* config/ia64/fde-glibc.c (_GNU_SOURCE): Define to 1 instead of
[official-gcc.git] / gcc / final.c
blobf8750e98872f8109c526c289508f2f22d1bc24c3
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Last insn processed by final_scan_insn. */
115 static rtx debug_insn;
116 rtx current_output_insn;
118 /* Line number of last NOTE. */
119 static int last_linenum;
121 /* Highest line number in current block. */
122 static int high_block_linenum;
124 /* Likewise for function. */
125 static int high_function_linenum;
127 /* Filename of last NOTE. */
128 static const char *last_filename;
130 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
132 /* Nonzero while outputting an `asm' with operands.
133 This means that inconsistencies are the user's fault, so don't abort.
134 The precise value is the insn being output, to pass to error_for_asm. */
135 rtx this_is_asm_operands;
137 /* Number of operands of this insn, for an `asm' with operands. */
138 static unsigned int insn_noperands;
140 /* Compare optimization flag. */
142 static rtx last_ignored_compare = 0;
144 /* Assign a unique number to each insn that is output.
145 This can be used to generate unique local labels. */
147 static int insn_counter = 0;
149 #ifdef HAVE_cc0
150 /* This variable contains machine-dependent flags (defined in tm.h)
151 set and examined by output routines
152 that describe how to interpret the condition codes properly. */
154 CC_STATUS cc_status;
156 /* During output of an insn, this contains a copy of cc_status
157 from before the insn. */
159 CC_STATUS cc_prev_status;
160 #endif
162 /* Indexed by hardware reg number, is 1 if that register is ever
163 used in the current function.
165 In life_analysis, or in stupid_life_analysis, this is set
166 up to record the hard regs used explicitly. Reload adds
167 in the hard regs used for holding pseudo regs. Final uses
168 it to generate the code in the function prologue and epilogue
169 to save and restore registers as needed. */
171 char regs_ever_live[FIRST_PSEUDO_REGISTER];
173 /* Nonzero means current function must be given a frame pointer.
174 Set in stmt.c if anything is allocated on the stack there.
175 Set in reload1.c if anything is allocated on the stack there. */
177 int frame_pointer_needed;
179 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
181 static int block_depth;
183 /* Nonzero if have enabled APP processing of our assembler output. */
185 static int app_on;
187 /* If we are outputting an insn sequence, this contains the sequence rtx.
188 Zero otherwise. */
190 rtx final_sequence;
192 #ifdef ASSEMBLER_DIALECT
194 /* Number of the assembler dialect to use, starting at 0. */
195 static int dialect_number;
196 #endif
198 /* Indexed by line number, nonzero if there is a note for that line. */
200 static char *line_note_exists;
202 #ifdef HAVE_conditional_execution
203 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
204 rtx current_insn_predicate;
205 #endif
207 #ifdef HAVE_ATTR_length
208 static int asm_insn_count (rtx);
209 #endif
210 static void profile_function (FILE *);
211 static void profile_after_prologue (FILE *);
212 static bool notice_source_line (rtx);
213 static rtx walk_alter_subreg (rtx *);
214 static void output_asm_name (void);
215 static void output_alternate_entry_point (FILE *, rtx);
216 static tree get_mem_expr_from_op (rtx, int *);
217 static void output_asm_operand_names (rtx *, int *, int);
218 static void output_operand (rtx, int);
219 #ifdef LEAF_REGISTERS
220 static void leaf_renumber_regs (rtx);
221 #endif
222 #ifdef HAVE_cc0
223 static int alter_cond (rtx);
224 #endif
225 #ifndef ADDR_VEC_ALIGN
226 static int final_addr_vec_align (rtx);
227 #endif
228 #ifdef HAVE_ATTR_length
229 static int align_fuzz (rtx, rtx, int, unsigned);
230 #endif
232 /* Initialize data in final at the beginning of a compilation. */
234 void
235 init_final (const char *filename ATTRIBUTE_UNUSED)
237 app_on = 0;
238 final_sequence = 0;
240 #ifdef ASSEMBLER_DIALECT
241 dialect_number = ASSEMBLER_DIALECT;
242 #endif
245 /* Default target function prologue and epilogue assembler output.
247 If not overridden for epilogue code, then the function body itself
248 contains return instructions wherever needed. */
249 void
250 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
255 /* Default target hook that outputs nothing to a stream. */
256 void
257 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
261 /* Enable APP processing of subsequent output.
262 Used before the output from an `asm' statement. */
264 void
265 app_enable (void)
267 if (! app_on)
269 fputs (ASM_APP_ON, asm_out_file);
270 app_on = 1;
274 /* Disable APP processing of subsequent output.
275 Called from varasm.c before most kinds of output. */
277 void
278 app_disable (void)
280 if (app_on)
282 fputs (ASM_APP_OFF, asm_out_file);
283 app_on = 0;
287 /* Return the number of slots filled in the current
288 delayed branch sequence (we don't count the insn needing the
289 delay slot). Zero if not in a delayed branch sequence. */
291 #ifdef DELAY_SLOTS
293 dbr_sequence_length (void)
295 if (final_sequence != 0)
296 return XVECLEN (final_sequence, 0) - 1;
297 else
298 return 0;
300 #endif
302 /* The next two pages contain routines used to compute the length of an insn
303 and to shorten branches. */
305 /* Arrays for insn lengths, and addresses. The latter is referenced by
306 `insn_current_length'. */
308 static int *insn_lengths;
310 varray_type insn_addresses_;
312 /* Max uid for which the above arrays are valid. */
313 static int insn_lengths_max_uid;
315 /* Address of insn being processed. Used by `insn_current_length'. */
316 int insn_current_address;
318 /* Address of insn being processed in previous iteration. */
319 int insn_last_address;
321 /* known invariant alignment of insn being processed. */
322 int insn_current_align;
324 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
325 gives the next following alignment insn that increases the known
326 alignment, or NULL_RTX if there is no such insn.
327 For any alignment obtained this way, we can again index uid_align with
328 its uid to obtain the next following align that in turn increases the
329 alignment, till we reach NULL_RTX; the sequence obtained this way
330 for each insn we'll call the alignment chain of this insn in the following
331 comments. */
333 struct label_alignment
335 short alignment;
336 short max_skip;
339 static rtx *uid_align;
340 static int *uid_shuid;
341 static struct label_alignment *label_align;
343 /* Indicate that branch shortening hasn't yet been done. */
345 void
346 init_insn_lengths (void)
348 if (uid_shuid)
350 free (uid_shuid);
351 uid_shuid = 0;
353 if (insn_lengths)
355 free (insn_lengths);
356 insn_lengths = 0;
357 insn_lengths_max_uid = 0;
359 #ifdef HAVE_ATTR_length
360 INSN_ADDRESSES_FREE ();
361 #endif
362 if (uid_align)
364 free (uid_align);
365 uid_align = 0;
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, get its maximum length. */
373 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
375 #ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
380 if (insn_lengths_max_uid > INSN_UID (insn))
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
394 case JUMP_INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
401 else
402 length = insn_default_length (insn);
403 break;
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
417 break;
419 default:
420 break;
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425 #endif
426 return length;
427 #else /* not HAVE_ATTR_length */
428 return 0;
429 #endif /* not HAVE_ATTR_length */
432 /* Code to handle alignment inside shorten_branches. */
434 /* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
440 alignment point.
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
452 The estimated padding is then OX - IX.
454 OX can be safely estimated as
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
477 #ifndef LABEL_ALIGN_MAX_SKIP
478 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
479 #endif
481 #ifndef LOOP_ALIGN
482 #define LOOP_ALIGN(LABEL) align_loops_log
483 #endif
485 #ifndef LOOP_ALIGN_MAX_SKIP
486 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
487 #endif
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
491 #endif
493 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
494 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495 #endif
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
501 #ifndef JUMP_ALIGN_MAX_SKIP
502 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
503 #endif
505 #ifndef ADDR_VEC_ALIGN
506 static int
507 final_addr_vec_align (rtx addr_vec)
509 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
511 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
512 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
513 return exact_log2 (align);
517 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
518 #endif
520 #ifndef INSN_LENGTH_ALIGNMENT
521 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
522 #endif
524 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
526 static int min_labelno, max_labelno;
528 #define LABEL_TO_ALIGNMENT(LABEL) \
529 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
531 #define LABEL_TO_MAX_SKIP(LABEL) \
532 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
534 /* For the benefit of port specific code do this also as a function. */
537 label_to_alignment (rtx label)
539 return LABEL_TO_ALIGNMENT (label);
542 #ifdef HAVE_ATTR_length
543 /* The differences in addresses
544 between a branch and its target might grow or shrink depending on
545 the alignment the start insn of the range (the branch for a forward
546 branch or the label for a backward branch) starts out on; if these
547 differences are used naively, they can even oscillate infinitely.
548 We therefore want to compute a 'worst case' address difference that
549 is independent of the alignment the start insn of the range end
550 up on, and that is at least as large as the actual difference.
551 The function align_fuzz calculates the amount we have to add to the
552 naively computed difference, by traversing the part of the alignment
553 chain of the start insn of the range that is in front of the end insn
554 of the range, and considering for each alignment the maximum amount
555 that it might contribute to a size increase.
557 For casesi tables, we also want to know worst case minimum amounts of
558 address difference, in case a machine description wants to introduce
559 some common offset that is added to all offsets in a table.
560 For this purpose, align_fuzz with a growth argument of 0 computes the
561 appropriate adjustment. */
563 /* Compute the maximum delta by which the difference of the addresses of
564 START and END might grow / shrink due to a different address for start
565 which changes the size of alignment insns between START and END.
566 KNOWN_ALIGN_LOG is the alignment known for START.
567 GROWTH should be ~0 if the objective is to compute potential code size
568 increase, and 0 if the objective is to compute potential shrink.
569 The return value is undefined for any other value of GROWTH. */
571 static int
572 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
574 int uid = INSN_UID (start);
575 rtx align_label;
576 int known_align = 1 << known_align_log;
577 int end_shuid = INSN_SHUID (end);
578 int fuzz = 0;
580 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
582 int align_addr, new_align;
584 uid = INSN_UID (align_label);
585 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
586 if (uid_shuid[uid] > end_shuid)
587 break;
588 known_align_log = LABEL_TO_ALIGNMENT (align_label);
589 new_align = 1 << known_align_log;
590 if (new_align < known_align)
591 continue;
592 fuzz += (-align_addr ^ growth) & (new_align - known_align);
593 known_align = new_align;
595 return fuzz;
598 /* Compute a worst-case reference address of a branch so that it
599 can be safely used in the presence of aligned labels. Since the
600 size of the branch itself is unknown, the size of the branch is
601 not included in the range. I.e. for a forward branch, the reference
602 address is the end address of the branch as known from the previous
603 branch shortening pass, minus a value to account for possible size
604 increase due to alignment. For a backward branch, it is the start
605 address of the branch as known from the current pass, plus a value
606 to account for possible size increase due to alignment.
607 NB.: Therefore, the maximum offset allowed for backward branches needs
608 to exclude the branch size. */
611 insn_current_reference_address (rtx branch)
613 rtx dest, seq;
614 int seq_uid;
616 if (! INSN_ADDRESSES_SET_P ())
617 return 0;
619 seq = NEXT_INSN (PREV_INSN (branch));
620 seq_uid = INSN_UID (seq);
621 if (GET_CODE (branch) != JUMP_INSN)
622 /* This can happen for example on the PA; the objective is to know the
623 offset to address something in front of the start of the function.
624 Thus, we can treat it like a backward branch.
625 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
626 any alignment we'd encounter, so we skip the call to align_fuzz. */
627 return insn_current_address;
628 dest = JUMP_LABEL (branch);
630 /* BRANCH has no proper alignment chain set, so use SEQ.
