1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "insn-config.h"
35 #include "basic-block.h"
40 #include "tree-pass.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes
;
120 DEF_VEC_ALLOC_P(df_ref
,heap
);
121 static VEC(df_ref
,heap
) *use_def_ref
;
122 static VEC(df_ref
,heap
) *reg_defs
;
123 static VEC(df_ref
,heap
) *reg_defs_stack
;
125 /* The MD bitmaps are trimmed to include only live registers to cut
126 memory usage on testcases like insn-recog.c. Track live registers
127 in the basic block and do not perform forward propagation if the
128 destination is a dead pseudo occurring in a note. */
129 static bitmap local_md
;
130 static bitmap local_lr
;
132 /* Return the only def in USE's use-def chain, or NULL if there is
133 more than one def in the chain. */
136 get_def_for_use (df_ref use
)
138 return VEC_index (df_ref
, use_def_ref
, DF_REF_ID (use
));
142 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
143 TOP_FLAG says which artificials uses should be used, when DEF_REC
144 is an artificial def vector. LOCAL_MD is modified as after a
145 df_md_simulate_* function; we do more or less the same processing
146 done there, so we do not use those functions. */
148 #define DF_MD_GEN_FLAGS \
149 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
152 process_defs (df_ref
*def_rec
, int top_flag
)
155 while ((def
= *def_rec
++) != NULL
)
157 df_ref curr_def
= VEC_index (df_ref
, reg_defs
, DF_REF_REGNO (def
));
160 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
163 dregno
= DF_REF_REGNO (def
);
165 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, curr_def
);
168 /* Do not store anything if "transitioning" from NULL to NULL. But
169 otherwise, push a special entry on the stack to tell the
170 leave_block callback that the entry in reg_defs was NULL. */
171 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
174 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, def
);
177 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
179 bitmap_set_bit (local_md
, dregno
);
180 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
184 bitmap_clear_bit (local_md
, dregno
);
185 VEC_replace (df_ref
, reg_defs
, dregno
, def
);
191 /* Fill the use_def_ref vector with values for the uses in USE_REC,
192 taking reaching definitions info from LOCAL_MD and REG_DEFS.
193 TOP_FLAG says which artificials uses should be used, when USE_REC
194 is an artificial use vector. */
197 process_uses (df_ref
*use_rec
, int top_flag
)
200 while ((use
= *use_rec
++) != NULL
)
201 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
203 unsigned int uregno
= DF_REF_REGNO (use
);
204 if (VEC_index (df_ref
, reg_defs
, uregno
)
205 && !bitmap_bit_p (local_md
, uregno
)
206 && bitmap_bit_p (local_lr
, uregno
))
207 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
),
208 VEC_index (df_ref
, reg_defs
, uregno
));
214 single_def_use_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
217 int bb_index
= bb
->index
;
218 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
219 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
222 bitmap_copy (local_md
, md_bb_info
->in
);
223 bitmap_copy (local_lr
, lr_bb_info
->in
);
225 /* Push a marker for the leave_block callback. */
226 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, NULL
);
228 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
229 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
230 df_simulate_initialize_forwards (bb
, local_lr
);
232 FOR_BB_INSNS (bb
, insn
)
235 unsigned int uid
= INSN_UID (insn
);
236 process_uses (DF_INSN_UID_USES (uid
), 0);
237 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
238 process_defs (DF_INSN_UID_DEFS (uid
), 0);
239 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
242 process_uses (df_get_artificial_uses (bb_index
), 0);
243 process_defs (df_get_artificial_defs (bb_index
), 0);
246 /* Pop the definitions created in this basic block when leaving its
250 single_def_use_leave_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
251 basic_block bb ATTRIBUTE_UNUSED
)
254 while ((saved_def
= VEC_pop (df_ref
, reg_defs_stack
)) != NULL
)
256 unsigned int dregno
= DF_REF_REGNO (saved_def
);
258 /* See also process_defs. */
259 if (saved_def
== VEC_index (df_ref
, reg_defs
, dregno
))
260 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
262 VEC_replace (df_ref
, reg_defs
, dregno
, saved_def
);
267 /* Build a vector holding the reaching definitions of uses reached by a
268 single dominating definition. */
271 build_single_def_use_links (void)
273 struct dom_walk_data walk_data
;
