698 -- Create the discriminal for the discriminant
14700 Build_Discriminal (Id);
14702 Next (Discr);
14703 Discr_Number := Discr_Number + 1;
14704 end loop;
14706 Set_Has_Discriminants (Current_Scope);
14707 end Process_Discriminants;
14709 -----------------------
14710 -- Process_Full_View --
14711 -----------------------
14713 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
14714 Priv_Parent : Entity_Id;
14715 Full_Parent : Entity_Id;
14716 Full_Indic : Node_Id;
14718 procedure Collect_Implemented_Interfaces
14719 (Typ : Entity_Id;
14720 Ifaces : Elist_Id);
14721 -- Ada 2005: Gather all the interfaces that Typ directly or
14722 -- inherently implements. Duplicate entries are not added to
14723 -- the list Ifaces.
14725 ------------------------------------
14726 -- Collect_Implemented_Interfaces --
14727 ------------------------------------
14729 procedure Collect_Implemented_Interfaces
14730 (Typ : Entity_Id;
14731 Ifaces : Elist_Id)
14733 Iface : Entity_Id;
14734 Iface_Elmt : Elmt_Id;
14736 begin
14737 -- Abstract interfaces are only associated with tagged record types
14739 if not Is_Tagged_Type (Typ)
14740 or else not Is_Record_Type (Typ)
14741 then
14742 return;
14743 end if;
14745 -- Recursively climb to the ancestors
14747 if Etype (Typ) /= Typ
14749 -- Protect the frontend against wrong cyclic declarations like:
14751 -- type B is new A with private;
14752 -- type C is new A with private;
14753 -- private
14754 -- type B is new C with null record;
14755 -- type C is new B with null record;
14757 and then Etype (Typ) /= Priv_T
14758 and then Etype (Typ) /= Full_T
14759 then
14760 -- Keep separate the management of private type declarations
14762 if Ekind (Typ) = E_Record_Type_With_Private then
14764 -- Handle the following erronous case:
14765 -- type Private_Type is tagged private;
14766 -- private
14767 -- type Private_Type is new Type_Implementing_Iface;
14769 if Present (Full_View (Typ))
14770 and then Etype (Typ) /= Full_View (Typ)
14771 then
14772 if Is_Interface (Etype (Typ)) then
14773 Append_Unique_Elmt (Etype (Typ), Ifaces);
14774 end if;
14776 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
14777 end if;
14779 -- Non-private types
14781 else
14782 if Is_Interface (Etype (Typ)) then
14783 Append_Unique_Elmt (Etype (Typ), Ifaces);
14784 end if;
14786 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
14787 end if;
14788 end if;
14790 -- Handle entities in the list of abstract interfaces
14792 if Present (Abstract_Interfaces (Typ)) then
14793 Iface_Elmt := First_Elmt (Abstract_Interfaces (Typ));
14794 while Present (Iface_Elmt) loop
14795 Iface := Node (Iface_Elmt);
14797 pragma Assert (Is_Interface (Iface));
14799 if not Contain_Interface (Iface, Ifaces) then
14800 Append_Elmt (Iface, Ifaces);
14801 Collect_Implemented_Interfaces (Iface, Ifaces);
14802 end if;
14804 Next_Elmt (Iface_Elmt);
14805 end loop;
14806 end if;
14807 end Collect_Implemented_Interfaces;
14809 -- Start of processing for Process_Full_View
14811 begin
14812 -- First some sanity checks that must be done after semantic
14813 -- decoration of the full view and thus cannot be placed with other
14814 -- similar checks in Find_Type_Name
14816 if not Is_Limited_Type (Priv_T)
14817 and then (Is_Limited_Type (Full_T)
14818 or else Is_Limited_Composite (Full_T))
14819 then
14820 Error_Msg_N
14821 ("completion of nonlimited type cannot be limited", Full_T);
14822 Explain_Limited_Type (Full_T, Full_T);
14824 elsif Is_Abstract_Type (Full_T)
14825 and then not Is_Abstract_Type (Priv_T)
14826 then
14827 Error_Msg_N
14828 ("completion of nonabstract type cannot be abstract", Full_T);
14830 elsif Is_Tagged_Type (Priv_T)
14831 and then Is_Limited_Type (Priv_T)
14832 and then not Is_Limited_Type (Full_T)
14833 then
14834 -- If pragma CPP_Class was applied to the private declaration
14835 -- propagate the limitedness to the full-view
14837 if Is_CPP_Class (Priv_T) then
14838 Set_Is_Limited_Record (Full_T);
14840 -- GNAT allow its own definition of Limited_Controlled to disobey
14841 -- this rule in order in ease the implementation. The next test is
14842 -- safe because Root_Controlled is defined in a private system child
14844 elsif Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
14845 Set_Is_Limited_Composite (Full_T);
14846 else
14847 Error_Msg_N
14848 ("completion of limited tagged type must be limited", Full_T);
14849 end if;
14851 elsif Is_Generic_Type (Priv_T) then
14852 Error_Msg_N ("generic type cannot have a completion", Full_T);
14853 end if;
14855 -- Check that ancestor interfaces of private and full views are
14856 -- consistent. We omit this check for synchronized types because
14857 -- they are performed on the corresponding record type when frozen.
14859 if Ada_Version >= Ada_05
14860 and then Is_Tagged_Type (Priv_T)
14861 and then Is_Tagged_Type (Full_T)
14862 and then not Is_Concurrent_Type (Full_T)
14863 then
14864 declare
14865 Iface : Entity_Id;
14866 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
14867 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
14869 begin
14870 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
14871 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
14873 -- Ada 2005 (AI-251): The partial view shall be a descendant of
14874 -- an interface type if and only if the full type is descendant
14875 -- of the interface type (AARM 7.3 (7.3/2).
14877 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
14879 if Present (Iface) then
14880 Error_Msg_NE ("interface & not implemented by full type " &
14881 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
14882 end if;
14884 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
14886 if Present (Iface) then
14887 Error_Msg_NE ("interface & not implemented by partial view " &
14888 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
14889 end if;
14890 end;
14891 end if;
14893 if Is_Tagged_Type (Priv_T)
14894 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
14895 and then Is_Derived_Type (Full_T)
14896 then
14897 Priv_Parent := Etype (Priv_T);
14899 -- The full view of a private extension may have been transformed
14900 -- into an unconstrained derived type declaration and a subtype
14901 -- declaration (see build_derived_record_type for details).
14903 if Nkind (N) = N_Subtype_Declaration then
14904 Full_Indic := Subtype_Indication (N);
14905 Full_Parent := Etype (Base_Type (Full_T));
14906 else
14907 Full_Indic := Subtype_Indication (Type_Definition (N));
14908 Full_Parent := Etype (Full_T);
14909 end if;
14911 -- Check that the parent type of the full type is a descendant of
14912 -- the ancestor subtype given in the private extension. If either
14913 -- entity has an Etype equal to Any_Type then we had some previous
14914 -- error situation [7.3(8)].
14916 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
14917 return;
14919 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
14920 -- any order. Therefore we don't have to check that its parent must
14921 -- be a descendant of the parent of the private type declaration.
14923 elsif Is_Interface (Priv_Parent)
14924 and then Is_Interface (Full_Parent)
14925 then
14926 null;
14928 -- Ada 2005 (AI-251): If the parent of the private type declaration
14929 -- is an interface there is no need to check that it is an ancestor
14930 -- of the associated full type declaration. The required tests for
14931 -- this case case are performed by Build_Derived_Record_Type.
14933 elsif not Is_Interface (Base_Type (Priv_Parent))
14934 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
14935 then
14936 Error_Msg_N
14937 ("parent of full type must descend from parent"
14938 & " of private extension", Full_Indic);
14940 -- Check the rules of 7.3(10): if the private extension inherits
14941 -- known discriminants, then the full type must also inherit those
14942 -- discriminants from the same (ancestor) type, and the parent
14943 -- subtype of the full type must be constrained if and only if
14944 -- the ancestor subtype of the private extension is constrained.