631 BRANCH also has no INSN_SHUID. */
632 if (INSN_SHUID (seq) < INSN_SHUID (dest))
634 /* Forward branch. */
635 return (insn_last_address + insn_lengths[seq_uid]
636 - align_fuzz (seq, dest, length_unit_log, ~0));
638 else
640 /* Backward branch. */
641 return (insn_current_address
642 + align_fuzz (dest, seq, length_unit_log, ~0));
645 #endif /* HAVE_ATTR_length */
647 void
648 compute_alignments (void)
650 int log, max_skip, max_log;
651 basic_block bb;
653 if (label_align)
655 free (label_align);
656 label_align = 0;
659 max_labelno = max_label_num ();
660 min_labelno = get_first_label_num ();
661 label_align = xcalloc (max_labelno - min_labelno + 1,
662 sizeof (struct label_alignment));
664 /* If not optimizing or optimizing for size, don't assign any alignments. */
665 if (! optimize || optimize_size)
666 return;
668 FOR_EACH_BB (bb)
670 rtx label = bb->head;
671 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
672 edge e;
674 if (GET_CODE (label) != CODE_LABEL
675 || probably_never_executed_bb_p (bb))
676 continue;
677 max_log = LABEL_ALIGN (label);
678 max_skip = LABEL_ALIGN_MAX_SKIP;
680 for (e = bb->pred; e; e = e->pred_next)
682 if (e->flags & EDGE_FALLTHRU)
683 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
684 else
685 branch_frequency += EDGE_FREQUENCY (e);
688 /* There are two purposes to align block with no fallthru incoming edge:
689 1) to avoid fetch stalls when branch destination is near cache boundary
690 2) to improve cache efficiency in case the previous block is not executed
691 (so it does not need to be in the cache).
693 We to catch first case, we align frequently executed blocks.
694 To catch the second, we align blocks that are executed more frequently
695 than the predecessor and the predecessor is likely to not be executed
696 when function is called. */
698 if (!has_fallthru
699 && (branch_frequency > BB_FREQ_MAX / 10
700 || (bb->frequency > bb->prev_bb->frequency * 10
701 && (bb->prev_bb->frequency
702 <= ENTRY_BLOCK_PTR->frequency / 2))))
704 log = JUMP_ALIGN (label);
705 if (max_log < log)
707 max_log = log;
708 max_skip = JUMP_ALIGN_MAX_SKIP;
711 /* In case block is frequent and reached mostly by non-fallthru edge,
712 align it. It is most likely a first block of loop. */
713 if (has_fallthru
714 && maybe_hot_bb_p (bb)
715 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
716 && branch_frequency > fallthru_frequency * 2)
718 log = LOOP_ALIGN (label);
719 if (max_log < log)
721 max_log = log;
722 max_skip = LOOP_ALIGN_MAX_SKIP;
725 LABEL_TO_ALIGNMENT (label) = max_log;
726 LABEL_TO_MAX_SKIP (label) = max_skip;
730 /* Make a pass over all insns and compute their actual lengths by shortening
731 any branches of variable length if possible. */
733 /* Give a default value for the lowest address in a function. */
735 #ifndef FIRST_INSN_ADDRESS
736 #define FIRST_INSN_ADDRESS 0
737 #endif
739 /* shorten_branches might be called multiple times: for example, the SH
740 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
741 In order to do this, it needs proper length information, which it obtains
742 by calling shorten_branches. This cannot be collapsed with
743 shorten_branches itself into a single pass unless we also want to integrate
744 reorg.c, since the branch splitting exposes new instructions with delay
745 slots. */
747 void
748 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 rtx insn;
751 int max_uid;
752 int i;
753 int max_log;
754 int max_skip;
755 #ifdef HAVE_ATTR_length
756 #define MAX_CODE_ALIGN 16
757 rtx seq;
758 int something_changed = 1;
759 char *varying_length;
760 rtx body;
761 int uid;
762 rtx align_tab[MAX_CODE_ALIGN];
764 #endif
766 /* Compute maximum UID and allocate label_align / uid_shuid. */
767 max_uid = get_max_uid ();
769 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
771 if (max_labelno != max_label_num ())
773 int old = max_labelno;
774 int n_labels;
775 int n_old_labels;
777 max_labelno = max_label_num ();
779 n_labels = max_labelno - min_labelno + 1;
780 n_old_labels = old - min_labelno + 1;
782 label_align = xrealloc (label_align,
783 n_labels * sizeof (struct label_alignment));
785 /* Range of labels grows monotonically in the function. Abort here
786 means that the initialization of array got lost. */
787 if (n_old_labels > n_labels)
788 abort ();
790 memset (label_align + n_old_labels, 0,
791 (n_labels - n_old_labels) * sizeof (struct label_alignment));
794 /* Initialize label_align and set up uid_shuid to be strictly
795 monotonically rising with insn order. */
796 /* We use max_log here to keep track of the maximum alignment we want to
797 impose on the next CODE_LABEL (or the current one if we are processing
798 the CODE_LABEL itself). */
800 max_log = 0;
801 max_skip = 0;
803 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
805 int log;
807 INSN_SHUID (insn) = i++;
808 if (INSN_P (insn))
810 /* reorg might make the first insn of a loop being run once only,
811 and delete the label in front of it. Then we want to apply
812 the loop alignment to the new label created by reorg, which
813 is separated by the former loop start insn from the
814 NOTE_INSN_LOOP_BEG. */
816 else if (GET_CODE (insn) == CODE_LABEL)
818 rtx next;
820 /* Merge in alignments computed by compute_alignments. */
821 log = LABEL_TO_ALIGNMENT (insn);
822 if (max_log < log)
824 max_log = log;
825 max_skip = LABEL_TO_MAX_SKIP (insn);
828 log = LABEL_ALIGN (insn);
829 if (max_log < log)
831 max_log = log;
832 max_skip = LABEL_ALIGN_MAX_SKIP;
834 next = NEXT_INSN (insn);
835 /* ADDR_VECs only take room if read-only data goes into the text
836 section. */
837 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
838 if (next && GET_CODE (next) == JUMP_INSN)
840 rtx nextbody = PATTERN (next);
841 if (GET_CODE (nextbody) == ADDR_VEC
842 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
844 log = ADDR_VEC_ALIGN (next);
845 if (max_log < log)
847 max_log = log;
848 max_skip = LABEL_ALIGN_MAX_SKIP;
852 LABEL_TO_ALIGNMENT (insn) = max_log;
853 LABEL_TO_MAX_SKIP (insn) = max_skip;
854 max_log = 0;
855 max_skip = 0;
857 else if (GET_CODE (insn) == BARRIER)
859 rtx label;
861 for (label = insn; label && ! INSN_P (label);
862 label = NEXT_INSN (label))
863 if (GET_CODE (label) == CODE_LABEL)
865 log = LABEL_ALIGN_AFTER_BARRIER (insn);
866 if (max_log < log)
868 max_log = log;
869 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
871 break;
875 #ifdef HAVE_ATTR_length
877 /* Allocate the rest of the arrays. */
878 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
879 insn_lengths_max_uid = max_uid;
880 /* Syntax errors can lead to labels being outside of the main insn stream.
881 Initialize insn_addresses, so that we get reproducible results. */
882 INSN_ADDRESSES_ALLOC (max_uid);
884 varying_length = xcalloc (max_uid, sizeof (char));
886 /* Initialize uid_align. We scan instructions
887 from end to start, and keep in align_tab[n] the last seen insn
888 that does an alignment of at least n+1, i.e. the successor
889 in the alignment chain for an insn that does / has a known
890 alignment of n. */
891 uid_align = xcalloc (max_uid, sizeof *uid_align);
893 for (i = MAX_CODE_ALIGN; --i >= 0;)
894 align_tab[i] = NULL_RTX;
895 seq = get_last_insn ();
896 for (; seq; seq = PREV_INSN (seq))
898 int uid = INSN_UID (seq);
899 int log;
900 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
901 uid_align[uid] = align_tab[0];
902 if (log)
904 /* Found an alignment label. */
905 uid_align[uid] = align_tab[log];
906 for (i = log - 1; i >= 0; i--)
907 align_tab[i] = seq;
910 #ifdef CASE_VECTOR_SHORTEN_MODE
911 if (optimize)
913 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
914 label fields. */
916 int min_shuid = INSN_SHUID (get_insns ()) - 1;
917 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
918 int rel;
920 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
922 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
923 int len, i, min, max, insn_shuid;
924 int min_align;
925 addr_diff_vec_flags flags;
927 if (GET_CODE (insn) != JUMP_INSN
928 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
929 continue;
930 pat = PATTERN (insn);
931 len = XVECLEN (pat, 1);
932 if (len <= 0)
933 abort ();
934 min_align = MAX_CODE_ALIGN;
935 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
937 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
938 int shuid = INSN_SHUID (lab);
939 if (shuid < min)
941 min = shuid;
942 min_lab = lab;
944 if (shuid > max)
946 max = shuid;
947 max_lab = lab;
949 if (min_align > LABEL_TO_ALIGNMENT (lab))
950 min_align = LABEL_TO_ALIGNMENT (lab);
952 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
953 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
954 insn_shuid = INSN_SHUID (insn);
955 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
956 flags.min_align = min_align;
957 flags.base_after_vec = rel > insn_shuid;
958 flags.min_after_vec = min > insn_shuid;
959 flags.max_after_vec = max > insn_shuid;
960 flags.min_after_base = min > rel;
961 flags.max_after_base = max > rel;
962 ADDR_DIFF_VEC_FLAGS (pat) = flags;
965 #endif /* CASE_VECTOR_SHORTEN_MODE */
967 /* Compute initial lengths, addresses, and varying flags for each insn. */
968 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
969 insn != 0;
970 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
972 uid = INSN_UID (insn);
974 insn_lengths[uid] = 0;
976 if (GET_CODE (insn) == CODE_LABEL)
978 int log = LABEL_TO_ALIGNMENT (insn);
979 if (log)
981 int align = 1 << log;
982 int new_address = (insn_current_address + align - 1) & -align;
983 insn_lengths[uid] = new_address - insn_current_address;
987 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
989 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
990 || GET_CODE (insn) == CODE_LABEL)
991 continue;
992 if (INSN_DELETED_P (insn))
993 continue;
995 body = PATTERN (insn);
996 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
998 /* This only takes room if read-only data goes into the text
999 section. */
1000 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1001 insn_lengths[uid] = (XVECLEN (body,
1002 GET_CODE (body) == ADDR_DIFF_VEC)
1003 * GET_MODE_SIZE (GET_MODE (body)));
1004 /* Alignment is handled by ADDR_VEC_ALIGN. */
1006 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1007 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1008 else if (GET_CODE (body) == SEQUENCE)
1010 int i;
1011 int const_delay_slots;
1012 #ifdef DELAY_SLOTS
1013 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1014 #else
1015 const_delay_slots = 0;
1016 #endif
1017 /* Inside a delay slot sequence, we do not do any branch shortening
1018 if the shortening could change the number of delay slots
1019 of the branch. */
1020 for (i = 0; i < XVECLEN (body, 0); i++)
1022 rtx inner_insn = XVECEXP (body, 0, i);
1023 int inner_uid = INSN_UID (inner_insn);
1024 int inner_length;
1026 if (GET_CODE (body) == ASM_INPUT
1027 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1028 inner_length = (asm_insn_count (PATTERN (inner_insn))
1029 * insn_default_length (inner_insn));
1030 else
1031 inner_length = insn_default_length (inner_insn);
1033 insn_lengths[inner_uid] = inner_length;
1034 if (const_delay_slots)
1036 if ((varying_length[inner_uid]
1037 = insn_variable_length_p (inner_insn)) != 0)
1038 varying_length[uid] = 1;
1039 INSN_ADDRESSES (inner_uid) = (insn_current_address
1040 + insn_lengths[uid]);
1042 else
1043 varying_length[inner_uid] = 0;
1044 insn_lengths[uid] += inner_length;
1047 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1049 insn_lengths[uid] = insn_default_length (insn);
1050 varying_length[uid] = insn_variable_length_p (insn);
1053 /* If needed, do any adjustment. */
1054 #ifdef ADJUST_INSN_LENGTH
1055 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1056 if (insn_lengths[uid] < 0)
1057 fatal_insn ("negative insn length", insn);
1058 #endif
1061 /* Now loop over all the insns finding varying length insns. For each,
1062 get the current insn length. If it has changed, reflect the change.
