* config/ia64/fde-glibc.c (_GNU_SOURCE): Define to 1 instead of
[official-gcc.git] / gcc / regclass.c
blobf16f03aa1b6e896d76e6189eec6ba78c02a57477
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "hard-reg-set.h"
32 #include "rtl.h"
33 #include "expr.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "output.h"
45 #include "ggc.h"
46 #include "timevar.h"
48 static void init_reg_sets_1 (void);
49 static void init_reg_autoinc (void);
51 /* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
53 reloads for pseudos auto-incremented since reload can't handle it. */
55 #ifdef AUTO_INC_DEC
56 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
57 #define FORBIDDEN_INC_DEC_CLASSES
58 #endif
59 #endif
61 /* Register tables used by many passes. */
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
70 /* Same info as a HARD_REG_SET. */
72 HARD_REG_SET fixed_reg_set;
74 /* Data for initializing the above. */
76 static const char initial_fixed_regs[] = FIXED_REGISTERS;
78 /* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
84 char call_used_regs[FIRST_PSEUDO_REGISTER];
86 /* Same info as a HARD_REG_SET. */
88 HARD_REG_SET call_used_reg_set;
90 /* HARD_REG_SET of registers we want to avoid caller saving. */
91 HARD_REG_SET losing_caller_save_reg_set;
93 /* Data for initializing the above. */
95 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
97 /* This is much like call_used_regs, except it doesn't have to
98 be a superset of FIXED_REGISTERS. This vector indicates
99 what is really call clobbered, and is used when defining
100 regs_invalidated_by_call. */
102 #ifdef CALL_REALLY_USED_REGISTERS
103 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
104 #endif
106 /* Indexed by hard register number, contains 1 for registers that are
107 fixed use or call used registers that cannot hold quantities across
108 calls even if we are willing to save and restore them. call fixed
109 registers are a subset of call used registers. */
111 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113 /* The same info as a HARD_REG_SET. */
115 HARD_REG_SET call_fixed_reg_set;
117 /* Number of non-fixed registers. */
119 int n_non_fixed_regs;
121 /* Indexed by hard register number, contains 1 for registers
122 that are being used for global register decls.
123 These must be exempt from ordinary flow analysis
124 and are also considered fixed. */
126 char global_regs[FIRST_PSEUDO_REGISTER];
128 /* Contains 1 for registers that are set or clobbered by calls. */
129 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
130 for someone's bright idea to have call_used_regs strictly include
131 fixed_regs. Which leaves us guessing as to the set of fixed_regs
132 that are actually preserved. We know for sure that those associated
133 with the local stack frame are safe, but scant others. */
135 HARD_REG_SET regs_invalidated_by_call;
137 /* Table of register numbers in the order in which to try to use them. */
138 #ifdef REG_ALLOC_ORDER
139 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
141 /* The inverse of reg_alloc_order. */
142 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
143 #endif
145 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
147 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149 /* The same information, but as an array of unsigned ints. We copy from
150 these unsigned ints to the table above. We do this so the tm.h files
151 do not have to be aware of the wordsize for machines with <= 64 regs.
152 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
154 #define N_REG_INTS \
155 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
157 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
158 = REG_CLASS_CONTENTS;
160 /* For each reg class, number of regs it contains. */
162 unsigned int reg_class_size[N_REG_CLASSES];
164 /* For each reg class, table listing all the containing classes. */
166 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168 /* For each reg class, table listing all the classes contained in it. */
170 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172 /* For each pair of reg classes,
173 a largest reg class contained in their union. */
175 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177 /* For each pair of reg classes,
178 the smallest reg class containing their union. */
180 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182 /* Array containing all of the register names. */
184 const char * reg_names[] = REGISTER_NAMES;
186 /* For each hard register, the widest mode object that it can contain.
187 This will be a MODE_INT mode if the register can hold integers. Otherwise
188 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
189 register. */
191 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
193 /* 1 if class does contain register of given mode. */
195 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
197 /* Maximum cost of moving from a register in one class to a register in
198 another class. Based on REGISTER_MOVE_COST. */
200 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
202 /* Similar, but here we don't have to move if the first index is a subset
203 of the second so in that case the cost is zero. */
205 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
207 /* Similar, but here we don't have to move if the first index is a superset
208 of the second so in that case the cost is zero. */
210 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
212 #ifdef FORBIDDEN_INC_DEC_CLASSES
214 /* These are the classes that regs which are auto-incremented or decremented
215 cannot be put in. */
217 static int forbidden_inc_dec_class[N_REG_CLASSES];
219 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
220 context. */
222 static char *in_inc_dec;
224 #endif /* FORBIDDEN_INC_DEC_CLASSES */
226 #ifdef CANNOT_CHANGE_MODE_CLASS
227 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
228 + mode. */
229 bitmap_head subregs_of_mode;
230 #endif
232 /* Sample MEM values for use by memory_move_secondary_cost. */
234 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
236 /* Linked list of reg_info structures allocated for reg_n_info array.
237 Grouping all of the allocated structures together in one lump
238 means only one call to bzero to clear them, rather than n smaller
239 calls. */
240 struct reg_info_data {
241 struct reg_info_data *next; /* next set of reg_info structures */
242 size_t min_index; /* minimum index # */
243 size_t max_index; /* maximum index # */
244 char used_p; /* nonzero if this has been used previously */
245 reg_info data[1]; /* beginning of the reg_info data */
248 static struct reg_info_data *reg_info_head;
250 /* No more global register variables may be declared; true once
251 regclass has been initialized. */
253 static int no_global_reg_vars = 0;
256 /* Function called only once to initialize the above data on reg usage.
257 Once this is done, various switches may override. */
259 void
260 init_reg_sets (void)
262 int i, j;
264 /* First copy the register information from the initial int form into
265 the regsets. */
267 for (i = 0; i < N_REG_CLASSES; i++)
269 CLEAR_HARD_REG_SET (reg_class_contents[i]);
271 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
272 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
273 if (int_reg_class_contents[i][j / 32]
274 & ((unsigned) 1 << (j % 32)))
275 SET_HARD_REG_BIT (reg_class_contents[i], j);
278 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
279 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
280 memset (global_regs, 0, sizeof global_regs);
282 /* Do any additional initialization regsets may need. */
283 INIT_ONCE_REG_SET ();
285 #ifdef REG_ALLOC_ORDER
286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
287 inv_reg_alloc_order[reg_alloc_order[i]] = i;
288 #endif
291 /* After switches have been processed, which perhaps alter
292 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
294 static void
295 init_reg_sets_1 (void)
297 unsigned int i, j;
298 unsigned int /* enum machine_mode */ m;
299 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
301 /* This macro allows the fixed or call-used registers
302 and the register classes to depend on target flags. */
304 #ifdef CONDITIONAL_REGISTER_USAGE
305 CONDITIONAL_REGISTER_USAGE;
306 #endif
308 /* Compute number of hard regs in each class. */
310 memset (reg_class_size, 0, sizeof reg_class_size);
311 for (i = 0; i < N_REG_CLASSES; i++)
312 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
313 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
314 reg_class_size[i]++;
316 /* Initialize the table of subunions.
317 reg_class_subunion[I][J] gets the largest-numbered reg-class
318 that is contained in the union of classes I and J. */
320 for (i = 0; i < N_REG_CLASSES; i++)
322 for (j = 0; j < N_REG_CLASSES; j++)
324 #ifdef HARD_REG_SET
325 register /* Declare it register if it's a scalar. */
326 #endif
327 HARD_REG_SET c;
328 int k;
330 COPY_HARD_REG_SET (c, reg_class_contents[i]);
331 IOR_HARD_REG_SET (c, reg_class_contents[j]);
332 for (k = 0; k < N_REG_CLASSES; k++)
334 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
335 subclass1);
336 continue;
338 subclass1:
339 /* Keep the largest subclass. */ /* SPEE 900308 */
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
341 reg_class_contents[(int) reg_class_subunion[i][j]],
342 subclass2);
343 reg_class_subunion[i][j] = (enum reg_class) k;
344 subclass2:
350 /* Initialize the table of superunions.
351 reg_class_superunion[I][J] gets the smallest-numbered reg-class
352 containing the union of classes I and J. */
354 for (i = 0; i < N_REG_CLASSES; i++)
356 for (j = 0; j < N_REG_CLASSES; j++)
358 #ifdef HARD_REG_SET
359 register /* Declare it register if it's a scalar. */
360 #endif
361 HARD_REG_SET c;
362 int k;
364 COPY_HARD_REG_SET (c, reg_class_contents[i]);
365 IOR_HARD_REG_SET (c, reg_class_contents[j]);
366 for (k = 0; k < N_REG_CLASSES; k++)
367 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
369 superclass:
370 reg_class_superunion[i][j] = (enum reg_class) k;
374 /* Initialize the tables of subclasses and superclasses of each reg class.
