c++: -Wplacement-new and anon union member [PR100370]
[official-gcc.git] / gcc / pointer-query.cc
blobd93657f32064b41a1da269a6e9c1e67edb6781cc
1 /* Definitions of the pointer_query and related classes.
3 Copyright (C) 2020-2022 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "stringpool.h"
28 #include "tree-vrp.h"
29 #include "diagnostic-core.h"
30 #include "fold-const.h"
31 #include "tree-object-size.h"
32 #include "tree-ssa-strlen.h"
33 #include "langhooks.h"
34 #include "stringpool.h"
35 #include "attribs.h"
36 #include "gimple-fold.h"
37 #include "gimple-ssa.h"
38 #include "intl.h"
39 #include "attr-fnspec.h"
40 #include "gimple-range.h"
41 #include "pointer-query.h"
42 #include "tree-pretty-print.h"
43 #include "tree-ssanames.h"
44 #include "target.h"
46 static bool compute_objsize_r (tree, gimple *, bool, int, access_ref *,
47 ssa_name_limit_t &, pointer_query *);
49 /* Wrapper around the wide_int overload of get_range that accepts
50 offset_int instead. For middle end expressions returns the same
51 result. For a subset of nonconstamt expressions emitted by the front
52 end determines a more precise range than would be possible otherwise. */
54 static bool
55 get_offset_range (tree x, gimple *stmt, offset_int r[2], range_query *rvals)
57 offset_int add = 0;
58 if (TREE_CODE (x) == PLUS_EXPR)
60 /* Handle constant offsets in pointer addition expressions seen
61 n the front end IL. */
62 tree op = TREE_OPERAND (x, 1);
63 if (TREE_CODE (op) == INTEGER_CST)
65 op = fold_convert (signed_type_for (TREE_TYPE (op)), op);
66 add = wi::to_offset (op);
67 x = TREE_OPERAND (x, 0);
71 if (TREE_CODE (x) == NOP_EXPR)
72 /* Also handle conversions to sizetype seen in the front end IL. */
73 x = TREE_OPERAND (x, 0);
75 tree type = TREE_TYPE (x);
76 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
77 return false;
79 if (TREE_CODE (x) != INTEGER_CST
80 && TREE_CODE (x) != SSA_NAME)
82 if (TYPE_UNSIGNED (type)
83 && TYPE_PRECISION (type) == TYPE_PRECISION (sizetype))
84 type = signed_type_for (type);
86 r[0] = wi::to_offset (TYPE_MIN_VALUE (type)) + add;
87 r[1] = wi::to_offset (TYPE_MAX_VALUE (type)) + add;
88 return x;
91 wide_int wr[2];
92 if (!get_range (x, stmt, wr, rvals))
93 return false;
95 signop sgn = SIGNED;
96 /* Only convert signed integers or unsigned sizetype to a signed
97 offset and avoid converting large positive values in narrower
98 types to negative offsets. */
99 if (TYPE_UNSIGNED (type)
100 && wr[0].get_precision () < TYPE_PRECISION (sizetype))
101 sgn = UNSIGNED;
103 r[0] = offset_int::from (wr[0], sgn);
104 r[1] = offset_int::from (wr[1], sgn);
105 return true;
108 /* Return the argument that the call STMT to a built-in function returns
109 or null if it doesn't. On success, set OFFRNG[] to the range of offsets
110 from the argument reflected in the value returned by the built-in if it
111 can be determined, otherwise to 0 and HWI_M1U respectively. Set
112 *PAST_END for functions like mempcpy that might return a past the end
113 pointer (most functions return a dereferenceable pointer to an existing
114 element of an array). */
116 static tree
117 gimple_call_return_array (gimple *stmt, offset_int offrng[2], bool *past_end,
118 ssa_name_limit_t &snlim, pointer_query *qry)
120 /* Clear and set below for the rare function(s) that might return
121 a past-the-end pointer. */
122 *past_end = false;
125 /* Check for attribute fn spec to see if the function returns one
126 of its arguments. */
127 attr_fnspec fnspec = gimple_call_fnspec (as_a <gcall *>(stmt));
128 unsigned int argno;
129 if (fnspec.returns_arg (&argno))
131 /* Functions return the first argument (not a range). */
132 offrng[0] = offrng[1] = 0;
133 return gimple_call_arg (stmt, argno);
137 if (gimple_call_num_args (stmt) < 1)
138 return NULL_TREE;
140 tree fn = gimple_call_fndecl (stmt);
141 if (!gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
143 /* See if this is a call to placement new. */
144 if (!fn
145 || !DECL_IS_OPERATOR_NEW_P (fn)
146 || DECL_IS_REPLACEABLE_OPERATOR_NEW_P (fn))
147 return NULL_TREE;
149 /* Check the mangling, keeping in mind that operator new takes
150 a size_t which could be unsigned int or unsigned long. */
151 tree fname = DECL_ASSEMBLER_NAME (fn);
152 if (!id_equal (fname, "_ZnwjPv") // ordinary form
153 && !id_equal (fname, "_ZnwmPv") // ordinary form
154 && !id_equal (fname, "_ZnajPv") // array form
155 && !id_equal (fname, "_ZnamPv")) // array form
156 return NULL_TREE;
158 if (gimple_call_num_args (stmt) != 2)
159 return NULL_TREE;
161 /* Allocation functions return a pointer to the beginning. */
162 offrng[0] = offrng[1] = 0;
163 return gimple_call_arg (stmt, 1);
166 switch (DECL_FUNCTION_CODE (fn))
168 case BUILT_IN_MEMCPY:
169 case BUILT_IN_MEMCPY_CHK:
170 case BUILT_IN_MEMMOVE:
171 case BUILT_IN_MEMMOVE_CHK:
172 case BUILT_IN_MEMSET:
173 case BUILT_IN_STRCAT:
174 case BUILT_IN_STRCAT_CHK:
175 case BUILT_IN_STRCPY:
176 case BUILT_IN_STRCPY_CHK:
177 case BUILT_IN_STRNCAT:
178 case BUILT_IN_STRNCAT_CHK:
179 case BUILT_IN_STRNCPY:
180 case BUILT_IN_STRNCPY_CHK:
181 /* Functions return the first argument (not a range). */
182 offrng[0] = offrng[1] = 0;
183 return gimple_call_arg (stmt, 0);
185 case BUILT_IN_MEMPCPY:
186 case BUILT_IN_MEMPCPY_CHK:
188 /* The returned pointer is in a range constrained by the smaller
189 of the upper bound of the size argument and the source object
190 size. */
191 offrng[0] = 0;
192 offrng[1] = HOST_WIDE_INT_M1U;
193 tree off = gimple_call_arg (stmt, 2);
194 bool off_valid = get_offset_range (off, stmt, offrng, qry->rvals);
195 if (!off_valid || offrng[0] != offrng[1])
197 /* If the offset is either indeterminate or in some range,
198 try to constrain its upper bound to at most the size
199 of the source object. */
200 access_ref aref;
201 tree src = gimple_call_arg (stmt, 1);
202 if (compute_objsize_r (src, stmt, false, 1, &aref, snlim, qry)
203 && aref.sizrng[1] < offrng[1])
204 offrng[1] = aref.sizrng[1];
207 /* Mempcpy may return a past-the-end pointer. */
208 *past_end = true;
209 return gimple_call_arg (stmt, 0);
212 case BUILT_IN_MEMCHR:
214 tree off = gimple_call_arg (stmt, 2);
215 if (get_offset_range (off, stmt, offrng, qry->rvals))
216 offrng[1] -= 1;
217 else
218 offrng[1] = HOST_WIDE_INT_M1U;
220 offrng[0] = 0;
221 return gimple_call_arg (stmt, 0);
224 case BUILT_IN_STRCHR:
225 case BUILT_IN_STRRCHR:
226 case BUILT_IN_STRSTR:
227 offrng[0] = 0;
228 offrng[1] = HOST_WIDE_INT_M1U;
229 return gimple_call_arg (stmt, 0);
231 case BUILT_IN_STPCPY:
232 case BUILT_IN_STPCPY_CHK:
234 access_ref aref;
235 tree src = gimple_call_arg (stmt, 1);
236 if (compute_objsize_r (src, stmt, false, 1, &aref, snlim, qry))
237 offrng[1] = aref.sizrng[1] - 1;
238 else
239 offrng[1] = HOST_WIDE_INT_M1U;
241 offrng[0] = 0;
242 return gimple_call_arg (stmt, 0);
245 case BUILT_IN_STPNCPY:
246 case BUILT_IN_STPNCPY_CHK:
248 /* The returned pointer is in a range between the first argument
249 and it plus the smaller of the upper bound of the size argument
250 and the source object size. */
251 offrng[1] = HOST_WIDE_INT_M1U;
252 tree off = gimple_call_arg (stmt, 2);
253 if (!get_offset_range (off, stmt, offrng, qry->rvals)
254 || offrng[0] != offrng[1])
256 /* If the offset is either indeterminate or in some range,
257 try to constrain its upper bound to at most the size
258 of the source object. */
259 access_ref aref;
260 tree src = gimple_call_arg (stmt, 1);
261 if (compute_objsize_r (src, stmt, false, 1, &aref, snlim, qry)
262 && aref.sizrng[1] < offrng[1])
263 offrng[1] = aref.sizrng[1];
266 /* When the source is the empty string the returned pointer is
267 a copy of the argument. Otherwise stpcpy can also return
268 a past-the-end pointer. */
269 offrng[0] = 0;
270 *past_end = true;
271 return gimple_call_arg (stmt, 0);
274 default:
275 break;
278 return NULL_TREE;
281 /* Return true when EXP's range can be determined and set RANGE[] to it
282 after adjusting it if necessary to make EXP a represents a valid size
283 of object, or a valid size argument to an allocation function declared
284 with attribute alloc_size (whose argument may be signed), or to a string
285 manipulation function like memset.
286 When ALLOW_ZERO is set in FLAGS, allow returning a range of [0, 0] for
287 a size in an anti-range [1, N] where N > PTRDIFF_MAX. A zero range is
288 a (nearly) invalid argument to allocation functions like malloc but it
289 is a valid argument to functions like memset.
