1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 #include <isl/union_map.h>
28 #include <isl/constraint.h>
31 #include <cloog/cloog.h>
32 #include <cloog/isl/domain.h>
36 #include "coretypes.h"
37 #include "diagnostic-core.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-expr.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "gimple-ssa.h"
48 #include "tree-ssa-loop-manip.h"
49 #include "tree-ssa-loop.h"
50 #include "tree-into-ssa.h"
51 #include "tree-pass.h"
53 #include "tree-chrec.h"
54 #include "tree-data-ref.h"
55 #include "tree-scalar-evolution.h"
59 #include "cloog/cloog.h"
60 #include "graphite-poly.h"
61 #include "graphite-clast-to-gimple.h"
62 #include "graphite-htab.h"
64 typedef const struct clast_expr
*clast_name_p
;
66 #ifndef CLOOG_LANGUAGE_C
67 #define CLOOG_LANGUAGE_C LANGUAGE_C
71 /* Converts a GMP constant VAL to a tree and returns it. */
74 gmp_cst_to_tree (tree type
, mpz_t val
)
76 tree t
= type
? type
: integer_type_node
;
82 di
= mpz_get_double_int (t
, tmp
, true);
85 return double_int_to_tree (t
, di
);
88 /* Sets RES to the min of V1 and V2. */
91 value_min (mpz_t res
, mpz_t v1
, mpz_t v2
)
93 if (mpz_cmp (v1
, v2
) < 0)
99 /* Sets RES to the max of V1 and V2. */
102 value_max (mpz_t res
, mpz_t v1
, mpz_t v2
)
104 if (mpz_cmp (v1
, v2
) < 0)
111 /* This flag is set when an error occurred during the translation of
113 static bool gloog_error
;
115 /* Verifies properties that GRAPHITE should maintain during translation. */
118 graphite_verify (void)
120 #ifdef ENABLE_CHECKING
121 verify_loop_structure ();
122 verify_loop_closed_ssa (true);
126 /* Stores the INDEX in a vector and the loop nesting LEVEL for a given
127 clast NAME. BOUND_ONE and BOUND_TWO represent the exact lower and
128 upper bounds that can be inferred from the polyhedral representation. */
130 typedef struct clast_name_index
{
133 mpz_t bound_one
, bound_two
;
135 /* If free_name is set, the content of name was allocated by us and needs
138 } *clast_name_index_p
;
140 /* Helper for hashing clast_name_index. */
142 struct clast_index_hasher
144 typedef clast_name_index value_type
;
145 typedef clast_name_index compare_type
;
146 static inline hashval_t
hash (const value_type
*);
147 static inline bool equal (const value_type
*, const compare_type
*);
148 static inline void remove (value_type
*);
151 /* Computes a hash function for database element E. */
154 clast_index_hasher::hash (const value_type
*e
)
158 int length
= strlen (e
->name
);
161 for (i
= 0; i
< length
; ++i
)
162 hash
= hash
| (e
->name
[i
] << (i
% 4));
167 /* Compares database elements ELT1 and ELT2. */
170 clast_index_hasher::equal (const value_type
*elt1
, const compare_type
*elt2
)
172 return strcmp (elt1
->name
, elt2
->name
) == 0;
175 /* Free the memory taken by a clast_name_index struct. */
178 clast_index_hasher::remove (value_type
*c
)
182 mpz_clear (c
->bound_one
);
183 mpz_clear (c
->bound_two
);
187 typedef hash_table
<clast_index_hasher
> clast_index_htab_type
;
189 /* Returns a pointer to a new element of type clast_name_index_p built
190 from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO. */
192 static inline clast_name_index_p
193 new_clast_name_index (const char *name
, int index
, int level
,
194 mpz_t bound_one
, mpz_t bound_two
)
196 clast_name_index_p res
= XNEW (struct clast_name_index
);
197 char *new_name
= XNEWVEC (char, strlen (name
) + 1);
198 strcpy (new_name
, name
);
200 res
->name
= new_name
;
201 res
->free_name
= new_name
;
204 mpz_init (res
->bound_one
);
205 mpz_init (res
->bound_two
);
206 mpz_set (res
->bound_one
, bound_one
);
207 mpz_set (res
->bound_two
, bound_two
);
211 /* For a given clast NAME, returns -1 if NAME is not in the
212 INDEX_TABLE, otherwise returns the loop level for the induction
213 variable NAME, or if it is a parameter, the parameter number in the
214 vector of parameters. */
217 clast_name_to_level (clast_name_p name
, clast_index_htab_type index_table
)
219 struct clast_name_index tmp
;
220 clast_name_index
**slot
;
222 gcc_assert (name
->type
== clast_expr_name
);
223 tmp
.name
= ((const struct clast_name
*) name
)->name
;
224 tmp
.free_name
= NULL
;
226 slot
= index_table
.find_slot (&tmp
, NO_INSERT
);
229 return ((struct clast_name_index
*) *slot
)->level
;
234 /* For a given clast NAME, returns -1 if it does not correspond to any
235 parameter, or otherwise, returns the index in the PARAMS or
236 SCATTERING_DIMENSIONS vector. */
239 clast_name_to_index (struct clast_name
*name
, clast_index_htab_type index_table
)
241 struct clast_name_index tmp
;
242 clast_name_index
**slot
;
244 tmp
.name
= ((const struct clast_name
*) name
)->name
;
245 tmp
.free_name
= NULL
;
247 slot
= index_table
.find_slot (&tmp
, NO_INSERT
);
250 return (*slot
)->index
;
255 /* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE
256 and BOUND_TWO stored in the INDEX_TABLE. Returns true when NAME has been
257 found in the INDEX_TABLE, false otherwise. */
260 clast_name_to_lb_ub (struct clast_name
*name
, clast_index_htab_type index_table
,
261 mpz_t bound_one
, mpz_t bound_two
)
263 struct clast_name_index tmp
;
264 clast_name_index
**slot
;
266 tmp
.name
= name
->name
;
267 tmp
.free_name
= NULL
;
269 slot
= index_table
.find_slot (&tmp
, NO_INSERT
);
273 mpz_set (bound_one
, ((struct clast_name_index
*) *slot
)->bound_one
);
274 mpz_set (bound_two
, ((struct clast_name_index
*) *slot
)->bound_two
);
281 /* Records in INDEX_TABLE the INDEX and LEVEL for NAME. */
284 save_clast_name_index (clast_index_htab_type index_table
, const char *name
,
285 int index
, int level
, mpz_t bound_one
, mpz_t bound_two
)
287 struct clast_name_index tmp
;
288 clast_name_index
**slot
;
291 tmp
.free_name
= NULL
;
292 slot
= index_table
.find_slot (&tmp
, INSERT
);
298 *slot
= new_clast_name_index (name
, index
, level
, bound_one
, bound_two
);
303 /* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree
304 induction variable in NEWIVS.
