Daily bump.
[official-gcc.git] / gcc / ada / exp_fixd.adb
blob21e1eb13ce62e38d6fc53ca5a648689c51646363
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ F I X D --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Exp_Util; use Exp_Util;
30 with Nlists; use Nlists;
31 with Nmake; use Nmake;
32 with Rtsfind; use Rtsfind;
33 with Sem; use Sem;
34 with Sem_Eval; use Sem_Eval;
35 with Sem_Res; use Sem_Res;
36 with Sem_Util; use Sem_Util;
37 with Sinfo; use Sinfo;
38 with Stand; use Stand;
39 with Tbuild; use Tbuild;
40 with Uintp; use Uintp;
41 with Urealp; use Urealp;
43 package body Exp_Fixd is
45 -----------------------
46 -- Local Subprograms --
47 -----------------------
49 -- General note; in this unit, a number of routines are driven by the
50 -- types (Etype) of their operands. Since we are dealing with unanalyzed
51 -- expressions as they are constructed, the Etypes would not normally be
52 -- set, but the construction routines that we use in this unit do in fact
53 -- set the Etype values correctly. In addition, setting the Etype ensures
54 -- that the analyzer does not try to redetermine the type when the node
55 -- is analyzed (which would be wrong, since in the case where we set the
56 -- Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
57 -- still dealing with a normal fixed-point operation and mess it up).
59 function Build_Conversion
60 (N : Node_Id;
61 Typ : Entity_Id;
62 Expr : Node_Id;
63 Rchk : Boolean := False) return Node_Id;
64 -- Build an expression that converts the expression Expr to type Typ,
65 -- taking the source location from Sloc (N). If the conversions involve
66 -- fixed-point types, then the Conversion_OK flag will be set so that the
67 -- resulting conversions do not get re-expanded. On return the resulting
68 -- node has its Etype set. If Rchk is set, then Do_Range_Check is set
69 -- in the resulting conversion node.
71 function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
72 -- Builds an N_Op_Divide node from the given left and right operand
73 -- expressions, using the source location from Sloc (N). The operands are
74 -- either both Universal_Real, in which case Build_Divide differs from
75 -- Make_Op_Divide only in that the Etype of the resulting node is set (to
76 -- Universal_Real), or they can be integer types. In this case the integer
77 -- types need not be the same, and Build_Divide converts the operand with
78 -- the smaller sized type to match the type of the other operand and sets
79 -- this as the result type. The Rounded_Result flag of the result in this
80 -- case is set from the Rounded_Result flag of node N. On return, the
81 -- resulting node is analyzed, and has its Etype set.
83 function Build_Double_Divide
84 (N : Node_Id;
85 X, Y, Z : Node_Id) return Node_Id;
86 -- Returns a node corresponding to the value X/(Y*Z) using the source
87 -- location from Sloc (N). The division is rounded if the Rounded_Result
88 -- flag of N is set. The integer types of X, Y, Z may be different. On
89 -- return the resulting node is analyzed, and has its Etype set.
91 procedure Build_Double_Divide_Code
92 (N : Node_Id;
93 X, Y, Z : Node_Id;
94 Qnn, Rnn : out Entity_Id;
95 Code : out List_Id);
96 -- Generates a sequence of code for determining the quotient and remainder
97 -- of the division X/(Y*Z), using the source location from Sloc (N).
98 -- Entities of appropriate types are allocated for the quotient and
99 -- remainder and returned in Qnn and Rnn. The result is rounded if the
100 -- Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
101 -- appropriately set on return.
103 function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
104 -- Builds an N_Op_Multiply node from the given left and right operand
105 -- expressions, using the source location from Sloc (N). The operands are
106 -- either both Universal_Real, in which case Build_Divide differs from
107 -- Make_Op_Multiply only in that the Etype of the resulting node is set (to
108 -- Universal_Real), or they can be integer types. In this case the integer
109 -- types need not be the same, and Build_Multiply chooses a type long
110 -- enough to hold the product (i.e. twice the size of the longer of the two
111 -- operand types), and both operands are converted to this type. The Etype
112 -- of the result is also set to this value. However, the result can never
113 -- overflow Integer_64, so this is the largest type that is ever generated.
114 -- On return, the resulting node is analyzed and has its Etype set.
116 function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
117 -- Builds an N_Op_Rem node from the given left and right operand
118 -- expressions, using the source location from Sloc (N). The operands are
119 -- both integer types, which need not be the same. Build_Rem converts the
120 -- operand with the smaller sized type to match the type of the other
121 -- operand and sets this as the result type. The result is never rounded
122 -- (rem operations cannot be rounded in any case!) On return, the resulting
123 -- node is analyzed and has its Etype set.
125 function Build_Scaled_Divide
126 (N : Node_Id;
127 X, Y, Z : Node_Id) return Node_Id;
128 -- Returns a node corresponding to the value X*Y/Z using the source
129 -- location from Sloc (N). The division is rounded if the Rounded_Result
130 -- flag of N is set. The integer types of X, Y, Z may be different. On
131 -- return the resulting node is analyzed and has is Etype set.
133 procedure Build_Scaled_Divide_Code
134 (N : Node_Id;
135 X, Y, Z : Node_Id;
136 Qnn, Rnn : out Entity_Id;
137 Code : out List_Id);
138 -- Generates a sequence of code for determining the quotient and remainder
139 -- of the division X*Y/Z, using the source location from Sloc (N). Entities
140 -- of appropriate types are allocated for the quotient and remainder and
141 -- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
142 -- The division is rounded if the Rounded_Result flag of N is set. The
143 -- Etype fields of Qnn and Rnn are appropriately set on return.
145 procedure Do_Divide_Fixed_Fixed (N : Node_Id);
146 -- Handles expansion of divide for case of two fixed-point operands
147 -- (neither of them universal), with an integer or fixed-point result.
148 -- N is the N_Op_Divide node to be expanded.
150 procedure Do_Divide_Fixed_Universal (N : Node_Id);
151 -- Handles expansion of divide for case of a fixed-point operand divided
152 -- by a universal real operand, with an integer or fixed-point result. N
153 -- is the N_Op_Divide node to be expanded.
155 procedure Do_Divide_Universal_Fixed (N : Node_Id);
156 -- Handles expansion of divide for case of a universal real operand
157 -- divided by a fixed-point operand, with an integer or fixed-point
158 -- result. N is the N_Op_Divide node to be expanded.
160 procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
161 -- Handles expansion of multiply for case of two fixed-point operands
162 -- (neither of them universal), with an integer or fixed-point result.
163 -- N is the N_Op_Multiply node to be expanded.
165 procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
166 -- Handles expansion of multiply for case of a fixed-point operand
167 -- multiplied by a universal real operand, with an integer or fixed-
168 -- point result. N is the N_Op_Multiply node to be expanded, and
169 -- Left, Right are the operands (which may have been switched).
171 procedure Expand_Convert_Fixed_Static (N : Node_Id);
172 -- This routine is called where the node N is a conversion of a literal
173 -- or other static expression of a fixed-point type to some other type.
174 -- In such cases, we simply rewrite the operand as a real literal and
175 -- reanalyze. This avoids problems which would otherwise result from
176 -- attempting to build and fold expressions involving constants.
178 function Fpt_Value (N : Node_Id) return Node_Id;
179 -- Given an operand of fixed-point operation, return an expression that
180 -- represents the corresponding Universal_Real value. The expression
181 -- can be of integer type, floating-point type, or fixed-point type.
182 -- The expression returned is neither analyzed and resolved. The Etype
183 -- of the result is properly set (to Universal_Real).
185 function Integer_Literal
186 (N : Node_Id;
187 V : Uint;
188 Negative : Boolean := False) return Node_Id;
189 -- Given a non-negative universal integer value, build a typed integer
190 -- literal node, using the smallest applicable standard integer type. If
191 -- and only if Negative is true a negative literal is built. If V exceeds
192 -- 2**63-1, the largest value allowed for perfect result set scaling
193 -- factors (see RM G.2.3(22)), then Empty is returned. The node N provides
194 -- the Sloc value for the constructed literal. The Etype of the resulting
195 -- literal is correctly set, and it is marked as analyzed.
197 function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
198 -- Build a real literal node from the given value, the Etype of the
199 -- returned node is set to Universal_Real, since all floating-point
200 -- arithmetic operations that we construct use Universal_Real
202 function Rounded_Result_Set (N : Node_Id) return Boolean;
203 -- Returns True if N is a node that contains the Rounded_Result flag
204 -- and if the flag is true or the target type is an integer type.
206 procedure Set_Result (N : Node_Id; Expr : Node_Id; Rchk : Boolean := False);
207 -- N is the node for the current conversion, division or multiplication
208 -- operation, and Expr is an expression representing the result. Expr may
209 -- be of floating-point or integer type. If the operation result is fixed-
210 -- point, then the value of Expr is in units of small of the result type
211 -- (i.e. small's have already been dealt with). The result of the call is
212 -- to replace N by an appropriate conversion to the result type, dealing
213 -- with rounding for the decimal types case. The node is then analyzed and
214 -- resolved using the result type. If Rchk is True, then Do_Range_Check is
215 -- set in the resulting conversion.
217 ----------------------
218 -- Build_Conversion --
219 ----------------------
221 function Build_Conversion
222 (N : Node_Id;
223 Typ : Entity_Id;
224 Expr : Node_Id;
225 Rchk : Boolean := False) return Node_Id
227 Loc : constant Source_Ptr := Sloc (N);
228 Result : Node_Id;
229 Rcheck : Boolean := Rchk;
231 begin
232 -- A special case, if the expression is an integer literal and the
233 -- target type is an integer type, then just retype the integer
234 -- literal to the desired target type. Don't do this if we need
235 -- a range check.