290 When USE_LARGEST is set in FLAGS set RANGE to the largest valid subrange
291 in a multi-range, otherwise to the smallest valid subrange. */
293 bool
294 get_size_range (range_query *query, tree exp, gimple *stmt, tree range[2],
295 int flags /* = 0 */)
297 if (!exp)
298 return false;
300 if (tree_fits_uhwi_p (exp))
302 /* EXP is a constant. */
303 range[0] = range[1] = exp;
304 return true;
307 tree exptype = TREE_TYPE (exp);
308 bool integral = INTEGRAL_TYPE_P (exptype);
310 wide_int min, max;
311 enum value_range_kind range_type;
313 if (!query)
314 query = get_range_query (cfun);
316 if (integral)
318 value_range vr;
320 query->range_of_expr (vr, exp, stmt);
322 if (vr.undefined_p ())
323 vr.set_varying (TREE_TYPE (exp));
324 range_type = vr.kind ();
325 min = wi::to_wide (vr.min ());
326 max = wi::to_wide (vr.max ());
328 else
329 range_type = VR_VARYING;
331 if (range_type == VR_VARYING)
333 if (integral)
335 /* Use the full range of the type of the expression when
336 no value range information is available. */
337 range[0] = TYPE_MIN_VALUE (exptype);
338 range[1] = TYPE_MAX_VALUE (exptype);
339 return true;
342 range[0] = NULL_TREE;
343 range[1] = NULL_TREE;
344 return false;
347 unsigned expprec = TYPE_PRECISION (exptype);
349 bool signed_p = !TYPE_UNSIGNED (exptype);
351 if (range_type == VR_ANTI_RANGE)
353 if (signed_p)
355 if (wi::les_p (max, 0))
357 /* EXP is not in a strictly negative range. That means
358 it must be in some (not necessarily strictly) positive
359 range which includes zero. Since in signed to unsigned
360 conversions negative values end up converted to large
361 positive values, and otherwise they are not valid sizes,
362 the resulting range is in both cases [0, TYPE_MAX]. */
363 min = wi::zero (expprec);
364 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
366 else if (wi::les_p (min - 1, 0))
368 /* EXP is not in a negative-positive range. That means EXP
369 is either negative, or greater than max. Since negative
370 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
371 min = max + 1;
372 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
374 else
376 max = min - 1;
377 min = wi::zero (expprec);
380 else
382 wide_int maxsize = wi::to_wide (max_object_size ());
383 min = wide_int::from (min, maxsize.get_precision (), UNSIGNED);
384 max = wide_int::from (max, maxsize.get_precision (), UNSIGNED);
385 if (wi::eq_p (0, min - 1))
387 /* EXP is unsigned and not in the range [1, MAX]. That means
388 it's either zero or greater than MAX. Even though 0 would
389 normally be detected by -Walloc-zero, unless ALLOW_ZERO
390 is set, set the range to [MAX, TYPE_MAX] so that when MAX
391 is greater than the limit the whole range is diagnosed. */
392 wide_int maxsize = wi::to_wide (max_object_size ());
393 if (flags & SR_ALLOW_ZERO)
395 if (wi::leu_p (maxsize, max + 1)
396 || !(flags & SR_USE_LARGEST))
397 min = max = wi::zero (expprec);
398 else
400 min = max + 1;
401 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
404 else
406 min = max + 1;
407 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
410 else if ((flags & SR_USE_LARGEST)
411 && wi::ltu_p (max + 1, maxsize))
413 /* When USE_LARGEST is set and the larger of the two subranges
414 is a valid size, use it... */
415 min = max + 1;
416 max = maxsize;
418 else
420 /* ...otherwise use the smaller subrange. */
421 max = min - 1;
422 min = wi::zero (expprec);
427 range[0] = wide_int_to_tree (exptype, min);
428 range[1] = wide_int_to_tree (exptype, max);
430 return true;
433 bool
434 get_size_range (tree exp, tree range[2], int flags /* = 0 */)
436 return get_size_range (/*query=*/NULL, exp, /*stmt=*/NULL, range, flags);
439 /* If STMT is a call to an allocation function, returns the constant
440 maximum size of the object allocated by the call represented as
441 sizetype. If nonnull, sets RNG1[] to the range of the size.
442 When nonnull, uses RVALS for range information, otherwise gets global
443 range info.
444 Returns null when STMT is not a call to a valid allocation function. */
446 tree
447 gimple_call_alloc_size (gimple *stmt, wide_int rng1[2] /* = NULL */,
448 range_query *qry /* = NULL */)
450 if (!stmt || !is_gimple_call (stmt))
451 return NULL_TREE;
453 tree allocfntype;
454 if (tree fndecl = gimple_call_fndecl (stmt))
455 allocfntype = TREE_TYPE (fndecl);
456 else
457 allocfntype = gimple_call_fntype (stmt);
459 if (!allocfntype)
460 return NULL_TREE;
462 unsigned argidx1 = UINT_MAX, argidx2 = UINT_MAX;
463 tree at = lookup_attribute ("alloc_size", TYPE_ATTRIBUTES (allocfntype));
464 if (!at)
466 if (!gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
467 return NULL_TREE;
469 argidx1 = 0;
472 unsigned nargs = gimple_call_num_args (stmt);
474 if (argidx1 == UINT_MAX)
476 tree atval = TREE_VALUE (at);
477 if (!atval)
478 return NULL_TREE;
480 argidx1 = TREE_INT_CST_LOW (TREE_VALUE (atval)) - 1;
481 if (nargs <= argidx1)
482 return NULL_TREE;
484 atval = TREE_CHAIN (atval);
485 if (atval)
487 argidx2 = TREE_INT_CST_LOW (TREE_VALUE (atval)) - 1;
488 if (nargs <= argidx2)
489 return NULL_TREE;
493 tree size = gimple_call_arg (stmt, argidx1);
495 wide_int rng1_buf[2];
496 /* If RNG1 is not set, use the buffer. */
497 if (!rng1)
498 rng1 = rng1_buf;
500 /* Use maximum precision to avoid overflow below. */
501 const int prec = ADDR_MAX_PRECISION;
504 tree r[2];
505 /* Determine the largest valid range size, including zero. */
506 if (!get_size_range (qry, size, stmt, r, SR_ALLOW_ZERO | SR_USE_LARGEST))
507 return NULL_TREE;
508 rng1[0] = wi::to_wide (r[0], prec);
509 rng1[1] = wi::to_wide (r[1], prec);
512 if (argidx2 > nargs && TREE_CODE (size) == INTEGER_CST)
513 return fold_convert (sizetype, size);
515 /* To handle ranges do the math in wide_int and return the product
516 of the upper bounds as a constant. Ignore anti-ranges. */
517 tree n = argidx2 < nargs ? gimple_call_arg (stmt, argidx2) : integer_one_node;
518 wide_int rng2[2];
520 tree r[2];
521 /* As above, use the full non-negative range on failure. */
522 if (!get_size_range (qry, n, stmt, r, SR_ALLOW_ZERO | SR_USE_LARGEST))
523 return NULL_TREE;
524 rng2[0] = wi::to_wide (r[0], prec);
525 rng2[1] = wi::to_wide (r[1], prec);
528 /* Compute products of both bounds for the caller but return the lesser
529 of SIZE_MAX and the product of the upper bounds as a constant. */
530 rng1[0] = rng1[0] * rng2[0];
531 rng1[1] = rng1[1] * rng2[1];
533 const tree size_max = TYPE_MAX_VALUE (sizetype);
534 if (wi::gtu_p (rng1[1], wi::to_wide (size_max, prec)))
536 rng1[1] = wi::to_wide (size_max, prec);
537 return size_max;
540 return wide_int_to_tree (sizetype, rng1[1]);
543 /* For an access to an object referenced to by the function parameter PTR
544 of pointer type, and set RNG[] to the range of sizes of the object
545 obtainedfrom the attribute access specification for the current function.
546 Set STATIC_ARRAY if the array parameter has been declared [static].
547 Return the function parameter on success and null otherwise. */
549 static tree
550 gimple_parm_array_size (tree ptr, wide_int rng[2],
551 bool *static_array /* = NULL */)
553 /* For a function argument try to determine the byte size of the array
554 from the current function declaratation (e.g., attribute access or
555 related). */
556 tree var = SSA_NAME_VAR (ptr);
557 if (TREE_CODE (var) != PARM_DECL)
558 return NULL_TREE;
560 const unsigned prec = TYPE_PRECISION (sizetype);
562 rdwr_map rdwr_idx;
563 attr_access *access = get_parm_access (rdwr_idx, var);
564 if (!access)
565 return NULL_TREE;
567 if (access->sizarg != UINT_MAX)
569 /* TODO: Try to extract the range from the argument based on
570 those of subsequent assertions or based on known calls to
571 the current function. */
572 return NULL_TREE;
575 if (!access->minsize)
576 return NULL_TREE;
578 /* Only consider ordinary array bound at level 2 (or above if it's
579 ever added). */
580 if (warn_array_parameter < 2 && !access->static_p)
581 return NULL_TREE;
583 if (static_array)
584 *static_array = access->static_p;
586 rng[0] = wi::zero (prec);
587 rng[1] = wi::uhwi (access->minsize, prec);
588 /* Multiply the array bound encoded in the attribute by the size
589 of what the pointer argument to which it decays points to. */
590 tree eltype = TREE_TYPE (TREE_TYPE (ptr));
591 tree size = TYPE_SIZE_UNIT (eltype);
592 if (!size || TREE_CODE (size) != INTEGER_CST)
593 return NULL_TREE;
595 rng[1] *= wi::to_wide (size, prec);
596 return var;
599 /* Initialize the object. */
601 access_ref::access_ref ()
602 : ref (), eval ([](tree x){ return x; }), deref (), trail1special (true),
603 base0 (true), parmarray ()
605 /* Set to valid. */
606 offrng[0] = offrng[1] = 0;
607 offmax[0] = offmax[1] = 0;
608 /* Invalidate. */
609 sizrng[0] = sizrng[1] = -1;
612 /* Return the PHI node REF refers to or null if it doesn't. */
614 gphi *
615 access_ref::phi () const
617 if (!ref || TREE_CODE (ref) != SSA_NAME)
618 return NULL;
620 gimple *def_stmt = SSA_NAME_DEF_STMT (ref);
621 if (!def_stmt || gimple_code (def_stmt) != GIMPLE_PHI)
622 return NULL;
624 return as_a <gphi *> (def_stmt);
627 /* Determine the size and offset for ARG, append it to ALL_REFS, and
628 merge the result with *THIS. Ignore ARG if SKIP_NULL is set and
629 ARG refers to the null pointer. Return true on success and false
630 on failure. */
632 void
633 access_ref::merge_ref (vec<access_ref> *all_refs, tree arg, gimple *stmt,
634 int ostype, bool skip_null,
635 ssa_name_limit_t &snlim, pointer_query &qry)
637 access_ref aref;
638 if (!compute_objsize_r (arg, stmt, false, ostype, &aref, snlim, &qry)
639 || aref.sizrng[0] < 0)
641 /* This may be a PHI with all null pointer arguments. Handle it
642 conservatively by setting all properties to the most permissive
643 values. */
644 base0 = false;
645 offrng[0] = offrng[1] = 0;
646 add_max_offset ();
647 set_max_size_range ();
648 return;
651 if (all_refs)
653 access_ref dummy_ref;
654 aref.get_ref (all_refs, &dummy_ref, ostype, &snlim, &qry);
657 if (TREE_CODE (arg) == SSA_NAME)
658 qry.put_ref (arg, aref, ostype);
660 if (all_refs)
661 all_refs->safe_push (aref);
663 aref.deref += deref;
665 bool merged_parmarray = aref.parmarray;
667 const bool nullp = skip_null && integer_zerop (arg);
668 const offset_int maxobjsize = wi::to_offset (max_object_size ());
669 offset_int minsize = sizrng[0];
671 if (sizrng[0] < 0)
673 /* If *THIS doesn't contain a meaningful result yet set it to AREF
674 unless the argument is null and it's okay to ignore it. */
675 if (!nullp)
676 *this = aref;
678 /* Set if the current argument refers to one or more objects of
679 known size (or range of sizes), as opposed to referring to
680 one or more unknown object(s). */
681 const bool arg_known_size = (aref.sizrng[0] != 0
682 || aref.sizrng[1] != maxobjsize);
683 if (arg_known_size)
684 sizrng[0] = aref.sizrng[0];
686 return;
689 /* Disregard null pointers in PHIs with two or more arguments.
