1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
40 with Itypes
; use Itypes
;
42 with Lib
.Xref
; use Lib
.Xref
;
43 with Namet
; use Namet
;
44 with Nmake
; use Nmake
;
45 with Nlists
; use Nlists
;
47 with Output
; use Output
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Aggr
; use Sem_Aggr
;
54 with Sem_Attr
; use Sem_Attr
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch4
; use Sem_Ch4
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Ch13
; use Sem_Ch13
;
60 with Sem_Dim
; use Sem_Dim
;
61 with Sem_Disp
; use Sem_Disp
;
62 with Sem_Dist
; use Sem_Dist
;
63 with Sem_Elim
; use Sem_Elim
;
64 with Sem_Elab
; use Sem_Elab
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Intr
; use Sem_Intr
;
67 with Sem_Util
; use Sem_Util
;
68 with Targparm
; use Targparm
;
69 with Sem_Type
; use Sem_Type
;
70 with Sem_Warn
; use Sem_Warn
;
71 with Sinfo
; use Sinfo
;
72 with Sinfo
.CN
; use Sinfo
.CN
;
73 with Snames
; use Snames
;
74 with Stand
; use Stand
;
75 with Stringt
; use Stringt
;
76 with Style
; use Style
;
77 with Tbuild
; use Tbuild
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
81 package body Sem_Res
is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 -- Second pass (top-down) type checking and overload resolution procedures
88 -- Typ is the type required by context. These procedures propagate the type
89 -- information recursively to the descendants of N. If the node is not
90 -- overloaded, its Etype is established in the first pass. If overloaded,
91 -- the Resolve routines set the correct type. For arith. operators, the
92 -- Etype is the base type of the context.
94 -- Note that Resolve_Attribute is separated off in Sem_Attr
96 function Bad_Unordered_Enumeration_Reference
98 T
: Entity_Id
) return Boolean;
99 -- Node N contains a potentially dubious reference to type T, either an
100 -- explicit comparison, or an explicit range. This function returns True
101 -- if the type T is an enumeration type for which No pragma Order has been
102 -- given, and the reference N is not in the same extended source unit as
103 -- the declaration of T.
105 procedure Check_Discriminant_Use
(N
: Node_Id
);
106 -- Enforce the restrictions on the use of discriminants when constraining
107 -- a component of a discriminated type (record or concurrent type).
109 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
110 -- Given a node for an operator associated with type T, check that
111 -- the operator is visible. Operators all of whose operands are
112 -- universal must be checked for visibility during resolution
113 -- because their type is not determinable based on their operands.
115 procedure Check_Fully_Declared_Prefix
118 -- Check that the type of the prefix of a dereference is not incomplete
120 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
121 -- Given a call node, N, which is known to occur immediately within the
122 -- subprogram being called, determines whether it is a detectable case of
123 -- an infinite recursion, and if so, outputs appropriate messages. Returns
124 -- True if an infinite recursion is detected, and False otherwise.
126 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
127 -- If the type of the object being initialized uses the secondary stack
128 -- directly or indirectly, create a transient scope for the call to the
129 -- init proc. This is because we do not create transient scopes for the
130 -- initialization of individual components within the init proc itself.
131 -- Could be optimized away perhaps?
133 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
134 -- N is the node for a logical operator. If the operator is predefined, and
135 -- the root type of the operands is Standard.Boolean, then a check is made
136 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
137 -- the style check for Style_Check_Boolean_And_Or.
139 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
153 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_Subprogram_Info
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
210 function Operator_Kind
212 Is_Binary
: Boolean) return Node_Kind
;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
238 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype
(N
: Node_Id
);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion
(N
: Node_Id
);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
271 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character
(C
: Node_Id
) is
285 if Nkind
(C
) = N_Character_Literal
then
286 Error_Msg_N
("ambiguous character literal", C
);
288 -- First the ones in Standard
290 Error_Msg_N
("\\possible interpretation: Character!", C
);
291 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version
>= Ada_2005
then
296 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
299 -- Now any other types that match
301 E
:= Current_Entity
(C
);
302 while Present
(E
) loop
303 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
307 end Ambiguous_Character
;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve
(N
: Node_Id
) is
317 end Analyze_And_Resolve
;
319 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
323 end Analyze_And_Resolve
;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
332 Scop
: constant Entity_Id
:= Current_Scope
;
335 if Suppress
= All_Checks
then
337 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
339 Scope_Suppress
.Suppress
:= (others => True);
340 Analyze_And_Resolve
(N
, Typ
);
341 Scope_Suppress
.Suppress
:= Sva
;
346 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
348 Scope_Suppress
.Suppress
(Suppress
) := True;
349 Analyze_And_Resolve
(N
, Typ
);
350 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
354 if Current_Scope
/= Scop
355 and then Scope_Is_Transient
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
363 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
366 end Analyze_And_Resolve
;
368 procedure Analyze_And_Resolve
372 Scop
: constant Entity_Id
:= Current_Scope
;
375 if Suppress
= All_Checks
then
377 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
379 Scope_Suppress
.Suppress
:= (others => True);
380 Analyze_And_Resolve
(N
);
381 Scope_Suppress
.Suppress
:= Sva
;
386 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
388 Scope_Suppress
.Suppress
(Suppress
) := True;
389 Analyze_And_Resolve
(N
);
390 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
394 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
395 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
398 end Analyze_And_Resolve
;
400 ----------------------------------------
401 -- Bad_Unordered_Enumeration_Reference --
402 ----------------------------------------
404 function Bad_Unordered_Enumeration_Reference
406 T
: Entity_Id
) return Boolean
409 return Is_Enumeration_Type
(T
)
410 and then Comes_From_Source
(N
)
411 and then Warn_On_Unordered_Enumeration_Type
412 and then not Has_Pragma_Ordered
(T
)
413 and then not In_Same_Extended_Unit
(N
, T
);
414 end Bad_Unordered_Enumeration_Reference
;
416 ----------------------------
417 -- Check_Discriminant_Use --
418 ----------------------------
420 procedure Check_Discriminant_Use
(N
: Node_Id
) is
421 PN
: constant Node_Id
:= Parent
(N
);
422 Disc
: constant Entity_Id
:= Entity
(N
);
427 -- Any use in a spec-expression is legal
429 if In_Spec_Expression
then
432 elsif Nkind
(PN
) = N_Range
then
434 -- Discriminant cannot be used to constrain a scalar type
438 if Nkind
(P
) = N_Range_Constraint
439 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
440 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
442 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
444 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
446 -- The following check catches the unusual case where a
447 -- discriminant appears within an index constraint that is part of
448 -- a larger expression within a constraint on a component, e.g. "C
449 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
450 -- of record components, and note that a similar check should also
451 -- apply in the case of discriminant constraints below. ???
453 -- Note that the check for N_Subtype_Declaration below is to
454 -- detect the valid use of discriminants in the constraints of a
455 -- subtype declaration when this subtype declaration appears
456 -- inside the scope of a record type (which is syntactically
457 -- illegal, but which may be created as part of derived type
458 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
461 if Ekind
(Current_Scope
) = E_Record_Type
462 and then Scope
(Disc
) = Current_Scope
464 (Nkind
(Parent
(P
)) = N_Subtype_Indication
466 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
467 N_Subtype_Declaration
)
468 and then Paren_Count
(N
) = 0)
471 ("discriminant must appear alone in component constraint", N
);
475 -- Detect a common error:
477 -- type R (D : Positive := 100) is record
478 -- Name : String (1 .. D);
481 -- The default value causes an object of type R to be allocated
482 -- with room for Positive'Last characters. The RM does not mandate
483 -- the allocation of the maximum size, but that is what GNAT does
484 -- so we should warn the programmer that there is a problem.
486 Check_Large
: declare
492 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
493 -- Return True if type T has a large enough range that any
494 -- array whose index type covered the whole range of the type
495 -- would likely raise Storage_Error.
497 ------------------------
498 -- Large_Storage_Type --
499 ------------------------
501 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
503 -- The type is considered large if its bounds are known at
504 -- compile time and if it requires at least as many bits as
505 -- a Positive to store the possible values.
507 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
508 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
510 Minimum_Size
(T
, Biased
=> True) >=
511 RM_Size
(Standard_Positive
);
512 end Large_Storage_Type
;
514 -- Start of processing for Check_Large
517 -- Check that the Disc has a large range
519 if not Large_Storage_Type
(Etype
(Disc
)) then
523 -- If the enclosing type is limited, we allocate only the
524 -- default value, not the maximum, and there is no need for
527 if Is_Limited_Type
(Scope
(Disc
)) then
531 -- Check that it is the high bound
533 if N
/= High_Bound
(PN
)
534 or else No
(Discriminant_Default_Value
(Disc
))
539 -- Check the array allows a large range at this bound. First
544 if Nkind
(SI
) /= N_Subtype_Indication
then
548 T
:= Entity
(Subtype_Mark
(SI
));
550 if not Is_Array_Type
(T
) then
554 -- Next, find the dimension
556 TB
:= First_Index
(T
);
557 CB
:= First
(Constraints
(P
));
559 and then Present
(TB
)
560 and then Present
(CB
)
571 -- Now, check the dimension has a large range
573 if not Large_Storage_Type
(Etype
(TB
)) then
577 -- Warn about the danger
580 ("??creation of & object may raise Storage_Error!",
589 -- Legal case is in index or discriminant constraint
591 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
592 N_Discriminant_Association
)
594 if Paren_Count
(N
) > 0 then
596 ("discriminant in constraint must appear alone", N
);
598 elsif Nkind
(N
) = N_Expanded_Name
599 and then Comes_From_Source
(N
)
602 ("discriminant must appear alone as a direct name", N
);
607 -- Otherwise, context is an expression. It should not be within (i.e. a
608 -- subexpression of) a constraint for a component.
613 while not Nkind_In
(P
, N_Component_Declaration
,
614 N_Subtype_Indication
,
622 -- If the discriminant is used in an expression that is a bound of a
623 -- scalar type, an Itype is created and the bounds are attached to
624 -- its range, not to the original subtype indication. Such use is of
625 -- course a double fault.
627 if (Nkind
(P
) = N_Subtype_Indication
628 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
629 N_Derived_Type_Definition
)
630 and then D
= Constraint
(P
))
632 -- The constraint itself may be given by a subtype indication,
633 -- rather than by a more common discrete range.
635 or else (Nkind
(P
) = N_Subtype_Indication
637 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
638 or else Nkind
(P
) = N_Entry_Declaration
639 or else Nkind
(D
) = N_Defining_Identifier
642 ("discriminant in constraint must appear alone", N
);
645 end Check_Discriminant_Use
;
647 --------------------------------
648 -- Check_For_Visible_Operator --
649 --------------------------------
651 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
653 if Is_Invisible_Operator
(N
, T
) then
654 Error_Msg_NE
-- CODEFIX
655 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
656 Error_Msg_N
-- CODEFIX
657 ("use clause would make operation legal!", N
);
659 end Check_For_Visible_Operator
;
661 ----------------------------------
662 -- Check_Fully_Declared_Prefix --
663 ----------------------------------
665 procedure Check_Fully_Declared_Prefix
670 -- Check that the designated type of the prefix of a dereference is
671 -- not an incomplete type. This cannot be done unconditionally, because
672 -- dereferences of private types are legal in default expressions. This
673 -- case is taken care of in Check_Fully_Declared, called below. There
674 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
676 -- This consideration also applies to similar checks for allocators,
677 -- qualified expressions, and type conversions.
679 -- An additional exception concerns other per-object expressions that
680 -- are not directly related to component declarations, in particular
681 -- representation pragmas for tasks. These will be per-object
682 -- expressions if they depend on discriminants or some global entity.
683 -- If the task has access discriminants, the designated type may be
684 -- incomplete at the point the expression is resolved. This resolution
685 -- takes place within the body of the initialization procedure, where
686 -- the discriminant is replaced by its discriminal.
688 if Is_Entity_Name
(Pref
)
689 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
693 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
694 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
695 -- Analyze_Object_Renaming, and Freeze_Entity.
697 elsif Ada_Version
>= Ada_2005
698 and then Is_Entity_Name
(Pref
)
699 and then Is_Access_Type
(Etype
(Pref
))
700 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
702 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
706 Check_Fully_Declared
(Typ
, Parent
(Pref
));
708 end Check_Fully_Declared_Prefix
;
710 ------------------------------
711 -- Check_Infinite_Recursion --
712 ------------------------------
714 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
718 function Same_Argument_List
return Boolean;
719 -- Check whether list of actuals is identical to list of formals of
720 -- called function (which is also the enclosing scope).
722 ------------------------
723 -- Same_Argument_List --
724 ------------------------
726 function Same_Argument_List
return Boolean is
732 if not Is_Entity_Name
(Name
(N
)) then
735 Subp
:= Entity
(Name
(N
));
738 F
:= First_Formal
(Subp
);
739 A
:= First_Actual
(N
);
740 while Present
(F
) and then Present
(A
) loop
741 if not Is_Entity_Name
(A
)
742 or else Entity
(A
) /= F
752 end Same_Argument_List
;
754 -- Start of processing for Check_Infinite_Recursion
757 -- Special case, if this is a procedure call and is a call to the
758 -- current procedure with the same argument list, then this is for
759 -- sure an infinite recursion and we insert a call to raise SE.
761 if Is_List_Member
(N
)
762 and then List_Length
(List_Containing
(N
)) = 1
763 and then Same_Argument_List
766 P
: constant Node_Id
:= Parent
(N
);
768 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
769 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
770 and then Is_Empty_List
(Declarations
(Parent
(P
)))
772 Error_Msg_N
("!??infinite recursion", N
);
773 Error_Msg_N
("\!??Storage_Error will be raised at run time", N
);
775 Make_Raise_Storage_Error
(Sloc
(N
),
776 Reason
=> SE_Infinite_Recursion
));
782 -- If not that special case, search up tree, quitting if we reach a
783 -- construct (e.g. a conditional) that tells us that this is not a
784 -- case for an infinite recursion warning.
790 -- If no parent, then we were not inside a subprogram, this can for
791 -- example happen when processing certain pragmas in a spec. Just
792 -- return False in this case.
798 -- Done if we get to subprogram body, this is definitely an infinite
799 -- recursion case if we did not find anything to stop us.
801 exit when Nkind
(P
) = N_Subprogram_Body
;
803 -- If appearing in conditional, result is false
805 if Nkind_In
(P
, N_Or_Else
,
814 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
815 and then C
/= First
(Statements
(P
))
817 -- If the call is the expression of a return statement and the
818 -- actuals are identical to the formals, it's worth a warning.
819 -- However, we skip this if there is an immediately preceding
820 -- raise statement, since the call is never executed.
822 -- Furthermore, this corresponds to a common idiom:
824 -- function F (L : Thing) return Boolean is
826 -- raise Program_Error;
830 -- for generating a stub function
832 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
833 and then Same_Argument_List
835 exit when not Is_List_Member
(Parent
(N
));
837 -- OK, return statement is in a statement list, look for raise
843 -- Skip past N_Freeze_Entity nodes generated by expansion
845 Nod
:= Prev
(Parent
(N
));
847 and then Nkind
(Nod
) = N_Freeze_Entity
852 -- If no raise statement, give warning. We look at the
853 -- original node, because in the case of "raise ... with
854 -- ...", the node has been transformed into a call.
856 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
858 (Nkind
(Nod
) not in N_Raise_xxx_Error
859 or else Present
(Condition
(Nod
)));
870 Error_Msg_N
("!??possible infinite recursion", N
);
871 Error_Msg_N
("\!??Storage_Error may be raised at run time", N
);
874 end Check_Infinite_Recursion
;
876 -------------------------------
877 -- Check_Initialization_Call --
878 -------------------------------
880 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
881 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
883 function Uses_SS
(T
: Entity_Id
) return Boolean;
884 -- Check whether the creation of an object of the type will involve
885 -- use of the secondary stack. If T is a record type, this is true
886 -- if the expression for some component uses the secondary stack, e.g.
887 -- through a call to a function that returns an unconstrained value.
888 -- False if T is controlled, because cleanups occur elsewhere.
894 function Uses_SS
(T
: Entity_Id
) return Boolean is
897 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
900 -- Normally we want to use the underlying type, but if it's not set
901 -- then continue with T.
903 if not Present
(Full_Type
) then
907 if Is_Controlled
(Full_Type
) then
910 elsif Is_Array_Type
(Full_Type
) then
911 return Uses_SS
(Component_Type
(Full_Type
));
913 elsif Is_Record_Type
(Full_Type
) then
914 Comp
:= First_Component
(Full_Type
);
915 while Present
(Comp
) loop
916 if Ekind
(Comp
) = E_Component
917 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
919 -- The expression for a dynamic component may be rewritten
920 -- as a dereference, so retrieve original node.
922 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
924 -- Return True if the expression is a call to a function
925 -- (including an attribute function such as Image, or a
926 -- user-defined operator) with a result that requires a
929 if (Nkind
(Expr
) = N_Function_Call
930 or else Nkind
(Expr
) in N_Op
931 or else (Nkind
(Expr
) = N_Attribute_Reference
932 and then Present
(Expressions
(Expr
))))
933 and then Requires_Transient_Scope
(Etype
(Expr
))
937 elsif Uses_SS
(Etype
(Comp
)) then
942 Next_Component
(Comp
);
952 -- Start of processing for Check_Initialization_Call
955 -- Establish a transient scope if the type needs it
957 if Uses_SS
(Typ
) then
958 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
960 end Check_Initialization_Call
;
962 ---------------------------------------
963 -- Check_No_Direct_Boolean_Operators --
964 ---------------------------------------
966 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
968 if Scope
(Entity
(N
)) = Standard_Standard
969 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
971 -- Restriction only applies to original source code
973 if Comes_From_Source
(N
) then
974 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
979 Check_Boolean_Operator
(N
);
981 end Check_No_Direct_Boolean_Operators
;
983 ------------------------------
984 -- Check_Parameterless_Call --
985 ------------------------------
987 procedure Check_Parameterless_Call
(N
: Node_Id
) is
990 function Prefix_Is_Access_Subp
return Boolean;
991 -- If the prefix is of an access_to_subprogram type, the node must be
992 -- rewritten as a call. Ditto if the prefix is overloaded and all its
993 -- interpretations are access to subprograms.
995 ---------------------------
996 -- Prefix_Is_Access_Subp --
997 ---------------------------
999 function Prefix_Is_Access_Subp
return Boolean is
1004 -- If the context is an attribute reference that can apply to
1005 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1007 if Nkind
(Parent
(N
)) = N_Attribute_Reference
1008 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1015 if not Is_Overloaded
(N
) then
1017 Ekind
(Etype
(N
)) = E_Subprogram_Type
1018 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1020 Get_First_Interp
(N
, I
, It
);
1021 while Present
(It
.Typ
) loop
1022 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1023 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1028 Get_Next_Interp
(I
, It
);
1033 end Prefix_Is_Access_Subp
;
1035 -- Start of processing for Check_Parameterless_Call
1038 -- Defend against junk stuff if errors already detected
1040 if Total_Errors_Detected
/= 0 then
1041 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1043 elsif Nkind
(N
) in N_Has_Chars
1044 and then Chars
(N
) in Error_Name_Or_No_Name
1052 -- If the context expects a value, and the name is a procedure, this is
1053 -- most likely a missing 'Access. Don't try to resolve the parameterless
1054 -- call, error will be caught when the outer call is analyzed.
1056 if Is_Entity_Name
(N
)
1057 and then Ekind
(Entity
(N
)) = E_Procedure
1058 and then not Is_Overloaded
(N
)
1060 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1062 N_Procedure_Call_Statement
)
1067 -- Rewrite as call if overloadable entity that is (or could be, in the
1068 -- overloaded case) a function call. If we know for sure that the entity
1069 -- is an enumeration literal, we do not rewrite it.
1071 -- If the entity is the name of an operator, it cannot be a call because
1072 -- operators cannot have default parameters. In this case, this must be
1073 -- a string whose contents coincide with an operator name. Set the kind
1074 -- of the node appropriately.
1076 if (Is_Entity_Name
(N
)
1077 and then Nkind
(N
) /= N_Operator_Symbol
1078 and then Is_Overloadable
(Entity
(N
))
1079 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1080 or else Is_Overloaded
(N
)))
1082 -- Rewrite as call if it is an explicit dereference of an expression of
1083 -- a subprogram access type, and the subprogram type is not that of a
1084 -- procedure or entry.
1087 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1089 -- Rewrite as call if it is a selected component which is a function,
1090 -- this is the case of a call to a protected function (which may be
1091 -- overloaded with other protected operations).
1094 (Nkind
(N
) = N_Selected_Component
1095 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1097 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1099 and then Is_Overloaded
(Selector_Name
(N
)))))
1101 -- If one of the above three conditions is met, rewrite as call. Apply
1102 -- the rewriting only once.
1105 if Nkind
(Parent
(N
)) /= N_Function_Call
1106 or else N
/= Name
(Parent
(N
))
1109 -- This may be a prefixed call that was not fully analyzed, e.g.
1110 -- an actual in an instance.
1112 if Ada_Version
>= Ada_2005
1113 and then Nkind
(N
) = N_Selected_Component
1114 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1116 Analyze_Selected_Component
(N
);
1118 if Nkind
(N
) /= N_Selected_Component
then
1123 Nam
:= New_Copy
(N
);
1125 -- If overloaded, overload set belongs to new copy
1127 Save_Interps
(N
, Nam
);
1129 -- Change node to parameterless function call (note that the
1130 -- Parameter_Associations associations field is left set to Empty,
1131 -- its normal default value since there are no parameters)
1133 Change_Node
(N
, N_Function_Call
);
1135 Set_Sloc
(N
, Sloc
(Nam
));
1139 elsif Nkind
(N
) = N_Parameter_Association
then
1140 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1142 elsif Nkind
(N
) = N_Operator_Symbol
then
1143 Change_Operator_Symbol_To_String_Literal
(N
);
1144 Set_Is_Overloaded
(N
, False);
1145 Set_Etype
(N
, Any_String
);
1147 end Check_Parameterless_Call
;
1149 -----------------------------
1150 -- Is_Definite_Access_Type --
1151 -----------------------------
1153 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1154 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1156 return Ekind
(Btyp
) = E_Access_Type
1157 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1158 and then Comes_From_Source
(Btyp
));
1159 end Is_Definite_Access_Type
;
1161 ----------------------
1162 -- Is_Predefined_Op --
1163 ----------------------
1165 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1167 -- Predefined operators are intrinsic subprograms
1169 if not Is_Intrinsic_Subprogram
(Nam
) then
1173 -- A call to a back-end builtin is never a predefined operator
1175 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1179 return not Is_Generic_Instance
(Nam
)
1180 and then Chars
(Nam
) in Any_Operator_Name
1181 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1182 end Is_Predefined_Op
;
1184 -----------------------------
1185 -- Make_Call_Into_Operator --
1186 -----------------------------
1188 procedure Make_Call_Into_Operator
1193 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1194 Act1
: Node_Id
:= First_Actual
(N
);
1195 Act2
: Node_Id
:= Next_Actual
(Act1
);
1196 Error
: Boolean := False;
1197 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1198 Is_Binary
: constant Boolean := Present
(Act2
);
1200 Opnd_Type
: Entity_Id
;
1201 Orig_Type
: Entity_Id
:= Empty
;
1204 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1206 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1207 -- If the operand is not universal, and the operator is given by an
1208 -- expanded name, verify that the operand has an interpretation with a
1209 -- type defined in the given scope of the operator.
1211 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1212 -- Find a type of the given class in package Pack that contains the
1215 ---------------------------
1216 -- Operand_Type_In_Scope --
1217 ---------------------------
1219 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1220 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1225 if not Is_Overloaded
(Nod
) then
1226 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1229 Get_First_Interp
(Nod
, I
, It
);
1230 while Present
(It
.Typ
) loop
1231 if Scope
(Base_Type
(It
.Typ
)) = S
then
1235 Get_Next_Interp
(I
, It
);
1240 end Operand_Type_In_Scope
;
1246 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1249 function In_Decl
return Boolean;
1250 -- Verify that node is not part of the type declaration for the
1251 -- candidate type, which would otherwise be invisible.
1257 function In_Decl
return Boolean is
1258 Decl_Node
: constant Node_Id
:= Parent
(E
);
1264 if Etype
(E
) = Any_Type
then
1267 elsif No
(Decl_Node
) then
1272 and then Nkind
(N2
) /= N_Compilation_Unit
1274 if N2
= Decl_Node
then
1285 -- Start of processing for Type_In_P
1288 -- If the context type is declared in the prefix package, this is the
1289 -- desired base type.
1291 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1292 return Base_Type
(Typ
);
1295 E
:= First_Entity
(Pack
);
1296 while Present
(E
) loop
1298 and then not In_Decl
1310 -- Start of processing for Make_Call_Into_Operator
1313 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1318 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1319 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1320 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1321 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1322 Act1
:= Left_Opnd
(Op_Node
);
1323 Act2
:= Right_Opnd
(Op_Node
);
1328 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1329 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1330 Act1
:= Right_Opnd
(Op_Node
);
1333 -- If the operator is denoted by an expanded name, and the prefix is
1334 -- not Standard, but the operator is a predefined one whose scope is
1335 -- Standard, then this is an implicit_operator, inserted as an
1336 -- interpretation by the procedure of the same name. This procedure
1337 -- overestimates the presence of implicit operators, because it does
1338 -- not examine the type of the operands. Verify now that the operand
1339 -- type appears in the given scope. If right operand is universal,
1340 -- check the other operand. In the case of concatenation, either
1341 -- argument can be the component type, so check the type of the result.
1342 -- If both arguments are literals, look for a type of the right kind
1343 -- defined in the given scope. This elaborate nonsense is brought to
1344 -- you courtesy of b33302a. The type itself must be frozen, so we must
1345 -- find the type of the proper class in the given scope.
1347 -- A final wrinkle is the multiplication operator for fixed point types,
1348 -- which is defined in Standard only, and not in the scope of the
1349 -- fixed point type itself.
1351 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1352 Pack
:= Entity
(Prefix
(Name
(N
)));
1354 -- If this is a package renaming, get renamed entity, which will be
1355 -- the scope of the operands if operaton is type-correct.
1357 if Present
(Renamed_Entity
(Pack
)) then
1358 Pack
:= Renamed_Entity
(Pack
);
1361 -- If the entity being called is defined in the given package, it is
1362 -- a renaming of a predefined operator, and known to be legal.
1364 if Scope
(Entity
(Name
(N
))) = Pack
1365 and then Pack
/= Standard_Standard
1369 -- Visibility does not need to be checked in an instance: if the
1370 -- operator was not visible in the generic it has been diagnosed
1371 -- already, else there is an implicit copy of it in the instance.
1373 elsif In_Instance
then
1376 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1377 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1378 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1380 if Pack
/= Standard_Standard
then
1384 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1387 elsif Ada_Version
>= Ada_2005
1388 and then Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1389 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1394 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1396 if Op_Name
= Name_Op_Concat
then
1397 Opnd_Type
:= Base_Type
(Typ
);
1399 elsif (Scope
(Opnd_Type
) = Standard_Standard
1401 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1403 and then not Comes_From_Source
(Opnd_Type
))
1405 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1408 if Scope
(Opnd_Type
) = Standard_Standard
then
1410 -- Verify that the scope contains a type that corresponds to
1411 -- the given literal. Optimize the case where Pack is Standard.
1413 if Pack
/= Standard_Standard
then
1415 if Opnd_Type
= Universal_Integer
then
1416 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1418 elsif Opnd_Type
= Universal_Real
then
1419 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1421 elsif Opnd_Type
= Any_String
then
1422 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1424 elsif Opnd_Type
= Any_Access
then
1425 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1427 elsif Opnd_Type
= Any_Composite
then
1428 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1430 if Present
(Orig_Type
) then
1431 if Has_Private_Component
(Orig_Type
) then
1434 Set_Etype
(Act1
, Orig_Type
);
1437 Set_Etype
(Act2
, Orig_Type
);
1446 Error
:= No
(Orig_Type
);
1449 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1450 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1454 -- If the type is defined elsewhere, and the operator is not
1455 -- defined in the given scope (by a renaming declaration, e.g.)
1456 -- then this is an error as well. If an extension of System is
1457 -- present, and the type may be defined there, Pack must be
1460 elsif Scope
(Opnd_Type
) /= Pack
1461 and then Scope
(Op_Id
) /= Pack
1462 and then (No
(System_Aux_Id
)
1463 or else Scope
(Opnd_Type
) /= System_Aux_Id
1464 or else Pack
/= Scope
(System_Aux_Id
))
1466 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1469 Error
:= not Operand_Type_In_Scope
(Pack
);
1472 elsif Pack
= Standard_Standard
1473 and then not Operand_Type_In_Scope
(Standard_Standard
)
1480 Error_Msg_Node_2
:= Pack
;
1482 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1483 Set_Etype
(N
, Any_Type
);
1486 -- Detect a mismatch between the context type and the result type
1487 -- in the named package, which is otherwise not detected if the
1488 -- operands are universal. Check is only needed if source entity is
1489 -- an operator, not a function that renames an operator.
1491 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1492 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1493 and then Is_Numeric_Type
(Typ
)
1494 and then not Is_Universal_Numeric_Type
(Typ
)
1495 and then Scope
(Base_Type
(Typ
)) /= Pack
1496 and then not In_Instance
1498 if Is_Fixed_Point_Type
(Typ
)
1499 and then Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1501 -- Already checked above
1505 -- Operator may be defined in an extension of System
1507 elsif Present
(System_Aux_Id
)
1508 and then Scope
(Opnd_Type
) = System_Aux_Id
1513 -- Could we use Wrong_Type here??? (this would require setting
1514 -- Etype (N) to the actual type found where Typ was expected).
1516 Error_Msg_NE
("expect }", N
, Typ
);
1521 Set_Chars
(Op_Node
, Op_Name
);
1523 if not Is_Private_Type
(Etype
(N
)) then
1524 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1526 Set_Etype
(Op_Node
, Etype
(N
));
1529 -- If this is a call to a function that renames a predefined equality,
1530 -- the renaming declaration provides a type that must be used to
1531 -- resolve the operands. This must be done now because resolution of
1532 -- the equality node will not resolve any remaining ambiguity, and it
1533 -- assumes that the first operand is not overloaded.
1535 if Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1536 and then Ekind
(Func
) = E_Function
1537 and then Is_Overloaded
(Act1
)
1539 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1540 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1543 Set_Entity
(Op_Node
, Op_Id
);
1544 Generate_Reference
(Op_Id
, N
, ' ');
1546 -- Do rewrite setting Comes_From_Source on the result if the original
1547 -- call came from source. Although it is not strictly the case that the
1548 -- operator as such comes from the source, logically it corresponds
1549 -- exactly to the function call in the source, so it should be marked
1550 -- this way (e.g. to make sure that validity checks work fine).
1553 CS
: constant Boolean := Comes_From_Source
(N
);
1555 Rewrite
(N
, Op_Node
);
1556 Set_Comes_From_Source
(N
, CS
);
1559 -- If this is an arithmetic operator and the result type is private,
1560 -- the operands and the result must be wrapped in conversion to
1561 -- expose the underlying numeric type and expand the proper checks,
1562 -- e.g. on division.
1564 if Is_Private_Type
(Typ
) then
1566 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1567 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
1568 Resolve_Intrinsic_Operator
(N
, Typ
);
1570 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
1571 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1580 -- If in ASIS_Mode, propagate operand types to original actuals of
1581 -- function call, which would otherwise not be fully resolved. If
1582 -- the call has already been constant-folded, nothing to do.
1584 if ASIS_Mode
and then Nkind
(N
) in N_Op
then
1586 Rewrite
(First
(Parameter_Associations
(Original_Node
(N
))),
1587 New_Copy_Tree
(Left_Opnd
(N
)));
1588 Rewrite
(Next
(First
(Parameter_Associations
(Original_Node
(N
)))),
1589 New_Copy_Tree
(Right_Opnd
(N
)));
1591 Rewrite
(First
(Parameter_Associations
(Original_Node
(N
))),
1592 New_Copy_Tree
(Right_Opnd
(N
)));
1595 Set_Parent
(Original_Node
(N
), Parent
(N
));
1597 end Make_Call_Into_Operator
;
1603 function Operator_Kind
1605 Is_Binary
: Boolean) return Node_Kind
1610 -- Use CASE statement or array???
1613 if Op_Name
= Name_Op_And
then
1615 elsif Op_Name
= Name_Op_Or
then
1617 elsif Op_Name
= Name_Op_Xor
then
1619 elsif Op_Name
= Name_Op_Eq
then
1621 elsif Op_Name
= Name_Op_Ne
then
1623 elsif Op_Name
= Name_Op_Lt
then
1625 elsif Op_Name
= Name_Op_Le
then
1627 elsif Op_Name
= Name_Op_Gt
then
1629 elsif Op_Name
= Name_Op_Ge
then
1631 elsif Op_Name
= Name_Op_Add
then
1633 elsif Op_Name
= Name_Op_Subtract
then
1634 Kind
:= N_Op_Subtract
;
1635 elsif Op_Name
= Name_Op_Concat
then
1636 Kind
:= N_Op_Concat
;
1637 elsif Op_Name
= Name_Op_Multiply
then
1638 Kind
:= N_Op_Multiply
;
1639 elsif Op_Name
= Name_Op_Divide
then
1640 Kind
:= N_Op_Divide
;
1641 elsif Op_Name
= Name_Op_Mod
then
1643 elsif Op_Name
= Name_Op_Rem
then
1645 elsif Op_Name
= Name_Op_Expon
then
1648 raise Program_Error
;
1654 if Op_Name
= Name_Op_Add
then
1656 elsif Op_Name
= Name_Op_Subtract
then
1658 elsif Op_Name
= Name_Op_Abs
then
1660 elsif Op_Name
= Name_Op_Not
then
1663 raise Program_Error
;
1670 ----------------------------
1671 -- Preanalyze_And_Resolve --
1672 ----------------------------
1674 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1675 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1678 Full_Analysis
:= False;
1679 Expander_Mode_Save_And_Set
(False);
1681 -- Normally, we suppress all checks for this preanalysis. There is no
1682 -- point in processing them now, since they will be applied properly
1683 -- and in the proper location when the default expressions reanalyzed
1684 -- and reexpanded later on. We will also have more information at that
1685 -- point for possible suppression of individual checks.
1687 -- However, in SPARK mode, most expansion is suppressed, and this
1688 -- later reanalysis and reexpansion may not occur. SPARK mode does
1689 -- require the setting of checking flags for proof purposes, so we
1690 -- do the SPARK preanalysis without suppressing checks.
1692 -- This special handling for SPARK mode is required for example in the
1693 -- case of Ada 2012 constructs such as quantified expressions, which are
1694 -- expanded in two separate steps.
1697 Analyze_And_Resolve
(N
, T
);
1699 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1702 Expander_Mode_Restore
;
1703 Full_Analysis
:= Save_Full_Analysis
;
1704 end Preanalyze_And_Resolve
;
1706 -- Version without context type
1708 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1709 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1712 Full_Analysis
:= False;
1713 Expander_Mode_Save_And_Set
(False);
1716 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1718 Expander_Mode_Restore
;
1719 Full_Analysis
:= Save_Full_Analysis
;
1720 end Preanalyze_And_Resolve
;
1722 ----------------------------------
1723 -- Replace_Actual_Discriminants --
1724 ----------------------------------
1726 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1727 Loc
: constant Source_Ptr
:= Sloc
(N
);
1728 Tsk
: Node_Id
:= Empty
;
1730 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1731 -- Comment needed???
