gcc-dg.exp (dg-build-dso): Reset dg-do-what-default to compile.
[official-gcc.git] / gcc / jump.c
blobe6dabd05c5c3cf6429cf82804f00eed4a2ed6f72
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "function.h"
49 #include "basic-block.h"
50 #include "expr.h"
51 #include "except.h"
52 #include "diagnostic-core.h"
53 #include "reload.h"
54 #include "predict.h"
55 #include "tree-pass.h"
56 #include "target.h"
58 /* Optimize jump y; x: ... y: jumpif... x?
59 Don't know if it is worth bothering with. */
60 /* Optimize two cases of conditional jump to conditional jump?
61 This can never delete any instruction or make anything dead,
62 or even change what is live at any point.
63 So perhaps let combiner do it. */
65 static void init_label_info (rtx);
66 static void mark_all_labels (rtx);
67 static void mark_jump_label_1 (rtx, rtx, bool, bool);
68 static void mark_jump_label_asm (rtx, rtx);
69 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
70 static int invert_exp_1 (rtx, rtx);
71 static int returnjump_p_1 (rtx *, void *);
73 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
74 static void
75 rebuild_jump_labels_1 (rtx f, bool count_forced)
77 rtx insn;
79 timevar_push (TV_REBUILD_JUMP);
80 init_label_info (f);
81 mark_all_labels (f);
83 /* Keep track of labels used from static data; we don't track them
84 closely enough to delete them here, so make sure their reference
85 count doesn't drop to zero. */
87 if (count_forced)
88 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
89 if (LABEL_P (XEXP (insn, 0)))
90 LABEL_NUSES (XEXP (insn, 0))++;
91 timevar_pop (TV_REBUILD_JUMP);
94 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
95 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
96 instructions and jumping insns that have labels as operands
97 (e.g. cbranchsi4). */
98 void
99 rebuild_jump_labels (rtx f)
101 rebuild_jump_labels_1 (f, true);
104 /* This function is like rebuild_jump_labels, but doesn't run over
105 forced_labels. It can be used on insn chains that aren't the
106 main function chain. */
107 void
108 rebuild_jump_labels_chain (rtx chain)
110 rebuild_jump_labels_1 (chain, false);
113 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
114 non-fallthru insn. This is not generally true, as multiple barriers
115 may have crept in, or the BARRIER may be separated from the last
116 real insn by one or more NOTEs.
118 This simple pass moves barriers and removes duplicates so that the
119 old code is happy.
121 static unsigned int
122 cleanup_barriers (void)
124 rtx insn, next, prev;
125 for (insn = get_insns (); insn; insn = next)
127 next = NEXT_INSN (insn);
128 if (BARRIER_P (insn))
130 prev = prev_nonnote_insn (insn);
131 if (!prev)
132 continue;
133 if (BARRIER_P (prev))
134 delete_insn (insn);
135 else if (prev != PREV_INSN (insn))
136 reorder_insns_nobb (insn, insn, prev);
139 return 0;
142 namespace {
144 const pass_data pass_data_cleanup_barriers =
146 RTL_PASS, /* type */
147 "barriers", /* name */
148 OPTGROUP_NONE, /* optinfo_flags */
149 false, /* has_gate */
150 true, /* has_execute */
151 TV_NONE, /* tv_id */
152 0, /* properties_required */
153 0, /* properties_provided */
154 0, /* properties_destroyed */
155 0, /* todo_flags_start */
156 0, /* todo_flags_finish */
159 class pass_cleanup_barriers : public rtl_opt_pass
161 public:
162 pass_cleanup_barriers (gcc::context *ctxt)
163 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
166 /* opt_pass methods: */
167 unsigned int execute () { return cleanup_barriers (); }
169 }; // class pass_cleanup_barriers
171 } // anon namespace
173 rtl_opt_pass *
174 make_pass_cleanup_barriers (gcc::context *ctxt)
176 return new pass_cleanup_barriers (ctxt);
180 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
181 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
182 notes whose labels don't occur in the insn any more. */
184 static void
185 init_label_info (rtx f)
187 rtx insn;
189 for (insn = f; insn; insn = NEXT_INSN (insn))
191 if (LABEL_P (insn))
192 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
194 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
195 sticky and not reset here; that way we won't lose association
196 with a label when e.g. the source for a target register
197 disappears out of reach for targets that may use jump-target
198 registers. Jump transformations are supposed to transform
199 any REG_LABEL_TARGET notes. The target label reference in a
200 branch may disappear from the branch (and from the
201 instruction before it) for other reasons, like register
202 allocation. */
204 if (INSN_P (insn))
206 rtx note, next;
208 for (note = REG_NOTES (insn); note; note = next)
210 next = XEXP (note, 1);
211 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
212 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
213 remove_note (insn, note);
219 /* A subroutine of mark_all_labels. Trivially propagate a simple label
220 load into a jump_insn that uses it. */
222 static void
223 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
225 rtx label_note, pc, pc_src;
227 pc = pc_set (jump_insn);
228 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
229 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
231 /* If the previous non-jump insn sets something to a label,
232 something that this jump insn uses, make that label the primary
233 target of this insn if we don't yet have any. That previous
234 insn must be a single_set and not refer to more than one label.
235 The jump insn must not refer to other labels as jump targets
236 and must be a plain (set (pc) ...), maybe in a parallel, and
237 may refer to the item being set only directly or as one of the
238 arms in an IF_THEN_ELSE. */
240 if (label_note != NULL && pc_src != NULL)
242 rtx label_set = single_set (prev_nonjump_insn);
243 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
245 if (label_set != NULL
246 /* The source must be the direct LABEL_REF, not a
247 PLUS, UNSPEC, IF_THEN_ELSE etc. */
248 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
249 && (rtx_equal_p (label_dest, pc_src)
250 || (GET_CODE (pc_src) == IF_THEN_ELSE
251 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
252 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
254 /* The CODE_LABEL referred to in the note must be the
255 CODE_LABEL in the LABEL_REF of the "set". We can
256 conveniently use it for the marker function, which
257 requires a LABEL_REF wrapping. */
258 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
260 mark_jump_label_1 (label_set, jump_insn, false, true);
262 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
267 /* Mark the label each jump jumps to.