690 TODO: Handle this better! */
691 if (nullp)
692 return;
694 const bool known_size = (sizrng[0] != 0 || sizrng[1] != maxobjsize);
696 if (known_size && aref.sizrng[0] < minsize)
697 minsize = aref.sizrng[0];
699 /* Extend the size and offset of *THIS to account for AREF. The result
700 can be cached but results in false negatives. */
702 offset_int orng[2];
703 if (sizrng[1] < aref.sizrng[1])
705 orng[0] = offrng[0];
706 orng[1] = offrng[1];
707 *this = aref;
709 else
711 orng[0] = aref.offrng[0];
712 orng[1] = aref.offrng[1];
715 if (orng[0] < offrng[0])
716 offrng[0] = orng[0];
717 if (offrng[1] < orng[1])
718 offrng[1] = orng[1];
720 /* Reset the PHI's BASE0 flag if any of the nonnull arguments
721 refers to an object at an unknown offset. */
722 if (!aref.base0)
723 base0 = false;
725 sizrng[0] = minsize;
726 parmarray = merged_parmarray;
728 return;
731 /* Determine and return the largest object to which *THIS refers. If
732 *THIS refers to a PHI and PREF is nonnull, fill *PREF with the details
733 of the object determined by compute_objsize(ARG, OSTYPE) for each PHI
734 argument ARG. */
736 tree
737 access_ref::get_ref (vec<access_ref> *all_refs,
738 access_ref *pref /* = NULL */,
739 int ostype /* = 1 */,
740 ssa_name_limit_t *psnlim /* = NULL */,
741 pointer_query *qry /* = NULL */) const
743 if (!ref || TREE_CODE (ref) != SSA_NAME)
744 return NULL;
746 /* FIXME: Calling get_ref() with a null PSNLIM is dangerous and might
747 cause unbounded recursion. */
748 ssa_name_limit_t snlim_buf;
749 if (!psnlim)
750 psnlim = &snlim_buf;
752 pointer_query empty_qry;
753 if (!qry)
754 qry = &empty_qry;
756 if (gimple *def_stmt = SSA_NAME_DEF_STMT (ref))
758 if (is_gimple_assign (def_stmt))
760 tree_code code = gimple_assign_rhs_code (def_stmt);
761 if (code != MIN_EXPR && code != MAX_EXPR)
762 return NULL_TREE;
764 access_ref aref;
765 tree arg1 = gimple_assign_rhs1 (def_stmt);
766 aref.merge_ref (all_refs, arg1, def_stmt, ostype, false,
767 *psnlim, *qry);
769 tree arg2 = gimple_assign_rhs2 (def_stmt);
770 aref.merge_ref (all_refs, arg2, def_stmt, ostype, false,
771 *psnlim, *qry);
773 if (pref && pref != this)
775 tree ref = pref->ref;
776 *pref = aref;
777 pref->ref = ref;
780 return aref.ref;
783 else
784 return NULL_TREE;
786 gphi *phi_stmt = this->phi ();
787 if (!phi_stmt)
788 return ref;
790 if (!psnlim->visit_phi (ref))
791 return NULL_TREE;
793 /* The conservative result of the PHI reflecting the offset and size
794 of the largest PHI argument, regardless of whether or not they all
795 refer to the same object. */
796 access_ref phi_ref;
797 if (pref)
799 /* The identity of the object has not been determined yet but
800 PREF->REF is set by the caller to the PHI for convenience.
801 The size is negative/invalid and the offset is zero (it's
802 updated only after the identity of the object has been
803 established). */
804 gcc_assert (pref->sizrng[0] < 0);
805 gcc_assert (pref->offrng[0] == 0 && pref->offrng[1] == 0);
807 phi_ref = *pref;
810 const offset_int maxobjsize = wi::to_offset (max_object_size ());
811 const unsigned nargs = gimple_phi_num_args (phi_stmt);
812 for (unsigned i = 0; i < nargs; ++i)
814 access_ref phi_arg_ref;
815 bool skip_null = i || i + 1 < nargs;
816 tree arg = gimple_phi_arg_def (phi_stmt, i);
817 phi_ref.merge_ref (all_refs, arg, phi_stmt, ostype, skip_null,
818 *psnlim, *qry);
820 if (!phi_ref.base0
821 && phi_ref.sizrng[0] == 0
822 && phi_ref.sizrng[1] >= maxobjsize)
823 /* When an argument results in the most permissive result,
824 the remaining arguments cannot constrain it. Short-circuit
825 the evaluation. */
826 break;
829 if (phi_ref.sizrng[0] < 0)
831 /* Fail if none of the PHI's arguments resulted in updating PHI_REF
832 (perhaps because they have all been already visited by prior
833 recursive calls). */
834 psnlim->leave_phi (ref);
835 return NULL_TREE;
838 /* Avoid changing *THIS. */
839 if (pref && pref != this)
841 /* Keep the SSA_NAME of the PHI unchanged so that all PHI arguments
842 can be referred to later if necessary. This is useful even if
843 they all refer to the same object. */
844 tree ref = pref->ref;
845 *pref = phi_ref;
846 pref->ref = ref;
849 psnlim->leave_phi (ref);
851 return phi_ref.ref;
854 /* Return the maximum amount of space remaining and if non-null, set
855 argument to the minimum. */
857 offset_int
858 access_ref::size_remaining (offset_int *pmin /* = NULL */) const
860 offset_int minbuf;
861 if (!pmin)
862 pmin = &minbuf;
864 if (sizrng[0] < 0)
866 /* If the identity of the object hasn't been determined return
867 the maximum size range. */
868 *pmin = 0;
869 return wi::to_offset (max_object_size ());
872 /* add_offset() ensures the offset range isn't inverted. */
873 gcc_checking_assert (offrng[0] <= offrng[1]);
875 if (base0)
877 /* The offset into referenced object is zero-based (i.e., it's
878 not referenced by a pointer into middle of some unknown object). */
879 if (offrng[0] < 0 && offrng[1] < 0)
881 /* If the offset is negative the remaining size is zero. */
882 *pmin = 0;
883 return 0;
886 if (sizrng[1] <= offrng[0])
888 /* If the starting offset is greater than or equal to the upper
889 bound on the size of the object, the space remaining is zero.
890 As a special case, if it's equal, set *PMIN to -1 to let
891 the caller know the offset is valid and just past the end. */
892 *pmin = sizrng[1] == offrng[0] ? -1 : 0;
893 return 0;
896 /* Otherwise return the size minus the lower bound of the offset. */
897 offset_int or0 = offrng[0] < 0 ? 0 : offrng[0];
899 *pmin = sizrng[0] - or0;
900 return sizrng[1] - or0;
903 /* The offset to the referenced object isn't zero-based (i.e., it may
904 refer to a byte other than the first. The size of such an object
905 is constrained only by the size of the address space (the result
906 of max_object_size()). */
907 if (sizrng[1] <= offrng[0])
909 *pmin = 0;
910 return 0;
913 offset_int or0 = offrng[0] < 0 ? 0 : offrng[0];
915 *pmin = sizrng[0] - or0;
916 return sizrng[1] - or0;
919 /* Return true if the offset and object size are in range for SIZE. */
921 bool
922 access_ref::offset_in_range (const offset_int &size) const
924 if (size_remaining () < size)
925 return false;
927 if (base0)
928 return offmax[0] >= 0 && offmax[1] <= sizrng[1];
930 offset_int maxoff = wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node));
931 return offmax[0] > -maxoff && offmax[1] < maxoff;
934 /* Add the range [MIN, MAX] to the offset range. For known objects (with
935 zero-based offsets) at least one of whose offset's bounds is in range,
936 constrain the other (or both) to the bounds of the object (i.e., zero
937 and the upper bound of its size). This improves the quality of
938 diagnostics. */
940 void access_ref::add_offset (const offset_int &min, const offset_int &max)
942 if (min <= max)
944 /* To add an ordinary range just add it to the bounds. */
945 offrng[0] += min;
946 offrng[1] += max;
948 else if (!base0)
950 /* To add an inverted range to an offset to an unknown object
951 expand it to the maximum. */
952 add_max_offset ();
953 return;
955 else
957 /* To add an inverted range to an offset to an known object set
958 the upper bound to the maximum representable offset value
959 (which may be greater than MAX_OBJECT_SIZE).
960 The lower bound is either the sum of the current offset and
961 MIN when abs(MAX) is greater than the former, or zero otherwise.
962 Zero because then the inverted range includes the negative of
963 the lower bound. */
964 offset_int maxoff = wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node));
965 offrng[1] = maxoff;
967 if (max >= 0)
969 offrng[0] = 0;
970 if (offmax[0] > 0)
971 offmax[0] = 0;
972 return;
975 offset_int absmax = wi::abs (max);
976 if (offrng[0] < absmax)
978 offrng[0] += min;
979 /* Cap the lower bound at the upper (set to MAXOFF above)
980 to avoid inadvertently recreating an inverted range. */
981 if (offrng[1] < offrng[0])
982 offrng[0] = offrng[1];
984 else
985 offrng[0] = 0;
988 /* Set the minimum and maximmum computed so far. */
989 if (offrng[1] < 0 && offrng[1] < offmax[0])
990 offmax[0] = offrng[1];
991 if (offrng[0] > 0 && offrng[0] > offmax[1])
992 offmax[1] = offrng[0];
994 if (!base0)
995 return;
997 /* When referencing a known object check to see if the offset computed
998 so far is in bounds... */
999 offset_int remrng[2];
1000 remrng[1] = size_remaining (remrng);
1001 if (remrng[1] > 0 || remrng[0] < 0)
1003 /* ...if so, constrain it so that neither bound exceeds the size of
1004 the object. Out of bounds offsets are left unchanged, and, for
1005 better or worse, become in bounds later. They should be detected
1006 and diagnosed at the point they first become invalid by
1007 -Warray-bounds. */
1008 if (offrng[0] < 0)
1009 offrng[0] = 0;
1010 if (offrng[1] > sizrng[1])
1011 offrng[1] = sizrng[1];
1015 /* Issue one inform message describing each target of an access REF.