1737 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1741 if Nkind
(Nod
) = N_Identifier
then
1742 Ent
:= Entity
(Nod
);
1745 and then Ekind
(Ent
) = E_Discriminant
1748 Make_Selected_Component
(Loc
,
1749 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1750 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1752 Set_Etype
(Nod
, Etype
(Ent
));
1760 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1762 -- Start of processing for Replace_Actual_Discriminants
1765 if not Full_Expander_Active
then
1769 if Nkind
(Name
(N
)) = N_Selected_Component
then
1770 Tsk
:= Prefix
(Name
(N
));
1772 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1773 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1779 Replace_Discrs
(Default
);
1781 end Replace_Actual_Discriminants
;
1787 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1788 Ambiguous
: Boolean := False;
1789 Ctx_Type
: Entity_Id
:= Typ
;
1790 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1791 Err_Type
: Entity_Id
:= Empty
;
1792 Found
: Boolean := False;
1795 I1
: Interp_Index
:= 0; -- prevent junk warning
1798 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1800 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1801 -- Determine whether a node comes from a predefined library unit or
1804 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1805 -- Try and fix up a literal so that it matches its expected type. New
1806 -- literals are manufactured if necessary to avoid cascaded errors.
1808 function Proper_Current_Scope
return Entity_Id
;
1809 -- Return the current scope. Skip loop scopes created for the purpose of
1810 -- quantified expression analysis since those do not appear in the tree.
1812 procedure Report_Ambiguous_Argument
;
1813 -- Additional diagnostics when an ambiguous call has an ambiguous
1814 -- argument (typically a controlling actual).
1816 procedure Resolution_Failed
;
1817 -- Called when attempt at resolving current expression fails
1819 ------------------------------------
1820 -- Comes_From_Predefined_Lib_Unit --
1821 -------------------------------------
1823 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1826 Sloc
(Nod
) = Standard_Location
1827 or else Is_Predefined_File_Name
1828 (Unit_File_Name
(Get_Source_Unit
(Sloc
(Nod
))));
1829 end Comes_From_Predefined_Lib_Unit
;
1831 --------------------
1832 -- Patch_Up_Value --
1833 --------------------
1835 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1837 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1839 Make_Real_Literal
(Sloc
(N
),
1840 Realval
=> UR_From_Uint
(Intval
(N
))));
1841 Set_Etype
(N
, Universal_Real
);
1842 Set_Is_Static_Expression
(N
);
1844 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1846 Make_Integer_Literal
(Sloc
(N
),
1847 Intval
=> UR_To_Uint
(Realval
(N
))));
1848 Set_Etype
(N
, Universal_Integer
);
1849 Set_Is_Static_Expression
(N
);
1851 elsif Nkind
(N
) = N_String_Literal
1852 and then Is_Character_Type
(Typ
)
1854 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1856 Make_Character_Literal
(Sloc
(N
),
1858 Char_Literal_Value
=>
1859 UI_From_Int
(Character'Pos ('A'))));
1860 Set_Etype
(N
, Any_Character
);
1861 Set_Is_Static_Expression
(N
);
1863 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1865 Make_String_Literal
(Sloc
(N
),
1866 Strval
=> End_String
));
1868 elsif Nkind
(N
) = N_Range
then
1869 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1870 Patch_Up_Value
(High_Bound
(N
), Typ
);
1874 --------------------------
1875 -- Proper_Current_Scope --
1876 --------------------------
1878 function Proper_Current_Scope
return Entity_Id
is
1879 S
: Entity_Id
:= Current_Scope
;
1882 while Present
(S
) loop
1884 -- Skip a loop scope created for quantified expression analysis
1886 if Ekind
(S
) = E_Loop
1887 and then Nkind
(Parent
(S
)) = N_Quantified_Expression
1896 end Proper_Current_Scope
;
1898 -------------------------------
1899 -- Report_Ambiguous_Argument --
1900 -------------------------------
1902 procedure Report_Ambiguous_Argument
is
1903 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1908 if Nkind
(Arg
) = N_Function_Call
1909 and then Is_Entity_Name
(Name
(Arg
))
1910 and then Is_Overloaded
(Name
(Arg
))
1912 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1914 -- Could use comments on what is going on here???
1916 Get_First_Interp
(Name
(Arg
), I
, It
);
1917 while Present
(It
.Nam
) loop
1918 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1920 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1921 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1923 Error_Msg_N
("interpretation #!", Arg
);
1926 Get_Next_Interp
(I
, It
);
1929 end Report_Ambiguous_Argument
;
1931 -----------------------
1932 -- Resolution_Failed --
1933 -----------------------
1935 procedure Resolution_Failed
is
1937 Patch_Up_Value
(N
, Typ
);
1939 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
1940 Set_Is_Overloaded
(N
, False);
1942 -- The caller will return without calling the expander, so we need
1943 -- to set the analyzed flag. Note that it is fine to set Analyzed
1944 -- to True even if we are in the middle of a shallow analysis,
1945 -- (see the spec of sem for more details) since this is an error
1946 -- situation anyway, and there is no point in repeating the
1947 -- analysis later (indeed it won't work to repeat it later, since
1948 -- we haven't got a clear resolution of which entity is being
1951 Set_Analyzed
(N
, True);
1953 end Resolution_Failed
;
1955 -- Start of processing for Resolve
1962 -- Access attribute on remote subprogram cannot be used for a non-remote
1963 -- access-to-subprogram type.
1965 if Nkind
(N
) = N_Attribute_Reference
1966 and then Nam_In
(Attribute_Name
(N
), Name_Access
,
1967 Name_Unrestricted_Access
,
1968 Name_Unchecked_Access
)
1969 and then Comes_From_Source
(N
)
1970 and then Is_Entity_Name
(Prefix
(N
))
1971 and then Is_Subprogram
(Entity
(Prefix
(N
)))
1972 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
1973 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
1976 ("prefix must statically denote a non-remote subprogram", N
);
1979 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
1981 -- If the context is a Remote_Access_To_Subprogram, access attributes
1982 -- must be resolved with the corresponding fat pointer. There is no need
1983 -- to check for the attribute name since the return type of an
1984 -- attribute is never a remote type.
1986 if Nkind
(N
) = N_Attribute_Reference
1987 and then Comes_From_Source
(N
)
1988 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
1991 Attr
: constant Attribute_Id
:=
1992 Get_Attribute_Id
(Attribute_Name
(N
));
1993 Pref
: constant Node_Id
:= Prefix
(N
);
1996 Is_Remote
: Boolean := True;
1999 -- Check that Typ is a remote access-to-subprogram type
2001 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
2003 -- Prefix (N) must statically denote a remote subprogram
2004 -- declared in a package specification.
2006 if Attr
= Attribute_Access
or else
2007 Attr
= Attribute_Unchecked_Access
or else
2008 Attr
= Attribute_Unrestricted_Access
2010 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2012 if Nkind
(Decl
) = N_Subprogram_Body
then
2013 Spec
:= Corresponding_Spec
(Decl
);
2015 if not No
(Spec
) then
2016 Decl
:= Unit_Declaration_Node
(Spec
);
2020 Spec
:= Parent
(Decl
);
2022 if not Is_Entity_Name
(Prefix
(N
))
2023 or else Nkind
(Spec
) /= N_Package_Specification
2025 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2029 ("prefix must statically denote a remote subprogram ",
2033 -- If we are generating code in distributed mode, perform
2034 -- semantic checks against corresponding remote entities.
2036 if Full_Expander_Active
2037 and then Get_PCS_Name
/= Name_No_DSA
2039 Check_Subtype_Conformant
2040 (New_Id
=> Entity
(Prefix
(N
)),
2041 Old_Id
=> Designated_Type
2042 (Corresponding_Remote_Type
(Typ
)),
2046 Process_Remote_AST_Attribute
(N
, Typ
);
2054 Debug_A_Entry
("resolving ", N
);
2056 if Debug_Flag_V
then
2057 Write_Overloads
(N
);
2060 if Comes_From_Source
(N
) then
2061 if Is_Fixed_Point_Type
(Typ
) then
2062 Check_Restriction
(No_Fixed_Point
, N
);
2064 elsif Is_Floating_Point_Type
(Typ
)
2065 and then Typ
/= Universal_Real
2066 and then Typ
/= Any_Real
2068 Check_Restriction
(No_Floating_Point
, N
);
2072 -- Return if already analyzed
2074 if Analyzed
(N
) then
2075 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2076 Analyze_Dimension
(N
);
2079 -- A Raise_Expression takes its type from context. The Etype was set
2080 -- to Any_Type, reflecting the fact that the expression itself does
2081 -- not specify any possible interpretation. So we set the type to the
2082 -- resolution type here and now. We need to do this before Resolve sees
2083 -- the Any_Type value.
2085 elsif Nkind
(N
) = N_Raise_Expression
then
2088 -- Any other case of Any_Type as the Etype value means that we had
2089 -- a previous error.
2091 elsif Etype
(N
) = Any_Type
then
2092 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2096 Check_Parameterless_Call
(N
);
2098 -- The resolution of an Expression_With_Actions is determined by
2101 if Nkind
(N
) = N_Expression_With_Actions
then
2102 Resolve
(Expression
(N
), Typ
);
2105 Expr_Type
:= Etype
(Expression
(N
));
2107 -- If not overloaded, then we know the type, and all that needs doing
2108 -- is to check that this type is compatible with the context.
2110 elsif not Is_Overloaded
(N
) then
2111 Found
:= Covers
(Typ
, Etype
(N
));
2112 Expr_Type
:= Etype
(N
);
2114 -- In the overloaded case, we must select the interpretation that
2115 -- is compatible with the context (i.e. the type passed to Resolve)
2118 -- Loop through possible interpretations
2120 Get_First_Interp
(N
, I
, It
);
2121 Interp_Loop
: while Present
(It
.Typ
) loop
2123 if Debug_Flag_V
then
2124 Write_Str
("Interp: ");
2128 -- We are only interested in interpretations that are compatible
2129 -- with the expected type, any other interpretations are ignored.
2131 if not Covers
(Typ
, It
.Typ
) then
2132 if Debug_Flag_V
then
2133 Write_Str
(" interpretation incompatible with context");
2138 -- Skip the current interpretation if it is disabled by an
2139 -- abstract operator. This action is performed only when the
2140 -- type against which we are resolving is the same as the
2141 -- type of the interpretation.
2143 if Ada_Version
>= Ada_2005
2144 and then It
.Typ
= Typ
2145 and then Typ
/= Universal_Integer
2146 and then Typ
/= Universal_Real
2147 and then Present
(It
.Abstract_Op
)
2149 if Debug_Flag_V
then
2150 Write_Line
("Skip.");
2156 -- First matching interpretation
2162 Expr_Type
:= It
.Typ
;
2164 -- Matching interpretation that is not the first, maybe an
2165 -- error, but there are some cases where preference rules are
2166 -- used to choose between the two possibilities. These and
2167 -- some more obscure cases are handled in Disambiguate.
2170 -- If the current statement is part of a predefined library
2171 -- unit, then all interpretations which come from user level
2172 -- packages should not be considered.
2175 and then not Comes_From_Predefined_Lib_Unit
(It
.Nam
)
2180 Error_Msg_Sloc
:= Sloc
(Seen
);
2181 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2183 -- Disambiguation has succeeded. Skip the remaining
2186 if It1
/= No_Interp
then
2188 Expr_Type
:= It1
.Typ
;
2190 while Present
(It
.Typ
) loop
2191 Get_Next_Interp
(I
, It
);
2195 -- Before we issue an ambiguity complaint, check for
2196 -- the case of a subprogram call where at least one
2197 -- of the arguments is Any_Type, and if so, suppress
2198 -- the message, since it is a cascaded error.
2200 if Nkind
(N
) in N_Subprogram_Call
then
2206 A
:= First_Actual
(N
);
2207 while Present
(A
) loop
2210 if Nkind
(E
) = N_Parameter_Association
then
2211 E
:= Explicit_Actual_Parameter
(E
);
2214 if Etype
(E
) = Any_Type
then
2215 if Debug_Flag_V
then
2216 Write_Str
("Any_Type in call");
2227 elsif Nkind
(N
) in N_Binary_Op
2228 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2229 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2233 elsif Nkind
(N
) in N_Unary_Op
2234 and then Etype
(Right_Opnd
(N
)) = Any_Type
2239 -- Not that special case, so issue message using the
2240 -- flag Ambiguous to control printing of the header
2241 -- message only at the start of an ambiguous set.
2243 if not Ambiguous
then
2244 if Nkind
(N
) = N_Function_Call
2245 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2248 ("ambiguous expression "
2249 & "(cannot resolve indirect call)!", N
);
2251 Error_Msg_NE
-- CODEFIX
2252 ("ambiguous expression (cannot resolve&)!",
2258 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2260 ("\\possible interpretation (inherited)#!", N
);
2262 Error_Msg_N
-- CODEFIX
2263 ("\\possible interpretation#!", N
);
2266 if Nkind
(N
) in N_Subprogram_Call
2267 and then Present
(Parameter_Associations
(N
))
2269 Report_Ambiguous_Argument
;
2273 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2275 -- By default, the error message refers to the candidate
2276 -- interpretation. But if it is a predefined operator, it
2277 -- is implicitly declared at the declaration of the type
2278 -- of the operand. Recover the sloc of that declaration
2279 -- for the error message.
2281 if Nkind
(N
) in N_Op
2282 and then Scope
(It
.Nam
) = Standard_Standard
2283 and then not Is_Overloaded
(Right_Opnd
(N
))
2284 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2287 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2289 if Comes_From_Source
(Err_Type
)
2290 and then Present
(Parent
(Err_Type
))
2292 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2295 elsif Nkind
(N
) in N_Binary_Op
2296 and then Scope
(It
.Nam
) = Standard_Standard
2297 and then not Is_Overloaded
(Left_Opnd
(N
))
2298 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2301 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2303 if Comes_From_Source
(Err_Type
)
2304 and then Present
(Parent
(Err_Type
))
2306 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2309 -- If this is an indirect call, use the subprogram_type
2310 -- in the message, to have a meaningful location. Also
2311 -- indicate if this is an inherited operation, created
2312 -- by a type declaration.
2314 elsif Nkind
(N
) = N_Function_Call
2315 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2316 and then Is_Type
(It
.Nam
)
2320 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2325 if Nkind
(N
) in N_Op
2326 and then Scope
(It
.Nam
) = Standard_Standard
2327 and then Present
(Err_Type
)
2329 -- Special-case the message for universal_fixed
2330 -- operators, which are not declared with the type
2331 -- of the operand, but appear forever in Standard.
2333 if It
.Typ
= Universal_Fixed
2334 and then Scope
(It
.Nam
) = Standard_Standard
2337 ("\\possible interpretation as universal_fixed "
2338 & "operation (RM 4.5.5 (19))", N
);
2341 ("\\possible interpretation (predefined)#!", N
);
2345 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2348 ("\\possible interpretation (inherited)#!", N
);
2350 Error_Msg_N
-- CODEFIX
2351 ("\\possible interpretation#!", N
);
2357 -- We have a matching interpretation, Expr_Type is the type
2358 -- from this interpretation, and Seen is the entity.
2360 -- For an operator, just set the entity name. The type will be
2361 -- set by the specific operator resolution routine.
2363 if Nkind
(N
) in N_Op
then
2364 Set_Entity
(N
, Seen
);
2365 Generate_Reference
(Seen
, N
);
2367 elsif Nkind
(N
) = N_Case_Expression
then
2368 Set_Etype
(N
, Expr_Type
);
2370 elsif Nkind
(N
) = N_Character_Literal
then
2371 Set_Etype
(N
, Expr_Type
);
2373 elsif Nkind
(N
) = N_If_Expression
then
2374 Set_Etype
(N
, Expr_Type
);
2376 -- AI05-0139-2: Expression is overloaded because type has
2377 -- implicit dereference. If type matches context, no implicit
2378 -- dereference is involved.
2380 elsif Has_Implicit_Dereference
(Expr_Type
) then
2381 Set_Etype
(N
, Expr_Type
);
2382 Set_Is_Overloaded
(N
, False);
2385 elsif Is_Overloaded
(N
)
2386 and then Present
(It
.Nam
)
2387 and then Ekind
(It
.Nam
) = E_Discriminant
2388 and then Has_Implicit_Dereference
(It
.Nam
)
2390 Build_Explicit_Dereference
(N
, It
.Nam
);
2392 -- For an explicit dereference, attribute reference, range,
2393 -- short-circuit form (which is not an operator node), or call
2394 -- with a name that is an explicit dereference, there is
2395 -- nothing to be done at this point.
2397 elsif Nkind_In
(N
, N_Explicit_Dereference
,
2398 N_Attribute_Reference
,
2400 N_Indexed_Component
,
2403 N_Selected_Component
,
2405 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2409 -- For procedure or function calls, set the type of the name,
2410 -- and also the entity pointer for the prefix.
2412 elsif Nkind
(N
) in N_Subprogram_Call
2413 and then Is_Entity_Name
(Name
(N
))
2415 Set_Etype
(Name
(N
), Expr_Type
);
2416 Set_Entity
(Name
(N
), Seen
);
2417 Generate_Reference
(Seen
, Name
(N
));
2419 elsif Nkind
(N
) = N_Function_Call
2420 and then Nkind
(Name
(N
)) = N_Selected_Component
2422 Set_Etype
(Name
(N
), Expr_Type
);
2423 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2424 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2426 -- For all other cases, just set the type of the Name
2429 Set_Etype
(Name
(N
), Expr_Type
);
2436 -- Move to next interpretation
2438 exit Interp_Loop
when No
(It
.Typ
);
2440 Get_Next_Interp
(I
, It
);
2441 end loop Interp_Loop
;
2444 -- At this stage Found indicates whether or not an acceptable
2445 -- interpretation exists. If not, then we have an error, except that if
2446 -- the context is Any_Type as a result of some other error, then we
2447 -- suppress the error report.
2450 if Typ
/= Any_Type
then
2452 -- If type we are looking for is Void, then this is the procedure
2453 -- call case, and the error is simply that what we gave is not a
2454 -- procedure name (we think of procedure calls as expressions with
2455 -- types internally, but the user doesn't think of them this way!)
2457 if Typ
= Standard_Void_Type
then
2459 -- Special case message if function used as a procedure
2461 if Nkind
(N
) = N_Procedure_Call_Statement
2462 and then Is_Entity_Name
(Name
(N
))
2463 and then Ekind
(Entity
(Name
(N
))) = E_Function
2466 ("cannot use function & in a procedure call",
2467 Name
(N
), Entity
(Name
(N
)));
2469 -- Otherwise give general message (not clear what cases this
2470 -- covers, but no harm in providing for them!)
2473 Error_Msg_N
("expect procedure name in procedure call", N
);
2478 -- Otherwise we do have a subexpression with the wrong type
2480 -- Check for the case of an allocator which uses an access type
2481 -- instead of the designated type. This is a common error and we
2482 -- specialize the message, posting an error on the operand of the
2483 -- allocator, complaining that we expected the designated type of
2486 elsif Nkind
(N
) = N_Allocator
2487 and then Ekind
(Typ
) in Access_Kind
2488 and then Ekind
(Etype
(N
)) in Access_Kind
2489 and then Designated_Type
(Etype
(N
)) = Typ
2491 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2494 -- Check for view mismatch on Null in instances, for which the
2495 -- view-swapping mechanism has no identifier.
2497 elsif (In_Instance
or else In_Inlined_Body
)
2498 and then (Nkind
(N
) = N_Null
)
2499 and then Is_Private_Type
(Typ
)
2500 and then Is_Access_Type
(Full_View
(Typ
))
2502 Resolve
(N
, Full_View
(Typ
));
2506 -- Check for an aggregate. Sometimes we can get bogus aggregates
2507 -- from misuse of parentheses, and we are about to complain about
2508 -- the aggregate without even looking inside it.
2510 -- Instead, if we have an aggregate of type Any_Composite, then
2511 -- analyze and resolve the component fields, and then only issue
2512 -- another message if we get no errors doing this (otherwise
2513 -- assume that the errors in the aggregate caused the problem).
2515 elsif Nkind
(N
) = N_Aggregate
2516 and then Etype
(N
) = Any_Composite
2518 -- Disable expansion in any case. If there is a type mismatch
2519 -- it may be fatal to try to expand the aggregate. The flag
2520 -- would otherwise be set to false when the error is posted.
2522 Expander_Active
:= False;
2525 procedure Check_Aggr
(Aggr
: Node_Id
);
2526 -- Check one aggregate, and set Found to True if we have a
2527 -- definite error in any of its elements
2529 procedure Check_Elmt
(Aelmt
: Node_Id
);
2530 -- Check one element of aggregate and set Found to True if
2531 -- we definitely have an error in the element.
2537 procedure Check_Aggr
(Aggr
: Node_Id
) is
2541 if Present
(Expressions
(Aggr
)) then
2542 Elmt
:= First
(Expressions
(Aggr
));
2543 while Present
(Elmt
) loop
2549 if Present
(Component_Associations
(Aggr
)) then
2550 Elmt
:= First
(Component_Associations
(Aggr
));
2551 while Present
(Elmt
) loop
2553 -- If this is a default-initialized component, then
2554 -- there is nothing to check. The box will be
2555 -- replaced by the appropriate call during late
2558 if not Box_Present
(Elmt
) then
2559 Check_Elmt
(Expression
(Elmt
));
2571 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2573 -- If we have a nested aggregate, go inside it (to
2574 -- attempt a naked analyze-resolve of the aggregate can
2575 -- cause undesirable cascaded errors). Do not resolve
2576 -- expression if it needs a type from context, as for
2577 -- integer * fixed expression.
2579 if Nkind
(Aelmt
) = N_Aggregate
then
2585 if not Is_Overloaded
(Aelmt
)
2586 and then Etype
(Aelmt
) /= Any_Fixed
2591 if Etype
(Aelmt
) = Any_Type
then
2602 -- If an error message was issued already, Found got reset to
2603 -- True, so if it is still False, issue standard Wrong_Type msg.
2606 if Is_Overloaded
(N
)
2607 and then Nkind
(N
) = N_Function_Call
2610 Subp_Name
: Node_Id
;
2612 if Is_Entity_Name
(Name
(N
)) then
2613 Subp_Name
:= Name
(N
);
2615 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2617 -- Protected operation: retrieve operation name
2619 Subp_Name
:= Selector_Name
(Name
(N
));
2622 raise Program_Error
;
2625 Error_Msg_Node_2
:= Typ
;
2627 ("no visible interpretation of& "
2628 & "matches expected type&", N
, Subp_Name
);
2631 if All_Errors_Mode
then
2633 Index
: Interp_Index
;
2637 Error_Msg_N
("\\possible interpretations:", N
);
2639 Get_First_Interp
(Name
(N
), Index
, It
);
2640 while Present
(It
.Nam
) loop
2641 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2642 Error_Msg_Node_2
:= It
.Nam
;
2644 ("\\ type& for & declared#", N
, It
.Typ
);
2645 Get_Next_Interp
(Index
, It
);
2650 Error_Msg_N
("\use -gnatf for details", N
);
2654 Wrong_Type
(N
, Typ
);
2662 -- Test if we have more than one interpretation for the context
2664 elsif Ambiguous
then
2668 -- Only one intepretation
2671 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2672 -- the "+" on T is abstract, and the operands are of universal type,
2673 -- the above code will have (incorrectly) resolved the "+" to the
2674 -- universal one in Standard. Therefore check for this case and give
2675 -- an error. We can't do this earlier, because it would cause legal
2676 -- cases to get errors (when some other type has an abstract "+").
2678 if Ada_Version
>= Ada_2005
2679 and then Nkind
(N
) in N_Op
2680 and then Is_Overloaded
(N
)
2681 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2683 Get_First_Interp
(N
, I
, It
);
2684 while Present
(It
.Typ
) loop
2685 if Present
(It
.Abstract_Op
) and then
2686 Etype
(It
.Abstract_Op
) = Typ
2689 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2693 Get_Next_Interp
(I
, It
);
2697 -- Here we have an acceptable interpretation for the context
2699 -- Propagate type information and normalize tree for various
2700 -- predefined operations. If the context only imposes a class of
2701 -- types, rather than a specific type, propagate the actual type
2704 if Typ
= Any_Integer
or else
2705 Typ
= Any_Boolean
or else
2706 Typ
= Any_Modular
or else
2707 Typ
= Any_Real
or else
2710 Ctx_Type
:= Expr_Type
;
2712 -- Any_Fixed is legal in a real context only if a specific fixed-
2713 -- point type is imposed. If Norman Cohen can be confused by this,
2714 -- it deserves a separate message.
2717 and then Expr_Type
= Any_Fixed
2719 Error_Msg_N
("illegal context for mixed mode operation", N
);
2720 Set_Etype
(N
, Universal_Real
);
2721 Ctx_Type
:= Universal_Real
;
2725 -- A user-defined operator is transformed into a function call at
2726 -- this point, so that further processing knows that operators are
2727 -- really operators (i.e. are predefined operators). User-defined
2728 -- operators that are intrinsic are just renamings of the predefined
2729 -- ones, and need not be turned into calls either, but if they rename
2730 -- a different operator, we must transform the node accordingly.
2731 -- Instantiations of Unchecked_Conversion are intrinsic but are
2732 -- treated as functions, even if given an operator designator.
2734 if Nkind
(N
) in N_Op
2735 and then Present
(Entity
(N
))
2736 and then Ekind
(Entity
(N
)) /= E_Operator
2739 if not Is_Predefined_Op
(Entity
(N
)) then
2740 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2742 elsif Present
(Alias
(Entity
(N
)))
2744 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2745 N_Subprogram_Renaming_Declaration
2747 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2749 -- If the node is rewritten, it will be fully resolved in
2750 -- Rewrite_Renamed_Operator.
2752 if Analyzed
(N
) then
2758 case N_Subexpr
'(Nkind (N)) is
2760 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2762 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2764 when N_Short_Circuit
2765 => Resolve_Short_Circuit (N, Ctx_Type);
2767 when N_Attribute_Reference
2768 => Resolve_Attribute (N, Ctx_Type);
2770 when N_Case_Expression
2771 => Resolve_Case_Expression (N, Ctx_Type);
2773 when N_Character_Literal
2774 => Resolve_Character_Literal (N, Ctx_Type);
2776 when N_Expanded_Name
2777 => Resolve_Entity_Name (N, Ctx_Type);
2779 when N_Explicit_Dereference
2780 => Resolve_Explicit_Dereference (N, Ctx_Type);
2782 when N_Expression_With_Actions
2783 => Resolve_Expression_With_Actions (N, Ctx_Type);
2785 when N_Extension_Aggregate
2786 => Resolve_Extension_Aggregate (N, Ctx_Type);
2788 when N_Function_Call
2789 => Resolve_Call (N, Ctx_Type);
2792 => Resolve_Entity_Name (N, Ctx_Type);
2794 when N_If_Expression
2795 => Resolve_If_Expression (N, Ctx_Type);
2797 when N_Indexed_Component
2798 => Resolve_Indexed_Component (N, Ctx_Type);
2800 when N_Integer_Literal
2801 => Resolve_Integer_Literal (N, Ctx_Type);
2803 when N_Membership_Test
2804 => Resolve_Membership_Op (N, Ctx_Type);
2806 when N_Null => Resolve_Null (N, Ctx_Type);
2808 when N_Op_And | N_Op_Or | N_Op_Xor
2809 => Resolve_Logical_Op (N, Ctx_Type);
2811 when N_Op_Eq | N_Op_Ne
2812 => Resolve_Equality_Op (N, Ctx_Type);
2814 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2815 => Resolve_Comparison_Op (N, Ctx_Type);
2817 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2819 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2820 N_Op_Divide | N_Op_Mod | N_Op_Rem
2822 => Resolve_Arithmetic_Op (N, Ctx_Type);
2824 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2826 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2828 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2829 => Resolve_Unary_Op (N, Ctx_Type);
2831 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2833 when N_Procedure_Call_Statement
2834 => Resolve_Call (N, Ctx_Type);
2836 when N_Operator_Symbol
2837 => Resolve_Operator_Symbol (N, Ctx_Type);
2839 when N_Qualified_Expression
2840 => Resolve_Qualified_Expression (N, Ctx_Type);
2842 -- Why is the following null, needs a comment ???
2844 when N_Quantified_Expression
2847 -- Nothing to do for Raise_Expression, since we took care of
2848 -- setting the Etype earlier, and no other processing is needed.
2850 when N_Raise_Expression
2853 when N_Raise_xxx_Error
2854 => Set_Etype (N, Ctx_Type);
2856 when N_Range => Resolve_Range (N, Ctx_Type);
2859 => Resolve_Real_Literal (N, Ctx_Type);
2861 when N_Reference => Resolve_Reference (N, Ctx_Type);
2863 when N_Selected_Component
2864 => Resolve_Selected_Component (N, Ctx_Type);
2866 when N_Slice => Resolve_Slice (N, Ctx_Type);
2868 when N_String_Literal
2869 => Resolve_String_Literal (N, Ctx_Type);
2871 when N_Subprogram_Info
2872 => Resolve_Subprogram_Info (N, Ctx_Type);
2874 when N_Type_Conversion
2875 => Resolve_Type_Conversion (N, Ctx_Type);
2877 when N_Unchecked_Expression =>
2878 Resolve_Unchecked_Expression (N, Ctx_Type);
2880 when N_Unchecked_Type_Conversion =>
2881 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2884 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2885 -- expression of an anonymous access type that occurs in the context
2886 -- of a named general access type, except when the expression is that
2887 -- of a membership test. This ensures proper legality checking in
2888 -- terms of allowed conversions (expressions that would be illegal to
2889 -- convert implicitly are allowed in membership tests).
2891 if Ada_Version >= Ada_2012
2892 and then Ekind (Ctx_Type) = E_General_Access_Type
2893 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2894 and then Nkind (Parent (N)) not in N_Membership_Test
2896 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2897 Analyze_And_Resolve (N, Ctx_Type);
2900 -- If the subexpression was replaced by a non-subexpression, then
2901 -- all we do is to expand it. The only legitimate case we know of
2902 -- is converting procedure call statement to entry call statements,
2903 -- but there may be others, so we are making this test general.
2905 if Nkind (N) not in N_Subexpr then
2906 Debug_A_Exit ("resolving ", N, " (done)");
2911 -- The expression is definitely NOT overloaded at this point, so
2912 -- we reset the Is_Overloaded flag to avoid any confusion when
2913 -- reanalyzing the node.
2915 Set_Is_Overloaded (N, False);
2917 -- Freeze expression type, entity if it is a name, and designated
2918 -- type if it is an allocator (RM 13.14(10,11,13)).
2920 -- Now that the resolution of the type of the node is complete, and
2921 -- we did not detect an error, we can expand this node. We skip the
2922 -- expand call if we are in a default expression, see section
2923 -- "Handling of Default Expressions" in Sem spec.
2925 Debug_A_Exit ("resolving ", N, " (done)");
2927 -- We unconditionally freeze the expression, even if we are in
2928 -- default expression mode (the Freeze_Expression routine tests this
2929 -- flag and only freezes static types if it is set).
2931 -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
2932 -- their use (in an expanded call) freezes.
2934 if Ekind (Proper_Current_Scope) /= E_Function
2935 or else Nkind (Original_Node (Unit_Declaration_Node
2936 (Proper_Current_Scope))) /= N_Expression_Function
2938 Freeze_Expression (N);
2941 -- Now we can do the expansion
2951 -- Version with check(s) suppressed
2953 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2955 if Suppress = All_Checks then
2957 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
2959 Scope_Suppress.Suppress := (others => True);
2961 Scope_Suppress.Suppress := Sva;
2966 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
2968 Scope_Suppress.Suppress (Suppress) := True;
2970 Scope_Suppress.Suppress (Suppress) := Svg;
2979 -- Version with implicit type
2981 procedure Resolve (N : Node_Id) is
2983 Resolve (N, Etype (N));
2986 ---------------------
2987 -- Resolve_Actuals --
2988 ---------------------
2990 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2991 Loc : constant Source_Ptr := Sloc (N);
2996 Prev : Node_Id := Empty;
2999 procedure Check_Argument_Order;
3000 -- Performs a check for the case where the actuals are all simple
3001 -- identifiers that correspond to the formal names, but in the wrong
3002 -- order, which is considered suspicious and cause for a warning.
3004 procedure Check_Prefixed_Call;
3005 -- If the original node is an overloaded call in prefix notation,
3006 -- insert an 'Access or a dereference as needed over the first actual
.
3007 -- Try_Object_Operation has already verified that there is a valid
3008 -- interpretation, but the form of the actual can only be determined
3009 -- once the primitive operation is identified.
3011 procedure Insert_Default
;
3012 -- If the actual is missing in a call, insert in the actuals list
3013 -- an instance of the default expression. The insertion is always
3014 -- a named association.
3016 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
3017 -- Check whether T1 and T2, or their full views, are derived from a
3018 -- common type. Used to enforce the restrictions on array conversions
3021 function Static_Concatenation
(N
: Node_Id
) return Boolean;
3022 -- Predicate to determine whether an actual that is a concatenation
3023 -- will be evaluated statically and does not need a transient scope.
3024 -- This must be determined before the actual is resolved and expanded
3025 -- because if needed the transient scope must be introduced earlier.
3027 --------------------------
3028 -- Check_Argument_Order --
3029 --------------------------
3031 procedure Check_Argument_Order
is
3033 -- Nothing to do if no parameters, or original node is neither a
3034 -- function call nor a procedure call statement (happens in the
3035 -- operator-transformed-to-function call case), or the call does
3036 -- not come from source, or this warning is off.
3038 if not Warn_On_Parameter_Order
3039 or else No
(Parameter_Associations
(N
))
3040 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3041 or else not Comes_From_Source
(N
)
3047 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3050 -- Nothing to do if only one parameter
3056 -- Here if at least two arguments
3059 Actuals
: array (1 .. Nargs
) of Node_Id
;
3063 Wrong_Order
: Boolean := False;
3064 -- Set True if an out of order case is found
3067 -- Collect identifier names of actuals, fail if any actual is
3068 -- not a simple identifier, and record max length of name.
3070 Actual
:= First
(Parameter_Associations
(N
));
3071 for J
in Actuals
'Range loop
3072 if Nkind
(Actual
) /= N_Identifier
then
3075 Actuals
(J
) := Actual
;
3080 -- If we got this far, all actuals are identifiers and the list
3081 -- of their names is stored in the Actuals array.
3083 Formal
:= First_Formal
(Nam
);
3084 for J
in Actuals
'Range loop
3086 -- If we ran out of formals, that's odd, probably an error
3087 -- which will be detected elsewhere, but abandon the search.
3093 -- If name matches and is in order OK
3095 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3099 -- If no match, see if it is elsewhere in list and if so
3100 -- flag potential wrong order if type is compatible.
3102 for K
in Actuals
'Range loop
3103 if Chars
(Formal
) = Chars
(Actuals
(K
))
3105 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3107 Wrong_Order
:= True;
3117 <<Continue
>> Next_Formal
(Formal
);
3120 -- If Formals left over, also probably an error, skip warning
3122 if Present
(Formal
) then
3126 -- Here we give the warning if something was out of order
3130 ("?P?actuals for this call may be in wrong order", N
);
3134 end Check_Argument_Order
;
3136 -------------------------
3137 -- Check_Prefixed_Call --
3138 -------------------------
3140 procedure Check_Prefixed_Call
is
3141 Act
: constant Node_Id
:= First_Actual
(N
);
3142 A_Type
: constant Entity_Id
:= Etype
(Act
);
3143 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3144 Orig
: constant Node_Id
:= Original_Node
(N
);
3148 -- Check whether the call is a prefixed call, with or without
3149 -- additional actuals.