275 /* We use the multiple definitions problem to compute our restricted
277 df_set_flags (DF_EQ_NOTES
);
278 df_md_add_problem ();
279 df_note_add_problem ();
281 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
283 use_def_ref
= VEC_alloc (df_ref
, heap
, DF_USES_TABLE_SIZE ());
284 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
, DF_USES_TABLE_SIZE ());
286 reg_defs
= VEC_alloc (df_ref
, heap
, max_reg_num ());
287 VEC_safe_grow_cleared (df_ref
, heap
, reg_defs
, max_reg_num ());
289 reg_defs_stack
= VEC_alloc (df_ref
, heap
, n_basic_blocks
* 10);
290 local_md
= BITMAP_ALLOC (NULL
);
291 local_lr
= BITMAP_ALLOC (NULL
);
293 /* Walk the dominator tree looking for single reaching definitions
294 dominating the uses. This is similar to how SSA form is built. */
295 walk_data
.dom_direction
= CDI_DOMINATORS
;
296 walk_data
.initialize_block_local_data
= NULL
;
297 walk_data
.before_dom_children
= single_def_use_enter_block
;
298 walk_data
.after_dom_children
= single_def_use_leave_block
;
300 init_walk_dominator_tree (&walk_data
);
301 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
302 fini_walk_dominator_tree (&walk_data
);
304 BITMAP_FREE (local_lr
);
305 BITMAP_FREE (local_md
);
306 VEC_free (df_ref
, heap
, reg_defs
);
307 VEC_free (df_ref
, heap
, reg_defs_stack
);
311 /* Do not try to replace constant addresses or addresses of local and
312 argument slots. These MEM expressions are made only once and inserted
313 in many instructions, as well as being used to control symbol table
314 output. It is not safe to clobber them.
316 There are some uncommon cases where the address is already in a register
317 for some reason, but we cannot take advantage of that because we have
318 no easy way to unshare the MEM. In addition, looking up all stack
319 addresses is costly. */
322 can_simplify_addr (rtx addr
)
326 if (CONSTANT_ADDRESS_P (addr
))
329 if (GET_CODE (addr
) == PLUS
)
330 reg
= XEXP (addr
, 0);
335 || (REGNO (reg
) != FRAME_POINTER_REGNUM
336 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
337 && REGNO (reg
) != ARG_POINTER_REGNUM
));
340 /* Returns a canonical version of X for the address, from the point of view,
341 that all multiplications are represented as MULT instead of the multiply
342 by a power of 2 being represented as ASHIFT.
344 Every ASHIFT we find has been made by simplify_gen_binary and was not
345 there before, so it is not shared. So we can do this in place. */
348 canonicalize_address (rtx x
)
351 switch (GET_CODE (x
))
354 if (CONST_INT_P (XEXP (x
, 1))
355 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
356 && INTVAL (XEXP (x
, 1)) >= 0)
358 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
360 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
368 if (GET_CODE (XEXP (x
, 0)) == PLUS
369 || GET_CODE (XEXP (x
, 0)) == ASHIFT
370 || GET_CODE (XEXP (x
, 0)) == CONST
)
371 canonicalize_address (XEXP (x
, 0));
385 /* OLD is a memory address. Return whether it is good to use NEW instead,
386 for a memory access in the given MODE. */
389 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
390 addr_space_t as
, bool speed
)
394 if (rtx_equal_p (old_rtx
, new_rtx
)
395 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
398 /* Copy propagation is always ok. */
399 if (REG_P (old_rtx
) && REG_P (new_rtx
))
402 /* Prefer the new address if it is less expensive. */
403 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
404 - address_cost (new_rtx
, mode
, as
, speed
));
406 /* If the addresses have equivalent cost, prefer the new address
407 if it has the highest `rtx_cost'. That has the potential of
408 eliminating the most insns without additional costs, and it
409 is the same that cse.c used to do. */
411 gain
= rtx_cost (new_rtx
, SET
, speed
) - rtx_cost (old_rtx
, SET
, speed
);
417 /* Flags for the last parameter of propagate_rtx_1. */
420 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
421 if it is false, propagate_rtx_1 returns false if, for at least
422 one occurrence OLD, it failed to collapse the result to a constant.
423 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
424 collapse to zero if replacing (reg:M B) with (reg:M A).
426 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
427 propagate_rtx_1 just tries to make cheaper and valid memory
431 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
432 outside memory addresses. This is needed because propagate_rtx_1 does
433 not do any analysis on memory; thus it is very conservative and in general
434 it will fail if non-read-only MEMs are found in the source expression.