375 First clear the whole table, then add the elements as they are found. */
377 for (i = 0; i < N_REG_CLASSES; i++)
379 for (j = 0; j < N_REG_CLASSES; j++)
381 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
382 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
386 for (i = 0; i < N_REG_CLASSES; i++)
388 if (i == (int) NO_REGS)
389 continue;
391 for (j = i + 1; j < N_REG_CLASSES; j++)
393 enum reg_class *p;
395 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
396 subclass);
397 continue;
398 subclass:
399 /* Reg class I is a subclass of J.
400 Add J to the table of superclasses of I. */
401 p = &reg_class_superclasses[i][0];
402 while (*p != LIM_REG_CLASSES) p++;
403 *p = (enum reg_class) j;
404 /* Add I to the table of superclasses of J. */
405 p = &reg_class_subclasses[j][0];
406 while (*p != LIM_REG_CLASSES) p++;
407 *p = (enum reg_class) i;
411 /* Initialize "constant" tables. */
413 CLEAR_HARD_REG_SET (fixed_reg_set);
414 CLEAR_HARD_REG_SET (call_used_reg_set);
415 CLEAR_HARD_REG_SET (call_fixed_reg_set);
416 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
418 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
420 n_non_fixed_regs = 0;
422 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
424 if (fixed_regs[i])
425 SET_HARD_REG_BIT (fixed_reg_set, i);
426 else
427 n_non_fixed_regs++;
429 if (call_used_regs[i])
430 SET_HARD_REG_BIT (call_used_reg_set, i);
431 if (call_fixed_regs[i])
432 SET_HARD_REG_BIT (call_fixed_reg_set, i);
433 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
434 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
436 /* There are a couple of fixed registers that we know are safe to
437 exclude from being clobbered by calls:
439 The frame pointer is always preserved across calls. The arg pointer
440 is if it is fixed. The stack pointer usually is, unless
441 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
442 If we are generating PIC code, the PIC offset table register is
443 preserved across calls, though the target can override that. */
445 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
447 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
448 else if (i == HARD_FRAME_POINTER_REGNUM)
450 #endif
451 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
452 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
454 #endif
455 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
456 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
458 #endif
459 else if (0
460 #ifdef CALL_REALLY_USED_REGISTERS
461 || call_really_used_regs[i]
462 #else
463 || call_used_regs[i]
464 #endif
465 || global_regs[i])
466 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
469 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
470 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
471 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
472 for (i = 0; i < N_REG_CLASSES; i++)
473 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
474 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
475 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
476 && HARD_REGNO_MODE_OK (j, m))
478 contains_reg_of_mode [i][m] = 1;
479 allocatable_regs_of_mode [m] = 1;
480 break;
483 /* Initialize the move cost table. Find every subset of each class
484 and take the maximum cost of moving any subset to any other. */
486 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
487 if (allocatable_regs_of_mode [m])
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if (contains_reg_of_mode [i][m])
491 for (j = 0; j < N_REG_CLASSES; j++)
493 int cost;
494 enum reg_class *p1, *p2;
496 if (!contains_reg_of_mode [j][m])
498 move_cost[m][i][j] = 65536;
499 may_move_in_cost[m][i][j] = 65536;
500 may_move_out_cost[m][i][j] = 65536;
502 else
504 cost = REGISTER_MOVE_COST (m, i, j);
506 for (p2 = &reg_class_subclasses[j][0];
507 *p2 != LIM_REG_CLASSES;
508 p2++)
509 if (*p2 != i && contains_reg_of_mode [*p2][m])
510 cost = MAX (cost, move_cost [m][i][*p2]);
512 for (p1 = &reg_class_subclasses[i][0];
513 *p1 != LIM_REG_CLASSES;
514 p1++)
515 if (*p1 != j && contains_reg_of_mode [*p1][m])
516 cost = MAX (cost, move_cost [m][*p1][j]);
518 move_cost[m][i][j] = cost;
520 if (reg_class_subset_p (i, j))
521 may_move_in_cost[m][i][j] = 0;
522 else
523 may_move_in_cost[m][i][j] = cost;
525 if (reg_class_subset_p (j, i))
526 may_move_out_cost[m][i][j] = 0;
527 else
528 may_move_out_cost[m][i][j] = cost;
531 else
532 for (j = 0; j < N_REG_CLASSES; j++)
534 move_cost[m][i][j] = 65536;
535 may_move_in_cost[m][i][j] = 65536;
536 may_move_out_cost[m][i][j] = 65536;
541 /* Compute the table of register modes.
542 These values are used to record death information for individual registers
543 (as opposed to a multi-register mode). */
545 void
546 init_reg_modes_once (void)
548 int i;
550 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
552 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
554 /* If we couldn't find a valid mode, just use the previous mode.
555 ??? One situation in which we need to do this is on the mips where
556 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
557 to use DF mode for the even registers and VOIDmode for the odd
558 (for the cpu models where the odd ones are inaccessible). */
559 if (reg_raw_mode[i] == VOIDmode)
560 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
564 /* Finish initializing the register sets and
565 initialize the register modes. */
567 void
568 init_regs (void)
570 /* This finishes what was started by init_reg_sets, but couldn't be done
571 until after register usage was specified. */
572 init_reg_sets_1 ();
574 init_reg_autoinc ();
577 /* Initialize some fake stack-frame MEM references for use in
578 memory_move_secondary_cost. */
580 void
581 init_fake_stack_mems (void)
583 #ifdef HAVE_SECONDARY_RELOADS
585 int i;
587 for (i = 0; i < MAX_MACHINE_MODE; i++)
588 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
590 #endif
593 #ifdef HAVE_SECONDARY_RELOADS
595 /* Compute extra cost of moving registers to/from memory due to reloads.
596 Only needed if secondary reloads are required for memory moves. */
599 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
601 enum reg_class altclass;
602 int partial_cost = 0;
603 /* We need a memory reference to feed to SECONDARY... macros. */
604 /* mem may be unused even if the SECONDARY_ macros are defined. */
605 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
608 if (in)
610 #ifdef SECONDARY_INPUT_RELOAD_CLASS
611 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
612 #else
613 altclass = NO_REGS;
614 #endif
616 else
618 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
619 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
620 #else
621 altclass = NO_REGS;
622 #endif
625 if (altclass == NO_REGS)
626 return 0;
628 if (in)
629 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
630 else
631 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
633 if (class == altclass)
634 /* This isn't simply a copy-to-temporary situation. Can't guess
635 what it is, so MEMORY_MOVE_COST really ought not to be calling
636 here in that case.
638 I'm tempted to put in an abort here, but returning this will
639 probably only give poor estimates, which is what we would've
640 had before this code anyways. */
641 return partial_cost;
643 /* Check if the secondary reload register will also need a
644 secondary reload. */
645 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
647 #endif
649 /* Return a machine mode that is legitimate for hard reg REGNO and large
650 enough to save nregs. If we can't find one, return VOIDmode.
651 If CALL_SAVED is true, only consider modes that are call saved. */
653 enum machine_mode
654 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
655 unsigned int nregs, bool call_saved)
657 unsigned int /* enum machine_mode */ m;
658 enum machine_mode found_mode = VOIDmode, mode;
660 /* We first look for the largest integer mode that can be validly
661 held in REGNO. If none, we look for the largest floating-point mode.
662 If we still didn't find a valid mode, try CCmode. */
664 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
665 mode != VOIDmode;
666 mode = GET_MODE_WIDER_MODE (mode))
667 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
668 && HARD_REGNO_MODE_OK (regno, mode)
669 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
670 found_mode = mode;
672 if (found_mode != VOIDmode)
673 return found_mode;
675 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
676 mode != VOIDmode;
677 mode = GET_MODE_WIDER_MODE (mode))
678 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
679 && HARD_REGNO_MODE_OK (regno, mode)
680 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
681 found_mode = mode;
683 if (found_mode != VOIDmode)
684 return found_mode;
686 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
687 mode != VOIDmode;
688 mode = GET_MODE_WIDER_MODE (mode))
689 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
690 && HARD_REGNO_MODE_OK (regno, mode)
691 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
692 found_mode = mode;
694 if (found_mode != VOIDmode)
695 return found_mode;
697 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
698 mode != VOIDmode;
699 mode = GET_MODE_WIDER_MODE (mode))
700 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
701 && HARD_REGNO_MODE_OK (regno, mode)
702 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
703 found_mode = mode;
705 if (found_mode != VOIDmode)
706 return found_mode;
708 /* Iterate over all of the CCmodes. */
709 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
711 mode = (enum machine_mode) m;
712 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
713 && HARD_REGNO_MODE_OK (regno, mode)
714 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
715 return mode;
718 /* We can't find a mode valid for this register. */
719 return VOIDmode;
722 /* Specify the usage characteristics of the register named NAME.