14946 elsif No (Discriminant_Specifications (Parent (Priv_T)))
14947 and then not Has_Unknown_Discriminants (Priv_T)
14948 and then Has_Discriminants (Base_Type (Priv_Parent))
14949 then
14950 declare
14951 Priv_Indic : constant Node_Id :=
14952 Subtype_Indication (Parent (Priv_T));
14954 Priv_Constr : constant Boolean :=
14955 Is_Constrained (Priv_Parent)
14956 or else
14957 Nkind (Priv_Indic) = N_Subtype_Indication
14958 or else Is_Constrained (Entity (Priv_Indic));
14960 Full_Constr : constant Boolean :=
14961 Is_Constrained (Full_Parent)
14962 or else
14963 Nkind (Full_Indic) = N_Subtype_Indication
14964 or else Is_Constrained (Entity (Full_Indic));
14966 Priv_Discr : Entity_Id;
14967 Full_Discr : Entity_Id;
14969 begin
14970 Priv_Discr := First_Discriminant (Priv_Parent);
14971 Full_Discr := First_Discriminant (Full_Parent);
14972 while Present (Priv_Discr) and then Present (Full_Discr) loop
14973 if Original_Record_Component (Priv_Discr) =
14974 Original_Record_Component (Full_Discr)
14975 or else
14976 Corresponding_Discriminant (Priv_Discr) =
14977 Corresponding_Discriminant (Full_Discr)
14978 then
14979 null;
14980 else
14981 exit;
14982 end if;
14984 Next_Discriminant (Priv_Discr);
14985 Next_Discriminant (Full_Discr);
14986 end loop;
14988 if Present (Priv_Discr) or else Present (Full_Discr) then
14989 Error_Msg_N
14990 ("full view must inherit discriminants of the parent type"
14991 & " used in the private extension", Full_Indic);
14993 elsif Priv_Constr and then not Full_Constr then
14994 Error_Msg_N
14995 ("parent subtype of full type must be constrained",
14996 Full_Indic);
14998 elsif Full_Constr and then not Priv_Constr then
14999 Error_Msg_N
15000 ("parent subtype of full type must be unconstrained",
15001 Full_Indic);
15002 end if;
15003 end;
15005 -- Check the rules of 7.3(12): if a partial view has neither known
15006 -- or unknown discriminants, then the full type declaration shall
15007 -- define a definite subtype.
15009 elsif not Has_Unknown_Discriminants (Priv_T)
15010 and then not Has_Discriminants (Priv_T)
15011 and then not Is_Constrained (Full_T)
15012 then
15013 Error_Msg_N
15014 ("full view must define a constrained type if partial view"
15015 & " has no discriminants", Full_T);
15016 end if;
15018 -- ??????? Do we implement the following properly ?????
15019 -- If the ancestor subtype of a private extension has constrained
15020 -- discriminants, then the parent subtype of the full view shall
15021 -- impose a statically matching constraint on those discriminants
15022 -- [7.3(13)].
15024 else
15025 -- For untagged types, verify that a type without discriminants
15026 -- is not completed with an unconstrained type.
15028 if not Is_Indefinite_Subtype (Priv_T)
15029 and then Is_Indefinite_Subtype (Full_T)
15030 then
15031 Error_Msg_N ("full view of type must be definite subtype", Full_T);
15032 end if;
15033 end if;
15035 -- AI-419: verify that the use of "limited" is consistent
15037 declare
15038 Orig_Decl : constant Node_Id := Original_Node (N);
15040 begin
15041 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
15042 and then not Limited_Present (Parent (Priv_T))
15043 and then not Synchronized_Present (Parent (Priv_T))
15044 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
15045 and then Nkind
15046 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
15047 and then Limited_Present (Type_Definition (Orig_Decl))
15048 then
15049 Error_Msg_N
15050 ("full view of non-limited extension cannot be limited", N);
15051 end if;
15052 end;
15054 -- Ada 2005 (AI-443): A synchronized private extension must be
15055 -- completed by a task or protected type.
15057 if Ada_Version >= Ada_05
15058 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
15059 and then Synchronized_Present (Parent (Priv_T))
15060 and then not Is_Concurrent_Type (Full_T)
15061 then
15062 Error_Msg_N ("full view of synchronized extension must " &
15063 "be synchronized type", N);
15064 end if;
15066 -- Ada 2005 AI-363: if the full view has discriminants with
15067 -- defaults, it is illegal to declare constrained access subtypes
15068 -- whose designated type is the current type. This allows objects
15069 -- of the type that are declared in the heap to be unconstrained.
15071 if not Has_Unknown_Discriminants (Priv_T)
15072 and then not Has_Discriminants (Priv_T)
15073 and then Has_Discriminants (Full_T)
15074 and then
15075 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
15076 then
15077 Set_Has_Constrained_Partial_View (Full_T);
15078 Set_Has_Constrained_Partial_View (Priv_T);
15079 end if;
15081 -- Create a full declaration for all its subtypes recorded in
15082 -- Private_Dependents and swap them similarly to the base type. These
15083 -- are subtypes that have been define before the full declaration of
15084 -- the private type. We also swap the entry in Private_Dependents list
15085 -- so we can properly restore the private view on exit from the scope.
15087 declare
15088 Priv_Elmt : Elmt_Id;
15089 Priv : Entity_Id;
15090 Full : Entity_Id;
15092 begin
15093 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
15094 while Present (Priv_Elmt) loop
15095 Priv := Node (Priv_Elmt);
15097 if Ekind (Priv) = E_Private_Subtype
15098 or else Ekind (Priv) = E_Limited_Private_Subtype
15099 or else Ekind (Priv) = E_Record_Subtype_With_Private
15100 then
15101 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
15102 Set_Is_Itype (Full);
15103 Set_Parent (Full, Parent (Priv));
15104 Set_Associated_Node_For_Itype (Full, N);
15106 -- Now we need to complete the private subtype, but since the
15107 -- base type has already been swapped, we must also swap the
15108 -- subtypes (and thus, reverse the arguments in the call to
15109 -- Complete_Private_Subtype).
15111 Copy_And_Swap (Priv, Full);
15112 Complete_Private_Subtype (Full, Priv, Full_T, N);
15113 Replace_Elmt (Priv_Elmt, Full);
15114 end if;
15116 Next_Elmt (Priv_Elmt);
15117 end loop;
15118 end;
15120 -- If the private view was tagged, copy the new primitive operations
15121 -- from the private view to the full view.
15123 if Is_Tagged_Type (Full_T)
15124 and then not Is_Concurrent_Type (Full_T)
15125 then
15126 declare
15127 Priv_List : Elist_Id;
15128 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
15129 P1, P2 : Elmt_Id;
15130 Prim : Entity_Id;
15131 D_Type : Entity_Id;
15133 begin
15134 if Is_Tagged_Type (Priv_T) then
15135 Priv_List := Primitive_Operations (Priv_T);
15137 P1 := First_Elmt (Priv_List);
15138 while Present (P1) loop
15139 Prim := Node (P1);
15141 -- Transfer explicit primitives, not those inherited from
15142 -- parent of partial view, which will be re-inherited on
15143 -- the full view.
15145 if Comes_From_Source (Prim) then
15146 P2 := First_Elmt (Full_List);
15147 while Present (P2) and then Node (P2) /= Prim loop
15148 Next_Elmt (P2);
15149 end loop;
15151 -- If not found, that is a new one
15153 if No (P2) then
15154 Append_Elmt (Prim, Full_List);
15155 end if;
15156 end if;
15158 Next_Elmt (P1);
15159 end loop;
15161 else
15162 -- In this case the partial view is untagged, so here we locate
15163 -- all of the earlier primitives that need to be treated as
15164 -- dispatching (those that appear between the two views). Note
15165 -- that these additional operations must all be new operations
15166 -- (any earlier operations that override inherited operations
15167 -- of the full view will already have been inserted in the
15168 -- primitives list, marked by Check_Operation_From_Private_View
15169 -- as dispatching. Note that implicit "/=" operators are
15170 -- excluded from being added to the primitives list since they
15171 -- shouldn't be treated as dispatching (tagged "/=" is handled
15172 -- specially).
15174 Prim := Next_Entity (Full_T);
15175 while Present (Prim) and then Prim /= Priv_T loop
15176 if Ekind (Prim) = E_Procedure
15177 or else
15178 Ekind (Prim) = E_Function
15179 then
15181 D_Type := Find_Dispatching_Type (Prim);
15183 if D_Type = Full_T
15184 and then (Chars (Prim) /= Name_Op_Ne
15185 or else Comes_From_Source (Prim))
15186 then
15187 Check_Controlling_Formals (Full_T, Prim);
15189 if not Is_Dispatching_Operation (Prim) then
15190 Append_Elmt (Prim, Full_List);
15191 Set_Is_Dispatching_Operation (Prim, True);
15192 Set_DT_Position (Prim, No_Uint);
15193 end if;
15195 elsif Is_Dispatching_Operation (Prim)
15196 and then D_Type /= Full_T
15197 then
15199 -- Verify that it is not otherwise controlled by a
15200 -- formal or a return value of type T.
15202 Check_Controlling_Formals (D_Type, Prim);
15203 end if;
15204 end if;
15206 Next_Entity (Prim);
15207 end loop;
15208 end if;
15210 -- For the tagged case, the two views can share the same
15211 -- Primitive Operation list and the same class wide type.
15212 -- Update attributes of the class-wide type which depend on
15213 -- the full declaration.