436 PR_HANDLE_MEM is set when the source of the propagation was not
437 another MEM. Then, it is safe not to treat non-read-only MEMs as
438 ``opaque'' objects. */
441 /* Set when costs should be optimized for speed. */
442 PR_OPTIMIZE_FOR_SPEED
= 4
446 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
447 resulting expression. Replace *PX with a new RTL expression if an
448 occurrence of OLD was found.
450 This is only a wrapper around simplify-rtx.c: do not add any pattern
451 matching code here. (The sole exception is the handling of LO_SUM, but
452 that is because there is no simplify_gen_* function for LO_SUM). */
455 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
457 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
458 enum rtx_code code
= GET_CODE (x
);
459 enum machine_mode mode
= GET_MODE (x
);
460 enum machine_mode op_mode
;
461 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
462 bool valid_ops
= true;
464 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
466 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
467 they have side effects or not). */
468 *px
= (side_effects_p (x
)
469 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
470 : gen_rtx_SCRATCH (GET_MODE (x
)));
474 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
475 address, and we are *not* inside one. */
482 /* If this is an expression, try recursive substitution. */
483 switch (GET_RTX_CLASS (code
))
487 op_mode
= GET_MODE (op0
);
488 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
489 if (op0
== XEXP (x
, 0))
491 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
498 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
499 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
500 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
502 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
506 case RTX_COMM_COMPARE
:
509 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
510 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
511 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
512 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
514 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
518 case RTX_BITFIELD_OPS
:
522 op_mode
= GET_MODE (op0
);
523 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
524 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
525 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
526 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
528 if (op_mode
== VOIDmode
)
529 op_mode
= GET_MODE (op0
);
530 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
534 /* The only case we try to handle is a SUBREG. */
538 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
539 if (op0
== XEXP (x
, 0))
541 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
547 if (code
== MEM
&& x
!= new_rtx
)
552 /* There are some addresses that we cannot work on. */
553 if (!can_simplify_addr (op0
))
556 op0
= new_op0
= targetm
.delegitimize_address (op0
);
557 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
558 flags
| PR_CAN_APPEAR
);
560 /* Dismiss transformation that we do not want to carry on. */
563 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
564 || GET_MODE (new_op0
) == VOIDmode
))
567 canonicalize_address (new_op0
);
569 /* Copy propagations are always ok. Otherwise check the costs. */
570 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
571 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
573 flags
& PR_OPTIMIZE_FOR_SPEED
))
576 tem
= replace_equiv_address_nv (x
, new_op0
);
579 else if (code
== LO_SUM
)
584 /* The only simplification we do attempts to remove references to op0
585 or make it constant -- in both cases, op0's invalidity will not
586 make the result invalid. */
587 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
588 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
589 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
592 /* (lo_sum (high x) x) -> x */
593 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
596 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
598 /* OP1 is likely not a legitimate address, otherwise there would have
599 been no LO_SUM. We want it to disappear if it is invalid, return
600 false in that case. */
601 return memory_address_p (mode
, tem
);
604 else if (code
== REG
)
606 if (rtx_equal_p (x
, old_rtx
))
618 /* No change, no trouble. */
624 /* The replacement we made so far is valid, if all of the recursive
625 replacements were valid, or we could simplify everything to
627 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
631 /* for_each_rtx traversal function that returns 1 if BODY points to
632 a non-constant mem. */
635 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
638 return MEM_P (x
) && !MEM_READONLY_P (x
);
642 /* Replace all occurrences of OLD in X with NEW and try to simplify the
643 resulting expression (in mode MODE). Return a new expression if it is
644 a constant, otherwise X.
646 Simplifications where occurrences of NEW collapse to a constant are always
647 accepted. All simplifications are accepted if NEW is a pseudo too.