237 if Nkind (Expr) = N_Integer_Literal
238 and then Is_Integer_Type (Typ)
239 and then not Rchk
240 then
241 Result := Expr;
243 -- Cases where we end up with a conversion. Note that we do not use the
244 -- Convert_To abstraction here, since we may be decorating the resulting
245 -- conversion with Rounded_Result and/or Conversion_OK, so we want the
246 -- conversion node present, even if it appears to be redundant.
248 else
249 -- Remove inner conversion if both inner and outer conversions are
250 -- to integer types, since the inner one serves no purpose (except
251 -- perhaps to set rounding, so we preserve the Rounded_Result flag)
252 -- and also we preserve the range check flag on the inner operand
254 if Is_Integer_Type (Typ)
255 and then Is_Integer_Type (Etype (Expr))
256 and then Nkind (Expr) = N_Type_Conversion
257 then
258 Result :=
259 Make_Type_Conversion (Loc,
260 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
261 Expression => Expression (Expr));
262 Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
263 Rcheck := Rcheck or Do_Range_Check (Expr);
265 -- For all other cases, a simple type conversion will work
267 else
268 Result :=
269 Make_Type_Conversion (Loc,
270 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
271 Expression => Expr);
272 end if;
274 -- Set Conversion_OK if either result or expression type is a
275 -- fixed-point type, since from a semantic point of view, we are
276 -- treating fixed-point values as integers at this stage.
278 if Is_Fixed_Point_Type (Typ)
279 or else Is_Fixed_Point_Type (Etype (Expression (Result)))
280 then
281 Set_Conversion_OK (Result);
282 end if;
284 -- Set Do_Range_Check if either it was requested by the caller,
285 -- or if an eliminated inner conversion had a range check.
287 if Rcheck then
288 Enable_Range_Check (Result);
289 else
290 Set_Do_Range_Check (Result, False);
291 end if;
292 end if;
294 Set_Etype (Result, Typ);
295 return Result;
296 end Build_Conversion;
298 ------------------
299 -- Build_Divide --
300 ------------------
302 function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
303 Loc : constant Source_Ptr := Sloc (N);
304 Left_Type : constant Entity_Id := Base_Type (Etype (L));
305 Right_Type : constant Entity_Id := Base_Type (Etype (R));
306 Result_Type : Entity_Id;
307 Rnode : Node_Id;
309 begin
310 -- Deal with floating-point case first
312 if Is_Floating_Point_Type (Left_Type) then
313 pragma Assert (Left_Type = Universal_Real);
314 pragma Assert (Right_Type = Universal_Real);
316 Rnode := Make_Op_Divide (Loc, L, R);
317 Result_Type := Universal_Real;
319 -- Integer and fixed-point cases
321 else
322 -- An optimization. If the right operand is the literal 1, then we
323 -- can just return the left hand operand. Putting the optimization
324 -- here allows us to omit the check at the call site.
326 if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
327 return L;
328 end if;
330 -- If left and right types are the same, no conversion needed
332 if Left_Type = Right_Type then
333 Result_Type := Left_Type;
334 Rnode :=
335 Make_Op_Divide (Loc,
336 Left_Opnd => L,
337 Right_Opnd => R);
339 -- Use left type if it is the larger of the two
341 elsif Esize (Left_Type) >= Esize (Right_Type) then
342 Result_Type := Left_Type;
343 Rnode :=
344 Make_Op_Divide (Loc,
345 Left_Opnd => L,
346 Right_Opnd => Build_Conversion (N, Left_Type, R));
348 -- Otherwise right type is larger of the two, us it
350 else
351 Result_Type := Right_Type;
352 Rnode :=
353 Make_Op_Divide (Loc,
354 Left_Opnd => Build_Conversion (N, Right_Type, L),
355 Right_Opnd => R);
356 end if;
357 end if;
359 -- We now have a divide node built with Result_Type set. First
360 -- set Etype of result, as required for all Build_xxx routines
362 Set_Etype (Rnode, Base_Type (Result_Type));
364 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
365 -- since this is a literal arithmetic operation, to be performed
366 -- by Gigi without any consideration of small values.
368 if Is_Fixed_Point_Type (Result_Type) then
369 Set_Treat_Fixed_As_Integer (Rnode);
370 end if;
372 -- The result is rounded if the target of the operation is decimal
373 -- and Rounded_Result is set, or if the target of the operation
374 -- is an integer type.
376 if Is_Integer_Type (Etype (N))
377 or else Rounded_Result_Set (N)
378 then
379 Set_Rounded_Result (Rnode);
380 end if;
382 return Rnode;
383 end Build_Divide;
385 -------------------------
386 -- Build_Double_Divide --
387 -------------------------
389 function Build_Double_Divide
390 (N : Node_Id;
391 X, Y, Z : Node_Id) return Node_Id
393 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
394 Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
395 Expr : Node_Id;
397 begin
398 -- If denominator fits in 64 bits, we can build the operations directly
399 -- without causing any intermediate overflow, so that's what we do!
401 if Int'Max (Y_Size, Z_Size) <= 32 then
402 return
403 Build_Divide (N, X, Build_Multiply (N, Y, Z));
405 -- Otherwise we use the runtime routine
407 -- [Qnn : Interfaces.Integer_64,
408 -- Rnn : Interfaces.Integer_64;
409 -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);
410 -- Qnn]
412 else
413 declare
414 Loc : constant Source_Ptr := Sloc (N);
415 Qnn : Entity_Id;
416 Rnn : Entity_Id;
417 Code : List_Id;
419 begin
420 Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
421 Insert_Actions (N, Code);
422 Expr := New_Occurrence_Of (Qnn, Loc);
424 -- Set type of result in case used elsewhere (see note at start)
426 Set_Etype (Expr, Etype (Qnn));
428 -- Set result as analyzed (see note at start on build routines)
430 return Expr;
431 end;
432 end if;
433 end Build_Double_Divide;
435 ------------------------------
436 -- Build_Double_Divide_Code --
437 ------------------------------
439 -- If the denominator can be computed in 64-bits, we build
441 -- [Nnn : constant typ := typ (X);
442 -- Dnn : constant typ := typ (Y) * typ (Z)
443 -- Qnn : constant typ := Nnn / Dnn;
444 -- Rnn : constant typ := Nnn / Dnn;
446 -- If the numerator cannot be computed in 64 bits, we build
448 -- [Qnn : typ;
449 -- Rnn : typ;
450 -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
452 procedure Build_Double_Divide_Code
453 (N : Node_Id;
454 X, Y, Z : Node_Id;
455 Qnn, Rnn : out Entity_Id;
456 Code : out List_Id)
458 Loc : constant Source_Ptr := Sloc (N);
460 X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
461 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
462 Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
464 QR_Siz : Int;
465 QR_Typ : Entity_Id;
467 Nnn : Entity_Id;
468 Dnn : Entity_Id;
470 Quo : Node_Id;
471 Rnd : Entity_Id;
473 begin
474 -- Find type that will allow computation of numerator
476 QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
478 if QR_Siz <= 16 then
479 QR_Typ := Standard_Integer_16;
480 elsif QR_Siz <= 32 then
481 QR_Typ := Standard_Integer_32;
482 elsif QR_Siz <= 64 then
483 QR_Typ := Standard_Integer_64;
485 -- For more than 64, bits, we use the 64-bit integer defined in
486 -- Interfaces, so that it can be handled by the runtime routine
488 else
489 QR_Typ := RTE (RE_Integer_64);
490 end if;
492 -- Define quotient and remainder, and set their Etypes, so
493 -- that they can be picked up by Build_xxx routines.
495 Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
496 Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
498 Set_Etype (Qnn, QR_Typ);
499 Set_Etype (Rnn, QR_Typ);
501 -- Case that we can compute the denominator in 64 bits
503 if QR_Siz <= 64 then
505 -- Create temporaries for numerator and denominator and set Etypes,
506 -- so that New_Occurrence_Of picks them up for Build_xxx calls.