723 It should be a fixed register if FIXED and a
724 call-used register if CALL_USED. */
726 void
727 fix_register (const char *name, int fixed, int call_used)
729 int i;
731 /* Decode the name and update the primary form of
732 the register info. */
734 if ((i = decode_reg_name (name)) >= 0)
736 if ((i == STACK_POINTER_REGNUM
737 #ifdef HARD_FRAME_POINTER_REGNUM
738 || i == HARD_FRAME_POINTER_REGNUM
739 #else
740 || i == FRAME_POINTER_REGNUM
741 #endif
743 && (fixed == 0 || call_used == 0))
745 static const char * const what_option[2][2] = {
746 { "call-saved", "call-used" },
747 { "no-such-option", "fixed" }};
749 error ("can't use '%s' as a %s register", name,
750 what_option[fixed][call_used]);
752 else
754 fixed_regs[i] = fixed;
755 call_used_regs[i] = call_used;
756 #ifdef CALL_REALLY_USED_REGISTERS
757 if (fixed == 0)
758 call_really_used_regs[i] = call_used;
759 #endif
762 else
764 warning ("unknown register name: %s", name);
768 /* Mark register number I as global. */
770 void
771 globalize_reg (int i)
773 if (fixed_regs[i] == 0 && no_global_reg_vars)
774 error ("global register variable follows a function definition");
776 if (global_regs[i])
778 warning ("register used for two global register variables");
779 return;
782 if (call_used_regs[i] && ! fixed_regs[i])
783 warning ("call-clobbered register used for global register variable");
785 global_regs[i] = 1;
787 /* If already fixed, nothing else to do. */
788 if (fixed_regs[i])
789 return;
791 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
792 n_non_fixed_regs--;
794 SET_HARD_REG_BIT (fixed_reg_set, i);
795 SET_HARD_REG_BIT (call_used_reg_set, i);
796 SET_HARD_REG_BIT (call_fixed_reg_set, i);
797 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
800 /* Now the data and code for the `regclass' pass, which happens
801 just before local-alloc. */
803 /* The `costs' struct records the cost of using a hard register of each class
804 and of using memory for each pseudo. We use this data to set up
805 register class preferences. */
807 struct costs
809 int cost[N_REG_CLASSES];
810 int mem_cost;
813 /* Structure used to record preferences of given pseudo. */
814 struct reg_pref
816 /* (enum reg_class) prefclass is the preferred class. */
817 char prefclass;
819 /* altclass is a register class that we should use for allocating
820 pseudo if no register in the preferred class is available.
821 If no register in this class is available, memory is preferred.
823 It might appear to be more general to have a bitmask of classes here,
824 but since it is recommended that there be a class corresponding to the
825 union of most major pair of classes, that generality is not required. */
826 char altclass;
829 /* Record the cost of each class for each pseudo. */
831 static struct costs *costs;
833 /* Initialized once, and used to initialize cost values for each insn. */
835 static struct costs init_cost;
837 /* Record preferences of each pseudo.
838 This is available after `regclass' is run. */
840 static struct reg_pref *reg_pref;
842 /* Allocated buffers for reg_pref. */
844 static struct reg_pref *reg_pref_buffer;
846 /* Frequency of executions of current insn. */
848 static int frequency;
850 static rtx scan_one_insn (rtx, int);
851 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
852 static void dump_regclass (FILE *);
853 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
854 const char **, rtx, struct costs *,
855 struct reg_pref *);
856 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
857 static void record_address_regs (rtx, enum reg_class, int);
858 #ifdef FORBIDDEN_INC_DEC_CLASSES
859 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
860 #endif
861 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
863 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
864 This function is sometimes called before the info has been computed.
865 When that happens, just return GENERAL_REGS, which is innocuous. */
867 enum reg_class
868 reg_preferred_class (int regno)
870 if (reg_pref == 0)
871 return GENERAL_REGS;
872 return (enum reg_class) reg_pref[regno].prefclass;
875 enum reg_class
876 reg_alternate_class (int regno)
878 if (reg_pref == 0)
879 return ALL_REGS;
881 return (enum reg_class) reg_pref[regno].altclass;
884 /* Initialize some global data for this pass. */
886 void
887 regclass_init (void)
889 int i;
891 init_cost.mem_cost = 10000;
892 for (i = 0; i < N_REG_CLASSES; i++)
893 init_cost.cost[i] = 10000;
895 /* This prevents dump_flow_info from losing if called
896 before regclass is run. */
897 reg_pref = NULL;
899 /* No more global register variables may be declared. */
900 no_global_reg_vars = 1;
903 /* Dump register costs. */
904 static void
905 dump_regclass (FILE *dump)
907 static const char *const reg_class_names[] = REG_CLASS_NAMES;
908 int i;
909 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
911 int /* enum reg_class */ class;
912 if (REG_N_REFS (i))
914 fprintf (dump, " Register %i costs:", i);
915 for (class = 0; class < (int) N_REG_CLASSES; class++)
916 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
917 #ifdef FORBIDDEN_INC_DEC_CLASSES
918 && (!in_inc_dec[i]
919 || !forbidden_inc_dec_class[(enum reg_class) class])
920 #endif
921 #ifdef CANNOT_CHANGE_MODE_CLASS
922 && ! invalid_mode_change_p (i, (enum reg_class) class,
923 PSEUDO_REGNO_MODE (i))
924 #endif
926 fprintf (dump, " %s:%i", reg_class_names[class],
927 costs[i].cost[(enum reg_class) class]);
928 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
934 /* Calculate the costs of insn operands. */
936 static void
937 record_operand_costs (rtx insn, struct costs *op_costs,
938 struct reg_pref *reg_pref)
940 const char *constraints[MAX_RECOG_OPERANDS];
941 enum machine_mode modes[MAX_RECOG_OPERANDS];
942 int i;
944 for (i = 0; i < recog_data.n_operands; i++)
946 constraints[i] = recog_data.constraints[i];
947 modes[i] = recog_data.operand_mode[i];
950 /* If we get here, we are set up to record the costs of all the
951 operands for this insn. Start by initializing the costs.
952 Then handle any address registers. Finally record the desired
953 classes for any pseudos, doing it twice if some pair of
954 operands are commutative. */
956 for (i = 0; i < recog_data.n_operands; i++)
958 op_costs[i] = init_cost;
960 if (GET_CODE (recog_data.operand[i]) == SUBREG)
961 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
963 if (GET_CODE (recog_data.operand[i]) == MEM)
964 record_address_regs (XEXP (recog_data.operand[i], 0),
965 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
966 else if (constraints[i][0] == 'p'
967 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
968 record_address_regs (recog_data.operand[i],
969 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
972 /* Check for commutative in a separate loop so everything will
973 have been initialized. We must do this even if one operand
974 is a constant--see addsi3 in m68k.md. */
976 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
977 if (constraints[i][0] == '%')
979 const char *xconstraints[MAX_RECOG_OPERANDS];
980 int j;
982 /* Handle commutative operands by swapping the constraints.
983 We assume the modes are the same. */
985 for (j = 0; j < recog_data.n_operands; j++)
986 xconstraints[j] = constraints[j];
988 xconstraints[i] = constraints[i+1];
989 xconstraints[i+1] = constraints[i];
990 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
991 recog_data.operand, modes,
992 xconstraints, insn, op_costs, reg_pref);
995 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
996 recog_data.operand, modes,
997 constraints, insn, op_costs, reg_pref);
1000 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1001 time it would save code to put a certain register in a certain class.
1002 PASS, when nonzero, inhibits some optimizations which need only be done
1003 once.
1004 Return the last insn processed, so that the scan can be continued from
1005 there. */
1007 static rtx
1008 scan_one_insn (rtx insn, int pass)
1010 enum rtx_code code = GET_CODE (insn);
1011 enum rtx_code pat_code;
1012 rtx set, note;
1013 int i, j;
1014 struct costs op_costs[MAX_RECOG_OPERANDS];
1016 if (GET_RTX_CLASS (code) != 'i')
1017 return insn;
1019 pat_code = GET_CODE (PATTERN (insn));
1020 if (pat_code == USE
1021 || pat_code == CLOBBER
1022 || pat_code == ASM_INPUT
1023 || pat_code == ADDR_VEC
1024 || pat_code == ADDR_DIFF_VEC)
1025 return insn;
1027 set = single_set (insn);
1028 extract_insn (insn);
1030 /* If this insn loads a parameter from its stack slot, then
1031 it represents a savings, rather than a cost, if the
1032 parameter is stored in memory. Record this fact. */
1034 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1035 && GET_CODE (SET_SRC (set)) == MEM
1036 && (note = find_reg_note (insn, REG_EQUIV,
1037 NULL_RTX)) != 0
1038 && GET_CODE (XEXP (note, 0)) == MEM)
1040 costs[REGNO (SET_DEST (set))].mem_cost
1041 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1042 GENERAL_REGS, 1)
1043 * frequency);
1044 record_address_regs (XEXP (SET_SRC (set), 0),
1045 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1046 return insn;
1049 /* Improve handling of two-address insns such as
1050 (set X (ashift CONST Y)) where CONST must be made to
1051 match X. Change it into two insns: (set X CONST)
1052 (set X (ashift X Y)). If we left this for reloading, it
1053 would probably get three insns because X and Y might go
1054 in the same place. This prevents X and Y from receiving
1055 the same hard reg.