268 Combine consecutive labels, and count uses of labels. */
270 static void
271 mark_all_labels (rtx f)
273 rtx insn;
275 if (current_ir_type () == IR_RTL_CFGLAYOUT)
277 basic_block bb;
278 FOR_EACH_BB_FN (bb, cfun)
280 /* In cfglayout mode, we don't bother with trivial next-insn
281 propagation of LABEL_REFs into JUMP_LABEL. This will be
282 handled by other optimizers using better algorithms. */
283 FOR_BB_INSNS (bb, insn)
285 gcc_assert (! INSN_DELETED_P (insn));
286 if (NONDEBUG_INSN_P (insn))
287 mark_jump_label (PATTERN (insn), insn, 0);
290 /* In cfglayout mode, there may be non-insns between the
291 basic blocks. If those non-insns represent tablejump data,
292 they contain label references that we must record. */
293 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
294 if (JUMP_TABLE_DATA_P (insn))
295 mark_jump_label (PATTERN (insn), insn, 0);
296 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
297 if (JUMP_TABLE_DATA_P (insn))
298 mark_jump_label (PATTERN (insn), insn, 0);
301 else
303 rtx prev_nonjump_insn = NULL;
304 for (insn = f; insn; insn = NEXT_INSN (insn))
306 if (INSN_DELETED_P (insn))
308 else if (LABEL_P (insn))
309 prev_nonjump_insn = NULL;
310 else if (JUMP_TABLE_DATA_P (insn))
311 mark_jump_label (PATTERN (insn), insn, 0);
312 else if (NONDEBUG_INSN_P (insn))
314 mark_jump_label (PATTERN (insn), insn, 0);
315 if (JUMP_P (insn))
317 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
318 maybe_propagate_label_ref (insn, prev_nonjump_insn);
320 else
321 prev_nonjump_insn = insn;
327 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
328 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
329 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
330 know whether it's source is floating point or integer comparison. Machine
331 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
332 to help this function avoid overhead in these cases. */
333 enum rtx_code
334 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
335 const_rtx arg1, const_rtx insn)
337 enum machine_mode mode;
339 /* If this is not actually a comparison, we can't reverse it. */
340 if (GET_RTX_CLASS (code) != RTX_COMPARE
341 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
342 return UNKNOWN;
344 mode = GET_MODE (arg0);
345 if (mode == VOIDmode)
346 mode = GET_MODE (arg1);
348 /* First see if machine description supplies us way to reverse the
349 comparison. Give it priority over everything else to allow
350 machine description to do tricks. */
351 if (GET_MODE_CLASS (mode) == MODE_CC
352 && REVERSIBLE_CC_MODE (mode))
354 #ifdef REVERSE_CONDITION
355 return REVERSE_CONDITION (code, mode);
356 #else
357 return reverse_condition (code);
358 #endif
361 /* Try a few special cases based on the comparison code. */
362 switch (code)
364 case GEU:
365 case GTU:
366 case LEU:
367 case LTU:
368 case NE:
369 case EQ:
370 /* It is always safe to reverse EQ and NE, even for the floating
371 point. Similarly the unsigned comparisons are never used for
372 floating point so we can reverse them in the default way. */
373 return reverse_condition (code);
374 case ORDERED:
375 case UNORDERED:
376 case LTGT:
377 case UNEQ:
378 /* In case we already see unordered comparison, we can be sure to
379 be dealing with floating point so we don't need any more tests. */
380 return reverse_condition_maybe_unordered (code);
381 case UNLT:
382 case UNLE:
383 case UNGT:
384 case UNGE:
385 /* We don't have safe way to reverse these yet. */
386 return UNKNOWN;
387 default:
388 break;
391 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
393 const_rtx prev;
394 /* Try to search for the comparison to determine the real mode.
395 This code is expensive, but with sane machine description it
396 will be never used, since REVERSIBLE_CC_MODE will return true
397 in all cases. */
398 if (! insn)
399 return UNKNOWN;
401 /* These CONST_CAST's are okay because prev_nonnote_insn just
402 returns its argument and we assign it to a const_rtx
403 variable. */
404 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
405 prev != 0 && !LABEL_P (prev);
406 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
408 const_rtx set = set_of (arg0, prev);
409 if (set && GET_CODE (set) == SET
410 && rtx_equal_p (SET_DEST (set), arg0))
412 rtx src = SET_SRC (set);
414 if (GET_CODE (src) == COMPARE)
416 rtx comparison = src;
417 arg0 = XEXP (src, 0);
418 mode = GET_MODE (arg0);
419 if (mode == VOIDmode)
420 mode = GET_MODE (XEXP (comparison, 1));
421 break;
423 /* We can get past reg-reg moves. This may be useful for model
424 of i387 comparisons that first move flag registers around. */
425 if (REG_P (src))
427 arg0 = src;
428 continue;
431 /* If register is clobbered in some ununderstandable way,
432 give up. */
433 if (set)
434 return UNKNOWN;
438 /* Test for an integer condition, or a floating-point comparison
439 in which NaNs can be ignored. */
440 if (CONST_INT_P (arg0)
441 || (GET_MODE (arg0) != VOIDmode
442 && GET_MODE_CLASS (mode) != MODE_CC
443 && !HONOR_NANS (mode)))
444 return reverse_condition (code);
446 return UNKNOWN;
449 /* A wrapper around the previous function to take COMPARISON as rtx
450 expression. This simplifies many callers. */
451 enum rtx_code
452 reversed_comparison_code (const_rtx comparison, const_rtx insn)
454 if (!COMPARISON_P (comparison))
455 return UNKNOWN;
456 return reversed_comparison_code_parts (GET_CODE (comparison),
457 XEXP (comparison, 0),
458 XEXP (comparison, 1), insn);
461 /* Return comparison with reversed code of EXP.
