Support lower and upper limit for -fdbg-cnt flag.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobe82c1fe027ee74310888d4f3b22e4429afd24869
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
51 /*************************************************************************
52 Simple Loop Peeling Utilities
54 Utilities to support loop peeling for vectorization purposes.
55 *************************************************************************/
58 /* Renames the use *OP_P. */
60 static void
61 rename_use_op (use_operand_p op_p)
63 tree new_name;
65 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
66 return;
68 new_name = get_current_def (USE_FROM_PTR (op_p));
70 /* Something defined outside of the loop. */
71 if (!new_name)
72 return;
74 /* An ordinary ssa name defined in the loop. */
76 SET_USE (op_p, new_name);
80 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
81 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
82 true. */
84 static void
85 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
87 gimple *stmt;
88 use_operand_p use_p;
89 ssa_op_iter iter;
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = bb->loop_father;
93 struct loop *outer_loop = NULL;
95 if (rename_from_outer_loop)
97 gcc_assert (loop);
98 outer_loop = loop_outer (loop);
101 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
102 gsi_next (&gsi))
104 stmt = gsi_stmt (gsi);
105 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
106 rename_use_op (use_p);
109 FOR_EACH_EDGE (e, ei, bb->preds)
111 if (!flow_bb_inside_loop_p (loop, e->src))
113 if (!rename_from_outer_loop)
114 continue;
115 if (e->src != outer_loop->header)
117 if (outer_loop->inner->next)
119 /* If outer_loop has 2 inner loops, allow there to
120 be an extra basic block which decides which of the
121 two loops to use using LOOP_VECTORIZED. */
122 if (!single_pred_p (e->src)
123 || single_pred (e->src) != outer_loop->header)
124 continue;
128 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
129 gsi_next (&gsi))
130 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
135 struct adjust_info
137 tree from, to;
138 basic_block bb;
141 /* A stack of values to be adjusted in debug stmts. We have to
142 process them LIFO, so that the closest substitution applies. If we
143 processed them FIFO, without the stack, we might substitute uses
144 with a PHI DEF that would soon become non-dominant, and when we got
145 to the suitable one, it wouldn't have anything to substitute any
146 more. */
147 static vec<adjust_info, va_heap> adjust_vec;
149 /* Adjust any debug stmts that referenced AI->from values to use the
150 loop-closed AI->to, if the references are dominated by AI->bb and
151 not by the definition of AI->from. */
153 static void
154 adjust_debug_stmts_now (adjust_info *ai)
156 basic_block bbphi = ai->bb;
157 tree orig_def = ai->from;
158 tree new_def = ai->to;
159 imm_use_iterator imm_iter;
160 gimple *stmt;
161 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
163 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
165 /* Adjust any debug stmts that held onto non-loop-closed
166 references. */
167 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
169 use_operand_p use_p;
170 basic_block bbuse;
172 if (!is_gimple_debug (stmt))
173 continue;
175 gcc_assert (gimple_debug_bind_p (stmt));
177 bbuse = gimple_bb (stmt);
179 if ((bbuse == bbphi
180 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
181 && !(bbuse == bbdef
182 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
184 if (new_def)
185 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
186 SET_USE (use_p, new_def);
187 else
189 gimple_debug_bind_reset_value (stmt);
190 update_stmt (stmt);
196 /* Adjust debug stmts as scheduled before. */
198 static void
199 adjust_vec_debug_stmts (void)
201 if (!MAY_HAVE_DEBUG_BIND_STMTS)
202 return;
204 gcc_assert (adjust_vec.exists ());
206 while (!adjust_vec.is_empty ())
208 adjust_debug_stmts_now (&adjust_vec.last ());
209 adjust_vec.pop ();
213 /* Adjust any debug stmts that referenced FROM values to use the
214 loop-closed TO, if the references are dominated by BB and not by
215 the definition of FROM. If adjust_vec is non-NULL, adjustments
216 will be postponed until adjust_vec_debug_stmts is called. */
218 static void
219 adjust_debug_stmts (tree from, tree to, basic_block bb)
221 adjust_info ai;
223 if (MAY_HAVE_DEBUG_BIND_STMTS
224 && TREE_CODE (from) == SSA_NAME
225 && ! SSA_NAME_IS_DEFAULT_DEF (from)
226 && ! virtual_operand_p (from))
228 ai.from = from;
229 ai.to = to;
230 ai.bb = bb;
232 if (adjust_vec.exists ())
233 adjust_vec.safe_push (ai);
234 else
235 adjust_debug_stmts_now (&ai);
239 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
240 to adjust any debug stmts that referenced the old phi arg,
241 presumably non-loop-closed references left over from other
242 transformations. */
244 static void
245 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
247 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
249 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
251 if (MAY_HAVE_DEBUG_BIND_STMTS)
252 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
253 gimple_bb (update_phi));
256 /* Define one loop mask MASK from loop LOOP. INIT_MASK is the value that
257 the mask should have during the first iteration and NEXT_MASK is the
258 value that it should have on subsequent iterations. */
260 static void
261 vect_set_loop_mask (struct loop *loop, tree mask, tree init_mask,
262 tree next_mask)
264 gphi *phi = create_phi_node (mask, loop->header);
265 add_phi_arg (phi, init_mask, loop_preheader_edge (loop), UNKNOWN_LOCATION);
266 add_phi_arg (phi, next_mask, loop_latch_edge (loop), UNKNOWN_LOCATION);
269 /* Add SEQ to the end of LOOP's preheader block. */
271 static void
272 add_preheader_seq (struct loop *loop, gimple_seq seq)
274 if (seq)
276 edge pe = loop_preheader_edge (loop);
277 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
278 gcc_assert (!new_bb);
282 /* Add SEQ to the beginning of LOOP's header block. */
284 static void
285 add_header_seq (struct loop *loop, gimple_seq seq)
287 if (seq)
289 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
290 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
294 /* Return true if the target can interleave elements of two vectors.
295 OFFSET is 0 if the first half of the vectors should be interleaved
296 or 1 if the second half should. When returning true, store the
297 associated permutation in INDICES. */
299 static bool
300 interleave_supported_p (vec_perm_indices *indices, tree vectype,
301 unsigned int offset)
303 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
304 poly_uint64 base = exact_div (nelts, 2) * offset;
305 vec_perm_builder sel (nelts, 2, 3);
306 for (unsigned int i = 0; i < 3; ++i)
308 sel.quick_push (base + i);
309 sel.quick_push (base + i + nelts);
311 indices->new_vector (sel, 2, nelts);
312 return can_vec_perm_const_p (TYPE_MODE (vectype), *indices);
315 /* Try to use permutes to define the masks in DEST_RGM using the masks
316 in SRC_RGM, given that the former has twice as many masks as the
317 latter. Return true on success, adding any new statements to SEQ. */
319 static bool
320 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_masks *dest_rgm,
321 rgroup_masks *src_rgm)
323 tree src_masktype = src_rgm->mask_type;
324 tree dest_masktype = dest_rgm->mask_type;
325 machine_mode src_mode = TYPE_MODE (src_masktype);
326 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
327 && optab_handler (vec_unpacku_hi_optab, src_mode) != CODE_FOR_nothing
328 && optab_handler (vec_unpacku_lo_optab, src_mode) != CODE_FOR_nothing)
330 /* Unpacking the source masks gives at least as many mask bits as
331 we need. We can then VIEW_CONVERT any excess bits away. */
332 tree unpack_masktype = vect_halve_mask_nunits (src_masktype);
333 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
335 tree src = src_rgm->masks[i / 2];
336 tree dest = dest_rgm->masks[i];
337 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
338 ? VEC_UNPACK_HI_EXPR
339 : VEC_UNPACK_LO_EXPR);
340 gassign *stmt;
341 if (dest_masktype == unpack_masktype)
342 stmt = gimple_build_assign (dest, code, src);
343 else
345 tree temp = make_ssa_name (unpack_masktype);
346 stmt = gimple_build_assign (temp, code, src);
347 gimple_seq_add_stmt (seq, stmt);
348 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
349 build1 (VIEW_CONVERT_EXPR,
350 dest_masktype, temp));
352 gimple_seq_add_stmt (seq, stmt);
354 return true;
356 vec_perm_indices indices[2];
357 if (dest_masktype == src_masktype
358 && interleave_supported_p (&indices[0], src_masktype, 0)
359 && interleave_supported_p (&indices[1], src_masktype, 1))
361 /* The destination requires twice as many mask bits as the source, so
362 we can use interleaving permutes to double up the number of bits. */
363 tree masks[2];
364 for (unsigned int i = 0; i < 2; ++i)
365 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
366 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
368 tree src = src_rgm->masks[i / 2];
369 tree dest = dest_rgm->masks[i];
370 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
371 src, src, masks[i & 1]);
372 gimple_seq_add_stmt (seq, stmt);
374 return true;
376 return false;
379 /* Helper for vect_set_loop_condition_masked. Generate definitions for
380 all the masks in RGM and return a mask that is nonzero when the loop
381 needs to iterate. Add any new preheader statements to PREHEADER_SEQ.
382 Use LOOP_COND_GSI to insert code before the exit gcond.
384 RGM belongs to loop LOOP. The loop originally iterated NITERS
385 times and has been vectorized according to LOOP_VINFO. Each iteration
386 of the vectorized loop handles VF iterations of the scalar loop.
388 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
389 starts with NITERS_SKIP dummy iterations of the scalar loop before
390 the real work starts. The mask elements for these dummy iterations
391 must be 0, to ensure that the extra iterations do not have an effect.
393 It is known that:
395 NITERS * RGM->max_nscalars_per_iter
397 does not overflow. However, MIGHT_WRAP_P says whether an induction
398 variable that starts at 0 and has step:
400 VF * RGM->max_nscalars_per_iter
402 might overflow before hitting a value above:
404 (NITERS + NITERS_SKIP) * RGM->max_nscalars_per_iter
406 This means that we cannot guarantee that such an induction variable
407 would ever hit a value that produces a set of all-false masks for RGM. */
409 static tree
410 vect_set_loop_masks_directly (struct loop *loop, loop_vec_info loop_vinfo,
411 gimple_seq *preheader_seq,
412 gimple_stmt_iterator loop_cond_gsi,
413 rgroup_masks *rgm, tree vf,
414 tree niters, tree niters_skip,
415 bool might_wrap_p)
417 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
418 tree mask_type = rgm->mask_type;
419 unsigned int nscalars_per_iter = rgm->max_nscalars_per_iter;
420 poly_uint64 nscalars_per_mask = TYPE_VECTOR_SUBPARTS (mask_type);
422 /* Calculate the maximum number of scalar values that the rgroup
423 handles in total, the number that it handles for each iteration
424 of the vector loop, and the number that it should skip during the
425 first iteration of the vector loop. */
426 tree nscalars_total = niters;
427 tree nscalars_step = vf;
428 tree nscalars_skip = niters_skip;
429 if (nscalars_per_iter != 1)
431 /* We checked before choosing to use a fully-masked loop that these
432 multiplications don't overflow. */
433 tree factor = build_int_cst (compare_type, nscalars_per_iter);
434 nscalars_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
435 nscalars_total, factor);
436 nscalars_step = gimple_build (preheader_seq, MULT_EXPR, compare_type,
437 nscalars_step, factor);
438 if (nscalars_skip)
439 nscalars_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
440 nscalars_skip, factor);
443 /* Create an induction variable that counts the number of scalars
444 processed. */
445 tree index_before_incr, index_after_incr;
446 gimple_stmt_iterator incr_gsi;
447 bool insert_after;
448 tree zero_index = build_int_cst (compare_type, 0);
449 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
450 create_iv (zero_index, nscalars_step, NULL_TREE, loop, &incr_gsi,
451 insert_after, &index_before_incr, &index_after_incr);
453 tree test_index, test_limit, first_limit;
454 gimple_stmt_iterator *test_gsi;
455 if (might_wrap_p)
457 /* In principle the loop should stop iterating once the incremented
458 IV reaches a value greater than or equal to:
460 NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP
462 However, there's no guarantee that this addition doesn't overflow
463 the comparison type, or that the IV hits a value above it before
464 wrapping around. We therefore adjust the limit down by one
465 IV step:
467 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
468 -[infinite-prec] NSCALARS_STEP
470 and compare the IV against this limit _before_ incrementing it.