1063 When nothing changes for a full pass, we are done. */
1065 while (something_changed)
1067 something_changed = 0;
1068 insn_current_align = MAX_CODE_ALIGN - 1;
1069 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1070 insn != 0;
1071 insn = NEXT_INSN (insn))
1073 int new_length;
1074 #ifdef ADJUST_INSN_LENGTH
1075 int tmp_length;
1076 #endif
1077 int length_align;
1079 uid = INSN_UID (insn);
1081 if (GET_CODE (insn) == CODE_LABEL)
1083 int log = LABEL_TO_ALIGNMENT (insn);
1084 if (log > insn_current_align)
1086 int align = 1 << log;
1087 int new_address= (insn_current_address + align - 1) & -align;
1088 insn_lengths[uid] = new_address - insn_current_address;
1089 insn_current_align = log;
1090 insn_current_address = new_address;
1092 else
1093 insn_lengths[uid] = 0;
1094 INSN_ADDRESSES (uid) = insn_current_address;
1095 continue;
1098 length_align = INSN_LENGTH_ALIGNMENT (insn);
1099 if (length_align < insn_current_align)
1100 insn_current_align = length_align;
1102 insn_last_address = INSN_ADDRESSES (uid);
1103 INSN_ADDRESSES (uid) = insn_current_address;
1105 #ifdef CASE_VECTOR_SHORTEN_MODE
1106 if (optimize && GET_CODE (insn) == JUMP_INSN
1107 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1109 rtx body = PATTERN (insn);
1110 int old_length = insn_lengths[uid];
1111 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1112 rtx min_lab = XEXP (XEXP (body, 2), 0);
1113 rtx max_lab = XEXP (XEXP (body, 3), 0);
1114 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1115 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1116 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1117 rtx prev;
1118 int rel_align = 0;
1119 addr_diff_vec_flags flags;
1121 /* Avoid automatic aggregate initialization. */
1122 flags = ADDR_DIFF_VEC_FLAGS (body);
1124 /* Try to find a known alignment for rel_lab. */
1125 for (prev = rel_lab;
1126 prev
1127 && ! insn_lengths[INSN_UID (prev)]
1128 && ! (varying_length[INSN_UID (prev)] & 1);
1129 prev = PREV_INSN (prev))
1130 if (varying_length[INSN_UID (prev)] & 2)
1132 rel_align = LABEL_TO_ALIGNMENT (prev);
1133 break;
1136 /* See the comment on addr_diff_vec_flags in rtl.h for the
1137 meaning of the flags values. base: REL_LAB vec: INSN */
1138 /* Anything after INSN has still addresses from the last
1139 pass; adjust these so that they reflect our current
1140 estimate for this pass. */
1141 if (flags.base_after_vec)
1142 rel_addr += insn_current_address - insn_last_address;
1143 if (flags.min_after_vec)
1144 min_addr += insn_current_address - insn_last_address;
1145 if (flags.max_after_vec)
1146 max_addr += insn_current_address - insn_last_address;
1147 /* We want to know the worst case, i.e. lowest possible value
1148 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1149 its offset is positive, and we have to be wary of code shrink;
1150 otherwise, it is negative, and we have to be vary of code
1151 size increase. */
1152 if (flags.min_after_base)
1154 /* If INSN is between REL_LAB and MIN_LAB, the size
1155 changes we are about to make can change the alignment
1156 within the observed offset, therefore we have to break
1157 it up into two parts that are independent. */
1158 if (! flags.base_after_vec && flags.min_after_vec)
1160 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1161 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1163 else
1164 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1166 else
1168 if (flags.base_after_vec && ! flags.min_after_vec)
1170 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1171 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1173 else
1174 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1176 /* Likewise, determine the highest lowest possible value
1177 for the offset of MAX_LAB. */
1178 if (flags.max_after_base)
1180 if (! flags.base_after_vec && flags.max_after_vec)
1182 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1183 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1185 else
1186 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1188 else
1190 if (flags.base_after_vec && ! flags.max_after_vec)
1192 max_addr += align_fuzz (max_lab, insn, 0, 0);
1193 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1195 else
1196 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1198 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1199 max_addr - rel_addr,
1200 body));
1201 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1203 insn_lengths[uid]
1204 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1205 insn_current_address += insn_lengths[uid];
1206 if (insn_lengths[uid] != old_length)
1207 something_changed = 1;
1210 continue;
1212 #endif /* CASE_VECTOR_SHORTEN_MODE */
1214 if (! (varying_length[uid]))
1216 if (GET_CODE (insn) == INSN
1217 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1219 int i;
1221 body = PATTERN (insn);
1222 for (i = 0; i < XVECLEN (body, 0); i++)
1224 rtx inner_insn = XVECEXP (body, 0, i);
1225 int inner_uid = INSN_UID (inner_insn);
1227 INSN_ADDRESSES (inner_uid) = insn_current_address;
1229 insn_current_address += insn_lengths[inner_uid];
1232 else
1233 insn_current_address += insn_lengths[uid];
1235 continue;
1238 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1240 int i;
1242 body = PATTERN (insn);
1243 new_length = 0;
1244 for (i = 0; i < XVECLEN (body, 0); i++)
1246 rtx inner_insn = XVECEXP (body, 0, i);
1247 int inner_uid = INSN_UID (inner_insn);
1248 int inner_length;
1250 INSN_ADDRESSES (inner_uid) = insn_current_address;
1252 /* insn_current_length returns 0 for insns with a
1253 non-varying length. */
1254 if (! varying_length[inner_uid])
1255 inner_length = insn_lengths[inner_uid];
1256 else
1257 inner_length = insn_current_length (inner_insn);
1259 if (inner_length != insn_lengths[inner_uid])
1261 insn_lengths[inner_uid] = inner_length;
1262 something_changed = 1;
1264 insn_current_address += insn_lengths[inner_uid];
1265 new_length += inner_length;
1268 else
1270 new_length = insn_current_length (insn);
1271 insn_current_address += new_length;
1274 #ifdef ADJUST_INSN_LENGTH
1275 /* If needed, do any adjustment. */
1276 tmp_length = new_length;
1277 ADJUST_INSN_LENGTH (insn, new_length);
1278 insn_current_address += (new_length - tmp_length);
1279 #endif
1281 if (new_length != insn_lengths[uid])
1283 insn_lengths[uid] = new_length;
1284 something_changed = 1;
1287 /* For a non-optimizing compile, do only a single pass. */
1288 if (!optimize)
1289 break;
1292 free (varying_length);
1294 #endif /* HAVE_ATTR_length */
1297 #ifdef HAVE_ATTR_length
1298 /* Given the body of an INSN known to be generated by an ASM statement, return
1299 the number of machine instructions likely to be generated for this insn.
1300 This is used to compute its length. */
1302 static int
1303 asm_insn_count (rtx body)
1305 const char *template;
1306 int count = 1;
1308 if (GET_CODE (body) == ASM_INPUT)
1309 template = XSTR (body, 0);
1310 else
1311 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1313 for (; *template; template++)
1314 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1315 count++;
1317 return count;
1319 #endif
1321 /* Output assembler code for the start of a function,
1322 and initialize some of the variables in this file
1323 for the new function. The label for the function and associated
1324 assembler pseudo-ops have already been output in `assemble_start_function'.
1326 FIRST is the first insn of the rtl for the function being compiled.
1327 FILE is the file to write assembler code to.
1328 OPTIMIZE is nonzero if we should eliminate redundant
1329 test and compare insns. */
1331 void
1332 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1333 int optimize ATTRIBUTE_UNUSED)
1335 block_depth = 0;
1337 this_is_asm_operands = 0;
1339 #ifdef NON_SAVING_SETJMP
1340 /* A function that calls setjmp should save and restore all the
1341 call-saved registers on a system where longjmp clobbers them. */
1342 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1344 int i;
1346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1347 if (!call_used_regs[i])
1348 regs_ever_live[i] = 1;
1350 #endif
1352 last_filename = locator_file (prologue_locator);
1353 last_linenum = locator_line (prologue_locator);
1355 high_block_linenum = high_function_linenum = last_linenum;
1357 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1359 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1360 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1361 dwarf2out_begin_prologue (0, NULL);
1362 #endif
1364 #ifdef LEAF_REG_REMAP
1365 if (current_function_uses_only_leaf_regs)
1366 leaf_renumber_regs (first);
1367 #endif
1369 /* The Sun386i and perhaps other machines don't work right
1370 if the profiling code comes after the prologue. */
1371 #ifdef PROFILE_BEFORE_PROLOGUE
1372 if (current_function_profile)
1373 profile_function (file);
1374 #endif /* PROFILE_BEFORE_PROLOGUE */
1376 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1377 if (dwarf2out_do_frame ())
1378 dwarf2out_frame_debug (NULL_RTX);
1379 #endif
1381 /* If debugging, assign block numbers to all of the blocks in this
1382 function. */
1383 if (write_symbols)
1385 remove_unnecessary_notes ();
1386 reemit_insn_block_notes ();
1387 number_blocks (current_function_decl);
1388 /* We never actually put out begin/end notes for the top-level
1389 block in the function. But, conceptually, that block is
1390 always needed. */
1391 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1394 /* First output the function prologue: code to set up the stack frame. */
1395 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1397 /* If the machine represents the prologue as RTL, the profiling code must
1398 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1399 #ifdef HAVE_prologue
1400 if (! HAVE_prologue)
1401 #endif
1402 profile_after_prologue (file);
1405 static void
1406 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1408 #ifndef PROFILE_BEFORE_PROLOGUE
1409 if (current_function_profile)
1410 profile_function (file);
1411 #endif /* not PROFILE_BEFORE_PROLOGUE */
1414 static void
1415 profile_function (FILE *file ATTRIBUTE_UNUSED)
1417 #ifndef NO_PROFILE_COUNTERS
1418 # define NO_PROFILE_COUNTERS 0
1419 #endif
1420 #if defined(ASM_OUTPUT_REG_PUSH)
1421 int sval = current_function_returns_struct;
1422 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1423 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1424 int cxt = current_function_needs_context;
1425 #endif
1426 #endif /* ASM_OUTPUT_REG_PUSH */
1428 if (! NO_PROFILE_COUNTERS)
1430 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1431 data_section ();
1432 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1433 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1434 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1437 function_section (current_function_decl);
1439 #if defined(ASM_OUTPUT_REG_PUSH)
1440 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1441 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1442 #endif
1444 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1445 if (cxt)
1446 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1447 #else
1448 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1449 if (cxt)
1451 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1453 #endif
1454 #endif
1456 FUNCTION_PROFILER (file, current_function_funcdef_no);
1458 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1459 if (cxt)
1460 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1461 #else
1462 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1463 if (cxt)
1465 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1467 #endif
1468 #endif
1470 #if defined(ASM_OUTPUT_REG_PUSH)
1471 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1472 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1473 #endif
1476 /* Output assembler code for the end of a function.
1477 For clarity, args are same as those of `final_start_function'
1478 even though not all of them are needed. */
1480 void
1481 final_end_function (void)
1483 app_disable ();
1485 (*debug_hooks->end_function) (high_function_linenum);
1487 /* Finally, output the function epilogue:
1488 code to restore the stack frame and return to the caller. */
1489 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1491 /* And debug output. */
1492 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1494 #if defined (DWARF2_UNWIND_INFO)
1495 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1496 && dwarf2out_do_frame ())
1497 dwarf2out_end_epilogue (last_linenum, last_filename);
1498 #endif
1501 /* Output assembler code for some insns: all or part of a function.
1502 For description of args, see `final_start_function', above.
1504 PRESCAN is 1 if we are not really outputting,
1505 just scanning as if we were outputting.
1506 Prescanning deletes and rearranges insns just like ordinary output.
1507 PRESCAN is -2 if we are outputting after having prescanned.
1508 In this case, don't try to delete or rearrange insns
1509 because that has already been done.
1510 Prescanning is done only on certain machines. */
1512 void
1513 final (rtx first, FILE *file, int optimize, int prescan)
1515 rtx insn;
1516 int max_line = 0;
1517 int max_uid = 0;
1519 last_ignored_compare = 0;
1521 /* Make a map indicating which line numbers appear in this function.