462 Return NULL_RTX in case we fail to do the reversal. */
464 reversed_comparison (const_rtx exp, enum machine_mode mode)
466 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
467 if (reversed_code == UNKNOWN)
468 return NULL_RTX;
469 else
470 return simplify_gen_relational (reversed_code, mode, VOIDmode,
471 XEXP (exp, 0), XEXP (exp, 1));
475 /* Given an rtx-code for a comparison, return the code for the negated
476 comparison. If no such code exists, return UNKNOWN.
478 WATCH OUT! reverse_condition is not safe to use on a jump that might
479 be acting on the results of an IEEE floating point comparison, because
480 of the special treatment of non-signaling nans in comparisons.
481 Use reversed_comparison_code instead. */
483 enum rtx_code
484 reverse_condition (enum rtx_code code)
486 switch (code)
488 case EQ:
489 return NE;
490 case NE:
491 return EQ;
492 case GT:
493 return LE;
494 case GE:
495 return LT;
496 case LT:
497 return GE;
498 case LE:
499 return GT;
500 case GTU:
501 return LEU;
502 case GEU:
503 return LTU;
504 case LTU:
505 return GEU;
506 case LEU:
507 return GTU;
508 case UNORDERED:
509 return ORDERED;
510 case ORDERED:
511 return UNORDERED;
513 case UNLT:
514 case UNLE:
515 case UNGT:
516 case UNGE:
517 case UNEQ:
518 case LTGT:
519 return UNKNOWN;
521 default:
522 gcc_unreachable ();
526 /* Similar, but we're allowed to generate unordered comparisons, which
527 makes it safe for IEEE floating-point. Of course, we have to recognize
528 that the target will support them too... */
530 enum rtx_code
531 reverse_condition_maybe_unordered (enum rtx_code code)
533 switch (code)
535 case EQ:
536 return NE;
537 case NE:
538 return EQ;
539 case GT:
540 return UNLE;
541 case GE:
542 return UNLT;
543 case LT:
544 return UNGE;
545 case LE:
546 return UNGT;
547 case LTGT:
548 return UNEQ;
549 case UNORDERED:
550 return ORDERED;
551 case ORDERED:
552 return UNORDERED;
553 case UNLT:
554 return GE;
555 case UNLE:
556 return GT;
557 case UNGT:
558 return LE;
559 case UNGE:
560 return LT;
561 case UNEQ:
562 return LTGT;
564 default:
565 gcc_unreachable ();
569 /* Similar, but return the code when two operands of a comparison are swapped.
570 This IS safe for IEEE floating-point. */
572 enum rtx_code
573 swap_condition (enum rtx_code code)
575 switch (code)
577 case EQ:
578 case NE:
579 case UNORDERED:
580 case ORDERED:
581 case UNEQ:
582 case LTGT:
583 return code;
585 case GT:
586 return LT;
587 case GE:
588 return LE;
589 case LT:
590 return GT;
591 case LE:
592 return GE;
593 case GTU:
594 return LTU;
595 case GEU:
596 return LEU;
597 case LTU:
598 return GTU;
599 case LEU:
600 return GEU;
601 case UNLT:
602 return UNGT;
603 case UNLE:
604 return UNGE;
605 case UNGT:
606 return UNLT;
607 case UNGE:
608 return UNLE;
610 default:
611 gcc_unreachable ();
615 /* Given a comparison CODE, return the corresponding unsigned comparison.
616 If CODE is an equality comparison or already an unsigned comparison,
617 CODE is returned. */
619 enum rtx_code
620 unsigned_condition (enum rtx_code code)
622 switch (code)
624 case EQ:
625 case NE:
626 case GTU:
627 case GEU:
628 case LTU:
629 case LEU:
630 return code;
632 case GT:
633 return GTU;
634 case GE:
635 return GEU;
636 case LT:
637 return LTU;
638 case LE:
639 return LEU;
641 default:
642 gcc_unreachable ();
646 /* Similarly, return the signed version of a comparison. */
648 enum rtx_code
649 signed_condition (enum rtx_code code)
651 switch (code)
653 case EQ:
654 case NE:
655 case GT:
656 case GE:
657 case LT:
658 case LE:
659 return code;
661 case GTU:
662 return GT;
663 case GEU:
664 return GE;
665 case LTU:
666 return LT;
667 case LEU:
668 return LE;
670 default:
671 gcc_unreachable ();
675 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
676 truth of CODE1 implies the truth of CODE2. */
679 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
681 /* UNKNOWN comparison codes can happen as a result of trying to revert
682 comparison codes.
683 They can't match anything, so we have to reject them here. */
684 if (code1 == UNKNOWN || code2 == UNKNOWN)
685 return 0;
687 if (code1 == code2)
688 return 1;
690 switch (code1)
692 case UNEQ:
693 if (code2 == UNLE || code2 == UNGE)
694 return 1;
695 break;
697 case EQ:
698 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
699 || code2 == ORDERED)
700 return 1;
701 break;
703 case UNLT:
704 if (code2 == UNLE || code2 == NE)
705 return 1;
706 break;
708 case LT:
709 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
710 return 1;
711 break;
713 case UNGT:
714 if (code2 == UNGE || code2 == NE)
715 return 1;
716 break;
718 case GT:
719 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
720 return 1;
721 break;
723 case GE:
724 case LE:
725 if (code2 == ORDERED)
726 return 1;
727 break;
729 case LTGT:
730 if (code2 == NE || code2 == ORDERED)
731 return 1;
732 break;
734 case LTU:
735 if (code2 == LEU || code2 == NE)
736 return 1;
737 break;
739 case GTU:
740 if (code2 == GEU || code2 == NE)
741 return 1;
742 break;
744 case UNORDERED:
745 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
746 || code2 == UNGE || code2 == UNGT)
747 return 1;
748 break;
750 default:
751 break;
754 return 0;
757 /* Return 1 if INSN is an unconditional jump and nothing else. */
760 simplejump_p (const_rtx insn)
762 return (JUMP_P (insn)
763 && GET_CODE (PATTERN (insn)) == SET
764 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
765 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
768 /* Return nonzero if INSN is a (possibly) conditional jump
769 and nothing more.