471 Since the comparison type is unsigned, we actually want the
472 subtraction to saturate at zero:
474 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
475 -[sat] NSCALARS_STEP
477 And since NSCALARS_SKIP < NSCALARS_STEP, we can reassociate this as:
479 NSCALARS_TOTAL -[sat] (NSCALARS_STEP - NSCALARS_SKIP)
481 where the rightmost subtraction can be done directly in
482 COMPARE_TYPE. */
483 test_index = index_before_incr;
484 tree adjust = nscalars_step;
485 if (nscalars_skip)
486 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
487 adjust, nscalars_skip);
488 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
489 nscalars_total, adjust);
490 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
491 test_limit, adjust);
492 test_gsi = &incr_gsi;
494 /* Get a safe limit for the first iteration. */
495 if (nscalars_skip)
497 /* The first vector iteration can handle at most NSCALARS_STEP
498 scalars. NSCALARS_STEP <= CONST_LIMIT, and adding
499 NSCALARS_SKIP to that cannot overflow. */
500 tree const_limit = build_int_cst (compare_type,
501 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
502 * nscalars_per_iter);
503 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
504 nscalars_total, const_limit);
505 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
506 first_limit, nscalars_skip);
508 else
509 /* For the first iteration it doesn't matter whether the IV hits
510 a value above NSCALARS_TOTAL. That only matters for the latch
511 condition. */
512 first_limit = nscalars_total;
514 else
516 /* Test the incremented IV, which will always hit a value above
517 the bound before wrapping. */
518 test_index = index_after_incr;
519 test_limit = nscalars_total;
520 if (nscalars_skip)
521 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
522 test_limit, nscalars_skip);
523 test_gsi = &loop_cond_gsi;
525 first_limit = test_limit;
528 /* Provide a definition of each mask in the group. */
529 tree next_mask = NULL_TREE;
530 tree mask;
531 unsigned int i;
532 FOR_EACH_VEC_ELT_REVERSE (rgm->masks, i, mask)
534 /* Previous masks will cover BIAS scalars. This mask covers the
535 next batch. */
536 poly_uint64 bias = nscalars_per_mask * i;
537 tree bias_tree = build_int_cst (compare_type, bias);
538 gimple *tmp_stmt;
540 /* See whether the first iteration of the vector loop is known
541 to have a full mask. */
542 poly_uint64 const_limit;
543 bool first_iteration_full
544 = (poly_int_tree_p (first_limit, &const_limit)
545 && known_ge (const_limit, (i + 1) * nscalars_per_mask));
547 /* Rather than have a new IV that starts at BIAS and goes up to
548 TEST_LIMIT, prefer to use the same 0-based IV for each mask
549 and adjust the bound down by BIAS. */
550 tree this_test_limit = test_limit;
551 if (i != 0)
553 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
554 compare_type, this_test_limit,
555 bias_tree);
556 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
557 compare_type, this_test_limit,
558 bias_tree);
561 /* Create the initial mask. First include all scalars that
562 are within the loop limit. */
563 tree init_mask = NULL_TREE;
564 if (!first_iteration_full)
566 tree start, end;
567 if (first_limit == test_limit)
569 /* Use a natural test between zero (the initial IV value)
570 and the loop limit. The "else" block would be valid too,
571 but this choice can avoid the need to load BIAS_TREE into
572 a register. */
573 start = zero_index;
574 end = this_test_limit;
576 else
578 /* FIRST_LIMIT is the maximum number of scalars handled by the
579 first iteration of the vector loop. Test the portion
580 associated with this mask. */
581 start = bias_tree;
582 end = first_limit;
585 init_mask = make_temp_ssa_name (mask_type, NULL, "max_mask");
586 tmp_stmt = vect_gen_while (init_mask, start, end);
587 gimple_seq_add_stmt (preheader_seq, tmp_stmt);
590 /* Now AND out the bits that are within the number of skipped
591 scalars. */
592 poly_uint64 const_skip;
593 if (nscalars_skip
594 && !(poly_int_tree_p (nscalars_skip, &const_skip)
595 && known_le (const_skip, bias)))
597 tree unskipped_mask = vect_gen_while_not (preheader_seq, mask_type,
598 bias_tree, nscalars_skip);
599 if (init_mask)
600 init_mask = gimple_build (preheader_seq, BIT_AND_EXPR, mask_type,
601 init_mask, unskipped_mask);
602 else
603 init_mask = unskipped_mask;
606 if (!init_mask)
607 /* First iteration is full. */
608 init_mask = build_minus_one_cst (mask_type);
610 /* Get the mask value for the next iteration of the loop. */
611 next_mask = make_temp_ssa_name (mask_type, NULL, "next_mask");
612 gcall *call = vect_gen_while (next_mask, test_index, this_test_limit);
613 gsi_insert_before (test_gsi, call, GSI_SAME_STMT);
615 vect_set_loop_mask (loop, mask, init_mask, next_mask);
617 return next_mask;
620 /* Make LOOP iterate NITERS times using masking and WHILE_ULT calls.
621 LOOP_VINFO describes the vectorization of LOOP. NITERS is the
622 number of iterations of the original scalar loop that should be
623 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are
624 as for vect_set_loop_condition.
626 Insert the branch-back condition before LOOP_COND_GSI and return the
627 final gcond. */
629 static gcond *
630 vect_set_loop_condition_masked (struct loop *loop, loop_vec_info loop_vinfo,
631 tree niters, tree final_iv,
632 bool niters_maybe_zero,
633 gimple_stmt_iterator loop_cond_gsi)
635 gimple_seq preheader_seq = NULL;
636 gimple_seq header_seq = NULL;
638 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
639 unsigned int compare_precision = TYPE_PRECISION (compare_type);
640 unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
641 tree orig_niters = niters;
643 /* Type of the initial value of NITERS. */
644 tree ni_actual_type = TREE_TYPE (niters);
645 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
647 /* Convert NITERS to the same size as the compare. */
648 if (compare_precision > ni_actual_precision
649 && niters_maybe_zero)
651 /* We know that there is always at least one iteration, so if the
652 count is zero then it must have wrapped. Cope with this by
653 subtracting 1 before the conversion and adding 1 to the result. */
654 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
655 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
656 niters, build_minus_one_cst (ni_actual_type));
657 niters = gimple_convert (&preheader_seq, compare_type, niters);
658 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
659 niters, build_one_cst (compare_type));
661 else
662 niters = gimple_convert (&preheader_seq, compare_type, niters);
664 /* Convert skip_niters to the right type. */
665 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
667 /* Now calculate the value that the induction variable must be able
668 to hit in order to ensure that we end the loop with an all-false mask.
669 This involves adding the maximum number of inactive trailing scalar
670 iterations. */
671 widest_int iv_limit;
672 bool known_max_iters = max_loop_iterations (loop, &iv_limit);
673 if (known_max_iters)
675 if (niters_skip)
677 /* Add the maximum number of skipped iterations to the
678 maximum iteration count. */
679 if (TREE_CODE (niters_skip) == INTEGER_CST)
680 iv_limit += wi::to_widest (niters_skip);
681 else
682 iv_limit += max_vf - 1;
684 /* IV_LIMIT is the maximum number of latch iterations, which is also
685 the maximum in-range IV value. Round this value down to the previous
686 vector alignment boundary and then add an extra full iteration. */
687 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
688 iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
691 /* Get the vectorization factor in tree form. */
692 tree vf = build_int_cst (compare_type,
693 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
695 /* Iterate over all the rgroups and fill in their masks. We could use
696 the first mask from any rgroup for the loop condition; here we
697 arbitrarily pick the last. */
698 tree test_mask = NULL_TREE;
699 rgroup_masks *rgm;
700 unsigned int i;
701 vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
702 FOR_EACH_VEC_ELT (*masks, i, rgm)
703 if (!rgm->masks.is_empty ())
705 /* First try using permutes. This adds a single vector
706 instruction to the loop for each mask, but needs no extra
707 loop invariants or IVs. */
708 unsigned int nmasks = i + 1;
709 if ((nmasks & 1) == 0)
711 rgroup_masks *half_rgm = &(*masks)[nmasks / 2 - 1];
712 if (!half_rgm->masks.is_empty ()
713 && vect_maybe_permute_loop_masks (&header_seq, rgm, half_rgm))
714 continue;
717 /* See whether zero-based IV would ever generate all-false masks
718 before wrapping around. */
719 bool might_wrap_p
720 = (!known_max_iters
721 || (wi::min_precision (iv_limit * rgm->max_nscalars_per_iter,
722 UNSIGNED)
723 > compare_precision));
725 /* Set up all masks for this group. */
726 test_mask = vect_set_loop_masks_directly (loop, loop_vinfo,
727 &preheader_seq,
728 loop_cond_gsi, rgm, vf,
729 niters, niters_skip,
730 might_wrap_p);
733 /* Emit all accumulated statements. */
734 add_preheader_seq (loop, preheader_seq);
735 add_header_seq (loop, header_seq);
737 /* Get a boolean result that tells us whether to iterate. */
738 edge exit_edge = single_exit (loop);
739 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
740 tree zero_mask = build_zero_cst (TREE_TYPE (test_mask));
741 gcond *cond_stmt = gimple_build_cond (code, test_mask, zero_mask,
742 NULL_TREE, NULL_TREE);
743 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
745 /* The loop iterates (NITERS - 1) / VF + 1 times.