648 Otherwise, we accept simplifications that have a lower or equal cost. */
651 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
658 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
662 if (REG_P (new_rtx
) || CONSTANT_P (new_rtx
))
663 flags
|= PR_CAN_APPEAR
;
664 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
665 flags
|= PR_HANDLE_MEM
;
668 flags
|= PR_OPTIMIZE_FOR_SPEED
;
671 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
672 if (tem
== x
|| !collapsed
)
675 /* gen_lowpart_common will not be able to process VOIDmode entities other
677 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
680 if (GET_MODE (tem
) == VOIDmode
)
681 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
683 gcc_assert (GET_MODE (tem
) == mode
);
691 /* Return true if the register from reference REF is killed
692 between FROM to (but not including) TO. */
695 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
699 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
705 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
707 df_ref def
= *def_rec
;
708 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
716 /* Check if the given DEF is available in INSN. This would require full
717 computation of available expressions; we check only restricted conditions:
718 - if DEF is the sole definition of its register, go ahead;
719 - in the same basic block, we check for no definitions killing the
720 definition of DEF_INSN;
721 - if USE's basic block has DEF's basic block as the sole predecessor,
722 we check if the definition is killed after DEF_INSN or before
723 TARGET_INSN insn, in their respective basic blocks. */
725 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
727 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
728 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
732 /* We used to have a def reaching a use that is _before_ the def,
733 with the def not dominating the use even though the use and def
734 are in the same basic block, when a register may be used
735 uninitialized in a loop. This should not happen anymore since
736 we do not use reaching definitions, but still we test for such
737 cases and assume that DEF is not available. */
738 if (def_bb
== target_bb
739 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
740 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
743 /* Check if the reg in USE has only one definition. We already
744 know that this definition reaches use, or we wouldn't be here.
745 However, this is invalid for hard registers because if they are
746 live at the beginning of the function it does not mean that we
747 have an uninitialized access. */
748 regno
= DF_REF_REGNO (use
);
749 def
= DF_REG_DEF_CHAIN (regno
);
751 && DF_REF_NEXT_REG (def
) == NULL
752 && regno
>= FIRST_PSEUDO_REGISTER
)
755 /* Check locally if we are in the same basic block. */
756 if (def_bb
== target_bb
)
757 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
759 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
760 if (single_pred_p (target_bb
)
761 && single_pred (target_bb
) == def_bb
)
765 /* See if USE is killed between DEF_INSN and the last insn in the
766 basic block containing DEF_INSN. */
767 x
= df_bb_regno_last_def_find (def_bb
, regno
);
768 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
771 /* See if USE is killed between TARGET_INSN and the first insn in the
772 basic block containing TARGET_INSN. */
773 x
= df_bb_regno_first_def_find (target_bb
, regno
);
774 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
780 /* Otherwise assume the worst case. */
785 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
786 would require full computation of available expressions;
787 we check only restricted conditions, see use_killed_between. */
789 all_uses_available_at (rtx def_insn
, rtx target_insn
)
792 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
793 rtx def_set
= single_set (def_insn
);
795 gcc_assert (def_set
);
797 /* If target_insn comes right after def_insn, which is very common
798 for addresses, we can use a quicker test. */
799 if (NEXT_INSN (def_insn
) == target_insn
800 && REG_P (SET_DEST (def_set
)))
802 rtx def_reg
= SET_DEST (def_set
);
804 /* If the insn uses the reg that it defines, the substitution is
806 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
808 df_ref use
= *use_rec
;
809 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
812 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
814 df_ref use
= *use_rec
;
815 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
821 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
823 /* Look at all the uses of DEF_INSN, and see if they are not
824 killed between DEF_INSN and TARGET_INSN. */
825 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
827 df_ref use
= *use_rec
;
828 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
830 if (use_killed_between (use
, def_insn
, target_insn
))
833 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
835 df_ref use
= *use_rec
;
836 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
838 if (use_killed_between (use
, def_insn
, target_insn
))
847 struct find_occurrence_data
853 /* Callback for for_each_rtx, used in find_occurrence.