771 Use of this function is deprecated, since we need to support combined
772 branch and compare insns. Use any_condjump_p instead whenever possible. */
775 condjump_p (const_rtx insn)
777 const_rtx x = PATTERN (insn);
779 if (GET_CODE (x) != SET
780 || GET_CODE (SET_DEST (x)) != PC)
781 return 0;
783 x = SET_SRC (x);
784 if (GET_CODE (x) == LABEL_REF)
785 return 1;
786 else
787 return (GET_CODE (x) == IF_THEN_ELSE
788 && ((GET_CODE (XEXP (x, 2)) == PC
789 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
790 || ANY_RETURN_P (XEXP (x, 1))))
791 || (GET_CODE (XEXP (x, 1)) == PC
792 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
793 || ANY_RETURN_P (XEXP (x, 2))))));
796 /* Return nonzero if INSN is a (possibly) conditional jump inside a
797 PARALLEL.
799 Use this function is deprecated, since we need to support combined
800 branch and compare insns. Use any_condjump_p instead whenever possible. */
803 condjump_in_parallel_p (const_rtx insn)
805 const_rtx x = PATTERN (insn);
807 if (GET_CODE (x) != PARALLEL)
808 return 0;
809 else
810 x = XVECEXP (x, 0, 0);
812 if (GET_CODE (x) != SET)
813 return 0;
814 if (GET_CODE (SET_DEST (x)) != PC)
815 return 0;
816 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
817 return 1;
818 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
819 return 0;
820 if (XEXP (SET_SRC (x), 2) == pc_rtx
821 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
822 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
823 return 1;
824 if (XEXP (SET_SRC (x), 1) == pc_rtx
825 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
826 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
827 return 1;
828 return 0;
831 /* Return set of PC, otherwise NULL. */
834 pc_set (const_rtx insn)
836 rtx pat;
837 if (!JUMP_P (insn))
838 return NULL_RTX;
839 pat = PATTERN (insn);
841 /* The set is allowed to appear either as the insn pattern or
842 the first set in a PARALLEL. */
843 if (GET_CODE (pat) == PARALLEL)
844 pat = XVECEXP (pat, 0, 0);
845 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
846 return pat;
848 return NULL_RTX;
851 /* Return true when insn is an unconditional direct jump,
852 possibly bundled inside a PARALLEL. */
855 any_uncondjump_p (const_rtx insn)
857 const_rtx x = pc_set (insn);
858 if (!x)
859 return 0;
860 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
861 return 0;
862 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
863 return 0;
864 return 1;
867 /* Return true when insn is a conditional jump. This function works for
868 instructions containing PC sets in PARALLELs. The instruction may have
869 various other effects so before removing the jump you must verify
870 onlyjump_p.
872 Note that unlike condjump_p it returns false for unconditional jumps. */
875 any_condjump_p (const_rtx insn)
877 const_rtx x = pc_set (insn);
878 enum rtx_code a, b;
880 if (!x)
881 return 0;
882 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
883 return 0;
885 a = GET_CODE (XEXP (SET_SRC (x), 1));
886 b = GET_CODE (XEXP (SET_SRC (x), 2));
888 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
889 || (a == PC
890 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
893 /* Return the label of a conditional jump. */
896 condjump_label (const_rtx insn)
898 rtx x = pc_set (insn);
900 if (!x)
901 return NULL_RTX;
902 x = SET_SRC (x);
903 if (GET_CODE (x) == LABEL_REF)
904 return x;
905 if (GET_CODE (x) != IF_THEN_ELSE)
906 return NULL_RTX;
907 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
908 return XEXP (x, 1);
909 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
910 return XEXP (x, 2);
911 return NULL_RTX;
914 /* Return true if INSN is a (possibly conditional) return insn. */
916 static int
917 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
919 rtx x = *loc;
921 if (x == NULL)
922 return false;
924 switch (GET_CODE (x))
926 case RETURN:
927 case SIMPLE_RETURN:
928 case EH_RETURN:
929 return true;
931 case SET:
932 return SET_IS_RETURN_P (x);
934 default:
935 return false;
939 /* Return TRUE if INSN is a return jump. */
942 returnjump_p (rtx insn)
944 if (!JUMP_P (insn))
945 return 0;
946 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
949 /* Return true if INSN is a (possibly conditional) return insn. */
951 static int
952 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
954 return *loc && GET_CODE (*loc) == EH_RETURN;
958 eh_returnjump_p (rtx insn)
960 if (!JUMP_P (insn))
961 return 0;
962 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
965 /* Return true if INSN is a jump that only transfers control and
966 nothing more. */
969 onlyjump_p (const_rtx insn)
971 rtx set;
973 if (!JUMP_P (insn))
974 return 0;
976 set = single_set (insn);
977 if (set == NULL)
978 return 0;
979 if (GET_CODE (SET_DEST (set)) != PC)
980 return 0;
981 if (side_effects_p (SET_SRC (set)))
982 return 0;
984 return 1;
987 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
988 NULL or a return. */
989 bool
990 jump_to_label_p (rtx insn)
992 return (JUMP_P (insn)
993 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
996 #ifdef HAVE_cc0
998 /* Return nonzero if X is an RTX that only sets the condition codes
999 and has no side effects. */
1002 only_sets_cc0_p (const_rtx x)
1004 if (! x)
1005 return 0;
1007 if (INSN_P (x))
1008 x = PATTERN (x);
1010 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1013 /* Return 1 if X is an RTX that does nothing but set the condition codes
1014 and CLOBBER or USE registers.