746 Subtract one from this to get the latch count. */
747 tree step = build_int_cst (compare_type,
748 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
749 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
750 build_minus_one_cst (compare_type));
751 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
752 niters_minus_one, step);
754 if (final_iv)
756 gassign *assign = gimple_build_assign (final_iv, orig_niters);
757 gsi_insert_on_edge_immediate (single_exit (loop), assign);
760 return cond_stmt;
763 /* Like vect_set_loop_condition, but handle the case in which there
764 are no loop masks. */
766 static gcond *
767 vect_set_loop_condition_unmasked (struct loop *loop, tree niters,
768 tree step, tree final_iv,
769 bool niters_maybe_zero,
770 gimple_stmt_iterator loop_cond_gsi)
772 tree indx_before_incr, indx_after_incr;
773 gcond *cond_stmt;
774 gcond *orig_cond;
775 edge pe = loop_preheader_edge (loop);
776 edge exit_edge = single_exit (loop);
777 gimple_stmt_iterator incr_gsi;
778 bool insert_after;
779 enum tree_code code;
780 tree niters_type = TREE_TYPE (niters);
782 orig_cond = get_loop_exit_condition (loop);
783 gcc_assert (orig_cond);
784 loop_cond_gsi = gsi_for_stmt (orig_cond);
786 tree init, limit;
787 if (!niters_maybe_zero && integer_onep (step))
789 /* In this case we can use a simple 0-based IV:
792 x = 0;
796 x += 1;
798 while (x < NITERS); */
799 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
800 init = build_zero_cst (niters_type);
801 limit = niters;
803 else
805 /* The following works for all values of NITERS except 0:
808 x = 0;
812 x += STEP;
814 while (x <= NITERS - STEP);
816 so that the loop continues to iterate if x + STEP - 1 < NITERS
817 but stops if x + STEP - 1 >= NITERS.
819 However, if NITERS is zero, x never hits a value above NITERS - STEP
820 before wrapping around. There are two obvious ways of dealing with
821 this:
823 - start at STEP - 1 and compare x before incrementing it
824 - start at -1 and compare x after incrementing it
826 The latter is simpler and is what we use. The loop in this case
827 looks like:
830 x = -1;
834 x += STEP;
836 while (x < NITERS - STEP);
838 In both cases the loop limit is NITERS - STEP. */
839 gimple_seq seq = NULL;
840 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
841 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
842 if (seq)
844 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
845 gcc_assert (!new_bb);
847 if (niters_maybe_zero)
849 /* Case C. */
850 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
851 init = build_all_ones_cst (niters_type);
853 else
855 /* Case B. */
856 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
857 init = build_zero_cst (niters_type);
861 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
862 create_iv (init, step, NULL_TREE, loop,
863 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
864 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
865 true, NULL_TREE, true,
866 GSI_SAME_STMT);
867 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
868 true, GSI_SAME_STMT);
870 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
871 NULL_TREE);
873 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
875 /* Record the number of latch iterations. */
876 if (limit == niters)
877 /* Case A: the loop iterates NITERS times. Subtract one to get the
878 latch count. */
879 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
880 build_int_cst (niters_type, 1));
881 else
882 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
883 Subtract one from this to get the latch count. */
884 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
885 limit, step);
887 if (final_iv)
889 gassign *assign = gimple_build_assign (final_iv, MINUS_EXPR,
890 indx_after_incr, init);
891 gsi_insert_on_edge_immediate (single_exit (loop), assign);
894 return cond_stmt;
897 /* If we're using fully-masked loops, make LOOP iterate:
899 N == (NITERS - 1) / STEP + 1
901 times. When NITERS is zero, this is equivalent to making the loop
902 execute (1 << M) / STEP times, where M is the precision of NITERS.
903 NITERS_MAYBE_ZERO is true if this last case might occur.
905 If we're not using fully-masked loops, make LOOP iterate:
907 N == (NITERS - STEP) / STEP + 1
909 times, where NITERS is known to be outside the range [1, STEP - 1].
910 This is equivalent to making the loop execute NITERS / STEP times
911 when NITERS is nonzero and (1 << M) / STEP times otherwise.
912 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
914 If FINAL_IV is nonnull, it is an SSA name that should be set to
915 N * STEP on exit from the loop.
917 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
919 void
920 vect_set_loop_condition (struct loop *loop, loop_vec_info loop_vinfo,
921 tree niters, tree step, tree final_iv,
922 bool niters_maybe_zero)
924 gcond *cond_stmt;
925 gcond *orig_cond = get_loop_exit_condition (loop);
926 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
928 if (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
929 cond_stmt = vect_set_loop_condition_masked (loop, loop_vinfo, niters,
930 final_iv, niters_maybe_zero,
931 loop_cond_gsi);
932 else
933 cond_stmt = vect_set_loop_condition_unmasked (loop, niters, step,
934 final_iv, niters_maybe_zero,
935 loop_cond_gsi);
937 /* Remove old loop exit test. */
938 gsi_remove (&loop_cond_gsi, true);
939 free_stmt_vec_info (orig_cond);
941 if (dump_enabled_p ())
943 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: ");
944 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
948 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
949 For all PHI arguments in FROM->dest and TO->dest from those
950 edges ensure that TO->dest PHI arguments have current_def
951 to that in from. */
953 static void
954 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
956 gimple_stmt_iterator gsi_from, gsi_to;
958 for (gsi_from = gsi_start_phis (from->dest),
959 gsi_to = gsi_start_phis (to->dest);
960 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
962 gimple *from_phi = gsi_stmt (gsi_from);
963 gimple *to_phi = gsi_stmt (gsi_to);
964 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
965 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
966 if (virtual_operand_p (from_arg))
968 gsi_next (&gsi_from);
969 continue;
971 if (virtual_operand_p (to_arg))
973 gsi_next (&gsi_to);
974 continue;
976 if (TREE_CODE (from_arg) != SSA_NAME)
977 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
978 else
980 if (get_current_def (to_arg) == NULL_TREE)
981 set_current_def (to_arg, get_current_def (from_arg));
983 gsi_next (&gsi_from);
984 gsi_next (&gsi_to);
987 gphi *from_phi = get_virtual_phi (from->dest);
988 gphi *to_phi = get_virtual_phi (to->dest);
989 if (from_phi)
990 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
991 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
995 /* Given LOOP this function generates a new copy of it and puts it
996 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
997 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
998 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
999 entry or exit of LOOP. */
1001 struct loop *
1002 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
1003 struct loop *scalar_loop, edge e)
1005 struct loop *new_loop;
1006 basic_block *new_bbs, *bbs, *pbbs;
1007 bool at_exit;
1008 bool was_imm_dom;
1009 basic_block exit_dest;
1010 edge exit, new_exit;
1011 bool duplicate_outer_loop = false;
1013 exit = single_exit (loop);
1014 at_exit = (e == exit);
1015 if (!at_exit && e != loop_preheader_edge (loop))
1016 return NULL;
1018 if (scalar_loop == NULL)
1019 scalar_loop = loop;
1021 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1022 pbbs = bbs + 1;
1023 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1024 /* Allow duplication of outer loops. */
1025 if (scalar_loop->inner)
1026 duplicate_outer_loop = true;
1027 /* Check whether duplication is possible. */
1028 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
1030 free (bbs);
1031 return NULL;
1034 /* Generate new loop structure. */
1035 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1036 duplicate_subloops (scalar_loop, new_loop);
1038 exit_dest = exit->dest;
1039 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1040 exit_dest) == loop->header ?
1041 true : false);
1043 /* Also copy the pre-header, this avoids jumping through hoops to
1044 duplicate the loop entry PHI arguments. Create an empty
1045 pre-header unconditionally for this. */
1046 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1047 edge entry_e = single_pred_edge (preheader);
1048 bbs[0] = preheader;
1049 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1051 exit = single_exit (scalar_loop);
1052 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1053 &exit, 1, &new_exit, NULL,
1054 at_exit ? loop->latch : e->src, true);
1055 exit = single_exit (loop);
1056 basic_block new_preheader = new_bbs[0];
1058 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1060 if (scalar_loop != loop)
1062 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1063 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1064 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1065 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1066 header) to have current_def set, so copy them over. */
1067 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
1068 exit);
1069 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
1071 EDGE_SUCC (loop->latch, 0));
1074 if (at_exit) /* Add the loop copy at exit. */
1076 if (scalar_loop != loop)
1078 gphi_iterator gsi;
1079 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1081 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
1082 gsi_next (&gsi))
1084 gphi *phi = gsi.phi ();
1085 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
1086 location_t orig_locus
1087 = gimple_phi_arg_location_from_edge (phi, e);
1089 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
1092 redirect_edge_and_branch_force (e, new_preheader);
1093 flush_pending_stmts (e);
1094 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
1095 if (was_imm_dom || duplicate_outer_loop)
1096 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1098 /* And remove the non-necessary forwarder again. Keep the other
1099 one so we have a proper pre-header for the loop at the exit edge. */
1100 redirect_edge_pred (single_succ_edge (preheader),
1101 single_pred (preheader));
1102 delete_basic_block (preheader);
1103 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1104 loop_preheader_edge (scalar_loop)->src);
1106 else /* Add the copy at entry. */
1108 if (scalar_loop != loop)
1110 /* Remove the non-necessary forwarder of scalar_loop again. */
1111 redirect_edge_pred (single_succ_edge (preheader),
1112 single_pred (preheader));
1113 delete_basic_block (preheader);
1114 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1115 loop_preheader_edge (scalar_loop)->src);
1116 preheader = split_edge (loop_preheader_edge (loop));
1117 entry_e = single_pred_edge (preheader);
1120 redirect_edge_and_branch_force (entry_e, new_preheader);
1121 flush_pending_stmts (entry_e);
1122 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1124 redirect_edge_and_branch_force (new_exit, preheader);
1125 flush_pending_stmts (new_exit);
1126 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1128 /* And remove the non-necessary forwarder again. Keep the other
1129 one so we have a proper pre-header for the loop at the exit edge. */
1130 redirect_edge_pred (single_succ_edge (new_preheader),
1131 single_pred (new_preheader));
1132 delete_basic_block (new_preheader);
1133 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1134 loop_preheader_edge (new_loop)->src);
1137 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1138 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1139 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1141 if (scalar_loop != loop)
1143 /* Update new_loop->header PHIs, so that on the preheader
1144 edge they are the ones from loop rather than scalar_loop. */
1145 gphi_iterator gsi_orig, gsi_new;
1146 edge orig_e = loop_preheader_edge (loop);
1147 edge new_e = loop_preheader_edge (new_loop);
1149 for (gsi_orig = gsi_start_phis (loop->header),
1150 gsi_new = gsi_start_phis (new_loop->header);
1151 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
1152 gsi_next (&gsi_orig), gsi_next (&gsi_new))
1154 gphi *orig_phi = gsi_orig.phi ();
1155 gphi *new_phi = gsi_new.phi ();
1156 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1157 location_t orig_locus
1158 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1160 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
1164 free (new_bbs);
1165 free (bbs);
1167 checking_verify_dominators (CDI_DOMINATORS);
1169 return new_loop;
1173 /* Given the condition expression COND, put it as the last statement of
1174 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1175 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1176 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1177 new edge as irreducible if IRREDUCIBLE_P is true. */
1179 static edge
1180 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1181 basic_block guard_to, basic_block dom_bb,
1182 profile_probability probability, bool irreducible_p)
1184 gimple_stmt_iterator gsi;
1185 edge new_e, enter_e;
1186 gcond *cond_stmt;
1187 gimple_seq gimplify_stmt_list = NULL;
1189 enter_e = EDGE_SUCC (guard_bb, 0);
1190 enter_e->flags &= ~EDGE_FALLTHRU;
1191 enter_e->flags |= EDGE_FALSE_VALUE;
1192 gsi = gsi_last_bb (guard_bb);
1194 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
1195 NULL_TREE);
1196 if (gimplify_stmt_list)
1197 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1199 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1200 gsi = gsi_last_bb (guard_bb);
1201 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1203 /* Add new edge to connect guard block to the merge/loop-exit block. */
1204 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1206 new_e->probability = probability;
1207 if (irreducible_p)
1208 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1210 enter_e->probability = probability.invert ();
1211 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1213 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1214 if (enter_e->dest->loop_father->header == enter_e->dest)
1215 split_edge (enter_e);
1217 return new_e;
1221 /* This function verifies that the following restrictions apply to LOOP:
1222 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1223 for innermost loop and 5 basic blocks for outer-loop.