854 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
855 if successful, or 0 to continue traversing otherwise. */
858 find_occurrence_callback (rtx
*px
, void *data
)
860 struct find_occurrence_data
*fod
= (struct find_occurrence_data
*) data
;
862 rtx find
= fod
->find
;
873 /* Return a pointer to one of the occurrences of register FIND in *PX. */
876 find_occurrence (rtx
*px
, rtx find
)
878 struct find_occurrence_data data
;
880 gcc_assert (REG_P (find
)
881 || (GET_CODE (find
) == SUBREG
882 && REG_P (SUBREG_REG (find
))));
886 for_each_rtx (px
, find_occurrence_callback
, &data
);
891 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
892 uses from USE_VEC. Find those that are present, and create new items
893 in the data flow object of the pass. Mark any new uses as having the
896 update_df (rtx insn
, rtx
*loc
, df_ref
*use_rec
, enum df_ref_type type
,
899 bool changed
= false;
901 /* Add a use for the registers that were propagated. */
904 df_ref use
= *use_rec
;
905 df_ref orig_use
= use
, new_use
;
908 enum machine_mode mode
= VOIDmode
;
909 rtx
*new_loc
= find_occurrence (loc
, DF_REF_REG (orig_use
));
915 if (DF_REF_FLAGS_IS_SET (orig_use
, DF_REF_SIGN_EXTRACT
| DF_REF_ZERO_EXTRACT
))
917 width
= DF_REF_EXTRACT_WIDTH (orig_use
);
918 offset
= DF_REF_EXTRACT_OFFSET (orig_use
);
919 mode
= DF_REF_EXTRACT_MODE (orig_use
);
922 /* Add a new insn use. Use the original type, because it says if the
923 use was within a MEM. */
924 new_use
= df_ref_create (DF_REF_REG (orig_use
), new_loc
,
925 insn
, BLOCK_FOR_INSN (insn
),
926 type
, DF_REF_FLAGS (orig_use
) | new_flags
,
927 width
, offset
, mode
);
929 /* Set up the use-def chain. */
930 gcc_assert (DF_REF_ID (new_use
) == (int) VEC_length (df_ref
, use_def_ref
));
931 VEC_safe_push (df_ref
, heap
, use_def_ref
, get_def_for_use (orig_use
));
935 df_insn_rescan (insn
);
939 /* Try substituting NEW into LOC, which originated from forward propagation
940 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
941 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
942 new insn is not recognized. Return whether the substitution was
946 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
948 rtx insn
= DF_REF_INSN (use
);
949 enum df_ref_type type
= DF_REF_TYPE (use
);
950 int flags
= DF_REF_FLAGS (use
);
951 rtx set
= single_set (insn
);
952 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
956 /* forward_propagate_subreg may be operating on an instruction with
957 multiple sets. If so, assume the cost of the new instruction is
958 not greater than the old one. */
960 old_cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
963 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
964 print_inline_rtx (dump_file
, *loc
, 2);
965 fprintf (dump_file
, "\n with ");
966 print_inline_rtx (dump_file
, new_rtx
, 2);
967 fprintf (dump_file
, "\n");
970 validate_unshare_change (insn
, loc
, new_rtx
, true);
971 if (!verify_changes (0))
974 fprintf (dump_file
, "Changes to insn %d not recognized\n",
979 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
981 && rtx_cost (SET_SRC (set
), SET
, speed
) > old_cost
)
984 fprintf (dump_file
, "Changes to insn %d not profitable\n",
992 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
998 confirm_change_group ();
1001 df_ref_remove (use
);
1002 if (!CONSTANT_P (new_rtx
))
1004 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
1005 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
), type
, flags
);
1006 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
), type
, flags
);
1013 /* Can also record a simplified value in a REG_EQUAL note,
1014 making a new one if one does not already exist. */
1018 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1020 set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1022 /* ??? Is this still necessary if we add the note through
1023 set_unique_reg_note? */
1024 if (!CONSTANT_P (new_rtx
))
1026 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
1027 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
),
1028 type
, DF_REF_IN_NOTE
);
1029 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
),
1030 type
, DF_REF_IN_NOTE
);
1038 /* For the given single_set INSN, containing SRC known to be a
1039 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1040 is redundant due to the register being set by a LOAD_EXTEND_OP
1041 load from memory. */
1044 free_load_extend (rtx src
, rtx insn
)
1048 df_ref use
= 0, def
;
1050 reg
= XEXP (src
, 0);
1051 #ifdef LOAD_EXTEND_OP
1052 if (LOAD_EXTEND_OP (GET_MODE (reg
)) != GET_CODE (src
))
1056 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1060 if (!DF_REF_IS_ARTIFICIAL (use
)
1061 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1062 && DF_REF_REG (use
) == reg
)
1068 def
= get_def_for_use (use
);
1072 if (DF_REF_IS_ARTIFICIAL (def
))
1075 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1077 rtx patt
= PATTERN (DF_REF_INSN (def
));
1079 if (GET_CODE (patt
) == SET
1080 && GET_CODE (SET_SRC (patt
)) == MEM
1081 && rtx_equal_p (SET_DEST (patt
), reg
))