508 Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
509 Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
511 Set_Etype (Nnn, QR_Typ);
512 Set_Etype (Dnn, QR_Typ);
514 Code := New_List (
515 Make_Object_Declaration (Loc,
516 Defining_Identifier => Nnn,
517 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
518 Constant_Present => True,
519 Expression => Build_Conversion (N, QR_Typ, X)),
521 Make_Object_Declaration (Loc,
522 Defining_Identifier => Dnn,
523 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
524 Constant_Present => True,
525 Expression =>
526 Build_Multiply (N,
527 Build_Conversion (N, QR_Typ, Y),
528 Build_Conversion (N, QR_Typ, Z))));
530 Quo :=
531 Build_Divide (N,
532 New_Occurrence_Of (Nnn, Loc),
533 New_Occurrence_Of (Dnn, Loc));
535 Set_Rounded_Result (Quo, Rounded_Result_Set (N));
537 Append_To (Code,
538 Make_Object_Declaration (Loc,
539 Defining_Identifier => Qnn,
540 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
541 Constant_Present => True,
542 Expression => Quo));
544 Append_To (Code,
545 Make_Object_Declaration (Loc,
546 Defining_Identifier => Rnn,
547 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
548 Constant_Present => True,
549 Expression =>
550 Build_Rem (N,
551 New_Occurrence_Of (Nnn, Loc),
552 New_Occurrence_Of (Dnn, Loc))));
554 -- Case where denominator does not fit in 64 bits, so we have to
555 -- call the runtime routine to compute the quotient and remainder
557 else
558 Rnd := Boolean_Literals (Rounded_Result_Set (N));
560 Code := New_List (
561 Make_Object_Declaration (Loc,
562 Defining_Identifier => Qnn,
563 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
565 Make_Object_Declaration (Loc,
566 Defining_Identifier => Rnn,
567 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
569 Make_Procedure_Call_Statement (Loc,
570 Name => New_Occurrence_Of (RTE (RE_Double_Divide), Loc),
571 Parameter_Associations => New_List (
572 Build_Conversion (N, QR_Typ, X),
573 Build_Conversion (N, QR_Typ, Y),
574 Build_Conversion (N, QR_Typ, Z),
575 New_Occurrence_Of (Qnn, Loc),
576 New_Occurrence_Of (Rnn, Loc),
577 New_Occurrence_Of (Rnd, Loc))));
578 end if;
579 end Build_Double_Divide_Code;
581 --------------------
582 -- Build_Multiply --
583 --------------------
585 function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
586 Loc : constant Source_Ptr := Sloc (N);
587 Left_Type : constant Entity_Id := Etype (L);
588 Right_Type : constant Entity_Id := Etype (R);
589 Left_Size : Int;
590 Right_Size : Int;
591 Rsize : Int;
592 Result_Type : Entity_Id;
593 Rnode : Node_Id;
595 begin
596 -- Deal with floating-point case first
598 if Is_Floating_Point_Type (Left_Type) then
599 pragma Assert (Left_Type = Universal_Real);
600 pragma Assert (Right_Type = Universal_Real);
602 Result_Type := Universal_Real;
603 Rnode := Make_Op_Multiply (Loc, L, R);
605 -- Integer and fixed-point cases
607 else
608 -- An optimization. If the right operand is the literal 1, then we
609 -- can just return the left hand operand. Putting the optimization
610 -- here allows us to omit the check at the call site. Similarly, if
611 -- the left operand is the integer 1 we can return the right operand.
613 if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
614 return L;
615 elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
616 return R;
617 end if;
619 -- Otherwise we need to figure out the correct result type size
620 -- First figure out the effective sizes of the operands. Normally
621 -- the effective size of an operand is the RM_Size of the operand.
622 -- But a special case arises with operands whose size is known at
623 -- compile time. In this case, we can use the actual value of the
624 -- operand to get its size if it would fit in 8 or 16 bits.
626 -- Note: if both operands are known at compile time (can that
627 -- happen?) and both were equal to the power of 2, then we would
628 -- be one bit off in this test, so for the left operand, we only
629 -- go up to the power of 2 - 1. This ensures that we do not get
630 -- this anomolous case, and in practice the right operand is by
631 -- far the more likely one to be the constant.
633 Left_Size := UI_To_Int (RM_Size (Left_Type));
635 if Compile_Time_Known_Value (L) then
636 declare
637 Val : constant Uint := Expr_Value (L);
639 begin
640 if Val < Int'(2 ** 8) then
641 Left_Size := 8;
642 elsif Val < Int'(2 ** 16) then
643 Left_Size := 16;
644 end if;
645 end;
646 end if;
648 Right_Size := UI_To_Int (RM_Size (Right_Type));
650 if Compile_Time_Known_Value (R) then
651 declare
652 Val : constant Uint := Expr_Value (R);
654 begin
655 if Val <= Int'(2 ** 8) then
656 Right_Size := 8;
657 elsif Val <= Int'(2 ** 16) then
658 Right_Size := 16;
659 end if;
660 end;
661 end if;
663 -- Now the result size must be at least twice the longer of
664 -- the two sizes, to accomodate all possible results.
666 Rsize := 2 * Int'Max (Left_Size, Right_Size);
668 if Rsize <= 8 then
669 Result_Type := Standard_Integer_8;
671 elsif Rsize <= 16 then
672 Result_Type := Standard_Integer_16;
674 elsif Rsize <= 32 then
675 Result_Type := Standard_Integer_32;
677 else
678 Result_Type := Standard_Integer_64;
679 end if;
681 Rnode :=
682 Make_Op_Multiply (Loc,
683 Left_Opnd => Build_Conversion (N, Result_Type, L),
684 Right_Opnd => Build_Conversion (N, Result_Type, R));
685 end if;
687 -- We now have a multiply node built with Result_Type set. First
688 -- set Etype of result, as required for all Build_xxx routines
690 Set_Etype (Rnode, Base_Type (Result_Type));
692 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
693 -- since this is a literal arithmetic operation, to be performed
694 -- by Gigi without any consideration of small values.
696 if Is_Fixed_Point_Type (Result_Type) then
697 Set_Treat_Fixed_As_Integer (Rnode);
698 end if;
700 return Rnode;
701 end Build_Multiply;
703 ---------------
704 -- Build_Rem --
705 ---------------
707 function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
708 Loc : constant Source_Ptr := Sloc (N);
709 Left_Type : constant Entity_Id := Etype (L);
710 Right_Type : constant Entity_Id := Etype (R);
711 Result_Type : Entity_Id;
712 Rnode : Node_Id;
714 begin
715 if Left_Type = Right_Type then
716 Result_Type := Left_Type;
717 Rnode :=
718 Make_Op_Rem (Loc,
719 Left_Opnd => L,
720 Right_Opnd => R);
722 -- If left size is larger, we do the remainder operation using the
723 -- size of the left type (i.e. the larger of the two integer types).
725 elsif Esize (Left_Type) >= Esize (Right_Type) then
726 Result_Type := Left_Type;
727 Rnode :=
728 Make_Op_Rem (Loc,
729 Left_Opnd => L,
730 Right_Opnd => Build_Conversion (N, Left_Type, R));
732 -- Similarly, if the right size is larger, we do the remainder
733 -- operation using the right type.
735 else
736 Result_Type := Right_Type;
737 Rnode :=
738 Make_Op_Rem (Loc,
739 Left_Opnd => Build_Conversion (N, Right_Type, L),
740 Right_Opnd => R);
741 end if;
743 -- We now have an N_Op_Rem node built with Result_Type set. First
744 -- set Etype of result, as required for all Build_xxx routines
746 Set_Etype (Rnode, Base_Type (Result_Type));
748 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
749 -- since this is a literal arithmetic operation, to be performed
750 -- by Gigi without any consideration of small values.
752 if Is_Fixed_Point_Type (Result_Type) then
753 Set_Treat_Fixed_As_Integer (Rnode);
754 end if;
756 -- One more check. We did the rem operation using the larger of the
757 -- two types, which is reasonable. However, in the case where the
758 -- two types have unequal sizes, it is impossible for the result of
759 -- a remainder operation to be larger than the smaller of the two
760 -- types, so we can put a conversion round the result to keep the
761 -- evolving operation size as small as possible.
763 if Esize (Left_Type) >= Esize (Right_Type) then
764 Rnode := Build_Conversion (N, Right_Type, Rnode);
765 elsif Esize (Right_Type) >= Esize (Left_Type) then
766 Rnode := Build_Conversion (N, Left_Type, Rnode);
767 end if;
769 return Rnode;
770 end Build_Rem;
772 -------------------------
773 -- Build_Scaled_Divide --
774 -------------------------
776 function Build_Scaled_Divide
777 (N : Node_Id;
778 X, Y, Z : Node_Id) return Node_Id
780 X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
781 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
782 Expr : Node_Id;
784 begin
785 -- If numerator fits in 64 bits, we can build the operations directly
786 -- without causing any intermediate overflow, so that's what we do!
788 if Int'Max (X_Size, Y_Size) <= 32 then
789 return
790 Build_Divide (N, Build_Multiply (N, X, Y), Z);
792 -- Otherwise we use the runtime routine
794 -- [Qnn : Integer_64,
795 -- Rnn : Integer_64;
796 -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
797 -- Qnn]
799 else
800 declare
801 Loc : constant Source_Ptr := Sloc (N);
802 Qnn : Entity_Id;
803 Rnn : Entity_Id;
804 Code : List_Id;
806 begin
807 Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
808 Insert_Actions (N, Code);
809 Expr := New_Occurrence_Of (Qnn, Loc);
811 -- Set type of result in case used elsewhere (see note at start)
813 Set_Etype (Expr, Etype (Qnn));
814 return Expr;
815 end;
816 end if;
817 end Build_Scaled_Divide;
819 ------------------------------
820 -- Build_Scaled_Divide_Code --
821 ------------------------------
823 -- If the numerator can be computed in 64-bits, we build
825 -- [Nnn : constant typ := typ (X) * typ (Y);
826 -- Dnn : constant typ := typ (Z)
827 -- Qnn : constant typ := Nnn / Dnn;
828 -- Rnn : constant typ := Nnn / Dnn;
830 -- If the numerator cannot be computed in 64 bits, we build
832 -- [Qnn : Interfaces.Integer_64;
833 -- Rnn : Interfaces.Integer_64;
834 -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
836 procedure Build_Scaled_Divide_Code
837 (N : Node_Id;
838 X, Y, Z : Node_Id;
839 Qnn, Rnn : out Entity_Id;
840 Code : out List_Id)
842 Loc : constant Source_Ptr := Sloc (N);
844 X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
845 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
846 Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
848 QR_Siz : Int;
849 QR_Typ : Entity_Id;
851 Nnn : Entity_Id;
852 Dnn : Entity_Id;
854 Quo : Node_Id;
855 Rnd : Entity_Id;
857 begin
858 -- Find type that will allow computation of numerator
860 QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
862 if QR_Siz <= 16 then
863 QR_Typ := Standard_Integer_16;
864 elsif QR_Siz <= 32 then
865 QR_Typ := Standard_Integer_32;
866 elsif QR_Siz <= 64 then
867 QR_Typ := Standard_Integer_64;
869 -- For more than 64, bits, we use the 64-bit integer defined in
870 -- Interfaces, so that it can be handled by the runtime routine
872 else
873 QR_Typ := RTE (RE_Integer_64);
874 end if;
876 -- Define quotient and remainder, and set their Etypes, so
877 -- that they can be picked up by Build_xxx routines.