306 PARAMS_INDEX binds CLooG's parameter name to the index of the tree
307 parameter in PARAMS. */
309 typedef struct ivs_params
{
310 vec
<tree
> params
, *newivs
;
311 clast_index_htab_type newivs_index
, params_index
;
315 /* Returns the tree variable from the name NAME that was given in
316 Cloog representation. */
319 clast_name_to_gcc (struct clast_name
*name
, ivs_params_p ip
)
323 if (ip
->params
.exists () && ip
->params_index
.is_created ())
325 index
= clast_name_to_index (name
, ip
->params_index
);
328 return ip
->params
[index
];
331 gcc_assert (ip
->newivs
&& ip
->newivs_index
.is_created ());
332 index
= clast_name_to_index (name
, ip
->newivs_index
);
333 gcc_assert (index
>= 0);
335 return (*ip
->newivs
)[index
];
338 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
341 max_precision_type (tree type1
, tree type2
)
343 enum machine_mode mode
;
344 int p1
, p2
, precision
;
347 if (POINTER_TYPE_P (type1
))
350 if (POINTER_TYPE_P (type2
))
353 if (TYPE_UNSIGNED (type1
)
354 && TYPE_UNSIGNED (type2
))
355 return TYPE_PRECISION (type1
) > TYPE_PRECISION (type2
) ? type1
: type2
;
357 p1
= TYPE_PRECISION (type1
);
358 p2
= TYPE_PRECISION (type2
);
361 precision
= TYPE_UNSIGNED (type1
) ? p1
* 2 : p1
;
363 precision
= TYPE_UNSIGNED (type2
) ? p2
* 2 : p2
;
365 if (precision
> BITS_PER_WORD
)
368 return integer_type_node
;
371 mode
= smallest_mode_for_size (precision
, MODE_INT
);
372 precision
= GET_MODE_PRECISION (mode
);
373 type
= build_nonstandard_integer_type (precision
, false);
378 return integer_type_node
;
385 clast_to_gcc_expression (tree
, struct clast_expr
*, ivs_params_p
);
387 /* Converts a Cloog reduction expression R with reduction operation OP
388 to a GCC expression tree of type TYPE. */
391 clast_to_gcc_expression_red (tree type
, enum tree_code op
,
392 struct clast_reduction
*r
, ivs_params_p ip
)
395 tree res
= clast_to_gcc_expression (type
, r
->elts
[0], ip
);
396 tree operand_type
= (op
== POINTER_PLUS_EXPR
) ? sizetype
: type
;
398 for (i
= 1; i
< r
->n
; i
++)
400 tree t
= clast_to_gcc_expression (operand_type
, r
->elts
[i
], ip
);
401 res
= fold_build2 (op
, type
, res
, t
);
407 /* Converts a Cloog AST expression E back to a GCC expression tree of
411 clast_to_gcc_expression (tree type
, struct clast_expr
*e
, ivs_params_p ip
)
415 case clast_expr_name
:
417 return clast_name_to_gcc ((struct clast_name
*) e
, ip
);
419 case clast_expr_term
:
421 struct clast_term
*t
= (struct clast_term
*) e
;
425 if (mpz_cmp_si (t
->val
, 1) == 0)
427 tree name
= clast_to_gcc_expression (type
, t
->var
, ip
);
429 if (POINTER_TYPE_P (TREE_TYPE (name
)) != POINTER_TYPE_P (type
))
430 name
= convert_to_ptrofftype (name
);
432 name
= fold_convert (type
, name
);
436 else if (mpz_cmp_si (t
->val
, -1) == 0)
438 tree name
= clast_to_gcc_expression (type
, t
->var
, ip
);
440 if (POINTER_TYPE_P (TREE_TYPE (name
)) != POINTER_TYPE_P (type
))
441 name
= convert_to_ptrofftype (name
);
443 name
= fold_convert (type
, name
);
445 return fold_build1 (NEGATE_EXPR
, type
, name
);
449 tree name
= clast_to_gcc_expression (type
, t
->var
, ip
);
450 tree cst
= gmp_cst_to_tree (type
, t
->val
);
452 if (POINTER_TYPE_P (TREE_TYPE (name
)) != POINTER_TYPE_P (type
))
453 name
= convert_to_ptrofftype (name
);
455 name
= fold_convert (type
, name
);
457 if (!POINTER_TYPE_P (type
))
458 return fold_build2 (MULT_EXPR
, type
, cst
, name
);
465 return gmp_cst_to_tree (type
, t
->val
);
470 struct clast_reduction
*r
= (struct clast_reduction
*) e
;
475 return clast_to_gcc_expression_red
476 (type
, POINTER_TYPE_P (type
) ? POINTER_PLUS_EXPR
: PLUS_EXPR
,
480 return clast_to_gcc_expression_red (type
, MIN_EXPR
, r
, ip
);
483 return clast_to_gcc_expression_red (type
, MAX_EXPR
, r
, ip
);
493 struct clast_binary
*b
= (struct clast_binary
*) e
;
494 struct clast_expr
*lhs
= (struct clast_expr
*) b
->LHS
;
495 tree tl
= clast_to_gcc_expression (type
, lhs
, ip
);
496 tree tr
= gmp_cst_to_tree (type
, b
->RHS
);
501 return fold_build2 (FLOOR_DIV_EXPR
, type
, tl
, tr
);
504 return fold_build2 (CEIL_DIV_EXPR
, type
, tl
, tr
);
507 return fold_build2 (EXACT_DIV_EXPR
, type
, tl
, tr
);
510 return fold_build2 (TRUNC_MOD_EXPR
, type
, tl
, tr
);
524 /* Return a type that could represent the values between BOUND_ONE and
528 type_for_interval (mpz_t bound_one
, mpz_t bound_two
)
532 enum machine_mode mode
;
534 int precision
= MAX (mpz_sizeinbase (bound_one
, 2),
535 mpz_sizeinbase (bound_two
, 2));
537 if (precision
> BITS_PER_WORD
)
540 return integer_type_node
;
543 if (mpz_cmp (bound_one
, bound_two
) <= 0)
544 unsigned_p
= (mpz_sgn (bound_one
) >= 0);
546 unsigned_p
= (mpz_sgn (bound_two
) >= 0);
548 mode
= smallest_mode_for_size (precision
, MODE_INT
);
549 wider_precision
= GET_MODE_PRECISION (mode
);
551 /* As we want to generate signed types as much as possible, try to