1087 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1090 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
1092 rtx use_reg
= DF_REF_REG (use
);
1095 /* Only consider subregs... */
1096 enum machine_mode use_mode
= GET_MODE (use_reg
);
1097 if (GET_CODE (use_reg
) != SUBREG
1098 || !REG_P (SET_DEST (def_set
)))
1101 /* If this is a paradoxical SUBREG... */
1102 if (GET_MODE_SIZE (use_mode
)
1103 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1105 /* If this is a paradoxical SUBREG, we have no idea what value the
1106 extra bits would have. However, if the operand is equivalent to
1107 a SUBREG whose operand is the same as our mode, and all the modes
1108 are within a word, we can just use the inner operand because
1109 these SUBREGs just say how to treat the register. */
1110 use_insn
= DF_REF_INSN (use
);
1111 src
= SET_SRC (def_set
);
1112 if (GET_CODE (src
) == SUBREG
1113 && REG_P (SUBREG_REG (src
))
1114 && GET_MODE (SUBREG_REG (src
)) == use_mode
1115 && subreg_lowpart_p (src
)
1116 && all_uses_available_at (def_insn
, use_insn
))
1117 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1121 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1122 is the low part of the reg being extended then just use the inner
1123 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1124 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1125 else if (subreg_lowpart_p (use_reg
))
1127 use_insn
= DF_REF_INSN (use
);
1128 src
= SET_SRC (def_set
);
1129 if ((GET_CODE (src
) == ZERO_EXTEND
1130 || GET_CODE (src
) == SIGN_EXTEND
)
1131 && REG_P (XEXP (src
, 0))
1132 && GET_MODE (XEXP (src
, 0)) == use_mode
1133 && !free_load_extend (src
, def_insn
)
1134 && all_uses_available_at (def_insn
, use_insn
))
1135 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1142 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1145 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
1147 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1151 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1153 src
= SET_SRC (def_set
);
1154 use_pat
= PATTERN (use_insn
);
1156 /* In __asm don't replace if src might need more registers than
1157 reg, as that could increase register pressure on the __asm. */
1158 use_vec
= DF_INSN_USES (def_insn
);
1159 if (use_vec
[0] && use_vec
[1])
1162 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1163 asm_operands
= NULL_RTX
;
1164 switch (GET_CODE (use_pat
))
1167 asm_operands
= use_pat
;
1170 if (MEM_P (SET_DEST (use_pat
)))
1172 loc
= &SET_DEST (use_pat
);
1173 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1175 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1177 asm_operands
= SET_SRC (use_pat
);
1180 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1181 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1183 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1185 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1186 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1189 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1191 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1193 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1194 asm_operands
= XVECEXP (use_pat
, 0, i
);
1200 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1201 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1203 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1204 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1206 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1209 if (num_changes_pending () == 0 || !apply_change_group ())
1216 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1220 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1222 rtx use_insn
= DF_REF_INSN (use
);
1223 rtx use_set
= single_set (use_insn
);
1224 rtx src
, reg
, new_rtx
, *loc
;
1226 enum machine_mode mode
;
1229 if (INSN_CODE (use_insn
) < 0)
1230 asm_use
= asm_noperands (PATTERN (use_insn
));
1232 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1235 /* Do not propagate into PC, CC0, etc. */
1236 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1239 /* If def and use are subreg, check if they match. */
1240 reg
= DF_REF_REG (use
);
1241 if (GET_CODE (reg
) == SUBREG
1242 && GET_CODE (SET_DEST (def_set
)) == SUBREG
1243 && (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
)
1244 || GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
)))
1247 /* Check if the def had a subreg, but the use has the whole reg. */
1248 if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1251 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1252 previous case, the optimization is possible and often useful indeed. */
1253 if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1254 reg
= SUBREG_REG (reg
);
1256 /* Check if the substitution is valid (last, because it's the most
1257 expensive check!). */
1258 src
= SET_SRC (def_set
);
1259 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1262 /* Check if the def is loading something from the constant pool; in this
1263 case we would undo optimization such as compress_float_constant.