1522 When producing SDB debugging info, delete troublesome line number
1523 notes from inlined functions in other files as well as duplicate
1524 line number notes. */
1525 #ifdef SDB_DEBUGGING_INFO
1526 if (write_symbols == SDB_DEBUG)
1528 rtx last = 0;
1529 for (insn = first; insn; insn = NEXT_INSN (insn))
1530 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1532 if ((RTX_INTEGRATED_P (insn)
1533 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1534 || (last != 0
1535 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1536 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1538 delete_insn (insn); /* Use delete_note. */
1539 continue;
1541 last = insn;
1542 if (NOTE_LINE_NUMBER (insn) > max_line)
1543 max_line = NOTE_LINE_NUMBER (insn);
1546 else
1547 #endif
1549 for (insn = first; insn; insn = NEXT_INSN (insn))
1550 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1551 max_line = NOTE_LINE_NUMBER (insn);
1554 line_note_exists = xcalloc (max_line + 1, sizeof (char));
1556 for (insn = first; insn; insn = NEXT_INSN (insn))
1558 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1559 max_uid = INSN_UID (insn);
1560 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1561 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1562 #ifdef HAVE_cc0
1563 /* If CC tracking across branches is enabled, record the insn which
1564 jumps to each branch only reached from one place. */
1565 if (optimize && GET_CODE (insn) == JUMP_INSN)
1567 rtx lab = JUMP_LABEL (insn);
1568 if (lab && LABEL_NUSES (lab) == 1)
1570 LABEL_REFS (lab) = insn;
1573 #endif
1576 init_recog ();
1578 CC_STATUS_INIT;
1580 /* Output the insns. */
1581 for (insn = NEXT_INSN (first); insn;)
1583 #ifdef HAVE_ATTR_length
1584 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1586 /* This can be triggered by bugs elsewhere in the compiler if
1587 new insns are created after init_insn_lengths is called. */
1588 if (GET_CODE (insn) == NOTE)
1589 insn_current_address = -1;
1590 else
1591 abort ();
1593 else
1594 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1595 #endif /* HAVE_ATTR_length */
1597 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1600 free (line_note_exists);
1601 line_note_exists = NULL;
1604 const char *
1605 get_insn_template (int code, rtx insn)
1607 const void *output = insn_data[code].output;
1608 switch (insn_data[code].output_format)
1610 case INSN_OUTPUT_FORMAT_SINGLE:
1611 return (const char *) output;
1612 case INSN_OUTPUT_FORMAT_MULTI:
1613 return ((const char *const *) output)[which_alternative];
1614 case INSN_OUTPUT_FORMAT_FUNCTION:
1615 if (insn == NULL)
1616 abort ();
1617 return (*(insn_output_fn) output) (recog_data.operand, insn);
1619 default:
1620 abort ();
1624 /* Emit the appropriate declaration for an alternate-entry-point
1625 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1626 LABEL_KIND != LABEL_NORMAL.
1628 The case fall-through in this function is intentional. */
1629 static void
1630 output_alternate_entry_point (FILE *file, rtx insn)
1632 const char *name = LABEL_NAME (insn);
1634 switch (LABEL_KIND (insn))
1636 case LABEL_WEAK_ENTRY:
1637 #ifdef ASM_WEAKEN_LABEL
1638 ASM_WEAKEN_LABEL (file, name);
1639 #endif
1640 case LABEL_GLOBAL_ENTRY:
1641 (*targetm.asm_out.globalize_label) (file, name);
1642 case LABEL_STATIC_ENTRY:
1643 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1644 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1645 #endif
1646 ASM_OUTPUT_LABEL (file, name);
1647 break;
1649 case LABEL_NORMAL:
1650 default:
1651 abort ();
1655 /* The final scan for one insn, INSN.
1656 Args are same as in `final', except that INSN
1657 is the insn being scanned.
1658 Value returned is the next insn to be scanned.
1660 NOPEEPHOLES is the flag to disallow peephole processing (currently
1661 used for within delayed branch sequence output). */
1664 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1665 int prescan, int nopeepholes ATTRIBUTE_UNUSED)
1667 #ifdef HAVE_cc0
1668 rtx set;
1669 #endif
1671 insn_counter++;
1673 /* Ignore deleted insns. These can occur when we split insns (due to a
1674 template of "#") while not optimizing. */
1675 if (INSN_DELETED_P (insn))
1676 return NEXT_INSN (insn);
1678 switch (GET_CODE (insn))
1680 case NOTE:
1681 if (prescan > 0)
1682 break;
1684 switch (NOTE_LINE_NUMBER (insn))
1686 case NOTE_INSN_DELETED:
1687 case NOTE_INSN_LOOP_BEG:
1688 case NOTE_INSN_LOOP_END:
1689 case NOTE_INSN_LOOP_END_TOP_COND:
1690 case NOTE_INSN_LOOP_CONT:
1691 case NOTE_INSN_LOOP_VTOP:
1692 case NOTE_INSN_FUNCTION_END:
1693 case NOTE_INSN_REPEATED_LINE_NUMBER:
1694 case NOTE_INSN_EXPECTED_VALUE:
1695 break;
1697 case NOTE_INSN_BASIC_BLOCK:
1698 #ifdef IA64_UNWIND_INFO
1699 IA64_UNWIND_EMIT (asm_out_file, insn);
1700 #endif
1701 if (flag_debug_asm)
1702 fprintf (asm_out_file, "\t%s basic block %d\n",
1703 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1704 break;
1706 case NOTE_INSN_EH_REGION_BEG:
1707 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1708 NOTE_EH_HANDLER (insn));
1709 break;
1711 case NOTE_INSN_EH_REGION_END:
1712 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1713 NOTE_EH_HANDLER (insn));
1714 break;
1716 case NOTE_INSN_PROLOGUE_END:
1717 (*targetm.asm_out.function_end_prologue) (file);
1718 profile_after_prologue (file);
1719 break;
1721 case NOTE_INSN_EPILOGUE_BEG:
1722 (*targetm.asm_out.function_begin_epilogue) (file);
1723 break;
1725 case NOTE_INSN_FUNCTION_BEG:
1726 app_disable ();
1727 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1728 break;
1730 case NOTE_INSN_BLOCK_BEG:
1731 if (debug_info_level == DINFO_LEVEL_NORMAL
1732 || debug_info_level == DINFO_LEVEL_VERBOSE
1733 || write_symbols == DWARF_DEBUG
1734 || write_symbols == DWARF2_DEBUG
1735 || write_symbols == VMS_AND_DWARF2_DEBUG
1736 || write_symbols == VMS_DEBUG)
1738 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1740 app_disable ();
1741 ++block_depth;
1742 high_block_linenum = last_linenum;
1744 /* Output debugging info about the symbol-block beginning. */
1745 (*debug_hooks->begin_block) (last_linenum, n);
1747 /* Mark this block as output. */
1748 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1750 break;
1752 case NOTE_INSN_BLOCK_END:
1753 if (debug_info_level == DINFO_LEVEL_NORMAL
1754 || debug_info_level == DINFO_LEVEL_VERBOSE
1755 || write_symbols == DWARF_DEBUG
1756 || write_symbols == DWARF2_DEBUG
1757 || write_symbols == VMS_AND_DWARF2_DEBUG
1758 || write_symbols == VMS_DEBUG)
1760 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1762 app_disable ();
1764 /* End of a symbol-block. */
1765 --block_depth;
1766 if (block_depth < 0)
1767 abort ();
1769 (*debug_hooks->end_block) (high_block_linenum, n);
1771 break;
1773 case NOTE_INSN_DELETED_LABEL:
1774 /* Emit the label. We may have deleted the CODE_LABEL because
1775 the label could be proved to be unreachable, though still
1776 referenced (in the form of having its address taken. */
1777 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1778 break;
1780 case 0:
1781 break;
1783 default:
1784 if (NOTE_LINE_NUMBER (insn) <= 0)
1785 abort ();
1786 break;
1788 break;
1790 case BARRIER:
1791 #if defined (DWARF2_UNWIND_INFO)
1792 if (dwarf2out_do_frame ())
1793 dwarf2out_frame_debug (insn);
1794 #endif
1795 break;
1797 case CODE_LABEL:
1798 /* The target port might emit labels in the output function for
1799 some insn, e.g. sh.c output_branchy_insn. */
1800 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1802 int align = LABEL_TO_ALIGNMENT (insn);
1803 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1804 int max_skip = LABEL_TO_MAX_SKIP (insn);
1805 #endif
1807 if (align && NEXT_INSN (insn))
1809 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1810 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1811 #else
1812 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1813 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1814 #else
1815 ASM_OUTPUT_ALIGN (file, align);
1816 #endif
1817 #endif
1820 #ifdef HAVE_cc0
1821 CC_STATUS_INIT;
1822 /* If this label is reached from only one place, set the condition
1823 codes from the instruction just before the branch. */
1825 /* Disabled because some insns set cc_status in the C output code
1826 and NOTICE_UPDATE_CC alone can set incorrect status. */
1827 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1829 rtx jump = LABEL_REFS (insn);
1830 rtx barrier = prev_nonnote_insn (insn);
1831 rtx prev;
1832 /* If the LABEL_REFS field of this label has been set to point
1833 at a branch, the predecessor of the branch is a regular
1834 insn, and that branch is the only way to reach this label,
1835 set the condition codes based on the branch and its
1836 predecessor. */
1837 if (barrier && GET_CODE (barrier) == BARRIER
1838 && jump && GET_CODE (jump) == JUMP_INSN
1839 && (prev = prev_nonnote_insn (jump))
1840 && GET_CODE (prev) == INSN)
1842 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1843 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1846 #endif
1847 if (prescan > 0)
1848 break;
1850 #ifdef FINAL_PRESCAN_LABEL
1851 FINAL_PRESCAN_INSN (insn, NULL, 0);
1852 #endif
1854 if (LABEL_NAME (insn))
1855 (*debug_hooks->label) (insn);
1857 if (app_on)
1859 fputs (ASM_APP_OFF, file);
1860 app_on = 0;
1862 if (NEXT_INSN (insn) != 0
1863 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1865 rtx nextbody = PATTERN (NEXT_INSN (insn));
1867 /* If this label is followed by a jump-table,
1868 make sure we put the label in the read-only section. Also
1869 possibly write the label and jump table together. */
1871 if (GET_CODE (nextbody) == ADDR_VEC
1872 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1874 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1875 /* In this case, the case vector is being moved by the
1876 target, so don't output the label at all. Leave that
1877 to the back end macros. */
1878 #else
1879 if (! JUMP_TABLES_IN_TEXT_SECTION)
1881 int log_align;
1883 readonly_data_section ();
1885 #ifdef ADDR_VEC_ALIGN
1886 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1887 #else
1888 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1889 #endif
1890 ASM_OUTPUT_ALIGN (file, log_align);
1892 else
1893 function_section (current_function_decl);
1895 #ifdef ASM_OUTPUT_CASE_LABEL
1896 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1897 NEXT_INSN (insn));
1898 #else
1899 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1900 #endif
1901 #endif
1902 break;
1905 if (LABEL_ALT_ENTRY_P (insn))
1906 output_alternate_entry_point (file, insn);
1907 else
1908 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1909 break;
1911 default:
1913 rtx body = PATTERN (insn);
1914 int insn_code_number;
1915 const char *template;
1916 rtx note;
1918 /* An INSN, JUMP_INSN or CALL_INSN.