1015 Return -1 if X does explicitly set the condition codes,
1016 but also does other things. */
1019 sets_cc0_p (const_rtx x)
1021 if (! x)
1022 return 0;
1024 if (INSN_P (x))
1025 x = PATTERN (x);
1027 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1028 return 1;
1029 if (GET_CODE (x) == PARALLEL)
1031 int i;
1032 int sets_cc0 = 0;
1033 int other_things = 0;
1034 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1036 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1037 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1038 sets_cc0 = 1;
1039 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1040 other_things = 1;
1042 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1044 return 0;
1046 #endif
1048 /* Find all CODE_LABELs referred to in X, and increment their use
1049 counts. If INSN is a JUMP_INSN and there is at least one
1050 CODE_LABEL referenced in INSN as a jump target, then store the last
1051 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1052 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1053 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1054 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1055 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1056 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1058 Note that two labels separated by a loop-beginning note
1059 must be kept distinct if we have not yet done loop-optimization,
1060 because the gap between them is where loop-optimize
1061 will want to move invariant code to. CROSS_JUMP tells us
1062 that loop-optimization is done with. */
1064 void
1065 mark_jump_label (rtx x, rtx insn, int in_mem)
1067 rtx asmop = extract_asm_operands (x);
1068 if (asmop)
1069 mark_jump_label_asm (asmop, insn);
1070 else
1071 mark_jump_label_1 (x, insn, in_mem != 0,
1072 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1075 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1076 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1077 jump-target; when the JUMP_LABEL field of INSN should be set or a
1078 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1079 note. */
1081 static void
1082 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1084 RTX_CODE code = GET_CODE (x);
1085 int i;
1086 const char *fmt;
1088 switch (code)
1090 case PC:
1091 case CC0:
1092 case REG:
1093 case CLOBBER:
1094 case CALL:
1095 return;
1097 case RETURN:
1098 case SIMPLE_RETURN:
1099 if (is_target)
1101 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1102 JUMP_LABEL (insn) = x;
1104 return;
1106 case MEM:
1107 in_mem = true;
1108 break;
1110 case SEQUENCE:
1111 for (i = 0; i < XVECLEN (x, 0); i++)
1112 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1113 XVECEXP (x, 0, i), 0);
1114 return;
1116 case SYMBOL_REF:
1117 if (!in_mem)
1118 return;
1120 /* If this is a constant-pool reference, see if it is a label. */
1121 if (CONSTANT_POOL_ADDRESS_P (x))
1122 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1123 break;
1125 /* Handle operands in the condition of an if-then-else as for a
1126 non-jump insn. */
1127 case IF_THEN_ELSE:
1128 if (!is_target)
1129 break;
1130 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1131 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1132 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1133 return;
1135 case LABEL_REF:
1137 rtx label = XEXP (x, 0);
1139 /* Ignore remaining references to unreachable labels that
1140 have been deleted. */
1141 if (NOTE_P (label)
1142 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1143 break;
1145 gcc_assert (LABEL_P (label));
1147 /* Ignore references to labels of containing functions. */
1148 if (LABEL_REF_NONLOCAL_P (x))
1149 break;
1151 XEXP (x, 0) = label;
1152 if (! insn || ! INSN_DELETED_P (insn))
1153 ++LABEL_NUSES (label);
1155 if (insn)
1157 if (is_target
1158 /* Do not change a previous setting of JUMP_LABEL. If the
1159 JUMP_LABEL slot is occupied by a different label,
1160 create a note for this label. */
1161 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1162 JUMP_LABEL (insn) = label;
1163 else
1165 enum reg_note kind
1166 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1168 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1169 for LABEL unless there already is one. All uses of
1170 a label, except for the primary target of a jump,
1171 must have such a note. */
1172 if (! find_reg_note (insn, kind, label))
1173 add_reg_note (insn, kind, label);
1176 return;
1179 /* Do walk the labels in a vector, but not the first operand of an
1180 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1181 case ADDR_VEC:
1182 case ADDR_DIFF_VEC:
1183 if (! INSN_DELETED_P (insn))
1185 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1187 for (i = 0; i < XVECLEN (x, eltnum); i++)
1188 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1189 is_target);
1191 return;
1193 default:
1194 break;
1197 fmt = GET_RTX_FORMAT (code);
1199 /* The primary target of a tablejump is the label of the ADDR_VEC,
1200 which is canonically mentioned *last* in the insn. To get it
1201 marked as JUMP_LABEL, we iterate over items in reverse order. */
1202 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1204 if (fmt[i] == 'e')
1205 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1206 else if (fmt[i] == 'E')
1208 int j;
1210 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1211 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1212 is_target);
1217 /* Worker function for mark_jump_label. Handle asm insns specially.
1218 In particular, output operands need not be considered so we can
1219 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1220 need to be considered targets. */
1222 static void
1223 mark_jump_label_asm (rtx asmop, rtx insn)
1225 int i;
1227 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1228 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1230 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1231 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1234 /* Delete insn INSN from the chain of insns and update label ref counts
1235 and delete insns now unreachable.