552 fit the interval [bound_one, bound_two] in a signed type. For example,
553 supposing that we have the interval [0, 100], instead of
554 generating unsigned char, we want to generate a signed char. */
555 if (unsigned_p
&& precision
< wider_precision
)
558 type
= build_nonstandard_integer_type (wider_precision
, unsigned_p
);
563 return integer_type_node
;
569 /* Return a type that could represent the integer value VAL, or
570 otherwise return NULL_TREE. */
573 type_for_value (mpz_t val
)
575 return type_for_interval (val
, val
);
579 type_for_clast_expr (struct clast_expr
*, ivs_params_p
, mpz_t
, mpz_t
);
581 /* Return the type for the clast_term T. Initializes BOUND_ONE and
582 BOUND_TWO to the bounds of the term. */
585 type_for_clast_term (struct clast_term
*t
, ivs_params_p ip
, mpz_t bound_one
,
589 gcc_assert (t
->expr
.type
== clast_expr_term
);
593 mpz_set (bound_one
, t
->val
);
594 mpz_set (bound_two
, t
->val
);
595 return type_for_value (t
->val
);
598 type
= type_for_clast_expr (t
->var
, ip
, bound_one
, bound_two
);
600 mpz_mul (bound_one
, bound_one
, t
->val
);
601 mpz_mul (bound_two
, bound_two
, t
->val
);
603 return max_precision_type (type
, type_for_interval (bound_one
, bound_two
));
606 /* Return the type for the clast_reduction R. Initializes BOUND_ONE
607 and BOUND_TWO to the bounds of the reduction expression. */
610 type_for_clast_red (struct clast_reduction
*r
, ivs_params_p ip
,
611 mpz_t bound_one
, mpz_t bound_two
)
614 tree type
= type_for_clast_expr (r
->elts
[0], ip
, bound_one
, bound_two
);
615 mpz_t b1
, b2
, m1
, m2
;
625 for (i
= 1; i
< r
->n
; i
++)
627 tree t
= type_for_clast_expr (r
->elts
[i
], ip
, b1
, b2
);
628 type
= max_precision_type (type
, t
);
633 value_min (m1
, bound_one
, bound_two
);
634 value_min (m2
, b1
, b2
);
635 mpz_add (bound_one
, m1
, m2
);
637 value_max (m1
, bound_one
, bound_two
);
638 value_max (m2
, b1
, b2
);
639 mpz_add (bound_two
, m1
, m2
);
643 value_min (bound_one
, bound_one
, bound_two
);
644 value_min (bound_two
, b1
, b2
);
648 value_max (bound_one
, bound_one
, bound_two
);
649 value_max (bound_two
, b1
, b2
);
663 /* Return a type that can represent the result of the reduction. */
664 return max_precision_type (type
, type_for_interval (bound_one
, bound_two
));
667 /* Return the type for the clast_binary B used in STMT. */
670 type_for_clast_bin (struct clast_binary
*b
, ivs_params_p ip
, mpz_t bound_one
,
674 tree l
= type_for_clast_expr ((struct clast_expr
*) b
->LHS
, ip
,
675 bound_one
, bound_two
);
676 tree r
= type_for_value (b
->RHS
);
677 tree type
= max_precision_type (l
, r
);
682 mpz_mdiv (bound_one
, bound_one
, b
->RHS
);
683 mpz_mdiv (bound_two
, bound_two
, b
->RHS
);
687 mpz_mdiv (bound_one
, bound_one
, b
->RHS
);
688 mpz_mdiv (bound_two
, bound_two
, b
->RHS
);
690 mpz_add (bound_one
, bound_one
, one
);
691 mpz_add (bound_two
, bound_two
, one
);
696 mpz_div (bound_one
, bound_one
, b
->RHS
);
697 mpz_div (bound_two
, bound_two
, b
->RHS
);
701 mpz_mod (bound_one
, bound_one
, b
->RHS
);
702 mpz_mod (bound_two
, bound_two
, b
->RHS
);
709 /* Return a type that can represent the result of the reduction. */
710 return max_precision_type (type
, type_for_interval (bound_one
, bound_two
));
713 /* Return the type for the clast_name NAME. Initializes BOUND_ONE and
714 BOUND_TWO to the bounds of the term. */
717 type_for_clast_name (struct clast_name
*name
, ivs_params_p ip
, mpz_t bound_one
,
722 if (ip
->params
.exists () && ip
->params_index
.is_created ())
723 found
= clast_name_to_lb_ub (name
, ip
->params_index
, bound_one
, bound_two
);
727 gcc_assert (ip
->newivs
&& ip
->newivs_index
.is_created ());
728 found
= clast_name_to_lb_ub (name
, ip
->newivs_index
, bound_one
,
733 return TREE_TYPE (clast_name_to_gcc (name
, ip
));
736 /* Returns the type for the CLAST expression E when used in statement
740 type_for_clast_expr (struct clast_expr
*e
, ivs_params_p ip
, mpz_t bound_one
,
745 case clast_expr_term
:
746 return type_for_clast_term ((struct clast_term
*) e
, ip
,
747 bound_one
, bound_two
);
750 return type_for_clast_red ((struct clast_reduction
*) e
, ip
,
751 bound_one
, bound_two
);
754 return type_for_clast_bin ((struct clast_binary
*) e
, ip
,
755 bound_one
, bound_two
);
757 case clast_expr_name
:
758 return type_for_clast_name ((struct clast_name
*) e
, ip
,
759 bound_one
, bound_two
);
768 /* Returns true if the clast expression E is a constant with VALUE. */
771 clast_expr_const_value_p (struct clast_expr
*e
, int value
)
773 struct clast_term
*t
;
774 if (e
->type
!= clast_expr_term
)
776 t
= (struct clast_term
*)e
;
779 return 0 == mpz_cmp_si (t
->val
, value
);
782 /* Translates a clast equation CLEQ to a tree. */
785 graphite_translate_clast_equation (struct clast_equation
*cleq
,
789 tree type
, lhs
, rhs
, ltype
, rtype
;