879 Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
880 Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
882 Set_Etype (Qnn, QR_Typ);
883 Set_Etype (Rnn, QR_Typ);
885 -- Case that we can compute the numerator in 64 bits
887 if QR_Siz <= 64 then
888 Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
889 Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
891 -- Set Etypes, so that they can be picked up by New_Occurrence_Of
893 Set_Etype (Nnn, QR_Typ);
894 Set_Etype (Dnn, QR_Typ);
896 Code := New_List (
897 Make_Object_Declaration (Loc,
898 Defining_Identifier => Nnn,
899 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
900 Constant_Present => True,
901 Expression =>
902 Build_Multiply (N,
903 Build_Conversion (N, QR_Typ, X),
904 Build_Conversion (N, QR_Typ, Y))),
906 Make_Object_Declaration (Loc,
907 Defining_Identifier => Dnn,
908 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
909 Constant_Present => True,
910 Expression => Build_Conversion (N, QR_Typ, Z)));
912 Quo :=
913 Build_Divide (N,
914 New_Occurrence_Of (Nnn, Loc),
915 New_Occurrence_Of (Dnn, Loc));
917 Append_To (Code,
918 Make_Object_Declaration (Loc,
919 Defining_Identifier => Qnn,
920 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
921 Constant_Present => True,
922 Expression => Quo));
924 Append_To (Code,
925 Make_Object_Declaration (Loc,
926 Defining_Identifier => Rnn,
927 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
928 Constant_Present => True,
929 Expression =>
930 Build_Rem (N,
931 New_Occurrence_Of (Nnn, Loc),
932 New_Occurrence_Of (Dnn, Loc))));
934 -- Case where numerator does not fit in 64 bits, so we have to
935 -- call the runtime routine to compute the quotient and remainder
937 else
938 Rnd := Boolean_Literals (Rounded_Result_Set (N));
940 Code := New_List (
941 Make_Object_Declaration (Loc,
942 Defining_Identifier => Qnn,
943 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
945 Make_Object_Declaration (Loc,
946 Defining_Identifier => Rnn,
947 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
949 Make_Procedure_Call_Statement (Loc,
950 Name => New_Occurrence_Of (RTE (RE_Scaled_Divide), Loc),
951 Parameter_Associations => New_List (
952 Build_Conversion (N, QR_Typ, X),
953 Build_Conversion (N, QR_Typ, Y),
954 Build_Conversion (N, QR_Typ, Z),
955 New_Occurrence_Of (Qnn, Loc),
956 New_Occurrence_Of (Rnn, Loc),
957 New_Occurrence_Of (Rnd, Loc))));
958 end if;
960 -- Set type of result, for use in caller
962 Set_Etype (Qnn, QR_Typ);
963 end Build_Scaled_Divide_Code;
965 ---------------------------
966 -- Do_Divide_Fixed_Fixed --
967 ---------------------------
969 -- We have:
971 -- (Result_Value * Result_Small) =
972 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
974 -- Result_Value = (Left_Value / Right_Value) *
975 -- (Left_Small / (Right_Small * Result_Small));
977 -- we can do the operation in integer arithmetic if this fraction is an
978 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
979 -- Otherwise the result is in the close result set and our approach is to
980 -- use floating-point to compute this close result.
982 procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
983 Left : constant Node_Id := Left_Opnd (N);
984 Right : constant Node_Id := Right_Opnd (N);
985 Left_Type : constant Entity_Id := Etype (Left);
986 Right_Type : constant Entity_Id := Etype (Right);
987 Result_Type : constant Entity_Id := Etype (N);
988 Right_Small : constant Ureal := Small_Value (Right_Type);
989 Left_Small : constant Ureal := Small_Value (Left_Type);
991 Result_Small : Ureal;
992 Frac : Ureal;
993 Frac_Num : Uint;
994 Frac_Den : Uint;
995 Lit_Int : Node_Id;
997 begin
998 -- Rounding is required if the result is integral
1000 if Is_Integer_Type (Result_Type) then
1001 Set_Rounded_Result (N);
1002 end if;
1004 -- Get result small. If the result is an integer, treat it as though
1005 -- it had a small of 1.0, all other processing is identical.
1007 if Is_Integer_Type (Result_Type) then
1008 Result_Small := Ureal_1;
1009 else
1010 Result_Small := Small_Value (Result_Type);
1011 end if;
1013 -- Get small ratio
1015 Frac := Left_Small / (Right_Small * Result_Small);
1016 Frac_Num := Norm_Num (Frac);
1017 Frac_Den := Norm_Den (Frac);
1019 -- If the fraction is an integer, then we get the result by multiplying
1020 -- the left operand by the integer, and then dividing by the right
1021 -- operand (the order is important, if we did the divide first, we
1022 -- would lose precision).
1024 if Frac_Den = 1 then
1025 Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1027 if Present (Lit_Int) then
1028 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
1029 return;
1030 end if;
1032 -- If the fraction is the reciprocal of an integer, then we get the
1033 -- result by first multiplying the divisor by the integer, and then
1034 -- doing the division with the adjusted divisor.
1036 -- Note: this is much better than doing two divisions: multiplications
1037 -- are much faster than divisions (and certainly faster than rounded
1038 -- divisions), and we don't get inaccuracies from double rounding.
1040 elsif Frac_Num = 1 then
1041 Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1043 if Present (Lit_Int) then
1044 Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
1045 return;
1046 end if;
1047 end if;
1049 -- If we fall through, we use floating-point to compute the result
1051 Set_Result (N,
1052 Build_Multiply (N,
1053 Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
1054 Real_Literal (N, Frac)));
1055 end Do_Divide_Fixed_Fixed;
1057 -------------------------------
1058 -- Do_Divide_Fixed_Universal --
1059 -------------------------------
1061 -- We have:
1063 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
1064 -- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
1066 -- The result is required to be in the perfect result set if the literal
1067 -- can be factored so that the resulting small ratio is an integer or the
1068 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1069 -- analysis of these RM requirements:
1071 -- We must factor the literal, finding an integer K:
1073 -- Lit_Value = K * Right_Small
1074 -- Right_Small = Lit_Value / K
1076 -- such that the small ratio:
1078 -- Left_Small
1079 -- ------------------------------
1080 -- (Lit_Value / K) * Result_Small
1082 -- Left_Small
1083 -- = ------------------------ * K
1084 -- Lit_Value * Result_Small
1086 -- is an integer or the reciprocal of an integer, and for
1087 -- implementation efficiency we need the smallest such K.
1089 -- First we reduce the left fraction to lowest terms
1091 -- If numerator = 1, then for K = 1, the small ratio is the reciprocal
1092 -- of an integer, and this is clearly the minimum K case, so set K = 1,
1093 -- Right_Small = Lit_Value.
1095 -- If numerator > 1, then set K to the denominator of the fraction so
1096 -- that the resulting small ratio is an integer (the numerator value).
1098 procedure Do_Divide_Fixed_Universal (N : Node_Id) is
1099 Left : constant Node_Id := Left_Opnd (N);
1100 Right : constant Node_Id := Right_Opnd (N);
1101 Left_Type : constant Entity_Id := Etype (Left);
1102 Result_Type : constant Entity_Id := Etype (N);
1103 Left_Small : constant Ureal := Small_Value (Left_Type);
1104 Lit_Value : constant Ureal := Realval (Right);
1106 Result_Small : Ureal;
1107 Frac : Ureal;
1108 Frac_Num : Uint;
1109 Frac_Den : Uint;
1110 Lit_K : Node_Id;
1111 Lit_Int : Node_Id;
1113 begin
1114 -- Get result small. If the result is an integer, treat it as though
1115 -- it had a small of 1.0, all other processing is identical.
1117 if Is_Integer_Type (Result_Type) then
1118 Result_Small := Ureal_1;
1119 else
1120 Result_Small := Small_Value (Result_Type);
1121 end if;
1123 -- Determine if literal can be rewritten successfully
1125 Frac := Left_Small / (Lit_Value * Result_Small);
1126 Frac_Num := Norm_Num (Frac);
1127 Frac_Den := Norm_Den (Frac);
1129 -- Case where fraction is the reciprocal of an integer (K = 1, integer
1130 -- = denominator). If this integer is not too large, this is the case
1131 -- where the result can be obtained by dividing by this integer value.
1133 if Frac_Num = 1 then
1134 Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1136 if Present (Lit_Int) then
1137 Set_Result (N, Build_Divide (N, Left, Lit_Int));
1138 return;
1139 end if;
1141 -- Case where we choose K to make fraction an integer (K = denominator
1142 -- of fraction, integer = numerator of fraction). If both K and the
1143 -- numerator are small enough, this is the case where the result can
1144 -- be obtained by first multiplying by the integer value and then
1145 -- dividing by K (the order is important, if we divided first, we
1146 -- would lose precision).
1148 else
1149 Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1150 Lit_K := Integer_Literal (N, Frac_Den, False);
1152 if Present (Lit_Int) and then Present (Lit_K) then
1153 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
1154 return;
1155 end if;
1156 end if;
1158 -- Fall through if the literal cannot be successfully rewritten, or if
1159 -- the small ratio is out of range of integer arithmetic. In the former
1160 -- case it is fine to use floating-point to get the close result set,
1161 -- and in the latter case, it means that the result is zero or raises
1162 -- constraint error, and we can do that accurately in floating-point.