15215 if Is_Tagged_Type (Priv_T) then
15216 Set_Primitive_Operations (Priv_T, Full_List);
15217 Set_Class_Wide_Type
15218 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
15220 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
15221 end if;
15222 end;
15223 end if;
15225 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
15227 if Known_To_Have_Preelab_Init (Priv_T) then
15229 -- Case where there is a pragma Preelaborable_Initialization. We
15230 -- always allow this in predefined units, which is a bit of a kludge,
15231 -- but it means we don't have to struggle to meet the requirements in
15232 -- the RM for having Preelaborable Initialization. Otherwise we
15233 -- require that the type meets the RM rules. But we can't check that
15234 -- yet, because of the rule about overriding Ininitialize, so we
15235 -- simply set a flag that will be checked at freeze time.
15237 if not In_Predefined_Unit (Full_T) then
15238 Set_Must_Have_Preelab_Init (Full_T);
15239 end if;
15240 end if;
15242 -- If pragma CPP_Class was applied to the private type declaration,
15243 -- propagate it now to the full type declaration.
15245 if Is_CPP_Class (Priv_T) then
15246 Set_Is_CPP_Class (Full_T);
15247 Set_Convention (Full_T, Convention_CPP);
15248 end if;
15249 end Process_Full_View;
15251 -----------------------------------
15252 -- Process_Incomplete_Dependents --
15253 -----------------------------------
15255 procedure Process_Incomplete_Dependents
15256 (N : Node_Id;
15257 Full_T : Entity_Id;
15258 Inc_T : Entity_Id)
15260 Inc_Elmt : Elmt_Id;
15261 Priv_Dep : Entity_Id;
15262 New_Subt : Entity_Id;
15264 Disc_Constraint : Elist_Id;
15266 begin
15267 if No (Private_Dependents (Inc_T)) then
15268 return;
15269 end if;
15271 -- Itypes that may be generated by the completion of an incomplete
15272 -- subtype are not used by the back-end and not attached to the tree.
15273 -- They are created only for constraint-checking purposes.
15275 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
15276 while Present (Inc_Elmt) loop
15277 Priv_Dep := Node (Inc_Elmt);
15279 if Ekind (Priv_Dep) = E_Subprogram_Type then
15281 -- An Access_To_Subprogram type may have a return type or a
15282 -- parameter type that is incomplete. Replace with the full view.
15284 if Etype (Priv_Dep) = Inc_T then
15285 Set_Etype (Priv_Dep, Full_T);
15286 end if;
15288 declare
15289 Formal : Entity_Id;
15291 begin
15292 Formal := First_Formal (Priv_Dep);
15293 while Present (Formal) loop
15294 if Etype (Formal) = Inc_T then
15295 Set_Etype (Formal, Full_T);
15296 end if;
15298 Next_Formal (Formal);
15299 end loop;
15300 end;
15302 elsif Is_Overloadable (Priv_Dep) then
15304 -- A protected operation is never dispatching: only its
15305 -- wrapper operation (which has convention Ada) is.
15307 if Is_Tagged_Type (Full_T)
15308 and then Convention (Priv_Dep) /= Convention_Protected
15309 then
15311 -- Subprogram has an access parameter whose designated type
15312 -- was incomplete. Reexamine declaration now, because it may
15313 -- be a primitive operation of the full type.
15315 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
15316 Set_Is_Dispatching_Operation (Priv_Dep);
15317 Check_Controlling_Formals (Full_T, Priv_Dep);
15318 end if;
15320 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
15322 -- Can happen during processing of a body before the completion
15323 -- of a TA type. Ignore, because spec is also on dependent list.
15325 return;
15327 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
15328 -- corresponding subtype of the full view.
15330 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
15331 Set_Subtype_Indication
15332 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
15333 Set_Etype (Priv_Dep, Full_T);
15334 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
15335 Set_Analyzed (Parent (Priv_Dep), False);
15337 -- Reanalyze the declaration, suppressing the call to
15338 -- Enter_Name to avoid duplicate names.
15340 Analyze_Subtype_Declaration
15341 (N => Parent (Priv_Dep),
15342 Skip => True);
15344 -- Dependent is a subtype
15346 else
15347 -- We build a new subtype indication using the full view of the
15348 -- incomplete parent. The discriminant constraints have been
15349 -- elaborated already at the point of the subtype declaration.
15351 New_Subt := Create_Itype (E_Void, N);
15353 if Has_Discriminants (Full_T) then
15354 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
15355 else
15356 Disc_Constraint := No_Elist;
15357 end if;
15359 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
15360 Set_Full_View (Priv_Dep, New_Subt);
15361 end if;
15363 Next_Elmt (Inc_Elmt);
15364 end loop;
15365 end Process_Incomplete_Dependents;
15367 --------------------------------
15368 -- Process_Range_Expr_In_Decl --
15369 --------------------------------
15371 procedure Process_Range_Expr_In_Decl
15372 (R : Node_Id;
15373 T : Entity_Id;
15374 Check_List : List_Id := Empty_List;
15375 R_Check_Off : Boolean := False)
15377 Lo, Hi : Node_Id;
15378 R_Checks : Check_Result;
15379 Type_Decl : Node_Id;
15380 Def_Id : Entity_Id;
15382 begin
15383 Analyze_And_Resolve (R, Base_Type (T));
15385 if Nkind (R) = N_Range then
15386 Lo := Low_Bound (R);
15387 Hi := High_Bound (R);
15389 -- We need to ensure validity of the bounds here, because if we
15390 -- go ahead and do the expansion, then the expanded code will get
15391 -- analyzed with range checks suppressed and we miss the check.
15393 Validity_Check_Range (R);
15395 -- If there were errors in the declaration, try and patch up some
15396 -- common mistakes in the bounds. The cases handled are literals
15397 -- which are Integer where the expected type is Real and vice versa.
15398 -- These corrections allow the compilation process to proceed further
15399 -- along since some basic assumptions of the format of the bounds
15400 -- are guaranteed.
15402 if Etype (R) = Any_Type then
15404 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
15405 Rewrite (Lo,
15406 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
15408 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
15409 Rewrite (Hi,
15410 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
15412 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
15413 Rewrite (Lo,
15414 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
15416 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
15417 Rewrite (Hi,
15418 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
15419 end if;
15421 Set_Etype (Lo, T);
15422 Set_Etype (Hi, T);
15423 end if;
15425 -- If the bounds of the range have been mistakenly given as string
15426 -- literals (perhaps in place of character literals), then an error
15427 -- has already been reported, but we rewrite the string literal as a
15428 -- bound of the range's type to avoid blowups in later processing
15429 -- that looks at static values.
15431 if Nkind (Lo) = N_String_Literal then
15432 Rewrite (Lo,
15433 Make_Attribute_Reference (Sloc (Lo),
15434 Attribute_Name => Name_First,
15435 Prefix => New_Reference_To (T, Sloc (Lo))));
15436 Analyze_And_Resolve (Lo);
15437 end if;
15439 if Nkind (Hi) = N_String_Literal then
15440 Rewrite (Hi,
15441 Make_Attribute_Reference (Sloc (Hi),
15442 Attribute_Name => Name_First,
15443 Prefix => New_Reference_To (T, Sloc (Hi))));
15444 Analyze_And_Resolve (Hi);
15445 end if;
15447 -- If bounds aren't scalar at this point then exit, avoiding
15448 -- problems with further processing of the range in this procedure.
15450 if not Is_Scalar_Type (Etype (Lo)) then
15451 return;
15452 end if;
15454 -- Resolve (actually Sem_Eval) has checked that the bounds are in
15455 -- then range of the base type. Here we check whether the bounds
15456 -- are in the range of the subtype itself. Note that if the bounds
15457 -- represent the null range the Constraint_Error exception should
15458 -- not be raised.
15460 -- ??? The following code should be cleaned up as follows
15462 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
15463 -- is done in the call to Range_Check (R, T); below
15465 -- 2. The use of R_Check_Off should be investigated and possibly
15466 -- removed, this would clean up things a bit.
15468 if Is_Null_Range (Lo, Hi) then
15469 null;
15471 else
15472 -- Capture values of bounds and generate temporaries for them
15473 -- if needed, before applying checks, since checks may cause
15474 -- duplication of the expression without forcing evaluation.
15476 if Expander_Active then
15477 Force_Evaluation (Lo);
15478 Force_Evaluation (Hi);
15479 end if;
15481 -- We use a flag here instead of suppressing checks on the
15482 -- type because the type we check against isn't necessarily
15483 -- the place where we put the check.
15485 if not R_Check_Off then
15486 R_Checks := Get_Range_Checks (R, T);
15488 -- Look up tree to find an appropriate insertion point.
15489 -- This seems really junk code, and very brittle, couldn't
15490 -- we just use an insert actions call of some kind ???