1016 WRITE is set for a write access and clear for a read access. */
1018 void
1019 access_ref::inform_access (access_mode mode, int ostype /* = 1 */) const
1021 const access_ref &aref = *this;
1022 if (!aref.ref)
1023 return;
1025 if (phi ())
1027 /* Set MAXREF to refer to the largest object and fill ALL_REFS
1028 with data for all objects referenced by the PHI arguments. */
1029 access_ref maxref;
1030 auto_vec<access_ref> all_refs;
1031 if (!get_ref (&all_refs, &maxref, ostype))
1032 return;
1034 if (all_refs.length ())
1036 /* Except for MAXREF, the rest of the arguments' offsets need not
1037 reflect one added to the PHI itself. Determine the latter from
1038 MAXREF on which the result is based. */
1039 const offset_int orng[] =
1041 offrng[0] - maxref.offrng[0],
1042 wi::smax (offrng[1] - maxref.offrng[1], offrng[0]),
1045 /* Add the final PHI's offset to that of each of the arguments
1046 and recurse to issue an inform message for it. */
1047 for (unsigned i = 0; i != all_refs.length (); ++i)
1049 /* Skip any PHIs; those could lead to infinite recursion. */
1050 if (all_refs[i].phi ())
1051 continue;
1053 all_refs[i].add_offset (orng[0], orng[1]);
1054 all_refs[i].inform_access (mode, ostype);
1056 return;
1060 /* Convert offset range and avoid including a zero range since it
1061 isn't necessarily meaningful. */
1062 HOST_WIDE_INT diff_min = tree_to_shwi (TYPE_MIN_VALUE (ptrdiff_type_node));
1063 HOST_WIDE_INT diff_max = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
1064 HOST_WIDE_INT minoff;
1065 HOST_WIDE_INT maxoff = diff_max;
1066 if (wi::fits_shwi_p (aref.offrng[0]))
1067 minoff = aref.offrng[0].to_shwi ();
1068 else
1069 minoff = aref.offrng[0] < 0 ? diff_min : diff_max;
1071 if (wi::fits_shwi_p (aref.offrng[1]))
1072 maxoff = aref.offrng[1].to_shwi ();
1074 if (maxoff <= diff_min || maxoff >= diff_max)
1075 /* Avoid mentioning an upper bound that's equal to or in excess
1076 of the maximum of ptrdiff_t. */
1077 maxoff = minoff;
1079 /* Convert size range and always include it since all sizes are
1080 meaningful. */
1081 unsigned long long minsize = 0, maxsize = 0;
1082 if (wi::fits_shwi_p (aref.sizrng[0])
1083 && wi::fits_shwi_p (aref.sizrng[1]))
1085 minsize = aref.sizrng[0].to_shwi ();
1086 maxsize = aref.sizrng[1].to_shwi ();
1089 /* SIZRNG doesn't necessarily have the same range as the allocation
1090 size determined by gimple_call_alloc_size (). */
1091 char sizestr[80];
1092 if (minsize == maxsize)
1093 sprintf (sizestr, "%llu", minsize);
1094 else
1095 sprintf (sizestr, "[%llu, %llu]", minsize, maxsize);
1097 char offstr[80];
1098 if (minoff == 0
1099 && (maxoff == 0 || aref.sizrng[1] <= maxoff))
1100 offstr[0] = '\0';
1101 else if (minoff == maxoff)
1102 sprintf (offstr, "%lli", (long long) minoff);
1103 else
1104 sprintf (offstr, "[%lli, %lli]", (long long) minoff, (long long) maxoff);
1106 location_t loc = UNKNOWN_LOCATION;
1108 tree ref = this->ref;
1109 tree allocfn = NULL_TREE;
1110 if (TREE_CODE (ref) == SSA_NAME)
1112 gimple *stmt = SSA_NAME_DEF_STMT (ref);
1113 if (!stmt)
1114 return;
1116 if (is_gimple_call (stmt))
1118 loc = gimple_location (stmt);
1119 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1121 /* Strip the SSA_NAME suffix from the variable name and
1122 recreate an identifier with the VLA's original name. */
1123 ref = gimple_call_lhs (stmt);
1124 if (SSA_NAME_IDENTIFIER (ref))
1126 ref = SSA_NAME_IDENTIFIER (ref);
1127 const char *id = IDENTIFIER_POINTER (ref);
1128 size_t len = strcspn (id, ".$");
1129 if (!len)
1130 len = strlen (id);
1131 ref = get_identifier_with_length (id, len);
1134 else
1136 /* Except for VLAs, retrieve the allocation function. */
1137 allocfn = gimple_call_fndecl (stmt);
1138 if (!allocfn)
1139 allocfn = gimple_call_fn (stmt);
1140 if (TREE_CODE (allocfn) == SSA_NAME)
1142 /* For an ALLOC_CALL via a function pointer make a small
1143 effort to determine the destination of the pointer. */
1144 gimple *def = SSA_NAME_DEF_STMT (allocfn);
1145 if (gimple_assign_single_p (def))
1147 tree rhs = gimple_assign_rhs1 (def);
1148 if (DECL_P (rhs))
1149 allocfn = rhs;
1150 else if (TREE_CODE (rhs) == COMPONENT_REF)
1151 allocfn = TREE_OPERAND (rhs, 1);
1156 else if (gimple_nop_p (stmt))
1157 /* Handle DECL_PARM below. */
1158 ref = SSA_NAME_VAR (ref);
1159 else if (is_gimple_assign (stmt)
1160 && (gimple_assign_rhs_code (stmt) == MIN_EXPR
1161 || gimple_assign_rhs_code (stmt) == MAX_EXPR))
1163 /* MIN or MAX_EXPR here implies a reference to a known object
1164 and either an unknown or distinct one (the latter being
1165 the result of an invalid relational expression). Determine
1166 the identity of the former and point to it in the note.
1167 TODO: Consider merging with PHI handling. */
1168 access_ref arg_ref[2];
1169 tree arg = gimple_assign_rhs1 (stmt);
1170 compute_objsize (arg, /* ostype = */ 1 , &arg_ref[0]);
1171 arg = gimple_assign_rhs2 (stmt);
1172 compute_objsize (arg, /* ostype = */ 1 , &arg_ref[1]);
1174 /* Use the argument that references a known object with more
1175 space remaining. */
1176 const bool idx
1177 = (!arg_ref[0].ref || !arg_ref[0].base0
1178 || (arg_ref[0].base0 && arg_ref[1].base0
1179 && (arg_ref[0].size_remaining ()
1180 < arg_ref[1].size_remaining ())));
1182 arg_ref[idx].offrng[0] = offrng[0];
1183 arg_ref[idx].offrng[1] = offrng[1];
1184 arg_ref[idx].inform_access (mode);
1185 return;
1189 if (DECL_P (ref))
1190 loc = DECL_SOURCE_LOCATION (ref);
1191 else if (EXPR_P (ref) && EXPR_HAS_LOCATION (ref))
1192 loc = EXPR_LOCATION (ref);
1193 else if (TREE_CODE (ref) != IDENTIFIER_NODE
1194 && TREE_CODE (ref) != SSA_NAME)
1195 return;
1197 if (mode == access_read_write || mode == access_write_only)
1199 if (allocfn == NULL_TREE)
1201 if (*offstr)
1202 inform (loc, "at offset %s into destination object %qE of size %s",
1203 offstr, ref, sizestr);
1204 else
1205 inform (loc, "destination object %qE of size %s", ref, sizestr);
1206 return;
1209 if (*offstr)
1210 inform (loc,
1211 "at offset %s into destination object of size %s "
1212 "allocated by %qE", offstr, sizestr, allocfn);
1213 else
1214 inform (loc, "destination object of size %s allocated by %qE",
1215 sizestr, allocfn);
1216 return;
1219 if (mode == access_read_only)
1221 if (allocfn == NULL_TREE)
1223 if (*offstr)
1224 inform (loc, "at offset %s into source object %qE of size %s",
1225 offstr, ref, sizestr);
1226 else
1227 inform (loc, "source object %qE of size %s", ref, sizestr);
1229 return;
1232 if (*offstr)
1233 inform (loc,
1234 "at offset %s into source object of size %s allocated by %qE",
1235 offstr, sizestr, allocfn);
1236 else
1237 inform (loc, "source object of size %s allocated by %qE",
1238 sizestr, allocfn);
1239 return;
1242 if (allocfn == NULL_TREE)
1244 if (*offstr)
1245 inform (loc, "at offset %s into object %qE of size %s",
1246 offstr, ref, sizestr);
1247 else
1248 inform (loc, "object %qE of size %s", ref, sizestr);
1250 return;
1253 if (*offstr)
1254 inform (loc,
1255 "at offset %s into object of size %s allocated by %qE",
1256 offstr, sizestr, allocfn);
1257 else
1258 inform (loc, "object of size %s allocated by %qE",
1259 sizestr, allocfn);
1262 /* Dump *THIS to FILE. */
1264 void
1265 access_ref::dump (FILE *file) const
1267 for (int i = deref; i < 0; ++i)
1268 fputc ('&', file);
1270 for (int i = 0; i < deref; ++i)
1271 fputc ('*', file);
1273 if (gphi *phi_stmt = phi ())
1275 fputs ("PHI <", file);
1276 unsigned nargs = gimple_phi_num_args (phi_stmt);
1277 for (unsigned i = 0; i != nargs; ++i)
1279 tree arg = gimple_phi_arg_def (phi_stmt, i);
1280 print_generic_expr (file, arg);
1281 if (i + 1 < nargs)
1282 fputs (", ", file);
1284 fputc ('>', file);
1286 else
1287 print_generic_expr (file, ref);
1289 if (offrng[0] != offrng[1])
1290 fprintf (file, " + [%lli, %lli]",
1291 (long long) offrng[0].to_shwi (),
1292 (long long) offrng[1].to_shwi ());
1293 else if (offrng[0] != 0)
1294 fprintf (file, " %c %lli",
1295 offrng[0] < 0 ? '-' : '+',
1296 (long long) offrng[0].to_shwi ());
1298 if (base0)
1299 fputs (" (base0)", file);
1301 fputs ("; size: ", file);
1302 if (sizrng[0] != sizrng[1])
1304 offset_int maxsize = wi::to_offset (max_object_size ());
1305 if (sizrng[0] == 0 && sizrng[1] >= maxsize)
1306 fputs ("unknown", file);
1307 else
1308 fprintf (file, "[%llu, %llu]",
1309 (unsigned long long) sizrng[0].to_uhwi (),
1310 (unsigned long long) sizrng[1].to_uhwi ());
1312 else if (sizrng[0] != 0)
1313 fprintf (file, "%llu",
1314 (unsigned long long) sizrng[0].to_uhwi ());
1316 fputc ('\n', file);
1319 /* Set the access to at most MAXWRITE and MAXREAD bytes, and at least 1
1320 when MINWRITE or MINREAD, respectively, is set. */
1321 access_data::access_data (range_query *query, gimple *stmt, access_mode mode,
1322 tree maxwrite /* = NULL_TREE */,
1323 bool minwrite /* = false */,
1324 tree maxread /* = NULL_TREE */,
1325 bool minread /* = false */)
1326 : stmt (stmt), call (), dst (), src (), mode (mode), ostype ()
1328 set_bound (dst_bndrng, maxwrite, minwrite, query, stmt);
1329 set_bound (src_bndrng, maxread, minread, query, stmt);
1332 /* Set the access to at most MAXWRITE and MAXREAD bytes, and at least 1
1333 when MINWRITE or MINREAD, respectively, is set. */
1334 access_data::access_data (range_query *query, tree expr, access_mode mode,
1335 tree maxwrite /* = NULL_TREE */,
1336 bool minwrite /* = false */,
1337 tree maxread /* = NULL_TREE */,
1338 bool minread /* = false */)
1339 : stmt (), call (expr), dst (), src (), mode (mode), ostype ()
1341 set_bound (dst_bndrng, maxwrite, minwrite, query, stmt);
1342 set_bound (src_bndrng, maxread, minread, query, stmt);
1345 /* Set BNDRNG to the range of BOUND for the statement STMT. */
1347 void
1348 access_data::set_bound (offset_int bndrng[2], tree bound, bool minaccess,
1349 range_query *query, gimple *stmt)
1351 /* Set the default bounds of the access and adjust below. */
1352 bndrng[0] = minaccess ? 1 : 0;
1353 bndrng[1] = HOST_WIDE_INT_M1U;
1355 /* When BOUND is nonnull and a range can be extracted from it,
1356 set the bounds of the access to reflect both it and MINACCESS.