3151 if Nkind
(Orig
) = N_Selected_Component
3153 (Nkind
(Orig
) = N_Indexed_Component
3154 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3155 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3156 and then Is_Entity_Name
(Act
)
3157 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3159 if Is_Access_Type
(A_Type
)
3160 and then not Is_Access_Type
(F_Type
)
3162 -- Introduce dereference on object in prefix
3165 Make_Explicit_Dereference
(Sloc
(Act
),
3166 Prefix
=> Relocate_Node
(Act
));
3167 Rewrite
(Act
, New_A
);
3170 elsif Is_Access_Type
(F_Type
)
3171 and then not Is_Access_Type
(A_Type
)
3173 -- Introduce an implicit 'Access in prefix
3175 if not Is_Aliased_View
(Act
) then
3177 ("object in prefixed call to& must be aliased"
3178 & " (RM-2005 4.3.1 (13))",
3183 Make_Attribute_Reference
(Loc
,
3184 Attribute_Name
=> Name_Access
,
3185 Prefix
=> Relocate_Node
(Act
)));
3190 end Check_Prefixed_Call
;
3192 --------------------
3193 -- Insert_Default --
3194 --------------------
3196 procedure Insert_Default
is
3201 -- Missing argument in call, nothing to insert
3203 if No
(Default_Value
(F
)) then
3207 -- Note that we do a full New_Copy_Tree, so that any associated
3208 -- Itypes are properly copied. This may not be needed any more,
3209 -- but it does no harm as a safety measure! Defaults of a generic
3210 -- formal may be out of bounds of the corresponding actual (see
3211 -- cc1311b) and an additional check may be required.
3216 New_Scope
=> Current_Scope
,
3219 if Is_Concurrent_Type
(Scope
(Nam
))
3220 and then Has_Discriminants
(Scope
(Nam
))
3222 Replace_Actual_Discriminants
(N
, Actval
);
3225 if Is_Overloadable
(Nam
)
3226 and then Present
(Alias
(Nam
))
3228 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3229 and then not Is_Tagged_Type
(Etype
(F
))
3231 -- If default is a real literal, do not introduce a
3232 -- conversion whose effect may depend on the run-time
3233 -- size of universal real.
3235 if Nkind
(Actval
) = N_Real_Literal
then
3236 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3238 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3242 if Is_Scalar_Type
(Etype
(F
)) then
3243 Enable_Range_Check
(Actval
);
3246 Set_Parent
(Actval
, N
);
3248 -- Resolve aggregates with their base type, to avoid scope
3249 -- anomalies: the subtype was first built in the subprogram
3250 -- declaration, and the current call may be nested.
3252 if Nkind
(Actval
) = N_Aggregate
then
3253 Analyze_And_Resolve
(Actval
, Etype
(F
));
3255 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3259 Set_Parent
(Actval
, N
);
3261 -- See note above concerning aggregates
3263 if Nkind
(Actval
) = N_Aggregate
3264 and then Has_Discriminants
(Etype
(Actval
))
3266 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3268 -- Resolve entities with their own type, which may differ from
3269 -- the type of a reference in a generic context (the view
3270 -- swapping mechanism did not anticipate the re-analysis of
3271 -- default values in calls).
3273 elsif Is_Entity_Name
(Actval
) then
3274 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3277 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3281 -- If default is a tag indeterminate function call, propagate tag
3282 -- to obtain proper dispatching.
3284 if Is_Controlling_Formal
(F
)
3285 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3287 Set_Is_Controlling_Actual
(Actval
);
3292 -- If the default expression raises constraint error, then just
3293 -- silently replace it with an N_Raise_Constraint_Error node, since
3294 -- we already gave the warning on the subprogram spec. If node is
3295 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3296 -- the warnings removal machinery.
3298 if Raises_Constraint_Error
(Actval
)
3299 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3302 Make_Raise_Constraint_Error
(Loc
,
3303 Reason
=> CE_Range_Check_Failed
));
3304 Set_Raises_Constraint_Error
(Actval
);
3305 Set_Etype
(Actval
, Etype
(F
));
3309 Make_Parameter_Association
(Loc
,
3310 Explicit_Actual_Parameter
=> Actval
,
3311 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3313 -- Case of insertion is first named actual
3315 if No
(Prev
) or else
3316 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3318 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3319 Set_First_Named_Actual
(N
, Actval
);
3322 if No
(Parameter_Associations
(N
)) then
3323 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3325 Append
(Assoc
, Parameter_Associations
(N
));
3329 Insert_After
(Prev
, Assoc
);
3332 -- Case of insertion is not first named actual
3335 Set_Next_Named_Actual
3336 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3337 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3338 Append
(Assoc
, Parameter_Associations
(N
));
3341 Mark_Rewrite_Insertion
(Assoc
);
3342 Mark_Rewrite_Insertion
(Actval
);
3351 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3352 FT1
: Entity_Id
:= T1
;
3353 FT2
: Entity_Id
:= T2
;
3356 if Is_Private_Type
(T1
)
3357 and then Present
(Full_View
(T1
))
3359 FT1
:= Full_View
(T1
);
3362 if Is_Private_Type
(T2
)
3363 and then Present
(Full_View
(T2
))
3365 FT2
:= Full_View
(T2
);
3368 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3371 --------------------------
3372 -- Static_Concatenation --
3373 --------------------------
3375 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3378 when N_String_Literal
=>
3383 -- Concatenation is static when both operands are static and
3384 -- the concatenation operator is a predefined one.
3386 return Scope
(Entity
(N
)) = Standard_Standard
3388 Static_Concatenation
(Left_Opnd
(N
))
3390 Static_Concatenation
(Right_Opnd
(N
));
3393 if Is_Entity_Name
(N
) then
3395 Ent
: constant Entity_Id
:= Entity
(N
);
3397 return Ekind
(Ent
) = E_Constant
3398 and then Present
(Constant_Value
(Ent
))
3400 Is_Static_Expression
(Constant_Value
(Ent
));
3407 end Static_Concatenation
;
3409 -- Start of processing for Resolve_Actuals
3412 Check_Argument_Order
;
3413 Check_Function_Writable_Actuals
(N
);
3415 if Present
(First_Actual
(N
)) then
3416 Check_Prefixed_Call
;
3419 A
:= First_Actual
(N
);
3420 F
:= First_Formal
(Nam
);
3421 while Present
(F
) loop
3422 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3425 -- If we have an error in any actual or formal, indicated by a type
3426 -- of Any_Type, then abandon resolution attempt, and set result type
3429 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3430 or else Etype
(F
) = Any_Type
3432 Set_Etype
(N
, Any_Type
);
3436 -- Case where actual is present
3438 -- If the actual is an entity, generate a reference to it now. We
3439 -- do this before the actual is resolved, because a formal of some
3440 -- protected subprogram, or a task discriminant, will be rewritten
3441 -- during expansion, and the source entity reference may be lost.
3444 and then Is_Entity_Name
(A
)
3445 and then Comes_From_Source
(N
)
3447 Orig_A
:= Entity
(A
);
3449 if Present
(Orig_A
) then
3450 if Is_Formal
(Orig_A
)
3451 and then Ekind
(F
) /= E_In_Parameter
3453 Generate_Reference
(Orig_A
, A
, 'm');
3455 elsif not Is_Overloaded
(A
) then
3456 if Ekind
(F
) /= E_Out_Parameter
then
3457 Generate_Reference
(Orig_A
, A
);
3459 -- RM 6.4.1(12): For an out parameter that is passed by
3460 -- copy, the formal parameter object is created, and:
3462 -- * For an access type, the formal parameter is initialized
3463 -- from the value of the actual, without checking that the
3464 -- value satisfies any constraint, any predicate, or any
3465 -- exclusion of the null value.
3467 -- * For a scalar type that has the Default_Value aspect
3468 -- specified, the formal parameter is initialized from the
3469 -- value of the actual, without checking that the value
3470 -- satisfies any constraint or any predicate.
3471 -- I do not understand why this case is included??? this is
3472 -- not a case where an OUT parameter is treated as IN OUT.
3474 -- * For a composite type with discriminants or that has
3475 -- implicit initial values for any subcomponents, the
3476 -- behavior is as for an in out parameter passed by copy.
3478 -- Hence for these cases we generate the read reference now
3479 -- (the write reference will be generated later by
3480 -- Note_Possible_Modification).
3482 elsif Is_By_Copy_Type
(Etype
(F
))
3484 (Is_Access_Type
(Etype
(F
))
3486 (Is_Scalar_Type
(Etype
(F
))
3488 Present
(Default_Aspect_Value
(Etype
(F
))))
3490 (Is_Composite_Type
(Etype
(F
))
3491 and then (Has_Discriminants
(Etype
(F
))
3492 or else Is_Partially_Initialized_Type
3495 Generate_Reference
(Orig_A
, A
);
3502 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3503 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3505 -- If style checking mode on, check match of formal name
3508 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3509 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3513 -- If the formal is Out or In_Out, do not resolve and expand the
3514 -- conversion, because it is subsequently expanded into explicit
3515 -- temporaries and assignments. However, the object of the
3516 -- conversion can be resolved. An exception is the case of tagged
3517 -- type conversion with a class-wide actual. In that case we want
3518 -- the tag check to occur and no temporary will be needed (no
3519 -- representation change can occur) and the parameter is passed by
3520 -- reference, so we go ahead and resolve the type conversion.
3521 -- Another exception is the case of reference to component or
3522 -- subcomponent of a bit-packed array, in which case we want to
3523 -- defer expansion to the point the in and out assignments are
3526 if Ekind
(F
) /= E_In_Parameter
3527 and then Nkind
(A
) = N_Type_Conversion
3528 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3530 if Ekind
(F
) = E_In_Out_Parameter
3531 and then Is_Array_Type
(Etype
(F
))
3533 -- In a view conversion, the conversion must be legal in
3534 -- both directions, and thus both component types must be
3535 -- aliased, or neither (4.6 (8)).
3537 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3538 -- the privacy requirement should not apply to generic
3539 -- types, and should be checked in an instance. ARG query
3542 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3543 Has_Aliased_Components
(Etype
(F
))
3546 ("both component types in a view conversion must be"
3547 & " aliased, or neither", A
);
3549 -- Comment here??? what set of cases???
3552 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3554 -- Check view conv between unrelated by ref array types
3556 if Is_By_Reference_Type
(Etype
(F
))
3557 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3560 ("view conversion between unrelated by reference "
3561 & "array types not allowed (\'A'I-00246)", A
);
3563 -- In Ada 2005 mode, check view conversion component
3564 -- type cannot be private, tagged, or volatile. Note
3565 -- that we only apply this to source conversions. The
3566 -- generated code can contain conversions which are
3567 -- not subject to this test, and we cannot extract the
3568 -- component type in such cases since it is not present.
3570 elsif Comes_From_Source
(A
)
3571 and then Ada_Version
>= Ada_2005
3574 Comp_Type
: constant Entity_Id
:=
3576 (Etype
(Expression
(A
)));
3578 if (Is_Private_Type
(Comp_Type
)
3579 and then not Is_Generic_Type
(Comp_Type
))
3580 or else Is_Tagged_Type
(Comp_Type
)
3581 or else Is_Volatile
(Comp_Type
)
3584 ("component type of a view conversion cannot"
3585 & " be private, tagged, or volatile"
3594 -- Resolve expression if conversion is all OK
3596 if (Conversion_OK
(A
)
3597 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3598 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3600 Resolve
(Expression
(A
));
3603 -- If the actual is a function call that returns a limited
3604 -- unconstrained object that needs finalization, create a
3605 -- transient scope for it, so that it can receive the proper
3606 -- finalization list.
3608 elsif Nkind
(A
) = N_Function_Call
3609 and then Is_Limited_Record
(Etype
(F
))
3610 and then not Is_Constrained
(Etype
(F
))
3611 and then Full_Expander_Active
3612 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3614 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3615 Resolve
(A
, Etype
(F
));
3617 -- A small optimization: if one of the actuals is a concatenation
3618 -- create a block around a procedure call to recover stack space.
3619 -- This alleviates stack usage when several procedure calls in
3620 -- the same statement list use concatenation. We do not perform
3621 -- this wrapping for code statements, where the argument is a
3622 -- static string, and we want to preserve warnings involving
3623 -- sequences of such statements.
3625 elsif Nkind
(A
) = N_Op_Concat
3626 and then Nkind
(N
) = N_Procedure_Call_Statement
3627 and then Full_Expander_Active
3629 not (Is_Intrinsic_Subprogram
(Nam
)
3630 and then Chars
(Nam
) = Name_Asm
)
3631 and then not Static_Concatenation
(A
)
3633 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3634 Resolve
(A
, Etype
(F
));
3637 if Nkind
(A
) = N_Type_Conversion
3638 and then Is_Array_Type
(Etype
(F
))
3639 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3641 (Is_Limited_Type
(Etype
(F
))
3642 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3645 ("conversion between unrelated limited array types "
3646 & "not allowed ('A'I-00246)", A
);
3648 if Is_Limited_Type
(Etype
(F
)) then
3649 Explain_Limited_Type
(Etype
(F
), A
);
3652 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3653 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3657 -- (Ada 2005: AI-251): If the actual is an allocator whose
3658 -- directly designated type is a class-wide interface, we build
3659 -- an anonymous access type to use it as the type of the
3660 -- allocator. Later, when the subprogram call is expanded, if
3661 -- the interface has a secondary dispatch table the expander
3662 -- will add a type conversion to force the correct displacement
3665 if Nkind
(A
) = N_Allocator
then
3667 DDT
: constant Entity_Id
:=
3668 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3670 New_Itype
: Entity_Id
;
3673 if Is_Class_Wide_Type
(DDT
)
3674 and then Is_Interface
(DDT
)
3676 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3677 Set_Etype
(New_Itype
, Etype
(A
));
3678 Set_Directly_Designated_Type
3679 (New_Itype
, Directly_Designated_Type
(Etype
(A
)));
3680 Set_Etype
(A
, New_Itype
);
3683 -- Ada 2005, AI-162:If the actual is an allocator, the
3684 -- innermost enclosing statement is the master of the
3685 -- created object. This needs to be done with expansion
3686 -- enabled only, otherwise the transient scope will not
3687 -- be removed in the expansion of the wrapped construct.
3689 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3690 and then Full_Expander_Active
3692 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3696 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
3697 Check_Restriction
(No_Access_Parameter_Allocators
, A
);
3701 -- (Ada 2005): The call may be to a primitive operation of a
3702 -- tagged synchronized type, declared outside of the type. In
3703 -- this case the controlling actual must be converted to its
3704 -- corresponding record type, which is the formal type. The
3705 -- actual may be a subtype, either because of a constraint or
3706 -- because it is a generic actual, so use base type to locate
3709 F_Typ
:= Base_Type
(Etype
(F
));
3711 if Is_Tagged_Type
(F_Typ
)
3712 and then (Is_Concurrent_Type
(F_Typ
)
3713 or else Is_Concurrent_Record_Type
(F_Typ
))
3715 -- If the actual is overloaded, look for an interpretation
3716 -- that has a synchronized type.
3718 if not Is_Overloaded
(A
) then
3719 A_Typ
:= Base_Type
(Etype
(A
));
3723 Index
: Interp_Index
;
3727 Get_First_Interp
(A
, Index
, It
);
3728 while Present
(It
.Typ
) loop
3729 if Is_Concurrent_Type
(It
.Typ
)
3730 or else Is_Concurrent_Record_Type
(It
.Typ
)
3732 A_Typ
:= Base_Type
(It
.Typ
);
3736 Get_Next_Interp
(Index
, It
);
3742 Full_A_Typ
: Entity_Id
;
3745 if Present
(Full_View
(A_Typ
)) then
3746 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
3748 Full_A_Typ
:= A_Typ
;
3751 -- Tagged synchronized type (case 1): the actual is a
3754 if Is_Concurrent_Type
(A_Typ
)
3755 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
3758 Unchecked_Convert_To
3759 (Corresponding_Record_Type
(A_Typ
), A
));
3760 Resolve
(A
, Etype
(F
));
3762 -- Tagged synchronized type (case 2): the formal is a
3765 elsif Ekind
(Full_A_Typ
) = E_Record_Type
3767 (Corresponding_Concurrent_Type
(Full_A_Typ
))
3768 and then Is_Concurrent_Type
(F_Typ
)
3769 and then Present
(Corresponding_Record_Type
(F_Typ
))
3770 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
3772 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
3777 Resolve
(A
, Etype
(F
));
3781 -- Not a synchronized operation
3784 Resolve
(A
, Etype
(F
));
3791 if Comes_From_Source
(Original_Node
(N
))
3792 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
3793 N_Procedure_Call_Statement
)
3795 -- In formal mode, check that actual parameters matching
3796 -- formals of tagged types are objects (or ancestor type
3797 -- conversions of objects), not general expressions.
3799 if Is_Actual_Tagged_Parameter
(A
) then
3800 if Is_SPARK_Object_Reference
(A
) then
3803 elsif Nkind
(A
) = N_Type_Conversion
then
3805 Operand
: constant Node_Id
:= Expression
(A
);
3806 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
3807 Target_Typ
: constant Entity_Id
:= A_Typ
;
3810 if not Is_SPARK_Object_Reference
(Operand
) then
3811 Check_SPARK_Restriction
3812 ("object required", Operand
);
3814 -- In formal mode, the only view conversions are those
3815 -- involving ancestor conversion of an extended type.
3818 (Is_Tagged_Type
(Target_Typ
)
3819 and then not Is_Class_Wide_Type
(Target_Typ
)
3820 and then Is_Tagged_Type
(Operand_Typ
)
3821 and then not Is_Class_Wide_Type
(Operand_Typ
)
3822 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
3825 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
3827 Check_SPARK_Restriction
3828 ("ancestor conversion is the only permitted "
3829 & "view conversion", A
);
3831 Check_SPARK_Restriction
3832 ("ancestor conversion required", A
);
3841 Check_SPARK_Restriction
("object required", A
);
3844 -- In formal mode, the only view conversions are those
3845 -- involving ancestor conversion of an extended type.
3847 elsif Nkind
(A
) = N_Type_Conversion
3848 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
3850 Check_SPARK_Restriction
3851 ("ancestor conversion is the only permitted view "
3856 -- has warnings suppressed, then we reset Never_Set_In_Source for
3857 -- the calling entity. The reason for this is to catch cases like
3858 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3859 -- uses trickery to modify an IN parameter.
3861 if Ekind
(F
) = E_In_Parameter
3862 and then Is_Entity_Name
(A
)
3863 and then Present
(Entity
(A
))
3864 and then Ekind
(Entity
(A
)) = E_Variable
3865 and then Has_Warnings_Off
(F_Typ
)
3867 Set_Never_Set_In_Source
(Entity
(A
), False);
3870 -- Perform error checks for IN and IN OUT parameters
3872 if Ekind
(F
) /= E_Out_Parameter
then
3874 -- Check unset reference. For scalar parameters, it is clearly
3875 -- wrong to pass an uninitialized value as either an IN or
3876 -- IN-OUT parameter. For composites, it is also clearly an
3877 -- error to pass a completely uninitialized value as an IN
3878 -- parameter, but the case of IN OUT is trickier. We prefer
3879 -- not to give a warning here. For example, suppose there is
3880 -- a routine that sets some component of a record to False.
3881 -- It is perfectly reasonable to make this IN-OUT and allow
3882 -- either initialized or uninitialized records to be passed
3885 -- For partially initialized composite values, we also avoid
3886 -- warnings, since it is quite likely that we are passing a
3887 -- partially initialized value and only the initialized fields
3888 -- will in fact be read in the subprogram.
3890 if Is_Scalar_Type
(A_Typ
)
3891 or else (Ekind
(F
) = E_In_Parameter
3892 and then not Is_Partially_Initialized_Type
(A_Typ
))
3894 Check_Unset_Reference
(A
);
3897 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3898 -- actual to a nested call, since this is case of reading an
3899 -- out parameter, which is not allowed.
3901 if Ada_Version
= Ada_83
3902 and then Is_Entity_Name
(A
)
3903 and then Ekind
(Entity
(A
)) = E_Out_Parameter
3905 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
3909 -- Case of OUT or IN OUT parameter
3911 if Ekind
(F
) /= E_In_Parameter
then
3913 -- For an Out parameter, check for useless assignment. Note
3914 -- that we can't set Last_Assignment this early, because we may
3915 -- kill current values in Resolve_Call, and that call would
3916 -- clobber the Last_Assignment field.
3918 -- Note: call Warn_On_Useless_Assignment before doing the check
3919 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3920 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3921 -- reflects the last assignment, not this one!
3923 if Ekind
(F
) = E_Out_Parameter
then
3924 if Warn_On_Modified_As_Out_Parameter
(F
)
3925 and then Is_Entity_Name
(A
)
3926 and then Present
(Entity
(A
))
3927 and then Comes_From_Source
(N
)
3929 Warn_On_Useless_Assignment
(Entity
(A
), A
);
3933 -- Validate the form of the actual. Note that the call to
3934 -- Is_OK_Variable_For_Out_Formal generates the required
3935 -- reference in this case.
3937 -- A call to an initialization procedure for an aggregate
3938 -- component may initialize a nested component of a constant
3939 -- designated object. In this context the object is variable.
3941 if not Is_OK_Variable_For_Out_Formal
(A
)
3942 and then not Is_Init_Proc
(Nam
)
3944 Error_Msg_NE
("actual for& must be a variable", A
, F
);
3946 if Is_Subprogram
(Current_Scope
)
3948 (Is_Invariant_Procedure
(Current_Scope
)
3949 or else Is_Predicate_Function
(Current_Scope
))
3952 ("function used in predicate cannot "
3953 & "modify its argument", F
);
3957 -- What's the following about???
3959 if Is_Entity_Name
(A
) then
3960 Kill_Checks
(Entity
(A
));
3966 if Etype
(A
) = Any_Type
then
3967 Set_Etype
(N
, Any_Type
);
3971 -- Apply appropriate range checks for in, out, and in-out
3972 -- parameters. Out and in-out parameters also need a separate
3973 -- check, if there is a type conversion, to make sure the return
3974 -- value meets the constraints of the variable before the
3977 -- Gigi looks at the check flag and uses the appropriate types.
3978 -- For now since one flag is used there is an optimization which
3979 -- might not be done in the In Out case since Gigi does not do
3980 -- any analysis. More thought required about this ???
3982 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
3984 -- Apply predicate checks, unless this is a call to the
3985 -- predicate check function itself, which would cause an
3986 -- infinite recursion, or it is a call to an initialization
3987 -- procedure whose operand is of course an unfinished object.
3989 if not (Ekind
(Nam
) = E_Function
3990 and then (Is_Predicate_Function
(Nam
)
3992 Is_Predicate_Function_M
(Nam
)))
3993 and then not Is_Init_Proc
(Nam
)
3995 Apply_Predicate_Check
(A
, F_Typ
);
3998 -- Apply required constraint checks
4000 if Is_Scalar_Type
(Etype
(A
)) then
4001 Apply_Scalar_Range_Check
(A
, F_Typ
);
4003 elsif Is_Array_Type
(Etype
(A
)) then
4004 Apply_Length_Check
(A
, F_Typ
);
4006 elsif Is_Record_Type
(F_Typ
)
4007 and then Has_Discriminants
(F_Typ
)
4008 and then Is_Constrained
(F_Typ
)
4009 and then (not Is_Derived_Type
(F_Typ
)
4010 or else Comes_From_Source
(Nam
))
4012 Apply_Discriminant_Check
(A
, F_Typ
);
4014 elsif Is_Access_Type
(F_Typ
)
4015 and then Is_Array_Type
(Designated_Type
(F_Typ
))
4016 and then Is_Constrained
(Designated_Type
(F_Typ
))
4018 Apply_Length_Check
(A
, F_Typ
);
4020 elsif Is_Access_Type
(F_Typ
)
4021 and then Has_Discriminants
(Designated_Type
(F_Typ
))
4022 and then Is_Constrained
(Designated_Type
(F_Typ
))
4024 Apply_Discriminant_Check
(A
, F_Typ
);
4027 Apply_Range_Check
(A
, F_Typ
);
4030 -- Ada 2005 (AI-231): Note that the controlling parameter case
4031 -- already existed in Ada 95, which is partially checked
4032 -- elsewhere (see Checks), and we don't want the warning
4033 -- message to differ.
4035 if Is_Access_Type
(F_Typ
)
4036 and then Can_Never_Be_Null
(F_Typ
)
4037 and then Known_Null
(A
)
4039 if Is_Controlling_Formal
(F
) then
4040 Apply_Compile_Time_Constraint_Error
4042 Msg
=> "null value not allowed here??",
4043 Reason
=> CE_Access_Check_Failed
);
4045 elsif Ada_Version
>= Ada_2005
then
4046 Apply_Compile_Time_Constraint_Error
4048 Msg
=> "(Ada 2005) null not allowed in "
4049 & "null-excluding formal??",
4050 Reason
=> CE_Null_Not_Allowed
);
4055 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
4056 if Nkind
(A
) = N_Type_Conversion
then
4057 if Is_Scalar_Type
(A_Typ
) then
4058 Apply_Scalar_Range_Check
4059 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4062 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4066 if Is_Scalar_Type
(F_Typ
) then
4067 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4068 elsif Is_Array_Type
(F_Typ
)
4069 and then Ekind
(F
) = E_Out_Parameter
4071 Apply_Length_Check
(A
, F_Typ
);
4073 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4078 -- An actual associated with an access parameter is implicitly
4079 -- converted to the anonymous access type of the formal and must
4080 -- satisfy the legality checks for access conversions.
4082 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4083 if not Valid_Conversion
(A
, F_Typ
, A
) then
4085 ("invalid implicit conversion for access parameter", A
);
4088 -- If the actual is an access selected component of a variable,
4089 -- the call may modify its designated object. It is reasonable
4090 -- to treat this as a potential modification of the enclosing
4091 -- record, to prevent spurious warnings that it should be
4092 -- declared as a constant, because intuitively programmers
4093 -- regard the designated subcomponent as part of the record.
4095 if Nkind
(A
) = N_Selected_Component
4096 and then Is_Entity_Name
(Prefix
(A
))
4097 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4099 Note_Possible_Modification
(A
, Sure
=> False);
4103 -- Check bad case of atomic/volatile argument (RM C.6(12))
4105 if Is_By_Reference_Type
(Etype
(F
))
4106 and then Comes_From_Source
(N
)
4108 if Is_Atomic_Object
(A
)
4109 and then not Is_Atomic
(Etype
(F
))
4112 ("cannot pass atomic argument to non-atomic formal&",
4115 elsif Is_Volatile_Object
(A
)
4116 and then not Is_Volatile
(Etype
(F
))
4119 ("cannot pass volatile argument to non-volatile formal&",
4124 -- Check that subprograms don't have improper controlling
4125 -- arguments (RM 3.9.2 (9)).
4127 -- A primitive operation may have an access parameter of an
4128 -- incomplete tagged type, but a dispatching call is illegal
4129 -- if the type is still incomplete.
4131 if Is_Controlling_Formal
(F
) then
4132 Set_Is_Controlling_Actual
(A
);
4134 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4136 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4138 if Ekind
(Desig
) = E_Incomplete_Type
4139 and then No
(Full_View
(Desig
))
4140 and then No
(Non_Limited_View
(Desig
))
4143 ("premature use of incomplete type& "
4144 & "in dispatching call", A
, Desig
);
4149 elsif Nkind
(A
) = N_Explicit_Dereference
then
4150 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4153 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4154 and then not Is_Class_Wide_Type
(F_Typ
)
4155 and then not Is_Controlling_Formal
(F
)
4157 Error_Msg_N
("class-wide argument not allowed here!", A
);
4159 if Is_Subprogram
(Nam
)
4160 and then Comes_From_Source
(Nam
)
4162 Error_Msg_Node_2
:= F_Typ
;
4164 ("& is not a dispatching operation of &!", A
, Nam
);
4167 -- Apply the checks described in 3.10.2(27): if the context is a
4168 -- specific access-to-object, the actual cannot be class-wide.
4169 -- Use base type to exclude access_to_subprogram cases.
4171 elsif Is_Access_Type
(A_Typ
)
4172 and then Is_Access_Type
(F_Typ
)
4173 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4174 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4175 or else (Nkind
(A
) = N_Attribute_Reference
4177 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4178 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4179 and then not Is_Controlling_Formal
(F
)
4181 -- Disable these checks for call to imported C++ subprograms
4184 (Is_Entity_Name
(Name
(N
))
4185 and then Is_Imported
(Entity
(Name
(N
)))
4186 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4189 ("access to class-wide argument not allowed here!", A
);
4191 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4192 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4194 ("& is not a dispatching operation of &!", A
, Nam
);
4200 -- If it is a named association, treat the selector_name as a
4201 -- proper identifier, and mark the corresponding entity.
4203 if Nkind
(Parent
(A
)) = N_Parameter_Association
4205 -- Ignore reference in SPARK mode, as it refers to an entity not
4206 -- in scope at the point of reference, so the reference should
4207 -- be ignored for computing effects of subprograms.
4209 and then not SPARK_Mode
4211 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4212 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4213 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4214 Generate_Reference
(F_Typ
, N
, ' ');
4219 if Ekind
(F
) /= E_Out_Parameter
then
4220 Check_Unset_Reference
(A
);
4225 -- Case where actual is not present
4233 end Resolve_Actuals
;
4235 -----------------------
4236 -- Resolve_Allocator --
4237 -----------------------
4239 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4240 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4241 E
: constant Node_Id
:= Expression
(N
);
4243 Discrim
: Entity_Id
;
4246 Assoc
: Node_Id
:= Empty
;
4249 procedure Check_Allocator_Discrim_Accessibility
4250 (Disc_Exp
: Node_Id
;
4251 Alloc_Typ
: Entity_Id
);
4252 -- Check that accessibility level associated with an access discriminant
4253 -- initialized in an allocator by the expression Disc_Exp is not deeper
4254 -- than the level of the allocator type Alloc_Typ. An error message is
4255 -- issued if this condition is violated. Specialized checks are done for
4256 -- the cases of a constraint expression which is an access attribute or
4257 -- an access discriminant.
4259 function In_Dispatching_Context
return Boolean;
4260 -- If the allocator is an actual in a call, it is allowed to be class-
4261 -- wide when the context is not because it is a controlling actual.
4263 -------------------------------------------
4264 -- Check_Allocator_Discrim_Accessibility --
4265 -------------------------------------------
4267 procedure Check_Allocator_Discrim_Accessibility
4268 (Disc_Exp
: Node_Id
;
4269 Alloc_Typ
: Entity_Id
)
4272 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4273 Deepest_Type_Access_Level
(Alloc_Typ
)
4276 ("operand type has deeper level than allocator type", Disc_Exp
);
4278 -- When the expression is an Access attribute the level of the prefix
4279 -- object must not be deeper than that of the allocator's type.
4281 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4282 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4284 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4285 Deepest_Type_Access_Level
(Alloc_Typ
)
4288 ("prefix of attribute has deeper level than allocator type",
4291 -- When the expression is an access discriminant the check is against
4292 -- the level of the prefix object.
4294 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4295 and then Nkind
(Disc_Exp
) = N_Selected_Component
4296 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4297 Deepest_Type_Access_Level
(Alloc_Typ
)
4300 ("access discriminant has deeper level than allocator type",
4303 -- All other cases are legal
4308 end Check_Allocator_Discrim_Accessibility
;
4310 ----------------------------
4311 -- In_Dispatching_Context --
4312 ----------------------------
4314 function In_Dispatching_Context
return Boolean is
4315 Par
: constant Node_Id
:= Parent
(N
);
4318 return Nkind
(Par
) in N_Subprogram_Call
4319 and then Is_Entity_Name
(Name
(Par
))
4320 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4321 end In_Dispatching_Context
;
4323 -- Start of processing for Resolve_Allocator
4326 -- Replace general access with specific type
4328 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4329 Set_Etype
(N
, Base_Type
(Typ
));
4332 if Is_Abstract_Type
(Typ
) then
4333 Error_Msg_N
("type of allocator cannot be abstract", N
);
4336 -- For qualified expression, resolve the expression using the given
4337 -- subtype (nothing to do for type mark, subtype indication)
4339 if Nkind
(E
) = N_Qualified_Expression
then
4340 if Is_Class_Wide_Type
(Etype
(E
))
4341 and then not Is_Class_Wide_Type
(Desig_T
)
4342 and then not In_Dispatching_Context
4345 ("class-wide allocator not allowed for this access type", N
);
4348 Resolve
(Expression
(E
), Etype
(E
));
4349 Check_Unset_Reference
(Expression
(E
));
4351 -- A qualified expression requires an exact match of the type.
4352 -- Class-wide matching is not allowed.
4354 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4355 or else Is_Class_Wide_Type
(Etype
(E
)))
4356 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4358 Wrong_Type
(Expression
(E
), Etype
(E
));
4361 -- Calls to build-in-place functions are not currently supported in
4362 -- allocators for access types associated with a simple storage pool.
4363 -- Supporting such allocators may require passing additional implicit
4364 -- parameters to build-in-place functions (or a significant revision
4365 -- of the current b-i-p implementation to unify the handling for
4366 -- multiple kinds of storage pools). ???
4368 if Is_Limited_View
(Desig_T
)
4369 and then Nkind
(Expression
(E
)) = N_Function_Call
4372 Pool
: constant Entity_Id
:=
4373 Associated_Storage_Pool
(Root_Type
(Typ
));
4377 Present
(Get_Rep_Pragma
4378 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4381 ("limited function calls not yet supported in simple "
4382 & "storage pool allocators", Expression
(E
));
4387 -- A special accessibility check is needed for allocators that
4388 -- constrain access discriminants. The level of the type of the
4389 -- expression used to constrain an access discriminant cannot be
4390 -- deeper than the type of the allocator (in contrast to access
4391 -- parameters, where the level of the actual can be arbitrary).
4393 -- We can't use Valid_Conversion to perform this check because in
4394 -- general the type of the allocator is unrelated to the type of
4395 -- the access discriminant.
4397 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4398 or else Is_Local_Anonymous_Access
(Typ
)
4400 Subtyp
:= Entity
(Subtype_Mark
(E
));
4402 Aggr
:= Original_Node
(Expression
(E
));
4404 if Has_Discriminants
(Subtyp
)
4405 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4407 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4409 -- Get the first component expression of the aggregate
4411 if Present
(Expressions
(Aggr
)) then
4412 Disc_Exp
:= First
(Expressions
(Aggr
));
4414 elsif Present
(Component_Associations
(Aggr
)) then
4415 Assoc
:= First
(Component_Associations
(Aggr
));
4417 if Present
(Assoc
) then
4418 Disc_Exp
:= Expression
(Assoc
);
4427 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4428 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4429 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4432 Next_Discriminant
(Discrim
);
4434 if Present
(Discrim
) then
4435 if Present
(Assoc
) then
4437 Disc_Exp
:= Expression
(Assoc
);
4439 elsif Present
(Next
(Disc_Exp
)) then
4443 Assoc
:= First
(Component_Associations
(Aggr
));
4445 if Present
(Assoc
) then
4446 Disc_Exp
:= Expression
(Assoc
);
4456 -- For a subtype mark or subtype indication, freeze the subtype
4459 Freeze_Expression
(E
);
4461 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4463 ("initialization required for access-to-constant allocator", N
);
4466 -- A special accessibility check is needed for allocators that
4467 -- constrain access discriminants. The level of the type of the
4468 -- expression used to constrain an access discriminant cannot be
4469 -- deeper than the type of the allocator (in contrast to access
4470 -- parameters, where the level of the actual can be arbitrary).