1919 First check for special kinds that recog doesn't recognize. */
1921 if (GET_CODE (body) == USE /* These are just declarations */
1922 || GET_CODE (body) == CLOBBER)
1923 break;
1925 #ifdef HAVE_cc0
1926 /* If there is a REG_CC_SETTER note on this insn, it means that
1927 the setting of the condition code was done in the delay slot
1928 of the insn that branched here. So recover the cc status
1929 from the insn that set it. */
1931 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1932 if (note)
1934 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1935 cc_prev_status = cc_status;
1937 #endif
1939 /* Detect insns that are really jump-tables
1940 and output them as such. */
1942 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1944 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1945 int vlen, idx;
1946 #endif
1948 if (prescan > 0)
1949 break;
1951 if (app_on)
1953 fputs (ASM_APP_OFF, file);
1954 app_on = 0;
1957 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1958 if (GET_CODE (body) == ADDR_VEC)
1960 #ifdef ASM_OUTPUT_ADDR_VEC
1961 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1962 #else
1963 abort ();
1964 #endif
1966 else
1968 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1969 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1970 #else
1971 abort ();
1972 #endif
1974 #else
1975 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1976 for (idx = 0; idx < vlen; idx++)
1978 if (GET_CODE (body) == ADDR_VEC)
1980 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1981 ASM_OUTPUT_ADDR_VEC_ELT
1982 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1983 #else
1984 abort ();
1985 #endif
1987 else
1989 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
1990 ASM_OUTPUT_ADDR_DIFF_ELT
1991 (file,
1992 body,
1993 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
1994 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
1995 #else
1996 abort ();
1997 #endif
2000 #ifdef ASM_OUTPUT_CASE_END
2001 ASM_OUTPUT_CASE_END (file,
2002 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2003 insn);
2004 #endif
2005 #endif
2007 function_section (current_function_decl);
2009 break;
2011 /* Output this line note if it is the first or the last line
2012 note in a row. */
2013 if (notice_source_line (insn))
2015 (*debug_hooks->source_line) (last_linenum, last_filename);
2018 if (GET_CODE (body) == ASM_INPUT)
2020 const char *string = XSTR (body, 0);
2022 /* There's no telling what that did to the condition codes. */
2023 CC_STATUS_INIT;
2024 if (prescan > 0)
2025 break;
2027 if (string[0])
2029 if (! app_on)
2031 fputs (ASM_APP_ON, file);
2032 app_on = 1;
2034 fprintf (asm_out_file, "\t%s\n", string);
2036 break;
2039 /* Detect `asm' construct with operands. */
2040 if (asm_noperands (body) >= 0)
2042 unsigned int noperands = asm_noperands (body);
2043 rtx *ops = alloca (noperands * sizeof (rtx));
2044 const char *string;
2046 /* There's no telling what that did to the condition codes. */
2047 CC_STATUS_INIT;
2048 if (prescan > 0)
2049 break;
2051 /* Get out the operand values. */
2052 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2053 /* Inhibit aborts on what would otherwise be compiler bugs. */
2054 insn_noperands = noperands;
2055 this_is_asm_operands = insn;
2057 #ifdef FINAL_PRESCAN_INSN
2058 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2059 #endif
2061 /* Output the insn using them. */
2062 if (string[0])
2064 if (! app_on)
2066 fputs (ASM_APP_ON, file);
2067 app_on = 1;
2069 output_asm_insn (string, ops);
2072 this_is_asm_operands = 0;
2073 break;
2076 if (prescan <= 0 && app_on)
2078 fputs (ASM_APP_OFF, file);
2079 app_on = 0;
2082 if (GET_CODE (body) == SEQUENCE)
2084 /* A delayed-branch sequence */
2085 int i;
2086 rtx next;
2088 if (prescan > 0)
2089 break;
2090 final_sequence = body;
2092 /* Record the delay slots' frame information before the branch.
2093 This is needed for delayed calls: see execute_cfa_program(). */
2094 #if defined (DWARF2_UNWIND_INFO)
2095 if (dwarf2out_do_frame ())
2096 for (i = 1; i < XVECLEN (body, 0); i++)
2097 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2098 #endif
2100 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2101 force the restoration of a comparison that was previously
2102 thought unnecessary. If that happens, cancel this sequence
2103 and cause that insn to be restored. */
2105 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2106 if (next != XVECEXP (body, 0, 1))
2108 final_sequence = 0;
2109 return next;
2112 for (i = 1; i < XVECLEN (body, 0); i++)
2114 rtx insn = XVECEXP (body, 0, i);
2115 rtx next = NEXT_INSN (insn);
2116 /* We loop in case any instruction in a delay slot gets
2117 split. */
2119 insn = final_scan_insn (insn, file, 0, prescan, 1);
2120 while (insn != next);
2122 #ifdef DBR_OUTPUT_SEQEND
2123 DBR_OUTPUT_SEQEND (file);
2124 #endif
2125 final_sequence = 0;
2127 /* If the insn requiring the delay slot was a CALL_INSN, the
2128 insns in the delay slot are actually executed before the
2129 called function. Hence we don't preserve any CC-setting
2130 actions in these insns and the CC must be marked as being
2131 clobbered by the function. */
2132 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2134 CC_STATUS_INIT;
2136 break;
2139 /* We have a real machine instruction as rtl. */
2141 body = PATTERN (insn);
2143 #ifdef HAVE_cc0
2144 set = single_set (insn);
2146 /* Check for redundant test and compare instructions
2147 (when the condition codes are already set up as desired).
2148 This is done only when optimizing; if not optimizing,
2149 it should be possible for the user to alter a variable
2150 with the debugger in between statements
2151 and the next statement should reexamine the variable
2152 to compute the condition codes. */
2154 if (optimize)
2156 #if 0
2157 rtx set = single_set (insn);
2158 #endif
2160 if (set
2161 && GET_CODE (SET_DEST (set)) == CC0
2162 && insn != last_ignored_compare)
2164 if (GET_CODE (SET_SRC (set)) == SUBREG)
2165 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2166 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2168 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2169 XEXP (SET_SRC (set), 0)
2170 = alter_subreg (&XEXP (SET_SRC (set), 0));
2171 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2172 XEXP (SET_SRC (set), 1)
2173 = alter_subreg (&XEXP (SET_SRC (set), 1));
2175 if ((cc_status.value1 != 0
2176 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2177 || (cc_status.value2 != 0
2178 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2180 /* Don't delete insn if it has an addressing side-effect. */
2181 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2182 /* or if anything in it is volatile. */
2183 && ! volatile_refs_p (PATTERN (insn)))
2185 /* We don't really delete the insn; just ignore it. */
2186 last_ignored_compare = insn;
2187 break;
2192 #endif
2194 #ifndef STACK_REGS
2195 /* Don't bother outputting obvious no-ops, even without -O.
2196 This optimization is fast and doesn't interfere with debugging.
2197 Don't do this if the insn is in a delay slot, since this
2198 will cause an improper number of delay insns to be written. */
2199 if (final_sequence == 0
2200 && prescan >= 0
2201 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2202 && GET_CODE (SET_SRC (body)) == REG
2203 && GET_CODE (SET_DEST (body)) == REG
2204 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2205 break;
2206 #endif
2208 #ifdef HAVE_cc0
2209 /* If this is a conditional branch, maybe modify it
2210 if the cc's are in a nonstandard state
2211 so that it accomplishes the same thing that it would
2212 do straightforwardly if the cc's were set up normally. */
2214 if (cc_status.flags != 0
2215 && GET_CODE (insn) == JUMP_INSN
2216 && GET_CODE (body) == SET
2217 && SET_DEST (body) == pc_rtx
2218 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2219 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2220 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2221 /* This is done during prescan; it is not done again
2222 in final scan when prescan has been done. */
2223 && prescan >= 0)
2225 /* This function may alter the contents of its argument
2226 and clear some of the cc_status.flags bits.
2227 It may also return 1 meaning condition now always true
2228 or -1 meaning condition now always false
2229 or 2 meaning condition nontrivial but altered. */
2230 int result = alter_cond (XEXP (SET_SRC (body), 0));
2231 /* If condition now has fixed value, replace the IF_THEN_ELSE
2232 with its then-operand or its else-operand. */
2233 if (result == 1)
2234 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2235 if (result == -1)
2236 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2238 /* The jump is now either unconditional or a no-op.
2239 If it has become a no-op, don't try to output it.
2240 (It would not be recognized.) */
2241 if (SET_SRC (body) == pc_rtx)
2243 delete_insn (insn);
2244 break;
2246 else if (GET_CODE (SET_SRC (body)) == RETURN)
2247 /* Replace (set (pc) (return)) with (return). */
2248 PATTERN (insn) = body = SET_SRC (body);
2250 /* Rerecognize the instruction if it has changed. */
2251 if (result != 0)
2252 INSN_CODE (insn) = -1;
2255 /* Make same adjustments to instructions that examine the
2256 condition codes without jumping and instructions that
2257 handle conditional moves (if this machine has either one). */
2259 if (cc_status.flags != 0
2260 && set != 0)
2262 rtx cond_rtx, then_rtx, else_rtx;
2264 if (GET_CODE (insn) != JUMP_INSN
2265 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2267 cond_rtx = XEXP (SET_SRC (set), 0);
2268 then_rtx = XEXP (SET_SRC (set), 1);
2269 else_rtx = XEXP (SET_SRC (set), 2);
2271 else
2273 cond_rtx = SET_SRC (set);
2274 then_rtx = const_true_rtx;
2275 else_rtx = const0_rtx;
2278 switch (GET_CODE (cond_rtx))
2280 case GTU:
2281 case GT:
2282 case LTU:
2283 case LT:
2284 case GEU:
2285 case GE:
2286 case LEU:
2287 case LE:
2288 case EQ:
2289 case NE:
2291 int result;
2292 if (XEXP (cond_rtx, 0) != cc0_rtx)
2293 break;
2294 result = alter_cond (cond_rtx);
2295 if (result == 1)
2296 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2297 else if (result == -1)
2298 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2299 else if (result == 2)
2300 INSN_CODE (insn) = -1;
2301 if (SET_DEST (set) == SET_SRC (set))
2302 delete_insn (insn);
2304 break;
2306 default:
2307 break;
2311 #endif
2313 #ifdef HAVE_peephole
2314 /* Do machine-specific peephole optimizations if desired. */
2316 if (optimize && !flag_no_peephole && !nopeepholes)
2318 rtx next = peephole (insn);
2319 /* When peepholing, if there were notes within the peephole,
2320 emit them before the peephole. */
2321 if (next != 0 && next != NEXT_INSN (insn))
2323 rtx prev = PREV_INSN (insn);
2325 for (note = NEXT_INSN (insn); note != next;
2326 note = NEXT_INSN (note))
2327 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2329 /* In case this is prescan, put the notes
2330 in proper position for later rescan. */
2331 note = NEXT_INSN (insn);
2332 PREV_INSN (note) = prev;
2333 NEXT_INSN (prev) = note;
2334 NEXT_INSN (PREV_INSN (next)) = insn;
2335 PREV_INSN (insn) = PREV_INSN (next);
2336 NEXT_INSN (insn) = next;
2337 PREV_INSN (next) = insn;
2340 /* PEEPHOLE might have changed this. */
2341 body = PATTERN (insn);
2343 #endif
2345 /* Try to recognize the instruction.
2346 If successful, verify that the operands satisfy the
2347 constraints for the instruction. Crash if they don't,
2348 since `reload' should have changed them so that they do. */
2350 insn_code_number = recog_memoized (insn);
2351 cleanup_subreg_operands (insn);
2353 /* Dump the insn in the assembly for debugging. */
2354 if (flag_dump_rtl_in_asm)
2356 print_rtx_head = ASM_COMMENT_START;
2357 print_rtl_single (asm_out_file, insn);
2358 print_rtx_head = "";
2361 if (! constrain_operands_cached (1))
2362 fatal_insn_not_found (insn);
2364 /* Some target machines need to prescan each insn before
2365 it is output. */
2367 #ifdef FINAL_PRESCAN_INSN
2368 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2369 #endif
2371 #ifdef HAVE_conditional_execution
2372 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2373 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2374 else
2375 current_insn_predicate = NULL_RTX;
2376 #endif
2378 #ifdef HAVE_cc0
2379 cc_prev_status = cc_status;
2381 /* Update `cc_status' for this instruction.