1237 Returns the first insn after INSN that was not deleted.
1239 Usage of this instruction is deprecated. Use delete_insn instead and
1240 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1243 delete_related_insns (rtx insn)
1245 int was_code_label = (LABEL_P (insn));
1246 rtx note;
1247 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1249 while (next && INSN_DELETED_P (next))
1250 next = NEXT_INSN (next);
1252 /* This insn is already deleted => return first following nondeleted. */
1253 if (INSN_DELETED_P (insn))
1254 return next;
1256 delete_insn (insn);
1258 /* If instruction is followed by a barrier,
1259 delete the barrier too. */
1261 if (next != 0 && BARRIER_P (next))
1262 delete_insn (next);
1264 /* If this is a call, then we have to remove the var tracking note
1265 for the call arguments. */
1267 if (CALL_P (insn)
1268 || (NONJUMP_INSN_P (insn)
1269 && GET_CODE (PATTERN (insn)) == SEQUENCE
1270 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1272 rtx p;
1274 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1275 p && NOTE_P (p);
1276 p = NEXT_INSN (p))
1277 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1279 remove_insn (p);
1280 break;
1284 /* If deleting a jump, decrement the count of the label,
1285 and delete the label if it is now unused. */
1287 if (jump_to_label_p (insn))
1289 rtx lab = JUMP_LABEL (insn), lab_next;
1291 if (LABEL_NUSES (lab) == 0)
1292 /* This can delete NEXT or PREV,
1293 either directly if NEXT is JUMP_LABEL (INSN),
1294 or indirectly through more levels of jumps. */
1295 delete_related_insns (lab);
1296 else if (tablejump_p (insn, NULL, &lab_next))
1298 /* If we're deleting the tablejump, delete the dispatch table.
1299 We may not be able to kill the label immediately preceding
1300 just yet, as it might be referenced in code leading up to
1301 the tablejump. */
1302 delete_related_insns (lab_next);
1306 /* Likewise if we're deleting a dispatch table. */
1308 if (JUMP_TABLE_DATA_P (insn))
1310 rtx pat = PATTERN (insn);
1311 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1312 int len = XVECLEN (pat, diff_vec_p);
1314 for (i = 0; i < len; i++)
1315 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1316 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1317 while (next && INSN_DELETED_P (next))
1318 next = NEXT_INSN (next);
1319 return next;
1322 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1323 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1324 if (INSN_P (insn))
1325 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1326 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1327 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1328 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1329 && LABEL_P (XEXP (note, 0)))
1330 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1331 delete_related_insns (XEXP (note, 0));
1333 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1334 prev = PREV_INSN (prev);
1336 /* If INSN was a label and a dispatch table follows it,
1337 delete the dispatch table. The tablejump must have gone already.
1338 It isn't useful to fall through into a table. */
1340 if (was_code_label
1341 && NEXT_INSN (insn) != 0
1342 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1343 next = delete_related_insns (NEXT_INSN (insn));
1345 /* If INSN was a label, delete insns following it if now unreachable. */
1347 if (was_code_label && prev && BARRIER_P (prev))
1349 enum rtx_code code;
1350 while (next)
1352 code = GET_CODE (next);
1353 if (code == NOTE)
1354 next = NEXT_INSN (next);
1355 /* Keep going past other deleted labels to delete what follows. */
1356 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1357 next = NEXT_INSN (next);
1358 /* Keep the (use (insn))s created by dbr_schedule, which needs
1359 them in order to track liveness relative to a previous
1360 barrier. */
1361 else if (INSN_P (next)
1362 && GET_CODE (PATTERN (next)) == USE
1363 && INSN_P (XEXP (PATTERN (next), 0)))
1364 next = NEXT_INSN (next);
1365 else if (code == BARRIER || INSN_P (next))
1366 /* Note: if this deletes a jump, it can cause more
1367 deletion of unreachable code, after a different label.
1368 As long as the value from this recursive call is correct,
1369 this invocation functions correctly. */
1370 next = delete_related_insns (next);
1371 else
1372 break;
1376 /* I feel a little doubtful about this loop,
1377 but I see no clean and sure alternative way
1378 to find the first insn after INSN that is not now deleted.
1379 I hope this works. */
1380 while (next && INSN_DELETED_P (next))
1381 next = NEXT_INSN (next);
1382 return next;
1385 /* Delete a range of insns from FROM to TO, inclusive.
1386 This is for the sake of peephole optimization, so assume
1387 that whatever these insns do will still be done by a new
1388 peephole insn that will replace them. */
1390 void
1391 delete_for_peephole (rtx from, rtx to)
1393 rtx insn = from;
1395 while (1)
1397 rtx next = NEXT_INSN (insn);
1398 rtx prev = PREV_INSN (insn);
1400 if (!NOTE_P (insn))
1402 INSN_DELETED_P (insn) = 1;
1404 /* Patch this insn out of the chain. */
1405 /* We don't do this all at once, because we
1406 must preserve all NOTEs. */
1407 if (prev)
1408 NEXT_INSN (prev) = next;
1410 if (next)
1411 PREV_INSN (next) = prev;
1414 if (insn == to)
1415 break;
1416 insn = next;
1419 /* Note that if TO is an unconditional jump
1420 we *do not* delete the BARRIER that follows,
1421 since the peephole that replaces this sequence
1422 is also an unconditional jump in that case. */
1425 /* A helper function for redirect_exp_1; examines its input X and returns
1426 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1427 static rtx
1428 redirect_target (rtx x)
1430 if (x == NULL_RTX)
1431 return ret_rtx;
1432 if (!ANY_RETURN_P (x))
1433 return gen_rtx_LABEL_REF (Pmode, x);
1434 return x;
1437 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1438 NLABEL as a return. Accrue modifications into the change group. */
1440 static void
1441 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1443 rtx x = *loc;
1444 RTX_CODE code = GET_CODE (x);
1445 int i;
1446 const char *fmt;
1448 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1449 || x == olabel)
1451 x = redirect_target (nlabel);
1452 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1453 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1454 validate_change (insn, loc, x, 1);
1455 return;
1458 if (code == SET && SET_DEST (x) == pc_rtx
1459 && ANY_RETURN_P (nlabel)
1460 && GET_CODE (SET_SRC (x)) == LABEL_REF
1461 && XEXP (SET_SRC (x), 0) == olabel)
1463 validate_change (insn, loc, nlabel, 1);
1464 return;
1467 if (code == IF_THEN_ELSE)
1469 /* Skip the condition of an IF_THEN_ELSE. We only want to
1470 change jump destinations, not eventual label comparisons. */
1471 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1472 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1473 return;
1476 fmt = GET_RTX_FORMAT (code);
1477 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1479 if (fmt[i] == 'e')
1480 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1481 else if (fmt[i] == 'E')
1483 int j;
1484 for (j = 0; j < XVECLEN (x, i); j++)
1485 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1490 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1491 the modifications into the change group. Return false if we did
1492 not see how to do that. */
1495 redirect_jump_1 (rtx jump, rtx nlabel)
1497 int ochanges = num_validated_changes ();
1498 rtx *loc, asmop;
1500 gcc_assert (nlabel != NULL_RTX);
1501 asmop = extract_asm_operands (PATTERN (jump));
1502 if (asmop)
1504 if (nlabel == NULL)
1505 return 0;
1506 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1507 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1509 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1510 loc = &XVECEXP (PATTERN (jump), 0, 0);
1511 else
1512 loc = &PATTERN (jump);
1514 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1515 return num_validated_changes () > ochanges;
1518 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1519 jump target label is unused as a result, it and the code following
1520 it may be deleted.