4471 -- We can't use Valid_Conversion to perform this check because
4472 -- in general the type of the allocator is unrelated to the type
4473 -- of the access discriminant.
4475 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4476 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4477 or else Is_Local_Anonymous_Access
(Typ
))
4479 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4481 if Has_Discriminants
(Subtyp
) then
4482 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4483 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4484 while Present
(Discrim
) and then Present
(Constr
) loop
4485 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4486 if Nkind
(Constr
) = N_Discriminant_Association
then
4487 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4489 Disc_Exp
:= Original_Node
(Constr
);
4492 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4495 Next_Discriminant
(Discrim
);
4502 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4503 -- check that the level of the type of the created object is not deeper
4504 -- than the level of the allocator's access type, since extensions can
4505 -- now occur at deeper levels than their ancestor types. This is a
4506 -- static accessibility level check; a run-time check is also needed in
4507 -- the case of an initialized allocator with a class-wide argument (see
4508 -- Expand_Allocator_Expression).
4510 if Ada_Version
>= Ada_2005
4511 and then Is_Class_Wide_Type
(Desig_T
)
4514 Exp_Typ
: Entity_Id
;
4517 if Nkind
(E
) = N_Qualified_Expression
then
4518 Exp_Typ
:= Etype
(E
);
4519 elsif Nkind
(E
) = N_Subtype_Indication
then
4520 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4522 Exp_Typ
:= Entity
(E
);
4525 if Type_Access_Level
(Exp_Typ
) >
4526 Deepest_Type_Access_Level
(Typ
)
4528 if In_Instance_Body
then
4530 ("??type in allocator has deeper level than "
4531 & "designated class-wide type", E
);
4533 ("\??Program_Error will be raised at run time", E
);
4535 Make_Raise_Program_Error
(Sloc
(N
),
4536 Reason
=> PE_Accessibility_Check_Failed
));
4539 -- Do not apply Ada 2005 accessibility checks on a class-wide
4540 -- allocator if the type given in the allocator is a formal
4541 -- type. A run-time check will be performed in the instance.
4543 elsif not Is_Generic_Type
(Exp_Typ
) then
4544 Error_Msg_N
("type in allocator has deeper level than "
4545 & "designated class-wide type", E
);
4551 -- Check for allocation from an empty storage pool
4553 if No_Pool_Assigned
(Typ
) then
4554 Error_Msg_N
("allocation from empty storage pool!", N
);
4556 -- If the context is an unchecked conversion, as may happen within an
4557 -- inlined subprogram, the allocator is being resolved with its own
4558 -- anonymous type. In that case, if the target type has a specific
4559 -- storage pool, it must be inherited explicitly by the allocator type.
4561 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
4562 and then No
(Associated_Storage_Pool
(Typ
))
4564 Set_Associated_Storage_Pool
4565 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
4568 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
4569 Check_Restriction
(No_Anonymous_Allocators
, N
);
4572 -- Check that an allocator with task parts isn't for a nested access
4573 -- type when restriction No_Task_Hierarchy applies.
4575 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
4576 and then Has_Task
(Base_Type
(Desig_T
))
4578 Check_Restriction
(No_Task_Hierarchy
, N
);
4581 -- An erroneous allocator may be rewritten as a raise Program_Error
4584 if Nkind
(N
) = N_Allocator
then
4586 -- An anonymous access discriminant is the definition of a
4589 if Ekind
(Typ
) = E_Anonymous_Access_Type
4590 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
4591 N_Discriminant_Specification
4594 Discr
: constant Entity_Id
:=
4595 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
4598 Check_Restriction
(No_Coextensions
, N
);
4600 -- Ada 2012 AI05-0052: If the designated type of the allocator
4601 -- is limited, then the allocator shall not be used to define
4602 -- the value of an access discriminant unless the discriminated
4603 -- type is immutably limited.
4605 if Ada_Version
>= Ada_2012
4606 and then Is_Limited_Type
(Desig_T
)
4607 and then not Is_Limited_View
(Scope
(Discr
))
4610 ("only immutably limited types can have anonymous "
4611 & "access discriminants designating a limited type", N
);
4615 -- Avoid marking an allocator as a dynamic coextension if it is
4616 -- within a static construct.
4618 if not Is_Static_Coextension
(N
) then
4619 Set_Is_Dynamic_Coextension
(N
);
4622 -- Cleanup for potential static coextensions
4625 Set_Is_Dynamic_Coextension
(N
, False);
4626 Set_Is_Static_Coextension
(N
, False);
4630 -- Report a simple error: if the designated object is a local task,
4631 -- its body has not been seen yet, and its activation will fail an
4632 -- elaboration check.
4634 if Is_Task_Type
(Desig_T
)
4635 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
4636 and then Is_Compilation_Unit
(Current_Scope
)
4637 and then Ekind
(Current_Scope
) = E_Package
4638 and then not In_Package_Body
(Current_Scope
)
4640 Error_Msg_N
("??cannot activate task before body seen", N
);
4641 Error_Msg_N
("\??Program_Error will be raised at run time", N
);
4644 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4645 -- type with a task component on a subpool. This action must raise
4646 -- Program_Error at runtime.
4648 if Ada_Version
>= Ada_2012
4649 and then Nkind
(N
) = N_Allocator
4650 and then Present
(Subpool_Handle_Name
(N
))
4651 and then Has_Task
(Desig_T
)
4653 Error_Msg_N
("??cannot allocate task on subpool", N
);
4654 Error_Msg_N
("\??Program_Error will be raised at run time", N
);
4657 Make_Raise_Program_Error
(Sloc
(N
),
4658 Reason
=> PE_Explicit_Raise
));
4661 end Resolve_Allocator
;
4663 ---------------------------
4664 -- Resolve_Arithmetic_Op --
4665 ---------------------------
4667 -- Used for resolving all arithmetic operators except exponentiation
4669 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
4670 L
: constant Node_Id
:= Left_Opnd
(N
);
4671 R
: constant Node_Id
:= Right_Opnd
(N
);
4672 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
4673 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
4677 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
4678 -- We do the resolution using the base type, because intermediate values
4679 -- in expressions always are of the base type, not a subtype of it.
4681 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
4682 -- Returns True if N is in a context that expects "any real type"
4684 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
4685 -- Return True iff given type is Integer or universal real/integer
4687 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
4688 -- Choose type of integer literal in fixed-point operation to conform
4689 -- to available fixed-point type. T is the type of the other operand,
4690 -- which is needed to determine the expected type of N.
4692 procedure Set_Operand_Type
(N
: Node_Id
);
4693 -- Set operand type to T if universal
4695 -------------------------------
4696 -- Expected_Type_Is_Any_Real --
4697 -------------------------------
4699 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
4701 -- N is the expression after "delta" in a fixed_point_definition;
4704 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
4705 N_Decimal_Fixed_Point_Definition
,
4707 -- N is one of the bounds in a real_range_specification;
4710 N_Real_Range_Specification
,
4712 -- N is the expression of a delta_constraint;
4715 N_Delta_Constraint
);
4716 end Expected_Type_Is_Any_Real
;
4718 -----------------------------
4719 -- Is_Integer_Or_Universal --
4720 -----------------------------
4722 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
4724 Index
: Interp_Index
;
4728 if not Is_Overloaded
(N
) then
4730 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
4731 or else T
= Universal_Integer
4732 or else T
= Universal_Real
;
4734 Get_First_Interp
(N
, Index
, It
);
4735 while Present
(It
.Typ
) loop
4736 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
4737 or else It
.Typ
= Universal_Integer
4738 or else It
.Typ
= Universal_Real
4743 Get_Next_Interp
(Index
, It
);
4748 end Is_Integer_Or_Universal
;
4750 ----------------------------
4751 -- Set_Mixed_Mode_Operand --
4752 ----------------------------
4754 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
4755 Index
: Interp_Index
;
4759 if Universal_Interpretation
(N
) = Universal_Integer
then
4761 -- A universal integer literal is resolved as standard integer
4762 -- except in the case of a fixed-point result, where we leave it
4763 -- as universal (to be handled by Exp_Fixd later on)
4765 if Is_Fixed_Point_Type
(T
) then
4766 Resolve
(N
, Universal_Integer
);
4768 Resolve
(N
, Standard_Integer
);
4771 elsif Universal_Interpretation
(N
) = Universal_Real
4772 and then (T
= Base_Type
(Standard_Integer
)
4773 or else T
= Universal_Integer
4774 or else T
= Universal_Real
)
4776 -- A universal real can appear in a fixed-type context. We resolve
4777 -- the literal with that context, even though this might raise an
4778 -- exception prematurely (the other operand may be zero).
4782 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
4783 and then T
= Universal_Real
4784 and then Is_Overloaded
(N
)
4786 -- Integer arg in mixed-mode operation. Resolve with universal
4787 -- type, in case preference rule must be applied.
4789 Resolve
(N
, Universal_Integer
);
4792 and then B_Typ
/= Universal_Fixed
4794 -- Not a mixed-mode operation, resolve with context
4798 elsif Etype
(N
) = Any_Fixed
then
4800 -- N may itself be a mixed-mode operation, so use context type
4804 elsif Is_Fixed_Point_Type
(T
)
4805 and then B_Typ
= Universal_Fixed
4806 and then Is_Overloaded
(N
)
4808 -- Must be (fixed * fixed) operation, operand must have one
4809 -- compatible interpretation.
4811 Resolve
(N
, Any_Fixed
);
4813 elsif Is_Fixed_Point_Type
(B_Typ
)
4814 and then (T
= Universal_Real
or else Is_Fixed_Point_Type
(T
))
4815 and then Is_Overloaded
(N
)
4817 -- C * F(X) in a fixed context, where C is a real literal or a
4818 -- fixed-point expression. F must have either a fixed type
4819 -- interpretation or an integer interpretation, but not both.
4821 Get_First_Interp
(N
, Index
, It
);
4822 while Present
(It
.Typ
) loop
4823 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
4824 if Analyzed
(N
) then
4825 Error_Msg_N
("ambiguous operand in fixed operation", N
);
4827 Resolve
(N
, Standard_Integer
);
4830 elsif Is_Fixed_Point_Type
(It
.Typ
) then
4831 if Analyzed
(N
) then
4832 Error_Msg_N
("ambiguous operand in fixed operation", N
);
4834 Resolve
(N
, It
.Typ
);
4838 Get_Next_Interp
(Index
, It
);
4841 -- Reanalyze the literal with the fixed type of the context. If
4842 -- context is Universal_Fixed, we are within a conversion, leave
4843 -- the literal as a universal real because there is no usable
4844 -- fixed type, and the target of the conversion plays no role in
4858 if B_Typ
= Universal_Fixed
4859 and then Nkind
(Op2
) = N_Real_Literal
4861 T2
:= Universal_Real
;
4866 Set_Analyzed
(Op2
, False);
4873 end Set_Mixed_Mode_Operand
;
4875 ----------------------
4876 -- Set_Operand_Type --
4877 ----------------------
4879 procedure Set_Operand_Type
(N
: Node_Id
) is
4881 if Etype
(N
) = Universal_Integer
4882 or else Etype
(N
) = Universal_Real
4886 end Set_Operand_Type
;
4888 -- Start of processing for Resolve_Arithmetic_Op
4891 if Comes_From_Source
(N
)
4892 and then Ekind
(Entity
(N
)) = E_Function
4893 and then Is_Imported
(Entity
(N
))
4894 and then Is_Intrinsic_Subprogram
(Entity
(N
))
4896 Resolve_Intrinsic_Operator
(N
, Typ
);
4899 -- Special-case for mixed-mode universal expressions or fixed point type
4900 -- operation: each argument is resolved separately. The same treatment
4901 -- is required if one of the operands of a fixed point operation is
4902 -- universal real, since in this case we don't do a conversion to a
4903 -- specific fixed-point type (instead the expander handles the case).
4905 -- Set the type of the node to its universal interpretation because
4906 -- legality checks on an exponentiation operand need the context.
4908 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
4909 and then Present
(Universal_Interpretation
(L
))
4910 and then Present
(Universal_Interpretation
(R
))
4912 Set_Etype
(N
, B_Typ
);
4913 Resolve
(L
, Universal_Interpretation
(L
));
4914 Resolve
(R
, Universal_Interpretation
(R
));
4916 elsif (B_Typ
= Universal_Real
4917 or else Etype
(N
) = Universal_Fixed
4918 or else (Etype
(N
) = Any_Fixed
4919 and then Is_Fixed_Point_Type
(B_Typ
))
4920 or else (Is_Fixed_Point_Type
(B_Typ
)
4921 and then (Is_Integer_Or_Universal
(L
)
4923 Is_Integer_Or_Universal
(R
))))
4924 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
4926 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
4927 Check_For_Visible_Operator
(N
, B_Typ
);
4930 -- If context is a fixed type and one operand is integer, the other
4931 -- is resolved with the type of the context.
4933 if Is_Fixed_Point_Type
(B_Typ
)
4934 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
4935 or else TL
= Universal_Integer
)
4940 elsif Is_Fixed_Point_Type
(B_Typ
)
4941 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
4942 or else TR
= Universal_Integer
)
4948 Set_Mixed_Mode_Operand
(L
, TR
);
4949 Set_Mixed_Mode_Operand
(R
, TL
);
4952 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4953 -- multiplying operators from being used when the expected type is
4954 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4955 -- some cases where the expected type is actually Any_Real;
4956 -- Expected_Type_Is_Any_Real takes care of that case.
4958 if Etype
(N
) = Universal_Fixed
4959 or else Etype
(N
) = Any_Fixed
4961 if B_Typ
= Universal_Fixed
4962 and then not Expected_Type_Is_Any_Real
(N
)
4963 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
4964 N_Unchecked_Type_Conversion
)
4966 Error_Msg_N
("type cannot be determined from context!", N
);
4967 Error_Msg_N
("\explicit conversion to result type required", N
);
4969 Set_Etype
(L
, Any_Type
);
4970 Set_Etype
(R
, Any_Type
);
4973 if Ada_Version
= Ada_83
4974 and then Etype
(N
) = Universal_Fixed
4976 Nkind_In
(Parent
(N
), N_Type_Conversion
,
4977 N_Unchecked_Type_Conversion
)
4980 ("(Ada 83) fixed-point operation "
4981 & "needs explicit conversion", N
);
4984 -- The expected type is "any real type" in contexts like
4986 -- type T is delta <universal_fixed-expression> ...
4988 -- in which case we need to set the type to Universal_Real
4989 -- so that static expression evaluation will work properly.
4991 if Expected_Type_Is_Any_Real
(N
) then
4992 Set_Etype
(N
, Universal_Real
);
4994 Set_Etype
(N
, B_Typ
);
4998 elsif Is_Fixed_Point_Type
(B_Typ
)
4999 and then (Is_Integer_Or_Universal
(L
)
5000 or else Nkind
(L
) = N_Real_Literal
5001 or else Nkind
(R
) = N_Real_Literal
5002 or else Is_Integer_Or_Universal
(R
))
5004 Set_Etype
(N
, B_Typ
);
5006 elsif Etype
(N
) = Any_Fixed
then
5008 -- If no previous errors, this is only possible if one operand is
5009 -- overloaded and the context is universal. Resolve as such.
5011 Set_Etype
(N
, B_Typ
);
5015 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
5017 (TR
= Universal_Integer
or else TR
= Universal_Real
)
5019 Check_For_Visible_Operator
(N
, B_Typ
);
5022 -- If the context is Universal_Fixed and the operands are also
5023 -- universal fixed, this is an error, unless there is only one
5024 -- applicable fixed_point type (usually Duration).
5026 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
5027 T
:= Unique_Fixed_Point_Type
(N
);
5029 if T
= Any_Type
then
5042 -- If one of the arguments was resolved to a non-universal type.
5043 -- label the result of the operation itself with the same type.
5044 -- Do the same for the universal argument, if any.
5046 T
:= Intersect_Types
(L
, R
);
5047 Set_Etype
(N
, Base_Type
(T
));
5048 Set_Operand_Type
(L
);
5049 Set_Operand_Type
(R
);
5052 Generate_Operator_Reference
(N
, Typ
);
5053 Analyze_Dimension
(N
);
5054 Eval_Arithmetic_Op
(N
);
5056 -- In SPARK, a multiplication or division with operands of fixed point
5057 -- types shall be qualified or explicitly converted to identify the
5060 if (Is_Fixed_Point_Type
(Etype
(L
))
5061 or else Is_Fixed_Point_Type
(Etype
(R
)))
5062 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5064 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
5066 Check_SPARK_Restriction
5067 ("operation should be qualified or explicitly converted", N
);
5070 -- Set overflow and division checking bit
5072 if Nkind
(N
) in N_Op
then
5073 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5074 Enable_Overflow_Check
(N
);
5077 -- Give warning if explicit division by zero
5079 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5080 and then not Division_Checks_Suppressed
(Etype
(N
))
5082 Rop
:= Right_Opnd
(N
);
5084 if Compile_Time_Known_Value
(Rop
)
5085 and then ((Is_Integer_Type
(Etype
(Rop
))
5086 and then Expr_Value
(Rop
) = Uint_0
)
5088 (Is_Real_Type
(Etype
(Rop
))
5089 and then Expr_Value_R
(Rop
) = Ureal_0
))
5091 -- Specialize the warning message according to the operation.
5092 -- The following warnings are for the case
5097 -- For division, we have two cases, for float division
5098 -- of an unconstrained float type, on a machine where
5099 -- Machine_Overflows is false, we don't get an exception
5100 -- at run-time, but rather an infinity or Nan. The Nan
5101 -- case is pretty obscure, so just warn about infinities.
5103 if Is_Floating_Point_Type
(Typ
)
5104 and then not Is_Constrained
(Typ
)
5105 and then not Machine_Overflows_On_Target
5108 ("float division by zero, may generate "
5109 & "'+'/'- infinity??", Right_Opnd
(N
));
5111 -- For all other cases, we get a Constraint_Error
5114 Apply_Compile_Time_Constraint_Error
5115 (N
, "division by zero??", CE_Divide_By_Zero
,
5116 Loc
=> Sloc
(Right_Opnd
(N
)));
5120 Apply_Compile_Time_Constraint_Error
5121 (N
, "rem with zero divisor??", CE_Divide_By_Zero
,
5122 Loc
=> Sloc
(Right_Opnd
(N
)));
5125 Apply_Compile_Time_Constraint_Error
5126 (N
, "mod with zero divisor??", CE_Divide_By_Zero
,
5127 Loc
=> Sloc
(Right_Opnd
(N
)));
5129 -- Division by zero can only happen with division, rem,
5130 -- and mod operations.
5133 raise Program_Error
;
5136 -- Otherwise just set the flag to check at run time
5139 Activate_Division_Check
(N
);
5143 -- If Restriction No_Implicit_Conditionals is active, then it is
5144 -- violated if either operand can be negative for mod, or for rem
5145 -- if both operands can be negative.
5147 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5148 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5157 -- Set if corresponding operand might be negative
5161 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5162 LNeg
:= (not OK
) or else Lo
< 0;
5165 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5166 RNeg
:= (not OK
) or else Lo
< 0;
5168 -- Check if we will be generating conditionals. There are two
5169 -- cases where that can happen, first for REM, the only case
5170 -- is largest negative integer mod -1, where the division can
5171 -- overflow, but we still have to give the right result. The
5172 -- front end generates a test for this annoying case. Here we
5173 -- just test if both operands can be negative (that's what the
5174 -- expander does, so we match its logic here).
5176 -- The second case is mod where either operand can be negative.
5177 -- In this case, the back end has to generate additional tests.
5179 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5181 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5183 Check_Restriction
(No_Implicit_Conditionals
, N
);
5189 Check_Unset_Reference
(L
);
5190 Check_Unset_Reference
(R
);
5191 Check_Function_Writable_Actuals
(N
);
5192 end Resolve_Arithmetic_Op
;
5198 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5199 Loc
: constant Source_Ptr
:= Sloc
(N
);
5200 Subp
: constant Node_Id
:= Name
(N
);
5208 function Same_Or_Aliased_Subprograms
5210 E
: Entity_Id
) return Boolean;
5211 -- Returns True if the subprogram entity S is the same as E or else
5212 -- S is an alias of E.
5214 ---------------------------------
5215 -- Same_Or_Aliased_Subprograms --
5216 ---------------------------------
5218 function Same_Or_Aliased_Subprograms
5220 E
: Entity_Id
) return Boolean
5222 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5225 or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5226 end Same_Or_Aliased_Subprograms
;
5228 -- Start of processing for Resolve_Call
5231 -- The context imposes a unique interpretation with type Typ on a
5232 -- procedure or function call. Find the entity of the subprogram that
5233 -- yields the expected type, and propagate the corresponding formal
5234 -- constraints on the actuals. The caller has established that an
5235 -- interpretation exists, and emitted an error if not unique.
5237 -- First deal with the case of a call to an access-to-subprogram,
5238 -- dereference made explicit in Analyze_Call.
5240 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5241 if not Is_Overloaded
(Subp
) then
5242 Nam
:= Etype
(Subp
);
5245 -- Find the interpretation whose type (a subprogram type) has a
5246 -- return type that is compatible with the context. Analysis of
5247 -- the node has established that one exists.
5251 Get_First_Interp
(Subp
, I
, It
);
5252 while Present
(It
.Typ
) loop
5253 if Covers
(Typ
, Etype
(It
.Typ
)) then
5258 Get_Next_Interp
(I
, It
);
5262 raise Program_Error
;
5266 -- If the prefix is not an entity, then resolve it
5268 if not Is_Entity_Name
(Subp
) then
5269 Resolve
(Subp
, Nam
);
5272 -- For an indirect call, we always invalidate checks, since we do not
5273 -- know whether the subprogram is local or global. Yes we could do
5274 -- better here, e.g. by knowing that there are no local subprograms,
5275 -- but it does not seem worth the effort. Similarly, we kill all
5276 -- knowledge of current constant values.
5278 Kill_Current_Values
;
5280 -- If this is a procedure call which is really an entry call, do
5281 -- the conversion of the procedure call to an entry call. Protected
5282 -- operations use the same circuitry because the name in the call
5283 -- can be an arbitrary expression with special resolution rules.
5285 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5286 or else (Is_Entity_Name
(Subp
)
5287 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5289 Resolve_Entry_Call
(N
, Typ
);
5290 Check_Elab_Call
(N
);
5292 -- Kill checks and constant values, as above for indirect case
5293 -- Who knows what happens when another task is activated?
5295 Kill_Current_Values
;
5298 -- Normal subprogram call with name established in Resolve
5300 elsif not (Is_Type
(Entity
(Subp
))) then
5301 Nam
:= Entity
(Subp
);
5302 Set_Entity_With_Style_Check
(Subp
, Nam
);
5304 -- Otherwise we must have the case of an overloaded call
5307 pragma Assert
(Is_Overloaded
(Subp
));
5309 -- Initialize Nam to prevent warning (we know it will be assigned
5310 -- in the loop below, but the compiler does not know that).
5314 Get_First_Interp
(Subp
, I
, It
);
5315 while Present
(It
.Typ
) loop
5316 if Covers
(Typ
, It
.Typ
) then
5318 Set_Entity_With_Style_Check
(Subp
, Nam
);
5322 Get_Next_Interp
(I
, It
);
5326 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5327 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5328 and then Nkind
(Subp
) /= N_Explicit_Dereference
5329 and then Present
(Parameter_Associations
(N
))
5331 -- The prefix is a parameterless function call that returns an access
5332 -- to subprogram. If parameters are present in the current call, add
5333 -- add an explicit dereference. We use the base type here because
5334 -- within an instance these may be subtypes.
5336 -- The dereference is added either in Analyze_Call or here. Should
5337 -- be consolidated ???
5339 Set_Is_Overloaded
(Subp
, False);
5340 Set_Etype
(Subp
, Etype
(Nam
));
5341 Insert_Explicit_Dereference
(Subp
);
5342 Nam
:= Designated_Type
(Etype
(Nam
));
5343 Resolve
(Subp
, Nam
);
5346 -- Check that a call to Current_Task does not occur in an entry body
5348 if Is_RTE
(Nam
, RE_Current_Task
) then
5357 -- Exclude calls that occur within the default of a formal
5358 -- parameter of the entry, since those are evaluated outside
5361 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5363 if Nkind
(P
) = N_Entry_Body
5364 or else (Nkind
(P
) = N_Subprogram_Body
5365 and then Is_Entry_Barrier_Function
(P
))
5369 ("??& should not be used in entry body (RM C.7(17))",
5372 ("\Program_Error will be raised at run time??", N
, Nam
);
5374 Make_Raise_Program_Error
(Loc
,
5375 Reason
=> PE_Current_Task_In_Entry_Body
));
5376 Set_Etype
(N
, Rtype
);
5383 -- Check that a procedure call does not occur in the context of the
5384 -- entry call statement of a conditional or timed entry call. Note that
5385 -- the case of a call to a subprogram renaming of an entry will also be
5386 -- rejected. The test for N not being an N_Entry_Call_Statement is
5387 -- defensive, covering the possibility that the processing of entry
5388 -- calls might reach this point due to later modifications of the code
5391 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5392 and then Nkind
(N
) /= N_Entry_Call_Statement
5393 and then Entry_Call_Statement
(Parent
(N
)) = N
5395 if Ada_Version
< Ada_2005
then
5396 Error_Msg_N
("entry call required in select statement", N
);
5398 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5399 -- for a procedure_or_entry_call, the procedure_name or
5400 -- procedure_prefix of the procedure_call_statement shall denote
5401 -- an entry renamed by a procedure, or (a view of) a primitive
5402 -- subprogram of a limited interface whose first parameter is
5403 -- a controlling parameter.
5405 elsif Nkind
(N
) = N_Procedure_Call_Statement
5406 and then not Is_Renamed_Entry
(Nam
)
5407 and then not Is_Controlling_Limited_Procedure
(Nam
)
5410 ("entry call or dispatching primitive of interface required", N
);
5414 -- Check that this is not a call to a protected procedure or entry from
5415 -- within a protected function.
5417 Check_Internal_Protected_Use
(N
, Nam
);
5419 -- Freeze the subprogram name if not in a spec-expression. Note that
5420 -- we freeze procedure calls as well as function calls. Procedure calls
5421 -- are not frozen according to the rules (RM 13.14(14)) because it is
5422 -- impossible to have a procedure call to a non-frozen procedure in
5423 -- pure Ada, but in the code that we generate in the expander, this
5424 -- rule needs extending because we can generate procedure calls that
5427 -- In Ada 2012, expression functions may be called within pre/post
5428 -- conditions of subsequent functions or expression functions. Such
5429 -- calls do not freeze when they appear within generated bodies,
5430 -- (including the body of another expression function) which would
5431 -- place the freeze node in the wrong scope. An expression function
5432 -- is frozen in the usual fashion, by the appearance of a real body,
5433 -- or at the end of a declarative part.
5435 if Is_Entity_Name
(Subp
) and then not In_Spec_Expression
5436 and then not Is_Expression_Function
(Current_Scope
)
5438 (not Is_Expression_Function
(Entity
(Subp
))
5439 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5441 Freeze_Expression
(Subp
);
5444 -- For a predefined operator, the type of the result is the type imposed
5445 -- by context, except for a predefined operation on universal fixed.
5446 -- Otherwise The type of the call is the type returned by the subprogram
5449 if Is_Predefined_Op
(Nam
) then
5450 if Etype
(N
) /= Universal_Fixed
then
5454 -- If the subprogram returns an array type, and the context requires the
5455 -- component type of that array type, the node is really an indexing of
5456 -- the parameterless call. Resolve as such. A pathological case occurs
5457 -- when the type of the component is an access to the array type. In
5458 -- this case the call is truly ambiguous.
5460 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
5462 ((Is_Array_Type
(Etype
(Nam
))
5463 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
5464 or else (Is_Access_Type
(Etype
(Nam
))
5465 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
5469 Component_Type
(Designated_Type
(Etype
(Nam
))))))
5472 Index_Node
: Node_Id
;
5474 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
5477 if Is_Access_Type
(Ret_Type
)
5478 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
5481 ("cannot disambiguate function call and indexing", N
);
5483 New_Subp
:= Relocate_Node
(Subp
);
5485 -- The called entity may be an explicit dereference, in which
5486 -- case there is no entity to set.
5488 if Nkind
(New_Subp
) /= N_Explicit_Dereference
then
5489 Set_Entity
(Subp
, Nam
);
5492 if (Is_Array_Type
(Ret_Type
)
5493 and then Component_Type
(Ret_Type
) /= Any_Type
)
5495 (Is_Access_Type
(Ret_Type
)
5497 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
5499 if Needs_No_Actuals
(Nam
) then
5501 -- Indexed call to a parameterless function
5504 Make_Indexed_Component
(Loc
,
5506 Make_Function_Call
(Loc
,
5508 Expressions
=> Parameter_Associations
(N
));
5510 -- An Ada 2005 prefixed call to a primitive operation
5511 -- whose first parameter is the prefix. This prefix was
5512 -- prepended to the parameter list, which is actually a
5513 -- list of indexes. Remove the prefix in order to build
5514 -- the proper indexed component.
5517 Make_Indexed_Component
(Loc
,
5519 Make_Function_Call
(Loc
,
5521 Parameter_Associations
=>
5523 (Remove_Head
(Parameter_Associations
(N
)))),
5524 Expressions
=> Parameter_Associations
(N
));
5527 -- Preserve the parenthesis count of the node
5529 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
5531 -- Since we are correcting a node classification error made
5532 -- by the parser, we call Replace rather than Rewrite.
5534 Replace
(N
, Index_Node
);
5536 Set_Etype
(Prefix
(N
), Ret_Type
);
5538 Resolve_Indexed_Component
(N
, Typ
);
5539 Check_Elab_Call
(Prefix
(N
));
5547 Set_Etype
(N
, Etype
(Nam
));
5550 -- In the case where the call is to an overloaded subprogram, Analyze
5551 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5552 -- such a case Normalize_Actuals needs to be called once more to order
5553 -- the actuals correctly. Otherwise the call will have the ordering
5554 -- given by the last overloaded subprogram whether this is the correct
5555 -- one being called or not.
5557 if Is_Overloaded
(Subp
) then
5558 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
5559 pragma Assert
(Norm_OK
);
5562 -- In any case, call is fully resolved now. Reset Overload flag, to
5563 -- prevent subsequent overload resolution if node is analyzed again
5565 Set_Is_Overloaded
(Subp
, False);
5566 Set_Is_Overloaded
(N
, False);
5568 -- If we are calling the current subprogram from immediately within its
5569 -- body, then that is the case where we can sometimes detect cases of
5570 -- infinite recursion statically. Do not try this in case restriction
5571 -- No_Recursion is in effect anyway, and do it only for source calls.
5573 if Comes_From_Source
(N
) then
5574 Scop
:= Current_Scope
;
5576 -- Issue warning for possible infinite recursion in the absence
5577 -- of the No_Recursion restriction.
5579 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
5580 and then not Restriction_Active
(No_Recursion
)
5581 and then Check_Infinite_Recursion
(N
)
5583 -- Here we detected and flagged an infinite recursion, so we do
5584 -- not need to test the case below for further warnings. Also we
5585 -- are all done if we now have a raise SE node.
5587 if Nkind
(N
) = N_Raise_Storage_Error
then
5591 -- If call is to immediately containing subprogram, then check for
5592 -- the case of a possible run-time detectable infinite recursion.
5595 Scope_Loop
: while Scop
/= Standard_Standard
loop
5596 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
5598 -- Although in general case, recursion is not statically
5599 -- checkable, the case of calling an immediately containing
5600 -- subprogram is easy to catch.
5602 Check_Restriction
(No_Recursion
, N
);
5604 -- If the recursive call is to a parameterless subprogram,
5605 -- then even if we can't statically detect infinite
5606 -- recursion, this is pretty suspicious, and we output a
5607 -- warning. Furthermore, we will try later to detect some
5608 -- cases here at run time by expanding checking code (see
5609 -- Detect_Infinite_Recursion in package Exp_Ch6).
5611 -- If the recursive call is within a handler, do not emit a
5612 -- warning, because this is a common idiom: loop until input
5613 -- is correct, catch illegal input in handler and restart.
5615 if No
(First_Formal
(Nam
))
5616 and then Etype
(Nam
) = Standard_Void_Type
5617 and then not Error_Posted
(N
)
5618 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
5620 -- For the case of a procedure call. We give the message
5621 -- only if the call is the first statement in a sequence
5622 -- of statements, or if all previous statements are
5623 -- simple assignments. This is simply a heuristic to
5624 -- decrease false positives, without losing too many good
5625 -- warnings. The idea is that these previous statements
5626 -- may affect global variables the procedure depends on.
5627 -- We also exclude raise statements, that may arise from
5628 -- constraint checks and are probably unrelated to the
5629 -- intended control flow.
5631 if Nkind
(N
) = N_Procedure_Call_Statement
5632 and then Is_List_Member
(N
)
5638 while Present
(P
) loop
5640 N_Assignment_Statement
,
5641 N_Raise_Constraint_Error
)
5651 -- Do not give warning if we are in a conditional context
5654 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
5656 if (K
= N_Loop_Statement
5657 and then Present
(Iteration_Scheme
(Parent
(N
))))
5658 or else K
= N_If_Statement
5659 or else K
= N_Elsif_Part
5660 or else K
= N_Case_Statement_Alternative
5666 -- Here warning is to be issued
5668 Set_Has_Recursive_Call
(Nam
);
5670 ("??possible infinite recursion!", N
);
5672 ("\??Storage_Error may be raised at run time!", N
);
5678 Scop
:= Scope
(Scop
);
5679 end loop Scope_Loop
;
5683 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5685 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
5687 -- If subprogram name is a predefined operator, it was given in
5688 -- functional notation. Replace call node with operator node, so
5689 -- that actuals can be resolved appropriately.
5691 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
5692 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
5695 elsif Present
(Alias
(Nam
))
5696 and then Is_Predefined_Op
(Alias
(Nam
))
5698 Resolve_Actuals
(N
, Nam
);
5699 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
5703 -- Create a transient scope if the resulting type requires it
5705 -- There are several notable exceptions:
5707 -- a) In init procs, the transient scope overhead is not needed, and is
5708 -- even incorrect when the call is a nested initialization call for a
5709 -- component whose expansion may generate adjust calls. However, if the
5710 -- call is some other procedure call within an initialization procedure
5711 -- (for example a call to Create_Task in the init_proc of the task
5712 -- run-time record) a transient scope must be created around this call.
5714 -- b) Enumeration literal pseudo-calls need no transient scope
5716 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5717 -- functions) do not use the secondary stack even though the return
5718 -- type may be unconstrained.
5720 -- d) Calls to a build-in-place function, since such functions may
5721 -- allocate their result directly in a target object, and cases where
5722 -- the result does get allocated in the secondary stack are checked for
5723 -- within the specialized Exp_Ch6 procedures for expanding those
5724 -- build-in-place calls.
5726 -- e) If the subprogram is marked Inline_Always, then even if it returns
5727 -- an unconstrained type the call does not require use of the secondary
5728 -- stack. However, inlining will only take place if the body to inline
5729 -- is already present. It may not be available if e.g. the subprogram is
5730 -- declared in a child instance.