2382 The instruction's output routine may change it further.
2383 If the output routine for a jump insn needs to depend
2384 on the cc status, it should look at cc_prev_status. */
2386 NOTICE_UPDATE_CC (body, insn);
2387 #endif
2389 current_output_insn = debug_insn = insn;
2391 #if defined (DWARF2_UNWIND_INFO)
2392 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2393 dwarf2out_frame_debug (insn);
2394 #endif
2396 /* Find the proper template for this insn. */
2397 template = get_insn_template (insn_code_number, insn);
2399 /* If the C code returns 0, it means that it is a jump insn
2400 which follows a deleted test insn, and that test insn
2401 needs to be reinserted. */
2402 if (template == 0)
2404 rtx prev;
2406 if (prev_nonnote_insn (insn) != last_ignored_compare)
2407 abort ();
2409 /* We have already processed the notes between the setter and
2410 the user. Make sure we don't process them again, this is
2411 particularly important if one of the notes is a block
2412 scope note or an EH note. */
2413 for (prev = insn;
2414 prev != last_ignored_compare;
2415 prev = PREV_INSN (prev))
2417 if (GET_CODE (prev) == NOTE)
2418 delete_insn (prev); /* Use delete_note. */
2421 return prev;
2424 /* If the template is the string "#", it means that this insn must
2425 be split. */
2426 if (template[0] == '#' && template[1] == '\0')
2428 rtx new = try_split (body, insn, 0);
2430 /* If we didn't split the insn, go away. */
2431 if (new == insn && PATTERN (new) == body)
2432 fatal_insn ("could not split insn", insn);
2434 #ifdef HAVE_ATTR_length
2435 /* This instruction should have been split in shorten_branches,
2436 to ensure that we would have valid length info for the
2437 splitees. */
2438 abort ();
2439 #endif
2441 return new;
2444 if (prescan > 0)
2445 break;
2447 #ifdef IA64_UNWIND_INFO
2448 IA64_UNWIND_EMIT (asm_out_file, insn);
2449 #endif
2450 /* Output assembler code from the template. */
2452 output_asm_insn (template, recog_data.operand);
2454 /* If necessary, report the effect that the instruction has on
2455 the unwind info. We've already done this for delay slots
2456 and call instructions. */
2457 #if defined (DWARF2_UNWIND_INFO)
2458 if (GET_CODE (insn) == INSN
2459 #if !defined (HAVE_prologue)
2460 && !ACCUMULATE_OUTGOING_ARGS
2461 #endif
2462 && final_sequence == 0
2463 && dwarf2out_do_frame ())
2464 dwarf2out_frame_debug (insn);
2465 #endif
2467 #if 0
2468 /* It's not at all clear why we did this and doing so used to
2469 interfere with tests that used REG_WAS_0 notes, which are
2470 now gone, so let's try with this out. */
2472 /* Mark this insn as having been output. */
2473 INSN_DELETED_P (insn) = 1;
2474 #endif
2476 /* Emit information for vtable gc. */
2477 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2479 current_output_insn = debug_insn = 0;
2482 return NEXT_INSN (insn);
2485 /* Output debugging info to the assembler file FILE
2486 based on the NOTE-insn INSN, assumed to be a line number. */
2488 static bool
2489 notice_source_line (rtx insn)
2491 const char *filename = insn_file (insn);
2492 int linenum = insn_line (insn);
2494 if (filename && (filename != last_filename || last_linenum != linenum))
2496 last_filename = filename;
2497 last_linenum = linenum;
2498 high_block_linenum = MAX (last_linenum, high_block_linenum);
2499 high_function_linenum = MAX (last_linenum, high_function_linenum);
2500 return true;
2502 return false;
2505 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2506 directly to the desired hard register. */
2508 void
2509 cleanup_subreg_operands (rtx insn)
2511 int i;
2512 extract_insn_cached (insn);
2513 for (i = 0; i < recog_data.n_operands; i++)
2515 /* The following test cannot use recog_data.operand when testing
2516 for a SUBREG: the underlying object might have been changed
2517 already if we are inside a match_operator expression that
2518 matches the else clause. Instead we test the underlying
2519 expression directly. */
2520 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2521 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2522 else if (GET_CODE (recog_data.operand[i]) == PLUS
2523 || GET_CODE (recog_data.operand[i]) == MULT
2524 || GET_CODE (recog_data.operand[i]) == MEM)
2525 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2528 for (i = 0; i < recog_data.n_dups; i++)
2530 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2531 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2532 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2533 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2534 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2535 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2539 /* If X is a SUBREG, replace it with a REG or a MEM,
2540 based on the thing it is a subreg of. */
2543 alter_subreg (rtx *xp)
2545 rtx x = *xp;
2546 rtx y = SUBREG_REG (x);
2548 /* simplify_subreg does not remove subreg from volatile references.
2549 We are required to. */
2550 if (GET_CODE (y) == MEM)
2551 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2552 else
2554 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2555 SUBREG_BYTE (x));
2557 if (new != 0)
2558 *xp = new;
2559 /* Simplify_subreg can't handle some REG cases, but we have to. */
2560 else if (GET_CODE (y) == REG)
2562 unsigned int regno = subreg_hard_regno (x, 1);
2563 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2565 else
2566 abort ();
2569 return *xp;
2572 /* Do alter_subreg on all the SUBREGs contained in X. */
2574 static rtx
2575 walk_alter_subreg (rtx *xp)
2577 rtx x = *xp;
2578 switch (GET_CODE (x))
2580 case PLUS:
2581 case MULT:
2582 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2583 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2584 break;
2586 case MEM:
2587 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2588 break;
2590 case SUBREG:
2591 return alter_subreg (xp);
2593 default:
2594 break;
2597 return *xp;
2600 #ifdef HAVE_cc0
2602 /* Given BODY, the body of a jump instruction, alter the jump condition
2603 as required by the bits that are set in cc_status.flags.
2604 Not all of the bits there can be handled at this level in all cases.
2606 The value is normally 0.
2607 1 means that the condition has become always true.
2608 -1 means that the condition has become always false.
2609 2 means that COND has been altered. */
2611 static int
2612 alter_cond (rtx cond)
2614 int value = 0;
2616 if (cc_status.flags & CC_REVERSED)
2618 value = 2;
2619 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2622 if (cc_status.flags & CC_INVERTED)
2624 value = 2;
2625 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2628 if (cc_status.flags & CC_NOT_POSITIVE)
2629 switch (GET_CODE (cond))
2631 case LE:
2632 case LEU:
2633 case GEU:
2634 /* Jump becomes unconditional. */
2635 return 1;
2637 case GT:
2638 case GTU:
2639 case LTU:
2640 /* Jump becomes no-op. */
2641 return -1;
2643 case GE:
2644 PUT_CODE (cond, EQ);
2645 value = 2;
2646 break;
2648 case LT:
2649 PUT_CODE (cond, NE);
2650 value = 2;
2651 break;
2653 default:
2654 break;
2657 if (cc_status.flags & CC_NOT_NEGATIVE)
2658 switch (GET_CODE (cond))
2660 case GE:
2661 case GEU:
2662 /* Jump becomes unconditional. */
2663 return 1;
2665 case LT:
2666 case LTU:
2667 /* Jump becomes no-op. */
2668 return -1;
2670 case LE:
2671 case LEU:
2672 PUT_CODE (cond, EQ);
2673 value = 2;
2674 break;
2676 case GT:
2677 case GTU:
2678 PUT_CODE (cond, NE);
2679 value = 2;
2680 break;
2682 default:
2683 break;
2686 if (cc_status.flags & CC_NO_OVERFLOW)
2687 switch (GET_CODE (cond))
2689 case GEU:
2690 /* Jump becomes unconditional. */
2691 return 1;
2693 case LEU:
2694 PUT_CODE (cond, EQ);
2695 value = 2;
2696 break;
2698 case GTU:
2699 PUT_CODE (cond, NE);
2700 value = 2;
2701 break;
2703 case LTU:
2704 /* Jump becomes no-op. */
2705 return -1;
2707 default:
2708 break;
2711 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2712 switch (GET_CODE (cond))
2714 default:
2715 abort ();
2717 case NE:
2718 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2719 value = 2;
2720 break;
2722 case EQ:
2723 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2724 value = 2;
2725 break;
2728 if (cc_status.flags & CC_NOT_SIGNED)
2729 /* The flags are valid if signed condition operators are converted
2730 to unsigned. */
2731 switch (GET_CODE (cond))
2733 case LE:
2734 PUT_CODE (cond, LEU);
2735 value = 2;
2736 break;
2738 case LT:
2739 PUT_CODE (cond, LTU);
2740 value = 2;
2741 break;
2743 case GT:
2744 PUT_CODE (cond, GTU);
2745 value = 2;
2746 break;
2748 case GE:
2749 PUT_CODE (cond, GEU);
2750 value = 2;
2751 break;
2753 default:
2754 break;
2757 return value;
2759 #endif
2761 /* Report inconsistency between the assembler template and the operands.
2762 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2764 void
2765 output_operand_lossage (const char *msgid, ...)
2767 char *fmt_string;
2768 char *new_message;
2769 const char *pfx_str;
2770 va_list ap;
2772 va_start (ap, msgid);
2774 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2775 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2776 vasprintf (&new_message, fmt_string, ap);
2778 if (this_is_asm_operands)
2779 error_for_asm (this_is_asm_operands, "%s", new_message);
2780 else
2781 internal_error ("%s", new_message);
2783 free (fmt_string);
2784 free (new_message);
2785 va_end (ap);
2788 /* Output of assembler code from a template, and its subroutines. */
2790 /* Annotate the assembly with a comment describing the pattern and
2791 alternative used. */
2793 static void
2794 output_asm_name (void)
2796 if (debug_insn)
2798 int num = INSN_CODE (debug_insn);
2799 fprintf (asm_out_file, "\t%s %d\t%s",
2800 ASM_COMMENT_START, INSN_UID (debug_insn),
2801 insn_data[num].name);
2802 if (insn_data[num].n_alternatives > 1)
2803 fprintf (asm_out_file, "/%d", which_alternative + 1);
2804 #ifdef HAVE_ATTR_length
2805 fprintf (asm_out_file, "\t[length = %d]",
2806 get_attr_length (debug_insn));
2807 #endif
2808 /* Clear this so only the first assembler insn
2809 of any rtl insn will get the special comment for -dp. */
2810 debug_insn = 0;
2814 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2815 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2816 corresponds to the address of the object and 0 if to the object. */
2818 static tree
2819 get_mem_expr_from_op (rtx op, int *paddressp)
2821 tree expr;
2822 int inner_addressp;
2824 *paddressp = 0;
2826 if (GET_CODE (op) == REG)
2827 return REG_EXPR (op);
2828 else if (GET_CODE (op) != MEM)
2829 return 0;
2831 if (MEM_EXPR (op) != 0)
2832 return MEM_EXPR (op);
2834 /* Otherwise we have an address, so indicate it and look at the address. */
2835 *paddressp = 1;
2836 op = XEXP (op, 0);
2838 /* First check if we have a decl for the address, then look at the right side
2839 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2840 But don't allow the address to itself be indirect. */
2841 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2842 return expr;
2843 else if (GET_CODE (op) == PLUS
2844 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2845 return expr;
2847 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2848 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2849 op = XEXP (op, 0);
2851 expr = get_mem_expr_from_op (op, &inner_addressp);
2852 return inner_addressp ? 0 : expr;
2855 /* Output operand names for assembler instructions. OPERANDS is the
2856 operand vector, OPORDER is the order to write the operands, and NOPS
2857 is the number of operands to write. */
2859 static void
2860 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2862 int wrote = 0;
2863 int i;
2865 for (i = 0; i < nops; i++)
2867 int addressp;
2868 rtx op = operands[oporder[i]];
2869 tree expr = get_mem_expr_from_op (op, &addressp);
2871 fprintf (asm_out_file, "%c%s",
2872 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2873 wrote = 1;
2874 if (expr)
2876 fprintf (asm_out_file, "%s",
2877 addressp ? "*" : "");
2878 print_mem_expr (asm_out_file, expr);
2879 wrote = 1;
2881 else if (REG_P (op) && ORIGINAL_REGNO (op)
2882 && ORIGINAL_REGNO (op) != REGNO (op))
2883 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2887 /* Output text from TEMPLATE to the assembler output file,
2888 obeying %-directions to substitute operands taken from
2889 the vector OPERANDS.
2891 %N (for N a digit) means print operand N in usual manner.
2892 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2893 and print the label name with no punctuation.
2894 %cN means require operand N to be a constant
2895 and print the constant expression with no punctuation.
2896 %aN means expect operand N to be a memory address
2897 (not a memory reference!) and print a reference
2898 to that address.