15492 Type_Decl := Parent (R);
15493 while Present (Type_Decl) and then not
15494 (Nkind (Type_Decl) = N_Full_Type_Declaration
15495 or else
15496 Nkind (Type_Decl) = N_Subtype_Declaration
15497 or else
15498 Nkind (Type_Decl) = N_Loop_Statement
15499 or else
15500 Nkind (Type_Decl) = N_Task_Type_Declaration
15501 or else
15502 Nkind (Type_Decl) = N_Single_Task_Declaration
15503 or else
15504 Nkind (Type_Decl) = N_Protected_Type_Declaration
15505 or else
15506 Nkind (Type_Decl) = N_Single_Protected_Declaration)
15507 loop
15508 Type_Decl := Parent (Type_Decl);
15509 end loop;
15511 -- Why would Type_Decl not be present??? Without this test,
15512 -- short regression tests fail.
15514 if Present (Type_Decl) then
15516 -- Case of loop statement (more comments ???)
15518 if Nkind (Type_Decl) = N_Loop_Statement then
15519 declare
15520 Indic : Node_Id;
15522 begin
15523 Indic := Parent (R);
15524 while Present (Indic) and then not
15525 (Nkind (Indic) = N_Subtype_Indication)
15526 loop
15527 Indic := Parent (Indic);
15528 end loop;
15530 if Present (Indic) then
15531 Def_Id := Etype (Subtype_Mark (Indic));
15533 Insert_Range_Checks
15534 (R_Checks,
15535 Type_Decl,
15536 Def_Id,
15537 Sloc (Type_Decl),
15539 Do_Before => True);
15540 end if;
15541 end;
15543 -- All other cases (more comments ???)
15545 else
15546 Def_Id := Defining_Identifier (Type_Decl);
15548 if (Ekind (Def_Id) = E_Record_Type
15549 and then Depends_On_Discriminant (R))
15550 or else
15551 (Ekind (Def_Id) = E_Protected_Type
15552 and then Has_Discriminants (Def_Id))
15553 then
15554 Append_Range_Checks
15555 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
15557 else
15558 Insert_Range_Checks
15559 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
15561 end if;
15562 end if;
15563 end if;
15564 end if;
15565 end if;
15567 elsif Expander_Active then
15568 Get_Index_Bounds (R, Lo, Hi);
15569 Force_Evaluation (Lo);
15570 Force_Evaluation (Hi);
15571 end if;
15572 end Process_Range_Expr_In_Decl;
15574 --------------------------------------
15575 -- Process_Real_Range_Specification --
15576 --------------------------------------
15578 procedure Process_Real_Range_Specification (Def : Node_Id) is
15579 Spec : constant Node_Id := Real_Range_Specification (Def);
15580 Lo : Node_Id;
15581 Hi : Node_Id;
15582 Err : Boolean := False;
15584 procedure Analyze_Bound (N : Node_Id);
15585 -- Analyze and check one bound
15587 -------------------
15588 -- Analyze_Bound --
15589 -------------------
15591 procedure Analyze_Bound (N : Node_Id) is
15592 begin
15593 Analyze_And_Resolve (N, Any_Real);
15595 if not Is_OK_Static_Expression (N) then
15596 Flag_Non_Static_Expr
15597 ("bound in real type definition is not static!", N);
15598 Err := True;
15599 end if;
15600 end Analyze_Bound;
15602 -- Start of processing for Process_Real_Range_Specification
15604 begin
15605 if Present (Spec) then
15606 Lo := Low_Bound (Spec);
15607 Hi := High_Bound (Spec);
15608 Analyze_Bound (Lo);
15609 Analyze_Bound (Hi);
15611 -- If error, clear away junk range specification
15613 if Err then
15614 Set_Real_Range_Specification (Def, Empty);
15615 end if;
15616 end if;
15617 end Process_Real_Range_Specification;
15619 ---------------------
15620 -- Process_Subtype --
15621 ---------------------
15623 function Process_Subtype
15624 (S : Node_Id;
15625 Related_Nod : Node_Id;
15626 Related_Id : Entity_Id := Empty;
15627 Suffix : Character := ' ') return Entity_Id
15629 P : Node_Id;
15630 Def_Id : Entity_Id;
15631 Error_Node : Node_Id;
15632 Full_View_Id : Entity_Id;
15633 Subtype_Mark_Id : Entity_Id;
15635 May_Have_Null_Exclusion : Boolean;
15637 procedure Check_Incomplete (T : Entity_Id);
15638 -- Called to verify that an incomplete type is not used prematurely
15640 ----------------------
15641 -- Check_Incomplete --
15642 ----------------------
15644 procedure Check_Incomplete (T : Entity_Id) is
15645 begin
15646 -- Ada 2005 (AI-412): Incomplete subtypes are legal
15648 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
15649 and then
15650 not (Ada_Version >= Ada_05
15651 and then
15652 (Nkind (Parent (T)) = N_Subtype_Declaration
15653 or else
15654 (Nkind (Parent (T)) = N_Subtype_Indication
15655 and then Nkind (Parent (Parent (T))) =
15656 N_Subtype_Declaration)))
15657 then
15658 Error_Msg_N ("invalid use of type before its full declaration", T);
15659 end if;
15660 end Check_Incomplete;
15662 -- Start of processing for Process_Subtype
15664 begin
15665 -- Case of no constraints present
15667 if Nkind (S) /= N_Subtype_Indication then
15669 Find_Type (S);
15670 Check_Incomplete (S);
15671 P := Parent (S);
15673 -- Ada 2005 (AI-231): Static check
15675 if Ada_Version >= Ada_05
15676 and then Present (P)
15677 and then Null_Exclusion_Present (P)
15678 and then Nkind (P) /= N_Access_To_Object_Definition
15679 and then not Is_Access_Type (Entity (S))
15680 then
15681 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
15682 end if;
15684 May_Have_Null_Exclusion :=
15685 Nkind (P) = N_Access_Definition
15686 or else Nkind (P) = N_Access_Function_Definition
15687 or else Nkind (P) = N_Access_Procedure_Definition
15688 or else Nkind (P) = N_Access_To_Object_Definition
15689 or else Nkind (P) = N_Allocator
15690 or else Nkind (P) = N_Component_Definition
15691 or else Nkind (P) = N_Derived_Type_Definition
15692 or else Nkind (P) = N_Discriminant_Specification
15693 or else Nkind (P) = N_Object_Declaration
15694 or else Nkind (P) = N_Parameter_Specification
15695 or else Nkind (P) = N_Subtype_Declaration;
15697 -- Create an Itype that is a duplicate of Entity (S) but with the
15698 -- null-exclusion attribute
15700 if May_Have_Null_Exclusion
15701 and then Is_Access_Type (Entity (S))
15702 and then Null_Exclusion_Present (P)
15704 -- No need to check the case of an access to object definition.
15705 -- It is correct to define double not-null pointers.
15707 -- Example:
15708 -- type Not_Null_Int_Ptr is not null access Integer;
15709 -- type Acc is not null access Not_Null_Int_Ptr;
15711 and then Nkind (P) /= N_Access_To_Object_Definition
15712 then
15713 if Can_Never_Be_Null (Entity (S)) then
15714 case Nkind (Related_Nod) is
15715 when N_Full_Type_Declaration =>
15716 if Nkind (Type_Definition (Related_Nod))
15717 in N_Array_Type_Definition
15718 then
15719 Error_Node :=
15720 Subtype_Indication
15721 (Component_Definition
15722 (Type_Definition (Related_Nod)));
15723 else
15724 Error_Node :=
15725 Subtype_Indication (Type_Definition (Related_Nod));
15726 end if;
15728 when N_Subtype_Declaration =>
15729 Error_Node := Subtype_Indication (Related_Nod);
15731 when N_Object_Declaration =>
15732 Error_Node := Object_Definition (Related_Nod);
15734 when N_Component_Declaration =>
15735 Error_Node :=
15736 Subtype_Indication (Component_Definition (Related_Nod));
15738 when others =>
15739 pragma Assert (False);
15740 Error_Node := Related_Nod;
15741 end case;
15743 Error_Msg_NE
15744 ("`NOT NULL` not allowed (& already excludes null)",
15745 Error_Node,
15746 Entity (S));
15747 end if;
15749 Set_Etype (S,
15750 Create_Null_Excluding_Itype
15751 (T => Entity (S),
15752 Related_Nod => P));
15753 Set_Entity (S, Etype (S));
15754 end if;
15756 return Entity (S);
15758 -- Case of constraint present, so that we have an N_Subtype_Indication
15759 -- node (this node is created only if constraints are present).