5732 -- If this is an initialization call for a type whose construction
5733 -- uses the secondary stack, and it is not a nested call to initialize
5734 -- a component, we do need to create a transient scope for it. We
5735 -- check for this by traversing the type in Check_Initialization_Call.
5738 and then Has_Pragma_Inline_Always
(Nam
)
5739 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
5740 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
5741 and then not Debug_Flag_Dot_K
5745 elsif Is_Inlined
(Nam
)
5746 and then Has_Pragma_Inline
(Nam
)
5747 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
5748 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
5749 and then Debug_Flag_Dot_K
5753 elsif Ekind
(Nam
) = E_Enumeration_Literal
5754 or else Is_Build_In_Place_Function
(Nam
)
5755 or else Is_Intrinsic_Subprogram
(Nam
)
5759 elsif Full_Expander_Active
5760 and then Is_Type
(Etype
(Nam
))
5761 and then Requires_Transient_Scope
(Etype
(Nam
))
5763 (not Within_Init_Proc
5765 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
5767 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
5769 -- If the call appears within the bounds of a loop, it will
5770 -- be rewritten and reanalyzed, nothing left to do here.
5772 if Nkind
(N
) /= N_Function_Call
then
5776 elsif Is_Init_Proc
(Nam
)
5777 and then not Within_Init_Proc
5779 Check_Initialization_Call
(N
, Nam
);
5782 -- A protected function cannot be called within the definition of the
5783 -- enclosing protected type.
5785 if Is_Protected_Type
(Scope
(Nam
))
5786 and then In_Open_Scopes
(Scope
(Nam
))
5787 and then not Has_Completion
(Scope
(Nam
))
5790 ("& cannot be called before end of protected definition", N
, Nam
);
5793 -- Propagate interpretation to actuals, and add default expressions
5796 if Present
(First_Formal
(Nam
)) then
5797 Resolve_Actuals
(N
, Nam
);
5799 -- Overloaded literals are rewritten as function calls, for purpose of
5800 -- resolution. After resolution, we can replace the call with the
5803 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
5804 Copy_Node
(Subp
, N
);
5805 Resolve_Entity_Name
(N
, Typ
);
5807 -- Avoid validation, since it is a static function call
5809 Generate_Reference
(Nam
, Subp
);
5813 -- If the subprogram is not global, then kill all saved values and
5814 -- checks. This is a bit conservative, since in many cases we could do
5815 -- better, but it is not worth the effort. Similarly, we kill constant
5816 -- values. However we do not need to do this for internal entities
5817 -- (unless they are inherited user-defined subprograms), since they
5818 -- are not in the business of molesting local values.
5820 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5821 -- kill all checks and values for calls to global subprograms. This
5822 -- takes care of the case where an access to a local subprogram is
5823 -- taken, and could be passed directly or indirectly and then called
5824 -- from almost any context.
5826 -- Note: we do not do this step till after resolving the actuals. That
5827 -- way we still take advantage of the current value information while
5828 -- scanning the actuals.
5830 -- We suppress killing values if we are processing the nodes associated
5831 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5832 -- type kills all the values as part of analyzing the code that
5833 -- initializes the dispatch tables.
5835 if Inside_Freezing_Actions
= 0
5836 and then (not Is_Library_Level_Entity
(Nam
)
5837 or else Suppress_Value_Tracking_On_Call
5838 (Nearest_Dynamic_Scope
(Current_Scope
)))
5839 and then (Comes_From_Source
(Nam
)
5840 or else (Present
(Alias
(Nam
))
5841 and then Comes_From_Source
(Alias
(Nam
))))
5843 Kill_Current_Values
;
5846 -- If we are warning about unread OUT parameters, this is the place to
5847 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5848 -- after the above call to Kill_Current_Values (since that call clears
5849 -- the Last_Assignment field of all local variables).
5851 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
5852 and then Comes_From_Source
(N
)
5853 and then In_Extended_Main_Source_Unit
(N
)
5860 F
:= First_Formal
(Nam
);
5861 A
:= First_Actual
(N
);
5862 while Present
(F
) and then Present
(A
) loop
5863 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
5864 and then Warn_On_Modified_As_Out_Parameter
(F
)
5865 and then Is_Entity_Name
(A
)
5866 and then Present
(Entity
(A
))
5867 and then Comes_From_Source
(N
)
5868 and then Safe_To_Capture_Value
(N
, Entity
(A
))
5870 Set_Last_Assignment
(Entity
(A
), A
);
5879 -- If the subprogram is a primitive operation, check whether or not
5880 -- it is a correct dispatching call.
5882 if Is_Overloadable
(Nam
)
5883 and then Is_Dispatching_Operation
(Nam
)
5885 Check_Dispatching_Call
(N
);
5887 elsif Ekind
(Nam
) /= E_Subprogram_Type
5888 and then Is_Abstract_Subprogram
(Nam
)
5889 and then not In_Instance
5891 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
5894 -- If this is a dispatching call, generate the appropriate reference,
5895 -- for better source navigation in GPS.
5897 if Is_Overloadable
(Nam
)
5898 and then Present
(Controlling_Argument
(N
))
5900 Generate_Reference
(Nam
, Subp
, 'R');
5902 -- Normal case, not a dispatching call: generate a call reference
5905 Generate_Reference
(Nam
, Subp
, 's');
5908 if Is_Intrinsic_Subprogram
(Nam
) then
5909 Check_Intrinsic_Call
(N
);
5912 -- Check for violation of restriction No_Specific_Termination_Handlers
5913 -- and warn on a potentially blocking call to Abort_Task.
5915 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
5916 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
5918 Is_RTE
(Nam
, RE_Specific_Handler
))
5920 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
5922 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
5923 Check_Potentially_Blocking_Operation
(N
);
5926 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
5927 -- timing event violates restriction No_Relative_Delay (AI-0211). We
5928 -- need to check the second argument to determine whether it is an
5929 -- absolute or relative timing event.
5931 if Restriction_Check_Required
(No_Relative_Delay
)
5932 and then Is_RTE
(Nam
, RE_Set_Handler
)
5933 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
5935 Check_Restriction
(No_Relative_Delay
, N
);
5938 -- Issue an error for a call to an eliminated subprogram. This routine
5939 -- will not perform the check if the call appears within a default
5942 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
5944 -- In formal mode, the primitive operations of a tagged type or type
5945 -- extension do not include functions that return the tagged type.
5947 if Nkind
(N
) = N_Function_Call
5948 and then Is_Tagged_Type
(Etype
(N
))
5949 and then Is_Entity_Name
(Name
(N
))
5950 and then Is_Inherited_Operation_For_Type
(Entity
(Name
(N
)), Etype
(N
))
5952 Check_SPARK_Restriction
("function not inherited", N
);
5955 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
5956 -- class-wide and the call dispatches on result in a context that does
5957 -- not provide a tag, the call raises Program_Error.
5959 if Nkind
(N
) = N_Function_Call
5960 and then In_Instance
5961 and then Is_Generic_Actual_Type
(Typ
)
5962 and then Is_Class_Wide_Type
(Typ
)
5963 and then Has_Controlling_Result
(Nam
)
5964 and then Nkind
(Parent
(N
)) = N_Object_Declaration
5966 -- Verify that none of the formals are controlling
5969 Call_OK
: Boolean := False;
5973 F
:= First_Formal
(Nam
);
5974 while Present
(F
) loop
5975 if Is_Controlling_Formal
(F
) then
5984 Error_Msg_N
("!?? cannot determine tag of result", N
);
5985 Error_Msg_N
("!?? Program_Error will be raised", N
);
5987 Make_Raise_Program_Error
(Sloc
(N
),
5988 Reason
=> PE_Explicit_Raise
));
5993 -- Check the dimensions of the actuals in the call. For function calls,
5994 -- propagate the dimensions from the returned type to N.
5996 Analyze_Dimension_Call
(N
, Nam
);
5998 -- All done, evaluate call and deal with elaboration issues
6001 Check_Elab_Call
(N
);
6002 Warn_On_Overlapping_Actuals
(Nam
, N
);
6005 -----------------------------
6006 -- Resolve_Case_Expression --
6007 -----------------------------
6009 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6013 Alt
:= First
(Alternatives
(N
));
6014 while Present
(Alt
) loop
6015 Resolve
(Expression
(Alt
), Typ
);
6020 Eval_Case_Expression
(N
);
6021 end Resolve_Case_Expression
;
6023 -------------------------------
6024 -- Resolve_Character_Literal --
6025 -------------------------------
6027 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
6028 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6032 -- Verify that the character does belong to the type of the context
6034 Set_Etype
(N
, B_Typ
);
6035 Eval_Character_Literal
(N
);
6037 -- Wide_Wide_Character literals must always be defined, since the set
6038 -- of wide wide character literals is complete, i.e. if a character
6039 -- literal is accepted by the parser, then it is OK for wide wide
6040 -- character (out of range character literals are rejected).
6042 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6045 -- Always accept character literal for type Any_Character, which
6046 -- occurs in error situations and in comparisons of literals, both
6047 -- of which should accept all literals.
6049 elsif B_Typ
= Any_Character
then
6052 -- For Standard.Character or a type derived from it, check that the
6053 -- literal is in range.
6055 elsif Root_Type
(B_Typ
) = Standard_Character
then
6056 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6060 -- For Standard.Wide_Character or a type derived from it, check that the
6061 -- literal is in range.
6063 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
6064 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6068 -- For Standard.Wide_Wide_Character or a type derived from it, we
6069 -- know the literal is in range, since the parser checked!
6071 elsif Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6074 -- If the entity is already set, this has already been resolved in a
6075 -- generic context, or comes from expansion. Nothing else to do.
6077 elsif Present
(Entity
(N
)) then
6080 -- Otherwise we have a user defined character type, and we can use the
6081 -- standard visibility mechanisms to locate the referenced entity.
6084 C
:= Current_Entity
(N
);
6085 while Present
(C
) loop
6086 if Etype
(C
) = B_Typ
then
6087 Set_Entity_With_Style_Check
(N
, C
);
6088 Generate_Reference
(C
, N
);
6096 -- If we fall through, then the literal does not match any of the
6097 -- entries of the enumeration type. This isn't just a constraint error
6098 -- situation, it is an illegality (see RM 4.2).
6101 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6102 end Resolve_Character_Literal
;
6104 ---------------------------
6105 -- Resolve_Comparison_Op --
6106 ---------------------------
6108 -- Context requires a boolean type, and plays no role in resolution.
6109 -- Processing identical to that for equality operators. The result type is
6110 -- the base type, which matters when pathological subtypes of booleans with
6111 -- limited ranges are used.
6113 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6114 L
: constant Node_Id
:= Left_Opnd
(N
);
6115 R
: constant Node_Id
:= Right_Opnd
(N
);
6119 -- If this is an intrinsic operation which is not predefined, use the
6120 -- types of its declared arguments to resolve the possibly overloaded
6121 -- operands. Otherwise the operands are unambiguous and specify the
6124 if Scope
(Entity
(N
)) /= Standard_Standard
then
6125 T
:= Etype
(First_Entity
(Entity
(N
)));
6128 T
:= Find_Unique_Type
(L
, R
);
6130 if T
= Any_Fixed
then
6131 T
:= Unique_Fixed_Point_Type
(L
);
6135 Set_Etype
(N
, Base_Type
(Typ
));
6136 Generate_Reference
(T
, N
, ' ');
6138 -- Skip remaining processing if already set to Any_Type
6140 if T
= Any_Type
then
6144 -- Deal with other error cases
6146 if T
= Any_String
or else
6147 T
= Any_Composite
or else
6150 if T
= Any_Character
then
6151 Ambiguous_Character
(L
);
6153 Error_Msg_N
("ambiguous operands for comparison", N
);
6156 Set_Etype
(N
, Any_Type
);
6160 -- Resolve the operands if types OK
6164 Check_Unset_Reference
(L
);
6165 Check_Unset_Reference
(R
);
6166 Generate_Operator_Reference
(N
, T
);
6167 Check_Low_Bound_Tested
(N
);
6169 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6170 -- types or array types except String.
6172 if Is_Boolean_Type
(T
) then
6173 Check_SPARK_Restriction
6174 ("comparison is not defined on Boolean type", N
);
6176 elsif Is_Array_Type
(T
)
6177 and then Base_Type
(T
) /= Standard_String
6179 Check_SPARK_Restriction
6180 ("comparison is not defined on array types other than String", N
);
6183 -- Check comparison on unordered enumeration
6185 if Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
)) then
6186 Error_Msg_N
("comparison on unordered enumeration type?U?", N
);
6189 -- Evaluate the relation (note we do this after the above check since
6190 -- this Eval call may change N to True/False.
6192 Analyze_Dimension
(N
);
6193 Eval_Relational_Op
(N
);
6194 end Resolve_Comparison_Op
;
6196 -----------------------------------------
6197 -- Resolve_Discrete_Subtype_Indication --
6198 -----------------------------------------
6200 procedure Resolve_Discrete_Subtype_Indication
6208 Analyze
(Subtype_Mark
(N
));
6209 S
:= Entity
(Subtype_Mark
(N
));
6211 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6212 Error_Msg_N
("expect range constraint for discrete type", N
);
6213 Set_Etype
(N
, Any_Type
);
6216 R
:= Range_Expression
(Constraint
(N
));
6224 if Base_Type
(S
) /= Base_Type
(Typ
) then
6226 ("expect subtype of }", N
, First_Subtype
(Typ
));
6228 -- Rewrite the constraint as a range of Typ
6229 -- to allow compilation to proceed further.
6232 Rewrite
(Low_Bound
(R
),
6233 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6234 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6235 Attribute_Name
=> Name_First
));
6236 Rewrite
(High_Bound
(R
),
6237 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
6238 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6239 Attribute_Name
=> Name_First
));
6243 Set_Etype
(N
, Etype
(R
));
6245 -- Additionally, we must check that the bounds are compatible
6246 -- with the given subtype, which might be different from the
6247 -- type of the context.
6249 Apply_Range_Check
(R
, S
);
6251 -- ??? If the above check statically detects a Constraint_Error
6252 -- it replaces the offending bound(s) of the range R with a
6253 -- Constraint_Error node. When the itype which uses these bounds
6254 -- is frozen the resulting call to Duplicate_Subexpr generates
6255 -- a new temporary for the bounds.
6257 -- Unfortunately there are other itypes that are also made depend
6258 -- on these bounds, so when Duplicate_Subexpr is called they get
6259 -- a forward reference to the newly created temporaries and Gigi
6260 -- aborts on such forward references. This is probably sign of a
6261 -- more fundamental problem somewhere else in either the order of
6262 -- itype freezing or the way certain itypes are constructed.
6264 -- To get around this problem we call Remove_Side_Effects right
6265 -- away if either bounds of R are a Constraint_Error.
6268 L
: constant Node_Id
:= Low_Bound
(R
);
6269 H
: constant Node_Id
:= High_Bound
(R
);
6272 if Nkind
(L
) = N_Raise_Constraint_Error
then
6273 Remove_Side_Effects
(L
);
6276 if Nkind
(H
) = N_Raise_Constraint_Error
then
6277 Remove_Side_Effects
(H
);
6281 Check_Unset_Reference
(Low_Bound
(R
));
6282 Check_Unset_Reference
(High_Bound
(R
));
6285 end Resolve_Discrete_Subtype_Indication
;
6287 -------------------------
6288 -- Resolve_Entity_Name --
6289 -------------------------
6291 -- Used to resolve identifiers and expanded names
6293 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
6294 E
: constant Entity_Id
:= Entity
(N
);
6297 -- If garbage from errors, set to Any_Type and return
6299 if No
(E
) and then Total_Errors_Detected
/= 0 then
6300 Set_Etype
(N
, Any_Type
);
6304 -- Replace named numbers by corresponding literals. Note that this is
6305 -- the one case where Resolve_Entity_Name must reset the Etype, since
6306 -- it is currently marked as universal.
6308 if Ekind
(E
) = E_Named_Integer
then
6310 Eval_Named_Integer
(N
);
6312 elsif Ekind
(E
) = E_Named_Real
then
6314 Eval_Named_Real
(N
);
6316 -- For enumeration literals, we need to make sure that a proper style
6317 -- check is done, since such literals are overloaded, and thus we did
6318 -- not do a style check during the first phase of analysis.
6320 elsif Ekind
(E
) = E_Enumeration_Literal
then
6321 Set_Entity_With_Style_Check
(N
, E
);
6322 Eval_Entity_Name
(N
);
6324 -- Case of subtype name appearing as an operand in expression
6326 elsif Is_Type
(E
) then
6328 -- Allow use of subtype if it is a concurrent type where we are
6329 -- currently inside the body. This will eventually be expanded into a
6330 -- call to Self (for tasks) or _object (for protected objects). Any
6331 -- other use of a subtype is invalid.
6333 if Is_Concurrent_Type
(E
)
6334 and then In_Open_Scopes
(E
)
6338 -- Any other use is an error
6342 ("invalid use of subtype mark in expression or call", N
);
6345 -- Check discriminant use if entity is discriminant in current scope,
6346 -- i.e. discriminant of record or concurrent type currently being
6347 -- analyzed. Uses in corresponding body are unrestricted.
6349 elsif Ekind
(E
) = E_Discriminant
6350 and then Scope
(E
) = Current_Scope
6351 and then not Has_Completion
(Current_Scope
)
6353 Check_Discriminant_Use
(N
);
6355 -- A parameterless generic function cannot appear in a context that
6356 -- requires resolution.
6358 elsif Ekind
(E
) = E_Generic_Function
then
6359 Error_Msg_N
("illegal use of generic function", N
);
6361 elsif Ekind
(E
) = E_Out_Parameter
6362 and then Ada_Version
= Ada_83
6363 and then (Nkind
(Parent
(N
)) in N_Op
6364 or else (Nkind
(Parent
(N
)) = N_Assignment_Statement
6365 and then N
= Expression
(Parent
(N
)))
6366 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
)
6368 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
6370 -- In all other cases, just do the possible static evaluation
6373 -- A deferred constant that appears in an expression must have a
6374 -- completion, unless it has been removed by in-place expansion of
6377 if Ekind
(E
) = E_Constant
6378 and then Comes_From_Source
(E
)
6379 and then No
(Constant_Value
(E
))
6380 and then Is_Frozen
(Etype
(E
))
6381 and then not In_Spec_Expression
6382 and then not Is_Imported
(E
)
6384 if No_Initialization
(Parent
(E
))
6385 or else (Present
(Full_View
(E
))
6386 and then No_Initialization
(Parent
(Full_View
(E
))))
6391 "deferred constant is frozen before completion", N
);
6395 Eval_Entity_Name
(N
);
6397 end Resolve_Entity_Name
;
6403 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
6404 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
6412 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
6413 -- If the bounds of the entry family being called depend on task
6414 -- discriminants, build a new index subtype where a discriminant is
6415 -- replaced with the value of the discriminant of the target task.
6416 -- The target task is the prefix of the entry name in the call.
6418 -----------------------
6419 -- Actual_Index_Type --
6420 -----------------------
6422 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
6423 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
6424 Tsk
: constant Entity_Id
:= Scope
(E
);
6425 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
6426 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
6429 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
6430 -- If the bound is given by a discriminant, replace with a reference
6431 -- to the discriminant of the same name in the target task. If the
6432 -- entry name is the target of a requeue statement and the entry is
6433 -- in the current protected object, the bound to be used is the
6434 -- discriminal of the object (see Apply_Range_Checks for details of
6435 -- the transformation).
6437 -----------------------------
6438 -- Actual_Discriminant_Ref --
6439 -----------------------------
6441 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
6442 Typ
: constant Entity_Id
:= Etype
(Bound
);
6446 Remove_Side_Effects
(Bound
);
6448 if not Is_Entity_Name
(Bound
)
6449 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
6453 elsif Is_Protected_Type
(Tsk
)
6454 and then In_Open_Scopes
(Tsk
)
6455 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
6457 -- Note: here Bound denotes a discriminant of the corresponding
6458 -- record type tskV, whose discriminal is a formal of the
6459 -- init-proc tskVIP. What we want is the body discriminal,
6460 -- which is associated to the discriminant of the original
6461 -- concurrent type tsk.
6463 return New_Occurrence_Of
6464 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
6468 Make_Selected_Component
(Loc
,
6469 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
6470 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
6475 end Actual_Discriminant_Ref
;
6477 -- Start of processing for Actual_Index_Type
6480 if not Has_Discriminants
(Tsk
)
6481 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
6483 return Entry_Index_Type
(E
);
6486 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
6487 Set_Etype
(New_T
, Base_Type
(Typ
));
6488 Set_Size_Info
(New_T
, Typ
);
6489 Set_RM_Size
(New_T
, RM_Size
(Typ
));
6490 Set_Scalar_Range
(New_T
,
6491 Make_Range
(Sloc
(Entry_Name
),
6492 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
6493 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
6497 end Actual_Index_Type
;
6499 -- Start of processing of Resolve_Entry
6502 -- Find name of entry being called, and resolve prefix of name with its
6503 -- own type. The prefix can be overloaded, and the name and signature of
6504 -- the entry must be taken into account.
6506 if Nkind
(Entry_Name
) = N_Indexed_Component
then
6508 -- Case of dealing with entry family within the current tasks
6510 E_Name
:= Prefix
(Entry_Name
);
6513 E_Name
:= Entry_Name
;
6516 if Is_Entity_Name
(E_Name
) then
6518 -- Entry call to an entry (or entry family) in the current task. This
6519 -- is legal even though the task will deadlock. Rewrite as call to
6522 -- This can also be a call to an entry in an enclosing task. If this
6523 -- is a single task, we have to retrieve its name, because the scope
6524 -- of the entry is the task type, not the object. If the enclosing
6525 -- task is a task type, the identity of the task is given by its own
6528 -- Finally this can be a requeue on an entry of the same task or
6529 -- protected object.
6531 S
:= Scope
(Entity
(E_Name
));
6533 for J
in reverse 0 .. Scope_Stack
.Last
loop
6534 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
6535 and then not Comes_From_Source
(S
)
6537 -- S is an enclosing task or protected object. The concurrent
6538 -- declaration has been converted into a type declaration, and
6539 -- the object itself has an object declaration that follows
6540 -- the type in the same declarative part.
6542 Tsk
:= Next_Entity
(S
);
6543 while Etype
(Tsk
) /= S
loop
6550 elsif S
= Scope_Stack
.Table
(J
).Entity
then
6552 -- Call to current task. Will be transformed into call to Self
6560 Make_Selected_Component
(Loc
,
6561 Prefix
=> New_Occurrence_Of
(S
, Loc
),
6563 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
6564 Rewrite
(E_Name
, New_N
);
6567 elsif Nkind
(Entry_Name
) = N_Selected_Component
6568 and then Is_Overloaded
(Prefix
(Entry_Name
))
6570 -- Use the entry name (which must be unique at this point) to find
6571 -- the prefix that returns the corresponding task/protected type.
6574 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
6575 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
6580 Get_First_Interp
(Pref
, I
, It
);
6581 while Present
(It
.Typ
) loop
6582 if Scope
(Ent
) = It
.Typ
then
6583 Set_Etype
(Pref
, It
.Typ
);
6587 Get_Next_Interp
(I
, It
);
6592 if Nkind
(Entry_Name
) = N_Selected_Component
then
6593 Resolve
(Prefix
(Entry_Name
));
6595 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
6596 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
6597 Resolve
(Prefix
(Prefix
(Entry_Name
)));
6598 Index
:= First
(Expressions
(Entry_Name
));
6599 Resolve
(Index
, Entry_Index_Type
(Nam
));
6601 -- Up to this point the expression could have been the actual in a
6602 -- simple entry call, and be given by a named association.
6604 if Nkind
(Index
) = N_Parameter_Association
then
6605 Error_Msg_N
("expect expression for entry index", Index
);
6607 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
6612 ------------------------
6613 -- Resolve_Entry_Call --
6614 ------------------------
6616 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
6617 Entry_Name
: constant Node_Id
:= Name
(N
);
6618 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
6620 First_Named
: Node_Id
;
6627 -- We kill all checks here, because it does not seem worth the effort to
6628 -- do anything better, an entry call is a big operation.
6632 -- Processing of the name is similar for entry calls and protected
6633 -- operation calls. Once the entity is determined, we can complete
6634 -- the resolution of the actuals.
6636 -- The selector may be overloaded, in the case of a protected object
6637 -- with overloaded functions. The type of the context is used for
6640 if Nkind
(Entry_Name
) = N_Selected_Component
6641 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
6642 and then Typ
/= Standard_Void_Type
6649 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
6650 while Present
(It
.Typ
) loop
6651 if Covers
(Typ
, It
.Typ
) then
6652 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
6653 Set_Etype
(Entry_Name
, It
.Typ
);
6655 Generate_Reference
(It
.Typ
, N
, ' ');
6658 Get_Next_Interp
(I
, It
);
6663 Resolve_Entry
(Entry_Name
);
6665 if Nkind
(Entry_Name
) = N_Selected_Component
then
6667 -- Simple entry call
6669 Nam
:= Entity
(Selector_Name
(Entry_Name
));
6670 Obj
:= Prefix
(Entry_Name
);
6671 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
6673 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
6675 -- Call to member of entry family
6677 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
6678 Obj
:= Prefix
(Prefix
(Entry_Name
));
6679 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
6682 -- We cannot in general check the maximum depth of protected entry calls
6683 -- at compile time. But we can tell that any protected entry call at all
6684 -- violates a specified nesting depth of zero.
6686 if Is_Protected_Type
(Scope
(Nam
)) then
6687 Check_Restriction
(Max_Entry_Queue_Length
, N
);
6690 -- Use context type to disambiguate a protected function that can be
6691 -- called without actuals and that returns an array type, and where the
6692 -- argument list may be an indexing of the returned value.
6694 if Ekind
(Nam
) = E_Function
6695 and then Needs_No_Actuals
(Nam
)
6696 and then Present
(Parameter_Associations
(N
))
6698 ((Is_Array_Type
(Etype
(Nam
))
6699 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
6701 or else (Is_Access_Type
(Etype
(Nam
))
6702 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
6706 Component_Type
(Designated_Type
(Etype
(Nam
))))))
6709 Index_Node
: Node_Id
;
6713 Make_Indexed_Component
(Loc
,
6715 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
6716 Expressions
=> Parameter_Associations
(N
));
6718 -- Since we are correcting a node classification error made by the
6719 -- parser, we call Replace rather than Rewrite.
6721 Replace
(N
, Index_Node
);
6722 Set_Etype
(Prefix
(N
), Etype
(Nam
));
6724 Resolve_Indexed_Component
(N
, Typ
);
6729 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
6730 and then Present
(PPC_Wrapper
(Nam
))
6731 and then Current_Scope
/= PPC_Wrapper
(Nam
)
6733 -- Rewrite as call to the precondition wrapper, adding the task
6734 -- object to the list of actuals. If the call is to a member of an
6735 -- entry family, include the index as well.
6739 New_Actuals
: List_Id
;
6742 New_Actuals
:= New_List
(Obj
);
6744 if Nkind
(Entry_Name
) = N_Indexed_Component
then
6745 Append_To
(New_Actuals
,
6746 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
6749 Append_List
(Parameter_Associations
(N
), New_Actuals
);
6751 Make_Procedure_Call_Statement
(Loc
,
6753 New_Occurrence_Of
(PPC_Wrapper
(Nam
), Loc
),
6754 Parameter_Associations
=> New_Actuals
);
6755 Rewrite
(N
, New_Call
);
6756 Analyze_And_Resolve
(N
);
6761 -- The operation name may have been overloaded. Order the actuals
6762 -- according to the formals of the resolved entity, and set the return
6763 -- type to that of the operation.
6766 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6767 pragma Assert
(Norm_OK
);
6768 Set_Etype
(N
, Etype
(Nam
));
6771 Resolve_Actuals
(N
, Nam
);
6772 Check_Internal_Protected_Use
(N
, Nam
);
6774 -- Create a call reference to the entry
6776 Generate_Reference
(Nam
, Entry_Name
, 's');
6778 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
6779 Check_Potentially_Blocking_Operation
(N
);
6782 -- Verify that a procedure call cannot masquerade as an entry
6783 -- call where an entry call is expected.
6785 if Ekind
(Nam
) = E_Procedure
then
6786 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
6787 and then N
= Entry_Call_Statement
(Parent
(N
))
6789 Error_Msg_N
("entry call required in select statement", N
);
6791 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
6792 and then N
= Triggering_Statement
(Parent
(N
))
6794 Error_Msg_N
("triggering statement cannot be procedure call", N
);
6796 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
6797 and then not In_Open_Scopes
(Scope
(Nam
))
6799 Error_Msg_N
("task has no entry with this name", Entry_Name
);
6803 -- After resolution, entry calls and protected procedure calls are
6804 -- changed into entry calls, for expansion. The structure of the node
6805 -- does not change, so it can safely be done in place. Protected
6806 -- function calls must keep their structure because they are
6809 if Ekind
(Nam
) /= E_Function
then
6811 -- A protected operation that is not a function may modify the
6812 -- corresponding object, and cannot apply to a constant. If this
6813 -- is an internal call, the prefix is the type itself.
6815 if Is_Protected_Type
(Scope
(Nam
))
6816 and then not Is_Variable
(Obj
)
6817 and then (not Is_Entity_Name
(Obj
)
6818 or else not Is_Type
(Entity
(Obj
)))
6821 ("prefix of protected procedure or entry call must be variable",
6825 Actuals
:= Parameter_Associations
(N
);
6826 First_Named
:= First_Named_Actual
(N
);
6829 Make_Entry_Call_Statement
(Loc
,
6831 Parameter_Associations
=> Actuals
));
6833 Set_First_Named_Actual
(N
, First_Named
);
6834 Set_Analyzed
(N
, True);
6836 -- Protected functions can return on the secondary stack, in which
6837 -- case we must trigger the transient scope mechanism.
6839 elsif Full_Expander_Active
6840 and then Requires_Transient_Scope
(Etype
(Nam
))
6842 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6844 end Resolve_Entry_Call
;
6846 -------------------------
6847 -- Resolve_Equality_Op --
6848 -------------------------
6850 -- Both arguments must have the same type, and the boolean context does
6851 -- not participate in the resolution. The first pass verifies that the
6852 -- interpretation is not ambiguous, and the type of the left argument is
6853 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6854 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6855 -- though they carry a single (universal) type. Diagnose this case here.
6857 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6858 L
: constant Node_Id
:= Left_Opnd
(N
);
6859 R
: constant Node_Id
:= Right_Opnd
(N
);
6860 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
6862 procedure Check_If_Expression
(Cond
: Node_Id
);
6863 -- The resolution rule for if expressions requires that each such must
6864 -- have a unique type. This means that if several dependent expressions
6865 -- are of a non-null anonymous access type, and the context does not
6866 -- impose an expected type (as can be the case in an equality operation)
6867 -- the expression must be rejected.
6869 procedure Explain_Redundancy
(N
: Node_Id
);
6870 -- Attempt to explain the nature of a redundant comparison with True. If
6871 -- the expression N is too complex, this routine issues a general error
6874 function Find_Unique_Access_Type
return Entity_Id
;
6875 -- In the case of allocators and access attributes, the context must
6876 -- provide an indication of the specific access type to be used. If
6877 -- one operand is of such a "generic" access type, check whether there
6878 -- is a specific visible access type that has the same designated type.
6879 -- This is semantically dubious, and of no interest to any real code,
6880 -- but c48008a makes it all worthwhile.
6882 -------------------------
6883 -- Check_If_Expression --
6884 -------------------------
6886 procedure Check_If_Expression
(Cond
: Node_Id
) is
6887 Then_Expr
: Node_Id
;
6888 Else_Expr
: Node_Id
;
6891 if Nkind
(Cond
) = N_If_Expression
then
6892 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
6893 Else_Expr
:= Next
(Then_Expr
);
6895 if Nkind
(Then_Expr
) /= N_Null
6896 and then Nkind
(Else_Expr
) /= N_Null
6898 Error_Msg_N
("cannot determine type of if expression", Cond
);
6901 end Check_If_Expression
;
6903 ------------------------
6904 -- Explain_Redundancy --
6905 ------------------------
6907 procedure Explain_Redundancy
(N
: Node_Id
) is
6915 -- Strip the operand down to an entity
6918 if Nkind
(Val
) = N_Selected_Component
then
6919 Val
:= Selector_Name
(Val
);
6925 -- The construct denotes an entity
6927 if Is_Entity_Name
(Val
) and then Present
(Entity
(Val
)) then
6928 Val_Id
:= Entity
(Val
);
6930 -- Do not generate an error message when the comparison is done
6931 -- against the enumeration literal Standard.True.
6933 if Ekind
(Val_Id
) /= E_Enumeration_Literal
then
6935 -- Build a customized error message
6938 Add_Str_To_Name_Buffer
("?r?");
6940 if Ekind
(Val_Id
) = E_Component
then
6941 Add_Str_To_Name_Buffer
("component ");
6943 elsif Ekind
(Val_Id
) = E_Constant
then
6944 Add_Str_To_Name_Buffer
("constant ");
6946 elsif Ekind
(Val_Id
) = E_Discriminant
then
6947 Add_Str_To_Name_Buffer
("discriminant ");
6949 elsif Is_Formal
(Val_Id
) then
6950 Add_Str_To_Name_Buffer
("parameter ");
6952 elsif Ekind
(Val_Id
) = E_Variable
then
6953 Add_Str_To_Name_Buffer
("variable ");
6956 Add_Str_To_Name_Buffer
("& is always True!");
6959 Error_Msg_NE
(Get_Name_String
(Error
), Val
, Val_Id
);
6962 -- The construct is too complex to disect, issue a general message
6965 Error_Msg_N
("?r?expression is always True!", Val
);
6967 end Explain_Redundancy
;
6969 -----------------------------
6970 -- Find_Unique_Access_Type --
6971 -----------------------------
6973 function Find_Unique_Access_Type
return Entity_Id
is
6979 if Ekind_In
(Etype
(R
), E_Allocator_Type
,
6980 E_Access_Attribute_Type
)
6982 Acc
:= Designated_Type
(Etype
(R
));
6984 elsif Ekind_In
(Etype
(L
), E_Allocator_Type
,
6985 E_Access_Attribute_Type
)
6987 Acc
:= Designated_Type
(Etype
(L
));
6993 while S
/= Standard_Standard
loop
6994 E
:= First_Entity
(S
);
6995 while Present
(E
) loop
6997 and then Is_Access_Type
(E
)
6998 and then Ekind
(E
) /= E_Allocator_Type
6999 and then Designated_Type
(E
) = Base_Type
(Acc
)
7011 end Find_Unique_Access_Type
;
7013 -- Start of processing for Resolve_Equality_Op
7016 Set_Etype
(N
, Base_Type
(Typ
));
7017 Generate_Reference
(T
, N
, ' ');
7019 if T
= Any_Fixed
then
7020 T
:= Unique_Fixed_Point_Type
(L
);
7023 if T
/= Any_Type
then
7024 if T
= Any_String
or else
7025 T
= Any_Composite
or else
7028 if T
= Any_Character
then
7029 Ambiguous_Character
(L
);
7031 Error_Msg_N
("ambiguous operands for equality", N
);
7034 Set_Etype
(N
, Any_Type
);
7037 elsif T
= Any_Access
7038 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
7040 T
:= Find_Unique_Access_Type
;
7043 Error_Msg_N
("ambiguous operands for equality", N
);
7044 Set_Etype
(N
, Any_Type
);
7048 -- If expressions must have a single type, and if the context does
7049 -- not impose one the dependent expressions cannot be anonymous
7052 -- Why no similar processing for case expressions???