1357 BNDRNG[0] is the size of the minimum access. */
1358 tree rng[2];
1359 if (bound && get_size_range (query, bound, stmt, rng, SR_ALLOW_ZERO))
1361 bndrng[0] = wi::to_offset (rng[0]);
1362 bndrng[1] = wi::to_offset (rng[1]);
1363 bndrng[0] = bndrng[0] > 0 && minaccess ? 1 : 0;
1367 /* Set a bit for the PHI in VISITED and return true if it wasn't
1368 already set. */
1370 bool
1371 ssa_name_limit_t::visit_phi (tree ssa_name)
1373 if (!visited)
1374 visited = BITMAP_ALLOC (NULL);
1376 /* Return false if SSA_NAME has already been visited. */
1377 return bitmap_set_bit (visited, SSA_NAME_VERSION (ssa_name));
1380 /* Clear a bit for the PHI in VISITED. */
1382 void
1383 ssa_name_limit_t::leave_phi (tree ssa_name)
1385 /* Return false if SSA_NAME has already been visited. */
1386 bitmap_clear_bit (visited, SSA_NAME_VERSION (ssa_name));
1389 /* Return false if the SSA_NAME chain length counter has reached
1390 the limit, otherwise increment the counter and return true. */
1392 bool
1393 ssa_name_limit_t::next ()
1395 /* Return a negative value to let caller avoid recursing beyond
1396 the specified limit. */
1397 if (ssa_def_max == 0)
1398 return false;
1400 --ssa_def_max;
1401 return true;
1404 /* If the SSA_NAME has already been "seen" return a positive value.
1405 Otherwise add it to VISITED. If the SSA_NAME limit has been
1406 reached, return a negative value. Otherwise return zero. */
1409 ssa_name_limit_t::next_phi (tree ssa_name)
1412 gimple *def_stmt = SSA_NAME_DEF_STMT (ssa_name);
1413 /* Return a positive value if the PHI has already been visited. */
1414 if (gimple_code (def_stmt) == GIMPLE_PHI
1415 && !visit_phi (ssa_name))
1416 return 1;
1419 /* Return a negative value to let caller avoid recursing beyond
1420 the specified limit. */
1421 if (ssa_def_max == 0)
1422 return -1;
1424 --ssa_def_max;
1426 return 0;
1429 ssa_name_limit_t::~ssa_name_limit_t ()
1431 if (visited)
1432 BITMAP_FREE (visited);
1435 /* Default ctor. Initialize object with pointers to the range_query
1436 instance to use or null. */
1438 pointer_query::pointer_query (range_query *qry /* = NULL */)
1439 : rvals (qry), hits (), misses (), failures (), depth (), max_depth (),
1440 var_cache ()
1442 /* No op. */
1445 /* Return a pointer to the cached access_ref instance for the SSA_NAME
1446 PTR if it's there or null otherwise. */
1448 const access_ref *
1449 pointer_query::get_ref (tree ptr, int ostype /* = 1 */) const
1451 unsigned version = SSA_NAME_VERSION (ptr);
1452 unsigned idx = version << 1 | (ostype & 1);
1453 if (var_cache.indices.length () <= idx)
1455 ++misses;
1456 return NULL;
1459 unsigned cache_idx = var_cache.indices[idx];
1460 if (var_cache.access_refs.length () <= cache_idx)
1462 ++misses;
1463 return NULL;
1466 const access_ref &cache_ref = var_cache.access_refs[cache_idx];
1467 if (cache_ref.ref)
1469 ++hits;
1470 return &cache_ref;
1473 ++misses;
1474 return NULL;
1477 /* Retrieve the access_ref instance for a variable from the cache if it's
1478 there or compute it and insert it into the cache if it's nonnonull. */
1480 bool
1481 pointer_query::get_ref (tree ptr, gimple *stmt, access_ref *pref,
1482 int ostype /* = 1 */)
1484 const unsigned version
1485 = TREE_CODE (ptr) == SSA_NAME ? SSA_NAME_VERSION (ptr) : 0;
1487 if (version)
1489 unsigned idx = version << 1 | (ostype & 1);
1490 if (idx < var_cache.indices.length ())
1492 unsigned cache_idx = var_cache.indices[idx] - 1;
1493 if (cache_idx < var_cache.access_refs.length ()
1494 && var_cache.access_refs[cache_idx].ref)
1496 ++hits;
1497 *pref = var_cache.access_refs[cache_idx];
1498 return true;
1502 ++misses;
1505 if (!compute_objsize (ptr, stmt, ostype, pref, this))
1507 ++failures;
1508 return false;
1511 return true;
1514 /* Add a copy of the access_ref REF for the SSA_NAME to the cache if it's
1515 nonnull. */
1517 void
1518 pointer_query::put_ref (tree ptr, const access_ref &ref, int ostype /* = 1 */)
1520 /* Only add populated/valid entries. */
1521 if (!ref.ref || ref.sizrng[0] < 0)
1522 return;
1524 /* Add REF to the two-level cache. */
1525 unsigned version = SSA_NAME_VERSION (ptr);
1526 unsigned idx = version << 1 | (ostype & 1);
1528 /* Grow INDICES if necessary. An index is valid if it's nonzero.
1529 Its value minus one is the index into ACCESS_REFS. Not all
1530 entries are valid. */
1531 if (var_cache.indices.length () <= idx)
1532 var_cache.indices.safe_grow_cleared (idx + 1);
1534 if (!var_cache.indices[idx])
1535 var_cache.indices[idx] = var_cache.access_refs.length () + 1;
1537 /* Grow ACCESS_REF cache if necessary. An entry is valid if its
1538 REF member is nonnull. All entries except for the last two
1539 are valid. Once nonnull, the REF value must stay unchanged. */
1540 unsigned cache_idx = var_cache.indices[idx];
1541 if (var_cache.access_refs.length () <= cache_idx)
1542 var_cache.access_refs.safe_grow_cleared (cache_idx + 1);
1544 access_ref &cache_ref = var_cache.access_refs[cache_idx];
1545 if (cache_ref.ref)
1547 gcc_checking_assert (cache_ref.ref == ref.ref);
1548 return;
1551 cache_ref = ref;
1554 /* Flush the cache if it's nonnull. */
1556 void
1557 pointer_query::flush_cache ()
1559 var_cache.indices.release ();
1560 var_cache.access_refs.release ();
1563 /* Dump statistics and, optionally, cache contents to DUMP_FILE. */
1565 void
1566 pointer_query::dump (FILE *dump_file, bool contents /* = false */)
1568 unsigned nused = 0, nrefs = 0;
1569 unsigned nidxs = var_cache.indices.length ();
1570 for (unsigned i = 0; i != nidxs; ++i)
1572 unsigned ari = var_cache.indices[i];
1573 if (!ari)
1574 continue;
1576 ++nused;
1578 const access_ref &aref = var_cache.access_refs[ari];
1579 if (!aref.ref)
1580 continue;
1582 ++nrefs;
1585 fprintf (dump_file, "pointer_query counters:\n"
1586 " index cache size: %u\n"
1587 " index entries: %u\n"
1588 " access cache size: %u\n"
1589 " access entries: %u\n"
1590 " hits: %u\n"
1591 " misses: %u\n"
1592 " failures: %u\n"
1593 " max_depth: %u\n",
1594 nidxs, nused,
1595 var_cache.access_refs.length (), nrefs,
1596 hits, misses, failures, max_depth);
1598 if (!contents || !nidxs)
1599 return;
1601 fputs ("\npointer_query cache contents:\n", dump_file);
1603 for (unsigned i = 0; i != nidxs; ++i)
1605 unsigned ari = var_cache.indices[i];
1606 if (!ari)
1607 continue;
1609 const access_ref &aref = var_cache.access_refs[ari];
1610 if (!aref.ref)
1611 continue;
1613 /* The level-1 cache index corresponds to the SSA_NAME_VERSION
1614 shifted left by one and ORed with the Object Size Type in
1615 the lowest bit. Print the two separately. */
1616 unsigned ver = i >> 1;
1617 unsigned ost = i & 1;
1619 fprintf (dump_file, " %u.%u[%u]: ", ver, ost, ari);
1620 if (tree name = ssa_name (ver))
1622 print_generic_expr (dump_file, name);
1623 fputs (" = ", dump_file);
1625 else
1626 fprintf (dump_file, " _%u = ", ver);
1628 aref.dump (dump_file);
1631 fputc ('\n', dump_file);
1634 /* A helper of compute_objsize_r() to determine the size from an assignment
1635 statement STMT with the RHS of either MIN_EXPR or MAX_EXPR. On success
1636 set PREF->REF to the operand with more or less space remaining,
1637 respectively, if both refer to the same (sub)object, or to PTR if they
1638 might not, and return true. Otherwise, if the identity of neither
1639 operand can be determined, return false. */
1641 static bool
1642 handle_min_max_size (tree ptr, int ostype, access_ref *pref,
1643 ssa_name_limit_t &snlim, pointer_query *qry)
1645 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
1646 const tree_code code = gimple_assign_rhs_code (stmt);
1648 /* In a valid MAX_/MIN_EXPR both operands must refer to the same array.
1649 Determine the size/offset of each and use the one with more or less
1650 space remaining, respectively. If either fails, use the information
1651 determined from the other instead, adjusted up or down as appropriate
1652 for the expression. */
1653 access_ref aref[2] = { *pref, *pref };
1654 tree arg1 = gimple_assign_rhs1 (stmt);
1655 if (!compute_objsize_r (arg1, stmt, false, ostype, &aref[0], snlim, qry))
1657 aref[0].base0 = false;
1658 aref[0].offrng[0] = aref[0].offrng[1] = 0;
1659 aref[0].add_max_offset ();
1660 aref[0].set_max_size_range ();
1663 tree arg2 = gimple_assign_rhs2 (stmt);
1664 if (!compute_objsize_r (arg2, stmt, false, ostype, &aref[1], snlim, qry))
1666 aref[1].base0 = false;
1667 aref[1].offrng[0] = aref[1].offrng[1] = 0;
1668 aref[1].add_max_offset ();
1669 aref[1].set_max_size_range ();
1672 if (!aref[0].ref && !aref[1].ref)
1673 /* Fail if the identity of neither argument could be determined. */
1674 return false;
1676 bool i0 = false;
1677 if (aref[0].ref && aref[0].base0)
1679 if (aref[1].ref && aref[1].base0)
1681 /* If the object referenced by both arguments has been determined
1682 set *PREF to the one with more or less space remainng, whichever
1683 is appopriate for CODE.
