1 /* Dead store elimination
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
29 #include "tree-ssa-alias.h"
30 #include "internal-fn.h"
31 #include "gimple-expr.h"
34 #include "gimple-iterator.h"
35 #include "gimple-ssa.h"
37 #include "tree-phinodes.h"
38 #include "ssa-iterators.h"
39 #include "stringpool.h"
40 #include "tree-ssanames.h"
43 #include "tree-pass.h"
46 #include "langhooks.h"
47 #include "tree-cfgcleanup.h"
49 /* This file implements dead store elimination.
51 A dead store is a store into a memory location which will later be
52 overwritten by another store without any intervening loads. In this
53 case the earlier store can be deleted.
55 In our SSA + virtual operand world we use immediate uses of virtual
56 operands to detect dead stores. If a store's virtual definition
57 is used precisely once by a later store to the same location which
58 post dominates the first store, then the first store is dead.
60 The single use of the store's virtual definition ensures that
61 there are no intervening aliased loads and the requirement that
62 the second load post dominate the first ensures that if the earlier
63 store executes, then the later stores will execute before the function
66 It may help to think of this as first moving the earlier store to
67 the point immediately before the later store. Again, the single
68 use of the virtual definition and the post-dominance relationship
69 ensure that such movement would be safe. Clearly if there are
70 back to back stores, then the second is redundant.
72 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
73 may also help in understanding this code since it discusses the
74 relationship between dead store and redundant load elimination. In
75 fact, they are the same transformation applied to different views of
79 /* Bitmap of blocks that have had EH statements cleaned. We should
80 remove their dead edges eventually. */
81 static bitmap need_eh_cleanup
;
83 static bool gate_dse (void);
84 static unsigned int tree_ssa_dse (void);
87 /* A helper of dse_optimize_stmt.
88 Given a GIMPLE_ASSIGN in STMT, find a candidate statement *USE_STMT that
89 may prove STMT to be dead.
90 Return TRUE if the above conditions are met, otherwise FALSE. */
93 dse_possible_dead_store_p (gimple stmt
, gimple
*use_stmt
)
100 /* Self-assignments are zombies. */
101 if (operand_equal_p (gimple_assign_rhs1 (stmt
), gimple_assign_lhs (stmt
), 0))
107 /* Find the first dominated statement that clobbers (part of) the
108 memory stmt stores to with no intermediate statement that may use
109 part of the memory stmt stores. That is, find a store that may
110 prove stmt to be a dead store. */
114 gimple use_stmt
, defvar_def
;
119 /* Limit stmt walking to be linear in the number of possibly
124 if (gimple_code (temp
) == GIMPLE_PHI
)
125 defvar
= PHI_RESULT (temp
);
127 defvar
= gimple_vdef (temp
);
130 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, defvar
)
134 /* If we ever reach our DSE candidate stmt again fail. We
135 cannot handle dead stores in loops. */
136 if (use_stmt
== stmt
)
139 BREAK_FROM_IMM_USE_STMT (ui
);
141 /* In simple cases we can look through PHI nodes, but we
142 have to be careful with loops and with memory references
143 containing operands that are also operands of PHI nodes.
144 See gcc.c-torture/execute/20051110-*.c. */
145 else if (gimple_code (use_stmt
) == GIMPLE_PHI
)
148 /* Make sure we are not in a loop latch block. */
149 || gimple_bb (stmt
) == gimple_bb (use_stmt
)
150 || dominated_by_p (CDI_DOMINATORS
,
151 gimple_bb (stmt
), gimple_bb (use_stmt
))
152 /* We can look through PHIs to regions post-dominating
153 the DSE candidate stmt. */
154 || !dominated_by_p (CDI_POST_DOMINATORS
,
155 gimple_bb (stmt
), gimple_bb (use_stmt
)))
158 BREAK_FROM_IMM_USE_STMT (ui
);
160 /* Do not consider the PHI as use if it dominates the
161 stmt defining the virtual operand we are processing,
162 we have processed it already in this case. */
163 if (gimple_bb (defvar_def
) != gimple_bb (use_stmt
)
164 && !dominated_by_p (CDI_DOMINATORS
,
165 gimple_bb (defvar_def
),
166 gimple_bb (use_stmt
)))
169 /* If the statement is a use the store is not dead. */
170 else if (ref_maybe_used_by_stmt_p (use_stmt
,
171 gimple_assign_lhs (stmt
)))
174 BREAK_FROM_IMM_USE_STMT (ui
);
176 /* If this is a store, remember it or bail out if we have
177 multiple ones (the will be in different CFG parts then). */
178 else if (gimple_vdef (use_stmt
))
183 BREAK_FROM_IMM_USE_STMT (ui
);
192 /* If we didn't find any definition this means the store is dead
193 if it isn't a store to global reachable memory. In this case
194 just pretend the stmt makes itself dead. Otherwise fail. */
197 if (stmt_may_clobber_global_p (stmt
))
204 /* We deliberately stop on clobbering statements and not only on
205 killing ones to make walking cheaper. Otherwise we can just
206 continue walking until both stores have equal reference trees. */
207 while (!stmt_may_clobber_ref_p (temp
, gimple_assign_lhs (stmt
)));
215 /* Attempt to eliminate dead stores in the statement referenced by BSI.