2899 %nN means expect operand N to be a constant
2900 and print a constant expression for minus the value
2901 of the operand, with no other punctuation. */
2903 void
2904 output_asm_insn (const char *template, rtx *operands)
2906 const char *p;
2907 int c;
2908 #ifdef ASSEMBLER_DIALECT
2909 int dialect = 0;
2910 #endif
2911 int oporder[MAX_RECOG_OPERANDS];
2912 char opoutput[MAX_RECOG_OPERANDS];
2913 int ops = 0;
2915 /* An insn may return a null string template
2916 in a case where no assembler code is needed. */
2917 if (*template == 0)
2918 return;
2920 memset (opoutput, 0, sizeof opoutput);
2921 p = template;
2922 putc ('\t', asm_out_file);
2924 #ifdef ASM_OUTPUT_OPCODE
2925 ASM_OUTPUT_OPCODE (asm_out_file, p);
2926 #endif
2928 while ((c = *p++))
2929 switch (c)
2931 case '\n':
2932 if (flag_verbose_asm)
2933 output_asm_operand_names (operands, oporder, ops);
2934 if (flag_print_asm_name)
2935 output_asm_name ();
2937 ops = 0;
2938 memset (opoutput, 0, sizeof opoutput);
2940 putc (c, asm_out_file);
2941 #ifdef ASM_OUTPUT_OPCODE
2942 while ((c = *p) == '\t')
2944 putc (c, asm_out_file);
2945 p++;
2947 ASM_OUTPUT_OPCODE (asm_out_file, p);
2948 #endif
2949 break;
2951 #ifdef ASSEMBLER_DIALECT
2952 case '{':
2954 int i;
2956 if (dialect)
2957 output_operand_lossage ("nested assembly dialect alternatives");
2958 else
2959 dialect = 1;
2961 /* If we want the first dialect, do nothing. Otherwise, skip
2962 DIALECT_NUMBER of strings ending with '|'. */
2963 for (i = 0; i < dialect_number; i++)
2965 while (*p && *p != '}' && *p++ != '|')
2967 if (*p == '}')
2968 break;
2969 if (*p == '|')
2970 p++;
2973 if (*p == '\0')
2974 output_operand_lossage ("unterminated assembly dialect alternative");
2976 break;
2978 case '|':
2979 if (dialect)
2981 /* Skip to close brace. */
2984 if (*p == '\0')
2986 output_operand_lossage ("unterminated assembly dialect alternative");
2987 break;
2990 while (*p++ != '}');
2991 dialect = 0;
2993 else
2994 putc (c, asm_out_file);
2995 break;
2997 case '}':
2998 if (! dialect)
2999 putc (c, asm_out_file);
3000 dialect = 0;
3001 break;
3002 #endif
3004 case '%':
3005 /* %% outputs a single %. */
3006 if (*p == '%')
3008 p++;
3009 putc (c, asm_out_file);
3011 /* %= outputs a number which is unique to each insn in the entire
3012 compilation. This is useful for making local labels that are
3013 referred to more than once in a given insn. */
3014 else if (*p == '=')
3016 p++;
3017 fprintf (asm_out_file, "%d", insn_counter);
3019 /* % followed by a letter and some digits
3020 outputs an operand in a special way depending on the letter.
3021 Letters `acln' are implemented directly.
3022 Other letters are passed to `output_operand' so that
3023 the PRINT_OPERAND macro can define them. */
3024 else if (ISALPHA (*p))
3026 int letter = *p++;
3027 c = atoi (p);
3029 if (! ISDIGIT (*p))
3030 output_operand_lossage ("operand number missing after %%-letter");
3031 else if (this_is_asm_operands
3032 && (c < 0 || (unsigned int) c >= insn_noperands))
3033 output_operand_lossage ("operand number out of range");
3034 else if (letter == 'l')
3035 output_asm_label (operands[c]);
3036 else if (letter == 'a')
3037 output_address (operands[c]);
3038 else if (letter == 'c')
3040 if (CONSTANT_ADDRESS_P (operands[c]))
3041 output_addr_const (asm_out_file, operands[c]);
3042 else
3043 output_operand (operands[c], 'c');
3045 else if (letter == 'n')
3047 if (GET_CODE (operands[c]) == CONST_INT)
3048 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3049 - INTVAL (operands[c]));
3050 else
3052 putc ('-', asm_out_file);
3053 output_addr_const (asm_out_file, operands[c]);
3056 else
3057 output_operand (operands[c], letter);
3059 if (!opoutput[c])
3060 oporder[ops++] = c;
3061 opoutput[c] = 1;
3063 while (ISDIGIT (c = *p))
3064 p++;
3066 /* % followed by a digit outputs an operand the default way. */
3067 else if (ISDIGIT (*p))
3069 c = atoi (p);
3070 if (this_is_asm_operands
3071 && (c < 0 || (unsigned int) c >= insn_noperands))
3072 output_operand_lossage ("operand number out of range");
3073 else
3074 output_operand (operands[c], 0);
3076 if (!opoutput[c])
3077 oporder[ops++] = c;
3078 opoutput[c] = 1;
3080 while (ISDIGIT (c = *p))
3081 p++;
3083 /* % followed by punctuation: output something for that
3084 punctuation character alone, with no operand.
3085 The PRINT_OPERAND macro decides what is actually done. */
3086 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3087 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3088 output_operand (NULL_RTX, *p++);
3089 #endif
3090 else
3091 output_operand_lossage ("invalid %%-code");
3092 break;
3094 default:
3095 putc (c, asm_out_file);
3098 /* Write out the variable names for operands, if we know them. */
3099 if (flag_verbose_asm)
3100 output_asm_operand_names (operands, oporder, ops);
3101 if (flag_print_asm_name)
3102 output_asm_name ();
3104 putc ('\n', asm_out_file);
3107 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3109 void
3110 output_asm_label (rtx x)
3112 char buf[256];
3114 if (GET_CODE (x) == LABEL_REF)
3115 x = XEXP (x, 0);
3116 if (GET_CODE (x) == CODE_LABEL
3117 || (GET_CODE (x) == NOTE
3118 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3119 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3120 else
3121 output_operand_lossage ("`%%l' operand isn't a label");
3123 assemble_name (asm_out_file, buf);
3126 /* Print operand X using machine-dependent assembler syntax.
3127 The macro PRINT_OPERAND is defined just to control this function.
3128 CODE is a non-digit that preceded the operand-number in the % spec,
3129 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3130 between the % and the digits.
3131 When CODE is a non-letter, X is 0.
3133 The meanings of the letters are machine-dependent and controlled
3134 by PRINT_OPERAND. */
3136 static void
3137 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3139 if (x && GET_CODE (x) == SUBREG)
3140 x = alter_subreg (&x);
3142 /* If X is a pseudo-register, abort now rather than writing trash to the
3143 assembler file. */
3145 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3146 abort ();
3148 PRINT_OPERAND (asm_out_file, x, code);
3151 /* Print a memory reference operand for address X
3152 using machine-dependent assembler syntax.
3153 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3155 void
3156 output_address (rtx x)
3158 walk_alter_subreg (&x);
3159 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3162 /* Print an integer constant expression in assembler syntax.
3163 Addition and subtraction are the only arithmetic
3164 that may appear in these expressions. */
3166 void
3167 output_addr_const (FILE *file, rtx x)
3169 char buf[256];
3171 restart:
3172 switch (GET_CODE (x))
3174 case PC:
3175 putc ('.', file);
3176 break;
3178 case SYMBOL_REF:
3179 #ifdef ASM_OUTPUT_SYMBOL_REF
3180 ASM_OUTPUT_SYMBOL_REF (file, x);
3181 #else
3182 assemble_name (file, XSTR (x, 0));
3183 #endif
3184 break;
3186 case LABEL_REF:
3187 x = XEXP (x, 0);
3188 /* Fall through. */
3189 case CODE_LABEL:
3190 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3191 #ifdef ASM_OUTPUT_LABEL_REF
3192 ASM_OUTPUT_LABEL_REF (file, buf);
3193 #else
3194 assemble_name (file, buf);
3195 #endif
3196 break;
3198 case CONST_INT:
3199 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3200 break;
3202 case CONST:
3203 /* This used to output parentheses around the expression,
3204 but that does not work on the 386 (either ATT or BSD assembler). */
3205 output_addr_const (file, XEXP (x, 0));
3206 break;
3208 case CONST_DOUBLE:
3209 if (GET_MODE (x) == VOIDmode)
3211 /* We can use %d if the number is one word and positive. */
3212 if (CONST_DOUBLE_HIGH (x))
3213 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3214 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3215 else if (CONST_DOUBLE_LOW (x) < 0)
3216 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3217 else
3218 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3220 else
3221 /* We can't handle floating point constants;
3222 PRINT_OPERAND must handle them. */
3223 output_operand_lossage ("floating constant misused");
3224 break;
3226 case PLUS:
3227 /* Some assemblers need integer constants to appear last (eg masm). */
3228 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3230 output_addr_const (file, XEXP (x, 1));
3231 if (INTVAL (XEXP (x, 0)) >= 0)
3232 fprintf (file, "+");
3233 output_addr_const (file, XEXP (x, 0));
3235 else
3237 output_addr_const (file, XEXP (x, 0));
3238 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3239 || INTVAL (XEXP (x, 1)) >= 0)
3240 fprintf (file, "+");
3241 output_addr_const (file, XEXP (x, 1));
3243 break;
3245 case MINUS:
3246 /* Avoid outputting things like x-x or x+5-x,
3247 since some assemblers can't handle that. */
3248 x = simplify_subtraction (x);
3249 if (GET_CODE (x) != MINUS)
3250 goto restart;
3252 output_addr_const (file, XEXP (x, 0));
3253 fprintf (file, "-");
3254 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3255 || GET_CODE (XEXP (x, 1)) == PC
3256 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3257 output_addr_const (file, XEXP (x, 1));
3258 else
3260 fputs (targetm.asm_out.open_paren, file);
3261 output_addr_const (file, XEXP (x, 1));
3262 fputs (targetm.asm_out.close_paren, file);
3264 break;
3266 case ZERO_EXTEND:
3267 case SIGN_EXTEND:
3268 case SUBREG:
3269 output_addr_const (file, XEXP (x, 0));
3270 break;
3272 default:
3273 #ifdef OUTPUT_ADDR_CONST_EXTRA
3274 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3275 break;
3277 fail:
3278 #endif
3279 output_operand_lossage ("invalid expression as operand");
3283 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3284 %R prints the value of REGISTER_PREFIX.
3285 %L prints the value of LOCAL_LABEL_PREFIX.
3286 %U prints the value of USER_LABEL_PREFIX.
3287 %I prints the value of IMMEDIATE_PREFIX.
3288 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3289 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3291 We handle alternate assembler dialects here, just like output_asm_insn. */
3293 void
3294 asm_fprintf (FILE *file, const char *p, ...)
3296 char buf[10];
3297 char *q, c;
3298 va_list argptr;
3300 va_start (argptr, p);
3302 buf[0] = '%';
3304 while ((c = *p++))
3305 switch (c)
3307 #ifdef ASSEMBLER_DIALECT
3308 case '{':
3310 int i;
3312 /* If we want the first dialect, do nothing. Otherwise, skip
3313 DIALECT_NUMBER of strings ending with '|'. */
3314 for (i = 0; i < dialect_number; i++)
3316 while (*p && *p++ != '|')
3319 if (*p == '|')
3320 p++;
3323 break;
3325 case '|':
3326 /* Skip to close brace. */
3327 while (*p && *p++ != '}')
3329 break;
3331 case '}':
3332 break;
3333 #endif
3335 case '%':
3336 c = *p++;
3337 q = &buf[1];
3338 while (strchr ("-+ #0", c))
3340 *q++ = c;
3341 c = *p++;
3343 while (ISDIGIT (c) || c == '.')