790 mpz_t bound_one
, bound_two
;
791 struct clast_expr
*clhs
, *crhs
;
797 else if (cleq
->sign
> 0)
802 /* Special cases to reduce range of arguments to hopefully
803 don't need types with larger precision than the input. */
804 if (crhs
->type
== clast_expr_red
807 struct clast_reduction
*r
= (struct clast_reduction
*) crhs
;
808 /* X >= A+1 --> X > A and
809 X <= A-1 --> X < A */
811 && r
->type
== clast_red_sum
812 && clast_expr_const_value_p (r
->elts
[1], comp
== GE_EXPR
? 1 : -1))
815 comp
= comp
== GE_EXPR
? GT_EXPR
: LT_EXPR
;
819 mpz_init (bound_one
);
820 mpz_init (bound_two
);
822 ltype
= type_for_clast_expr (clhs
, ip
, bound_one
, bound_two
);
823 rtype
= type_for_clast_expr (crhs
, ip
, bound_one
, bound_two
);
825 mpz_clear (bound_one
);
826 mpz_clear (bound_two
);
827 type
= max_precision_type (ltype
, rtype
);
829 lhs
= clast_to_gcc_expression (type
, clhs
, ip
);
830 rhs
= clast_to_gcc_expression (type
, crhs
, ip
);
832 return fold_build2 (comp
, boolean_type_node
, lhs
, rhs
);
835 /* Creates the test for the condition in STMT. */
838 graphite_create_guard_cond_expr (struct clast_guard
*stmt
,
844 for (i
= 0; i
< stmt
->n
; i
++)
846 tree eq
= graphite_translate_clast_equation (&stmt
->eq
[i
], ip
);
849 cond
= fold_build2 (TRUTH_AND_EXPR
, TREE_TYPE (eq
), cond
, eq
);
857 /* Creates a new if region corresponding to Cloog's guard. */
860 graphite_create_new_guard (edge entry_edge
, struct clast_guard
*stmt
,
863 tree cond_expr
= graphite_create_guard_cond_expr (stmt
, ip
);
864 edge exit_edge
= create_empty_if_region_on_edge (entry_edge
, cond_expr
);
868 /* Compute the lower bound LOW and upper bound UP for the parameter
869 PARAM in scop SCOP based on the constraints in the context. */
872 compute_bounds_for_param (scop_p scop
, int param
, mpz_t low
, mpz_t up
)
875 isl_aff
*aff
= isl_aff_zero_on_domain
876 (isl_local_space_from_space (isl_set_get_space (scop
->context
)));
878 aff
= isl_aff_add_coefficient_si (aff
, isl_dim_param
, param
, 1);
881 isl_set_min (scop
->context
, aff
, &v
);
882 isl_int_get_gmp (v
, low
);
883 isl_set_max (scop
->context
, aff
, &v
);
884 isl_int_get_gmp (v
, up
);
889 /* Compute the lower bound LOW and upper bound UP for the induction
890 variable of loop LOOP.
892 FIXME: This one is not entirely correct, as min/max expressions in the
893 calculation can yield to incorrect results. To be completely
894 correct, we need to evaluate each subexpression generated by
895 CLooG. CLooG does not yet support this, so this is as good as
899 compute_bounds_for_loop (struct clast_for
*loop
, mpz_t low
, mpz_t up
)
903 isl_local_space
*local_space
;
905 enum isl_lp_result lp_result
;
907 domain
= isl_set_copy (isl_set_from_cloog_domain (loop
->domain
));
908 local_space
= isl_local_space_from_space (isl_set_get_space (domain
));
909 dimension
= isl_aff_zero_on_domain (local_space
);
910 dimension
= isl_aff_add_coefficient_si (dimension
, isl_dim_in
,
911 isl_set_dim (domain
, isl_dim_set
) - 1,
914 isl_int_init (isl_value
);
916 lp_result
= isl_set_min (domain
, dimension
, &isl_value
);
917 assert (lp_result
== isl_lp_ok
);
918 isl_int_get_gmp (isl_value
, low
);
920 lp_result
= isl_set_max (domain
, dimension
, &isl_value
);
921 assert (lp_result
== isl_lp_ok
);
922 isl_int_get_gmp (isl_value
, up
);
924 isl_int_clear (isl_value
);
925 isl_set_free (domain
);
926 isl_aff_free (dimension
);
929 /* Returns the type for the induction variable for the loop translated
933 type_for_clast_for (struct clast_for
*stmt_for
, ivs_params_p ip
)
935 mpz_t bound_one
, bound_two
;
936 tree lb_type
, ub_type
;
938 mpz_init (bound_one
);
939 mpz_init (bound_two
);
941 lb_type
= type_for_clast_expr (stmt_for
->LB
, ip
, bound_one
, bound_two
);
942 ub_type
= type_for_clast_expr (stmt_for
->UB
, ip
, bound_one
, bound_two
);
944 mpz_clear (bound_one
);
945 mpz_clear (bound_two
);
947 return max_precision_type (lb_type
, ub_type
);
950 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
951 induction variable for the new LOOP. New LOOP is attached to CFG
952 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
953 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
954 CLooG's scattering name to the induction variable created for the
955 loop of STMT. The new induction variable is inserted in the NEWIVS
956 vector and is of type TYPE. */
959 graphite_create_new_loop (edge entry_edge
, struct clast_for
*stmt
,
960 loop_p outer
, tree type
, tree lb
, tree ub
,
961 int level
, ivs_params_p ip
)
965 tree stride
= gmp_cst_to_tree (type
, stmt
->stride
);
966 tree ivvar
= create_tmp_var (type
, "graphite_IV");
967 tree iv
, iv_after_increment
;
968 loop_p loop
= create_empty_loop_on_edge
969 (entry_edge
, lb
, stride
, ub
, ivvar
, &iv
, &iv_after_increment
,
970 outer
? outer
: entry_edge
->src
->loop_father
);
974 compute_bounds_for_loop (stmt