1224 (2) it is single entry, single exit
1225 (3) its exit condition is the last stmt in the header
1226 (4) E is the entry/exit edge of LOOP.
1229 bool
1230 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
1232 edge exit_e = single_exit (loop);
1233 edge entry_e = loop_preheader_edge (loop);
1234 gcond *orig_cond = get_loop_exit_condition (loop);
1235 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1236 unsigned int num_bb = loop->inner? 5 : 2;
1238 /* All loops have an outer scope; the only case loop->outer is NULL is for
1239 the function itself. */
1240 if (!loop_outer (loop)
1241 || loop->num_nodes != num_bb
1242 || !empty_block_p (loop->latch)
1243 || !single_exit (loop)
1244 /* Verify that new loop exit condition can be trivially modified. */
1245 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1246 || (e != exit_e && e != entry_e))
1247 return false;
1249 return true;
1252 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1253 in the exit bb and rename all the uses after the loop. This simplifies
1254 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1255 (but normally loop closed SSA form doesn't require virtual PHIs to be
1256 in the same form). Doing this early simplifies the checking what
1257 uses should be renamed. */
1259 static void
1260 create_lcssa_for_virtual_phi (struct loop *loop)
1262 gphi_iterator gsi;
1263 edge exit_e = single_exit (loop);
1265 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1266 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1268 gphi *phi = gsi.phi ();
1269 for (gsi = gsi_start_phis (exit_e->dest);
1270 !gsi_end_p (gsi); gsi_next (&gsi))
1271 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1272 break;
1273 if (gsi_end_p (gsi))
1275 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1276 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1277 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1278 imm_use_iterator imm_iter;
1279 gimple *stmt;
1280 use_operand_p use_p;
1282 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_vop)
1283 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vop);
1284 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1285 gimple_phi_set_result (new_phi, new_vop);
1286 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1287 if (stmt != new_phi
1288 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1289 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1290 SET_USE (use_p, new_vop);
1292 break;
1297 /* Function vect_get_loop_location.
1299 Extract the location of the loop in the source code.
1300 If the loop is not well formed for vectorization, an estimated
1301 location is calculated.
1302 Return the loop location if succeed and NULL if not. */
1304 source_location
1305 find_loop_location (struct loop *loop)
1307 gimple *stmt = NULL;
1308 basic_block bb;
1309 gimple_stmt_iterator si;
1311 if (!loop)
1312 return UNKNOWN_LOCATION;
1314 stmt = get_loop_exit_condition (loop);
1316 if (stmt
1317 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1318 return gimple_location (stmt);
1320 /* If we got here the loop is probably not "well formed",
1321 try to estimate the loop location */
1323 if (!loop->header)
1324 return UNKNOWN_LOCATION;
1326 bb = loop->header;
1328 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1330 stmt = gsi_stmt (si);
1331 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1332 return gimple_location (stmt);
1335 return UNKNOWN_LOCATION;
1338 /* Return true if PHI defines an IV of the loop to be vectorized. */
1340 static bool
1341 iv_phi_p (gphi *phi)
1343 if (virtual_operand_p (PHI_RESULT (phi)))
1344 return false;
1346 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
1347 gcc_assert (stmt_info != NULL);
1348 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1349 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1350 return false;
1352 return true;
1355 /* Function vect_can_advance_ivs_p
1357 In case the number of iterations that LOOP iterates is unknown at compile
1358 time, an epilog loop will be generated, and the loop induction variables
1359 (IVs) will be "advanced" to the value they are supposed to take just before
1360 the epilog loop. Here we check that the access function of the loop IVs
1361 and the expression that represents the loop bound are simple enough.
1362 These restrictions will be relaxed in the future. */
1364 bool
1365 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1367 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1368 basic_block bb = loop->header;
1369 gphi_iterator gsi;
1371 /* Analyze phi functions of the loop header. */
1373 if (dump_enabled_p ())
1374 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1375 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1377 tree evolution_part;
1379 gphi *phi = gsi.phi ();
1380 if (dump_enabled_p ())
1382 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1383 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1386 /* Skip virtual phi's. The data dependences that are associated with
1387 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1389 Skip reduction phis. */
1390 if (!iv_phi_p (phi))
1392 if (dump_enabled_p ())
1393 dump_printf_loc (MSG_NOTE, vect_location,
1394 "reduc or virtual phi. skip.\n");
1395 continue;
1398 /* Analyze the evolution function. */
1400 evolution_part
1401 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1402 if (evolution_part == NULL_TREE)
1404 if (dump_enabled_p ())
1405 dump_printf (MSG_MISSED_OPTIMIZATION,
1406 "No access function or evolution.\n");
1407 return false;
1410 /* FORNOW: We do not transform initial conditions of IVs
1411 which evolution functions are not invariants in the loop. */
1413 if (!expr_invariant_in_loop_p (loop, evolution_part))
1415 if (dump_enabled_p ())
1416 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1417 "evolution not invariant in loop.\n");
1418 return false;
1421 /* FORNOW: We do not transform initial conditions of IVs
1422 which evolution functions are a polynomial of degree >= 2. */
1424 if (tree_is_chrec (evolution_part))
1426 if (dump_enabled_p ())
1427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1428 "evolution is chrec.\n");
1429 return false;
1433 return true;
1437 /* Function vect_update_ivs_after_vectorizer.
1439 "Advance" the induction variables of LOOP to the value they should take
1440 after the execution of LOOP. This is currently necessary because the
1441 vectorizer does not handle induction variables that are used after the
1442 loop. Such a situation occurs when the last iterations of LOOP are
1443 peeled, because:
1444 1. We introduced new uses after LOOP for IVs that were not originally used
1445 after LOOP: the IVs of LOOP are now used by an epilog loop.
1446 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1447 times, whereas the loop IVs should be bumped N times.
1449 Input:
1450 - LOOP - a loop that is going to be vectorized. The last few iterations
1451 of LOOP were peeled.
1452 - NITERS - the number of iterations that LOOP executes (before it is
1453 vectorized). i.e, the number of times the ivs should be bumped.
1454 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1455 coming out from LOOP on which there are uses of the LOOP ivs
1456 (this is the path from LOOP->exit to epilog_loop->preheader).
1458 The new definitions of the ivs are placed in LOOP->exit.
1459 The phi args associated with the edge UPDATE_E in the bb
1460 UPDATE_E->dest are updated accordingly.
1462 Assumption 1: Like the rest of the vectorizer, this function assumes
1463 a single loop exit that has a single predecessor.
1465 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1466 organized in the same order.
1468 Assumption 3: The access function of the ivs is simple enough (see
1469 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1471 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1472 coming out of LOOP on which the ivs of LOOP are used (this is the path
1473 that leads to the epilog loop; other paths skip the epilog loop). This
1474 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1475 needs to have its phis updated.
1478 static void
1479 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
1480 tree niters, edge update_e)
1482 gphi_iterator gsi, gsi1;
1483 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1484 basic_block update_bb = update_e->dest;
1485 basic_block exit_bb = single_exit (loop)->dest;
1487 /* Make sure there exists a single-predecessor exit bb: */
1488 gcc_assert (single_pred_p (exit_bb));
1489 gcc_assert (single_succ_edge (exit_bb) == update_e);
1491 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1492 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1493 gsi_next (&gsi), gsi_next (&gsi1))
1495 tree init_expr;
1496 tree step_expr, off;
1497 tree type;
1498 tree var, ni, ni_name;
1499 gimple_stmt_iterator last_gsi;
1501 gphi *phi = gsi.phi ();
1502 gphi *phi1 = gsi1.phi ();
1503 if (dump_enabled_p ())
1505 dump_printf_loc (MSG_NOTE, vect_location,
1506 "vect_update_ivs_after_vectorizer: phi: ");
1507 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1510 /* Skip reduction and virtual phis. */
1511 if (!iv_phi_p (phi))
1513 if (dump_enabled_p ())
1514 dump_printf_loc (MSG_NOTE, vect_location,
1515 "reduc or virtual phi. skip.\n");
1516 continue;
1519 type = TREE_TYPE (gimple_phi_result (phi));
1520 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1521 step_expr = unshare_expr (step_expr);
1523 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1524 of degree >= 2 or exponential. */
1525 gcc_assert (!tree_is_chrec (step_expr));
1527 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1529 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1530 fold_convert (TREE_TYPE (step_expr), niters),
1531 step_expr);
1532 if (POINTER_TYPE_P (type))
1533 ni = fold_build_pointer_plus (init_expr, off);
1534 else
1535 ni = fold_build2 (PLUS_EXPR, type,
1536 init_expr, fold_convert (type, off));
1538 var = create_tmp_var (type, "tmp");
1540 last_gsi = gsi_last_bb (exit_bb);
1541 gimple_seq new_stmts = NULL;
1542 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
1543 /* Exit_bb shouldn't be empty. */
1544 if (!gsi_end_p (last_gsi))
1545 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
1546 else
1547 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
1549 /* Fix phi expressions in the successor bb. */
1550 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1554 /* Return a gimple value containing the misalignment (measured in vector
1555 elements) for the loop described by LOOP_VINFO, i.e. how many elements
1556 it is away from a perfectly aligned address. Add any new statements
1557 to SEQ. */
1559 static tree
1560 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
1562 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1563 gimple *dr_stmt = DR_STMT (dr);
1564 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1565 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1567 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1568 gcc_assert (target_align != 0);
1570 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1571 tree offset = (negative
1572 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1)
1573 : size_zero_node);
1574 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt, seq,
1575 offset);
1576 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1577 tree target_align_minus_1 = build_int_cst (type, target_align - 1);
1578 HOST_WIDE_INT elem_size
1579 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1580 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1582 /* Create: misalign_in_bytes = addr & (target_align - 1). */
1583 tree int_start_addr = fold_convert (type, start_addr);
1584 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
1585 target_align_minus_1);
1587 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
1588 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
1589 elem_size_log);
1591 return misalign_in_elems;
1594 /* Function vect_gen_prolog_loop_niters
1596 Generate the number of iterations which should be peeled as prolog for the
1597 loop represented by LOOP_VINFO. It is calculated as the misalignment of
1598 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
1599 As a result, after the execution of this loop, the data reference DR will
1600 refer to an aligned location. The following computation is generated:
1602 If the misalignment of DR is known at compile time:
1603 addr_mis = int mis = DR_MISALIGNMENT (dr);
1604 Else, compute address misalignment in bytes:
1605 addr_mis = addr & (target_align - 1)
1607 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
1609 (elem_size = element type size; an element is the scalar element whose type
1610 is the inner type of the vectype)
1612 The computations will be emitted at the end of BB. We also compute and
1613 store upper bound (included) of the result in BOUND.