1684 TODO: Indicate when the objects are distinct so it can be
1685 diagnosed. */
1686 i0 = code == MAX_EXPR;
1687 const bool i1 = !i0;
1689 if (aref[i0].size_remaining () < aref[i1].size_remaining ())
1690 *pref = aref[i1];
1691 else
1692 *pref = aref[i0];
1694 if (aref[i0].ref != aref[i1].ref)
1695 /* If the operands don't refer to the same (sub)object set
1696 PREF->REF to the SSA_NAME from which STMT was obtained
1697 so that both can be identified in a diagnostic. */
1698 pref->ref = ptr;
1700 return true;
1703 /* If only the object referenced by one of the arguments could be
1704 determined, use it and... */
1705 *pref = aref[0];
1706 i0 = true;
1708 else
1709 *pref = aref[1];
1711 const bool i1 = !i0;
1712 /* ...see if the offset obtained from the other pointer can be used
1713 to tighten up the bound on the offset obtained from the first. */
1714 if ((code == MAX_EXPR && aref[i1].offrng[1] < aref[i0].offrng[0])
1715 || (code == MIN_EXPR && aref[i0].offrng[0] < aref[i1].offrng[1]))
1717 pref->offrng[0] = aref[i0].offrng[0];
1718 pref->offrng[1] = aref[i0].offrng[1];
1721 /* Replace PTR->REF with the SSA_NAME to indicate the expression
1722 might not refer to the same (sub)object. */
1723 pref->ref = ptr;
1724 return true;
1727 /* A helper of compute_objsize_r() to determine the size of a DECL.
1728 Return true on success and (possibly in the future) false on failure. */
1730 static bool
1731 handle_decl (tree decl, bool addr, access_ref *pref)
1733 tree decl_type = TREE_TYPE (decl);
1735 pref->ref = decl;
1737 /* Reset the offset in case it was set by a prior call and not
1738 cleared by the caller. The offset is only adjusted after
1739 the identity of the object has been determined. */
1740 pref->offrng[0] = pref->offrng[1] = 0;
1742 if (!addr && POINTER_TYPE_P (decl_type))
1744 /* Set the maximum size if the reference is to the pointer
1745 itself (as opposed to what it points to), and clear
1746 BASE0 since the offset isn't necessarily zero-based. */
1747 pref->set_max_size_range ();
1748 pref->base0 = false;
1749 return true;
1752 /* Valid offsets into the object are nonnegative. */
1753 pref->base0 = true;
1755 if (tree size = decl_init_size (decl, false))
1756 if (TREE_CODE (size) == INTEGER_CST)
1758 pref->sizrng[0] = wi::to_offset (size);
1759 pref->sizrng[1] = pref->sizrng[0];
1760 return true;
1763 pref->set_max_size_range ();
1764 return true;
1767 /* A helper of compute_objsize_r() to determine the size from ARRAY_REF
1768 AREF. ADDR is true if PTR is the operand of ADDR_EXPR. Return true
1769 on success and false on failure. */
1771 static bool
1772 handle_array_ref (tree aref, gimple *stmt, bool addr, int ostype,
1773 access_ref *pref, ssa_name_limit_t &snlim,
1774 pointer_query *qry)
1776 gcc_assert (TREE_CODE (aref) == ARRAY_REF);
1778 tree arefop = TREE_OPERAND (aref, 0);
1779 tree reftype = TREE_TYPE (arefop);
1780 if (!addr && TREE_CODE (TREE_TYPE (reftype)) == POINTER_TYPE)
1781 /* Avoid arrays of pointers. FIXME: Hande pointers to arrays
1782 of known bound. */
1783 return false;
1785 if (!compute_objsize_r (arefop, stmt, addr, ostype, pref, snlim, qry))
1786 return false;
1788 offset_int orng[2];
1789 tree off = pref->eval (TREE_OPERAND (aref, 1));
1790 range_query *const rvals = qry ? qry->rvals : NULL;
1791 if (!get_offset_range (off, stmt, orng, rvals))
1793 /* Set ORNG to the maximum offset representable in ptrdiff_t. */
1794 orng[1] = wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node));
1795 orng[0] = -orng[1] - 1;
1798 /* Convert the array index range determined above to a byte
1799 offset. */
1800 tree lowbnd = array_ref_low_bound (aref);
1801 if (!integer_zerop (lowbnd) && tree_fits_uhwi_p (lowbnd))
1803 /* Adjust the index by the low bound of the array domain
1804 (normally zero but 1 in Fortran). */
1805 unsigned HOST_WIDE_INT lb = tree_to_uhwi (lowbnd);
1806 orng[0] -= lb;
1807 orng[1] -= lb;
1810 tree eltype = TREE_TYPE (aref);
1811 tree tpsize = TYPE_SIZE_UNIT (eltype);
1812 if (!tpsize || TREE_CODE (tpsize) != INTEGER_CST)
1814 pref->add_max_offset ();
1815 return true;
1818 offset_int sz = wi::to_offset (tpsize);
1819 orng[0] *= sz;
1820 orng[1] *= sz;
1822 if (ostype && TREE_CODE (eltype) == ARRAY_TYPE)
1824 /* Except for the permissive raw memory functions which use
1825 the size of the whole object determined above, use the size
1826 of the referenced array. Because the overall offset is from
1827 the beginning of the complete array object add this overall
1828 offset to the size of array. */
1829 offset_int sizrng[2] =
1831 pref->offrng[0] + orng[0] + sz,
1832 pref->offrng[1] + orng[1] + sz
1834 if (sizrng[1] < sizrng[0])
1835 std::swap (sizrng[0], sizrng[1]);
1836 if (sizrng[0] >= 0 && sizrng[0] <= pref->sizrng[0])
1837 pref->sizrng[0] = sizrng[0];
1838 if (sizrng[1] >= 0 && sizrng[1] <= pref->sizrng[1])
1839 pref->sizrng[1] = sizrng[1];
1842 pref->add_offset (orng[0], orng[1]);
1843 return true;
1846 /* Given a COMPONENT_REF CREF, set *PREF size to the size of the referenced
1847 member. */
1849 static void
1850 set_component_ref_size (tree cref, access_ref *pref)
1852 const tree base = TREE_OPERAND (cref, 0);
1853 const tree base_type = TREE_TYPE (base);
1855 /* SAM is set for array members that might need special treatment. */
1856 special_array_member sam;
1857 tree size = component_ref_size (cref, &sam);
1858 if (sam == special_array_member::int_0)
1859 pref->sizrng[0] = pref->sizrng[1] = 0;
1860 else if (!pref->trail1special && sam == special_array_member::trail_1)
1861 pref->sizrng[0] = pref->sizrng[1] = 1;
1862 else if (size && TREE_CODE (size) == INTEGER_CST)
1863 pref->sizrng[0] = pref->sizrng[1] = wi::to_offset (size);
1864 else
1866 /* When the size of the member is unknown it's either a flexible
1867 array member or a trailing special array member (either zero
1868 length or one-element). Set the size to the maximum minus
1869 the constant size of the base object's type. */
1870 pref->sizrng[0] = 0;
1871 pref->sizrng[1] = wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node));
1872 if (tree base_size = TYPE_SIZE_UNIT (base_type))
1873 if (TREE_CODE (base_size) == INTEGER_CST)
1874 pref->sizrng[1] -= wi::to_offset (base_size);
1878 /* A helper of compute_objsize_r() to determine the size from COMPONENT_REF
1879 CREF. Return true on success and false on failure. */
1881 static bool
1882 handle_component_ref (tree cref, gimple *stmt, bool addr, int ostype,
1883 access_ref *pref, ssa_name_limit_t &snlim,
1884 pointer_query *qry)
1886 gcc_assert (TREE_CODE (cref) == COMPONENT_REF);
1888 const tree base = TREE_OPERAND (cref, 0);
1889 const tree field = TREE_OPERAND (cref, 1);
1890 access_ref base_ref = *pref;
1892 /* Unconditionally determine the size of the base object (it could
1893 be smaller than the referenced member when the object is stored
1894 in a buffer with an insufficient size). */
1895 if (!compute_objsize_r (base, stmt, addr, 0, &base_ref, snlim, qry))
1896 return false;
1898 /* Add the offset of the member to the offset into the object computed
1899 so far. */
1900 tree offset = byte_position (field);
1901 if (TREE_CODE (offset) == INTEGER_CST)
1902 base_ref.add_offset (wi::to_offset (offset));
1903 else
1904 base_ref.add_max_offset ();
1906 if (!base_ref.ref)
1907 /* PREF->REF may have been already set to an SSA_NAME earlier
1908 to provide better context for diagnostics. In that case,
1909 leave it unchanged. */
1910 base_ref.ref = base;
1912 const tree base_type = TREE_TYPE (base);
1913 if (TREE_CODE (base_type) == UNION_TYPE)
1914 /* In accesses through union types consider the entire unions
1915 rather than just their members. */
1916 ostype = 0;
1918 if (ostype == 0)
1920 /* In OSTYPE zero (for raw memory functions like memcpy), use
1921 the maximum size instead if the identity of the enclosing
1922 object cannot be determined. */
1923 *pref = base_ref;
1924 return true;
1927 pref->ref = field;
1929 if (!addr && POINTER_TYPE_P (TREE_TYPE (field)))
1931 /* Set maximum size if the reference is to the pointer member
1932 itself (as opposed to what it points to). */
1933 pref->set_max_size_range ();
1934 return true;
1937 set_component_ref_size (cref, pref);
1939 if (base_ref.size_remaining () < pref->size_remaining ())
1940 /* Use the base object if it's smaller than the member. */
1941 *pref = base_ref;
1943 return true;
1946 /* A helper of compute_objsize_r() to determine the size from MEM_REF
1947 MREF. Return true on success and false on failure. */
1949 static bool
1950 handle_mem_ref (tree mref, gimple *stmt, int ostype, access_ref *pref,
1951 ssa_name_limit_t &snlim, pointer_query *qry)
1953 gcc_assert (TREE_CODE (mref) == MEM_REF);
1955 tree mreftype = TYPE_MAIN_VARIANT (TREE_TYPE (mref));
1956 if (VECTOR_TYPE_P (mreftype))
1958 /* Hack: Handle MEM_REFs of vector types as those to complete
1959 objects; those may be synthesized from multiple assignments
1960 to consecutive data members (see PR 93200 and 96963).
1961 FIXME: Vectorized assignments should only be present after
1962 vectorization so this hack is only necessary after it has
1963 run and could be avoided in calls from prior passes (e.g.,
1964 tree-ssa-strlen.cc).