, low
, up
);
975 save_clast_name_index (ip
->newivs_index
, stmt
->iterator
,
976 (*ip
->newivs
).length (), level
, low
, up
);
979 (*ip
->newivs
).safe_push (iv
);
983 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
984 induction variables of the loops around GBB in SESE. */
987 build_iv_mapping (vec
<tree
> iv_map
, struct clast_user_stmt
*user_stmt
,
990 struct clast_stmt
*t
;
992 CloogStatement
*cs
= user_stmt
->statement
;
993 poly_bb_p pbb
= (poly_bb_p
) cs
->usr
;
994 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
995 mpz_t bound_one
, bound_two
;
997 mpz_init (bound_one
);
998 mpz_init (bound_two
);
1000 for (t
= user_stmt
->substitutions
; t
; t
= t
->next
, depth
++)
1002 struct clast_expr
*expr
= (struct clast_expr
*)
1003 ((struct clast_assignment
*)t
)->RHS
;
1004 tree type
= type_for_clast_expr (expr
, ip
, bound_one
, bound_two
);
1005 tree new_name
= clast_to_gcc_expression (type
, expr
, ip
);
1006 loop_p old_loop
= gbb_loop_at_index (gbb
, ip
->region
, depth
);
1008 iv_map
[old_loop
->num
] = new_name
;
1011 mpz_clear (bound_one
);
1012 mpz_clear (bound_two
);
1015 /* Construct bb_pbb_def with BB and PBB. */
1018 new_bb_pbb_def (basic_block bb
, poly_bb_p pbb
)
1020 bb_pbb_def
*bb_pbb_p
;
1022 bb_pbb_p
= XNEW (bb_pbb_def
);
1024 bb_pbb_p
->pbb
= pbb
;
1029 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
1032 mark_bb_with_pbb (poly_bb_p pbb
, basic_block bb
,
1033 bb_pbb_htab_type bb_pbb_mapping
)
1039 x
= bb_pbb_mapping
.find_slot (&tmp
, INSERT
);
1042 *x
= new_bb_pbb_def (bb
, pbb
);
1045 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
1048 find_pbb_via_hash (bb_pbb_htab_type bb_pbb_mapping
, basic_block bb
)
1054 slot
= bb_pbb_mapping
.find_slot (&tmp
, NO_INSERT
);
1057 return ((bb_pbb_def
*) *slot
)->pbb
;
1062 /* Return the scop of the loop and initialize PBBS the set of
1063 poly_bb_p that belong to the LOOP. BB_PBB_MAPPING is a map created
1064 by the CLAST code generator between a generated basic_block and its
1065 related poly_bb_p. */
1068 get_loop_body_pbbs (loop_p loop
, bb_pbb_htab_type bb_pbb_mapping
,
1069 vec
<poly_bb_p
> *pbbs
)
1072 basic_block
*bbs
= get_loop_body_in_dom_order (loop
);
1075 for (i
= 0; i
< loop
->num_nodes
; i
++)
1077 poly_bb_p pbb
= find_pbb_via_hash (bb_pbb_mapping
, bbs
[i
]);
1082 scop
= PBB_SCOP (pbb
);
1083 (*pbbs
).safe_push (pbb
);
1090 /* Translates a clast user statement STMT to gimple.
1092 - NEXT_E is the edge where new generated code should be attached.
1093 - CONTEXT_LOOP is the loop in which the generated code will be placed
1094 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1097 translate_clast_user (struct clast_user_stmt
*stmt
, edge next_e
,
1098 bb_pbb_htab_type bb_pbb_mapping
, ivs_params_p ip
)
1102 poly_bb_p pbb
= (poly_bb_p
) stmt
->statement
->usr
;
1103 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
1106 if (GBB_BB (gbb
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1109 nb_loops
= number_of_loops (cfun
);
1110 iv_map
.create (nb_loops
);
1111 for (i
= 0; i
< nb_loops
; i
++)
1112 iv_map
.quick_push (NULL_TREE
);
1114 build_iv_mapping (iv_map
, stmt
, ip
);
1115 next_e
= copy_bb_and_scalar_dependences (GBB_BB (gbb
), ip
->region
,
1116 next_e
, iv_map
, &gloog_error
);
1119 new_bb
= next_e
->src
;
1120 mark_bb_with_pbb (pbb
, new_bb
, bb_pbb_mapping
);
1121 mark_virtual_operands_for_renaming (cfun
);
1122 update_ssa (TODO_update_ssa
);
1127 /* Creates a new if region protecting the loop to be executed, if the execution
1128 count is zero (lb > ub). */
1131 graphite_create_new_loop_guard (edge entry_edge
, struct clast_for
*stmt
,
1132 tree
*type
, tree
*lb
, tree
*ub
,
1138 *type
= type_for_clast_for (stmt
, ip
);
1139 *lb
= clast_to_gcc_expression (*type
, stmt
->LB
, ip
);
1140 *ub
= clast_to_gcc_expression (*type
, stmt
->UB
, ip
);
1142 /* When ub is simply a constant or a parameter, use lb <= ub. */
1143 if (TREE_CODE (*ub
) == INTEGER_CST
|| TREE_CODE (*ub
) == SSA_NAME
)
1144 cond_expr
= fold_build2 (LE_EXPR
, boolean_type_node
, *lb
, *ub
);
1147 tree one
= (POINTER_TYPE_P (*type
)
1148 ? convert_to_ptrofftype (integer_one_node
)
1149 : fold_convert (*type
, integer_one_node
));
1150 /* Adding +1 and using LT_EXPR helps with loop latches that have a
1151 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
1152 2^k-1 due to integer overflow, and the condition lb <= ub is true,
1153 even if we do not want this. However lb < ub + 1 is false, as
1155 tree ub_one
= fold_build2 (POINTER_TYPE_P (*type
) ? POINTER_PLUS_EXPR
1156 : PLUS_EXPR
, *type
, *ub
, one
);
1158 cond_expr
= fold_build2 (LT_EXPR
, boolean_type_node
, *lb
, ub_one
);
1161 exit_edge
= create_empty_if_region_on_edge (entry_edge
, cond_expr
);
1167 translate_clast (loop_p
, struct clast_stmt
*, edge
, bb_pbb_htab_type
,
1170 /* Create the loop for a clast for statement.