1615 When the step of the data-ref in the loop is not 1 (as in interleaved data
1616 and SLP), the number of iterations of the prolog must be divided by the step
1617 (which is equal to the size of interleaved group).
1619 The above formulas assume that VF == number of elements in the vector. This
1620 may not hold when there are multiple-types in the loop.
1621 In this case, for some data-references in the loop the VF does not represent
1622 the number of elements that fit in the vector. Therefore, instead of VF we
1623 use TYPE_VECTOR_SUBPARTS. */
1625 static tree
1626 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
1627 basic_block bb, int *bound)
1629 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1630 tree var;
1631 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
1632 gimple_seq stmts = NULL, new_stmts = NULL;
1633 tree iters, iters_name;
1634 gimple *dr_stmt = DR_STMT (dr);
1635 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1636 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1637 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1639 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1641 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1643 if (dump_enabled_p ())
1644 dump_printf_loc (MSG_NOTE, vect_location,
1645 "known peeling = %d.\n", npeel);
1647 iters = build_int_cst (niters_type, npeel);
1648 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1650 else
1652 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
1653 tree type = TREE_TYPE (misalign_in_elems);
1654 HOST_WIDE_INT elem_size
1655 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1656 HOST_WIDE_INT align_in_elems = target_align / elem_size;
1657 tree align_in_elems_minus_1 = build_int_cst (type, align_in_elems - 1);
1658 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
1660 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1661 & (align_in_elems - 1)). */
1662 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1663 if (negative)
1664 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1665 align_in_elems_tree);
1666 else
1667 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1668 misalign_in_elems);
1669 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1670 iters = fold_convert (niters_type, iters);
1671 *bound = align_in_elems - 1;
1674 if (dump_enabled_p ())
1676 dump_printf_loc (MSG_NOTE, vect_location,
1677 "niters for prolog loop: ");
1678 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1679 dump_printf (MSG_NOTE, "\n");
1682 var = create_tmp_var (niters_type, "prolog_loop_niters");
1683 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1685 if (new_stmts)
1686 gimple_seq_add_seq (&stmts, new_stmts);
1687 if (stmts)
1689 gcc_assert (single_succ_p (bb));
1690 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1691 if (gsi_end_p (gsi))
1692 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1693 else
1694 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1696 return iters_name;
1700 /* Function vect_update_init_of_dr
1702 If CODE is PLUS, the vector loop starts NITERS iterations after the
1703 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
1704 iterations before the scalar one (using masking to skip inactive
1705 elements). This function updates the information recorded in DR to
1706 account for the difference. Specifically, it updates the OFFSET
1707 field of DR. */
1709 static void
1710 vect_update_init_of_dr (struct data_reference *dr, tree niters, tree_code code)
1712 tree offset = DR_OFFSET (dr);
1714 niters = fold_build2 (MULT_EXPR, sizetype,
1715 fold_convert (sizetype, niters),
1716 fold_convert (sizetype, DR_STEP (dr)));
1717 offset = fold_build2 (code, sizetype,
1718 fold_convert (sizetype, offset), niters);
1719 DR_OFFSET (dr) = offset;
1723 /* Function vect_update_inits_of_drs
1725 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
1726 CODE and NITERS are as for vect_update_inits_of_dr. */
1728 static void
1729 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
1730 tree_code code)
1732 unsigned int i;
1733 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1734 struct data_reference *dr;
1736 if (dump_enabled_p ())
1737 dump_printf_loc (MSG_NOTE, vect_location,
1738 "=== vect_update_inits_of_dr ===\n");
1740 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1741 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1743 gimple_seq seq;
1744 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1745 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1747 niters = fold_convert (sizetype, niters);
1748 niters = force_gimple_operand (niters, &seq, false, var);
1749 if (seq)
1751 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1752 gcc_assert (!new_bb);
1756 FOR_EACH_VEC_ELT (datarefs, i, dr)
1757 vect_update_init_of_dr (dr, niters, code);
1760 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
1761 by masking. This involves calculating the number of iterations to
1762 be peeled and then aligning all memory references appropriately. */
1764 void
1765 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
1767 tree misalign_in_elems;
1768 tree type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
1770 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
1772 /* From the information recorded in LOOP_VINFO get the number of iterations
1773 that need to be skipped via masking. */
1774 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1776 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1777 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1778 misalign_in_elems = build_int_cst (type, misalign);
1780 else
1782 gimple_seq seq1 = NULL, seq2 = NULL;
1783 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
1784 misalign_in_elems = fold_convert (type, misalign_in_elems);
1785 misalign_in_elems = force_gimple_operand (misalign_in_elems,
1786 &seq2, true, NULL_TREE);
1787 gimple_seq_add_seq (&seq1, seq2);
1788 if (seq1)
1790 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1791 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
1792 gcc_assert (!new_bb);
1796 if (dump_enabled_p ())
1798 dump_printf_loc (MSG_NOTE, vect_location,
1799 "misalignment for fully-masked loop: ");
1800 dump_generic_expr (MSG_NOTE, TDF_SLIM, misalign_in_elems);
1801 dump_printf (MSG_NOTE, "\n");
1804 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
1806 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
1809 /* This function builds ni_name = number of iterations. Statements
1810 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1811 it to TRUE if new ssa_var is generated. */
1813 tree
1814 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1816 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1817 if (TREE_CODE (ni) == INTEGER_CST)
1818 return ni;
1819 else
1821 tree ni_name, var;
1822 gimple_seq stmts = NULL;
1823 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1825 var = create_tmp_var (TREE_TYPE (ni), "niters");
1826 ni_name = force_gimple_operand (ni, &stmts, false, var);
1827 if (stmts)
1829 gsi_insert_seq_on_edge_immediate (pe, stmts);
1830 if (new_var_p != NULL)
1831 *new_var_p = true;
1834 return ni_name;
1838 /* Calculate the number of iterations above which vectorized loop will be
1839 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1840 of prolog loop. If it's integer const, the integer number is also passed
1841 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
1842 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
1843 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
1844 threshold below which the scalar (rather than vectorized) loop will be
1845 executed. This function stores the upper bound (inclusive) of the result
1846 in BOUND_SCALAR. */
1848 static tree
1849 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1850 int bound_prolog, poly_int64 bound_epilog, int th,
1851 poly_uint64 *bound_scalar,
1852 bool check_profitability)
1854 tree type = TREE_TYPE (niters_prolog);
1855 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1856 build_int_cst (type, bound_epilog));
1858 *bound_scalar = bound_prolog + bound_epilog;
1859 if (check_profitability)
1861 /* TH indicates the minimum niters of vectorized loop, while we
1862 compute the maximum niters of scalar loop. */
1863 th--;
1864 /* Peeling for constant times. */
1865 if (int_niters_prolog >= 0)
1867 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
1868 return build_int_cst (type, *bound_scalar);
1870 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
1871 and BOUND_EPILOG are inclusive upper bounds. */
1872 if (known_ge (th, bound_prolog + bound_epilog))
1874 *bound_scalar = th;
1875 return build_int_cst (type, th);
1877 /* Need to do runtime comparison. */
1878 else if (maybe_gt (th, bound_epilog))
1880 *bound_scalar = upper_bound (*bound_scalar, th);
1881 return fold_build2 (MAX_EXPR, type,
1882 build_int_cst (type, th), niters);
1885 return niters;
1888 /* NITERS is the number of times that the original scalar loop executes
1889 after peeling. Work out the maximum number of iterations N that can
1890 be handled by the vectorized form of the loop and then either:
1892 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
1894 niters_vector = N
1896 b) set *STEP_VECTOR_PTR to one and generate:
1898 niters_vector = N / vf
1900 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
1901 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
1902 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
1904 void
1905 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1906 tree *niters_vector_ptr, tree *step_vector_ptr,
1907 bool niters_no_overflow)
1909 tree ni_minus_gap, var;
1910 tree niters_vector, step_vector, type = TREE_TYPE (niters);
1911 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1912 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1913 tree log_vf = NULL_TREE;
1915 /* If epilogue loop is required because of data accesses with gaps, we
1916 subtract one iteration from the total number of iterations here for
1917 correct calculation of RATIO. */
1918 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1920 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1921 build_one_cst (type));
1922 if (!is_gimple_val (ni_minus_gap))
1924 var = create_tmp_var (type, "ni_gap");
1925 gimple *stmts = NULL;
1926 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1927 true, var);
1928 gsi_insert_seq_on_edge_immediate (pe, stmts);
1931 else
1932 ni_minus_gap = niters;
1934 unsigned HOST_WIDE_INT const_vf;
1935 if (vf.is_constant (&const_vf)
1936 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
1938 /* Create: niters >> log2(vf) */
1939 /* If it's known that niters == number of latch executions + 1 doesn't
1940 overflow, we can generate niters >> log2(vf); otherwise we generate
1941 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1942 will be at least one. */
1943 log_vf = build_int_cst (type, exact_log2 (const_vf));
1944 if (niters_no_overflow)
1945 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1946 else
1947 niters_vector
1948 = fold_build2 (PLUS_EXPR, type,
1949 fold_build2 (RSHIFT_EXPR, type,
1950 fold_build2 (MINUS_EXPR, type,
1951 ni_minus_gap,
1952 build_int_cst (type, vf)),
1953 log_vf),
1954 build_int_cst (type, 1));
1955 step_vector = build_one_cst (type);
1957 else
1959 niters_vector = ni_minus_gap;
1960 step_vector = build_int_cst (type, vf);
1963 if (!is_gimple_val (niters_vector))
1965 var = create_tmp_var (type, "bnd");
1966 gimple_seq stmts = NULL;
1967 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1968 gsi_insert_seq_on_edge_immediate (pe, stmts);
1969 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1970 we set range information to make niters analyzer's life easier. */
1971 if (stmts != NULL && log_vf)
1972 set_range_info (niters_vector, VR_RANGE,
1973 wi::to_wide (build_int_cst (type, 1)),
1974 wi::to_wide (fold_build2 (RSHIFT_EXPR, type,
1975 TYPE_MAX_VALUE (type),
1976 log_vf)));
1978 *niters_vector_ptr = niters_vector;
1979 *step_vector_ptr = step_vector;
1981 return;
1984 /* Given NITERS_VECTOR which is the number of iterations for vectorized
1985 loop specified by LOOP_VINFO after vectorization, compute the number
1986 of iterations before vectorization (niters_vector * vf) and store it
1987 to NITERS_VECTOR_MULT_VF_PTR. */
1989 static void
1990 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1991 tree niters_vector,
1992 tree *niters_vector_mult_vf_ptr)
1994 /* We should be using a step_vector of VF if VF is variable. */
1995 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
1996 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1997 tree type = TREE_TYPE (niters_vector);
1998 tree log_vf = build_int_cst (type, exact_log2 (vf));
1999 basic_block exit_bb = single_exit (loop)->dest;
2001 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2002 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2003 niters_vector, log_vf);
2004 if (!is_gimple_val (niters_vector_mult_vf))
2006 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2007 gimple_seq stmts = NULL;
2008 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2009 &stmts, true, var);
2010 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2011 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2013 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2016 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2017 from SECOND/FIRST and puts it at the original loop's preheader/exit
2018 edge, the two loops are arranged as below:
2020 preheader_a:
2021 first_loop:
2022 header_a:
2023 i_1 = PHI<i_0, i_2>;
2025 i_2 = i_1 + 1;
2026 if (cond_a)
2027 goto latch_a;
2028 else
2029 goto between_bb;
2030 latch_a:
2031 goto header_a;
2033 between_bb:
2034 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2036 second_loop:
2037 header_b:
2038 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2039 or with i_2 if no LCSSA phi is created
2040 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2042 i_4 = i_3 + 1;
2043 if (cond_b)
2044 goto latch_b;
2045 else
2046 goto exit_bb;
2047 latch_b:
2048 goto header_b;
2050 exit_bb:
2052 This function creates loop closed SSA for the first loop; update the
2053 second loop's PHI nodes by replacing argument on incoming edge with the
2054 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2055 is false, Loop closed ssa phis will only be created for non-iv phis for
2056 the first loop.