1164 -- If we end up using floating-point, then we take the right integer
1165 -- to be one, and its small to be the value of the original right real
1166 -- literal. That way, we need only one floating-point multiplication.
1168 Set_Result (N,
1169 Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1170 end Do_Divide_Fixed_Universal;
1172 -------------------------------
1173 -- Do_Divide_Universal_Fixed --
1174 -------------------------------
1176 -- We have:
1178 -- (Result_Value * Result_Small) =
1179 -- Lit_Value / (Right_Value * Right_Small)
1180 -- Result_Value =
1181 -- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
1183 -- The result is required to be in the perfect result set if the literal
1184 -- can be factored so that the resulting small ratio is an integer or the
1185 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1186 -- analysis of these RM requirements:
1188 -- We must factor the literal, finding an integer K:
1190 -- Lit_Value = K * Left_Small
1191 -- Left_Small = Lit_Value / K
1193 -- such that the small ratio:
1195 -- (Lit_Value / K)
1196 -- --------------------------
1197 -- Right_Small * Result_Small
1199 -- Lit_Value 1
1200 -- = -------------------------- * -
1201 -- Right_Small * Result_Small K
1203 -- is an integer or the reciprocal of an integer, and for
1204 -- implementation efficiency we need the smallest such K.
1206 -- First we reduce the left fraction to lowest terms
1208 -- If denominator = 1, then for K = 1, the small ratio is an integer
1209 -- (the numerator) and this is clearly the minimum K case, so set K = 1,
1210 -- and Left_Small = Lit_Value.
1212 -- If denominator > 1, then set K to the numerator of the fraction so
1213 -- that the resulting small ratio is the reciprocal of an integer (the
1214 -- numerator value).
1216 procedure Do_Divide_Universal_Fixed (N : Node_Id) is
1217 Left : constant Node_Id := Left_Opnd (N);
1218 Right : constant Node_Id := Right_Opnd (N);
1219 Right_Type : constant Entity_Id := Etype (Right);
1220 Result_Type : constant Entity_Id := Etype (N);
1221 Right_Small : constant Ureal := Small_Value (Right_Type);
1222 Lit_Value : constant Ureal := Realval (Left);
1224 Result_Small : Ureal;
1225 Frac : Ureal;
1226 Frac_Num : Uint;
1227 Frac_Den : Uint;
1228 Lit_K : Node_Id;
1229 Lit_Int : Node_Id;
1231 begin
1232 -- Get result small. If the result is an integer, treat it as though
1233 -- it had a small of 1.0, all other processing is identical.
1235 if Is_Integer_Type (Result_Type) then
1236 Result_Small := Ureal_1;
1237 else
1238 Result_Small := Small_Value (Result_Type);
1239 end if;
1241 -- Determine if literal can be rewritten successfully
1243 Frac := Lit_Value / (Right_Small * Result_Small);
1244 Frac_Num := Norm_Num (Frac);
1245 Frac_Den := Norm_Den (Frac);
1247 -- Case where fraction is an integer (K = 1, integer = numerator). If
1248 -- this integer is not too large, this is the case where the result
1249 -- can be obtained by dividing this integer by the right operand.
1251 if Frac_Den = 1 then
1252 Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1254 if Present (Lit_Int) then
1255 Set_Result (N, Build_Divide (N, Lit_Int, Right));
1256 return;
1257 end if;
1259 -- Case where we choose K to make the fraction the reciprocal of an
1260 -- integer (K = numerator of fraction, integer = numerator of fraction).
1261 -- If both K and the integer are small enough, this is the case where
1262 -- the result can be obtained by multiplying the right operand by K
1263 -- and then dividing by the integer value. The order of the operations
1264 -- is important (if we divided first, we would lose precision).
1266 else
1267 Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1268 Lit_K := Integer_Literal (N, Frac_Num, False);
1270 if Present (Lit_Int) and then Present (Lit_K) then
1271 Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
1272 return;
1273 end if;
1274 end if;
1276 -- Fall through if the literal cannot be successfully rewritten, or if
1277 -- the small ratio is out of range of integer arithmetic. In the former
1278 -- case it is fine to use floating-point to get the close result set,
1279 -- and in the latter case, it means that the result is zero or raises
1280 -- constraint error, and we can do that accurately in floating-point.
1282 -- If we end up using floating-point, then we take the right integer
1283 -- to be one, and its small to be the value of the original right real
1284 -- literal. That way, we need only one floating-point division.
1286 Set_Result (N,
1287 Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
1288 end Do_Divide_Universal_Fixed;
1290 -----------------------------
1291 -- Do_Multiply_Fixed_Fixed --
1292 -----------------------------
1294 -- We have:
1296 -- (Result_Value * Result_Small) =
1297 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
1299 -- Result_Value = (Left_Value * Right_Value) *
1300 -- (Left_Small * Right_Small) / Result_Small;
1302 -- we can do the operation in integer arithmetic if this fraction is an
1303 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
1304 -- Otherwise the result is in the close result set and our approach is to
1305 -- use floating-point to compute this close result.
1307 procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
1308 Left : constant Node_Id := Left_Opnd (N);
1309 Right : constant Node_Id := Right_Opnd (N);
1311 Left_Type : constant Entity_Id := Etype (Left);
1312 Right_Type : constant Entity_Id := Etype (Right);
1313 Result_Type : constant Entity_Id := Etype (N);
1314 Right_Small : constant Ureal := Small_Value (Right_Type);
1315 Left_Small : constant Ureal := Small_Value (Left_Type);
1317 Result_Small : Ureal;
1318 Frac : Ureal;
1319 Frac_Num : Uint;
1320 Frac_Den : Uint;
1321 Lit_Int : Node_Id;
1323 begin
1324 -- Get result small. If the result is an integer, treat it as though
1325 -- it had a small of 1.0, all other processing is identical.
1327 if Is_Integer_Type (Result_Type) then
1328 Result_Small := Ureal_1;
1329 else
1330 Result_Small := Small_Value (Result_Type);
1331 end if;
1333 -- Get small ratio
1335 Frac := (Left_Small * Right_Small) / Result_Small;
1336 Frac_Num := Norm_Num (Frac);
1337 Frac_Den := Norm_Den (Frac);
1339 -- If the fraction is an integer, then we get the result by multiplying
1340 -- the operands, and then multiplying the result by the integer value.
1342 if Frac_Den = 1 then
1343 Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1345 if Present (Lit_Int) then
1346 Set_Result (N,
1347 Build_Multiply (N, Build_Multiply (N, Left, Right),
1348 Lit_Int));
1349 return;
1350 end if;
1352 -- If the fraction is the reciprocal of an integer, then we get the
1353 -- result by multiplying the operands, and then dividing the result by
1354 -- the integer value. The order of the operations is important, if we
1355 -- divided first, we would lose precision.
1357 elsif Frac_Num = 1 then
1358 Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1360 if Present (Lit_Int) then
1361 Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
1362 return;
1363 end if;
1364 end if;
1366 -- If we fall through, we use floating-point to compute the result
1368 Set_Result (N,
1369 Build_Multiply (N,
1370 Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
1371 Real_Literal (N, Frac)));
1372 end Do_Multiply_Fixed_Fixed;
1374 ---------------------------------
1375 -- Do_Multiply_Fixed_Universal --
1376 ---------------------------------
1378 -- We have:
1380 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
1381 -- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
1383 -- The result is required to be in the perfect result set if the literal
1384 -- can be factored so that the resulting small ratio is an integer or the
1385 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1386 -- analysis of these RM requirements:
1388 -- We must factor the literal, finding an integer K:
1390 -- Lit_Value = K * Right_Small
1391 -- Right_Small = Lit_Value / K
1393 -- such that the small ratio:
1395 -- Left_Small * (Lit_Value / K)
1396 -- ----------------------------
1397 -- Result_Small
1399 -- Left_Small * Lit_Value 1
1400 -- = ---------------------- * -
1401 -- Result_Small K
1403 -- is an integer or the reciprocal of an integer, and for
1404 -- implementation efficiency we need the smallest such K.
1406 -- First we reduce the left fraction to lowest terms
1408 -- If denominator = 1, then for K = 1, the small ratio is an integer, and
1409 -- this is clearly the minimum K case, so set
1411 -- K = 1, Right_Small = Lit_Value
1413 -- If denominator > 1, then set K to the numerator of the fraction, so
1414 -- that the resulting small ratio is the reciprocal of the integer (the
1415 -- denominator value).
1417 procedure Do_Multiply_Fixed_Universal
1418 (N : Node_Id;
1419 Left, Right : Node_Id)
1421 Left_Type : constant Entity_Id := Etype (Left);
1422 Result_Type : constant Entity_Id := Etype (N);
1423 Left_Small : constant Ureal := Small_Value (Left_Type);
1424 Lit_Value : constant Ureal := Realval (Right);
1426 Result_Small : Ureal;
1427 Frac : Ureal;
1428 Frac_Num : Uint;
1429 Frac_Den : Uint;
1430 Lit_K : Node_Id;
1431 Lit_Int : Node_Id;
1433 begin
1434 -- Get result small. If the result is an integer, treat it as though
1435 -- it had a small of 1.0, all other processing is identical.
1437 if Is_Integer_Type (Result_Type) then
1438 Result_Small := Ureal_1;
1439 else
1440 Result_Small := Small_Value (Result_Type);
1441 end if;
1443 -- Determine if literal can be rewritten successfully
1445 Frac := (Left_Small * Lit_Value) / Result_Small;
1446 Frac_Num := Norm_Num (Frac);
1447 Frac_Den := Norm_Den (Frac);
1449 -- Case where fraction is an integer (K = 1, integer = numerator). If
1450 -- this integer is not too large, this is the case where the result can
1451 -- be obtained by multiplying by this integer value.