1172 - NEXT_E is the edge where new generated code should be attached.
1173 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1176 translate_clast_for_loop (loop_p context_loop
, struct clast_for
*stmt
,
1177 edge next_e
, bb_pbb_htab_type bb_pbb_mapping
,
1178 int level
, tree type
, tree lb
, tree ub
,
1181 struct loop
*loop
= graphite_create_new_loop (next_e
, stmt
, context_loop
,
1182 type
, lb
, ub
, level
, ip
);
1183 edge last_e
= single_exit (loop
);
1184 edge to_body
= single_succ_edge (loop
->header
);
1185 basic_block after
= to_body
->dest
;
1187 /* Create a basic block for loop close phi nodes. */
1188 last_e
= single_succ_edge (split_edge (last_e
));
1190 /* Translate the body of the loop. */
1191 next_e
= translate_clast (loop
, stmt
->body
, to_body
, bb_pbb_mapping
,
1193 redirect_edge_succ_nodup (next_e
, after
);
1194 set_immediate_dominator (CDI_DOMINATORS
, next_e
->dest
, next_e
->src
);
1196 isl_set
*domain
= isl_set_from_cloog_domain (stmt
->domain
);
1197 int scheduling_dim
= isl_set_n_dim (domain
);
1199 if (flag_loop_parallelize_all
1200 && loop_is_parallel_p (loop
, bb_pbb_mapping
, scheduling_dim
))
1201 loop
->can_be_parallel
= true;
1206 /* Translates a clast for statement STMT to gimple. First a guard is created
1207 protecting the loop, if it is executed zero times. In this guard we create
1208 the real loop structure.
1210 - NEXT_E is the edge where new generated code should be attached.
1211 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1214 translate_clast_for (loop_p context_loop
, struct clast_for
*stmt
, edge next_e
,
1215 bb_pbb_htab_type bb_pbb_mapping
, int level
,
1219 edge last_e
= graphite_create_new_loop_guard (next_e
, stmt
, &type
,
1221 edge true_e
= get_true_edge_from_guard_bb (next_e
->dest
);
1223 translate_clast_for_loop (context_loop
, stmt
, true_e
, bb_pbb_mapping
, level
,
1228 /* Translates a clast assignment STMT to gimple.
1230 - NEXT_E is the edge where new generated code should be attached.
1231 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1234 translate_clast_assignment (struct clast_assignment
*stmt
, edge next_e
,
1235 int level
, ivs_params_p ip
)
1238 mpz_t bound_one
, bound_two
;
1239 tree type
, new_name
, var
;
1240 edge res
= single_succ_edge (split_edge (next_e
));
1241 struct clast_expr
*expr
= (struct clast_expr
*) stmt
->RHS
;
1243 mpz_init (bound_one
);
1244 mpz_init (bound_two
);
1245 type
= type_for_clast_expr (expr
, ip
, bound_one
, bound_two
);
1246 var
= create_tmp_var (type
, "graphite_var");
1247 new_name
= force_gimple_operand (clast_to_gcc_expression (type
, expr
, ip
),
1251 gsi_insert_seq_on_edge (next_e
, stmts
);
1252 gsi_commit_edge_inserts ();
1255 save_clast_name_index (ip
->newivs_index
, stmt
->LHS
,
1256 (*ip
->newivs
).length (), level
,
1257 bound_one
, bound_two
);
1258 (*ip
->newivs
).safe_push (new_name
);
1260 mpz_clear (bound_one
);
1261 mpz_clear (bound_two
);
1266 /* Translates a clast guard statement STMT to gimple.
1268 - NEXT_E is the edge where new generated code should be attached.
1269 - CONTEXT_LOOP is the loop in which the generated code will be placed
1270 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1273 translate_clast_guard (loop_p context_loop
, struct clast_guard
*stmt
,
1274 edge next_e
, bb_pbb_htab_type bb_pbb_mapping
, int level
,
1277 edge last_e
= graphite_create_new_guard (next_e
, stmt
, ip
);
1278 edge true_e
= get_true_edge_from_guard_bb (next_e
->dest
);
1280 translate_clast (context_loop
, stmt
->then
, true_e
, bb_pbb_mapping
, level
, ip
);
1284 /* Translates a CLAST statement STMT to GCC representation in the
1287 - NEXT_E is the edge where new generated code should be attached.