2058 This function assumes exit bb of the first loop is preheader bb of the
2059 second loop, i.e, between_bb in the example code. With PHIs updated,
2060 the second loop will execute rest iterations of the first. */
2062 static void
2063 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
2064 struct loop *first, struct loop *second,
2065 bool create_lcssa_for_iv_phis)
2067 gphi_iterator gsi_update, gsi_orig;
2068 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2070 edge first_latch_e = EDGE_SUCC (first->latch, 0);
2071 edge second_preheader_e = loop_preheader_edge (second);
2072 basic_block between_bb = single_exit (first)->dest;
2074 gcc_assert (between_bb == second_preheader_e->src);
2075 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
2076 /* Either the first loop or the second is the loop to be vectorized. */
2077 gcc_assert (loop == first || loop == second);
2079 for (gsi_orig = gsi_start_phis (first->header),
2080 gsi_update = gsi_start_phis (second->header);
2081 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2082 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2084 gphi *orig_phi = gsi_orig.phi ();
2085 gphi *update_phi = gsi_update.phi ();
2087 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
2088 /* Generate lcssa PHI node for the first loop. */
2089 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
2090 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi))
2092 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2093 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
2094 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
2095 arg = new_res;
2098 /* Update PHI node in the second loop by replacing arg on the loop's
2099 incoming edge. */
2100 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
2104 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2105 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2106 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2107 appear like below:
2109 guard_bb:
2110 if (cond)
2111 goto merge_bb;
2112 else
2113 goto skip_loop;
2115 skip_loop:
2116 header_a:
2117 i_1 = PHI<i_0, i_2>;
2119 i_2 = i_1 + 1;
2120 if (cond_a)
2121 goto latch_a;
2122 else
2123 goto exit_a;
2124 latch_a:
2125 goto header_a;
2127 exit_a:
2128 i_5 = PHI<i_2>;
2130 merge_bb:
2131 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2133 update_loop:
2134 header_b:
2135 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2137 i_4 = i_3 + 1;
2138 if (cond_b)
2139 goto latch_b;
2140 else
2141 goto exit_bb;
2142 latch_b:
2143 goto header_b;
2145 exit_bb:
2147 This function creates PHI nodes at merge_bb and replaces the use of i_5
2148 in the update_loop's PHI node with the result of new PHI result. */
2150 static void
2151 slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
2152 struct loop *update_loop,
2153 edge guard_edge, edge merge_edge)
2155 source_location merge_loc, guard_loc;
2156 edge orig_e = loop_preheader_edge (skip_loop);
2157 edge update_e = loop_preheader_edge (update_loop);
2158 gphi_iterator gsi_orig, gsi_update;
2160 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2161 gsi_update = gsi_start_phis (update_loop->header));
2162 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2163 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2165 gphi *orig_phi = gsi_orig.phi ();
2166 gphi *update_phi = gsi_update.phi ();
2168 /* Generate new phi node at merge bb of the guard. */
2169 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2170 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2172 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2173 args in NEW_PHI for these edges. */
2174 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2175 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2176 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2177 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2178 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2179 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2181 /* Update phi in UPDATE_PHI. */
2182 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2186 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2187 this function searches for the corresponding lcssa phi node in exit
2188 bb of LOOP. If it is found, return the phi result; otherwise return
2189 NULL. */
2191 static tree
2192 find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
2193 gphi *lcssa_phi)
2195 gphi_iterator gsi;
2196 edge e = single_exit (loop);
2198 gcc_assert (single_pred_p (e->dest));
2199 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2201 gphi *phi = gsi.phi ();
2202 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
2203 PHI_ARG_DEF (lcssa_phi, 0), 0))
2204 return PHI_RESULT (phi);
2206 return NULL_TREE;
2209 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2210 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2211 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2212 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2213 The CFG looks like:
2215 loop:
2216 header_a:
2217 i_1 = PHI<i_0, i_2>;
2219 i_2 = i_1 + 1;
2220 if (cond_a)
2221 goto latch_a;
2222 else
2223 goto exit_a;
2224 latch_a:
2225 goto header_a;
2227 exit_a:
2229 guard_bb:
2230 if (cond)
2231 goto merge_bb;
2232 else
2233 goto epilog_loop;
2235 ;; fall_through_bb
2237 epilog_loop:
2238 header_b:
2239 i_3 = PHI<i_2, i_4>;
2241 i_4 = i_3 + 1;
2242 if (cond_b)
2243 goto latch_b;
2244 else
2245 goto merge_bb;
2246 latch_b:
2247 goto header_b;
2249 merge_bb:
2250 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2252 exit_bb:
2253 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2255 For each name used out side EPILOG (i.e - for each name that has a lcssa
2256 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2257 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2258 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2259 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2260 in exit_bb will also be updated. */
2262 static void
2263 slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
2264 edge guard_edge, edge merge_edge)
2266 gphi_iterator gsi;
2267 basic_block merge_bb = guard_edge->dest;
2269 gcc_assert (single_succ_p (merge_bb));
2270 edge e = single_succ_edge (merge_bb);
2271 basic_block exit_bb = e->dest;
2272 gcc_assert (single_pred_p (exit_bb));
2273 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
2275 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2277 gphi *update_phi = gsi.phi ();
2278 tree old_arg = PHI_ARG_DEF (update_phi, 0);
2279 /* This loop-closed-phi actually doesn't represent a use out of the
2280 loop - the phi arg is a constant. */
2281 if (TREE_CODE (old_arg) != SSA_NAME)
2282 continue;
2284 tree merge_arg = get_current_def (old_arg);
2285 if (!merge_arg)
2286 merge_arg = old_arg;
2288 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
2289 /* If the var is live after loop but not a reduction, we simply
2290 use the old arg. */
2291 if (!guard_arg)
2292 guard_arg = old_arg;
2294 /* Create new phi node in MERGE_BB: */
2295 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
2296 gphi *merge_phi = create_phi_node (new_res, merge_bb);
2298 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2299 the two PHI args in merge_phi for these edges. */
2300 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
2301 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
2303 /* Update the original phi in exit_bb. */
2304 adjust_phi_and_debug_stmts (update_phi, e, new_res);
2308 /* EPILOG loop is duplicated from the original loop for vectorizing,
2309 the arg of its loop closed ssa PHI needs to be updated. */
2311 static void
2312 slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
2314 gphi_iterator gsi;
2315 basic_block exit_bb = single_exit (epilog)->dest;
2317 gcc_assert (single_pred_p (exit_bb));
2318 edge e = EDGE_PRED (exit_bb, 0);
2319 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2320 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
2323 /* Function vect_do_peeling.
2325 Input:
2326 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2328 preheader:
2329 LOOP:
2330 header_bb:
2331 loop_body
2332 if (exit_loop_cond) goto exit_bb
2333 else goto header_bb
2334 exit_bb:
2336 - NITERS: The number of iterations of the loop.
2337 - NITERSM1: The number of iterations of the loop's latch.
2338 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2339 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2340 CHECK_PROFITABILITY is true.
2341 Output:
2342 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2343 iterate after vectorization; see vect_set_loop_condition for details.
2344 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2345 should be set to the number of scalar iterations handled by the
2346 vector loop. The SSA name is only used on exit from the loop.
2348 This function peels prolog and epilog from the loop, adds guards skipping
2349 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2350 would look like:
2352 guard_bb_1:
2353 if (prefer_scalar_loop) goto merge_bb_1
2354 else goto guard_bb_2
2356 guard_bb_2:
2357 if (skip_prolog) goto merge_bb_2
2358 else goto prolog_preheader
2360 prolog_preheader:
2361 PROLOG:
2362 prolog_header_bb:
2363 prolog_body
2364 if (exit_prolog_cond) goto prolog_exit_bb
2365 else goto prolog_header_bb
2366 prolog_exit_bb:
2368 merge_bb_2:
2370 vector_preheader:
2371 VECTOR LOOP:
2372 vector_header_bb:
2373 vector_body
2374 if (exit_vector_cond) goto vector_exit_bb
2375 else goto vector_header_bb
2376 vector_exit_bb:
2378 guard_bb_3:
2379 if (skip_epilog) goto merge_bb_3
2380 else goto epilog_preheader
2382 merge_bb_1:
2384 epilog_preheader:
2385 EPILOG:
2386 epilog_header_bb:
2387 epilog_body
2388 if (exit_epilog_cond) goto merge_bb_3
2389 else goto epilog_header_bb
2391 merge_bb_3:
2393 Note this function peels prolog and epilog only if it's necessary,
2394 as well as guards.