3345 *q++ = c;
3346 c = *p++;
3348 switch (c)
3350 case '%':
3351 putc ('%', file);
3352 break;
3354 case 'd': case 'i': case 'u':
3355 case 'x': case 'X': case 'o':
3356 case 'c':
3357 *q++ = c;
3358 *q = 0;
3359 fprintf (file, buf, va_arg (argptr, int));
3360 break;
3362 case 'w':
3363 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3364 'o' cases, but we do not check for those cases. It
3365 means that the value is a HOST_WIDE_INT, which may be
3366 either `long' or `long long'. */
3367 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3368 q += strlen (HOST_WIDE_INT_PRINT);
3369 *q++ = *p++;
3370 *q = 0;
3371 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3372 break;
3374 case 'l':
3375 *q++ = c;
3376 #ifdef HAVE_LONG_LONG
3377 if (*p == 'l')
3379 *q++ = *p++;
3380 *q++ = *p++;
3381 *q = 0;
3382 fprintf (file, buf, va_arg (argptr, long long));
3384 else
3385 #endif
3387 *q++ = *p++;
3388 *q = 0;
3389 fprintf (file, buf, va_arg (argptr, long));
3392 break;
3394 case 's':
3395 *q++ = c;
3396 *q = 0;
3397 fprintf (file, buf, va_arg (argptr, char *));
3398 break;
3400 case 'O':
3401 #ifdef ASM_OUTPUT_OPCODE
3402 ASM_OUTPUT_OPCODE (asm_out_file, p);
3403 #endif
3404 break;
3406 case 'R':
3407 #ifdef REGISTER_PREFIX
3408 fprintf (file, "%s", REGISTER_PREFIX);
3409 #endif
3410 break;
3412 case 'I':
3413 #ifdef IMMEDIATE_PREFIX
3414 fprintf (file, "%s", IMMEDIATE_PREFIX);
3415 #endif
3416 break;
3418 case 'L':
3419 #ifdef LOCAL_LABEL_PREFIX
3420 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3421 #endif
3422 break;
3424 case 'U':
3425 fputs (user_label_prefix, file);
3426 break;
3428 #ifdef ASM_FPRINTF_EXTENSIONS
3429 /* Uppercase letters are reserved for general use by asm_fprintf
3430 and so are not available to target specific code. In order to
3431 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3432 they are defined here. As they get turned into real extensions
3433 to asm_fprintf they should be removed from this list. */
3434 case 'A': case 'B': case 'C': case 'D': case 'E':
3435 case 'F': case 'G': case 'H': case 'J': case 'K':
3436 case 'M': case 'N': case 'P': case 'Q': case 'S':
3437 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3438 break;
3440 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3441 #endif
3442 default:
3443 abort ();
3445 break;
3447 default:
3448 putc (c, file);
3450 va_end (argptr);
3453 /* Split up a CONST_DOUBLE or integer constant rtx
3454 into two rtx's for single words,
3455 storing in *FIRST the word that comes first in memory in the target
3456 and in *SECOND the other. */
3458 void
3459 split_double (rtx value, rtx *first, rtx *second)
3461 if (GET_CODE (value) == CONST_INT)
3463 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3465 /* In this case the CONST_INT holds both target words.
3466 Extract the bits from it into two word-sized pieces.
3467 Sign extend each half to HOST_WIDE_INT. */
3468 unsigned HOST_WIDE_INT low, high;
3469 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3471 /* Set sign_bit to the most significant bit of a word. */
3472 sign_bit = 1;
3473 sign_bit <<= BITS_PER_WORD - 1;
3475 /* Set mask so that all bits of the word are set. We could
3476 have used 1 << BITS_PER_WORD instead of basing the
3477 calculation on sign_bit. However, on machines where
3478 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3479 compiler warning, even though the code would never be
3480 executed. */
3481 mask = sign_bit << 1;
3482 mask--;
3484 /* Set sign_extend as any remaining bits. */
3485 sign_extend = ~mask;
3487 /* Pick the lower word and sign-extend it. */
3488 low = INTVAL (value);
3489 low &= mask;
3490 if (low & sign_bit)
3491 low |= sign_extend;
3493 /* Pick the higher word, shifted to the least significant
3494 bits, and sign-extend it. */
3495 high = INTVAL (value);
3496 high >>= BITS_PER_WORD - 1;
3497 high >>= 1;
3498 high &= mask;
3499 if (high & sign_bit)
3500 high |= sign_extend;
3502 /* Store the words in the target machine order. */
3503 if (WORDS_BIG_ENDIAN)
3505 *first = GEN_INT (high);
3506 *second = GEN_INT (low);
3508 else
3510 *first = GEN_INT (low);
3511 *second = GEN_INT (high);
3514 else
3516 /* The rule for using CONST_INT for a wider mode
3517 is that we regard the value as signed.
3518 So sign-extend it. */
3519 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3520 if (WORDS_BIG_ENDIAN)
3522 *first = high;
3523 *second = value;
3525 else
3527 *first = value;
3528 *second = high;
3532 else if (GET_CODE (value) != CONST_DOUBLE)
3534 if (WORDS_BIG_ENDIAN)
3536 *first = const0_rtx;
3537 *second = value;
3539 else
3541 *first = value;
3542 *second = const0_rtx;
3545 else if (GET_MODE (value) == VOIDmode
3546 /* This is the old way we did CONST_DOUBLE integers. */
3547 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3549 /* In an integer, the words are defined as most and least significant.
3550 So order them by the target's convention. */
3551 if (WORDS_BIG_ENDIAN)
3553 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3554 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3556 else
3558 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3559 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3562 else
3564 REAL_VALUE_TYPE r;
3565 long l[2];
3566 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3568 /* Note, this converts the REAL_VALUE_TYPE to the target's
3569 format, splits up the floating point double and outputs
3570 exactly 32 bits of it into each of l[0] and l[1] --
3571 not necessarily BITS_PER_WORD bits. */
3572 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3574 /* If 32 bits is an entire word for the target, but not for the host,
3575 then sign-extend on the host so that the number will look the same
3576 way on the host that it would on the target. See for instance
3577 simplify_unary_operation. The #if is needed to avoid compiler
3578 warnings. */
3580 #if HOST_BITS_PER_LONG > 32
3581 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3583 if (l[0] & ((long) 1 << 31))
3584 l[0] |= ((long) (-1) << 32);
3585 if (l[1] & ((long) 1 << 31))
3586 l[1] |= ((long) (-1) << 32);
3588 #endif
3590 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3591 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3595 /* Return nonzero if this function has no function calls. */
3598 leaf_function_p (void)
3600 rtx insn;
3601 rtx link;
3603 if (current_function_profile || profile_arc_flag)
3604 return 0;
3606 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3608 if (GET_CODE (insn) == CALL_INSN
3609 && ! SIBLING_CALL_P (insn))
3610 return 0;
3611 if (GET_CODE (insn) == INSN
3612 && GET_CODE (PATTERN (insn)) == SEQUENCE
3613 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3614 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3615 return 0;
3617 for (link = current_function_epilogue_delay_list;
3618 link;
3619 link = XEXP (link, 1))
3621 insn = XEXP (link, 0);
3623 if (GET_CODE (insn) == CALL_INSN
3624 && ! SIBLING_CALL_P (insn))
3625 return 0;
3626 if (GET_CODE (insn) == INSN
3627 && GET_CODE (PATTERN (insn)) == SEQUENCE
3628 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3629 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3630 return 0;
3633 return 1;
3636 /* Return 1 if branch is a forward branch.
3637 Uses insn_shuid array, so it works only in the final pass. May be used by
3638 output templates to customary add branch prediction hints.
3641 final_forward_branch_p (rtx insn)
3643 int insn_id, label_id;
3644 if (!uid_shuid)
3645 abort ();
3646 insn_id = INSN_SHUID (insn);
3647 label_id = INSN_SHUID (JUMP_LABEL (insn));
3648 /* We've hit some insns that does not have id information available. */
3649 if (!insn_id || !label_id)
3650 abort ();
3651 return insn_id < label_id;
3654 /* On some machines, a function with no call insns
3655 can run faster if it doesn't create its own register window.
3656 When output, the leaf function should use only the "output"
3657 registers. Ordinarily, the function would be compiled to use
3658 the "input" registers to find its arguments; it is a candidate
3659 for leaf treatment if it uses only the "input" registers.
3660 Leaf function treatment means renumbering so the function
3661 uses the "output" registers instead. */
3663 #ifdef LEAF_REGISTERS
3665 /* Return 1 if this function uses only the registers that can be
3666 safely renumbered. */
3669 only_leaf_regs_used (void)
3671 int i;
3672 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3674 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3675 if ((regs_ever_live[i] || global_regs[i])
3676 && ! permitted_reg_in_leaf_functions[i])
3677 return 0;
3679 if (current_function_uses_pic_offset_table
3680 && pic_offset_table_rtx != 0
3681 && GET_CODE (pic_offset_table_rtx) == REG
3682 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3683 return 0;
3685 return 1;
3688 /* Scan all instructions and renumber all registers into those
3689 available in leaf functions. */
3691 static void
3692 leaf_renumber_regs (rtx first)
3694 rtx insn;
3696 /* Renumber only the actual patterns.
3697 The reg-notes can contain frame pointer refs,
3698 and renumbering them could crash, and should not be needed. */
3699 for (insn = first; insn; insn = NEXT_INSN (insn))
3700 if (INSN_P (insn))
3701 leaf_renumber_regs_insn (PATTERN (insn));
3702 for (insn = current_function_epilogue_delay_list;
3703 insn;
3704 insn = XEXP (insn, 1))
3705 if (INSN_P (XEXP (insn, 0)))
3706 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3709 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3710 available in leaf functions. */
3712 void
3713 leaf_renumber_regs_insn (rtx in_rtx)
3715 int i, j;
3716 const char *format_ptr;
3718 if (in_rtx == 0)
3719 return;
3721 /* Renumber all input-registers into output-registers.
3722 renumbered_regs would be 1 for an output-register;
3723 they */
3725 if (GET_CODE (in_rtx) == REG)
3727 int newreg;
3729 /* Don't renumber the same reg twice. */
3730 if (in_rtx->used)
3731 return;
3733 newreg = REGNO (in_rtx);
3734 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3735 to reach here as part of a REG_NOTE. */
3736 if (newreg >= FIRST_PSEUDO_REGISTER)
3738 in_rtx->used = 1;
3739 return;
3741 newreg = LEAF_REG_REMAP (newreg);
3742 if (newreg < 0)
3743 abort ();
3744 regs_ever_live[REGNO (in_rtx)] = 0;
3745 regs_ever_live[newreg] = 1;
3746 REGNO (in_rtx) = newreg;
3747 in_rtx->used = 1;
3750 if (INSN_P (in_rtx))
3752 /* Inside a SEQUENCE, we find insns.
3753 Renumber just the patterns of these insns,
3754 just as we do for the top-level insns. */
3755 leaf_renumber_regs_insn (PATTERN (in_rtx));
3756 return;
3759 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3761 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3762 switch (*format_ptr++)
3764 case 'e':
3765 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3766 break;
3768 case 'E':
3769 if (NULL != XVEC (in_rtx, i))
3771 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3772 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3774 break;
3776 case 'S':
3777 case 's':
3778 case '0':
3779 case 'i':
3780 case 'w':
3781 case 'n':
3782 case 'u':
3783 break;
3785 default:
3786 abort ();
3789 #endif
3792 /* When -gused is used, emit debug info for only used symbols. But in
3793 addition to the standard intercepted debug_hooks there are some direct
3794 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3795 Those routines may also be called from a higher level intercepted routine. So
3796 to prevent recording data for an inner call to one of these for an intercept,
3797 we maintain a intercept nesting counter (debug_nesting). We only save the
3798 intercepted arguments if the nesting is 1. */
3799 int debug_nesting = 0;
3801 static tree *symbol_queue;
3802 int symbol_queue_index = 0;
3803 static int symbol_queue_size = 0;
3805 /* Generate the symbols for any queued up type symbols we encountered
3806 while generating the type info for some originally used symbol.
3807 This might generate additional entries in the queue. Only when
3808 the nesting depth goes to 0 is this routine called. */
3810 void
3811 debug_flush_symbol_queue (void)
3813 int i;
3815 /* Make sure that additionally queued items are not flushed
3816 prematurely. */
3818 ++debug_nesting;
3820 for (i = 0; i < symbol_queue_index; ++i)
3822 /* If we pushed queued symbols then such symbols are must be
3823 output no matter what anyone else says. Specifically,
3824 we need to make sure dbxout_symbol() thinks the symbol was
3825 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3826 which may be set for outside reasons. */
3827 int saved_tree_used = TREE_USED (symbol_queue[i]);
3828 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3829 TREE_USED (symbol_queue[i]) = 1;
3830 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3832 #ifdef DBX_DEBUGGING_INFO
3833 dbxout_symbol (symbol_queue[i], 0);
3834 #endif
3836 TREE_USED (symbol_queue[i]) = saved_tree_used;
3837 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3840 symbol_queue_index = 0;
3841 --debug_nesting;
3844 /* Queue a type symbol needed as part of the definition of a decl
3845 symbol. These symbols are generated when debug_flush_symbol_queue()
3846 is called. */
3848 void
3849 debug_queue_symbol (tree decl)
3851 if (symbol_queue_index >= symbol_queue_size)
3853 symbol_queue_size += 10;
3854 symbol_queue = xrealloc (symbol_queue,
3855 symbol_queue_size * sizeof (tree));
3858 symbol_queue[symbol_queue_index++] = decl;
3861 /* Free symbol queue. */
3862 void
3863 debug_free_queue (void)
3865 if (symbol_queue)
3867 free (symbol_queue);
3868 symbol_queue = NULL;
3869 symbol_queue_size = 0;