1057 We can only do this if the modes of operands 0 and 1
1058 (which might not be the same) are tieable and we only need
1059 do this during our first pass. */
1061 if (pass == 0 && optimize
1062 && recog_data.n_operands >= 3
1063 && recog_data.constraints[1][0] == '0'
1064 && recog_data.constraints[1][1] == 0
1065 && CONSTANT_P (recog_data.operand[1])
1066 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1067 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1068 && GET_CODE (recog_data.operand[0]) == REG
1069 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1070 recog_data.operand_mode[1]))
1072 rtx previnsn = prev_real_insn (insn);
1073 rtx dest
1074 = gen_lowpart (recog_data.operand_mode[1],
1075 recog_data.operand[0]);
1076 rtx newinsn
1077 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1079 /* If this insn was the start of a basic block,
1080 include the new insn in that block.
1081 We need not check for code_label here;
1082 while a basic block can start with a code_label,
1083 INSN could not be at the beginning of that block. */
1084 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1086 basic_block b;
1087 FOR_EACH_BB (b)
1088 if (insn == b->head)
1089 b->head = newinsn;
1092 /* This makes one more setting of new insns's dest. */
1093 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1094 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1095 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1097 *recog_data.operand_loc[1] = recog_data.operand[0];
1098 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1099 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1100 for (i = recog_data.n_dups - 1; i >= 0; i--)
1101 if (recog_data.dup_num[i] == 1)
1103 *recog_data.dup_loc[i] = recog_data.operand[0];
1104 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1105 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1108 return PREV_INSN (newinsn);
1111 record_operand_costs (insn, op_costs, reg_pref);
1113 /* Now add the cost for each operand to the total costs for
1114 its register. */
1116 for (i = 0; i < recog_data.n_operands; i++)
1117 if (GET_CODE (recog_data.operand[i]) == REG
1118 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1120 int regno = REGNO (recog_data.operand[i]);
1121 struct costs *p = &costs[regno], *q = &op_costs[i];
1123 p->mem_cost += q->mem_cost * frequency;
1124 for (j = 0; j < N_REG_CLASSES; j++)
1125 p->cost[j] += q->cost[j] * frequency;
1128 return insn;
1131 /* Initialize information about which register classes can be used for
1132 pseudos that are auto-incremented or auto-decremented. */
1134 static void
1135 init_reg_autoinc (void)
1137 #ifdef FORBIDDEN_INC_DEC_CLASSES
1138 int i;
1140 for (i = 0; i < N_REG_CLASSES; i++)
1142 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1143 enum machine_mode m;
1144 int j;
1146 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1147 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1149 REGNO (r) = j;
1151 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1152 m = (enum machine_mode) ((int) m + 1))
1153 if (HARD_REGNO_MODE_OK (j, m))
1155 PUT_MODE (r, m);
1157 /* If a register is not directly suitable for an
1158 auto-increment or decrement addressing mode and
1159 requires secondary reloads, disallow its class from
1160 being used in such addresses. */
1162 if ((0
1163 #ifdef SECONDARY_RELOAD_CLASS
1164 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1165 != NO_REGS)
1166 #else
1167 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1168 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1169 != NO_REGS)
1170 #endif
1171 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1172 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1173 != NO_REGS)
1174 #endif
1175 #endif
1177 && ! auto_inc_dec_reg_p (r, m))
1178 forbidden_inc_dec_class[i] = 1;
1182 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1185 /* This is a pass of the compiler that scans all instructions
1186 and calculates the preferred class for each pseudo-register.
1187 This information can be accessed later by calling `reg_preferred_class'.
1188 This pass comes just before local register allocation. */
1190 void
1191 regclass (rtx f, int nregs, FILE *dump)
1193 rtx insn;
1194 int i;
1195 int pass;
1197 init_recog ();
1199 costs = xmalloc (nregs * sizeof (struct costs));
1201 #ifdef FORBIDDEN_INC_DEC_CLASSES
1203 in_inc_dec = xmalloc (nregs);
1205 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1207 /* Normally we scan the insns once and determine the best class to use for
1208 each register. However, if -fexpensive_optimizations are on, we do so
1209 twice, the second time using the tentative best classes to guide the
1210 selection. */
1212 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1214 basic_block bb;
1216 if (dump)
1217 fprintf (dump, "\n\nPass %i\n\n",pass);
1218 /* Zero out our accumulation of the cost of each class for each reg. */
1220 memset (costs, 0, nregs * sizeof (struct costs));
1222 #ifdef FORBIDDEN_INC_DEC_CLASSES
1223 memset (in_inc_dec, 0, nregs);
1224 #endif
1226 /* Scan the instructions and record each time it would
1227 save code to put a certain register in a certain class. */
1229 if (!optimize)
1231 frequency = REG_FREQ_MAX;
1232 for (insn = f; insn; insn = NEXT_INSN (insn))
1233 insn = scan_one_insn (insn, pass);
1235 else
1236 FOR_EACH_BB (bb)
1238 /* Show that an insn inside a loop is likely to be executed three
1239 times more than insns outside a loop. This is much more
1240 aggressive than the assumptions made elsewhere and is being
1241 tried as an experiment. */
1242 frequency = REG_FREQ_FROM_BB (bb);
1243 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1245 insn = scan_one_insn (insn, pass);
1246 if (insn == bb->end)
1247 break;
1251 /* Now for each register look at how desirable each class is
1252 and find which class is preferred. Store that in
1253 `prefclass'. Record in `altclass' the largest register
1254 class any of whose registers is better than memory. */
1256 if (pass == 0)
1257 reg_pref = reg_pref_buffer;
1259 if (dump)
1261 dump_regclass (dump);
1262 fprintf (dump,"\n");
1264 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1266 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1267 enum reg_class best = ALL_REGS, alt = NO_REGS;
1268 /* This is an enum reg_class, but we call it an int
1269 to save lots of casts. */
1270 int class;
1271 struct costs *p = &costs[i];
1273 /* In non-optimizing compilation REG_N_REFS is not initialized
1274 yet. */
1275 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1276 continue;
1278 for (class = (int) ALL_REGS - 1; class > 0; class--)
1280 /* Ignore classes that are too small for this operand or
1281 invalid for an operand that was auto-incremented. */
1282 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1283 #ifdef FORBIDDEN_INC_DEC_CLASSES
1284 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1285 #endif
1286 #ifdef CANNOT_CHANGE_MODE_CLASS
1287 || invalid_mode_change_p (i, (enum reg_class) class,
1288 PSEUDO_REGNO_MODE (i))
1289 #endif
1292 else if (p->cost[class] < best_cost)
1294 best_cost = p->cost[class];
1295 best = (enum reg_class) class;
1297 else if (p->cost[class] == best_cost)
1298 best = reg_class_subunion[(int) best][class];
1301 /* Record the alternate register class; i.e., a class for which
1302 every register in it is better than using memory. If adding a
1303 class would make a smaller class (i.e., no union of just those
1304 classes exists), skip that class. The major unions of classes
1305 should be provided as a register class. Don't do this if we
1306 will be doing it again later. */
1308 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1309 for (class = 0; class < N_REG_CLASSES; class++)
1310 if (p->cost[class] < p->mem_cost
1311 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1312 > reg_class_size[(int) alt])
1313 #ifdef FORBIDDEN_INC_DEC_CLASSES
1314 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1315 #endif
1316 #ifdef CANNOT_CHANGE_MODE_CLASS
1317 && ! invalid_mode_change_p (i, (enum reg_class) class,
1318 PSEUDO_REGNO_MODE (i))
1319 #endif
1321 alt = reg_class_subunion[(int) alt][class];
1323 /* If we don't add any classes, nothing to try. */
1324 if (alt == best)
1325 alt = NO_REGS;
1327 if (dump
1328 && (reg_pref[i].prefclass != (int) best
1329 || reg_pref[i].altclass != (int) alt))
1331 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1332 fprintf (dump, " Register %i", i);
1333 if (alt == ALL_REGS || best == ALL_REGS)
1334 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1335 else if (alt == NO_REGS)
1336 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1337 else
1338 fprintf (dump, " pref %s, else %s\n",
1339 reg_class_names[(int) best],
1340 reg_class_names[(int) alt]);
1343 /* We cast to (int) because (char) hits bugs in some compilers. */
1344 reg_pref[i].prefclass = (int) best;
1345 reg_pref[i].altclass = (int) alt;
1349 #ifdef FORBIDDEN_INC_DEC_CLASSES
1350 free (in_inc_dec);
1351 #endif
1352 free (costs);
1355 /* Record the cost of using memory or registers of various classes for
1356 the operands in INSN.