1522 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1523 in that case we are to turn the jump into a (possibly conditional)
1524 return insn.
1526 The return value will be 1 if the change was made, 0 if it wasn't
1527 (this can only occur when trying to produce return insns). */
1530 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1532 rtx olabel = JUMP_LABEL (jump);
1534 if (!nlabel)
1536 /* If there is no label, we are asked to redirect to the EXIT block.
1537 When before the epilogue is emitted, return/simple_return cannot be
1538 created so we return 0 immediately. After the epilogue is emitted,
1539 we always expect a label, either a non-null label, or a
1540 return/simple_return RTX. */
1542 if (!epilogue_completed)
1543 return 0;
1544 gcc_unreachable ();
1547 if (nlabel == olabel)
1548 return 1;
1550 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1551 return 0;
1553 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1554 return 1;
1557 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1558 NLABEL in JUMP.
1559 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1560 count has dropped to zero. */
1561 void
1562 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1563 int invert)
1565 rtx note;
1567 gcc_assert (JUMP_LABEL (jump) == olabel);
1569 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1570 moving FUNCTION_END note. Just sanity check that no user still worry
1571 about this. */
1572 gcc_assert (delete_unused >= 0);
1573 JUMP_LABEL (jump) = nlabel;
1574 if (!ANY_RETURN_P (nlabel))
1575 ++LABEL_NUSES (nlabel);
1577 /* Update labels in any REG_EQUAL note. */
1578 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1580 if (ANY_RETURN_P (nlabel)
1581 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1582 remove_note (jump, note);
1583 else
1585 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1586 confirm_change_group ();
1590 /* Handle the case where we had a conditional crossing jump to a return
1591 label and are now changing it into a direct conditional return.
1592 The jump is no longer crossing in that case. */
1593 if (ANY_RETURN_P (nlabel))
1595 note = find_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
1596 if (note)
1597 remove_note (jump, note);
1600 if (!ANY_RETURN_P (olabel)
1601 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1602 /* Undefined labels will remain outside the insn stream. */
1603 && INSN_UID (olabel))
1604 delete_related_insns (olabel);
1605 if (invert)
1606 invert_br_probabilities (jump);
1609 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1610 modifications into the change group. Return nonzero for success. */
1611 static int
1612 invert_exp_1 (rtx x, rtx insn)
1614 RTX_CODE code = GET_CODE (x);
1616 if (code == IF_THEN_ELSE)
1618 rtx comp = XEXP (x, 0);
1619 rtx tem;
1620 enum rtx_code reversed_code;
1622 /* We can do this in two ways: The preferable way, which can only
1623 be done if this is not an integer comparison, is to reverse
1624 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1625 of the IF_THEN_ELSE. If we can't do either, fail. */
1627 reversed_code = reversed_comparison_code (comp, insn);
1629 if (reversed_code != UNKNOWN)
1631 validate_change (insn, &XEXP (x, 0),
1632 gen_rtx_fmt_ee (reversed_code,
1633 GET_MODE (comp), XEXP (comp, 0),
1634 XEXP (comp, 1)),
1636 return 1;
1639 tem = XEXP (x, 1);
1640 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1641 validate_change (insn, &XEXP (x, 2), tem, 1);
1642 return 1;
1644 else
1645 return 0;
1648 /* Invert the condition of the jump JUMP, and make it jump to label
1649 NLABEL instead of where it jumps now. Accrue changes into the
1650 change group. Return false if we didn't see how to perform the
1651 inversion and redirection. */
1654 invert_jump_1 (rtx jump, rtx nlabel)
1656 rtx x = pc_set (jump);
1657 int ochanges;
1658 int ok;
1660 ochanges = num_validated_changes ();
1661 if (x == NULL)
1662 return 0;
1663 ok = invert_exp_1 (SET_SRC (x), jump);
1664 gcc_assert (ok);
1666 if (num_validated_changes () == ochanges)
1667 return 0;
1669 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1670 in Pmode, so checking this is not merely an optimization. */
1671 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1674 /* Invert the condition of the jump JUMP, and make it jump to label
1675 NLABEL instead of where it jumps now. Return true if successful. */
1678 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1680 rtx olabel = JUMP_LABEL (jump);
1682 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1684 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1685 return 1;
1687 cancel_changes (0);
1688 return 0;
1692 /* Like rtx_equal_p except that it considers two REGs as equal
1693 if they renumber to the same value and considers two commutative
1694 operations to be the same if the order of the operands has been
1695 reversed. */
1698 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1700 int i;
1701 const enum rtx_code code = GET_CODE (x);
1702 const char *fmt;
1704 if (x == y)
1705 return 1;
1707 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1708 && (REG_P (y) || (GET_CODE (y) == SUBREG
1709 && REG_P (SUBREG_REG (y)))))
1711 int reg_x = -1, reg_y = -1;
1712 int byte_x = 0, byte_y = 0;