1453 if Frac_Den = 1 then
1454 Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1456 if Present (Lit_Int) then
1457 Set_Result (N, Build_Multiply (N, Left, Lit_Int));
1458 return;
1459 end if;
1461 -- Case where we choose K to make fraction the reciprocal of an integer
1462 -- (K = numerator of fraction, integer = denominator of fraction). If
1463 -- both K and the denominator are small enough, this is the case where
1464 -- the result can be obtained by first multiplying by K, and then
1465 -- dividing by the integer value.
1467 else
1468 Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1469 Lit_K := Integer_Literal (N, Frac_Num);
1471 if Present (Lit_Int) and then Present (Lit_K) then
1472 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
1473 return;
1474 end if;
1475 end if;
1477 -- Fall through if the literal cannot be successfully rewritten, or if
1478 -- the small ratio is out of range of integer arithmetic. In the former
1479 -- case it is fine to use floating-point to get the close result set,
1480 -- and in the latter case, it means that the result is zero or raises
1481 -- constraint error, and we can do that accurately in floating-point.
1483 -- If we end up using floating-point, then we take the right integer
1484 -- to be one, and its small to be the value of the original right real
1485 -- literal. That way, we need only one floating-point multiplication.
1487 Set_Result (N,
1488 Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1489 end Do_Multiply_Fixed_Universal;
1491 ---------------------------------
1492 -- Expand_Convert_Fixed_Static --
1493 ---------------------------------
1495 procedure Expand_Convert_Fixed_Static (N : Node_Id) is
1496 begin
1497 Rewrite (N,
1498 Convert_To (Etype (N),
1499 Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
1500 Analyze_And_Resolve (N);
1501 end Expand_Convert_Fixed_Static;
1503 -----------------------------------
1504 -- Expand_Convert_Fixed_To_Fixed --
1505 -----------------------------------
1507 -- We have:
1509 -- Result_Value * Result_Small = Source_Value * Source_Small
1510 -- Result_Value = Source_Value * (Source_Small / Result_Small)
1512 -- If the small ratio (Source_Small / Result_Small) is a sufficiently small
1513 -- integer, then the perfect result set is obtained by a single integer
1514 -- multiplication.
1516 -- If the small ratio is the reciprocal of a sufficiently small integer,
1517 -- then the perfect result set is obtained by a single integer division.
1519 -- In other cases, we obtain the close result set by calculating the
1520 -- result in floating-point.
1522 procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
1523 Rng_Check : constant Boolean := Do_Range_Check (N);
1524 Expr : constant Node_Id := Expression (N);
1525 Result_Type : constant Entity_Id := Etype (N);
1526 Source_Type : constant Entity_Id := Etype (Expr);
1527 Small_Ratio : Ureal;
1528 Ratio_Num : Uint;
1529 Ratio_Den : Uint;
1530 Lit : Node_Id;
1532 begin
1533 if Is_OK_Static_Expression (Expr) then
1534 Expand_Convert_Fixed_Static (N);
1535 return;
1536 end if;
1538 Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
1539 Ratio_Num := Norm_Num (Small_Ratio);
1540 Ratio_Den := Norm_Den (Small_Ratio);
1542 if Ratio_Den = 1 then
1543 if Ratio_Num = 1 then
1544 Set_Result (N, Expr);
1545 return;
1547 else
1548 Lit := Integer_Literal (N, Ratio_Num);
1550 if Present (Lit) then
1551 Set_Result (N, Build_Multiply (N, Expr, Lit));
1552 return;
1553 end if;
1554 end if;
1556 elsif Ratio_Num = 1 then
1557 Lit := Integer_Literal (N, Ratio_Den);
1559 if Present (Lit) then
1560 Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1561 return;
1562 end if;
1563 end if;
1565 -- Fall through to use floating-point for the close result set case
1566 -- either as a result of the small ratio not being an integer or the
1567 -- reciprocal of an integer, or if the integer is out of range.
1569 Set_Result (N,
1570 Build_Multiply (N,
1571 Fpt_Value (Expr),
1572 Real_Literal (N, Small_Ratio)),
1573 Rng_Check);
1574 end Expand_Convert_Fixed_To_Fixed;
1576 -----------------------------------
1577 -- Expand_Convert_Fixed_To_Float --
1578 -----------------------------------
1580 -- If the small of the fixed type is 1.0, then we simply convert the
1581 -- integer value directly to the target floating-point type, otherwise
1582 -- we first have to multiply by the small, in Universal_Real, and then
1583 -- convert the result to the target floating-point type.
1585 procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
1586 Rng_Check : constant Boolean := Do_Range_Check (N);
1587 Expr : constant Node_Id := Expression (N);
1588 Source_Type : constant Entity_Id := Etype (Expr);
1589 Small : constant Ureal := Small_Value (Source_Type);
1591 begin
1592 if Is_OK_Static_Expression (Expr) then
1593 Expand_Convert_Fixed_Static (N);
1594 return;
1595 end if;
1597 if Small = Ureal_1 then
1598 Set_Result (N, Expr);
1600 else
1601 Set_Result (N,
1602 Build_Multiply (N,
1603 Fpt_Value (Expr),
1604 Real_Literal (N, Small)),
1605 Rng_Check);
1606 end if;
1607 end Expand_Convert_Fixed_To_Float;
1609 -------------------------------------
1610 -- Expand_Convert_Fixed_To_Integer --
1611 -------------------------------------
1613 -- We have:
1615 -- Result_Value = Source_Value * Source_Small
1617 -- If the small value is a sufficiently small integer, then the perfect
1618 -- result set is obtained by a single integer multiplication.
1620 -- If the small value is the reciprocal of a sufficiently small integer,
1621 -- then the perfect result set is obtained by a single integer division.
1623 -- In other cases, we obtain the close result set by calculating the
1624 -- result in floating-point.
1626 procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
1627 Rng_Check : constant Boolean := Do_Range_Check (N);
1628 Expr : constant Node_Id := Expression (N);
1629 Source_Type : constant Entity_Id := Etype (Expr);
1630 Small : constant Ureal := Small_Value (Source_Type);
1631 Small_Num : constant Uint := Norm_Num (Small);
1632 Small_Den : constant Uint := Norm_Den (Small);
1633 Lit : Node_Id;
1635 begin
1636 if Is_OK_Static_Expression (Expr) then
1637 Expand_Convert_Fixed_Static (N);
1638 return;
1639 end if;
1641 if Small_Den = 1 then
1642 Lit := Integer_Literal (N, Small_Num);
1644 if Present (Lit) then
1645 Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1646 return;
1647 end if;
1649 elsif Small_Num = 1 then
1650 Lit := Integer_Literal (N, Small_Den);
1652 if Present (Lit) then
1653 Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1654 return;
1655 end if;
1656 end if;
1658 -- Fall through to use floating-point for the close result set case
1659 -- either as a result of the small value not being an integer or the
1660 -- reciprocal of an integer, or if the integer is out of range.
1662 Set_Result (N,
1663 Build_Multiply (N,
1664 Fpt_Value (Expr),
1665 Real_Literal (N, Small)),
1666 Rng_Check);
1667 end Expand_Convert_Fixed_To_Integer;
1669 -----------------------------------
1670 -- Expand_Convert_Float_To_Fixed --
1671 -----------------------------------
1673 -- We have
1675 -- Result_Value * Result_Small = Operand_Value
1677 -- so compute:
1679 -- Result_Value = Operand_Value * (1.0 / Result_Small)
1681 -- We do the small scaling in floating-point, and we do a multiplication
1682 -- rather than a division, since it is accurate enough for the perfect
1683 -- result cases, and faster.
1685 procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
1686 Rng_Check : constant Boolean := Do_Range_Check (N);
1687 Expr : constant Node_Id := Expression (N);
1688 Result_Type : constant Entity_Id := Etype (N);
1689 Small : constant Ureal := Small_Value (Result_Type);
1691 begin
1692 -- Optimize small = 1, where we can avoid the multiply completely
1694 if Small = Ureal_1 then
1695 Set_Result (N, Expr, Rng_Check);
1697 -- Normal case where multiply is required
1699 else
1700 Set_Result (N,
1701 Build_Multiply (N,
1702 Fpt_Value (Expr),
1703 Real_Literal (N, Ureal_1 / Small)),
1704 Rng_Check);
1705 end if;
1706 end Expand_Convert_Float_To_Fixed;
1708 -------------------------------------
1709 -- Expand_Convert_Integer_To_Fixed --
1710 -------------------------------------
1712 -- We have
1714 -- Result_Value * Result_Small = Operand_Value
1715 -- Result_Value = Operand_Value / Result_Small
1717 -- If the small value is a sufficiently small integer, then the perfect
1718 -- result set is obtained by a single integer division.
1720 -- If the small value is the reciprocal of a sufficiently small integer,
1721 -- the perfect result set is obtained by a single integer multiplication.
1723 -- In other cases, we obtain the close result set by calculating the
1724 -- result in floating-point using a multiplication by the reciprocal
1725 -- of the Result_Small.
1727 procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
1728 Rng_Check : constant Boolean := Do_Range_Check (N);
1729 Expr : constant Node_Id := Expression (N);
1730 Result_Type : constant Entity_Id := Etype (N);
1731 Small : constant Ureal := Small_Value (Result_Type);
1732 Small_Num : constant Uint := Norm_Num (Small);
1733 Small_Den : constant Uint := Norm_Den (Small);
1734 Lit : Node_Id;
1736 begin
1737 if Small_Den = 1 then
1738 Lit := Integer_Literal (N, Small_Num);
1740 if Present (Lit) then
1741 Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1742 return;
1743 end if;
1745 elsif Small_Num = 1 then
1746 Lit := Integer_Literal (N, Small_Den);
1748 if Present (Lit) then
1749 Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1750 return;
1751 end if;
1752 end if;
1754 -- Fall through to use floating-point for the close result set case
1755 -- either as a result of the small value not being an integer or the
1756 -- reciprocal of an integer, or if the integer is out of range.