1358 N_ALTS is the number of alternatives.
1360 N_OPS is the number of operands.
1362 OPS is an array of the operands.
1364 MODES are the modes of the operands, in case any are VOIDmode.
1366 CONSTRAINTS are the constraints to use for the operands. This array
1367 is modified by this procedure.
1369 This procedure works alternative by alternative. For each alternative
1370 we assume that we will be able to allocate all pseudos to their ideal
1371 register class and calculate the cost of using that alternative. Then
1372 we compute for each operand that is a pseudo-register, the cost of
1373 having the pseudo allocated to each register class and using it in that
1374 alternative. To this cost is added the cost of the alternative.
1376 The cost of each class for this insn is its lowest cost among all the
1377 alternatives. */
1379 static void
1380 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1381 enum machine_mode *modes, const char **constraints,
1382 rtx insn, struct costs *op_costs,
1383 struct reg_pref *reg_pref)
1385 int alt;
1386 int i, j;
1387 rtx set;
1389 /* Process each alternative, each time minimizing an operand's cost with
1390 the cost for each operand in that alternative. */
1392 for (alt = 0; alt < n_alts; alt++)
1394 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1395 int alt_fail = 0;
1396 int alt_cost = 0;
1397 enum reg_class classes[MAX_RECOG_OPERANDS];
1398 int allows_mem[MAX_RECOG_OPERANDS];
1399 int class;
1401 for (i = 0; i < n_ops; i++)
1403 const char *p = constraints[i];
1404 rtx op = ops[i];
1405 enum machine_mode mode = modes[i];
1406 int allows_addr = 0;
1407 int win = 0;
1408 unsigned char c;
1410 /* Initially show we know nothing about the register class. */
1411 classes[i] = NO_REGS;
1412 allows_mem[i] = 0;
1414 /* If this operand has no constraints at all, we can conclude
1415 nothing about it since anything is valid. */
1417 if (*p == 0)
1419 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1420 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1422 continue;
1425 /* If this alternative is only relevant when this operand
1426 matches a previous operand, we do different things depending
1427 on whether this operand is a pseudo-reg or not. We must process
1428 any modifiers for the operand before we can make this test. */
1430 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1431 p++;
1433 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1435 /* Copy class and whether memory is allowed from the matching
1436 alternative. Then perform any needed cost computations
1437 and/or adjustments. */
1438 j = p[0] - '0';
1439 classes[i] = classes[j];
1440 allows_mem[i] = allows_mem[j];
1442 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1444 /* If this matches the other operand, we have no added
1445 cost and we win. */
1446 if (rtx_equal_p (ops[j], op))
1447 win = 1;
1449 /* If we can put the other operand into a register, add to
1450 the cost of this alternative the cost to copy this
1451 operand to the register used for the other operand. */
1453 else if (classes[j] != NO_REGS)
1454 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1456 else if (GET_CODE (ops[j]) != REG
1457 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1459 /* This op is a pseudo but the one it matches is not. */
1461 /* If we can't put the other operand into a register, this
1462 alternative can't be used. */
1464 if (classes[j] == NO_REGS)
1465 alt_fail = 1;
1467 /* Otherwise, add to the cost of this alternative the cost
1468 to copy the other operand to the register used for this
1469 operand. */
1471 else
1472 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1474 else
1476 /* The costs of this operand are not the same as the other
1477 operand since move costs are not symmetric. Moreover,
1478 if we cannot tie them, this alternative needs to do a
1479 copy, which is one instruction. */
1481 struct costs *pp = &this_op_costs[i];
1483 for (class = 0; class < N_REG_CLASSES; class++)
1484 pp->cost[class]
1485 = ((recog_data.operand_type[i] != OP_OUT
1486 ? may_move_in_cost[mode][class][(int) classes[i]]
1487 : 0)
1488 + (recog_data.operand_type[i] != OP_IN
1489 ? may_move_out_cost[mode][(int) classes[i]][class]
1490 : 0));
1492 /* If the alternative actually allows memory, make things
1493 a bit cheaper since we won't need an extra insn to
1494 load it. */
1496 pp->mem_cost
1497 = ((recog_data.operand_type[i] != OP_IN
1498 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1499 : 0)
1500 + (recog_data.operand_type[i] != OP_OUT
1501 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1502 : 0) - allows_mem[i]);
1504 /* If we have assigned a class to this register in our
1505 first pass, add a cost to this alternative corresponding
1506 to what we would add if this register were not in the
1507 appropriate class. */
1509 if (reg_pref)
1510 alt_cost
1511 += (may_move_in_cost[mode]
1512 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1513 [(int) classes[i]]);
1515 if (REGNO (ops[i]) != REGNO (ops[j])
1516 && ! find_reg_note (insn, REG_DEAD, op))
1517 alt_cost += 2;
1519 /* This is in place of ordinary cost computation
1520 for this operand, so skip to the end of the
1521 alternative (should be just one character). */
1522 while (*p && *p++ != ',')
1525 constraints[i] = p;
1526 continue;
1530 /* Scan all the constraint letters. See if the operand matches
1531 any of the constraints. Collect the valid register classes
1532 and see if this operand accepts memory. */
1534 while ((c = *p))
1536 switch (c)
1538 case ',':
1539 break;
1540 case '*':
1541 /* Ignore the next letter for this pass. */
1542 c = *++p;
1543 break;
1545 case '?':
1546 alt_cost += 2;
1547 case '!': case '#': case '&':
1548 case '0': case '1': case '2': case '3': case '4':
1549 case '5': case '6': case '7': case '8': case '9':
1550 break;
1552 case 'p':
1553 allows_addr = 1;
1554 win = address_operand (op, GET_MODE (op));
1555 /* We know this operand is an address, so we want it to be
1556 allocated to a register that can be the base of an
1557 address, ie BASE_REG_CLASS. */
1558 classes[i]
1559 = reg_class_subunion[(int) classes[i]]
1560 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1561 break;
1563 case 'm': case 'o': case 'V':
1564 /* It doesn't seem worth distinguishing between offsettable
1565 and non-offsettable addresses here. */
1566 allows_mem[i] = 1;
1567 if (GET_CODE (op) == MEM)
1568 win = 1;
1569 break;
1571 case '<':
1572 if (GET_CODE (op) == MEM
1573 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1574 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1575 win = 1;
1576 break;
1578 case '>':
1579 if (GET_CODE (op) == MEM
1580 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1581 || GET_CODE (XEXP (op, 0)) == POST_INC))
1582 win = 1;
1583 break;
1585 case 'E':
1586 case 'F':
1587 if (GET_CODE (op) == CONST_DOUBLE
1588 || (GET_CODE (op) == CONST_VECTOR
1589 && (GET_MODE_CLASS (GET_MODE (op))
1590 == MODE_VECTOR_FLOAT)))
1591 win = 1;
1592 break;
1594 case 'G':
1595 case 'H':
1596 if (GET_CODE (op) == CONST_DOUBLE
1597 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1598 win = 1;
1599 break;
1601 case 's':
1602 if (GET_CODE (op) == CONST_INT
1603 || (GET_CODE (op) == CONST_DOUBLE
1604 && GET_MODE (op) == VOIDmode))
1605 break;
1606 case 'i':
1607 if (CONSTANT_P (op)
1608 #ifdef LEGITIMATE_PIC_OPERAND_P
1609 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1610 #endif
1612 win = 1;
1613 break;
1615 case 'n':
1616 if (GET_CODE (op) == CONST_INT
1617 || (GET_CODE (op) == CONST_DOUBLE
1618 && GET_MODE (op) == VOIDmode))
1619 win = 1;
1620 break;
1622 case 'I':
1623 case 'J':
1624 case 'K':
1625 case 'L':
1626 case 'M':
1627 case 'N':
1628 case 'O':
1629 case 'P':
1630 if (GET_CODE (op) == CONST_INT
1631 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1632 win = 1;
1633 break;
1635 case 'X':
1636 win = 1;
1637 break;
1639 case 'g':
1640 if (GET_CODE (op) == MEM
1641 || (CONSTANT_P (op)
1642 #ifdef LEGITIMATE_PIC_OPERAND_P
1643 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1644 #endif
1646 win = 1;
1647 allows_mem[i] = 1;
1648 case 'r':
1649 classes[i]
1650 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1651 break;
1653 default:
1654 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1655 classes[i]
1656 = reg_class_subunion[(int) classes[i]]
1657 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1658 #ifdef EXTRA_CONSTRAINT_STR
1659 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1660 win = 1;
1662 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1664 /* Every MEM can be reloaded to fit. */
1665 allows_mem[i] = 1;
1666 if (GET_CODE (op) == MEM)
1667 win = 1;
1669 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1671 /* Every address can be reloaded to fit. */
1672 allows_addr = 1;
1673 if (address_operand (op, GET_MODE (op)))
1674 win = 1;
1675 /* We know this operand is an address, so we want it to
1676 be allocated to a register that can be the base of an
1677 address, ie BASE_REG_CLASS. */
1678 classes[i]
1679 = reg_class_subunion[(int) classes[i]]
1680 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1682 #endif
1683 break;
1685 p += CONSTRAINT_LEN (c, p);
1686 if (c == ',')
1687 break;
1690 constraints[i] = p;
1692 /* How we account for this operand now depends on whether it is a
1693 pseudo register or not. If it is, we first check if any
1694 register classes are valid. If not, we ignore this alternative,
1695 since we want to assume that all pseudos get allocated for
1696 register preferencing. If some register class is valid, compute
1697 the costs of moving the pseudo into that class. */
1699 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1701 if (classes[i] == NO_REGS)
1703 /* We must always fail if the operand is a REG, but
1704 we did not find a suitable class.