1264 Still, we can set a REG_EQUAL note. */
1265 if (MEM_P (src
) && MEM_READONLY_P (src
))
1267 rtx x
= avoid_constant_pool_reference (src
);
1268 if (x
!= src
&& use_set
)
1270 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1271 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1272 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1273 if (old_rtx
!= new_rtx
)
1274 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1280 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1282 /* Else try simplifying. */
1284 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1286 loc
= &SET_DEST (use_set
);
1287 set_reg_equal
= false;
1291 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1292 set_reg_equal
= false;
1296 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1297 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1298 loc
= &XEXP (note
, 0);
1300 loc
= &SET_SRC (use_set
);
1302 /* Do not replace an existing REG_EQUAL note if the insn is not
1303 recognized. Either we're already replacing in the note, or
1304 we'll separately try plugging the definition in the note and
1306 set_reg_equal
= (note
== NULL_RTX
);
1309 if (GET_MODE (*loc
) == VOIDmode
)
1310 mode
= GET_MODE (SET_DEST (use_set
));
1312 mode
= GET_MODE (*loc
);
1314 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1315 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1320 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1324 /* Given a use USE of an insn, if it has a single reaching
1325 definition, try to forward propagate it into that insn. */
1328 forward_propagate_into (df_ref use
)
1331 rtx def_insn
, def_set
, use_insn
;
1334 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1336 if (DF_REF_IS_ARTIFICIAL (use
))
1339 /* Only consider uses that have a single definition. */
1340 def
= get_def_for_use (use
);
1343 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1345 if (DF_REF_IS_ARTIFICIAL (def
))
1348 /* Do not propagate loop invariant definitions inside the loop. */
1349 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1352 /* Check if the use is still present in the insn! */
1353 use_insn
= DF_REF_INSN (use
);
1354 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1355 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1357 parent
= PATTERN (use_insn
);
1359 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1362 def_insn
= DF_REF_INSN (def
);
1363 if (multiple_sets (def_insn
))
1365 def_set
= single_set (def_insn
);
1369 /* Only try one kind of propagation. If two are possible, we'll
1370 do it on the following iterations. */
1371 if (!forward_propagate_and_simplify (use
, def_insn
, def_set
))
1372 forward_propagate_subreg (use
, def_insn
, def_set
);
1380 calculate_dominance_info (CDI_DOMINATORS
);
1382 /* We do not always want to propagate into loops, so we have to find
1383 loops and be careful about them. But we have to call flow_loops_find
1384 before df_analyze, because flow_loops_find may introduce new jump
1385 insns (sadly) if we are not working in cfglayout mode. */
1386 loop_optimizer_init (0);
1388 build_single_def_use_links ();
1389 df_set_flags (DF_DEFER_INSN_RESCAN
);
1395 loop_optimizer_finalize ();
1397 VEC_free (df_ref
, heap
, use_def_ref
);
1398 free_dominance_info (CDI_DOMINATORS
);
1400 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1404 "\nNumber of successful forward propagations: %d\n\n",
1409 /* Main entry point. */
1414 return optimize
> 0 && flag_forward_propagate
;
1424 /* Go through all the uses. update_df will create new ones at the
1425 end, and we'll go through them as well.
1427 Do not forward propagate addresses into loops until after unrolling.
1428 CSE did so because it was able to fix its own mess, but we are not. */
1430 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1432 df_ref use
= DF_USES_GET (i
);
1434 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1435 || DF_REF_BB (use
)->loop_father
== NULL
1436 /* The outer most loop is not really a loop. */
1437 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1438 forward_propagate_into (use
);
1445 struct rtl_opt_pass pass_rtl_fwprop
=
1449 "fwprop1", /* name */
1450 gate_fwprop
, /* gate */
1451 fwprop
, /* execute */
1454 0, /* static_pass_number */
1455 TV_FWPROP
, /* tv_id */
1456 0, /* properties_required */
1457 0, /* properties_provided */
1458 0, /* properties_destroyed */
1459 0, /* todo_flags_start */
1460 TODO_df_finish
| TODO_verify_rtl_sharing
|
1461 TODO_dump_func
/* todo_flags_finish */
1471 /* Go through all the uses. update_df will create new ones at the
1472 end, and we'll go through them as well. */
1473 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1475 df_ref use
= DF_USES_GET (i
);
1477 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1478 && DF_REF_BB (use
)->loop_father
!= NULL
1479 /* The outer most loop is not really a loop. */
1480 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1481 forward_propagate_into (use
);
1489 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1493 "fwprop2", /* name */
1494 gate_fwprop
, /* gate */
1495 fwprop_addr
, /* execute */
1498 0, /* static_pass_number */
1499 TV_FWPROP
, /* tv_id */
1500 0, /* properties_required */
1501 0, /* properties_provided */
1502 0, /* properties_destroyed */
1503 0, /* todo_flags_start */
1504 TODO_df_finish
| TODO_verify_rtl_sharing
|
1505 TODO_dump_func
/* todo_flags_finish */