15761 else
15762 Find_Type (Subtype_Mark (S));
15764 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
15765 and then not
15766 (Nkind (Parent (S)) = N_Subtype_Declaration
15767 and then Is_Itype (Defining_Identifier (Parent (S))))
15768 then
15769 Check_Incomplete (Subtype_Mark (S));
15770 end if;
15772 P := Parent (S);
15773 Subtype_Mark_Id := Entity (Subtype_Mark (S));
15775 -- Explicit subtype declaration case
15777 if Nkind (P) = N_Subtype_Declaration then
15778 Def_Id := Defining_Identifier (P);
15780 -- Explicit derived type definition case
15782 elsif Nkind (P) = N_Derived_Type_Definition then
15783 Def_Id := Defining_Identifier (Parent (P));
15785 -- Implicit case, the Def_Id must be created as an implicit type.
15786 -- The one exception arises in the case of concurrent types, array
15787 -- and access types, where other subsidiary implicit types may be
15788 -- created and must appear before the main implicit type. In these
15789 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
15790 -- has not yet been called to create Def_Id.
15792 else
15793 if Is_Array_Type (Subtype_Mark_Id)
15794 or else Is_Concurrent_Type (Subtype_Mark_Id)
15795 or else Is_Access_Type (Subtype_Mark_Id)
15796 then
15797 Def_Id := Empty;
15799 -- For the other cases, we create a new unattached Itype,
15800 -- and set the indication to ensure it gets attached later.
15802 else
15803 Def_Id :=
15804 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
15805 end if;
15806 end if;
15808 -- If the kind of constraint is invalid for this kind of type,
15809 -- then give an error, and then pretend no constraint was given.
15811 if not Is_Valid_Constraint_Kind
15812 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
15813 then
15814 Error_Msg_N
15815 ("incorrect constraint for this kind of type", Constraint (S));
15817 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15819 -- Set Ekind of orphan itype, to prevent cascaded errors
15821 if Present (Def_Id) then
15822 Set_Ekind (Def_Id, Ekind (Any_Type));
15823 end if;
15825 -- Make recursive call, having got rid of the bogus constraint
15827 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
15828 end if;
15830 -- Remaining processing depends on type
15832 case Ekind (Subtype_Mark_Id) is
15833 when Access_Kind =>
15834 Constrain_Access (Def_Id, S, Related_Nod);
15836 if Expander_Active
15837 and then Is_Itype (Designated_Type (Def_Id))
15838 and then Nkind (Related_Nod) = N_Subtype_Declaration
15839 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
15840 then
15841 Build_Itype_Reference
15842 (Designated_Type (Def_Id), Related_Nod);
15843 end if;
15845 when Array_Kind =>
15846 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
15848 when Decimal_Fixed_Point_Kind =>
15849 Constrain_Decimal (Def_Id, S);
15851 when Enumeration_Kind =>
15852 Constrain_Enumeration (Def_Id, S);
15854 when Ordinary_Fixed_Point_Kind =>
15855 Constrain_Ordinary_Fixed (Def_Id, S);
15857 when Float_Kind =>
15858 Constrain_Float (Def_Id, S);
15860 when Integer_Kind =>
15861 Constrain_Integer (Def_Id, S);
15863 when E_Record_Type |
15864 E_Record_Subtype |
15865 Class_Wide_Kind |
15866 E_Incomplete_Type =>
15867 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
15869 when Private_Kind =>
15870 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
15871 Set_Private_Dependents (Def_Id, New_Elmt_List);
15873 -- In case of an invalid constraint prevent further processing
15874 -- since the type constructed is missing expected fields.
15876 if Etype (Def_Id) = Any_Type then
15877 return Def_Id;
15878 end if;
15880 -- If the full view is that of a task with discriminants,
15881 -- we must constrain both the concurrent type and its
15882 -- corresponding record type. Otherwise we will just propagate
15883 -- the constraint to the full view, if available.
15885 if Present (Full_View (Subtype_Mark_Id))
15886 and then Has_Discriminants (Subtype_Mark_Id)
15887 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
15888 then
15889 Full_View_Id :=
15890 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
15892 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
15893 Constrain_Concurrent (Full_View_Id, S,
15894 Related_Nod, Related_Id, Suffix);
15895 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
15896 Set_Full_View (Def_Id, Full_View_Id);
15898 -- Introduce an explicit reference to the private subtype,
15899 -- to prevent scope anomalies in gigi if first use appears
15900 -- in a nested context, e.g. a later function body.
15901 -- Should this be generated in other contexts than a full
15902 -- type declaration?
15904 if Is_Itype (Def_Id)
15905 and then
15906 Nkind (Parent (P)) = N_Full_Type_Declaration
15907 then
15908 Build_Itype_Reference (Def_Id, Parent (P));
15909 end if;
15911 else
15912 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
15913 end if;
15915 when Concurrent_Kind =>
15916 Constrain_Concurrent (Def_Id, S,
15917 Related_Nod, Related_Id, Suffix);
15919 when others =>
15920 Error_Msg_N ("invalid subtype mark in subtype indication", S);
15921 end case;
15923 -- Size and Convention are always inherited from the base type
15925 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
15926 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
15928 return Def_Id;
15929 end if;
15930 end Process_Subtype;
15932 ---------------------------------------
15933 -- Check_Anonymous_Access_Components --
15934 ---------------------------------------
15936 procedure Check_Anonymous_Access_Components
15937 (Typ_Decl : Node_Id;
15938 Typ : Entity_Id;
15939 Prev : Entity_Id;
15940 Comp_List : Node_Id)
15942 Loc : constant Source_Ptr := Sloc (Typ_Decl);
15943 Anon_Access : Entity_Id;
15944 Acc_Def : Node_Id;
15945 Comp : Node_Id;
15946 Comp_Def : Node_Id;
15947 Decl : Node_Id;
15948 Type_Def : Node_Id;
15950 procedure Build_Incomplete_Type_Declaration;
15951 -- If the record type contains components that include an access to the
15952 -- current record, then create an incomplete type declaration for the
15953 -- record, to be used as the designated type of the anonymous access.
15954 -- This is done only once, and only if there is no previous partial
15955 -- view of the type.
15957 function Mentions_T (Acc_Def : Node_Id) return Boolean;
15958 -- Check whether an access definition includes a reference to
15959 -- the enclosing record type. The reference can be a subtype
15960 -- mark in the access definition itself, or a 'Class attribute
15961 -- reference, or recursively a reference appearing in a parameter
15962 -- type in an access_to_subprogram definition.
15964 --------------------------------------
15965 -- Build_Incomplete_Type_Declaration --
15966 --------------------------------------
15968 procedure Build_Incomplete_Type_Declaration is
15969 Decl : Node_Id;
15970 Inc_T : Entity_Id;
15971 H : Entity_Id;
15973 begin
15974 -- If there is a previous partial view, no need to create a new one
15975 -- If the partial view, given by Prev, is incomplete, If Prev is
15976 -- a private declaration, full declaration is flagged accordingly.
15978 if Prev /= Typ then
15979 if Tagged_Present (Type_Definition (Typ_Decl)) then
15980 Make_Class_Wide_Type (Prev);
15981 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
15982 Set_Etype (Class_Wide_Type (Typ), Typ);
15983 end if;
15985 return;
15987 elsif Has_Private_Declaration (Typ) then
15988 return;
15990 -- If there was a previous anonymous access type, the incomplete
15991 -- type declaration will have been created already.
15993 elsif Present (Current_Entity (Typ))
15994 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
15995 and then Full_View (Current_Entity (Typ)) = Typ
15996 then
15997 return;
15999 else
16000 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
16001 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
16003 -- Type has already been inserted into the current scope.
16004 -- Remove it, and add incomplete declaration for type, so
16005 -- that subsequent anonymous access types can use it.
16006 -- The entity is unchained from the homonym list and from
16007 -- immediate visibility. After analysis, the entity in the
16008 -- incomplete declaration becomes immediately visible in the
16009 -- record declaration that follows.
16011 H := Current_Entity (Typ);
16013 if H = Typ then
16014 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
16015 else
16016 while Present (H)
16017 and then Homonym (H) /= Typ
16018 loop
16019 H := Homonym (Typ);
16020 end loop;
16022 Set_Homonym (H, Homonym (Typ));
16023 end if;
16025 Insert_Before (Typ_Decl, Decl);
16026 Analyze (Decl);
16027 Set_Full_View (Inc_T, Typ);
16029 if (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
16030 and then
16031 Present
16032 (Record_Extension_Part (Type_Definition (Typ_Decl))))
16033 or else Tagged_Present (Type_Definition (Typ_Decl))
16034 then
16035 -- Create a common class-wide type for both views, and set
16036 -- the etype of the class-wide type to the full view.