1706 Otherwise we may perform an uninitialized read
1707 from this_op_costs after the `continue' statement
1708 below. */
1709 alt_fail = 1;
1711 else
1713 struct costs *pp = &this_op_costs[i];
1715 for (class = 0; class < N_REG_CLASSES; class++)
1716 pp->cost[class]
1717 = ((recog_data.operand_type[i] != OP_OUT
1718 ? may_move_in_cost[mode][class][(int) classes[i]]
1719 : 0)
1720 + (recog_data.operand_type[i] != OP_IN
1721 ? may_move_out_cost[mode][(int) classes[i]][class]
1722 : 0));
1724 /* If the alternative actually allows memory, make things
1725 a bit cheaper since we won't need an extra insn to
1726 load it. */
1728 pp->mem_cost
1729 = ((recog_data.operand_type[i] != OP_IN
1730 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_OUT
1733 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1734 : 0) - allows_mem[i]);
1736 /* If we have assigned a class to this register in our
1737 first pass, add a cost to this alternative corresponding
1738 to what we would add if this register were not in the
1739 appropriate class. */
1741 if (reg_pref)
1742 alt_cost
1743 += (may_move_in_cost[mode]
1744 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1745 [(int) classes[i]]);
1749 /* Otherwise, if this alternative wins, either because we
1750 have already determined that or if we have a hard register of
1751 the proper class, there is no cost for this alternative. */
1753 else if (win
1754 || (GET_CODE (op) == REG
1755 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1758 /* If registers are valid, the cost of this alternative includes
1759 copying the object to and/or from a register. */
1761 else if (classes[i] != NO_REGS)
1763 if (recog_data.operand_type[i] != OP_OUT)
1764 alt_cost += copy_cost (op, mode, classes[i], 1);
1766 if (recog_data.operand_type[i] != OP_IN)
1767 alt_cost += copy_cost (op, mode, classes[i], 0);
1770 /* The only other way this alternative can be used is if this is a
1771 constant that could be placed into memory. */
1773 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1774 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1775 else
1776 alt_fail = 1;
1779 if (alt_fail)
1780 continue;
1782 /* Finally, update the costs with the information we've calculated
1783 about this alternative. */
1785 for (i = 0; i < n_ops; i++)
1786 if (GET_CODE (ops[i]) == REG
1787 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1789 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1790 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1792 pp->mem_cost = MIN (pp->mem_cost,
1793 (qq->mem_cost + alt_cost) * scale);
1795 for (class = 0; class < N_REG_CLASSES; class++)
1796 pp->cost[class] = MIN (pp->cost[class],
1797 (qq->cost[class] + alt_cost) * scale);
1801 /* If this insn is a single set copying operand 1 to operand 0
1802 and one operand is a pseudo with the other a hard reg or a pseudo
1803 that prefers a register that is in its own register class then
1804 we may want to adjust the cost of that register class to -1.
1806 Avoid the adjustment if the source does not die to avoid stressing of
1807 register allocator by preferrencing two colliding registers into single
1808 class.
1810 Also avoid the adjustment if a copy between registers of the class
1811 is expensive (ten times the cost of a default copy is considered
1812 arbitrarily expensive). This avoids losing when the preferred class
1813 is very expensive as the source of a copy instruction. */
1815 if ((set = single_set (insn)) != 0
1816 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1817 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1818 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1819 for (i = 0; i <= 1; i++)
1820 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1822 unsigned int regno = REGNO (ops[!i]);
1823 enum machine_mode mode = GET_MODE (ops[!i]);
1824 int class;
1825 unsigned int nr;
1827 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1829 enum reg_class pref = reg_pref[regno].prefclass;
1831 if ((reg_class_size[(unsigned char) pref]
1832 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1833 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1834 op_costs[i].cost[(unsigned char) pref] = -1;
1836 else if (regno < FIRST_PSEUDO_REGISTER)
1837 for (class = 0; class < N_REG_CLASSES; class++)
1838 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1839 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1841 if (reg_class_size[class] == 1)
1842 op_costs[i].cost[class] = -1;
1843 else
1845 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
1847 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1848 regno + nr))
1849 break;
1852 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
1853 op_costs[i].cost[class] = -1;
1859 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1860 TO_P is zero) a register of class CLASS in mode MODE.
1862 X must not be a pseudo. */
1864 static int
1865 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1866 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1868 #ifdef HAVE_SECONDARY_RELOADS
1869 enum reg_class secondary_class = NO_REGS;
1870 #endif
1872 /* If X is a SCRATCH, there is actually nothing to move since we are
1873 assuming optimal allocation. */
1875 if (GET_CODE (x) == SCRATCH)
1876 return 0;
1878 /* Get the class we will actually use for a reload. */
1879 class = PREFERRED_RELOAD_CLASS (x, class);
1881 #ifdef HAVE_SECONDARY_RELOADS
1882 /* If we need a secondary reload (we assume here that we are using
1883 the secondary reload as an intermediate, not a scratch register), the
1884 cost is that to load the input into the intermediate register, then
1885 to copy them. We use a special value of TO_P to avoid recursion. */
1887 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1888 if (to_p == 1)
1889 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1890 #endif
1892 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1893 if (! to_p)
1894 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1895 #endif
1897 if (secondary_class != NO_REGS)
1898 return (move_cost[mode][(int) secondary_class][(int) class]
1899 + copy_cost (x, mode, secondary_class, 2));
1900 #endif /* HAVE_SECONDARY_RELOADS */
1902 /* For memory, use the memory move cost, for (hard) registers, use the
1903 cost to move between the register classes, and use 2 for everything
1904 else (constants). */
1906 if (GET_CODE (x) == MEM || class == NO_REGS)
1907 return MEMORY_MOVE_COST (mode, class, to_p);
1909 else if (GET_CODE (x) == REG)
1910 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1912 else
1913 /* If this is a constant, we may eventually want to call rtx_cost here. */
1914 return COSTS_N_INSNS (1);
1917 /* Record the pseudo registers we must reload into hard registers
1918 in a subexpression of a memory address, X.
1920 CLASS is the class that the register needs to be in and is either
1921 BASE_REG_CLASS or INDEX_REG_CLASS.
1923 SCALE is twice the amount to multiply the cost by (it is twice so we
1924 can represent half-cost adjustments). */
1926 static void
1927 record_address_regs (rtx x, enum reg_class class, int scale)
1929 enum rtx_code code = GET_CODE (x);
1931 switch (code)
1933 case CONST_INT:
1934 case CONST:
1935 case CC0:
1936 case PC:
1937 case SYMBOL_REF:
1938 case LABEL_REF:
1939 return;
1941 case PLUS:
1942 /* When we have an address that is a sum,
1943 we must determine whether registers are "base" or "index" regs.
1944 If there is a sum of two registers, we must choose one to be
1945 the "base". Luckily, we can use the REG_POINTER to make a good
1946 choice most of the time. We only need to do this on machines
1947 that can have two registers in an address and where the base
1948 and index register classes are different.