7054 elsif Ada_Version
>= Ada_2012
7055 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
7056 E_Anonymous_Access_Subprogram_Type
)
7057 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
7058 E_Anonymous_Access_Subprogram_Type
)
7060 Check_If_Expression
(L
);
7061 Check_If_Expression
(R
);
7067 -- In SPARK, equality operators = and /= for array types other than
7068 -- String are only defined when, for each index position, the
7069 -- operands have equal static bounds.
7071 if Is_Array_Type
(T
) then
7073 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7074 -- operation if not needed.
7076 if Restriction_Check_Required
(SPARK_05
)
7077 and then Base_Type
(T
) /= Standard_String
7078 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
7079 and then Etype
(L
) /= Any_Composite
-- or else L in error
7080 and then Etype
(R
) /= Any_Composite
-- or else R in error
7081 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
7083 Check_SPARK_Restriction
7084 ("array types should have matching static bounds", N
);
7088 -- If the unique type is a class-wide type then it will be expanded
7089 -- into a dispatching call to the predefined primitive. Therefore we
7090 -- check here for potential violation of such restriction.
7092 if Is_Class_Wide_Type
(T
) then
7093 Check_Restriction
(No_Dispatching_Calls
, N
);
7096 if Warn_On_Redundant_Constructs
7097 and then Comes_From_Source
(N
)
7098 and then Comes_From_Source
(R
)
7099 and then Is_Entity_Name
(R
)
7100 and then Entity
(R
) = Standard_True
7102 Error_Msg_N
-- CODEFIX
7103 ("?r?comparison with True is redundant!", N
);
7104 Explain_Redundancy
(Original_Node
(R
));
7107 Check_Unset_Reference
(L
);
7108 Check_Unset_Reference
(R
);
7109 Generate_Operator_Reference
(N
, T
);
7110 Check_Low_Bound_Tested
(N
);
7112 -- If this is an inequality, it may be the implicit inequality
7113 -- created for a user-defined operation, in which case the corres-
7114 -- ponding equality operation is not intrinsic, and the operation
7115 -- cannot be constant-folded. Else fold.
7117 if Nkind
(N
) = N_Op_Eq
7118 or else Comes_From_Source
(Entity
(N
))
7119 or else Ekind
(Entity
(N
)) = E_Operator
7120 or else Is_Intrinsic_Subprogram
7121 (Corresponding_Equality
(Entity
(N
)))
7123 Analyze_Dimension
(N
);
7124 Eval_Relational_Op
(N
);
7126 elsif Nkind
(N
) = N_Op_Ne
7127 and then Is_Abstract_Subprogram
(Entity
(N
))
7129 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
7132 -- Ada 2005: If one operand is an anonymous access type, convert the
7133 -- other operand to it, to ensure that the underlying types match in
7134 -- the back-end. Same for access_to_subprogram, and the conversion
7135 -- verifies that the types are subtype conformant.
7137 -- We apply the same conversion in the case one of the operands is a
7138 -- private subtype of the type of the other.
7140 -- Why the Expander_Active test here ???
7142 if Full_Expander_Active
7144 (Ekind_In
(T
, E_Anonymous_Access_Type
,
7145 E_Anonymous_Access_Subprogram_Type
)
7146 or else Is_Private_Type
(T
))
7148 if Etype
(L
) /= T
then
7150 Make_Unchecked_Type_Conversion
(Sloc
(L
),
7151 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
7152 Expression
=> Relocate_Node
(L
)));
7153 Analyze_And_Resolve
(L
, T
);
7156 if (Etype
(R
)) /= T
then
7158 Make_Unchecked_Type_Conversion
(Sloc
(R
),
7159 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
7160 Expression
=> Relocate_Node
(R
)));
7161 Analyze_And_Resolve
(R
, T
);
7165 end Resolve_Equality_Op
;
7167 ----------------------------------
7168 -- Resolve_Explicit_Dereference --
7169 ----------------------------------
7171 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
7172 Loc
: constant Source_Ptr
:= Sloc
(N
);
7174 P
: constant Node_Id
:= Prefix
(N
);
7177 -- The candidate prefix type, if overloaded
7183 Check_Fully_Declared_Prefix
(Typ
, P
);
7186 if Is_Overloaded
(P
) then
7188 -- Use the context type to select the prefix that has the correct
7189 -- designated type. Keep the first match, which will be the inner-
7192 Get_First_Interp
(P
, I
, It
);
7194 while Present
(It
.Typ
) loop
7195 if Is_Access_Type
(It
.Typ
)
7196 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
7202 -- Remove access types that do not match, but preserve access
7203 -- to subprogram interpretations, in case a further dereference
7204 -- is needed (see below).
7206 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7210 Get_Next_Interp
(I
, It
);
7213 if Present
(P_Typ
) then
7215 Set_Etype
(N
, Designated_Type
(P_Typ
));
7218 -- If no interpretation covers the designated type of the prefix,
7219 -- this is the pathological case where not all implementations of
7220 -- the prefix allow the interpretation of the node as a call. Now
7221 -- that the expected type is known, Remove other interpretations
7222 -- from prefix, rewrite it as a call, and resolve again, so that
7223 -- the proper call node is generated.
7225 Get_First_Interp
(P
, I
, It
);
7226 while Present
(It
.Typ
) loop
7227 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7231 Get_Next_Interp
(I
, It
);
7235 Make_Function_Call
(Loc
,
7237 Make_Explicit_Dereference
(Loc
,
7239 Parameter_Associations
=> New_List
);
7241 Save_Interps
(N
, New_N
);
7243 Analyze_And_Resolve
(N
, Typ
);
7247 -- If not overloaded, resolve P with its own type
7253 if Is_Access_Type
(Etype
(P
)) then
7254 Apply_Access_Check
(N
);
7257 -- If the designated type is a packed unconstrained array type, and the
7258 -- explicit dereference is not in the context of an attribute reference,
7259 -- then we must compute and set the actual subtype, since it is needed
7260 -- by Gigi. The reason we exclude the attribute case is that this is
7261 -- handled fine by Gigi, and in fact we use such attributes to build the
7262 -- actual subtype. We also exclude generated code (which builds actual
7263 -- subtypes directly if they are needed).
7265 if Is_Array_Type
(Etype
(N
))
7266 and then Is_Packed
(Etype
(N
))
7267 and then not Is_Constrained
(Etype
(N
))
7268 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
7269 and then Comes_From_Source
(N
)
7271 Set_Etype
(N
, Get_Actual_Subtype
(N
));
7274 -- Note: No Eval processing is required for an explicit dereference,
7275 -- because such a name can never be static.
7277 end Resolve_Explicit_Dereference
;
7279 -------------------------------------
7280 -- Resolve_Expression_With_Actions --
7281 -------------------------------------
7283 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
7287 -- If N has no actions, and its expression has been constant folded,
7288 -- then rewrite N as just its expression. Note, we can't do this in
7289 -- the general case of Is_Empty_List (Actions (N)) as this would cause
7290 -- Expression (N) to be expanded again.
7292 if Is_Empty_List
(Actions
(N
))
7293 and then Compile_Time_Known_Value
(Expression
(N
))
7295 Rewrite
(N
, Expression
(N
));
7297 end Resolve_Expression_With_Actions
;
7299 ---------------------------
7300 -- Resolve_If_Expression --
7301 ---------------------------
7303 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
7304 Condition
: constant Node_Id
:= First
(Expressions
(N
));
7305 Then_Expr
: constant Node_Id
:= Next
(Condition
);
7306 Else_Expr
: Node_Id
:= Next
(Then_Expr
);
7307 Else_Typ
: Entity_Id
;
7308 Then_Typ
: Entity_Id
;
7311 Resolve
(Condition
, Any_Boolean
);
7312 Resolve
(Then_Expr
, Typ
);
7313 Then_Typ
:= Etype
(Then_Expr
);
7315 -- When the "then" expression is of a scalar subtype different from the
7316 -- result subtype, then insert a conversion to ensure the generation of
7317 -- a constraint check. The same is done for the else part below, again
7318 -- comparing subtypes rather than base types.
7320 if Is_Scalar_Type
(Then_Typ
)
7321 and then Then_Typ
/= Typ
7323 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
7324 Analyze_And_Resolve
(Then_Expr
, Typ
);
7327 -- If ELSE expression present, just resolve using the determined type
7329 if Present
(Else_Expr
) then
7330 Resolve
(Else_Expr
, Typ
);
7331 Else_Typ
:= Etype
(Else_Expr
);
7333 if Is_Scalar_Type
(Else_Typ
)
7334 and then Else_Typ
/= Typ
7336 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
7337 Analyze_And_Resolve
(Else_Expr
, Typ
);
7340 -- If no ELSE expression is present, root type must be Standard.Boolean
7341 -- and we provide a Standard.True result converted to the appropriate
7342 -- Boolean type (in case it is a derived boolean type).
7344 elsif Root_Type
(Typ
) = Standard_Boolean
then
7346 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
7347 Analyze_And_Resolve
(Else_Expr
, Typ
);
7348 Append_To
(Expressions
(N
), Else_Expr
);
7351 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
7352 Append_To
(Expressions
(N
), Error
);
7356 Eval_If_Expression
(N
);
7357 end Resolve_If_Expression
;
7359 -------------------------------
7360 -- Resolve_Indexed_Component --
7361 -------------------------------
7363 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
7364 Name
: constant Node_Id
:= Prefix
(N
);
7366 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
7370 if Is_Overloaded
(Name
) then
7372 -- Use the context type to select the prefix that yields the correct
7378 I1
: Interp_Index
:= 0;
7379 P
: constant Node_Id
:= Prefix
(N
);
7380 Found
: Boolean := False;
7383 Get_First_Interp
(P
, I
, It
);
7384 while Present
(It
.Typ
) loop
7385 if (Is_Array_Type
(It
.Typ
)
7386 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
7387 or else (Is_Access_Type
(It
.Typ
)
7388 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
7392 Component_Type
(Designated_Type
(It
.Typ
))))
7395 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
7397 if It
= No_Interp
then
7398 Error_Msg_N
("ambiguous prefix for indexing", N
);
7404 Array_Type
:= It
.Typ
;
7410 Array_Type
:= It
.Typ
;
7415 Get_Next_Interp
(I
, It
);
7420 Array_Type
:= Etype
(Name
);
7423 Resolve
(Name
, Array_Type
);
7424 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
7426 -- If prefix is access type, dereference to get real array type.
7427 -- Note: we do not apply an access check because the expander always
7428 -- introduces an explicit dereference, and the check will happen there.
7430 if Is_Access_Type
(Array_Type
) then
7431 Array_Type
:= Designated_Type
(Array_Type
);
7434 -- If name was overloaded, set component type correctly now
7435 -- If a misplaced call to an entry family (which has no index types)
7436 -- return. Error will be diagnosed from calling context.
7438 if Is_Array_Type
(Array_Type
) then
7439 Set_Etype
(N
, Component_Type
(Array_Type
));
7444 Index
:= First_Index
(Array_Type
);
7445 Expr
:= First
(Expressions
(N
));
7447 -- The prefix may have resolved to a string literal, in which case its
7448 -- etype has a special representation. This is only possible currently
7449 -- if the prefix is a static concatenation, written in functional
7452 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
7453 Resolve
(Expr
, Standard_Positive
);
7456 while Present
(Index
) and Present
(Expr
) loop
7457 Resolve
(Expr
, Etype
(Index
));
7458 Check_Unset_Reference
(Expr
);
7460 if Is_Scalar_Type
(Etype
(Expr
)) then
7461 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
7463 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
7471 Analyze_Dimension
(N
);
7473 -- Do not generate the warning on suspicious index if we are analyzing
7474 -- package Ada.Tags; otherwise we will report the warning with the
7475 -- Prims_Ptr field of the dispatch table.
7477 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
7479 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
7482 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
7483 Eval_Indexed_Component
(N
);
7486 -- If the array type is atomic, and is packed, and we are in a left side
7487 -- context, then this is worth a warning, since we have a situation
7488 -- where the access to the component may cause extra read/writes of
7489 -- the atomic array object, which could be considered unexpected.
7491 if Nkind
(N
) = N_Indexed_Component
7492 and then (Is_Atomic
(Array_Type
)
7493 or else (Is_Entity_Name
(Prefix
(N
))
7494 and then Is_Atomic
(Entity
(Prefix
(N
)))))
7495 and then Is_Bit_Packed_Array
(Array_Type
)
7498 Error_Msg_N
("??assignment to component of packed atomic array",
7500 Error_Msg_N
("??\may cause unexpected accesses to atomic object",
7503 end Resolve_Indexed_Component
;
7505 -----------------------------
7506 -- Resolve_Integer_Literal --
7507 -----------------------------
7509 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
7512 Eval_Integer_Literal
(N
);
7513 end Resolve_Integer_Literal
;
7515 --------------------------------
7516 -- Resolve_Intrinsic_Operator --
7517 --------------------------------
7519 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
7520 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
7522 Orig_Op
: constant Entity_Id
:= Entity
(N
);
7526 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
7527 -- If the operand is a literal, it cannot be the expression in a
7528 -- conversion. Use a qualified expression instead.
7530 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
7531 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
7534 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
7536 Make_Qualified_Expression
(Loc
,
7537 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
7538 Expression
=> Relocate_Node
(Opnd
));
7542 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
7546 end Convert_Operand
;
7548 -- Start of processing for Resolve_Intrinsic_Operator
7551 -- We must preserve the original entity in a generic setting, so that
7552 -- the legality of the operation can be verified in an instance.
7554 if not Full_Expander_Active
then
7559 while Scope
(Op
) /= Standard_Standard
loop
7561 pragma Assert
(Present
(Op
));
7565 Set_Is_Overloaded
(N
, False);
7567 -- If the result or operand types are private, rewrite with unchecked
7568 -- conversions on the operands and the result, to expose the proper
7569 -- underlying numeric type.
7571 if Is_Private_Type
(Typ
)
7572 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
7573 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
7575 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
7576 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7577 -- What on earth is this commented out fragment of code???
7579 if Nkind
(N
) = N_Op_Expon
then
7580 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
7582 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
7585 if Nkind
(Arg1
) = N_Type_Conversion
then
7586 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
7589 if Nkind
(Arg2
) = N_Type_Conversion
then
7590 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7593 Set_Left_Opnd
(N
, Arg1
);
7594 Set_Right_Opnd
(N
, Arg2
);
7596 Set_Etype
(N
, Btyp
);
7597 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
7600 elsif Typ
/= Etype
(Left_Opnd
(N
))
7601 or else Typ
/= Etype
(Right_Opnd
(N
))
7603 -- Add explicit conversion where needed, and save interpretations in
7604 -- case operands are overloaded. If the context is a VMS operation,
7605 -- assert that the conversion is legal (the operands have the proper
7606 -- types to select the VMS intrinsic). Note that in rare cases the
7607 -- VMS operators may be visible, but the default System is being used
7608 -- and Address is a private type.
7610 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
7611 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
7613 if Nkind
(Arg1
) = N_Type_Conversion
then
7614 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
7616 if Is_VMS_Operator
(Orig_Op
) then
7617 Set_Conversion_OK
(Arg1
);
7620 Save_Interps
(Left_Opnd
(N
), Arg1
);
7623 if Nkind
(Arg2
) = N_Type_Conversion
then
7624 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7626 if Is_VMS_Operator
(Orig_Op
) then
7627 Set_Conversion_OK
(Arg2
);
7630 Save_Interps
(Right_Opnd
(N
), Arg2
);
7633 Rewrite
(Left_Opnd
(N
), Arg1
);
7634 Rewrite
(Right_Opnd
(N
), Arg2
);
7637 Resolve_Arithmetic_Op
(N
, Typ
);
7640 Resolve_Arithmetic_Op
(N
, Typ
);
7642 end Resolve_Intrinsic_Operator
;
7644 --------------------------------------
7645 -- Resolve_Intrinsic_Unary_Operator --
7646 --------------------------------------
7648 procedure Resolve_Intrinsic_Unary_Operator
7652 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
7658 while Scope
(Op
) /= Standard_Standard
loop
7660 pragma Assert
(Present
(Op
));
7665 if Is_Private_Type
(Typ
) then
7666 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
7667 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7669 Set_Right_Opnd
(N
, Arg2
);
7671 Set_Etype
(N
, Btyp
);
7672 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
7676 Resolve_Unary_Op
(N
, Typ
);
7678 end Resolve_Intrinsic_Unary_Operator
;
7680 ------------------------
7681 -- Resolve_Logical_Op --
7682 ------------------------
7684 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7688 Check_No_Direct_Boolean_Operators
(N
);
7690 -- Predefined operations on scalar types yield the base type. On the
7691 -- other hand, logical operations on arrays yield the type of the
7692 -- arguments (and the context).
7694 if Is_Array_Type
(Typ
) then
7697 B_Typ
:= Base_Type
(Typ
);
7700 -- OK if this is a VMS-specific intrinsic operation
7702 if Is_VMS_Operator
(Entity
(N
)) then
7705 -- The following test is required because the operands of the operation
7706 -- may be literals, in which case the resulting type appears to be
7707 -- compatible with a signed integer type, when in fact it is compatible
7708 -- only with modular types. If the context itself is universal, the
7709 -- operation is illegal.
7711 elsif not Valid_Boolean_Arg
(Typ
) then
7712 Error_Msg_N
("invalid context for logical operation", N
);
7713 Set_Etype
(N
, Any_Type
);
7716 elsif Typ
= Any_Modular
then
7718 ("no modular type available in this context", N
);
7719 Set_Etype
(N
, Any_Type
);
7722 elsif Is_Modular_Integer_Type
(Typ
)
7723 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
7724 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
7726 Check_For_Visible_Operator
(N
, B_Typ
);
7729 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
7730 -- is active and the result type is standard Boolean (do not mess with
7731 -- ops that return a nonstandard Boolean type, because something strange
7734 -- Note: you might expect this replacement to be done during expansion,
7735 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
7736 -- is used, no part of the right operand of an "and" or "or" operator
7737 -- should be executed if the left operand would short-circuit the
7738 -- evaluation of the corresponding "and then" or "or else". If we left
7739 -- the replacement to expansion time, then run-time checks associated
7740 -- with such operands would be evaluated unconditionally, due to being
7741 -- before the condition prior to the rewriting as short-circuit forms
7742 -- during expansion.
7744 if Short_Circuit_And_Or
7745 and then B_Typ
= Standard_Boolean
7746 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
7748 if Nkind
(N
) = N_Op_And
then
7750 Make_And_Then
(Sloc
(N
),
7751 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
7752 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
7753 Analyze_And_Resolve
(N
, B_Typ
);
7755 -- Case of OR changed to OR ELSE
7759 Make_Or_Else
(Sloc
(N
),
7760 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
7761 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
7762 Analyze_And_Resolve
(N
, B_Typ
);
7765 -- Return now, since analysis of the rewritten ops will take care of
7766 -- other reference bookkeeping and expression folding.
7771 Resolve
(Left_Opnd
(N
), B_Typ
);
7772 Resolve
(Right_Opnd
(N
), B_Typ
);
7774 Check_Unset_Reference
(Left_Opnd
(N
));
7775 Check_Unset_Reference
(Right_Opnd
(N
));
7777 Set_Etype
(N
, B_Typ
);
7778 Generate_Operator_Reference
(N
, B_Typ
);
7779 Eval_Logical_Op
(N
);
7781 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
7782 -- only when both operands have same static lower and higher bounds. Of
7783 -- course the types have to match, so only check if operands are
7784 -- compatible and the node itself has no errors.
7786 if Is_Array_Type
(B_Typ
)
7787 and then Nkind
(N
) in N_Binary_Op
7790 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
7791 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
7794 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7795 -- operation if not needed.
7797 if Restriction_Check_Required
(SPARK_05
)
7798 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
7799 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
7800 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
7801 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
7803 Check_SPARK_Restriction
7804 ("array types should have matching static bounds", N
);
7809 Check_Function_Writable_Actuals
(N
);
7810 end Resolve_Logical_Op
;
7812 ---------------------------
7813 -- Resolve_Membership_Op --
7814 ---------------------------
7816 -- The context can only be a boolean type, and does not determine the
7817 -- arguments. Arguments should be unambiguous, but the preference rule for
7818 -- universal types applies.
7820 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7821 pragma Warnings
(Off
, Typ
);
7823 L
: constant Node_Id
:= Left_Opnd
(N
);
7824 R
: constant Node_Id
:= Right_Opnd
(N
);
7827 procedure Resolve_Set_Membership
;
7828 -- Analysis has determined a unique type for the left operand. Use it to
7829 -- resolve the disjuncts.
7831 ----------------------------
7832 -- Resolve_Set_Membership --
7833 ----------------------------
7835 procedure Resolve_Set_Membership
is
7837 Ltyp
: constant Entity_Id
:= Etype
(L
);
7842 Alt
:= First
(Alternatives
(N
));
7843 while Present
(Alt
) loop
7845 -- Alternative is an expression, a range
7846 -- or a subtype mark.
7848 if not Is_Entity_Name
(Alt
)
7849 or else not Is_Type
(Entity
(Alt
))
7851 Resolve
(Alt
, Ltyp
);
7857 -- Check for duplicates for discrete case
7859 if Is_Discrete_Type
(Ltyp
) then
7866 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
7870 -- Loop checking duplicates. This is quadratic, but giant sets
7871 -- are unlikely in this context so it's a reasonable choice.
7874 Alt
:= First
(Alternatives
(N
));
7875 while Present
(Alt
) loop
7876 if Is_Static_Expression
(Alt
)
7877 and then (Nkind_In
(Alt
, N_Integer_Literal
,
7878 N_Character_Literal
)
7879 or else Nkind
(Alt
) in N_Has_Entity
)
7882 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
7884 for J
in 1 .. Nalts
- 1 loop
7885 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
7886 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
7887 Error_Msg_N
("duplicate of value given#??", Alt
);
7896 end Resolve_Set_Membership
;
7898 -- Start of processing for Resolve_Membership_Op
7901 if L
= Error
or else R
= Error
then
7905 if Present
(Alternatives
(N
)) then
7906 Resolve_Set_Membership
;
7907 Check_Function_Writable_Actuals
(N
);
7910 elsif not Is_Overloaded
(R
)
7912 (Etype
(R
) = Universal_Integer
7914 Etype
(R
) = Universal_Real
)
7915 and then Is_Overloaded
(L
)
7919 -- Ada 2005 (AI-251): Support the following case:
7921 -- type I is interface;
7922 -- type T is tagged ...
7924 -- function Test (O : I'Class) is
7926 -- return O in T'Class.
7929 -- In this case we have nothing else to do. The membership test will be
7930 -- done at run time.
7932 elsif Ada_Version
>= Ada_2005
7933 and then Is_Class_Wide_Type
(Etype
(L
))
7934 and then Is_Interface
(Etype
(L
))
7935 and then Is_Class_Wide_Type
(Etype
(R
))
7936 and then not Is_Interface
(Etype
(R
))
7940 T
:= Intersect_Types
(L
, R
);
7943 -- If mixed-mode operations are present and operands are all literal,
7944 -- the only interpretation involves Duration, which is probably not
7945 -- the intention of the programmer.
7947 if T
= Any_Fixed
then
7948 T
:= Unique_Fixed_Point_Type
(N
);
7950 if T
= Any_Type
then
7956 Check_Unset_Reference
(L
);
7958 if Nkind
(R
) = N_Range
7959 and then not Is_Scalar_Type
(T
)
7961 Error_Msg_N
("scalar type required for range", R
);
7964 if Is_Entity_Name
(R
) then
7965 Freeze_Expression
(R
);
7968 Check_Unset_Reference
(R
);
7971 Eval_Membership_Op
(N
);
7972 Check_Function_Writable_Actuals
(N
);
7973 end Resolve_Membership_Op
;
7979 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
7980 Loc
: constant Source_Ptr
:= Sloc
(N
);
7983 -- Handle restriction against anonymous null access values This
7984 -- restriction can be turned off using -gnatdj.
7986 -- Ada 2005 (AI-231): Remove restriction
7988 if Ada_Version
< Ada_2005
7989 and then not Debug_Flag_J
7990 and then Ekind
(Typ
) = E_Anonymous_Access_Type
7991 and then Comes_From_Source
(N
)
7993 -- In the common case of a call which uses an explicitly null value
7994 -- for an access parameter, give specialized error message.
7996 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
7998 ("null is not allowed as argument for an access parameter", N
);
8000 -- Standard message for all other cases (are there any?)
8004 ("null cannot be of an anonymous access type", N
);
8008 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8009 -- assignment to a null-excluding object
8011 if Ada_Version
>= Ada_2005
8012 and then Can_Never_Be_Null
(Typ
)
8013 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
8015 if not Inside_Init_Proc
then
8017 (Compile_Time_Constraint_Error
(N
,
8018 "(Ada 2005) null not allowed in null-excluding objects??"),
8019 Make_Raise_Constraint_Error
(Loc
,
8020 Reason
=> CE_Access_Check_Failed
));
8023 Make_Raise_Constraint_Error
(Loc
,
8024 Reason
=> CE_Access_Check_Failed
));
8028 -- In a distributed context, null for a remote access to subprogram may
8029 -- need to be replaced with a special record aggregate. In this case,
8030 -- return after having done the transformation.
8032 if (Ekind
(Typ
) = E_Record_Type
8033 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
8034 and then Remote_AST_Null_Value
(N
, Typ
)
8039 -- The null literal takes its type from the context
8044 -----------------------
8045 -- Resolve_Op_Concat --
8046 -----------------------
8048 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
8050 -- We wish to avoid deep recursion, because concatenations are often
8051 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8052 -- operands nonrecursively until we find something that is not a simple
8053 -- concatenation (A in this case). We resolve that, and then walk back
8054 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8055 -- to do the rest of the work at each level. The Parent pointers allow
8056 -- us to avoid recursion, and thus avoid running out of memory. See also
8057 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8063 -- The following code is equivalent to:
8065 -- Resolve_Op_Concat_First (NN, Typ);
8066 -- Resolve_Op_Concat_Arg (N, ...);
8067 -- Resolve_Op_Concat_Rest (N, Typ);
8069 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8070 -- operand is a concatenation.
8072 -- Walk down left operands
8075 Resolve_Op_Concat_First
(NN
, Typ
);
8076 Op1
:= Left_Opnd
(NN
);
8077 exit when not (Nkind
(Op1
) = N_Op_Concat
8078 and then not Is_Array_Type
(Component_Type
(Typ
))
8079 and then Entity
(Op1
) = Entity
(NN
));
8083 -- Now (given the above example) NN is A&B and Op1 is A
8085 -- First resolve Op1 ...
8087 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
8089 -- ... then walk NN back up until we reach N (where we started), calling
8090 -- Resolve_Op_Concat_Rest along the way.
8093 Resolve_Op_Concat_Rest
(NN
, Typ
);
8098 if Base_Type
(Etype
(N
)) /= Standard_String
then
8099 Check_SPARK_Restriction
8100 ("result of concatenation should have type String", N
);
8102 end Resolve_Op_Concat
;
8104 ---------------------------
8105 -- Resolve_Op_Concat_Arg --
8106 ---------------------------
8108 procedure Resolve_Op_Concat_Arg
8114 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
8115 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
8120 or else (not Is_Overloaded
(Arg
)
8121 and then Etype
(Arg
) /= Any_Composite
8122 and then Covers
(Ctyp
, Etype
(Arg
)))
8124 Resolve
(Arg
, Ctyp
);
8126 Resolve
(Arg
, Btyp
);
8129 -- If both Array & Array and Array & Component are visible, there is a
8130 -- potential ambiguity that must be reported.
8132 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
8133 if Nkind
(Arg
) = N_Aggregate
8134 and then Is_Composite_Type
(Ctyp
)
8136 if Is_Private_Type
(Ctyp
) then
8137 Resolve
(Arg
, Btyp
);
8139 -- If the operation is user-defined and not overloaded use its
8140 -- profile. The operation may be a renaming, in which case it has
8141 -- been rewritten, and we want the original profile.
8143 elsif not Is_Overloaded
(N
)
8144 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
8145 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
8149 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
8152 -- Otherwise an aggregate may match both the array type and the
8156 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
8157 Set_Etype
(Arg
, Any_Type
);
8161 if Is_Overloaded
(Arg
)
8162 and then Has_Compatible_Type
(Arg
, Typ
)
8163 and then Etype
(Arg
) /= Any_Type
8171 Get_First_Interp
(Arg
, I
, It
);
8173 Get_Next_Interp
(I
, It
);
8175 -- Special-case the error message when the overloading is
8176 -- caused by a function that yields an array and can be
8177 -- called without parameters.
8179 if It
.Nam
= Func
then
8180 Error_Msg_Sloc
:= Sloc
(Func
);
8181 Error_Msg_N
("ambiguous call to function#", Arg
);
8183 ("\\interpretation as call yields&", Arg
, Typ
);
8185 ("\\interpretation as indexing of call yields&",
8186 Arg
, Component_Type
(Typ
));
8189 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
8191 Get_First_Interp
(Arg
, I
, It
);
8192 while Present
(It
.Nam
) loop
8193 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
8195 if Base_Type
(It
.Typ
) = Btyp
8197 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
8199 Error_Msg_N
-- CODEFIX
8200 ("\\possible interpretation#", Arg
);
8203 Get_Next_Interp
(I
, It
);
8209 Resolve
(Arg
, Component_Type
(Typ
));
8211 if Nkind
(Arg
) = N_String_Literal
then
8212 Set_Etype
(Arg
, Component_Type
(Typ
));
8215 if Arg
= Left_Opnd
(N
) then
8216 Set_Is_Component_Left_Opnd
(N
);
8218 Set_Is_Component_Right_Opnd
(N
);
8223 Resolve
(Arg
, Btyp
);
8226 -- Concatenation is restricted in SPARK: each operand must be either a
8227 -- string literal, the name of a string constant, a static character or
8228 -- string expression, or another concatenation. Arg cannot be a
8229 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
8230 -- separately on each final operand, past concatenation operations.
8232 if Is_Character_Type
(Etype
(Arg
)) then
8233 if not Is_Static_Expression
(Arg
) then
8234 Check_SPARK_Restriction
8235 ("character operand for concatenation should be static", Arg
);
8238 elsif Is_String_Type
(Etype
(Arg
)) then
8239 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
8240 and then Is_Constant_Object
(Entity
(Arg
)))
8241 and then not Is_Static_Expression
(Arg
)
8243 Check_SPARK_Restriction
8244 ("string operand for concatenation should be static", Arg
);
8247 -- Do not issue error on an operand that is neither a character nor a
8248 -- string, as the error is issued in Resolve_Op_Concat.
8254 Check_Unset_Reference
(Arg
);
8255 end Resolve_Op_Concat_Arg
;
8257 -----------------------------
8258 -- Resolve_Op_Concat_First --
8259 -----------------------------
8261 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
8262 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
8263 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8264 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8267 -- The parser folds an enormous sequence of concatenations of string
8268 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
8269 -- in the right operand. If the expression resolves to a predefined "&"
8270 -- operator, all is well. Otherwise, the parser's folding is wrong, so
8271 -- we give an error. See P_Simple_Expression in Par.Ch4.
8273 if Nkind
(Op2
) = N_String_Literal
8274 and then Is_Folded_In_Parser
(Op2
)
8275 and then Ekind
(Entity
(N
)) = E_Function
8277 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
8278 and then String_Length
(Strval
(Op1
)) = 0);
8279 Error_Msg_N
("too many user-defined concatenations", N
);
8283 Set_Etype
(N
, Btyp
);
8285 if Is_Limited_Composite
(Btyp
) then
8286 Error_Msg_N
("concatenation not available for limited array", N
);
8287 Explain_Limited_Type
(Btyp
, N
);
8289 end Resolve_Op_Concat_First
;
8291 ----------------------------
8292 -- Resolve_Op_Concat_Rest --
8293 ----------------------------
8295 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
8296 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8297 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8300 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
8302 Generate_Operator_Reference
(N
, Typ
);
8304 if Is_String_Type
(Typ
) then
8305 Eval_Concatenation
(N
);
8308 -- If this is not a static concatenation, but the result is a string
8309 -- type (and not an array of strings) ensure that static string operands
8310 -- have their subtypes properly constructed.
8312 if Nkind
(N
) /= N_String_Literal
8313 and then Is_Character_Type
(Component_Type
(Typ
))
8315 Set_String_Literal_Subtype
(Op1
, Typ
);
8316 Set_String_Literal_Subtype
(Op2
, Typ
);
8318 end Resolve_Op_Concat_Rest
;
8320 ----------------------
8321 -- Resolve_Op_Expon --
8322 ----------------------
8324 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
8325 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8328 -- Catch attempts to do fixed-point exponentiation with universal
8329 -- operands, which is a case where the illegality is not caught during
8330 -- normal operator analysis. This is not done in preanalysis mode
8331 -- since the tree is not fully decorated during preanalysis.
8333 if Full_Analysis
then
8334 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
8335 Error_Msg_N
("exponentiation not available for fixed point", N
);
8338 elsif Nkind
(Parent
(N
)) in N_Op
8339 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
8340 and then Etype
(N
) = Universal_Real
8341 and then Comes_From_Source
(N
)
8343 Error_Msg_N
("exponentiation not available for fixed point", N
);
8348 if Comes_From_Source
(N
)
8349 and then Ekind
(Entity
(N
)) = E_Function
8350 and then Is_Imported
(Entity
(N
))
8351 and then Is_Intrinsic_Subprogram
(Entity
(N
))
8353 Resolve_Intrinsic_Operator
(N
, Typ
);
8357 if Etype
(Left_Opnd
(N
)) = Universal_Integer
8358 or else Etype
(Left_Opnd
(N
)) = Universal_Real
8360 Check_For_Visible_Operator
(N
, B_Typ
);
8363 -- We do the resolution using the base type, because intermediate values
8364 -- in expressions are always of the base type, not a subtype of it.
8366 Resolve
(Left_Opnd
(N
), B_Typ
);
8367 Resolve
(Right_Opnd
(N
), Standard_Integer
);
8369 Check_Unset_Reference
(Left_Opnd
(N
));
8370 Check_Unset_Reference
(Right_Opnd
(N
));
8372 Set_Etype
(N
, B_Typ
);
8373 Generate_Operator_Reference
(N
, B_Typ
);
8375 Analyze_Dimension
(N
);
8377 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
8378 -- Evaluate the exponentiation operator for dimensioned type
8380 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
8385 -- Set overflow checking bit. Much cleverer code needed here eventually
8386 -- and perhaps the Resolve routines should be separated for the various
8387 -- arithmetic operations, since they will need different processing. ???
8389 if Nkind
(N
) in N_Op
then
8390 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
8391 Enable_Overflow_Check
(N
);
8394 end Resolve_Op_Expon
;
8396 --------------------
8397 -- Resolve_Op_Not --
8398 --------------------
8400 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
8403 function Parent_Is_Boolean
return Boolean;
8404 -- This function determines if the parent node is a boolean operator or
8405 -- operation (comparison op, membership test, or short circuit form) and
8406 -- the not in question is the left operand of this operation. Note that
8407 -- if the not is in parens, then false is returned.