1713 struct subreg_info info;
1715 if (GET_MODE (x) != GET_MODE (y))
1716 return 0;
1718 /* If we haven't done any renumbering, don't
1719 make any assumptions. */
1720 if (reg_renumber == 0)
1721 return rtx_equal_p (x, y);
1723 if (code == SUBREG)
1725 reg_x = REGNO (SUBREG_REG (x));
1726 byte_x = SUBREG_BYTE (x);
1728 if (reg_renumber[reg_x] >= 0)
1730 subreg_get_info (reg_renumber[reg_x],
1731 GET_MODE (SUBREG_REG (x)), byte_x,
1732 GET_MODE (x), &info);
1733 if (!info.representable_p)
1734 return 0;
1735 reg_x = info.offset;
1736 byte_x = 0;
1739 else
1741 reg_x = REGNO (x);
1742 if (reg_renumber[reg_x] >= 0)
1743 reg_x = reg_renumber[reg_x];
1746 if (GET_CODE (y) == SUBREG)
1748 reg_y = REGNO (SUBREG_REG (y));
1749 byte_y = SUBREG_BYTE (y);
1751 if (reg_renumber[reg_y] >= 0)
1753 subreg_get_info (reg_renumber[reg_y],
1754 GET_MODE (SUBREG_REG (y)), byte_y,
1755 GET_MODE (y), &info);
1756 if (!info.representable_p)
1757 return 0;
1758 reg_y = info.offset;
1759 byte_y = 0;
1762 else
1764 reg_y = REGNO (y);
1765 if (reg_renumber[reg_y] >= 0)
1766 reg_y = reg_renumber[reg_y];
1769 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1772 /* Now we have disposed of all the cases
1773 in which different rtx codes can match. */
1774 if (code != GET_CODE (y))
1775 return 0;
1777 switch (code)
1779 case PC:
1780 case CC0:
1781 case ADDR_VEC:
1782 case ADDR_DIFF_VEC:
1783 CASE_CONST_UNIQUE:
1784 return 0;
1786 case LABEL_REF:
1787 /* We can't assume nonlocal labels have their following insns yet. */
1788 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1789 return XEXP (x, 0) == XEXP (y, 0);
1791 /* Two label-refs are equivalent if they point at labels
1792 in the same position in the instruction stream. */
1793 return (next_real_insn (XEXP (x, 0))
1794 == next_real_insn (XEXP (y, 0)));
1796 case SYMBOL_REF:
1797 return XSTR (x, 0) == XSTR (y, 0);
1799 case CODE_LABEL:
1800 /* If we didn't match EQ equality above, they aren't the same. */
1801 return 0;
1803 default:
1804 break;
1807 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1809 if (GET_MODE (x) != GET_MODE (y))
1810 return 0;
1812 /* MEMs referring to different address space are not equivalent. */
1813 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1814 return 0;
1816 /* For commutative operations, the RTX match if the operand match in any
1817 order. Also handle the simple binary and unary cases without a loop. */
1818 if (targetm.commutative_p (x, UNKNOWN))
1819 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1820 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1821 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1822 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1823 else if (NON_COMMUTATIVE_P (x))
1824 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1825 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1826 else if (UNARY_P (x))
1827 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1829 /* Compare the elements. If any pair of corresponding elements
1830 fail to match, return 0 for the whole things. */
1832 fmt = GET_RTX_FORMAT (code);
1833 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1835 int j;
1836 switch (fmt[i])
1838 case 'w':
1839 if (XWINT (x, i) != XWINT (y, i))
1840 return 0;
1841 break;
1843 case 'i':
1844 if (XINT (x, i) != XINT (y, i))
1846 if (((code == ASM_OPERANDS && i == 6)
1847 || (code == ASM_INPUT && i == 1)))
1848 break;
1849 return 0;
1851 break;
1853 case 't':
1854 if (XTREE (x, i) != XTREE (y, i))
1855 return 0;
1856 break;
1858 case 's':
1859 if (strcmp (XSTR (x, i), XSTR (y, i)))
1860 return 0;
1861 break;
1863 case 'e':
1864 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1865 return 0;
1866 break;
1868 case 'u':
1869 if (XEXP (x, i) != XEXP (y, i))
1870 return 0;
1871 /* Fall through. */
1872 case '0':
1873 break;
1875 case 'E':
1876 if (XVECLEN (x, i) != XVECLEN (y, i))
1877 return 0;
1878 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1879 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1880 return 0;
1881 break;
1883 default:
1884 gcc_unreachable ();
1887 return 1;
1890 /* If X is a hard register or equivalent to one or a subregister of one,
1891 return the hard register number. If X is a pseudo register that was not
1892 assigned a hard register, return the pseudo register number. Otherwise,
1893 return -1. Any rtx is valid for X. */
1896 true_regnum (const_rtx x)
1898 if (REG_P (x))
1900 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1901 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1902 return reg_renumber[REGNO (x)];
1903 return REGNO (x);
1905 if (GET_CODE (x) == SUBREG)
1907 int base = true_regnum (SUBREG_REG (x));
1908 if (base >= 0
1909 && base < FIRST_PSEUDO_REGISTER)
1911 struct subreg_info info;
1913 subreg_get_info (lra_in_progress
1914 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1915 GET_MODE (SUBREG_REG (x)),
1916 SUBREG_BYTE (x), GET_MODE (x), &info);
1918 if (info.representable_p)
1919 return base + info.offset;
1922 return -1;
1925 /* Return regno of the register REG and handle subregs too. */
1926 unsigned int
1927 reg_or_subregno (const_rtx reg)
1929 if (GET_CODE (reg) == SUBREG)
1930 reg = SUBREG_REG (reg);
1931 gcc_assert (REG_P (reg));
1932 return REGNO (reg);