1950 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1951 that seems bogus since it should only be set when we are sure
1952 the register is being used as a pointer. */
1955 rtx arg0 = XEXP (x, 0);
1956 rtx arg1 = XEXP (x, 1);
1957 enum rtx_code code0 = GET_CODE (arg0);
1958 enum rtx_code code1 = GET_CODE (arg1);
1960 /* Look inside subregs. */
1961 if (code0 == SUBREG)
1962 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1963 if (code1 == SUBREG)
1964 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1966 /* If this machine only allows one register per address, it must
1967 be in the first operand. */
1969 if (MAX_REGS_PER_ADDRESS == 1)
1970 record_address_regs (arg0, class, scale);
1972 /* If index and base registers are the same on this machine, just
1973 record registers in any non-constant operands. We assume here,
1974 as well as in the tests below, that all addresses are in
1975 canonical form. */
1977 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1979 record_address_regs (arg0, class, scale);
1980 if (! CONSTANT_P (arg1))
1981 record_address_regs (arg1, class, scale);
1984 /* If the second operand is a constant integer, it doesn't change
1985 what class the first operand must be. */
1987 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1988 record_address_regs (arg0, class, scale);
1990 /* If the second operand is a symbolic constant, the first operand
1991 must be an index register. */
1993 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1994 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1996 /* If both operands are registers but one is already a hard register
1997 of index or base class, give the other the class that the hard
1998 register is not. */
2000 #ifdef REG_OK_FOR_BASE_P
2001 else if (code0 == REG && code1 == REG
2002 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2003 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2004 record_address_regs (arg1,
2005 REG_OK_FOR_BASE_P (arg0)
2006 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2007 scale);
2008 else if (code0 == REG && code1 == REG
2009 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2010 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2011 record_address_regs (arg0,
2012 REG_OK_FOR_BASE_P (arg1)
2013 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2014 scale);
2015 #endif
2017 /* If one operand is known to be a pointer, it must be the base
2018 with the other operand the index. Likewise if the other operand
2019 is a MULT. */
2021 else if ((code0 == REG && REG_POINTER (arg0))
2022 || code1 == MULT)
2024 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2025 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2027 else if ((code1 == REG && REG_POINTER (arg1))
2028 || code0 == MULT)
2030 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2031 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2034 /* Otherwise, count equal chances that each might be a base
2035 or index register. This case should be rare. */
2037 else
2039 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2040 scale / 2);
2041 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2042 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2043 scale / 2);
2044 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2047 break;
2049 /* Double the importance of a pseudo register that is incremented
2050 or decremented, since it would take two extra insns
2051 if it ends up in the wrong place. */
2052 case POST_MODIFY:
2053 case PRE_MODIFY:
2054 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2055 2 * scale);
2056 if (REG_P (XEXP (XEXP (x, 1), 1)))
2057 record_address_regs (XEXP (XEXP (x, 1), 1),
2058 INDEX_REG_CLASS, 2 * scale);
2059 break;
2061 case POST_INC:
2062 case PRE_INC:
2063 case POST_DEC:
2064 case PRE_DEC:
2065 /* Double the importance of a pseudo register that is incremented
2066 or decremented, since it would take two extra insns
2067 if it ends up in the wrong place. If the operand is a pseudo,
2068 show it is being used in an INC_DEC context. */
2070 #ifdef FORBIDDEN_INC_DEC_CLASSES
2071 if (GET_CODE (XEXP (x, 0)) == REG
2072 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2073 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2074 #endif
2076 record_address_regs (XEXP (x, 0), class, 2 * scale);
2077 break;
2079 case REG:
2081 struct costs *pp = &costs[REGNO (x)];
2082 int i;
2084 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2086 for (i = 0; i < N_REG_CLASSES; i++)
2087 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2089 break;
2091 default:
2093 const char *fmt = GET_RTX_FORMAT (code);
2094 int i;
2095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2096 if (fmt[i] == 'e')
2097 record_address_regs (XEXP (x, i), class, scale);
2102 #ifdef FORBIDDEN_INC_DEC_CLASSES
2104 /* Return 1 if REG is valid as an auto-increment memory reference
2105 to an object of MODE. */
2107 static int
2108 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2110 if (HAVE_POST_INCREMENT
2111 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2112 return 1;
2114 if (HAVE_POST_DECREMENT
2115 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2116 return 1;
2118 if (HAVE_PRE_INCREMENT
2119 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2120 return 1;
2122 if (HAVE_PRE_DECREMENT
2123 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2124 return 1;
2126 return 0;
2128 #endif
2130 static short *renumber;
2131 static size_t regno_allocated;
2132 static unsigned int reg_n_max;
2134 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2135 reg_scan and flow_analysis that are indexed by the register number. If
2136 NEW_P is nonzero, initialize all of the registers, otherwise only
2137 initialize the new registers allocated. The same table is kept from
2138 function to function, only reallocating it when we need more room. If
2139 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2141 void
2142 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2144 size_t size_info;
2145 size_t size_renumber;
2146 size_t min = (new_p) ? 0 : reg_n_max;
2147 struct reg_info_data *reg_data;
2149 if (num_regs > regno_allocated)
2151 size_t old_allocated = regno_allocated;
2153 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2154 size_renumber = regno_allocated * sizeof (short);
2156 if (!reg_n_info)
2158 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2159 renumber = xmalloc (size_renumber);
2160 reg_pref_buffer = xmalloc (regno_allocated
2161 * sizeof (struct reg_pref));
2164 else
2166 VARRAY_GROW (reg_n_info, regno_allocated);
2168 if (new_p) /* If we're zapping everything, no need to realloc. */
2170 free ((char *) renumber);
2171 free ((char *) reg_pref);
2172 renumber = xmalloc (size_renumber);
2173 reg_pref_buffer = xmalloc (regno_allocated
2174 * sizeof (struct reg_pref));
2177 else
2179 renumber = xrealloc (renumber, size_renumber);
2180 reg_pref_buffer = xrealloc (reg_pref_buffer,
2181 regno_allocated
2182 * sizeof (struct reg_pref));
2186 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2187 + sizeof (struct reg_info_data) - sizeof (reg_info);
2188 reg_data = xcalloc (size_info, 1);
2189 reg_data->min_index = old_allocated;
2190 reg_data->max_index = regno_allocated - 1;
2191 reg_data->next = reg_info_head;
2192 reg_info_head = reg_data;
2195 reg_n_max = num_regs;
2196 if (min < num_regs)
2198 /* Loop through each of the segments allocated for the actual
2199 reg_info pages, and set up the pointers, zero the pages, etc. */
2200 for (reg_data = reg_info_head;
2201 reg_data && reg_data->max_index >= min;
2202 reg_data = reg_data->next)
2204 size_t min_index = reg_data->min_index;
2205 size_t max_index = reg_data->max_index;
2206 size_t max = MIN (max_index, num_regs);
2207 size_t local_min = min - min_index;
2208 size_t i;
2210 if (reg_data->min_index > num_regs)
2211 continue;
2213 if (min < min_index)
2214 local_min = 0;
2215 if (!reg_data->used_p) /* page just allocated with calloc */
2216 reg_data->used_p = 1; /* no need to zero */
2217 else
2218 memset (&reg_data->data[local_min], 0,
2219 sizeof (reg_info) * (max - min_index - local_min + 1));
2221 for (i = min_index+local_min; i <= max; i++)
2223 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2224 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2225 renumber[i] = -1;
2226 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2227 reg_pref_buffer[i].altclass = (char) NO_REGS;
2232 /* If {pref,alt}class have already been allocated, update the pointers to
2233 the newly realloced ones. */
2234 if (reg_pref)
2235 reg_pref = reg_pref_buffer;
2237 if (renumber_p)
2238 reg_renumber = renumber;
2240 /* Tell the regset code about the new number of registers. */
2241 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2244 /* Free up the space allocated by allocate_reg_info. */
2245 void
2246 free_reg_info (void)
2248 if (reg_n_info)
2250 struct reg_info_data *reg_data;
2251 struct reg_info_data *reg_next;
2253 VARRAY_FREE (reg_n_info);
2254 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2256 reg_next = reg_data->next;
2257 free ((char *) reg_data);
2260 free (reg_pref_buffer);
2261 reg_pref_buffer = (struct reg_pref *) 0;
2262 reg_info_head = (struct reg_info_data *) 0;
2263 renumber = (short *) 0;
2265 regno_allocated = 0;
2266 reg_n_max = 0;
2269 /* This is the `regscan' pass of the compiler, run just before cse
2270 and again just before loop.
2272 It finds the first and last use of each pseudo-register
2273 and records them in the vectors regno_first_uid, regno_last_uid
2274 and counts the number of sets in the vector reg_n_sets.
2276 REPEAT is nonzero the second time this is called. */
2278 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2279 Always at least 3, since the combiner could put that many together
2280 and we want this to remain correct for all the remaining passes.