1965 FIXME: Deal with this more generally, e.g., by marking up
1966 such MEM_REFs at the time they're created. */
1967 ostype = 0;
1970 tree mrefop = TREE_OPERAND (mref, 0);
1971 if (!compute_objsize_r (mrefop, stmt, false, ostype, pref, snlim, qry))
1972 return false;
1974 ++pref->deref;
1976 offset_int orng[2];
1977 tree off = pref->eval (TREE_OPERAND (mref, 1));
1978 range_query *const rvals = qry ? qry->rvals : NULL;
1979 if (!get_offset_range (off, stmt, orng, rvals))
1981 /* Set ORNG to the maximum offset representable in ptrdiff_t. */
1982 orng[1] = wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node));
1983 orng[0] = -orng[1] - 1;
1986 pref->add_offset (orng[0], orng[1]);
1987 return true;
1990 /* A helper of compute_objsize_r() to determine the size from SSA_NAME
1991 PTR. Return true on success and false on failure. */
1993 static bool
1994 handle_ssa_name (tree ptr, bool addr, int ostype,
1995 access_ref *pref, ssa_name_limit_t &snlim,
1996 pointer_query *qry)
1998 if (!snlim.next ())
1999 return false;
2001 /* Only process an SSA_NAME if the recursion limit has not yet
2002 been reached. */
2003 if (qry)
2005 if (++qry->depth > qry->max_depth)
2006 qry->max_depth = qry->depth;
2007 if (const access_ref *cache_ref = qry->get_ref (ptr, ostype))
2009 /* Add the number of DEREFerences accummulated so far. */
2010 const int deref = pref->deref;
2011 *pref = *cache_ref;
2012 pref->deref += deref;
2013 return true;
2017 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
2018 if (is_gimple_call (stmt))
2020 /* If STMT is a call to an allocation function get the size
2021 from its argument(s). If successful, also set *PREF->REF
2022 to PTR for the caller to include in diagnostics. */
2023 wide_int wr[2];
2024 range_query *const rvals = qry ? qry->rvals : NULL;
2025 if (gimple_call_alloc_size (stmt, wr, rvals))
2027 pref->ref = ptr;
2028 pref->sizrng[0] = offset_int::from (wr[0], UNSIGNED);
2029 pref->sizrng[1] = offset_int::from (wr[1], UNSIGNED);
2030 /* Constrain both bounds to a valid size. */
2031 offset_int maxsize = wi::to_offset (max_object_size ());
2032 if (pref->sizrng[0] > maxsize)
2033 pref->sizrng[0] = maxsize;
2034 if (pref->sizrng[1] > maxsize)
2035 pref->sizrng[1] = maxsize;
2037 else
2039 /* For functions known to return one of their pointer arguments
2040 try to determine what the returned pointer points to, and on
2041 success add OFFRNG which was set to the offset added by
2042 the function (e.g., memchr) to the overall offset. */
2043 bool past_end;
2044 offset_int offrng[2];
2045 if (tree ret = gimple_call_return_array (stmt, offrng, &past_end,
2046 snlim, qry))
2048 if (!compute_objsize_r (ret, stmt, addr, ostype, pref, snlim, qry))
2049 return false;
2051 /* Cap OFFRNG[1] to at most the remaining size of
2052 the object. */
2053 offset_int remrng[2];
2054 remrng[1] = pref->size_remaining (remrng);
2055 if (remrng[1] != 0 && !past_end)
2056 /* Decrement the size for functions that never return
2057 a past-the-end pointer. */
2058 remrng[1] -= 1;
2060 if (remrng[1] < offrng[1])
2061 offrng[1] = remrng[1];
2062 pref->add_offset (offrng[0], offrng[1]);
2064 else
2066 /* For other calls that might return arbitrary pointers
2067 including into the middle of objects set the size
2068 range to maximum, clear PREF->BASE0, and also set
2069 PREF->REF to include in diagnostics. */
2070 pref->set_max_size_range ();
2071 pref->base0 = false;
2072 pref->ref = ptr;
2075 qry->put_ref (ptr, *pref, ostype);
2076 return true;
2079 if (gimple_nop_p (stmt))
2081 /* For a function argument try to determine the byte size
2082 of the array from the current function declaratation
2083 (e.g., attribute access or related). */
2084 wide_int wr[2];
2085 bool static_array = false;
2086 if (tree ref = gimple_parm_array_size (ptr, wr, &static_array))
2088 pref->parmarray = !static_array;
2089 pref->sizrng[0] = offset_int::from (wr[0], UNSIGNED);
2090 pref->sizrng[1] = offset_int::from (wr[1], UNSIGNED);
2091 pref->ref = ref;
2092 qry->put_ref (ptr, *pref, ostype);
2093 return true;
2096 pref->set_max_size_range ();
2097 pref->base0 = false;
2098 pref->ref = ptr;
2099 qry->put_ref (ptr, *pref, ostype);
2100 return true;
2103 if (gimple_code (stmt) == GIMPLE_PHI)
2105 /* Pass PTR to get_ref() via PREF. If all PHI arguments refer
2106 to the same object the function will replace it with it. */
2107 pref->ref = ptr;
2108 access_ref phi_ref = *pref;
2109 if (!pref->get_ref (NULL, &phi_ref, ostype, &snlim, qry))
2110 return false;
2111 *pref = phi_ref;
2112 qry->put_ref (ptr, *pref, ostype);
2113 return true;
2116 if (!is_gimple_assign (stmt))
2118 /* Clear BASE0 since the assigned pointer might point into
2119 the middle of the object, set the maximum size range and,
2120 if the SSA_NAME refers to a function argumnent, set
2121 PREF->REF to it. */
2122 pref->base0 = false;
2123 pref->set_max_size_range ();
2124 pref->ref = ptr;
2125 return true;
2128 tree_code code = gimple_assign_rhs_code (stmt);
2130 if (code == MAX_EXPR || code == MIN_EXPR)
2132 if (!handle_min_max_size (ptr, ostype, pref, snlim, qry))
2133 return false;
2135 qry->put_ref (ptr, *pref, ostype);
2136 return true;
2139 tree rhs = gimple_assign_rhs1 (stmt);
2141 if (code == ASSERT_EXPR)
2143 rhs = TREE_OPERAND (rhs, 0);
2144 return compute_objsize_r (rhs, stmt, addr, ostype, pref, snlim, qry);
2147 if (code == POINTER_PLUS_EXPR
2148 && TREE_CODE (TREE_TYPE (rhs)) == POINTER_TYPE)
2150 /* Compute the size of the object first. */
2151 if (!compute_objsize_r (rhs, stmt, addr, ostype, pref, snlim, qry))
2152 return false;
2154 offset_int orng[2];
2155 tree off = gimple_assign_rhs2 (stmt);
2156 range_query *const rvals = qry ? qry->rvals : NULL;
2157 if (get_offset_range (off, stmt, orng, rvals))
2158 pref->add_offset (orng[0], orng[1]);
2159 else
2160 pref->add_max_offset ();
2162 qry->put_ref (ptr, *pref, ostype);
2163 return true;
2166 if (code == ADDR_EXPR || code == SSA_NAME)
2168 if (!compute_objsize_r (rhs, stmt, addr, ostype, pref, snlim, qry))
2169 return false;
2170 qry->put_ref (ptr, *pref, ostype);
2171 return true;
2174 if (ostype > 1 && POINTER_TYPE_P (TREE_TYPE (rhs)))
2176 /* When determining the qualifiers follow the pointer but
2177 avoid caching the result. As the pointer is added to
2178 and/or dereferenced the computed size and offset need
2179 not be meaningful for other queries involving the same
2180 pointer. */
2181 if (!compute_objsize_r (rhs, stmt, addr, ostype, pref, snlim, qry))
2182 return false;
2184 rhs = pref->ref;
2187 /* (This could also be an assignment from a nonlocal pointer.) Save
2188 PTR to mention in diagnostics but otherwise treat it as a pointer
2189 to an unknown object. */
2190 pref->ref = rhs;
2191 pref->base0 = false;
2192 pref->set_max_size_range ();
2193 return true;
2196 /* Helper to compute the size of the object referenced by the PTR
2197 expression which must have pointer type, using Object Size type
2198 OSTYPE (only the least significant 2 bits are used).
2199 On success, sets PREF->REF to the DECL of the referenced object
2200 if it's unique, otherwise to null, PREF->OFFRNG to the range of
2201 offsets into it, and PREF->SIZRNG to the range of sizes of
2202 the object(s).
2203 ADDR is true for an enclosing ADDR_EXPR.
2204 SNLIM is used to avoid visiting the same PHI operand multiple
2205 times, and, when nonnull, RVALS to determine range information.
2206 Returns true on success, false when a meaningful size (or range)
2207 cannot be determined.
2209 The function is intended for diagnostics and should not be used
2210 to influence code generation or optimization. */
2212 static bool
2213 compute_objsize_r (tree ptr, gimple *stmt, bool addr, int ostype,
2214 access_ref *pref, ssa_name_limit_t &snlim,
2215 pointer_query *qry)
2217 STRIP_NOPS (ptr);
2219 if (DECL_P (ptr))
2220 return handle_decl (ptr, addr, pref);
2222 switch (TREE_CODE (ptr))
2224 case ADDR_EXPR:
2226 tree ref = TREE_OPERAND (ptr, 0);
2227 if (!compute_objsize_r (ref, stmt, true, ostype, pref, snlim, qry))
2228 return false;
2230 --pref->deref;
2231 return true;
2234 case BIT_FIELD_REF:
2236 tree ref = TREE_OPERAND (ptr, 0);
2237 if (!compute_objsize_r (ref, stmt, addr, ostype, pref, snlim, qry))
2238 return false;
2240 offset_int off = wi::to_offset (pref->eval (TREE_OPERAND (ptr, 2)));
2241 pref->add_offset (off / BITS_PER_UNIT);
2242 return true;
2245 case ARRAY_REF:
2246 return handle_array_ref (ptr, stmt, addr, ostype, pref, snlim, qry);
2248 case COMPONENT_REF:
2249 return handle_component_ref (ptr, stmt, addr, ostype, pref, snlim, qry);
2251 case MEM_REF:
2252 return handle_mem_ref (ptr, stmt, ostype, pref, snlim, qry);
2254 case TARGET_MEM_REF:
2256 tree ref = TREE_OPERAND (ptr, 0);
2257 if (!compute_objsize_r (ref, stmt, addr, ostype, pref, snlim, qry))
2258 return false;
2260 /* TODO: Handle remaining operands. Until then, add maximum offset. */
2261 pref->ref = ptr;
2262 pref->add_max_offset ();
2263 return true;
2266 case INTEGER_CST:
2267 /* Pointer constants other than null smaller than param_min_pagesize
2268 might be the result of erroneous null pointer addition/subtraction.