8409 -----------------------
8410 -- Parent_Is_Boolean --
8411 -----------------------
8413 function Parent_Is_Boolean
return Boolean is
8415 if Paren_Count
(N
) /= 0 then
8419 case Nkind
(Parent
(N
)) is
8434 return Left_Opnd
(Parent
(N
)) = N
;
8440 end Parent_Is_Boolean
;
8442 -- Start of processing for Resolve_Op_Not
8445 -- Predefined operations on scalar types yield the base type. On the
8446 -- other hand, logical operations on arrays yield the type of the
8447 -- arguments (and the context).
8449 if Is_Array_Type
(Typ
) then
8452 B_Typ
:= Base_Type
(Typ
);
8455 if Is_VMS_Operator
(Entity
(N
)) then
8458 -- Straightforward case of incorrect arguments
8460 elsif not Valid_Boolean_Arg
(Typ
) then
8461 Error_Msg_N
("invalid operand type for operator&", N
);
8462 Set_Etype
(N
, Any_Type
);
8465 -- Special case of probable missing parens
8467 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
8468 if Parent_Is_Boolean
then
8470 ("operand of not must be enclosed in parentheses",
8474 ("no modular type available in this context", N
);
8477 Set_Etype
(N
, Any_Type
);
8480 -- OK resolution of NOT
8483 -- Warn if non-boolean types involved. This is a case like not a < b
8484 -- where a and b are modular, where we will get (not a) < b and most
8485 -- likely not (a < b) was intended.
8487 if Warn_On_Questionable_Missing_Parens
8488 and then not Is_Boolean_Type
(Typ
)
8489 and then Parent_Is_Boolean
8491 Error_Msg_N
("?q?not expression should be parenthesized here!", N
);
8494 -- Warn on double negation if checking redundant constructs
8496 if Warn_On_Redundant_Constructs
8497 and then Comes_From_Source
(N
)
8498 and then Comes_From_Source
(Right_Opnd
(N
))
8499 and then Root_Type
(Typ
) = Standard_Boolean
8500 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
8502 Error_Msg_N
("redundant double negation?r?", N
);
8505 -- Complete resolution and evaluation of NOT
8507 Resolve
(Right_Opnd
(N
), B_Typ
);
8508 Check_Unset_Reference
(Right_Opnd
(N
));
8509 Set_Etype
(N
, B_Typ
);
8510 Generate_Operator_Reference
(N
, B_Typ
);
8515 -----------------------------
8516 -- Resolve_Operator_Symbol --
8517 -----------------------------
8519 -- Nothing to be done, all resolved already
8521 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
8522 pragma Warnings
(Off
, N
);
8523 pragma Warnings
(Off
, Typ
);
8527 end Resolve_Operator_Symbol
;
8529 ----------------------------------
8530 -- Resolve_Qualified_Expression --
8531 ----------------------------------
8533 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8534 pragma Warnings
(Off
, Typ
);
8536 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
8537 Expr
: constant Node_Id
:= Expression
(N
);
8540 Resolve
(Expr
, Target_Typ
);
8542 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8543 -- operation if not needed.
8545 if Restriction_Check_Required
(SPARK_05
)
8546 and then Is_Array_Type
(Target_Typ
)
8547 and then Is_Array_Type
(Etype
(Expr
))
8548 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
8549 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
8551 Check_SPARK_Restriction
8552 ("array types should have matching static bounds", N
);
8555 -- A qualified expression requires an exact match of the type, class-
8556 -- wide matching is not allowed. However, if the qualifying type is
8557 -- specific and the expression has a class-wide type, it may still be
8558 -- okay, since it can be the result of the expansion of a call to a
8559 -- dispatching function, so we also have to check class-wideness of the
8560 -- type of the expression's original node.
8562 if (Is_Class_Wide_Type
(Target_Typ
)
8564 (Is_Class_Wide_Type
(Etype
(Expr
))
8565 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
8566 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
8568 Wrong_Type
(Expr
, Target_Typ
);
8571 -- If the target type is unconstrained, then we reset the type of the
8572 -- result from the type of the expression. For other cases, the actual
8573 -- subtype of the expression is the target type.
8575 if Is_Composite_Type
(Target_Typ
)
8576 and then not Is_Constrained
(Target_Typ
)
8578 Set_Etype
(N
, Etype
(Expr
));
8581 Analyze_Dimension
(N
);
8582 Eval_Qualified_Expression
(N
);
8583 end Resolve_Qualified_Expression
;
8589 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
8590 L
: constant Node_Id
:= Low_Bound
(N
);
8591 H
: constant Node_Id
:= High_Bound
(N
);
8593 function First_Last_Ref
return Boolean;
8594 -- Returns True if N is of the form X'First .. X'Last where X is the
8595 -- same entity for both attributes.
8597 --------------------
8598 -- First_Last_Ref --
8599 --------------------
8601 function First_Last_Ref
return Boolean is
8602 Lorig
: constant Node_Id
:= Original_Node
(L
);
8603 Horig
: constant Node_Id
:= Original_Node
(H
);
8606 if Nkind
(Lorig
) = N_Attribute_Reference
8607 and then Nkind
(Horig
) = N_Attribute_Reference
8608 and then Attribute_Name
(Lorig
) = Name_First
8609 and then Attribute_Name
(Horig
) = Name_Last
8612 PL
: constant Node_Id
:= Prefix
(Lorig
);
8613 PH
: constant Node_Id
:= Prefix
(Horig
);
8615 if Is_Entity_Name
(PL
)
8616 and then Is_Entity_Name
(PH
)
8617 and then Entity
(PL
) = Entity
(PH
)
8627 -- Start of processing for Resolve_Range
8634 -- Check for inappropriate range on unordered enumeration type
8636 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
8638 -- Exclude X'First .. X'Last if X is the same entity for both
8640 and then not First_Last_Ref
8642 Error_Msg
("subrange of unordered enumeration type?U?", Sloc
(N
));
8645 Check_Unset_Reference
(L
);
8646 Check_Unset_Reference
(H
);
8648 -- We have to check the bounds for being within the base range as
8649 -- required for a non-static context. Normally this is automatic and
8650 -- done as part of evaluating expressions, but the N_Range node is an
8651 -- exception, since in GNAT we consider this node to be a subexpression,
8652 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8653 -- this, but that would put the test on the main evaluation path for
8656 Check_Non_Static_Context
(L
);
8657 Check_Non_Static_Context
(H
);
8659 -- Check for an ambiguous range over character literals. This will
8660 -- happen with a membership test involving only literals.
8662 if Typ
= Any_Character
then
8663 Ambiguous_Character
(L
);
8664 Set_Etype
(N
, Any_Type
);
8668 -- If bounds are static, constant-fold them, so size computations are
8669 -- identical between front-end and back-end. Do not perform this
8670 -- transformation while analyzing generic units, as type information
8671 -- would be lost when reanalyzing the constant node in the instance.
8673 if Is_Discrete_Type
(Typ
) and then Full_Expander_Active
then
8674 if Is_OK_Static_Expression
(L
) then
8675 Fold_Uint
(L
, Expr_Value
(L
), Is_Static_Expression
(L
));
8678 if Is_OK_Static_Expression
(H
) then
8679 Fold_Uint
(H
, Expr_Value
(H
), Is_Static_Expression
(H
));
8684 --------------------------
8685 -- Resolve_Real_Literal --
8686 --------------------------
8688 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8689 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
8692 -- Special processing for fixed-point literals to make sure that the
8693 -- value is an exact multiple of small where this is required. We skip
8694 -- this for the universal real case, and also for generic types.
8696 if Is_Fixed_Point_Type
(Typ
)
8697 and then Typ
/= Universal_Fixed
8698 and then Typ
/= Any_Fixed
8699 and then not Is_Generic_Type
(Typ
)
8702 Val
: constant Ureal
:= Realval
(N
);
8703 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
8704 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
8705 Den
: constant Uint
:= Norm_Den
(Cintr
);
8709 -- Case of literal is not an exact multiple of the Small
8713 -- For a source program literal for a decimal fixed-point type,
8714 -- this is statically illegal (RM 4.9(36)).
8716 if Is_Decimal_Fixed_Point_Type
(Typ
)
8717 and then Actual_Typ
= Universal_Real
8718 and then Comes_From_Source
(N
)
8720 Error_Msg_N
("value has extraneous low order digits", N
);
8723 -- Generate a warning if literal from source
8725 if Is_Static_Expression
(N
)
8726 and then Warn_On_Bad_Fixed_Value
8729 ("?b?static fixed-point value is not a multiple of Small!",
8733 -- Replace literal by a value that is the exact representation
8734 -- of a value of the type, i.e. a multiple of the small value,
8735 -- by truncation, since Machine_Rounds is false for all GNAT
8736 -- fixed-point types (RM 4.9(38)).
8738 Stat
:= Is_Static_Expression
(N
);
8740 Make_Real_Literal
(Sloc
(N
),
8741 Realval
=> Small_Value
(Typ
) * Cint
));
8743 Set_Is_Static_Expression
(N
, Stat
);
8746 -- In all cases, set the corresponding integer field
8748 Set_Corresponding_Integer_Value
(N
, Cint
);
8752 -- Now replace the actual type by the expected type as usual
8755 Eval_Real_Literal
(N
);
8756 end Resolve_Real_Literal
;
8758 -----------------------
8759 -- Resolve_Reference --
8760 -----------------------
8762 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
8763 P
: constant Node_Id
:= Prefix
(N
);
8766 -- Replace general access with specific type
8768 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
8769 Set_Etype
(N
, Base_Type
(Typ
));
8772 Resolve
(P
, Designated_Type
(Etype
(N
)));
8774 -- If we are taking the reference of a volatile entity, then treat it as
8775 -- a potential modification of this entity. This is too conservative,
8776 -- but necessary because remove side effects can cause transformations
8777 -- of normal assignments into reference sequences that otherwise fail to
8778 -- notice the modification.
8780 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
8781 Note_Possible_Modification
(P
, Sure
=> False);
8783 end Resolve_Reference
;
8785 --------------------------------
8786 -- Resolve_Selected_Component --
8787 --------------------------------
8789 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8791 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
8792 P
: constant Node_Id
:= Prefix
(N
);
8793 S
: constant Node_Id
:= Selector_Name
(N
);
8794 T
: Entity_Id
:= Etype
(P
);
8796 I1
: Interp_Index
:= 0; -- prevent junk warning
8801 function Init_Component
return Boolean;
8802 -- Check whether this is the initialization of a component within an
8803 -- init proc (by assignment or call to another init proc). If true,
8804 -- there is no need for a discriminant check.
8806 --------------------
8807 -- Init_Component --
8808 --------------------
8810 function Init_Component
return Boolean is
8812 return Inside_Init_Proc
8813 and then Nkind
(Prefix
(N
)) = N_Identifier
8814 and then Chars
(Prefix
(N
)) = Name_uInit
8815 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
8818 -- Start of processing for Resolve_Selected_Component
8821 if Is_Overloaded
(P
) then
8823 -- Use the context type to select the prefix that has a selector
8824 -- of the correct name and type.
8827 Get_First_Interp
(P
, I
, It
);
8829 Search
: while Present
(It
.Typ
) loop
8830 if Is_Access_Type
(It
.Typ
) then
8831 T
:= Designated_Type
(It
.Typ
);
8836 -- Locate selected component. For a private prefix the selector
8837 -- can denote a discriminant.
8839 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
8841 -- The visible components of a class-wide type are those of
8844 if Is_Class_Wide_Type
(T
) then
8848 Comp
:= First_Entity
(T
);
8849 while Present
(Comp
) loop
8850 if Chars
(Comp
) = Chars
(S
)
8851 and then Covers
(Etype
(Comp
), Typ
)
8860 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8862 if It
= No_Interp
then
8864 ("ambiguous prefix for selected component", N
);
8871 -- There may be an implicit dereference. Retrieve
8872 -- designated record type.
8874 if Is_Access_Type
(It1
.Typ
) then
8875 T
:= Designated_Type
(It1
.Typ
);
8880 if Scope
(Comp1
) /= T
then
8882 -- Resolution chooses the new interpretation.
8883 -- Find the component with the right name.
8885 Comp1
:= First_Entity
(T
);
8886 while Present
(Comp1
)
8887 and then Chars
(Comp1
) /= Chars
(S
)
8889 Comp1
:= Next_Entity
(Comp1
);
8898 Comp
:= Next_Entity
(Comp
);
8902 Get_Next_Interp
(I
, It
);
8905 Resolve
(P
, It1
.Typ
);
8907 Set_Entity_With_Style_Check
(S
, Comp1
);
8910 -- Resolve prefix with its type
8915 -- Generate cross-reference. We needed to wait until full overloading
8916 -- resolution was complete to do this, since otherwise we can't tell if
8917 -- we are an lvalue or not.
8919 if May_Be_Lvalue
(N
) then
8920 Generate_Reference
(Entity
(S
), S
, 'm');
8922 Generate_Reference
(Entity
(S
), S
, 'r');
8925 -- If prefix is an access type, the node will be transformed into an
8926 -- explicit dereference during expansion. The type of the node is the
8927 -- designated type of that of the prefix.
8929 if Is_Access_Type
(Etype
(P
)) then
8930 T
:= Designated_Type
(Etype
(P
));
8931 Check_Fully_Declared_Prefix
(T
, P
);
8936 if Has_Discriminants
(T
)
8937 and then Ekind_In
(Entity
(S
), E_Component
, E_Discriminant
)
8938 and then Present
(Original_Record_Component
(Entity
(S
)))
8939 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
8940 and then not Discriminant_Checks_Suppressed
(T
)
8941 and then not Init_Component
8943 Set_Do_Discriminant_Check
(N
);
8946 if Ekind
(Entity
(S
)) = E_Void
then
8947 Error_Msg_N
("premature use of component", S
);
8950 -- If the prefix is a record conversion, this may be a renamed
8951 -- discriminant whose bounds differ from those of the original
8952 -- one, so we must ensure that a range check is performed.
8954 if Nkind
(P
) = N_Type_Conversion
8955 and then Ekind
(Entity
(S
)) = E_Discriminant
8956 and then Is_Discrete_Type
(Typ
)
8958 Set_Etype
(N
, Base_Type
(Typ
));
8961 -- Note: No Eval processing is required, because the prefix is of a
8962 -- record type, or protected type, and neither can possibly be static.
8964 -- If the array type is atomic, and is packed, and we are in a left side
8965 -- context, then this is worth a warning, since we have a situation
8966 -- where the access to the component may cause extra read/writes of the
8967 -- atomic array object, which could be considered unexpected.
8969 if Nkind
(N
) = N_Selected_Component
8970 and then (Is_Atomic
(T
)
8971 or else (Is_Entity_Name
(Prefix
(N
))
8972 and then Is_Atomic
(Entity
(Prefix
(N
)))))
8973 and then Is_Packed
(T
)
8977 ("??assignment to component of packed atomic record", Prefix
(N
));
8979 ("\??may cause unexpected accesses to atomic object", Prefix
(N
));
8982 Analyze_Dimension
(N
);
8983 end Resolve_Selected_Component
;
8989 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
8990 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8991 L
: constant Node_Id
:= Left_Opnd
(N
);
8992 R
: constant Node_Id
:= Right_Opnd
(N
);
8995 -- We do the resolution using the base type, because intermediate values
8996 -- in expressions always are of the base type, not a subtype of it.
8999 Resolve
(R
, Standard_Natural
);
9001 Check_Unset_Reference
(L
);
9002 Check_Unset_Reference
(R
);
9004 Set_Etype
(N
, B_Typ
);
9005 Generate_Operator_Reference
(N
, B_Typ
);
9009 ---------------------------
9010 -- Resolve_Short_Circuit --
9011 ---------------------------
9013 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
9014 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9015 L
: constant Node_Id
:= Left_Opnd
(N
);
9016 R
: constant Node_Id
:= Right_Opnd
(N
);
9019 -- Ensure all actions associated with the left operand (e.g.
9020 -- finalization of transient controlled objects) are fully evaluated
9021 -- locally within an expression with actions. This is particularly
9022 -- helpful for coverage analysis. However this should not happen in
9025 if Full_Expander_Active
then
9027 Reloc_L
: constant Node_Id
:= Relocate_Node
(L
);
9029 Save_Interps
(Old_N
=> L
, New_N
=> Reloc_L
);
9032 Make_Expression_With_Actions
(Sloc
(L
),
9033 Actions
=> New_List
,
9034 Expression
=> Reloc_L
));
9036 -- Set Comes_From_Source on L to preserve warnings for unset
9039 Set_Comes_From_Source
(L
, Comes_From_Source
(Reloc_L
));
9046 -- Check for issuing warning for always False assert/check, this happens
9047 -- when assertions are turned off, in which case the pragma Assert/Check
9048 -- was transformed into:
9050 -- if False and then <condition> then ...
9052 -- and we detect this pattern
9054 if Warn_On_Assertion_Failure
9055 and then Is_Entity_Name
(R
)
9056 and then Entity
(R
) = Standard_False
9057 and then Nkind
(Parent
(N
)) = N_If_Statement
9058 and then Nkind
(N
) = N_And_Then
9059 and then Is_Entity_Name
(L
)
9060 and then Entity
(L
) = Standard_False
9063 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
9066 -- Special handling of Asssert pragma
9068 if Nkind
(Orig
) = N_Pragma
9069 and then Pragma_Name
(Orig
) = Name_Assert
9072 Expr
: constant Node_Id
:=
9075 (First
(Pragma_Argument_Associations
(Orig
))));
9078 -- Don't warn if original condition is explicit False,
9079 -- since obviously the failure is expected in this case.
9081 if Is_Entity_Name
(Expr
)
9082 and then Entity
(Expr
) = Standard_False
9086 -- Issue warning. We do not want the deletion of the
9087 -- IF/AND-THEN to take this message with it. We achieve this
9088 -- by making sure that the expanded code points to the Sloc
9089 -- of the expression, not the original pragma.
9092 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9093 -- The source location of the expression is not usually
9094 -- the best choice here. For example, it gets located on
9095 -- the last AND keyword in a chain of boolean expressiond
9096 -- AND'ed together. It is best to put the message on the
9097 -- first character of the assertion, which is the effect
9098 -- of the First_Node call here.
9101 ("?A?assertion would fail at run time!",
9103 (First
(Pragma_Argument_Associations
(Orig
))));
9107 -- Similar processing for Check pragma
9109 elsif Nkind
(Orig
) = N_Pragma
9110 and then Pragma_Name
(Orig
) = Name_Check
9112 -- Don't want to warn if original condition is explicit False
9115 Expr
: constant Node_Id
:=
9118 (Next
(First
(Pragma_Argument_Associations
(Orig
)))));
9120 if Is_Entity_Name
(Expr
)
9121 and then Entity
(Expr
) = Standard_False
9128 -- Again use Error_Msg_F rather than Error_Msg_N, see
9129 -- comment above for an explanation of why we do this.
9132 ("?A?check would fail at run time!",
9134 (Last
(Pragma_Argument_Associations
(Orig
))));
9141 -- Continue with processing of short circuit
9143 Check_Unset_Reference
(L
);
9144 Check_Unset_Reference
(R
);
9146 Set_Etype
(N
, B_Typ
);
9147 Eval_Short_Circuit
(N
);
9148 end Resolve_Short_Circuit
;
9154 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
9155 Drange
: constant Node_Id
:= Discrete_Range
(N
);
9156 Name
: constant Node_Id
:= Prefix
(N
);
9157 Array_Type
: Entity_Id
:= Empty
;
9158 Index_Type
: Entity_Id
;
9161 if Is_Overloaded
(Name
) then
9163 -- Use the context type to select the prefix that yields the correct
9168 I1
: Interp_Index
:= 0;
9170 P
: constant Node_Id
:= Prefix
(N
);
9171 Found
: Boolean := False;
9174 Get_First_Interp
(P
, I
, It
);
9175 while Present
(It
.Typ
) loop
9176 if (Is_Array_Type
(It
.Typ
)
9177 and then Covers
(Typ
, It
.Typ
))
9178 or else (Is_Access_Type
(It
.Typ
)
9179 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
9180 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
9183 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
9185 if It
= No_Interp
then
9186 Error_Msg_N
("ambiguous prefix for slicing", N
);
9191 Array_Type
:= It
.Typ
;
9196 Array_Type
:= It
.Typ
;
9201 Get_Next_Interp
(I
, It
);
9206 Array_Type
:= Etype
(Name
);
9209 Resolve
(Name
, Array_Type
);
9211 if Is_Access_Type
(Array_Type
) then
9212 Apply_Access_Check
(N
);
9213 Array_Type
:= Designated_Type
(Array_Type
);
9215 -- If the prefix is an access to an unconstrained array, we must use
9216 -- the actual subtype of the object to perform the index checks. The
9217 -- object denoted by the prefix is implicit in the node, so we build
9218 -- an explicit representation for it in order to compute the actual
9221 if not Is_Constrained
(Array_Type
) then
9222 Remove_Side_Effects
(Prefix
(N
));
9225 Obj
: constant Node_Id
:=
9226 Make_Explicit_Dereference
(Sloc
(N
),
9227 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
9229 Set_Etype
(Obj
, Array_Type
);
9230 Set_Parent
(Obj
, Parent
(N
));
9231 Array_Type
:= Get_Actual_Subtype
(Obj
);
9235 elsif Is_Entity_Name
(Name
)
9236 or else Nkind
(Name
) = N_Explicit_Dereference
9237 or else (Nkind
(Name
) = N_Function_Call
9238 and then not Is_Constrained
(Etype
(Name
)))
9240 Array_Type
:= Get_Actual_Subtype
(Name
);
9242 -- If the name is a selected component that depends on discriminants,
9243 -- build an actual subtype for it. This can happen only when the name
9244 -- itself is overloaded; otherwise the actual subtype is created when
9245 -- the selected component is analyzed.
9247 elsif Nkind
(Name
) = N_Selected_Component
9248 and then Full_Analysis
9249 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
9252 Act_Decl
: constant Node_Id
:=
9253 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
9255 Insert_Action
(N
, Act_Decl
);
9256 Array_Type
:= Defining_Identifier
(Act_Decl
);
9259 -- Maybe this should just be "else", instead of checking for the
9260 -- specific case of slice??? This is needed for the case where the
9261 -- prefix is an Image attribute, which gets expanded to a slice, and so
9262 -- has a constrained subtype which we want to use for the slice range
9263 -- check applied below (the range check won't get done if the
9264 -- unconstrained subtype of the 'Image is used).
9266 elsif Nkind
(Name
) = N_Slice
then
9267 Array_Type
:= Etype
(Name
);
9270 -- If name was overloaded, set slice type correctly now
9272 Set_Etype
(N
, Array_Type
);
9274 -- If the range is specified by a subtype mark, no resolution is
9275 -- necessary. Else resolve the bounds, and apply needed checks.
9277 if not Is_Entity_Name
(Drange
) then
9278 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
9279 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
9281 Index_Type
:= Etype
(First_Index
(Array_Type
));
9284 Resolve
(Drange
, Base_Type
(Index_Type
));
9286 if Nkind
(Drange
) = N_Range
then
9288 -- Ensure that side effects in the bounds are properly handled
9290 Force_Evaluation
(Low_Bound
(Drange
));
9291 Force_Evaluation
(High_Bound
(Drange
));
9293 -- Do not apply the range check to nodes associated with the
9294 -- frontend expansion of the dispatch table. We first check
9295 -- if Ada.Tags is already loaded to avoid the addition of an
9296 -- undesired dependence on such run-time unit.
9298 if not Tagged_Type_Expansion
9300 (RTU_Loaded
(Ada_Tags
)
9301 and then Nkind
(Prefix
(N
)) = N_Selected_Component
9302 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
9303 and then Entity
(Selector_Name
(Prefix
(N
))) =
9304 RTE_Record_Component
(RE_Prims_Ptr
))
9306 Apply_Range_Check
(Drange
, Index_Type
);
9311 Set_Slice_Subtype
(N
);
9313 -- Check bad use of type with predicates
9315 if Has_Predicates
(Etype
(Drange
)) then
9316 Bad_Predicated_Subtype_Use
9317 ("subtype& has predicate, not allowed in slice",
9318 Drange
, Etype
(Drange
));
9320 -- Otherwise here is where we check suspicious indexes
9322 elsif Nkind
(Drange
) = N_Range
then
9323 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
9324 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
9327 Analyze_Dimension
(N
);
9331 ----------------------------
9332 -- Resolve_String_Literal --
9333 ----------------------------
9335 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9336 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
9337 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
9338 Loc
: constant Source_Ptr
:= Sloc
(N
);
9339 Str
: constant String_Id
:= Strval
(N
);
9340 Strlen
: constant Nat
:= String_Length
(Str
);
9341 Subtype_Id
: Entity_Id
;
9342 Need_Check
: Boolean;
9345 -- For a string appearing in a concatenation, defer creation of the
9346 -- string_literal_subtype until the end of the resolution of the
9347 -- concatenation, because the literal may be constant-folded away. This
9348 -- is a useful optimization for long concatenation expressions.
9350 -- If the string is an aggregate built for a single character (which
9351 -- happens in a non-static context) or a is null string to which special
9352 -- checks may apply, we build the subtype. Wide strings must also get a
9353 -- string subtype if they come from a one character aggregate. Strings
9354 -- generated by attributes might be static, but it is often hard to
9355 -- determine whether the enclosing context is static, so we generate
9356 -- subtypes for them as well, thus losing some rarer optimizations ???
9357 -- Same for strings that come from a static conversion.
9360 (Strlen
= 0 and then Typ
/= Standard_String
)
9361 or else Nkind
(Parent
(N
)) /= N_Op_Concat
9362 or else (N
/= Left_Opnd
(Parent
(N
))
9363 and then N
/= Right_Opnd
(Parent
(N
)))
9364 or else ((Typ
= Standard_Wide_String
9365 or else Typ
= Standard_Wide_Wide_String
)
9366 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
9368 -- If the resolving type is itself a string literal subtype, we can just
9369 -- reuse it, since there is no point in creating another.
9371 if Ekind
(Typ
) = E_String_Literal_Subtype
then
9374 elsif Nkind
(Parent
(N
)) = N_Op_Concat
9375 and then not Need_Check
9376 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
9377 N_Attribute_Reference
,
9378 N_Qualified_Expression
,
9383 -- Otherwise we must create a string literal subtype. Note that the
9384 -- whole idea of string literal subtypes is simply to avoid the need
9385 -- for building a full fledged array subtype for each literal.
9388 Set_String_Literal_Subtype
(N
, Typ
);
9389 Subtype_Id
:= Etype
(N
);
9392 if Nkind
(Parent
(N
)) /= N_Op_Concat
9395 Set_Etype
(N
, Subtype_Id
);
9396 Eval_String_Literal
(N
);
9399 if Is_Limited_Composite
(Typ
)
9400 or else Is_Private_Composite
(Typ
)
9402 Error_Msg_N
("string literal not available for private array", N
);
9403 Set_Etype
(N
, Any_Type
);
9407 -- The validity of a null string has been checked in the call to
9408 -- Eval_String_Literal.
9413 -- Always accept string literal with component type Any_Character, which
9414 -- occurs in error situations and in comparisons of literals, both of
9415 -- which should accept all literals.
9417 elsif R_Typ
= Any_Character
then
9420 -- If the type is bit-packed, then we always transform the string
9421 -- literal into a full fledged aggregate.
9423 elsif Is_Bit_Packed_Array
(Typ
) then
9426 -- Deal with cases of Wide_Wide_String, Wide_String, and String
9429 -- For Standard.Wide_Wide_String, or any other type whose component
9430 -- type is Standard.Wide_Wide_Character, we know that all the
9431 -- characters in the string must be acceptable, since the parser
9432 -- accepted the characters as valid character literals.
9434 if R_Typ
= Standard_Wide_Wide_Character
then
9437 -- For the case of Standard.String, or any other type whose component
9438 -- type is Standard.Character, we must make sure that there are no
9439 -- wide characters in the string, i.e. that it is entirely composed
9440 -- of characters in range of type Character.
9442 -- If the string literal is the result of a static concatenation, the
9443 -- test has already been performed on the components, and need not be
9446 elsif R_Typ
= Standard_Character
9447 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
9449 for J
in 1 .. Strlen
loop
9450 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
9452 -- If we are out of range, post error. This is one of the
9453 -- very few places that we place the flag in the middle of
9454 -- a token, right under the offending wide character. Not
9455 -- quite clear if this is right wrt wide character encoding
9456 -- sequences, but it's only an error message!
9459 ("literal out of range of type Standard.Character",
9460 Source_Ptr
(Int
(Loc
) + J
));
9465 -- For the case of Standard.Wide_String, or any other type whose
9466 -- component type is Standard.Wide_Character, we must make sure that
9467 -- there are no wide characters in the string, i.e. that it is
9468 -- entirely composed of characters in range of type Wide_Character.
9470 -- If the string literal is the result of a static concatenation,
9471 -- the test has already been performed on the components, and need
9474 elsif R_Typ
= Standard_Wide_Character
9475 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
9477 for J
in 1 .. Strlen
loop
9478 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
9480 -- If we are out of range, post error. This is one of the
9481 -- very few places that we place the flag in the middle of
9482 -- a token, right under the offending wide character.
9484 -- This is not quite right, because characters in general
9485 -- will take more than one character position ???
9488 ("literal out of range of type Standard.Wide_Character",
9489 Source_Ptr
(Int
(Loc
) + J
));
9494 -- If the root type is not a standard character, then we will convert
9495 -- the string into an aggregate and will let the aggregate code do
9496 -- the checking. Standard Wide_Wide_Character is also OK here.
9502 -- See if the component type of the array corresponding to the string
9503 -- has compile time known bounds. If yes we can directly check
9504 -- whether the evaluation of the string will raise constraint error.
9505 -- Otherwise we need to transform the string literal into the
9506 -- corresponding character aggregate and let the aggregate code do
9509 if Is_Standard_Character_Type
(R_Typ
) then
9511 -- Check for the case of full range, where we are definitely OK
9513 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
9517 -- Here the range is not the complete base type range, so check
9520 Comp_Typ_Lo
: constant Node_Id
:=
9521 Type_Low_Bound
(Component_Type
(Typ
));
9522 Comp_Typ_Hi
: constant Node_Id
:=
9523 Type_High_Bound
(Component_Type
(Typ
));
9528 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
9529 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
9531 for J
in 1 .. Strlen
loop
9532 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
9534 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
9535 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
9537 Apply_Compile_Time_Constraint_Error
9538 (N
, "character out of range??",
9539 CE_Range_Check_Failed
,
9540 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
9550 -- If we got here we meed to transform the string literal into the
9551 -- equivalent qualified positional array aggregate. This is rather
9552 -- heavy artillery for this situation, but it is hard work to avoid.
9555 Lits
: constant List_Id
:= New_List
;
9556 P
: Source_Ptr
:= Loc
+ 1;
9560 -- Build the character literals, we give them source locations that
9561 -- correspond to the string positions, which is a bit tricky given
9562 -- the possible presence of wide character escape sequences.
9564 for J
in 1 .. Strlen
loop
9565 C
:= Get_String_Char
(Str
, J
);
9566 Set_Character_Literal_Name
(C
);
9569 Make_Character_Literal
(P
,
9571 Char_Literal_Value
=> UI_From_CC
(C
)));
9573 if In_Character_Range
(C
) then
9576 -- Should we have a call to Skip_Wide here ???
9585 Make_Qualified_Expression
(Loc
,
9586 Subtype_Mark
=> New_Reference_To
(Typ
, Loc
),
9588 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
9590 Analyze_And_Resolve
(N
, Typ
);
9592 end Resolve_String_Literal
;
9594 -----------------------------
9595 -- Resolve_Subprogram_Info --
9596 -----------------------------
9598 procedure Resolve_Subprogram_Info
(N
: Node_Id
; Typ
: Entity_Id
) is
9601 end Resolve_Subprogram_Info
;
9603 -----------------------------
9604 -- Resolve_Type_Conversion --
9605 -----------------------------
9607 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
9608 Conv_OK
: constant Boolean := Conversion_OK
(N
);
9609 Operand
: constant Node_Id
:= Expression
(N
);
9610 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
9611 Target_Typ
: constant Entity_Id
:= Etype
(N
);
9616 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
9617 -- Set to False to suppress cases where we want to suppress the test
9618 -- for redundancy to avoid possible false positives on this warning.
9622 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
9627 -- If the Operand Etype is Universal_Fixed, then the conversion is
9628 -- never redundant. We need this check because by the time we have
9629 -- finished the rather complex transformation, the conversion looks
9630 -- redundant when it is not.
9632 if Operand_Typ
= Universal_Fixed
then
9633 Test_Redundant
:= False;
9635 -- If the operand is marked as Any_Fixed, then special processing is
9636 -- required. This is also a case where we suppress the test for a
9637 -- redundant conversion, since most certainly it is not redundant.
9639 elsif Operand_Typ
= Any_Fixed
then
9640 Test_Redundant
:= False;
9642 -- Mixed-mode operation involving a literal. Context must be a fixed
9643 -- type which is applied to the literal subsequently.
9645 if Is_Fixed_Point_Type
(Typ
) then
9646 Set_Etype
(Operand
, Universal_Real
);
9648 elsif Is_Numeric_Type
(Typ
)
9649 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
9650 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
9652 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
9654 -- Return if expression is ambiguous
9656 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
9659 -- If nothing else, the available fixed type is Duration
9662 Set_Etype
(Operand
, Standard_Duration
);
9665 -- Resolve the real operand with largest available precision
9667 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
9668 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
9670 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
9673 Resolve
(Rop
, Universal_Real
);
9675 -- If the operand is a literal (it could be a non-static and
9676 -- illegal exponentiation) check whether the use of Duration
9677 -- is potentially inaccurate.
9679 if Nkind
(Rop
) = N_Real_Literal
9680 and then Realval
(Rop
) /= Ureal_0
9681 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
9684 ("??universal real operand can only "
9685 & "be interpreted as Duration!", Rop
);
9687 ("\??precision will be lost in the conversion!", Rop
);
9690 elsif Is_Numeric_Type
(Typ
)
9691 and then Nkind
(Operand
) in N_Op
9692 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
9694 Set_Etype
(Operand
, Standard_Duration
);
9697 Error_Msg_N
("invalid context for mixed mode operation", N
);
9698 Set_Etype
(Operand
, Any_Type
);
9705 -- In SPARK, a type conversion between array types should be restricted
9706 -- to types which have matching static bounds.
9708 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9709 -- operation if not needed.
9711 if Restriction_Check_Required
(SPARK_05
)
9712 and then Is_Array_Type
(Target_Typ
)
9713 and then Is_Array_Type
(Operand_Typ
)
9714 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
9715 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
9717 Check_SPARK_Restriction
9718 ("array types should have matching static bounds", N
);
9721 -- In formal mode, the operand of an ancestor type conversion must be an
9722 -- object (not an expression).
9724 if Is_Tagged_Type
(Target_Typ
)
9725 and then not Is_Class_Wide_Type
(Target_Typ
)
9726 and then Is_Tagged_Type
(Operand_Typ
)
9727 and then not Is_Class_Wide_Type
(Operand_Typ
)
9728 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
9729 and then not Is_SPARK_Object_Reference
(Operand
)
9731 Check_SPARK_Restriction
("object required", Operand
);
9734 Analyze_Dimension
(N
);
9736 -- Note: we do the Eval_Type_Conversion call before applying the
9737 -- required checks for a subtype conversion. This is important, since
9738 -- both are prepared under certain circumstances to change the type
9739 -- conversion to a constraint error node, but in the case of
9740 -- Eval_Type_Conversion this may reflect an illegality in the static
9741 -- case, and we would miss the illegality (getting only a warning
9742 -- message), if we applied the type conversion checks first.