2281 This corresponds to the maximum number of times note_stores will call
2282 a function for any insn. */
2284 int max_parallel;
2286 /* Used as a temporary to record the largest number of registers in
2287 PARALLEL in a SET_DEST. This is added to max_parallel. */
2289 static int max_set_parallel;
2291 void
2292 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2294 rtx insn;
2296 allocate_reg_info (nregs, TRUE, FALSE);
2297 max_parallel = 3;
2298 max_set_parallel = 0;
2300 timevar_push (TV_REG_SCAN);
2302 for (insn = f; insn; insn = NEXT_INSN (insn))
2303 if (GET_CODE (insn) == INSN
2304 || GET_CODE (insn) == CALL_INSN
2305 || GET_CODE (insn) == JUMP_INSN)
2307 if (GET_CODE (PATTERN (insn)) == PARALLEL
2308 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2309 max_parallel = XVECLEN (PATTERN (insn), 0);
2310 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2312 if (REG_NOTES (insn))
2313 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2316 max_parallel += max_set_parallel;
2318 timevar_pop (TV_REG_SCAN);
2321 /* Update 'regscan' information by looking at the insns
2322 from FIRST to LAST. Some new REGs have been created,
2323 and any REG with number greater than OLD_MAX_REGNO is
2324 such a REG. We only update information for those. */
2326 void
2327 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2329 rtx insn;
2331 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2333 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2334 if (GET_CODE (insn) == INSN
2335 || GET_CODE (insn) == CALL_INSN
2336 || GET_CODE (insn) == JUMP_INSN)
2338 if (GET_CODE (PATTERN (insn)) == PARALLEL
2339 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2340 max_parallel = XVECLEN (PATTERN (insn), 0);
2341 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2343 if (REG_NOTES (insn))
2344 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2348 /* X is the expression to scan. INSN is the insn it appears in.
2349 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2350 We should only record information for REGs with numbers
2351 greater than or equal to MIN_REGNO. */
2353 static void
2354 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2356 enum rtx_code code;
2357 rtx dest;
2358 rtx note;
2360 if (!x)
2361 return;
2362 code = GET_CODE (x);
2363 switch (code)
2365 case CONST:
2366 case CONST_INT:
2367 case CONST_DOUBLE:
2368 case CONST_VECTOR:
2369 case CC0:
2370 case PC:
2371 case SYMBOL_REF:
2372 case LABEL_REF:
2373 case ADDR_VEC:
2374 case ADDR_DIFF_VEC:
2375 return;
2377 case REG:
2379 unsigned int regno = REGNO (x);
2381 if (regno >= min_regno)
2383 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2384 if (!note_flag)
2385 REGNO_LAST_UID (regno) = INSN_UID (insn);
2386 if (REGNO_FIRST_UID (regno) == 0)
2387 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2388 /* If we are called by reg_scan_update() (indicated by min_regno
2389 being set), we also need to update the reference count. */
2390 if (min_regno)
2391 REG_N_REFS (regno)++;
2394 break;
2396 case EXPR_LIST:
2397 if (XEXP (x, 0))
2398 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2399 if (XEXP (x, 1))
2400 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2401 break;
2403 case INSN_LIST:
2404 if (XEXP (x, 1))
2405 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2406 break;
2408 case CLOBBER:
2410 rtx reg = XEXP (x, 0);
2411 if (REG_P (reg)
2412 && REGNO (reg) >= min_regno)
2414 REG_N_SETS (REGNO (reg))++;
2415 REG_N_REFS (REGNO (reg))++;
2418 break;
2420 case SET:
2421 /* Count a set of the destination if it is a register. */
2422 for (dest = SET_DEST (x);
2423 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2424 || GET_CODE (dest) == ZERO_EXTEND;
2425 dest = XEXP (dest, 0))
2428 /* For a PARALLEL, record the number of things (less the usual one for a
2429 SET) that are set. */
2430 if (GET_CODE (dest) == PARALLEL)
2431 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2433 if (GET_CODE (dest) == REG
2434 && REGNO (dest) >= min_regno)
2436 REG_N_SETS (REGNO (dest))++;
2437 REG_N_REFS (REGNO (dest))++;
2440 /* If this is setting a pseudo from another pseudo or the sum of a
2441 pseudo and a constant integer and the other pseudo is known to be
2442 a pointer, set the destination to be a pointer as well.
2444 Likewise if it is setting the destination from an address or from a
2445 value equivalent to an address or to the sum of an address and
2446 something else.
2448 But don't do any of this if the pseudo corresponds to a user
2449 variable since it should have already been set as a pointer based
2450 on the type. */
2452 if (GET_CODE (SET_DEST (x)) == REG
2453 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2454 && REGNO (SET_DEST (x)) >= min_regno
2455 /* If the destination pseudo is set more than once, then other
2456 sets might not be to a pointer value (consider access to a
2457 union in two threads of control in the presence of global
2458 optimizations). So only set REG_POINTER on the destination
2459 pseudo if this is the only set of that pseudo. */
2460 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2461 && ! REG_USERVAR_P (SET_DEST (x))
2462 && ! REG_POINTER (SET_DEST (x))
2463 && ((GET_CODE (SET_SRC (x)) == REG
2464 && REG_POINTER (SET_SRC (x)))
2465 || ((GET_CODE (SET_SRC (x)) == PLUS
2466 || GET_CODE (SET_SRC (x)) == LO_SUM)
2467 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2468 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2469 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2470 || GET_CODE (SET_SRC (x)) == CONST
2471 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2472 || GET_CODE (SET_SRC (x)) == LABEL_REF
2473 || (GET_CODE (SET_SRC (x)) == HIGH
2474 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2475 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2476 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2477 || ((GET_CODE (SET_SRC (x)) == PLUS
2478 || GET_CODE (SET_SRC (x)) == LO_SUM)
2479 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2480 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2481 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2482 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2483 && (GET_CODE (XEXP (note, 0)) == CONST
2484 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2485 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2486 REG_POINTER (SET_DEST (x)) = 1;
2488 /* If this is setting a register from a register or from a simple
2489 conversion of a register, propagate REG_EXPR. */
2490 if (GET_CODE (dest) == REG)
2492 rtx src = SET_SRC (x);
2494 while (GET_CODE (src) == SIGN_EXTEND
2495 || GET_CODE (src) == ZERO_EXTEND
2496 || GET_CODE (src) == TRUNCATE
2497 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2498 src = XEXP (src, 0);
2500 if (!REG_ATTRS (dest) && REG_P (src))
2501 REG_ATTRS (dest) = REG_ATTRS (src);
2502 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2503 set_reg_attrs_from_mem (dest, src);
2506 /* ... fall through ... */
2508 default:
2510 const char *fmt = GET_RTX_FORMAT (code);
2511 int i;
2512 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2514 if (fmt[i] == 'e')
2515 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2516 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2518 int j;
2519 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2520 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2527 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2528 is also in C2. */
2531 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2533 if (c1 == c2) return 1;
2535 if (c2 == ALL_REGS)
2536 win:
2537 return 1;
2538 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2539 reg_class_contents[(int) c2],
2540 win);
2541 return 0;
2544 /* Return nonzero if there is a register that is in both C1 and C2. */
2547 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2549 #ifdef HARD_REG_SET
2550 register
2551 #endif
2552 HARD_REG_SET c;
2554 if (c1 == c2) return 1;
2556 if (c1 == ALL_REGS || c2 == ALL_REGS)
2557 return 1;
2559 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2560 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2562 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2563 return 1;
2565 lose:
2566 return 0;
2569 /* Release any memory allocated by register sets. */
2571 void
2572 regset_release_memory (void)
2574 bitmap_release_memory ();
2577 #ifdef CANNOT_CHANGE_MODE_CLASS
2578 /* Set bits in *USED which correspond to registers which can't change
2579 their mode from FROM to any mode in which REGNO was encountered. */
2581 void
2582 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2583 unsigned int regno)
2585 enum machine_mode to;
2586 int n, i;
2587 int start = regno * MAX_MACHINE_MODE;
2589 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2590 if (n >= MAX_MACHINE_MODE + start)
2591 return;
2592 to = n - start;
2593 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2594 if (! TEST_HARD_REG_BIT (*used, i)
2595 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2596 SET_HARD_REG_BIT (*used, i);
2600 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2601 mode. */
2603 bool
2604 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2605 enum machine_mode from_mode)
2607 enum machine_mode to_mode;
2608 int n;
2609 int start = regno * MAX_MACHINE_MODE;
2611 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2612 if (n >= MAX_MACHINE_MODE + start)
2613 return 0;
2614 to_mode = n - start;
2615 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2616 return 1;
2618 return 0;
2620 #endif /* CANNOT_CHANGE_MODE_CLASS */
2622 #include "gt-regclass.h"