2395 Returns created epilogue or NULL.
2397 TODO: Guard for prefer_scalar_loop should be emitted along with
2398 versioning conditions if loop versioning is needed. */
2401 struct loop *
2402 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
2403 tree *niters_vector, tree *step_vector,
2404 tree *niters_vector_mult_vf_var, int th,
2405 bool check_profitability, bool niters_no_overflow)
2407 edge e, guard_e;
2408 tree type = TREE_TYPE (niters), guard_cond;
2409 basic_block guard_bb, guard_to;
2410 profile_probability prob_prolog, prob_vector, prob_epilog;
2411 int estimated_vf;
2412 int prolog_peeling = 0;
2413 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2414 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2416 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2417 poly_uint64 bound_epilog = 0;
2418 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2419 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2420 bound_epilog += vf - 1;
2421 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2422 bound_epilog += 1;
2423 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2424 poly_uint64 bound_scalar = bound_epilog;
2426 if (!prolog_peeling && !epilog_peeling)
2427 return NULL;
2429 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
2430 estimated_vf = vect_vf_for_cost (loop_vinfo);
2431 if (estimated_vf == 2)
2432 estimated_vf = 3;
2433 prob_prolog = prob_epilog = profile_probability::guessed_always ()
2434 .apply_scale (estimated_vf - 1, estimated_vf);
2436 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
2437 struct loop *first_loop = loop;
2438 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
2439 create_lcssa_for_virtual_phi (loop);
2440 update_ssa (TODO_update_ssa_only_virtuals);
2442 if (MAY_HAVE_DEBUG_BIND_STMTS)
2444 gcc_assert (!adjust_vec.exists ());
2445 adjust_vec.create (32);
2447 initialize_original_copy_tables ();
2449 /* Record the anchor bb at which the guard should be placed if the scalar
2450 loop might be preferred. */
2451 basic_block anchor = loop_preheader_edge (loop)->src;
2453 /* Generate the number of iterations for the prolog loop. We do this here
2454 so that we can also get the upper bound on the number of iterations. */
2455 tree niters_prolog;
2456 int bound_prolog = 0;
2457 if (prolog_peeling)
2458 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2459 &bound_prolog);
2460 else
2461 niters_prolog = build_int_cst (type, 0);
2463 /* Prolog loop may be skipped. */
2464 bool skip_prolog = (prolog_peeling != 0);
2465 /* Skip to epilog if scalar loop may be preferred. It's only needed
2466 when we peel for epilog loop and when it hasn't been checked with
2467 loop versioning. */
2468 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2469 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2470 bound_prolog + bound_epilog)
2471 : !LOOP_REQUIRES_VERSIONING (loop_vinfo));
2472 /* Epilog loop must be executed if the number of iterations for epilog
2473 loop is known at compile time, otherwise we need to add a check at
2474 the end of vector loop and skip to the end of epilog loop. */
2475 bool skip_epilog = (prolog_peeling < 0
2476 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2477 || !vf.is_constant ());
2478 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
2479 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2480 skip_epilog = false;
2482 if (skip_vector)
2484 split_edge (loop_preheader_edge (loop));
2486 /* Due to the order in which we peel prolog and epilog, we first
2487 propagate probability to the whole loop. The purpose is to
2488 avoid adjusting probabilities of both prolog and vector loops
2489 separately. Note in this case, the probability of epilog loop
2490 needs to be scaled back later. */
2491 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
2492 if (prob_vector.initialized_p ())
2494 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
2495 scale_loop_profile (loop, prob_vector, 0);
2499 source_location loop_loc = find_loop_location (loop);
2500 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2501 if (prolog_peeling)
2503 e = loop_preheader_edge (loop);
2504 if (!slpeel_can_duplicate_loop_p (loop, e))
2506 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2507 "loop can't be duplicated to preheader edge.\n");
2508 gcc_unreachable ();
2510 /* Peel prolog and put it on preheader edge of loop. */
2511 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2512 if (!prolog)
2514 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2515 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2516 gcc_unreachable ();
2518 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
2519 first_loop = prolog;
2520 reset_original_copy_tables ();
2522 /* Update the number of iterations for prolog loop. */
2523 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
2524 vect_set_loop_condition (prolog, NULL, niters_prolog,
2525 step_prolog, NULL_TREE, false);
2527 /* Skip the prolog loop. */
2528 if (skip_prolog)
2530 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2531 niters_prolog, build_int_cst (type, 0));
2532 guard_bb = loop_preheader_edge (prolog)->src;
2533 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
2534 guard_to = split_edge (loop_preheader_edge (loop));
2535 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2536 guard_to, guard_bb,
2537 prob_prolog.invert (),
2538 irred_flag);
2539 e = EDGE_PRED (guard_to, 0);
2540 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2541 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
2543 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
2544 scale_loop_profile (prolog, prob_prolog, bound_prolog);
2546 /* Update init address of DRs. */
2547 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
2548 /* Update niters for vector loop. */
2549 LOOP_VINFO_NITERS (loop_vinfo)
2550 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
2551 LOOP_VINFO_NITERSM1 (loop_vinfo)
2552 = fold_build2 (MINUS_EXPR, type,
2553 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
2554 bool new_var_p = false;
2555 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
2556 /* It's guaranteed that vector loop bound before vectorization is at
2557 least VF, so set range information for newly generated var. */
2558 if (new_var_p)
2559 set_range_info (niters, VR_RANGE,
2560 wi::to_wide (build_int_cst (type, vf)),
2561 wi::to_wide (TYPE_MAX_VALUE (type)));
2563 /* Prolog iterates at most bound_prolog times, latch iterates at
2564 most bound_prolog - 1 times. */
2565 record_niter_bound (prolog, bound_prolog - 1, false, true);
2566 delete_update_ssa ();
2567 adjust_vec_debug_stmts ();
2568 scev_reset ();
2571 if (epilog_peeling)
2573 e = single_exit (loop);
2574 if (!slpeel_can_duplicate_loop_p (loop, e))
2576 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2577 "loop can't be duplicated to exit edge.\n");
2578 gcc_unreachable ();
2580 /* Peel epilog and put it on exit edge of loop. */
2581 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2582 if (!epilog)
2584 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2585 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2586 gcc_unreachable ();
2588 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
2590 /* Scalar version loop may be preferred. In this case, add guard
2591 and skip to epilog. Note this only happens when the number of
2592 iterations of loop is unknown at compile time, otherwise this
2593 won't be vectorized. */
2594 if (skip_vector)
2596 /* Additional epilogue iteration is peeled if gap exists. */
2597 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
2598 bound_prolog, bound_epilog,
2599 th, &bound_scalar,
2600 check_profitability);
2601 /* Build guard against NITERSM1 since NITERS may overflow. */
2602 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
2603 guard_bb = anchor;
2604 guard_to = split_edge (loop_preheader_edge (epilog));
2605 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2606 guard_to, guard_bb,
2607 prob_vector.invert (),
2608 irred_flag);
2609 e = EDGE_PRED (guard_to, 0);
2610 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2611 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
2613 /* Simply propagate profile info from guard_bb to guard_to which is
2614 a merge point of control flow. */
2615 guard_to->count = guard_bb->count;
2617 /* Scale probability of epilog loop back.
2618 FIXME: We should avoid scaling down and back up. Profile may
2619 get lost if we scale down to 0. */
2620 basic_block *bbs = get_loop_body (epilog);
2621 for (unsigned int i = 0; i < epilog->num_nodes; i++)
2622 bbs[i]->count = bbs[i]->count.apply_scale
2623 (bbs[i]->count,
2624 bbs[i]->count.apply_probability
2625 (prob_vector));
2626 free (bbs);
2629 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
2630 tree niters_vector_mult_vf;
2631 /* If loop is peeled for non-zero constant times, now niters refers to
2632 orig_niters - prolog_peeling, it won't overflow even the orig_niters
2633 overflows. */
2634 niters_no_overflow |= (prolog_peeling > 0);
2635 vect_gen_vector_loop_niters (loop_vinfo, niters,
2636 niters_vector, step_vector,
2637 niters_no_overflow);
2638 if (!integer_onep (*step_vector))
2640 /* On exit from the loop we will have an easy way of calcalating
2641 NITERS_VECTOR / STEP * STEP. Install a dummy definition
2642 until then. */
2643 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
2644 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
2645 *niters_vector_mult_vf_var = niters_vector_mult_vf;
2647 else
2648 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
2649 &niters_vector_mult_vf);
2650 /* Update IVs of original loop as if they were advanced by
2651 niters_vector_mult_vf steps. */
2652 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
2653 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
2654 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
2655 update_e);
2657 if (skip_epilog)
2659 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2660 niters, niters_vector_mult_vf);
2661 guard_bb = single_exit (loop)->dest;
2662 guard_to = split_edge (single_exit (epilog));
2663 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
2664 skip_vector ? anchor : guard_bb,
2665 prob_epilog.invert (),
2666 irred_flag);
2667 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
2668 single_exit (epilog));
2669 /* Only need to handle basic block before epilog loop if it's not
2670 the guard_bb, which is the case when skip_vector is true. */
2671 if (guard_bb != bb_before_epilog)
2673 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
2675 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
2677 scale_loop_profile (epilog, prob_epilog, 0);
2679 else
2680 slpeel_update_phi_nodes_for_lcssa (epilog);
2682 unsigned HOST_WIDE_INT bound;
2683 if (bound_scalar.is_constant (&bound))
2685 gcc_assert (bound != 0);
2686 /* -1 to convert loop iterations to latch iterations. */
2687 record_niter_bound (epilog, bound - 1, false, true);
2690 delete_update_ssa ();
2691 adjust_vec_debug_stmts ();
2692 scev_reset ();
2694 adjust_vec.release ();
2695 free_original_copy_tables ();
2697 return epilog;
2700 /* Function vect_create_cond_for_niters_checks.
2702 Create a conditional expression that represents the run-time checks for
2703 loop's niter. The loop is guaranteed to terminate if the run-time
2704 checks hold.
2706 Input:
2707 COND_EXPR - input conditional expression. New conditions will be chained
2708 with logical AND operation. If it is NULL, then the function
2709 is used to return the number of alias checks.
2710 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2711 to be checked.
2713 Output:
2714 COND_EXPR - conditional expression.
2716 The returned COND_EXPR is the conditional expression to be used in the
2717 if statement that controls which version of the loop gets executed at
2718 runtime. */
2720 static void
2721 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
2723 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
2725 if (*cond_expr)
2726 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2727 *cond_expr, part_cond_expr);
2728 else
2729 *cond_expr = part_cond_expr;
2732 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2733 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
2735 static void
2736 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
2738 if (*cond_expr)
2739 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2740 *cond_expr, part_cond_expr);
2741 else
2742 *cond_expr = part_cond_expr;
2745 /* Function vect_create_cond_for_align_checks.
2747 Create a conditional expression that represents the alignment checks for
2748 all of data references (array element references) whose alignment must be
2749 checked at runtime.
2751 Input:
2752 COND_EXPR - input conditional expression. New conditions will be chained
2753 with logical AND operation.
2754 LOOP_VINFO - two fields of the loop information are used.
2755 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2756 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2758 Output:
2759 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2760 expression.