1758 Set_Result (N,
1759 Build_Multiply (N,
1760 Fpt_Value (Expr),
1761 Real_Literal (N, Ureal_1 / Small)),
1762 Rng_Check);
1763 end Expand_Convert_Integer_To_Fixed;
1765 --------------------------------
1766 -- Expand_Decimal_Divide_Call --
1767 --------------------------------
1769 -- We have four operands
1771 -- Dividend
1772 -- Divisor
1773 -- Quotient
1774 -- Remainder
1776 -- All of which are decimal types, and which thus have associated
1777 -- decimal scales.
1779 -- Computing the quotient is a similar problem to that faced by the
1780 -- normal fixed-point division, except that it is simpler, because
1781 -- we always have compatible smalls.
1783 -- Quotient = (Dividend / Divisor) * 10**q
1785 -- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
1786 -- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
1788 -- For q >= 0, we compute
1790 -- Numerator := Dividend * 10 ** q
1791 -- Denominator := Divisor
1792 -- Quotient := Numerator / Denominator
1794 -- For q < 0, we compute
1796 -- Numerator := Dividend
1797 -- Denominator := Divisor * 10 ** q
1798 -- Quotient := Numerator / Denominator
1800 -- Both these divisions are done in truncated mode, and the remainder
1801 -- from these divisions is used to compute the result Remainder. This
1802 -- remainder has the effective scale of the numerator of the division,
1804 -- For q >= 0, the remainder scale is Dividend'Scale + q
1805 -- For q < 0, the remainder scale is Dividend'Scale
1807 -- The result Remainder is then computed by a normal truncating decimal
1808 -- conversion from this scale to the scale of the remainder, i.e. by a
1809 -- division or multiplication by the appropriate power of 10.
1811 procedure Expand_Decimal_Divide_Call (N : Node_Id) is
1812 Loc : constant Source_Ptr := Sloc (N);
1814 Dividend : Node_Id := First_Actual (N);
1815 Divisor : Node_Id := Next_Actual (Dividend);
1816 Quotient : Node_Id := Next_Actual (Divisor);
1817 Remainder : Node_Id := Next_Actual (Quotient);
1819 Dividend_Type : constant Entity_Id := Etype (Dividend);
1820 Divisor_Type : constant Entity_Id := Etype (Divisor);
1821 Quotient_Type : constant Entity_Id := Etype (Quotient);
1822 Remainder_Type : constant Entity_Id := Etype (Remainder);
1824 Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
1825 Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
1826 Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
1827 Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
1829 Q : Uint;
1830 Numerator_Scale : Uint;
1831 Stmts : List_Id;
1832 Qnn : Entity_Id;
1833 Rnn : Entity_Id;
1834 Computed_Remainder : Node_Id;
1835 Adjusted_Remainder : Node_Id;
1836 Scale_Adjust : Uint;
1838 begin
1839 -- Relocate the operands, since they are now list elements, and we
1840 -- need to reference them separately as operands in the expanded code.
1842 Dividend := Relocate_Node (Dividend);
1843 Divisor := Relocate_Node (Divisor);
1844 Quotient := Relocate_Node (Quotient);
1845 Remainder := Relocate_Node (Remainder);
1847 -- Now compute Q, the adjustment scale
1849 Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
1851 -- If Q is non-negative then we need a scaled divide
1853 if Q >= 0 then
1854 Build_Scaled_Divide_Code
1856 Dividend,
1857 Integer_Literal (N, Uint_10 ** Q),
1858 Divisor,
1859 Qnn, Rnn, Stmts);
1861 Numerator_Scale := Dividend_Scale + Q;
1863 -- If Q is negative, then we need a double divide
1865 else
1866 Build_Double_Divide_Code
1868 Dividend,
1869 Divisor,
1870 Integer_Literal (N, Uint_10 ** (-Q)),
1871 Qnn, Rnn, Stmts);
1873 Numerator_Scale := Dividend_Scale;
1874 end if;
1876 -- Add statement to set quotient value
1878 -- Quotient := quotient-type!(Qnn);
1880 Append_To (Stmts,
1881 Make_Assignment_Statement (Loc,
1882 Name => Quotient,
1883 Expression =>
1884 Unchecked_Convert_To (Quotient_Type,
1885 Build_Conversion (N, Quotient_Type,
1886 New_Occurrence_Of (Qnn, Loc)))));
1888 -- Now we need to deal with computing and setting the remainder. The
1889 -- scale of the remainder is in Numerator_Scale, and the desired
1890 -- scale is the scale of the given Remainder argument. There are
1891 -- three cases:
1893 -- Numerator_Scale > Remainder_Scale
1895 -- in this case, there are extra digits in the computed remainder
1896 -- which must be eliminated by an extra division:
1898 -- computed-remainder := Numerator rem Denominator
1899 -- scale_adjust = Numerator_Scale - Remainder_Scale
1900 -- adjusted-remainder := computed-remainder / 10 ** scale_adjust
1902 -- Numerator_Scale = Remainder_Scale
1904 -- in this case, the we have the remainder we need
1906 -- computed-remainder := Numerator rem Denominator
1907 -- adjusted-remainder := computed-remainder
1909 -- Numerator_Scale < Remainder_Scale
1911 -- in this case, we have insufficient digits in the computed
1912 -- remainder, which must be eliminated by an extra multiply
1914 -- computed-remainder := Numerator rem Denominator
1915 -- scale_adjust = Remainder_Scale - Numerator_Scale
1916 -- adjusted-remainder := computed-remainder * 10 ** scale_adjust
1918 -- Finally we assign the adjusted-remainder to the result Remainder
1919 -- with conversions to get the proper fixed-point type representation.
1921 Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
1923 if Numerator_Scale > Remainder_Scale then
1924 Scale_Adjust := Numerator_Scale - Remainder_Scale;
1925 Adjusted_Remainder :=
1926 Build_Divide
1927 (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1929 elsif Numerator_Scale = Remainder_Scale then
1930 Adjusted_Remainder := Computed_Remainder;
1932 else -- Numerator_Scale < Remainder_Scale
1933 Scale_Adjust := Remainder_Scale - Numerator_Scale;
1934 Adjusted_Remainder :=
1935 Build_Multiply
1936 (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1937 end if;
1939 -- Assignment of remainder result
1941 Append_To (Stmts,
1942 Make_Assignment_Statement (Loc,
1943 Name => Remainder,
1944 Expression =>
1945 Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
1947 -- Final step is to rewrite the call with a block containing the
1948 -- above sequence of constructed statements for the divide operation.
1950 Rewrite (N,
1951 Make_Block_Statement (Loc,
1952 Handled_Statement_Sequence =>
1953 Make_Handled_Sequence_Of_Statements (Loc,
1954 Statements => Stmts)));
1956 Analyze (N);
1957 end Expand_Decimal_Divide_Call;
1959 -----------------------------------------------
1960 -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
1961 -----------------------------------------------
1963 procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
1964 Left : constant Node_Id := Left_Opnd (N);
1965 Right : constant Node_Id := Right_Opnd (N);
1967 begin
1968 -- Suppress expansion of a fixed-by-fixed division if the
1969 -- operation is supported directly by the target.
1971 if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
1972 return;
1973 end if;
1975 if Etype (Left) = Universal_Real then
1976 Do_Divide_Universal_Fixed (N);
1978 elsif Etype (Right) = Universal_Real then
1979 Do_Divide_Fixed_Universal (N);
1981 else
1982 Do_Divide_Fixed_Fixed (N);
1983 end if;
1984 end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
1986 -----------------------------------------------
1987 -- Expand_Divide_Fixed_By_Fixed_Giving_Float --
1988 -----------------------------------------------
1990 -- The division is done in Universal_Real, and the result is multiplied
1991 -- by the small ratio, which is Small (Right) / Small (Left). Special
1992 -- treatment is required for universal operands, which represent their
1993 -- own value and do not require conversion.
1995 procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
1996 Left : constant Node_Id := Left_Opnd (N);
1997 Right : constant Node_Id := Right_Opnd (N);
1999 Left_Type : constant Entity_Id := Etype (Left);
2000 Right_Type : constant Entity_Id := Etype (Right);
2002 begin
2003 -- Case of left operand is universal real, the result we want is:
2005 -- Left_Value / (Right_Value * Right_Small)
2007 -- so we compute this as:
2009 -- (Left_Value / Right_Small) / Right_Value
2011 if Left_Type = Universal_Real then
2012 Set_Result (N,
2013 Build_Divide (N,
2014 Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
2015 Fpt_Value (Right)));
2017 -- Case of right operand is universal real, the result we want is
2019 -- (Left_Value * Left_Small) / Right_Value
2021 -- so we compute this as:
2023 -- Left_Value * (Left_Small / Right_Value)
2025 -- Note we invert to a multiplication since usually floating-point
2026 -- multiplication is much faster than floating-point division.