1288 - CONTEXT_LOOP is the loop in which the generated code will be placed
1289 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1292 translate_clast (loop_p context_loop
, struct clast_stmt
*stmt
, edge next_e
,
1293 bb_pbb_htab_type bb_pbb_mapping
, int level
, ivs_params_p ip
)
1298 if (CLAST_STMT_IS_A (stmt
, stmt_root
))
1301 else if (CLAST_STMT_IS_A (stmt
, stmt_user
))
1302 next_e
= translate_clast_user ((struct clast_user_stmt
*) stmt
,
1303 next_e
, bb_pbb_mapping
, ip
);
1305 else if (CLAST_STMT_IS_A (stmt
, stmt_for
))
1306 next_e
= translate_clast_for (context_loop
, (struct clast_for
*) stmt
,
1307 next_e
, bb_pbb_mapping
, level
, ip
);
1309 else if (CLAST_STMT_IS_A (stmt
, stmt_guard
))
1310 next_e
= translate_clast_guard (context_loop
, (struct clast_guard
*) stmt
,
1311 next_e
, bb_pbb_mapping
, level
, ip
);
1313 else if (CLAST_STMT_IS_A (stmt
, stmt_block
))
1314 next_e
= translate_clast (context_loop
, ((struct clast_block
*) stmt
)->body
,
1315 next_e
, bb_pbb_mapping
, level
, ip
);
1317 else if (CLAST_STMT_IS_A (stmt
, stmt_ass
))
1318 next_e
= translate_clast_assignment ((struct clast_assignment
*) stmt
,
1323 recompute_all_dominators ();
1326 return translate_clast (context_loop
, stmt
->next
, next_e
, bb_pbb_mapping
,
1330 /* Add parameter and iterator names to the CloogUnionDomain. */
1332 static CloogUnionDomain
*
1333 add_names_to_union_domain (scop_p scop
, CloogUnionDomain
*union_domain
,
1334 int nb_scattering_dims
,
1335 clast_index_htab_type params_index
)
1337 sese region
= SCOP_REGION (scop
);
1339 int nb_iterators
= scop_max_loop_depth (scop
);
1340 int nb_parameters
= SESE_PARAMS (region
).length ();
1341 mpz_t bound_one
, bound_two
;
1343 mpz_init (bound_one
);
1344 mpz_init (bound_two
);
1346 for (i
= 0; i
< nb_parameters
; i
++)
1348 tree param
= SESE_PARAMS (region
)[i
];
1349 const char *name
= get_name (param
);
1356 len
= strlen (name
);
1358 parameter
= XNEWVEC (char, len
+ 1);
1359 snprintf (parameter
, len
, "%s_%d", name
, SSA_NAME_VERSION (param
));
1360 save_clast_name_index (params_index
, parameter
, i
, i
, bound_one
,
1362 union_domain
= cloog_union_domain_set_name (union_domain
, CLOOG_PARAM
, i
,
1364 compute_bounds_for_param (scop
, i
, bound_one
, bound_two
);
1368 mpz_clear (bound_one
);
1369 mpz_clear (bound_two
);
1371 for (i
= 0; i
< nb_iterators
; i
++)
1375 iterator
= XNEWVEC (char, len
);
1376 snprintf (iterator
, len
, "git_%d", i
);
1377 union_domain
= cloog_union_domain_set_name (union_domain
, CLOOG_ITER
, i
,
1382 for (i
= 0; i
< nb_scattering_dims
; i
++)
1386 scattering
= XNEWVEC (char, len
);
1387 snprintf (scattering
, len
, "scat_%d", i
);
1388 union_domain
= cloog_union_domain_set_name (union_domain
, CLOOG_SCAT
, i
,
1393 return union_domain
;
1396 /* Initialize a CLooG input file. */
1399 init_cloog_input_file (int scop_number
)
1401 FILE *graphite_out_file
;
1402 int len
= strlen (dump_base_name
);
1403 char *dumpname
= XNEWVEC (char, len
+ 25);
1404 char *s_scop_number
= XNEWVEC (char, 15);
1406 memcpy (dumpname
, dump_base_name
, len
+ 1);
1407 strip_off_ending (dumpname
, len
);
1408 sprintf (s_scop_number
, ".%d", scop_number
);
1409 strcat (dumpname
, s_scop_number
);
1410 strcat (dumpname
, ".cloog");
1411 graphite_out_file
= fopen (dumpname
, "w+b");
1413 if (graphite_out_file
== 0)
1414 fatal_error ("can%'t open %s for writing: %m", dumpname
);
1418 return graphite_out_file
;
1421 /* Extend the scattering to NEW_DIMS scattering dimensions. */
1424 isl_map
*extend_scattering (isl_map
*scattering
, int new_dims
)
1428 isl_basic_map
*change_scattering
;
1429 isl_map
*change_scattering_map
;
1431 old_dims
= isl_map_dim (scattering
, isl_dim_out
);
1433 space
= isl_space_alloc (isl_map_get_ctx (scattering
), 0, old_dims
, new_dims
);
1434 change_scattering
= isl_basic_map_universe (isl_space_copy (space
));
1436 for (i
= 0; i
< old_dims
; i
++)
1439 c
= isl_equality_alloc
1440 (isl_local_space_from_space (isl_space_copy (space
)));
1441 isl_constraint_set_coefficient_si (c
, isl_dim_in
, i
, 1);
1442 isl_constraint_set_coefficient_si (c
, isl_dim_out
, i
, -1);
1443 change_scattering
= isl_basic_map_add_constraint (change_scattering
, c
);
1446 for (i
= old_dims
; i
< new_dims
; i
++)
1449 c
= isl_equality_alloc
1450 (isl_local_space_from_space (isl_space_copy (space
)));
1451 isl_constraint_set_coefficient_si (c
, isl_dim_out
, i
, 1);
1452 change_scattering
= isl_basic_map_add_constraint (change_scattering
, c
);
1455 change_scattering_map
= isl_map_from_basic_map (change_scattering
);
1456 change_scattering_map
= isl_map_align_params (change_scattering_map
, space
);
1457 return isl_map_apply_range (scattering
, change_scattering_map
);
1460 /* Build cloog union domain for SCoP. */
1462 static CloogUnionDomain
*
1463 build_cloog_union_domain (scop_p scop
, int nb_scattering_dims
)
1467 CloogUnionDomain
*union_domain
=
1468 cloog_union_domain_alloc (scop_nb_params (scop
));
1470 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1472 CloogDomain
*domain
;
1473 CloogScattering
*scattering
;
1475 /* Dead code elimination: when the domain of a PBB is empty,
1476 don't generate code for the PBB. */
1477 if (isl_set_is_empty (pbb
->domain
))
1480 domain
= cloog_domain_from_isl_set (isl_set_copy (pbb
->domain
));
1481 scattering
= cloog_scattering_from_isl_map
1482 (extend_scattering (isl_map_copy (pbb
->transformed
),
1483 nb_scattering_dims
));
1485 union_domain
= cloog_union_domain_add_domain (union_domain
, "", domain
,
1489 return union_domain
;
1492 /* Return the options that will be used in GLOOG. */
1494 static CloogOptions
*
1495 set_cloog_options (void)
1497 CloogOptions
*options
= cloog_options_malloc (cloog_state
);
1499 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1500 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1501 we pass an incomplete program to cloog. */
1502 options
->language
= CLOOG_LANGUAGE_C
;
1504 /* Enable complex equality spreading: removes dummy statements
1505 (assignments) in the generated code which repeats the
1506 substitution equations for statements. This is useless for
1510 /* Silence CLooG to avoid failing tests due to debug output to stderr. */
1513 /* Allow cloog to build strides with a stride width different to one.
1514 This example has stride = 4:
1516 for (i = 0; i < 20; i += 4)
1518 options
->strides
= 1;
1520 /* We want the clast to provide the iteration domains of the executed loops.