16038 Make_Class_Wide_Type (Inc_T);
16039 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
16040 Set_Etype (Class_Wide_Type (Typ), Typ);
16041 end if;
16042 end if;
16043 end Build_Incomplete_Type_Declaration;
16045 ----------------
16046 -- Mentions_T --
16047 ----------------
16049 function Mentions_T (Acc_Def : Node_Id) return Boolean is
16050 Subt : Node_Id;
16051 Type_Id : constant Name_Id := Chars (Typ);
16053 function Names_T (Nam : Node_Id) return Boolean;
16054 -- The record type has not been introduced in the current scope
16055 -- yet, so we must examine the name of the type itself, either
16056 -- an identifier T, or an expanded name of the form P.T, where
16057 -- P denotes the current scope.
16059 -------------
16060 -- Names_T --
16061 -------------
16063 function Names_T (Nam : Node_Id) return Boolean is
16064 begin
16065 if Nkind (Nam) = N_Identifier then
16066 return Chars (Nam) = Type_Id;
16068 elsif Nkind (Nam) = N_Selected_Component then
16069 if Chars (Selector_Name (Nam)) = Type_Id then
16070 if Nkind (Prefix (Nam)) = N_Identifier then
16071 return Chars (Prefix (Nam)) = Chars (Current_Scope);
16073 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
16074 return Chars (Selector_Name (Prefix (Nam))) =
16075 Chars (Current_Scope);
16076 else
16077 return False;
16078 end if;
16079 else
16080 return False;
16081 end if;
16082 else
16083 return False;
16084 end if;
16085 end Names_T;
16087 -- Start of processing for Mentions_T
16089 begin
16090 if No (Access_To_Subprogram_Definition (Acc_Def)) then
16091 Subt := Subtype_Mark (Acc_Def);
16093 if Nkind (Subt) = N_Identifier then
16094 return Chars (Subt) = Type_Id;
16096 -- Reference can be through an expanded name which has not been
16097 -- analyzed yet, and which designates enclosing scopes.
16099 elsif Nkind (Subt) = N_Selected_Component then
16100 if Names_T (Subt) then
16101 return True;
16103 -- Otherwise it must denote an entity that is already visible.
16104 -- The access definition may name a subtype of the enclosing
16105 -- type, if there is a previous incomplete declaration for it.
16107 else
16108 Find_Selected_Component (Subt);
16109 return
16110 Is_Entity_Name (Subt)
16111 and then Scope (Entity (Subt)) = Current_Scope
16112 and then (Chars (Base_Type (Entity (Subt))) = Type_Id
16113 or else
16114 (Is_Class_Wide_Type (Entity (Subt))
16115 and then
16116 Chars (Etype (Base_Type (Entity (Subt))))
16117 = Type_Id));
16118 end if;
16120 -- A reference to the current type may appear as the prefix of
16121 -- a 'Class attribute.
16123 elsif Nkind (Subt) = N_Attribute_Reference
16124 and then Attribute_Name (Subt) = Name_Class
16125 then
16126 return Names_T (Prefix (Subt));
16127 else
16128 return False;
16129 end if;
16131 else
16132 -- Component is an access_to_subprogram: examine its formals
16134 declare
16135 Param_Spec : Node_Id;
16137 begin
16138 Param_Spec :=
16139 First
16140 (Parameter_Specifications
16141 (Access_To_Subprogram_Definition (Acc_Def)));
16142 while Present (Param_Spec) loop
16143 if Nkind (Parameter_Type (Param_Spec))
16144 = N_Access_Definition
16145 and then Mentions_T (Parameter_Type (Param_Spec))
16146 then
16147 return True;
16148 end if;
16150 Next (Param_Spec);
16151 end loop;
16153 return False;
16154 end;
16155 end if;
16156 end Mentions_T;
16158 -- Start of processing for Check_Anonymous_Access_Components
16160 begin
16161 if No (Comp_List) then
16162 return;
16163 end if;
16165 Comp := First (Component_Items (Comp_List));
16166 while Present (Comp) loop
16167 if Nkind (Comp) = N_Component_Declaration
16168 and then Present
16169 (Access_Definition (Component_Definition (Comp)))
16170 and then
16171 Mentions_T (Access_Definition (Component_Definition (Comp)))
16172 then
16173 Comp_Def := Component_Definition (Comp);
16174 Acc_Def :=
16175 Access_To_Subprogram_Definition
16176 (Access_Definition (Comp_Def));
16178 Build_Incomplete_Type_Declaration;
16179 Anon_Access :=
16180 Make_Defining_Identifier (Loc,
16181 Chars => New_Internal_Name ('S'));
16183 -- Create a declaration for the anonymous access type: either
16184 -- an access_to_object or an access_to_subprogram.
16186 if Present (Acc_Def) then
16187 if Nkind (Acc_Def) = N_Access_Function_Definition then
16188 Type_Def :=
16189 Make_Access_Function_Definition (Loc,
16190 Parameter_Specifications =>
16191 Parameter_Specifications (Acc_Def),
16192 Result_Definition => Result_Definition (Acc_Def));
16193 else
16194 Type_Def :=
16195 Make_Access_Procedure_Definition (Loc,
16196 Parameter_Specifications =>
16197 Parameter_Specifications (Acc_Def));
16198 end if;
16200 else
16201 Type_Def :=
16202 Make_Access_To_Object_Definition (Loc,
16203 Subtype_Indication =>
16204 Relocate_Node
16205 (Subtype_Mark
16206 (Access_Definition (Comp_Def))));
16208 Set_Constant_Present
16209 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
16210 Set_All_Present
16211 (Type_Def, All_Present (Access_Definition (Comp_Def)));
16212 end if;
16214 Set_Null_Exclusion_Present
16215 (Type_Def,
16216 Null_Exclusion_Present (Access_Definition (Comp_Def)));
16218 Decl :=
16219 Make_Full_Type_Declaration (Loc,
16220 Defining_Identifier => Anon_Access,
16221 Type_Definition => Type_Def);
16223 Insert_Before (Typ_Decl, Decl);
16224 Analyze (Decl);
16226 -- If an access to object, Preserve entity of designated type,
16227 -- for ASIS use, before rewriting the component definition.
16229 if No (Acc_Def) then
16230 declare
16231 Desig : Entity_Id;
16233 begin
16234 Desig := Entity (Subtype_Indication (Type_Def));
16236 -- If the access definition is to the current record,
16237 -- the visible entity at this point is an incomplete
16238 -- type. Retrieve the full view to simplify ASIS queries
16240 if Ekind (Desig) = E_Incomplete_Type then
16241 Desig := Full_View (Desig);
16242 end if;
16244 Set_Entity
16245 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
16246 end;
16247 end if;
16249 Rewrite (Comp_Def,
16250 Make_Component_Definition (Loc,
16251 Subtype_Indication =>
16252 New_Occurrence_Of (Anon_Access, Loc)));
16253 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
16254 Set_Is_Local_Anonymous_Access (Anon_Access);
16255 end if;
16257 Next (Comp);
16258 end loop;
16260 if Present (Variant_Part (Comp_List)) then
16261 declare
16262 V : Node_Id;
16263 begin
16264 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
16265 while Present (V) loop
16266 Check_Anonymous_Access_Components
16267 (Typ_Decl, Typ, Prev, Component_List (V));
16268 Next_Non_Pragma (V);
16269 end loop;
16270 end;
16271 end if;
16272 end Check_Anonymous_Access_Components;
16274 -----------------------------
16275 -- Record_Type_Declaration --
16276 -----------------------------
16278 procedure Record_Type_Declaration
16279 (T : Entity_Id;
16280 N : Node_Id;
16281 Prev : Entity_Id)
16283 Def : constant Node_Id := Type_Definition (N);
16284 Is_Tagged : Boolean;
16285 Tag_Comp : Entity_Id;
16287 begin
16288 -- These flags must be initialized before calling Process_Discriminants
16289 -- because this routine makes use of them.
16291 Set_Ekind (T, E_Record_Type);
16292 Set_Etype (T, T);
16293 Init_Size_Align (T);
16294 Set_Abstract_Interfaces (T, No_Elist);
16295 Set_Stored_Constraint (T, No_Elist);
16297 -- Normal case
16299 if Ada_Version < Ada_05
16300 or else not Interface_Present (Def)
16301 then
16302 -- The flag Is_Tagged_Type might have already been set by
16303 -- Find_Type_Name if it detected an error for declaration T. This
16304 -- arises in the case of private tagged types where the full view
16305 -- omits the word tagged.
16307 Is_Tagged :=
16308 Tagged_Present (Def)
16309 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
16311 Set_Is_Tagged_Type (T, Is_Tagged);
16312 Set_Is_Limited_Record (T, Limited_Present (Def));
16314 -- Type is abstract if full declaration carries keyword, or if
16315 -- previous partial view did.