2269 Unless zero is a valid address set size to zero. For null pointers,
2270 set size to the maximum for now since those may be the result of
2271 jump threading. Similarly, for values >= param_min_pagesize in
2272 order to support (type *) 0x7cdeab00. */
2273 if (integer_zerop (ptr)
2274 || wi::to_widest (ptr) >= param_min_pagesize)
2275 pref->set_max_size_range ();
2276 else if (POINTER_TYPE_P (TREE_TYPE (ptr)))
2278 tree deref_type = TREE_TYPE (TREE_TYPE (ptr));
2279 addr_space_t as = TYPE_ADDR_SPACE (deref_type);
2280 if (targetm.addr_space.zero_address_valid (as))
2281 pref->set_max_size_range ();
2282 else
2283 pref->sizrng[0] = pref->sizrng[1] = 0;
2285 else
2286 pref->sizrng[0] = pref->sizrng[1] = 0;
2288 pref->ref = ptr;
2289 return true;
2291 case STRING_CST:
2292 pref->sizrng[0] = pref->sizrng[1] = TREE_STRING_LENGTH (ptr);
2293 pref->ref = ptr;
2294 return true;
2296 case POINTER_PLUS_EXPR:
2298 tree ref = TREE_OPERAND (ptr, 0);
2299 if (!compute_objsize_r (ref, stmt, addr, ostype, pref, snlim, qry))
2300 return false;
2302 /* The below only makes sense if the offset is being applied to the
2303 address of the object. */
2304 if (pref->deref != -1)
2305 return false;
2307 offset_int orng[2];
2308 tree off = pref->eval (TREE_OPERAND (ptr, 1));
2309 if (get_offset_range (off, stmt, orng, qry->rvals))
2310 pref->add_offset (orng[0], orng[1]);
2311 else
2312 pref->add_max_offset ();
2313 return true;
2316 case VIEW_CONVERT_EXPR:
2317 ptr = TREE_OPERAND (ptr, 0);
2318 return compute_objsize_r (ptr, stmt, addr, ostype, pref, snlim, qry);
2320 case SSA_NAME:
2321 return handle_ssa_name (ptr, addr, ostype, pref, snlim, qry);
2323 default:
2324 break;
2327 /* Assume all other expressions point into an unknown object
2328 of the maximum valid size. */
2329 pref->ref = ptr;
2330 pref->base0 = false;
2331 pref->set_max_size_range ();
2332 if (TREE_CODE (ptr) == SSA_NAME)
2333 qry->put_ref (ptr, *pref);
2334 return true;
2337 /* A "public" wrapper around the above. Clients should use this overload
2338 instead. */
2340 tree
2341 compute_objsize (tree ptr, gimple *stmt, int ostype, access_ref *pref,
2342 pointer_query *ptr_qry)
2344 pointer_query qry;
2345 if (ptr_qry)
2346 ptr_qry->depth = 0;
2347 else
2348 ptr_qry = &qry;
2350 /* Clear and invalidate in case *PREF is being reused. */
2351 pref->offrng[0] = pref->offrng[1] = 0;
2352 pref->sizrng[0] = pref->sizrng[1] = -1;
2354 ssa_name_limit_t snlim;
2355 if (!compute_objsize_r (ptr, stmt, false, ostype, pref, snlim, ptr_qry))
2356 return NULL_TREE;
2358 offset_int maxsize = pref->size_remaining ();
2359 if (pref->base0 && pref->offrng[0] < 0 && pref->offrng[1] >= 0)
2360 pref->offrng[0] = 0;
2361 return wide_int_to_tree (sizetype, maxsize);
2364 /* Transitional wrapper. The function should be removed once callers
2365 transition to the pointer_query API. */
2367 tree
2368 compute_objsize (tree ptr, gimple *stmt, int ostype, access_ref *pref,
2369 range_query *rvals /* = NULL */)
2371 pointer_query qry;
2372 qry.rvals = rvals;
2373 return compute_objsize (ptr, stmt, ostype, pref, &qry);
2376 /* Legacy wrapper around the above. The function should be removed
2377 once callers transition to one of the two above. */
2379 tree
2380 compute_objsize (tree ptr, gimple *stmt, int ostype, tree *pdecl /* = NULL */,
2381 tree *poff /* = NULL */, range_query *rvals /* = NULL */)
2383 /* Set the initial offsets to zero and size to negative to indicate
2384 none has been computed yet. */
2385 access_ref ref;
2386 tree size = compute_objsize (ptr, stmt, ostype, &ref, rvals);
2387 if (!size || !ref.base0)
2388 return NULL_TREE;
2390 if (pdecl)
2391 *pdecl = ref.ref;
2393 if (poff)
2394 *poff = wide_int_to_tree (ptrdiff_type_node, ref.offrng[ref.offrng[0] < 0]);
2396 return size;
2399 /* Determine the offset *FLDOFF of the first byte of a struct member
2400 of TYPE (possibly recursively) into which the byte offset OFF points,
2401 starting after the field START_AFTER if it's non-null. On success,
2402 if nonnull, set *FLDOFF to the offset of the first byte, and return
2403 the field decl. If nonnull, set *NEXTOFF to the offset of the next
2404 field (which reflects any padding between the returned field and
2405 the next). Otherwise, if no such member can be found, return null. */
2407 tree
2408 field_at_offset (tree type, tree start_after, HOST_WIDE_INT off,
2409 HOST_WIDE_INT *fldoff /* = nullptr */,
2410 HOST_WIDE_INT *nextoff /* = nullptr */)
2412 tree first_fld = TYPE_FIELDS (type);
2414 HOST_WIDE_INT offbuf = 0, nextbuf = 0;
2415 if (!fldoff)
2416 fldoff = &offbuf;
2417 if (!nextoff)
2418 nextoff = &nextbuf;
2420 *nextoff = 0;
2422 /* The field to return. */
2423 tree last_fld = NULL_TREE;
2424 /* The next field to advance to. */
2425 tree next_fld = NULL_TREE;
2427 /* NEXT_FLD's cached offset. */
2428 HOST_WIDE_INT next_pos = -1;
2430 for (tree fld = first_fld; fld; fld = next_fld)
2432 next_fld = fld;
2434 /* Advance to the next relevant data member. */
2435 next_fld = TREE_CHAIN (next_fld);
2436 while (next_fld
2437 && (TREE_CODE (next_fld) != FIELD_DECL
2438 || DECL_ARTIFICIAL (next_fld)));
2440 if (TREE_CODE (fld) != FIELD_DECL || DECL_ARTIFICIAL (fld))
2441 continue;
2443 if (fld == start_after)
2444 continue;
2446 tree fldtype = TREE_TYPE (fld);
2447 /* The offset of FLD within its immediately enclosing structure. */
2448 HOST_WIDE_INT fldpos = next_pos < 0 ? int_byte_position (fld) : next_pos;
2450 /* If the size is not available the field is a flexible array
2451 member. Treat this case as success. */
2452 tree typesize = TYPE_SIZE_UNIT (fldtype);
2453 HOST_WIDE_INT fldsize = (tree_fits_uhwi_p (typesize)
2454 ? tree_to_uhwi (typesize)
2455 : off);
2457 /* If OFF is beyond the end of the current field continue. */
2458 HOST_WIDE_INT fldend = fldpos + fldsize;
2459 if (fldend < off)
2460 continue;
2462 if (next_fld)
2464 /* If OFF is equal to the offset of the next field continue
2465 to it and skip the array/struct business below. */
2466 next_pos = int_byte_position (next_fld);
2467 *nextoff = *fldoff + next_pos;
2468 if (*nextoff == off && TREE_CODE (type) != UNION_TYPE)
2469 continue;
2471 else
2472 *nextoff = HOST_WIDE_INT_MAX;
2474 /* OFF refers somewhere into the current field or just past its end,
2475 which could mean it refers to the next field. */
2476 if (TREE_CODE (fldtype) == ARRAY_TYPE)
2478 /* Will be set to the offset of the first byte of the array
2479 element (which may be an array) of FLDTYPE into which
2480 OFF - FLDPOS points (which may be past ELTOFF). */
2481 HOST_WIDE_INT eltoff = 0;
2482 if (tree ft = array_elt_at_offset (fldtype, off - fldpos, &eltoff))
2483 fldtype = ft;
2484 else
2485 continue;
2487 /* Advance the position to include the array element above.
2488 If OFF - FLPOS refers to a member of FLDTYPE, the member
2489 will be determined below. */
2490 fldpos += eltoff;
2493 *fldoff += fldpos;
2495 if (TREE_CODE (fldtype) == RECORD_TYPE)
2496 /* Drill down into the current field if it's a struct. */
2497 fld = field_at_offset (fldtype, start_after, off - fldpos,
2498 fldoff, nextoff);
2500 last_fld = fld;
2502 /* Unless the offset is just past the end of the field return it.
2503 Otherwise save it and return it only if the offset of the next
2504 next field is greater (i.e., there is padding between the two)
2505 or if there is no next field. */
2506 if (off < fldend)
2507 break;
2510 if (*nextoff == HOST_WIDE_INT_MAX && next_fld)
2511 *nextoff = next_pos;
2513 return last_fld;
2516 /* Determine the offset *ELTOFF of the first byte of the array element
2517 of array ARTYPE into which the byte offset OFF points. On success
2518 set *ELTOFF to the offset of the first byte and return type.
2519 Otherwise, if no such element can be found, return null. */
2521 tree
2522 array_elt_at_offset (tree artype, HOST_WIDE_INT off,
2523 HOST_WIDE_INT *eltoff /* = nullptr */,
2524 HOST_WIDE_INT *subar_size /* = nullptr */)
2526 gcc_assert (TREE_CODE (artype) == ARRAY_TYPE);
2528 HOST_WIDE_INT dummy;
2529 if (!eltoff)
2530 eltoff = &dummy;
2531 if (!subar_size)
2532 subar_size = &dummy;
2534 tree eltype = artype;
2535 while (TREE_CODE (TREE_TYPE (eltype)) == ARRAY_TYPE)
2536 eltype = TREE_TYPE (eltype);
2538 tree subartype = eltype;
2539 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (eltype))
2540 || TYPE_MODE (TREE_TYPE (eltype)) != TYPE_MODE (char_type_node))
2541 eltype = TREE_TYPE (eltype);
2543 *subar_size = int_size_in_bytes (subartype);
2545 if (eltype == artype)
2547 *eltoff = 0;
2548 return artype;
2551 HOST_WIDE_INT artype_size = int_size_in_bytes (artype);
2552 HOST_WIDE_INT eltype_size = int_size_in_bytes (eltype);
2554 if (off < artype_size)// * eltype_size)
2556 *eltoff = (off / eltype_size) * eltype_size;
2557 return TREE_CODE (eltype) == ARRAY_TYPE ? TREE_TYPE (eltype) : eltype;
2560 return NULL_TREE;
2563 /* Wrapper around build_array_type_nelts that makes sure the array
2564 can be created at all and handles zero sized arrays specially. */
2566 tree
2567 build_printable_array_type (tree eltype, unsigned HOST_WIDE_INT nelts)
2569 if (TYPE_SIZE_UNIT (eltype)
2570 && TREE_CODE (TYPE_SIZE_UNIT (eltype)) == INTEGER_CST
2571 && !integer_zerop (TYPE_SIZE_UNIT (eltype))
2572 && TYPE_ALIGN_UNIT (eltype) > 1
2573 && wi::zext (wi::to_wide (TYPE_SIZE_UNIT (eltype)),
2574 ffs_hwi (TYPE_ALIGN_UNIT (eltype)) - 1) != 0)
2575 eltype = TYPE_MAIN_VARIANT (eltype);
2577 /* Consider excessive NELTS an array of unknown bound. */
2578 tree idxtype = NULL_TREE;
2579 if (nelts < HOST_WIDE_INT_MAX)
2581 if (nelts)
2582 return build_array_type_nelts (eltype, nelts);
2583 idxtype = build_range_type (sizetype, size_zero_node, NULL_TREE);
2586 tree arrtype = build_array_type (eltype, idxtype);
2587 arrtype = build_distinct_type_copy (TYPE_MAIN_VARIANT (arrtype));
2588 TYPE_SIZE (arrtype) = bitsize_zero_node;
2589 TYPE_SIZE_UNIT (arrtype) = size_zero_node;
2590 return arrtype;