2761 The returned value is the conditional expression to be used in the if
2762 statement that controls which version of the loop gets executed at runtime.
2764 The algorithm makes two assumptions:
2765 1) The number of bytes "n" in a vector is a power of 2.
2766 2) An address "a" is aligned if a%n is zero and that this
2767 test can be done as a&(n-1) == 0. For example, for 16
2768 byte vectors the test is a&0xf == 0. */
2770 static void
2771 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2772 tree *cond_expr,
2773 gimple_seq *cond_expr_stmt_list)
2775 vec<gimple *> may_misalign_stmts
2776 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2777 gimple *ref_stmt;
2778 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2779 tree mask_cst;
2780 unsigned int i;
2781 tree int_ptrsize_type;
2782 char tmp_name[20];
2783 tree or_tmp_name = NULL_TREE;
2784 tree and_tmp_name;
2785 gimple *and_stmt;
2786 tree ptrsize_zero;
2787 tree part_cond_expr;
2789 /* Check that mask is one less than a power of 2, i.e., mask is
2790 all zeros followed by all ones. */
2791 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2793 int_ptrsize_type = signed_type_for (ptr_type_node);
2795 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2796 of the first vector of the i'th data reference. */
2798 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2800 gimple_seq new_stmt_list = NULL;
2801 tree addr_base;
2802 tree addr_tmp_name;
2803 tree new_or_tmp_name;
2804 gimple *addr_stmt, *or_stmt;
2805 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2806 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2807 bool negative = tree_int_cst_compare
2808 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2809 tree offset = negative
2810 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2812 /* create: addr_tmp = (int)(address_of_first_vector) */
2813 addr_base =
2814 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2815 offset);
2816 if (new_stmt_list != NULL)
2817 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2819 sprintf (tmp_name, "addr2int%d", i);
2820 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2821 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2822 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2824 /* The addresses are OR together. */
2826 if (or_tmp_name != NULL_TREE)
2828 /* create: or_tmp = or_tmp | addr_tmp */
2829 sprintf (tmp_name, "orptrs%d", i);
2830 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2831 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2832 or_tmp_name, addr_tmp_name);
2833 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2834 or_tmp_name = new_or_tmp_name;
2836 else
2837 or_tmp_name = addr_tmp_name;
2839 } /* end for i */
2841 mask_cst = build_int_cst (int_ptrsize_type, mask);
2843 /* create: and_tmp = or_tmp & mask */
2844 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2846 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2847 or_tmp_name, mask_cst);
2848 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2850 /* Make and_tmp the left operand of the conditional test against zero.
2851 if and_tmp has a nonzero bit then some address is unaligned. */
2852 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2853 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2854 and_tmp_name, ptrsize_zero);
2855 chain_cond_expr (cond_expr, part_cond_expr);
2858 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
2859 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
2860 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2861 and this new condition are true. Treat a null *COND_EXPR as "true". */
2863 static void
2864 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
2866 vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
2867 unsigned int i;
2868 vec_object_pair *pair;
2869 FOR_EACH_VEC_ELT (pairs, i, pair)
2871 tree addr1 = build_fold_addr_expr (pair->first);
2872 tree addr2 = build_fold_addr_expr (pair->second);
2873 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
2874 addr1, addr2);
2875 chain_cond_expr (cond_expr, part_cond_expr);
2879 /* Create an expression that is true when all lower-bound conditions for
2880 the vectorized loop are met. Chain this condition with *COND_EXPR. */
2882 static void
2883 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
2885 vec<vec_lower_bound> lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
2886 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
2888 tree expr = lower_bounds[i].expr;
2889 tree type = unsigned_type_for (TREE_TYPE (expr));
2890 expr = fold_convert (type, expr);
2891 poly_uint64 bound = lower_bounds[i].min_value;
2892 if (!lower_bounds[i].unsigned_p)
2894 expr = fold_build2 (PLUS_EXPR, type, expr,
2895 build_int_cstu (type, bound - 1));
2896 bound += bound - 1;
2898 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
2899 build_int_cstu (type, bound));
2900 chain_cond_expr (cond_expr, part_cond_expr);
2904 /* Function vect_create_cond_for_alias_checks.
2906 Create a conditional expression that represents the run-time checks for
2907 overlapping of address ranges represented by a list of data references
2908 relations passed as input.
2910 Input:
2911 COND_EXPR - input conditional expression. New conditions will be chained
2912 with logical AND operation. If it is NULL, then the function
2913 is used to return the number of alias checks.
2914 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2915 to be checked.
2917 Output:
2918 COND_EXPR - conditional expression.
2920 The returned COND_EXPR is the conditional expression to be used in the if
2921 statement that controls which version of the loop gets executed at runtime.
2924 void
2925 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2927 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2928 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2930 if (comp_alias_ddrs.is_empty ())
2931 return;
2933 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2934 &comp_alias_ddrs, cond_expr);
2935 if (dump_enabled_p ())
2936 dump_printf_loc (MSG_NOTE, vect_location,
2937 "created %u versioning for alias checks.\n",
2938 comp_alias_ddrs.length ());
2942 /* Function vect_loop_versioning.
2944 If the loop has data references that may or may not be aligned or/and
2945 has data reference relations whose independence was not proven then
2946 two versions of the loop need to be generated, one which is vectorized
2947 and one which isn't. A test is then generated to control which of the
2948 loops is executed. The test checks for the alignment of all of the
2949 data references that may or may not be aligned. An additional
2950 sequence of runtime tests is generated for each pairs of DDRs whose
2951 independence was not proven. The vectorized version of loop is
2952 executed only if both alias and alignment tests are passed.
2954 The test generated to check which version of loop is executed
2955 is modified to also check for profitability as indicated by the
2956 cost model threshold TH.
2958 The versioning precondition(s) are placed in *COND_EXPR and
2959 *COND_EXPR_STMT_LIST. */
2961 void
2962 vect_loop_versioning (loop_vec_info loop_vinfo,
2963 unsigned int th, bool check_profitability,
2964 poly_uint64 versioning_threshold)
2966 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2967 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2968 basic_block condition_bb;
2969 gphi_iterator gsi;
2970 gimple_stmt_iterator cond_exp_gsi;
2971 basic_block merge_bb;
2972 basic_block new_exit_bb;
2973 edge new_exit_e, e;
2974 gphi *orig_phi, *new_phi;
2975 tree cond_expr = NULL_TREE;
2976 gimple_seq cond_expr_stmt_list = NULL;
2977 tree arg;
2978 profile_probability prob = profile_probability::likely ();
2979 gimple_seq gimplify_stmt_list = NULL;
2980 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2981 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2982 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2983 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2985 if (check_profitability)
2986 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2987 build_int_cst (TREE_TYPE (scalar_loop_iters),
2988 th - 1));
2989 if (maybe_ne (versioning_threshold, 0U))
2991 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2992 build_int_cst (TREE_TYPE (scalar_loop_iters),
2993 versioning_threshold - 1));
2994 if (cond_expr)
2995 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
2996 expr, cond_expr);
2997 else
2998 cond_expr = expr;
3001 if (version_niter)
3002 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3004 if (cond_expr)
3005 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
3006 is_gimple_condexpr, NULL_TREE);
3008 if (version_align)
3009 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3010 &cond_expr_stmt_list);
3012 if (version_alias)
3014 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3015 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3016 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3019 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3020 &gimplify_stmt_list,
3021 is_gimple_condexpr, NULL_TREE);
3022 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3024 initialize_original_copy_tables ();
3025 if (scalar_loop)
3027 edge scalar_e;
3028 basic_block preheader, scalar_preheader;
3030 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
3031 scale LOOP's frequencies instead. */
3032 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
3033 prob, prob.invert (), prob, prob.invert (), true);
3034 scale_loop_frequencies (loop, prob);
3035 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
3036 while we need to move it above LOOP's preheader. */
3037 e = loop_preheader_edge (loop);
3038 scalar_e = loop_preheader_edge (scalar_loop);
3039 gcc_assert (empty_block_p (e->src)
3040 && single_pred_p (e->src));
3041 gcc_assert (empty_block_p (scalar_e->src)
3042 && single_pred_p (scalar_e->src));
3043 gcc_assert (single_pred_p (condition_bb));
3044 preheader = e->src;
3045 scalar_preheader = scalar_e->src;
3046 scalar_e = find_edge (condition_bb, scalar_preheader);
3047 e = single_pred_edge (preheader);
3048 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
3049 scalar_preheader);
3050 redirect_edge_and_branch_force (scalar_e, preheader);
3051 redirect_edge_and_branch_force (e, condition_bb);
3052 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
3053 single_pred (condition_bb));
3054 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
3055 single_pred (scalar_preheader));
3056 set_immediate_dominator (CDI_DOMINATORS, preheader,
3057 condition_bb);
3059 else
3060 nloop = loop_version (loop, cond_expr, &condition_bb,
3061 prob, prob.invert (), prob, prob.invert (), true);
3063 if (version_niter)
3065 /* The versioned loop could be infinite, we need to clear existing
3066 niter information which is copied from the original loop. */
3067 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3068 vect_free_loop_info_assumptions (nloop);
3069 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
3070 loop_constraint_set (loop, LOOP_C_INFINITE);
3073 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
3074 && dump_enabled_p ())
3076 if (version_alias)
3077 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
3078 "loop versioned for vectorization because of "
3079 "possible aliasing\n");
3080 if (version_align)
3081 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
3082 "loop versioned for vectorization to enhance "
3083 "alignment\n");
3086 free_original_copy_tables ();
3088 /* Loop versioning violates an assumption we try to maintain during
3089 vectorization - that the loop exit block has a single predecessor.
3090 After versioning, the exit block of both loop versions is the same
3091 basic block (i.e. it has two predecessors). Just in order to simplify
3092 following transformations in the vectorizer, we fix this situation
3093 here by adding a new (empty) block on the exit-edge of the loop,
3094 with the proper loop-exit phis to maintain loop-closed-form.
3095 If loop versioning wasn't done from loop, but scalar_loop instead,
3096 merge_bb will have already just a single successor. */
3098 merge_bb = single_exit (loop)->dest;
3099 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
3101 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3102 new_exit_bb = split_edge (single_exit (loop));
3103 new_exit_e = single_exit (loop);
3104 e = EDGE_SUCC (new_exit_bb, 0);
3106 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
3108 tree new_res;
3109 orig_phi = gsi.phi ();
3110 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
3111 new_phi = create_phi_node (new_res, new_exit_bb);
3112 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3113 add_phi_arg (new_phi, arg, new_exit_e,
3114 gimple_phi_arg_location_from_edge (orig_phi, e));
3115 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3119 /* End loop-exit-fixes after versioning. */
3121 if (cond_expr_stmt_list)
3123 cond_exp_gsi = gsi_last_bb (condition_bb);
3124 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3125 GSI_SAME_STMT);
3127 update_ssa (TODO_update_ssa);