16317 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
16318 or else Abstract_Present (Def));
16320 else
16321 Is_Tagged := True;
16322 Analyze_Interface_Declaration (T, Def);
16324 if Present (Discriminant_Specifications (N)) then
16325 Error_Msg_N
16326 ("interface types cannot have discriminants",
16327 Defining_Identifier
16328 (First (Discriminant_Specifications (N))));
16329 end if;
16330 end if;
16332 -- First pass: if there are self-referential access components,
16333 -- create the required anonymous access type declarations, and if
16334 -- need be an incomplete type declaration for T itself.
16336 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
16338 if Ada_Version >= Ada_05
16339 and then Present (Interface_List (Def))
16340 then
16341 Check_Abstract_Interfaces (N, Def);
16343 declare
16344 Ifaces_List : Elist_Id;
16346 begin
16347 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
16348 -- already in the parents.
16350 Collect_Abstract_Interfaces
16351 (T => T,
16352 Ifaces_List => Ifaces_List,
16353 Exclude_Parent_Interfaces => True);
16355 Set_Abstract_Interfaces (T, Ifaces_List);
16356 end;
16357 end if;
16359 -- Records constitute a scope for the component declarations within.
16360 -- The scope is created prior to the processing of these declarations.
16361 -- Discriminants are processed first, so that they are visible when
16362 -- processing the other components. The Ekind of the record type itself
16363 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
16365 -- Enter record scope
16367 Push_Scope (T);
16369 -- If an incomplete or private type declaration was already given for
16370 -- the type, then this scope already exists, and the discriminants have
16371 -- been declared within. We must verify that the full declaration
16372 -- matches the incomplete one.
16374 Check_Or_Process_Discriminants (N, T, Prev);
16376 Set_Is_Constrained (T, not Has_Discriminants (T));
16377 Set_Has_Delayed_Freeze (T, True);
16379 -- For tagged types add a manually analyzed component corresponding
16380 -- to the component _tag, the corresponding piece of tree will be
16381 -- expanded as part of the freezing actions if it is not a CPP_Class.
16383 if Is_Tagged then
16385 -- Do not add the tag unless we are in expansion mode
16387 if Expander_Active then
16388 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
16389 Enter_Name (Tag_Comp);
16391 Set_Is_Tag (Tag_Comp);
16392 Set_Is_Aliased (Tag_Comp);
16393 Set_Ekind (Tag_Comp, E_Component);
16394 Set_Etype (Tag_Comp, RTE (RE_Tag));
16395 Set_DT_Entry_Count (Tag_Comp, No_Uint);
16396 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
16397 Init_Component_Location (Tag_Comp);
16399 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
16400 -- implemented interfaces.
16402 if Has_Abstract_Interfaces (T) then
16403 Add_Interface_Tag_Components (N, T);
16404 end if;
16405 end if;
16407 Make_Class_Wide_Type (T);
16408 Set_Primitive_Operations (T, New_Elmt_List);
16409 end if;
16411 -- We must suppress range checks when processing the components
16412 -- of a record in the presence of discriminants, since we don't
16413 -- want spurious checks to be generated during their analysis, but
16414 -- must reset the Suppress_Range_Checks flags after having processed
16415 -- the record definition.
16417 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
16418 -- couldn't we just use the normal range check suppression method here.
16419 -- That would seem cleaner ???
16421 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
16422 Set_Kill_Range_Checks (T, True);
16423 Record_Type_Definition (Def, Prev);
16424 Set_Kill_Range_Checks (T, False);
16425 else
16426 Record_Type_Definition (Def, Prev);
16427 end if;
16429 -- Exit from record scope
16431 End_Scope;
16433 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
16434 -- the implemented interfaces and associate them an aliased entity.
16436 if Is_Tagged
16437 and then not Is_Empty_List (Interface_List (Def))
16438 then
16439 declare
16440 Ifaces_List : constant Elist_Id := New_Elmt_List;
16441 begin
16442 Derive_Interface_Subprograms (T, T, Ifaces_List);
16443 end;
16444 end if;
16445 end Record_Type_Declaration;
16447 ----------------------------
16448 -- Record_Type_Definition --
16449 ----------------------------
16451 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
16452 Component : Entity_Id;
16453 Ctrl_Components : Boolean := False;
16454 Final_Storage_Only : Boolean;
16455 T : Entity_Id;
16457 begin
16458 if Ekind (Prev_T) = E_Incomplete_Type then
16459 T := Full_View (Prev_T);
16460 else
16461 T := Prev_T;
16462 end if;
16464 Final_Storage_Only := not Is_Controlled (T);
16466 -- Ada 2005: check whether an explicit Limited is present in a derived
16467 -- type declaration.
16469 if Nkind (Parent (Def)) = N_Derived_Type_Definition
16470 and then Limited_Present (Parent (Def))
16471 then
16472 Set_Is_Limited_Record (T);
16473 end if;
16475 -- If the component list of a record type is defined by the reserved
16476 -- word null and there is no discriminant part, then the record type has
16477 -- no components and all records of the type are null records (RM 3.7)
16478 -- This procedure is also called to process the extension part of a
16479 -- record extension, in which case the current scope may have inherited
16480 -- components.
16482 if No (Def)
16483 or else No (Component_List (Def))
16484 or else Null_Present (Component_List (Def))
16485 then
16486 null;
16488 else
16489 Analyze_Declarations (Component_Items (Component_List (Def)));
16491 if Present (Variant_Part (Component_List (Def))) then
16492 Analyze (Variant_Part (Component_List (Def)));
16493 end if;
16494 end if;
16496 -- After completing the semantic analysis of the record definition,
16497 -- record components, both new and inherited, are accessible. Set their
16498 -- kind accordingly. Exclude malformed itypes from illegal declarations,
16499 -- whose Ekind may be void.
16501 Component := First_Entity (Current_Scope);
16502 while Present (Component) loop
16503 if Ekind (Component) = E_Void
16504 and then not Is_Itype (Component)
16505 then
16506 Set_Ekind (Component, E_Component);
16507 Init_Component_Location (Component);
16508 end if;
16510 if Has_Task (Etype (Component)) then
16511 Set_Has_Task (T);
16512 end if;
16514 if Ekind (Component) /= E_Component then
16515 null;
16517 elsif Has_Controlled_Component (Etype (Component))
16518 or else (Chars (Component) /= Name_uParent
16519 and then Is_Controlled (Etype (Component)))
16520 then
16521 Set_Has_Controlled_Component (T, True);
16522 Final_Storage_Only := Final_Storage_Only
16523 and then Finalize_Storage_Only (Etype (Component));
16524 Ctrl_Components := True;
16525 end if;
16527 Next_Entity (Component);
16528 end loop;
16530 -- A Type is Finalize_Storage_Only only if all its controlled components
16531 -- are also.
16533 if Ctrl_Components then
16534 Set_Finalize_Storage_Only (T, Final_Storage_Only);
16535 end if;
16537 -- Place reference to end record on the proper entity, which may
16538 -- be a partial view.
16540 if Present (Def) then
16541 Process_End_Label (Def, 'e', Prev_T);
16542 end if;
16543 end Record_Type_Definition;
16545 ------------------------
16546 -- Replace_Components --
16547 ------------------------
16549 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
16550 function Process (N : Node_Id) return Traverse_Result;
16552 -------------
16553 -- Process --
16554 -------------
16556 function Process (N : Node_Id) return Traverse_Result is
16557 Comp : Entity_Id;
16559 begin
16560 if Nkind (N) = N_Discriminant_Specification then
16561 Comp := First_Discriminant (Typ);
16562 while Present (Comp) loop
16563 if Chars (Comp) = Chars (Defining_Identifier (N)) then
16564 Set_Defining_Identifier (N, Comp);
16565 exit;
16566 end if;
16568 Next_Discriminant (Comp);
16569 end loop;
16571 elsif Nkind (N) = N_Component_Declaration then
16572 Comp := First_Component (Typ);
16573 while Present (Comp) loop
16574 if Chars (Comp) = Chars (Defining_Identifier (N)) then
16575 Set_Defining_Identifier (N, Comp);
16576 exit;
16577 end if;
16579 Next_Component (Comp);
16580 end loop;
16581 end if;
16583 return OK;
16584 end Process;
16586 procedure Replace is new Traverse_Proc (Process);
16588 -- Start of processing for Replace_Components
16590 begin
16591 Replace (Decl);
16592 end Replace_Components;
16594 -------------------------------
16595 -- Set_Completion_Referenced --
16596 -------------------------------
16598 procedure Set_Completion_Referenced (E : Entity_Id) is
16599 begin
16600 -- If in main unit, mark entity that is a completion as referenced,
16601 -- warnings go on the partial view when needed.