1521 This allows us to derive minimal/maximal values for the induction
1523 options
->save_domains
= 1;
1525 /* Do not remove scalar dimensions. CLooG by default removes scalar
1526 dimensions very early from the input schedule. However, they are
1527 necessary to correctly derive from the saved domains
1528 (options->save_domains) the relationship between the generated loops
1529 and the schedule dimensions they are generated from. */
1530 options
->noscalars
= 1;
1532 /* Disable optimizations and make cloog generate source code closer to the
1533 input. This is useful for debugging, but later we want the optimized
1536 XXX: We can not disable optimizations, as loop blocking is not working
1541 options
->l
= INT_MAX
;
1547 /* Prints STMT to STDERR. */
1550 print_clast_stmt (FILE *file
, struct clast_stmt
*stmt
)
1552 CloogOptions
*options
= set_cloog_options ();
1554 clast_pprint (file
, stmt
, 0, options
);
1555 cloog_options_free (options
);
1558 /* Prints STMT to STDERR. */
1561 debug_clast_stmt (struct clast_stmt
*stmt
)
1563 print_clast_stmt (stderr
, stmt
);
1566 /* Get the maximal number of scattering dimensions in the scop SCOP. */
1569 int get_max_scattering_dimensions (scop_p scop
)
1573 int scattering_dims
= 0;
1575 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1577 int pbb_scatt_dims
= isl_map_dim (pbb
->transformed
, isl_dim_out
);
1578 if (pbb_scatt_dims
> scattering_dims
)
1579 scattering_dims
= pbb_scatt_dims
;
1582 return scattering_dims
;
1586 generate_cloog_input (scop_p scop
, clast_index_htab_type params_index
)
1588 CloogUnionDomain
*union_domain
;
1589 CloogInput
*cloog_input
;
1590 CloogDomain
*context
;
1591 int nb_scattering_dims
= get_max_scattering_dimensions (scop
);
1593 union_domain
= build_cloog_union_domain (scop
, nb_scattering_dims
);
1594 union_domain
= add_names_to_union_domain (scop
, union_domain
,
1597 context
= cloog_domain_from_isl_set (isl_set_copy (scop
->context
));
1599 cloog_input
= cloog_input_alloc (context
, union_domain
);
1604 /* Translate SCOP to a CLooG program and clast. These two
1605 representations should be freed together: a clast cannot be used
1606 without a program. */
1608 static struct clast_stmt
*
1609 scop_to_clast (scop_p scop
, clast_index_htab_type params_index
)
1611 CloogInput
*cloog_input
;
1612 struct clast_stmt
*clast
;
1613 CloogOptions
*options
= set_cloog_options ();
1615 cloog_input
= generate_cloog_input (scop
, params_index
);
1617 /* Dump a .cloog input file, if requested. This feature is only
1618 enabled in the Graphite branch. */
1621 static size_t file_scop_number
= 0;
1622 FILE *cloog_file
= init_cloog_input_file (file_scop_number
);
1623 cloog_input_dump_cloog (cloog_file
, cloog_input
, options
);
1626 clast
= cloog_clast_create_from_input (cloog_input
, options
);
1628 cloog_options_free (options
);
1632 /* Prints to FILE the code generated by CLooG for SCOP. */
1635 print_generated_program (FILE *file
, scop_p scop
)
1637 CloogOptions
*options
= set_cloog_options ();
1638 clast_index_htab_type params_index
;
1639 struct clast_stmt
*clast
;
1641 params_index
.create (10);
1643 clast
= scop_to_clast (scop
, params_index
);
1645 fprintf (file
, " (clast: \n");
1646 clast_pprint (file
, clast
, 0, options
);
1647 fprintf (file
, " )\n");
1649 cloog_options_free (options
);
1650 cloog_clast_free (clast
);
1653 /* Prints to STDERR the code generated by CLooG for SCOP. */
1656 debug_generated_program (scop_p scop
)
1658 print_generated_program (stderr
, scop
);
1661 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1662 the given SCOP. Return true if code generation succeeded.
1663 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1667 gloog (scop_p scop
, bb_pbb_htab_type bb_pbb_mapping
)
1669 auto_vec
<tree
, 10> newivs
;
1670 loop_p context_loop
;
1671 sese region
= SCOP_REGION (scop
);
1672 ifsese if_region
= NULL
;
1673 clast_index_htab_type newivs_index
, params_index
;
1674 struct clast_stmt
*clast
;
1675 struct ivs_params ip
;
1677 timevar_push (TV_GRAPHITE_CODE_GEN
);
1678 gloog_error
= false;
1680 params_index
.create (10);
1682 clast
= scop_to_clast (scop
, params_index
);
1684 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1686 fprintf (dump_file
, "\nCLAST generated by CLooG: \n");
1687 print_clast_stmt (dump_file
, clast
);
1688 fprintf (dump_file
, "\n");
1691 recompute_all_dominators ();
1694 if_region
= move_sese_in_condition (region
);
1695 sese_insert_phis_for_liveouts (region
,
1696 if_region
->region
->exit
->src
,
1697 if_region
->false_region
->exit
,
1698 if_region
->true_region
->exit
);
1699 recompute_all_dominators ();
1702 context_loop
= SESE_ENTRY (region
)->src
->loop_father
;
1703 newivs_index
.create (10);
1705 ip
.newivs
= &newivs
;
1706 ip
.newivs_index
= newivs_index
;
1707 ip
.params
= SESE_PARAMS (region
);
1708 ip
.params_index
= params_index
;
1711 translate_clast (context_loop
, clast
, if_region
->true_region
->entry
,
1712 bb_pbb_mapping
, 0, &ip
);
1715 recompute_all_dominators ();
1719 set_ifsese_condition (if_region
, integer_zero_node
);
1721 free (if_region
->true_region
);
1722 free (if_region
->region
);
1725 newivs_index
.dispose ();
1726 params_index
.dispose ();
1727 cloog_clast_free (clast
);
1728 timevar_pop (TV_GRAPHITE_CODE_GEN
);
1730 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1733 int num_no_dependency
= 0;
1735 FOR_EACH_LOOP (loop
, 0)
1736 if (loop
->can_be_parallel
)
1737 num_no_dependency
++;
1739 fprintf (dump_file
, "\n%d loops carried no dependency.\n",
1743 return !gloog_error
;