2028 elsif Right_Type = Universal_Real then
2029 Set_Result (N,
2030 Build_Multiply (N,
2031 Fpt_Value (Left),
2032 Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
2034 -- Both operands are fixed, so the value we want is
2036 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
2038 -- which we compute as:
2040 -- (Left_Value / Right_Value) * (Left_Small / Right_Small)
2042 else
2043 Set_Result (N,
2044 Build_Multiply (N,
2045 Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
2046 Real_Literal (N,
2047 Small_Value (Left_Type) / Small_Value (Right_Type))));
2048 end if;
2049 end Expand_Divide_Fixed_By_Fixed_Giving_Float;
2051 -------------------------------------------------
2052 -- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
2053 -------------------------------------------------
2055 procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2056 Left : constant Node_Id := Left_Opnd (N);
2057 Right : constant Node_Id := Right_Opnd (N);
2058 begin
2059 if Etype (Left) = Universal_Real then
2060 Do_Divide_Universal_Fixed (N);
2061 elsif Etype (Right) = Universal_Real then
2062 Do_Divide_Fixed_Universal (N);
2063 else
2064 Do_Divide_Fixed_Fixed (N);
2065 end if;
2066 end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
2068 -------------------------------------------------
2069 -- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
2070 -------------------------------------------------
2072 -- Since the operand and result fixed-point type is the same, this is
2073 -- a straight divide by the right operand, the small can be ignored.
2075 procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2076 Left : constant Node_Id := Left_Opnd (N);
2077 Right : constant Node_Id := Right_Opnd (N);
2078 begin
2079 Set_Result (N, Build_Divide (N, Left, Right));
2080 end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
2082 -------------------------------------------------
2083 -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
2084 -------------------------------------------------
2086 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
2087 Left : constant Node_Id := Left_Opnd (N);
2088 Right : constant Node_Id := Right_Opnd (N);
2090 procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
2091 -- The operand may be a non-static universal value, such an
2092 -- exponentiation with a non-static exponent. In that case, treat
2093 -- as a fixed * fixed multiplication, and convert the argument to
2094 -- the target fixed type.
2096 ----------------------------------
2097 -- Rewrite_Non_Static_Universal --
2098 ----------------------------------
2100 procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
2101 Loc : constant Source_Ptr := Sloc (N);
2102 begin
2103 Rewrite (Opnd,
2104 Make_Type_Conversion (Loc,
2105 Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
2106 Expression => Expression (Opnd)));
2107 Analyze_And_Resolve (Opnd, Etype (N));
2108 end Rewrite_Non_Static_Universal;
2110 -- Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
2112 begin
2113 -- Suppress expansion of a fixed-by-fixed multiplication if the
2114 -- operation is supported directly by the target.
2116 if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
2117 return;
2118 end if;
2120 if Etype (Left) = Universal_Real then
2121 if Nkind (Left) = N_Real_Literal then
2122 Do_Multiply_Fixed_Universal (N, Right, Left);
2124 elsif Nkind (Left) = N_Type_Conversion then
2125 Rewrite_Non_Static_Universal (Left);
2126 Do_Multiply_Fixed_Fixed (N);
2127 end if;
2129 elsif Etype (Right) = Universal_Real then
2130 if Nkind (Right) = N_Real_Literal then
2131 Do_Multiply_Fixed_Universal (N, Left, Right);
2133 elsif Nkind (Right) = N_Type_Conversion then
2134 Rewrite_Non_Static_Universal (Right);
2135 Do_Multiply_Fixed_Fixed (N);
2136 end if;
2138 else
2139 Do_Multiply_Fixed_Fixed (N);
2140 end if;
2141 end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
2143 -------------------------------------------------
2144 -- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
2145 -------------------------------------------------
2147 -- The multiply is done in Universal_Real, and the result is multiplied
2148 -- by the adjustment for the smalls which is Small (Right) * Small (Left).
2149 -- Special treatment is required for universal operands.
2151 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2152 Left : constant Node_Id := Left_Opnd (N);
2153 Right : constant Node_Id := Right_Opnd (N);
2155 Left_Type : constant Entity_Id := Etype (Left);
2156 Right_Type : constant Entity_Id := Etype (Right);
2158 begin
2159 -- Case of left operand is universal real, the result we want is
2161 -- Left_Value * (Right_Value * Right_Small)
2163 -- so we compute this as:
2165 -- (Left_Value * Right_Small) * Right_Value;
2167 if Left_Type = Universal_Real then
2168 Set_Result (N,
2169 Build_Multiply (N,
2170 Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
2171 Fpt_Value (Right)));
2173 -- Case of right operand is universal real, the result we want is
2175 -- (Left_Value * Left_Small) * Right_Value
2177 -- so we compute this as:
2179 -- Left_Value * (Left_Small * Right_Value)
2181 elsif Right_Type = Universal_Real then
2182 Set_Result (N,
2183 Build_Multiply (N,
2184 Fpt_Value (Left),
2185 Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
2187 -- Both operands are fixed, so the value we want is
2189 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
2191 -- which we compute as:
2193 -- (Left_Value * Right_Value) * (Right_Small * Left_Small)
2195 else
2196 Set_Result (N,
2197 Build_Multiply (N,
2198 Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
2199 Real_Literal (N,
2200 Small_Value (Right_Type) * Small_Value (Left_Type))));
2201 end if;
2202 end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
2204 ---------------------------------------------------
2205 -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
2206 ---------------------------------------------------
2208 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2209 Left : constant Node_Id := Left_Opnd (N);
2210 Right : constant Node_Id := Right_Opnd (N);
2211 begin
2212 if Etype (Left) = Universal_Real then
2213 Do_Multiply_Fixed_Universal (N, Right, Left);
2214 elsif Etype (Right) = Universal_Real then
2215 Do_Multiply_Fixed_Universal (N, Left, Right);
2216 else
2217 Do_Multiply_Fixed_Fixed (N);
2218 end if;
2219 end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
2221 ---------------------------------------------------
2222 -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
2223 ---------------------------------------------------
2225 -- Since the operand and result fixed-point type is the same, this is
2226 -- a straight multiply by the right operand, the small can be ignored.
2228 procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2229 begin
2230 Set_Result (N,
2231 Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2232 end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
2234 ---------------------------------------------------
2235 -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
2236 ---------------------------------------------------
2238 -- Since the operand and result fixed-point type is the same, this is
2239 -- a straight multiply by the right operand, the small can be ignored.
2241 procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
2242 begin
2243 Set_Result (N,
2244 Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2245 end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
2247 ---------------
2248 -- Fpt_Value --
2249 ---------------
2251 function Fpt_Value (N : Node_Id) return Node_Id is
2252 Typ : constant Entity_Id := Etype (N);
2254 begin
2255 if Is_Integer_Type (Typ)
2256 or else Is_Floating_Point_Type (Typ)
2257 then
2258 return Build_Conversion (N, Universal_Real, N);
2260 -- Fixed-point case, must get integer value first
2262 else
2263 return Build_Conversion (N, Universal_Real, N);
2264 end if;
2265 end Fpt_Value;
2267 ---------------------
2268 -- Integer_Literal --
2269 ---------------------
2271 function Integer_Literal
2272 (N : Node_Id;
2273 V : Uint;
2274 Negative : Boolean := False) return Node_Id
2276 T : Entity_Id;
2277 L : Node_Id;
2279 begin
2280 if V < Uint_2 ** 7 then
2281 T := Standard_Integer_8;
2283 elsif V < Uint_2 ** 15 then
2284 T := Standard_Integer_16;
2286 elsif V < Uint_2 ** 31 then
2287 T := Standard_Integer_32;
2289 elsif V < Uint_2 ** 63 then
2290 T := Standard_Integer_64;
2292 else
2293 return Empty;
2294 end if;
2296 if Negative then
2297 L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
2298 else
2299 L := Make_Integer_Literal (Sloc (N), V);
2300 end if;
2302 -- Set type of result in case used elsewhere (see note at start)
2304 Set_Etype (L, T);
2305 Set_Is_Static_Expression (L);
2307 -- We really need to set Analyzed here because we may be creating a
2308 -- very strange beast, namely an integer literal typed as fixed-point
2309 -- and the analyzer won't like that. Probably we should allow the
2310 -- Treat_Fixed_As_Integer flag to appear on integer literal nodes
2311 -- and teach the analyzer how to handle them ???
2313 Set_Analyzed (L);
2314 return L;
2315 end Integer_Literal;
2317 ------------------
2318 -- Real_Literal --
2319 ------------------
2321 function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
2322 L : Node_Id;
2324 begin
2325 L := Make_Real_Literal (Sloc (N), V);
2327 -- Set type of result in case used elsewhere (see note at start)
2329 Set_Etype (L, Universal_Real);
2330 return L;
2331 end Real_Literal;
2333 ------------------------
2334 -- Rounded_Result_Set --
2335 ------------------------
2337 function Rounded_Result_Set (N : Node_Id) return Boolean is
2338 K : constant Node_Kind := Nkind (N);
2339 begin
2340 if (K = N_Type_Conversion or else
2341 K = N_Op_Divide or else
2342 K = N_Op_Multiply)
2343 and then
2344 (Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
2345 then
2346 return True;
2347 else
2348 return False;
2349 end if;
2350 end Rounded_Result_Set;
2352 ----------------
2353 -- Set_Result --
2354 ----------------
2356 procedure Set_Result
2357 (N : Node_Id;
2358 Expr : Node_Id;
2359 Rchk : Boolean := False)
2361 Cnode : Node_Id;
2363 Expr_Type : constant Entity_Id := Etype (Expr);
2364 Result_Type : constant Entity_Id := Etype (N);
2366 begin
2367 -- No conversion required if types match and no range check
2369 if Result_Type = Expr_Type and then not Rchk then
2370 Cnode := Expr;
2372 -- Else perform required conversion
2374 else
2375 Cnode := Build_Conversion (N, Result_Type, Expr, Rchk);
2376 end if;
2378 Rewrite (N, Cnode);
2379 Analyze_And_Resolve (N, Result_Type);
2380 end Set_Result;
2382 end Exp_Fixd;