16603 if In_Extended_Main_Source_Unit (E) then
16604 Set_Referenced (E);
16605 end if;
16606 end Set_Completion_Referenced;
16608 ---------------------
16609 -- Set_Fixed_Range --
16610 ---------------------
16612 -- The range for fixed-point types is complicated by the fact that we
16613 -- do not know the exact end points at the time of the declaration. This
16614 -- is true for three reasons:
16616 -- A size clause may affect the fudging of the end-points
16617 -- A small clause may affect the values of the end-points
16618 -- We try to include the end-points if it does not affect the size
16620 -- This means that the actual end-points must be established at the point
16621 -- when the type is frozen. Meanwhile, we first narrow the range as
16622 -- permitted (so that it will fit if necessary in a small specified size),
16623 -- and then build a range subtree with these narrowed bounds.
16625 -- Set_Fixed_Range constructs the range from real literal values, and sets
16626 -- the range as the Scalar_Range of the given fixed-point type entity.
16628 -- The parent of this range is set to point to the entity so that it is
16629 -- properly hooked into the tree (unlike normal Scalar_Range entries for
16630 -- other scalar types, which are just pointers to the range in the
16631 -- original tree, this would otherwise be an orphan).
16633 -- The tree is left unanalyzed. When the type is frozen, the processing
16634 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
16635 -- analyzed, and uses this as an indication that it should complete
16636 -- work on the range (it will know the final small and size values).
16638 procedure Set_Fixed_Range
16639 (E : Entity_Id;
16640 Loc : Source_Ptr;
16641 Lo : Ureal;
16642 Hi : Ureal)
16644 S : constant Node_Id :=
16645 Make_Range (Loc,
16646 Low_Bound => Make_Real_Literal (Loc, Lo),
16647 High_Bound => Make_Real_Literal (Loc, Hi));
16648 begin
16649 Set_Scalar_Range (E, S);
16650 Set_Parent (S, E);
16651 end Set_Fixed_Range;
16653 ----------------------------------
16654 -- Set_Scalar_Range_For_Subtype --
16655 ----------------------------------
16657 procedure Set_Scalar_Range_For_Subtype
16658 (Def_Id : Entity_Id;
16659 R : Node_Id;
16660 Subt : Entity_Id)
16662 Kind : constant Entity_Kind := Ekind (Def_Id);
16664 begin
16665 Set_Scalar_Range (Def_Id, R);
16667 -- We need to link the range into the tree before resolving it so
16668 -- that types that are referenced, including importantly the subtype
16669 -- itself, are properly frozen (Freeze_Expression requires that the
16670 -- expression be properly linked into the tree). Of course if it is
16671 -- already linked in, then we do not disturb the current link.
16673 if No (Parent (R)) then
16674 Set_Parent (R, Def_Id);
16675 end if;
16677 -- Reset the kind of the subtype during analysis of the range, to
16678 -- catch possible premature use in the bounds themselves.
16680 Set_Ekind (Def_Id, E_Void);
16681 Process_Range_Expr_In_Decl (R, Subt);
16682 Set_Ekind (Def_Id, Kind);
16683 end Set_Scalar_Range_For_Subtype;
16685 --------------------------------------------------------
16686 -- Set_Stored_Constraint_From_Discriminant_Constraint --
16687 --------------------------------------------------------
16689 procedure Set_Stored_Constraint_From_Discriminant_Constraint
16690 (E : Entity_Id)
16692 begin
16693 -- Make sure set if encountered during Expand_To_Stored_Constraint
16695 Set_Stored_Constraint (E, No_Elist);
16697 -- Give it the right value
16699 if Is_Constrained (E) and then Has_Discriminants (E) then
16700 Set_Stored_Constraint (E,
16701 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
16702 end if;
16703 end Set_Stored_Constraint_From_Discriminant_Constraint;
16705 -------------------------------------
16706 -- Signed_Integer_Type_Declaration --
16707 -------------------------------------
16709 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16710 Implicit_Base : Entity_Id;
16711 Base_Typ : Entity_Id;
16712 Lo_Val : Uint;
16713 Hi_Val : Uint;
16714 Errs : Boolean := False;
16715 Lo : Node_Id;
16716 Hi : Node_Id;
16718 function Can_Derive_From (E : Entity_Id) return Boolean;
16719 -- Determine whether given bounds allow derivation from specified type
16721 procedure Check_Bound (Expr : Node_Id);
16722 -- Check bound to make sure it is integral and static. If not, post
16723 -- appropriate error message and set Errs flag
16725 ---------------------
16726 -- Can_Derive_From --
16727 ---------------------
16729 -- Note we check both bounds against both end values, to deal with
16730 -- strange types like ones with a range of 0 .. -12341234.
16732 function Can_Derive_From (E : Entity_Id) return Boolean is
16733 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
16734 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
16735 begin
16736 return Lo <= Lo_Val and then Lo_Val <= Hi
16737 and then
16738 Lo <= Hi_Val and then Hi_Val <= Hi;
16739 end Can_Derive_From;
16741 -----------------
16742 -- Check_Bound --
16743 -----------------
16745 procedure Check_Bound (Expr : Node_Id) is
16746 begin
16747 -- If a range constraint is used as an integer type definition, each
16748 -- bound of the range must be defined by a static expression of some
16749 -- integer type, but the two bounds need not have the same integer
16750 -- type (Negative bounds are allowed.) (RM 3.5.4)
16752 if not Is_Integer_Type (Etype (Expr)) then
16753 Error_Msg_N
16754 ("integer type definition bounds must be of integer type", Expr);
16755 Errs := True;
16757 elsif not Is_OK_Static_Expression (Expr) then
16758 Flag_Non_Static_Expr
16759 ("non-static expression used for integer type bound!", Expr);
16760 Errs := True;
16762 -- The bounds are folded into literals, and we set their type to be
16763 -- universal, to avoid typing difficulties: we cannot set the type
16764 -- of the literal to the new type, because this would be a forward
16765 -- reference for the back end, and if the original type is user-
16766 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
16768 else
16769 if Is_Entity_Name (Expr) then
16770 Fold_Uint (Expr, Expr_Value (Expr), True);
16771 end if;
16773 Set_Etype (Expr, Universal_Integer);
16774 end if;
16775 end Check_Bound;
16777 -- Start of processing for Signed_Integer_Type_Declaration
16779 begin
16780 -- Create an anonymous base type
16782 Implicit_Base :=
16783 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
16785 -- Analyze and check the bounds, they can be of any integer type
16787 Lo := Low_Bound (Def);
16788 Hi := High_Bound (Def);
16790 -- Arbitrarily use Integer as the type if either bound had an error
16792 if Hi = Error or else Lo = Error then
16793 Base_Typ := Any_Integer;
16794 Set_Error_Posted (T, True);
16796 -- Here both bounds are OK expressions
16798 else
16799 Analyze_And_Resolve (Lo, Any_Integer);
16800 Analyze_And_Resolve (Hi, Any_Integer);
16802 Check_Bound (Lo);
16803 Check_Bound (Hi);
16805 if Errs then
16806 Hi := Type_High_Bound (Standard_Long_Long_Integer);
16807 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
16808 end if;
16810 -- Find type to derive from
16812 Lo_Val := Expr_Value (Lo);
16813 Hi_Val := Expr_Value (Hi);
16815 if Can_Derive_From (Standard_Short_Short_Integer) then
16816 Base_Typ := Base_Type (Standard_Short_Short_Integer);
16818 elsif Can_Derive_From (Standard_Short_Integer) then
16819 Base_Typ := Base_Type (Standard_Short_Integer);
16821 elsif Can_Derive_From (Standard_Integer) then
16822 Base_Typ := Base_Type (Standard_Integer);
16824 elsif Can_Derive_From (Standard_Long_Integer) then
16825 Base_Typ := Base_Type (Standard_Long_Integer);
16827 elsif Can_Derive_From (Standard_Long_Long_Integer) then
16828 Base_Typ := Base_Type (Standard_Long_Long_Integer);
16830 else
16831 Base_Typ := Base_Type (Standard_Long_Long_Integer);
16832 Error_Msg_N ("integer type definition bounds out of range", Def);
16833 Hi := Type_High_Bound (Standard_Long_Long_Integer);
16834 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
16835 end if;
16836 end if;
16838 -- Complete both implicit base and declared first subtype entities
16840 Set_Etype (Implicit_Base, Base_Typ);
16841 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16842 Set_Size_Info (Implicit_Base, (Base_Typ));
16843 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16844 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16846 Set_Ekind (T, E_Signed_Integer_Subtype);
16847 Set_Etype (T, Implicit_Base);
16849 Set_Size_Info (T, (Implicit_Base));
16850 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16851 Set_Scalar_Range (T, Def);
16852 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16853 Set_Is_Constrained (T);
16854 end Signed_Integer_Type_Declaration;
16856 end Sem_Ch3;