217 A dead store is a store into a memory location which will later be
218 overwritten by another store without any intervening loads. In this
219 case the earlier store can be deleted.
221 In our SSA + virtual operand world we use immediate uses of virtual
222 operands to detect dead stores. If a store's virtual definition
223 is used precisely once by a later store to the same location which
224 post dominates the first store, then the first store is dead. */
227 dse_optimize_stmt (gimple_stmt_iterator
*gsi
)
229 gimple stmt
= gsi_stmt (*gsi
);
231 /* If this statement has no virtual defs, then there is nothing
233 if (!gimple_vdef (stmt
))
236 /* We know we have virtual definitions. If this is a GIMPLE_ASSIGN
237 that's not also a function call, then record it into our table. */
238 if (is_gimple_call (stmt
) && gimple_call_fndecl (stmt
))
241 /* Don't return early on *this_2(D) ={v} {CLOBBER}. */
242 if (gimple_has_volatile_ops (stmt
)
243 && (!gimple_clobber_p (stmt
)
244 || TREE_CODE (gimple_assign_lhs (stmt
)) != MEM_REF
))
247 if (is_gimple_assign (stmt
))
251 if (!dse_possible_dead_store_p (stmt
, &use_stmt
))
254 /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
255 another clobber stmt. */
256 if (gimple_clobber_p (stmt
)
257 && !gimple_clobber_p (use_stmt
))
260 /* If we have precisely one immediate use at this point and the
261 stores are to the same memory location or there is a chain of
262 virtual uses from stmt and the stmt which stores to that same
263 memory location, then we may have found redundant store. */
264 if ((gimple_has_lhs (use_stmt
)
265 && (operand_equal_p (gimple_assign_lhs (stmt
),
266 gimple_get_lhs (use_stmt
), 0)))
267 || stmt_kills_ref_p (use_stmt
, gimple_assign_lhs (stmt
)))
271 /* If use_stmt is or might be a nop assignment, e.g. for
272 struct { ... } S a, b, *p; ...
275 b = a; b = *p; where p might be &b,
277 *p = a; *p = b; where p might be &b,
279 *p = *u; *p = *v; where p might be v, then USE_STMT
280 acts as a use as well as definition, so store in STMT
283 && ref_maybe_used_by_stmt_p (use_stmt
, gimple_assign_lhs (stmt
)))
286 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
288 fprintf (dump_file
, " Deleted dead store '");
289 print_gimple_stmt (dump_file
, gsi_stmt (*gsi
), dump_flags
, 0);
290 fprintf (dump_file
, "'\n");
293 /* Then we need to fix the operand of the consuming stmt. */
294 unlink_stmt_vdef (stmt
);
296 /* Remove the dead store. */
297 bb
= gimple_bb (stmt
);
298 if (gsi_remove (gsi
, true))
299 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
301 /* And release any SSA_NAMEs set in this statement back to the
308 class dse_dom_walker
: public dom_walker
311 dse_dom_walker (cdi_direction direction
) : dom_walker (direction
) {}
313 virtual void before_dom_children (basic_block
);
317 dse_dom_walker::before_dom_children (basic_block bb
)
319 gimple_stmt_iterator gsi
;
321 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
323 dse_optimize_stmt (&gsi
);
325 gsi
= gsi_last_bb (bb
);
331 /* Main entry point. */
336 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
338 renumber_gimple_stmt_uids ();
340 /* We might consider making this a property of each pass so that it
341 can be [re]computed on an as-needed basis. Particularly since
342 this pass could be seen as an extension of DCE which needs post
344 calculate_dominance_info (CDI_POST_DOMINATORS
);
345 calculate_dominance_info (CDI_DOMINATORS
);
347 /* Dead store elimination is fundamentally a walk of the post-dominator
348 tree and a backwards walk of statements within each block. */
349 dse_dom_walker (CDI_POST_DOMINATORS
).walk (cfun
->cfg
->x_exit_block_ptr
);
351 /* Removal of stores may make some EH edges dead. Purge such edges from
352 the CFG as needed. */
353 if (!bitmap_empty_p (need_eh_cleanup
))
355 gimple_purge_all_dead_eh_edges (need_eh_cleanup
);
359 BITMAP_FREE (need_eh_cleanup
);
361 /* For now, just wipe the post-dominator information. */
362 free_dominance_info (CDI_POST_DOMINATORS
);
369 return flag_tree_dse
!= 0;
374 const pass_data pass_data_dse
=
376 GIMPLE_PASS
, /* type */
378 OPTGROUP_NONE
, /* optinfo_flags */
380 true, /* has_execute */
381 TV_TREE_DSE
, /* tv_id */
382 ( PROP_cfg
| PROP_ssa
), /* properties_required */
383 0, /* properties_provided */
384 0, /* properties_destroyed */
385 0, /* todo_flags_start */
386 TODO_verify_ssa
, /* todo_flags_finish */
389 class pass_dse
: public gimple_opt_pass
392 pass_dse (gcc::context
*ctxt
)
393 : gimple_opt_pass (pass_data_dse
, ctxt
)
396 /* opt_pass methods: */
397 opt_pass
* clone () { return new pass_dse (m_ctxt
); }
398 bool gate () { return gate_dse (); }
399 unsigned int execute () { return tree_ssa_dse (); }
406 make_pass_dse (gcc::context
*ctxt
)
408 return new pass_dse (ctxt
);