9744 Eval_Type_Conversion
(N
);
9746 -- Even when evaluation is not possible, we may be able to simplify the
9747 -- conversion or its expression. This needs to be done before applying
9748 -- checks, since otherwise the checks may use the original expression
9749 -- and defeat the simplifications. This is specifically the case for
9750 -- elimination of the floating-point Truncation attribute in
9751 -- float-to-int conversions.
9753 Simplify_Type_Conversion
(N
);
9755 -- If after evaluation we still have a type conversion, then we may need
9756 -- to apply checks required for a subtype conversion.
9758 -- Skip these type conversion checks if universal fixed operands
9759 -- operands involved, since range checks are handled separately for
9760 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
9762 if Nkind
(N
) = N_Type_Conversion
9763 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
9764 and then Target_Typ
/= Universal_Fixed
9765 and then Operand_Typ
/= Universal_Fixed
9767 Apply_Type_Conversion_Checks
(N
);
9770 -- Issue warning for conversion of simple object to its own type. We
9771 -- have to test the original nodes, since they may have been rewritten
9772 -- by various optimizations.
9774 Orig_N
:= Original_Node
(N
);
9776 -- Here we test for a redundant conversion if the warning mode is
9777 -- active (and was not locally reset), and we have a type conversion
9778 -- from source not appearing in a generic instance.
9781 and then Nkind
(Orig_N
) = N_Type_Conversion
9782 and then Comes_From_Source
(Orig_N
)
9783 and then not In_Instance
9785 Orig_N
:= Original_Node
(Expression
(Orig_N
));
9786 Orig_T
:= Target_Typ
;
9788 -- If the node is part of a larger expression, the Target_Type
9789 -- may not be the original type of the node if the context is a
9790 -- condition. Recover original type to see if conversion is needed.
9792 if Is_Boolean_Type
(Orig_T
)
9793 and then Nkind
(Parent
(N
)) in N_Op
9795 Orig_T
:= Etype
(Parent
(N
));
9798 -- If we have an entity name, then give the warning if the entity
9799 -- is the right type, or if it is a loop parameter covered by the
9800 -- original type (that's needed because loop parameters have an
9801 -- odd subtype coming from the bounds).
9803 if (Is_Entity_Name
(Orig_N
)
9805 (Etype
(Entity
(Orig_N
)) = Orig_T
9807 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
9808 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
9810 -- If not an entity, then type of expression must match
9812 or else Etype
(Orig_N
) = Orig_T
9814 -- One more check, do not give warning if the analyzed conversion
9815 -- has an expression with non-static bounds, and the bounds of the
9816 -- target are static. This avoids junk warnings in cases where the
9817 -- conversion is necessary to establish staticness, for example in
9818 -- a case statement.
9820 if not Is_OK_Static_Subtype
(Operand_Typ
)
9821 and then Is_OK_Static_Subtype
(Target_Typ
)
9825 -- Finally, if this type conversion occurs in a context requiring
9826 -- a prefix, and the expression is a qualified expression then the
9827 -- type conversion is not redundant, since a qualified expression
9828 -- is not a prefix, whereas a type conversion is. For example, "X
9829 -- := T'(Funx(...)).Y;" is illegal because a selected component
9830 -- requires a prefix, but a type conversion makes it legal: "X :=
9831 -- T(T'(Funx(...))).Y;"
9833 -- In Ada 2012, a qualified expression is a name, so this idiom is
9834 -- no longer needed, but we still suppress the warning because it
9835 -- seems unfriendly for warnings to pop up when you switch to the
9836 -- newer language version.
9838 elsif Nkind
(Orig_N
) = N_Qualified_Expression
9839 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
9840 N_Indexed_Component
,
9841 N_Selected_Component
,
9843 N_Explicit_Dereference
)
9847 -- Never warn on conversion to Long_Long_Integer'Base since
9848 -- that is most likely an artifact of the extended overflow
9849 -- checking and comes from complex expanded code.
9851 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
9854 -- Here we give the redundant conversion warning. If it is an
9855 -- entity, give the name of the entity in the message. If not,
9856 -- just mention the expression.
9858 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
9861 if Is_Entity_Name
(Orig_N
) then
9862 Error_Msg_Node_2
:= Orig_T
;
9863 Error_Msg_NE
-- CODEFIX
9864 ("??redundant conversion, & is of type &!",
9865 N
, Entity
(Orig_N
));
9868 ("??redundant conversion, expression is of type&!",
9875 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
9876 -- No need to perform any interface conversion if the type of the
9877 -- expression coincides with the target type.
9879 if Ada_Version
>= Ada_2005
9880 and then Full_Expander_Active
9881 and then Operand_Typ
/= Target_Typ
9884 Opnd
: Entity_Id
:= Operand_Typ
;
9885 Target
: Entity_Id
:= Target_Typ
;
9888 if Is_Access_Type
(Opnd
) then
9889 Opnd
:= Designated_Type
(Opnd
);
9892 if Is_Access_Type
(Target_Typ
) then
9893 Target
:= Designated_Type
(Target
);
9896 if Opnd
= Target
then
9899 -- Conversion from interface type
9901 elsif Is_Interface
(Opnd
) then
9903 -- Ada 2005 (AI-217): Handle entities from limited views
9905 if From_Limited_With
(Opnd
) then
9906 Error_Msg_Qual_Level
:= 99;
9907 Error_Msg_NE
-- CODEFIX
9908 ("missing WITH clause on package &", N
,
9909 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
9911 ("type conversions require visibility of the full view",
9914 elsif From_Limited_With
(Target
)
9916 (Is_Access_Type
(Target_Typ
)
9917 and then Present
(Non_Limited_View
(Etype
(Target
))))
9919 Error_Msg_Qual_Level
:= 99;
9920 Error_Msg_NE
-- CODEFIX
9921 ("missing WITH clause on package &", N
,
9922 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
9924 ("type conversions require visibility of the full view",
9928 Expand_Interface_Conversion
(N
);
9931 -- Conversion to interface type
9933 elsif Is_Interface
(Target
) then
9937 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
9938 Opnd
:= Etype
(Opnd
);
9941 if Is_Class_Wide_Type
(Opnd
)
9942 or else Interface_Present_In_Ancestor
9946 Expand_Interface_Conversion
(N
);
9948 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
9949 Error_Msg_Name_2
:= Chars
(Opnd
);
9951 ("wrong interface conversion (% is not a progenitor "
9958 -- Ada 2012: if target type has predicates, the result requires a
9959 -- predicate check. If the context is a call to another predicate
9960 -- check we must prevent infinite recursion.
9962 if Has_Predicates
(Target_Typ
) then
9963 if Nkind
(Parent
(N
)) = N_Function_Call
9964 and then Present
(Name
(Parent
(N
)))
9965 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
9967 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
9972 Apply_Predicate_Check
(N
, Target_Typ
);
9975 end Resolve_Type_Conversion
;
9977 ----------------------
9978 -- Resolve_Unary_Op --
9979 ----------------------
9981 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
9982 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9983 R
: constant Node_Id
:= Right_Opnd
(N
);
9989 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
9990 Error_Msg_Name_1
:= Chars
(Typ
);
9991 Check_SPARK_Restriction
9992 ("unary operator not defined for modular type%", N
);
9995 -- Deal with intrinsic unary operators
9997 if Comes_From_Source
(N
)
9998 and then Ekind
(Entity
(N
)) = E_Function
9999 and then Is_Imported
(Entity
(N
))
10000 and then Is_Intrinsic_Subprogram
(Entity
(N
))
10002 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
10006 -- Deal with universal cases
10008 if Etype
(R
) = Universal_Integer
10010 Etype
(R
) = Universal_Real
10012 Check_For_Visible_Operator
(N
, B_Typ
);
10015 Set_Etype
(N
, B_Typ
);
10016 Resolve
(R
, B_Typ
);
10018 -- Generate warning for expressions like abs (x mod 2)
10020 if Warn_On_Redundant_Constructs
10021 and then Nkind
(N
) = N_Op_Abs
10023 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
10025 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
10026 Error_Msg_N
-- CODEFIX
10027 ("?r?abs applied to known non-negative value has no effect", N
);
10031 -- Deal with reference generation
10033 Check_Unset_Reference
(R
);
10034 Generate_Operator_Reference
(N
, B_Typ
);
10035 Analyze_Dimension
(N
);
10038 -- Set overflow checking bit. Much cleverer code needed here eventually
10039 -- and perhaps the Resolve routines should be separated for the various
10040 -- arithmetic operations, since they will need different processing ???
10042 if Nkind
(N
) in N_Op
then
10043 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
10044 Enable_Overflow_Check
(N
);
10048 -- Generate warning for expressions like -5 mod 3 for integers. No need
10049 -- to worry in the floating-point case, since parens do not affect the
10050 -- result so there is no point in giving in a warning.
10053 Norig
: constant Node_Id
:= Original_Node
(N
);
10062 if Warn_On_Questionable_Missing_Parens
10063 and then Comes_From_Source
(Norig
)
10064 and then Is_Integer_Type
(Typ
)
10065 and then Nkind
(Norig
) = N_Op_Minus
10067 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
10069 -- We are looking for cases where the right operand is not
10070 -- parenthesized, and is a binary operator, multiply, divide, or
10071 -- mod. These are the cases where the grouping can affect results.
10073 if Paren_Count
(Rorig
) = 0
10074 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
10076 -- For mod, we always give the warning, since the value is
10077 -- affected by the parenthesization (e.g. (-5) mod 315 /=
10078 -- -(5 mod 315)). But for the other cases, the only concern is
10079 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
10080 -- overflows, but (-2) * 64 does not). So we try to give the
10081 -- message only when overflow is possible.
10083 if Nkind
(Rorig
) /= N_Op_Mod
10084 and then Compile_Time_Known_Value
(R
)
10086 Val
:= Expr_Value
(R
);
10088 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
10089 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
10091 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
10094 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
10095 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
10097 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
10100 -- Note that the test below is deliberately excluding the
10101 -- largest negative number, since that is a potentially
10102 -- troublesome case (e.g. -2 * x, where the result is the
10103 -- largest negative integer has an overflow with 2 * x).
10105 if Val
> LB
and then Val
<= HB
then
10110 -- For the multiplication case, the only case we have to worry
10111 -- about is when (-a)*b is exactly the largest negative number
10112 -- so that -(a*b) can cause overflow. This can only happen if
10113 -- a is a power of 2, and more generally if any operand is a
10114 -- constant that is not a power of 2, then the parentheses
10115 -- cannot affect whether overflow occurs. We only bother to
10116 -- test the left most operand
10118 -- Loop looking at left operands for one that has known value
10121 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
10122 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
10123 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
10125 -- Operand value of 0 or 1 skips warning
10130 -- Otherwise check power of 2, if power of 2, warn, if
10131 -- anything else, skip warning.
10134 while Lval
/= 2 loop
10135 if Lval
mod 2 = 1 then
10146 -- Keep looking at left operands
10148 Opnd
:= Left_Opnd
(Opnd
);
10149 end loop Opnd_Loop
;
10151 -- For rem or "/" we can only have a problematic situation
10152 -- if the divisor has a value of minus one or one. Otherwise
10153 -- overflow is impossible (divisor > 1) or we have a case of
10154 -- division by zero in any case.
10156 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
10157 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
10158 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
10163 -- If we fall through warning should be issued
10165 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
10168 ("??unary minus expression should be parenthesized here!", N
);
10172 end Resolve_Unary_Op
;
10174 ----------------------------------
10175 -- Resolve_Unchecked_Expression --
10176 ----------------------------------
10178 procedure Resolve_Unchecked_Expression
10183 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
10184 Set_Etype
(N
, Typ
);
10185 end Resolve_Unchecked_Expression
;
10187 ---------------------------------------
10188 -- Resolve_Unchecked_Type_Conversion --
10189 ---------------------------------------
10191 procedure Resolve_Unchecked_Type_Conversion
10195 pragma Warnings
(Off
, Typ
);
10197 Operand
: constant Node_Id
:= Expression
(N
);
10198 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
10201 -- Resolve operand using its own type
10203 Resolve
(Operand
, Opnd_Type
);
10204 Analyze_Dimension
(N
);
10205 Eval_Unchecked_Conversion
(N
);
10206 end Resolve_Unchecked_Type_Conversion
;
10208 ------------------------------
10209 -- Rewrite_Operator_As_Call --
10210 ------------------------------
10212 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
10213 Loc
: constant Source_Ptr
:= Sloc
(N
);
10214 Actuals
: constant List_Id
:= New_List
;
10218 if Nkind
(N
) in N_Binary_Op
then
10219 Append
(Left_Opnd
(N
), Actuals
);
10222 Append
(Right_Opnd
(N
), Actuals
);
10225 Make_Function_Call
(Sloc
=> Loc
,
10226 Name
=> New_Occurrence_Of
(Nam
, Loc
),
10227 Parameter_Associations
=> Actuals
);
10229 Preserve_Comes_From_Source
(New_N
, N
);
10230 Preserve_Comes_From_Source
(Name
(New_N
), N
);
10231 Rewrite
(N
, New_N
);
10232 Set_Etype
(N
, Etype
(Nam
));
10233 end Rewrite_Operator_As_Call
;
10235 ------------------------------
10236 -- Rewrite_Renamed_Operator --
10237 ------------------------------
10239 procedure Rewrite_Renamed_Operator
10244 Nam
: constant Name_Id
:= Chars
(Op
);
10245 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
10249 -- Rewrite the operator node using the real operator, not its renaming.
10250 -- Exclude user-defined intrinsic operations of the same name, which are
10251 -- treated separately and rewritten as calls.
10253 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
10254 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
10255 Set_Chars
(Op_Node
, Nam
);
10256 Set_Etype
(Op_Node
, Etype
(N
));
10257 Set_Entity
(Op_Node
, Op
);
10258 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
10260 -- Indicate that both the original entity and its renaming are
10261 -- referenced at this point.
10263 Generate_Reference
(Entity
(N
), N
);
10264 Generate_Reference
(Op
, N
);
10267 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
10270 Rewrite
(N
, Op_Node
);
10272 -- If the context type is private, add the appropriate conversions so
10273 -- that the operator is applied to the full view. This is done in the
10274 -- routines that resolve intrinsic operators.
10276 if Is_Intrinsic_Subprogram
(Op
)
10277 and then Is_Private_Type
(Typ
)
10280 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
10281 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
10282 Resolve_Intrinsic_Operator
(N
, Typ
);
10284 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
10285 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
10292 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
10294 -- Operator renames a user-defined operator of the same name. Use the
10295 -- original operator in the node, which is the one Gigi knows about.
10297 Set_Entity
(N
, Op
);
10298 Set_Is_Overloaded
(N
, False);
10300 end Rewrite_Renamed_Operator
;
10302 -----------------------
10303 -- Set_Slice_Subtype --
10304 -----------------------
10306 -- Build an implicit subtype declaration to represent the type delivered by
10307 -- the slice. This is an abbreviated version of an array subtype. We define
10308 -- an index subtype for the slice, using either the subtype name or the
10309 -- discrete range of the slice. To be consistent with index usage elsewhere
10310 -- we create a list header to hold the single index. This list is not
10311 -- otherwise attached to the syntax tree.
10313 procedure Set_Slice_Subtype
(N
: Node_Id
) is
10314 Loc
: constant Source_Ptr
:= Sloc
(N
);
10315 Index_List
: constant List_Id
:= New_List
;
10317 Index_Subtype
: Entity_Id
;
10318 Index_Type
: Entity_Id
;
10319 Slice_Subtype
: Entity_Id
;
10320 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10323 if Is_Entity_Name
(Drange
) then
10324 Index_Subtype
:= Entity
(Drange
);
10327 -- We force the evaluation of a range. This is definitely needed in
10328 -- the renamed case, and seems safer to do unconditionally. Note in
10329 -- any case that since we will create and insert an Itype referring
10330 -- to this range, we must make sure any side effect removal actions
10331 -- are inserted before the Itype definition.
10333 if Nkind
(Drange
) = N_Range
then
10334 Force_Evaluation
(Low_Bound
(Drange
));
10335 Force_Evaluation
(High_Bound
(Drange
));
10338 Index_Type
:= Base_Type
(Etype
(Drange
));
10340 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
10342 -- Take a new copy of Drange (where bounds have been rewritten to
10343 -- reference side-effect-free names). Using a separate tree ensures
10344 -- that further expansion (e.g. while rewriting a slice assignment
10345 -- into a FOR loop) does not attempt to remove side effects on the
10346 -- bounds again (which would cause the bounds in the index subtype
10347 -- definition to refer to temporaries before they are defined) (the
10348 -- reason is that some names are considered side effect free here
10349 -- for the subtype, but not in the context of a loop iteration
10352 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
10353 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
10354 Set_Etype
(Index_Subtype
, Index_Type
);
10355 Set_Size_Info
(Index_Subtype
, Index_Type
);
10356 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
10359 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
10361 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
10362 Set_Etype
(Index
, Index_Subtype
);
10363 Append
(Index
, Index_List
);
10365 Set_First_Index
(Slice_Subtype
, Index
);
10366 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
10367 Set_Is_Constrained
(Slice_Subtype
, True);
10369 Check_Compile_Time_Size
(Slice_Subtype
);
10371 -- The Etype of the existing Slice node is reset to this slice subtype.
10372 -- Its bounds are obtained from its first index.
10374 Set_Etype
(N
, Slice_Subtype
);
10376 -- For packed slice subtypes, freeze immediately (except in the case of
10377 -- being in a "spec expression" where we never freeze when we first see
10378 -- the expression).
10380 if Is_Packed
(Slice_Subtype
) and not In_Spec_Expression
then
10381 Freeze_Itype
(Slice_Subtype
, N
);
10383 -- For all other cases insert an itype reference in the slice's actions
10384 -- so that the itype is frozen at the proper place in the tree (i.e. at
10385 -- the point where actions for the slice are analyzed). Note that this
10386 -- is different from freezing the itype immediately, which might be
10387 -- premature (e.g. if the slice is within a transient scope). This needs
10388 -- to be done only if expansion is enabled.
10390 elsif Full_Expander_Active
then
10391 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
10393 end Set_Slice_Subtype
;
10395 --------------------------------
10396 -- Set_String_Literal_Subtype --
10397 --------------------------------
10399 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
10400 Loc
: constant Source_Ptr
:= Sloc
(N
);
10401 Low_Bound
: constant Node_Id
:=
10402 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
10403 Subtype_Id
: Entity_Id
;
10406 if Nkind
(N
) /= N_String_Literal
then
10410 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
10411 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
10412 (String_Length
(Strval
(N
))));
10413 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
10414 Set_Is_Constrained
(Subtype_Id
);
10415 Set_Etype
(N
, Subtype_Id
);
10417 -- The low bound is set from the low bound of the corresponding index
10418 -- type. Note that we do not store the high bound in the string literal
10419 -- subtype, but it can be deduced if necessary from the length and the
10422 if Is_OK_Static_Expression
(Low_Bound
) then
10423 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
10425 -- If the lower bound is not static we create a range for the string
10426 -- literal, using the index type and the known length of the literal.
10427 -- The index type is not necessarily Positive, so the upper bound is
10428 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
10432 Index_List
: constant List_Id
:= New_List
;
10433 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
10434 High_Bound
: constant Node_Id
:=
10435 Make_Attribute_Reference
(Loc
,
10436 Attribute_Name
=> Name_Val
,
10438 New_Occurrence_Of
(Index_Type
, Loc
),
10439 Expressions
=> New_List
(
10442 Make_Attribute_Reference
(Loc
,
10443 Attribute_Name
=> Name_Pos
,
10445 New_Occurrence_Of
(Index_Type
, Loc
),
10447 New_List
(New_Copy_Tree
(Low_Bound
))),
10449 Make_Integer_Literal
(Loc
,
10450 String_Length
(Strval
(N
)) - 1))));
10452 Array_Subtype
: Entity_Id
;
10455 Index_Subtype
: Entity_Id
;
10458 if Is_Integer_Type
(Index_Type
) then
10459 Set_String_Literal_Low_Bound
10460 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
10463 -- If the index type is an enumeration type, build bounds
10464 -- expression with attributes.
10466 Set_String_Literal_Low_Bound
10468 Make_Attribute_Reference
(Loc
,
10469 Attribute_Name
=> Name_First
,
10471 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
10472 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
10475 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
10477 -- Build bona fide subtype for the string, and wrap it in an
10478 -- unchecked conversion, because the backend expects the
10479 -- String_Literal_Subtype to have a static lower bound.
10482 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
10483 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
10484 Set_Scalar_Range
(Index_Subtype
, Drange
);
10485 Set_Parent
(Drange
, N
);
10486 Analyze_And_Resolve
(Drange
, Index_Type
);
10488 -- In the context, the Index_Type may already have a constraint,
10489 -- so use common base type on string subtype. The base type may
10490 -- be used when generating attributes of the string, for example
10491 -- in the context of a slice assignment.
10493 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
10494 Set_Size_Info
(Index_Subtype
, Index_Type
);
10495 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
10497 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
10499 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
10500 Set_Etype
(Index
, Index_Subtype
);
10501 Append
(Index
, Index_List
);
10503 Set_First_Index
(Array_Subtype
, Index
);
10504 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
10505 Set_Is_Constrained
(Array_Subtype
, True);
10508 Make_Unchecked_Type_Conversion
(Loc
,
10509 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
10510 Expression
=> Relocate_Node
(N
)));
10511 Set_Etype
(N
, Array_Subtype
);
10514 end Set_String_Literal_Subtype
;
10516 ------------------------------
10517 -- Simplify_Type_Conversion --
10518 ------------------------------
10520 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
10522 if Nkind
(N
) = N_Type_Conversion
then
10524 Operand
: constant Node_Id
:= Expression
(N
);
10525 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10526 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
10529 if Is_Floating_Point_Type
(Opnd_Typ
)
10531 (Is_Integer_Type
(Target_Typ
)
10532 or else (Is_Fixed_Point_Type
(Target_Typ
)
10533 and then Conversion_OK
(N
)))
10534 and then Nkind
(Operand
) = N_Attribute_Reference
10535 and then Attribute_Name
(Operand
) = Name_Truncation
10537 -- Special processing required if the conversion is the expression
10538 -- of a Truncation attribute reference. In this case we replace:
10540 -- ityp (ftyp'Truncation (x))
10546 -- with the Float_Truncate flag set, which is more efficient.
10550 Relocate_Node
(First
(Expressions
(Operand
))));
10551 Set_Float_Truncate
(N
, True);
10555 end Simplify_Type_Conversion
;
10557 -----------------------------
10558 -- Unique_Fixed_Point_Type --
10559 -----------------------------
10561 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
10562 T1
: Entity_Id
:= Empty
;
10567 procedure Fixed_Point_Error
;
10568 -- Give error messages for true ambiguity. Messages are posted on node
10569 -- N, and entities T1, T2 are the possible interpretations.
10571 -----------------------
10572 -- Fixed_Point_Error --
10573 -----------------------
10575 procedure Fixed_Point_Error
is
10577 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
10578 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
10579 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
10580 end Fixed_Point_Error
;
10582 -- Start of processing for Unique_Fixed_Point_Type
10585 -- The operations on Duration are visible, so Duration is always a
10586 -- possible interpretation.
10588 T1
:= Standard_Duration
;
10590 -- Look for fixed-point types in enclosing scopes
10592 Scop
:= Current_Scope
;
10593 while Scop
/= Standard_Standard
loop
10594 T2
:= First_Entity
(Scop
);
10595 while Present
(T2
) loop
10596 if Is_Fixed_Point_Type
(T2
)
10597 and then Current_Entity
(T2
) = T2
10598 and then Scope
(Base_Type
(T2
)) = Scop
10600 if Present
(T1
) then
10611 Scop
:= Scope
(Scop
);
10614 -- Look for visible fixed type declarations in the context
10616 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
10617 while Present
(Item
) loop
10618 if Nkind
(Item
) = N_With_Clause
then
10619 Scop
:= Entity
(Name
(Item
));
10620 T2
:= First_Entity
(Scop
);
10621 while Present
(T2
) loop
10622 if Is_Fixed_Point_Type
(T2
)
10623 and then Scope
(Base_Type
(T2
)) = Scop
10624 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
10626 if Present
(T1
) then
10641 if Nkind
(N
) = N_Real_Literal
then
10643 ("??real literal interpreted as }!", N
, T1
);
10646 ("??universal_fixed expression interpreted as }!", N
, T1
);
10650 end Unique_Fixed_Point_Type
;
10652 ----------------------
10653 -- Valid_Conversion --
10654 ----------------------
10656 function Valid_Conversion
10658 Target
: Entity_Id
;
10660 Report_Errs
: Boolean := True) return Boolean
10662 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
10663 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
10664 Inc_Ancestor
: Entity_Id
;
10666 function Conversion_Check
10668 Msg
: String) return Boolean;
10669 -- Little routine to post Msg if Valid is False, returns Valid value
10671 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
);
10672 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
10674 procedure Conversion_Error_NE
10676 N
: Node_Or_Entity_Id
;
10677 E
: Node_Or_Entity_Id
);
10678 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
10680 function Valid_Tagged_Conversion
10681 (Target_Type
: Entity_Id
;
10682 Opnd_Type
: Entity_Id
) return Boolean;
10683 -- Specifically test for validity of tagged conversions
10685 function Valid_Array_Conversion
return Boolean;
10686 -- Check index and component conformance, and accessibility levels if
10687 -- the component types are anonymous access types (Ada 2005).
10689 ----------------------
10690 -- Conversion_Check --
10691 ----------------------
10693 function Conversion_Check
10695 Msg
: String) return Boolean
10700 -- A generic unit has already been analyzed and we have verified
10701 -- that a particular conversion is OK in that context. Since the
10702 -- instance is reanalyzed without relying on the relationships
10703 -- established during the analysis of the generic, it is possible
10704 -- to end up with inconsistent views of private types. Do not emit
10705 -- the error message in such cases. The rest of the machinery in
10706 -- Valid_Conversion still ensures the proper compatibility of
10707 -- target and operand types.
10709 and then not In_Instance
10711 Conversion_Error_N
(Msg
, Operand
);
10715 end Conversion_Check
;
10717 ------------------------
10718 -- Conversion_Error_N --
10719 ------------------------
10721 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
10723 if Report_Errs
then
10724 Error_Msg_N
(Msg
, N
);
10726 end Conversion_Error_N
;
10728 -------------------------
10729 -- Conversion_Error_NE --
10730 -------------------------
10732 procedure Conversion_Error_NE
10734 N
: Node_Or_Entity_Id
;
10735 E
: Node_Or_Entity_Id
)
10738 if Report_Errs
then
10739 Error_Msg_NE
(Msg
, N
, E
);
10741 end Conversion_Error_NE
;
10743 ----------------------------
10744 -- Valid_Array_Conversion --
10745 ----------------------------
10747 function Valid_Array_Conversion
return Boolean
10749 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
10750 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
10752 Opnd_Index
: Node_Id
;
10753 Opnd_Index_Type
: Entity_Id
;
10755 Target_Comp_Type
: constant Entity_Id
:=
10756 Component_Type
(Target_Type
);
10757 Target_Comp_Base
: constant Entity_Id
:=
10758 Base_Type
(Target_Comp_Type
);
10760 Target_Index
: Node_Id
;
10761 Target_Index_Type
: Entity_Id
;
10764 -- Error if wrong number of dimensions
10767 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
10770 ("incompatible number of dimensions for conversion", Operand
);
10773 -- Number of dimensions matches
10776 -- Loop through indexes of the two arrays
10778 Target_Index
:= First_Index
(Target_Type
);
10779 Opnd_Index
:= First_Index
(Opnd_Type
);
10780 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
10781 Target_Index_Type
:= Etype
(Target_Index
);
10782 Opnd_Index_Type
:= Etype
(Opnd_Index
);
10784 -- Error if index types are incompatible
10786 if not (Is_Integer_Type
(Target_Index_Type
)
10787 and then Is_Integer_Type
(Opnd_Index_Type
))
10788 and then (Root_Type
(Target_Index_Type
)
10789 /= Root_Type
(Opnd_Index_Type
))
10792 ("incompatible index types for array conversion",
10797 Next_Index
(Target_Index
);
10798 Next_Index
(Opnd_Index
);
10801 -- If component types have same base type, all set
10803 if Target_Comp_Base
= Opnd_Comp_Base
then
10806 -- Here if base types of components are not the same. The only
10807 -- time this is allowed is if we have anonymous access types.
10809 -- The conversion of arrays of anonymous access types can lead
10810 -- to dangling pointers. AI-392 formalizes the accessibility
10811 -- checks that must be applied to such conversions to prevent
10812 -- out-of-scope references.
10815 (Target_Comp_Base
, E_Anonymous_Access_Type
,
10816 E_Anonymous_Access_Subprogram_Type
)
10817 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
10819 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
10821 if Type_Access_Level
(Target_Type
) <
10822 Deepest_Type_Access_Level
(Opnd_Type
)
10824 if In_Instance_Body
then
10826 ("??source array type has deeper accessibility "
10827 & "level than target", Operand
);
10829 ("\??Program_Error will be raised at run time",
10832 Make_Raise_Program_Error
(Sloc
(N
),
10833 Reason
=> PE_Accessibility_Check_Failed
));
10834 Set_Etype
(N
, Target_Type
);
10837 -- Conversion not allowed because of accessibility levels
10841 ("source array type has deeper accessibility "
10842 & "level than target", Operand
);
10850 -- All other cases where component base types do not match
10854 ("incompatible component types for array conversion",
10859 -- Check that component subtypes statically match. For numeric
10860 -- types this means that both must be either constrained or
10861 -- unconstrained. For enumeration types the bounds must match.
10862 -- All of this is checked in Subtypes_Statically_Match.
10864 if not Subtypes_Statically_Match
10865 (Target_Comp_Type
, Opnd_Comp_Type
)
10868 ("component subtypes must statically match", Operand
);
10874 end Valid_Array_Conversion
;
10876 -----------------------------
10877 -- Valid_Tagged_Conversion --
10878 -----------------------------
10880 function Valid_Tagged_Conversion
10881 (Target_Type
: Entity_Id
;
10882 Opnd_Type
: Entity_Id
) return Boolean
10885 -- Upward conversions are allowed (RM 4.6(22))
10887 if Covers
(Target_Type
, Opnd_Type
)
10888 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
10892 -- Downward conversion are allowed if the operand is class-wide
10895 elsif Is_Class_Wide_Type
(Opnd_Type
)
10896 and then Covers
(Opnd_Type
, Target_Type
)
10900 elsif Covers
(Opnd_Type
, Target_Type
)
10901 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
10904 Conversion_Check
(False,
10905 "downward conversion of tagged objects not allowed");
10907 -- Ada 2005 (AI-251): The conversion to/from interface types is
10910 elsif Is_Interface
(Target_Type
) or else Is_Interface
(Opnd_Type
) then
10913 -- If the operand is a class-wide type obtained through a limited_
10914 -- with clause, and the context includes the non-limited view, use
10915 -- it to determine whether the conversion is legal.
10917 elsif Is_Class_Wide_Type
(Opnd_Type
)
10918 and then From_Limited_With
(Opnd_Type
)
10919 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
10920 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
10924 elsif Is_Access_Type
(Opnd_Type
)
10925 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
10930 Conversion_Error_NE
10931 ("invalid tagged conversion, not compatible with}",
10932 N
, First_Subtype
(Opnd_Type
));
10935 end Valid_Tagged_Conversion
;
10937 -- Start of processing for Valid_Conversion
10940 Check_Parameterless_Call
(Operand
);
10942 if Is_Overloaded
(Operand
) then
10952 -- Remove procedure calls, which syntactically cannot appear in
10953 -- this context, but which cannot be removed by type checking,
10954 -- because the context does not impose a type.
10956 -- When compiling for VMS, spurious ambiguities can be produced
10957 -- when arithmetic operations have a literal operand and return
10958 -- System.Address or a descendant of it. These ambiguities are
10959 -- otherwise resolved by the context, but for conversions there
10960 -- is no context type and the removal of the spurious operations
10961 -- must be done explicitly here.
10963 -- The node may be labelled overloaded, but still contain only one
10964 -- interpretation because others were discarded earlier. If this
10965 -- is the case, retain the single interpretation if legal.
10967 Get_First_Interp
(Operand
, I
, It
);
10968 Opnd_Type
:= It
.Typ
;
10969 Get_Next_Interp
(I
, It
);
10971 if Present
(It
.Typ
)
10972 and then Opnd_Type
/= Standard_Void_Type
10974 -- More than one candidate interpretation is available
10976 Get_First_Interp
(Operand
, I
, It
);
10977 while Present
(It
.Typ
) loop
10978 if It
.Typ
= Standard_Void_Type
then
10982 if Present
(System_Aux_Id
)
10983 and then Is_Descendent_Of_Address
(It
.Typ
)
10988 Get_Next_Interp
(I
, It
);
10992 Get_First_Interp
(Operand
, I
, It
);
10996 if No
(It
.Typ
) then
10997 Conversion_Error_N
("illegal operand in conversion", Operand
);
11001 Get_Next_Interp
(I
, It
);
11003 if Present
(It
.Typ
) then
11006 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
11008 if It1
= No_Interp
then
11010 ("ambiguous operand in conversion", Operand
);
11012 -- If the interpretation involves a standard operator, use
11013 -- the location of the type, which may be user-defined.
11015 if Sloc
(It
.Nam
) = Standard_Location
then
11016 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
11018 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
11021 Conversion_Error_N
-- CODEFIX
11022 ("\\possible interpretation#!", Operand
);
11024 if Sloc
(N1
) = Standard_Location
then
11025 Error_Msg_Sloc
:= Sloc
(T1
);
11027 Error_Msg_Sloc
:= Sloc
(N1
);
11030 Conversion_Error_N
-- CODEFIX
11031 ("\\possible interpretation#!", Operand
);
11037 Set_Etype
(Operand
, It1
.Typ
);
11038 Opnd_Type
:= It1
.Typ
;
11042 -- If we are within a child unit, check whether the type of the
11043 -- expression has an ancestor in a parent unit, in which case it
11044 -- belongs to its derivation class even if the ancestor is private.
11045 -- See RM 7.3.1 (5.2/3).
11047 Inc_Ancestor
:= Get_Incomplete_View_Of_Ancestor
(Opnd_Type
);
11051 if Is_Numeric_Type
(Target_Type
) then
11053 -- A universal fixed expression can be converted to any numeric type
11055 if Opnd_Type
= Universal_Fixed
then
11058 -- Also no need to check when in an instance or inlined body, because
11059 -- the legality has been established when the template was analyzed.
11060 -- Furthermore, numeric conversions may occur where only a private
11061 -- view of the operand type is visible at the instantiation point.
11062 -- This results in a spurious error if we check that the operand type
11063 -- is a numeric type.
11065 -- Note: in a previous version of this unit, the following tests were
11066 -- applied only for generated code (Comes_From_Source set to False),
11067 -- but in fact the test is required for source code as well, since
11068 -- this situation can arise in source code.
11070 elsif In_Instance
or else In_Inlined_Body
then
11073 -- Otherwise we need the conversion check
11076 return Conversion_Check
11077 (Is_Numeric_Type
(Opnd_Type
)
11079 (Present
(Inc_Ancestor
)
11080 and then Is_Numeric_Type
(Inc_Ancestor
)),
11081 "illegal operand for numeric conversion");
11086 elsif Is_Array_Type
(Target_Type
) then
11087 if not Is_Array_Type
(Opnd_Type
)
11088 or else Opnd_Type
= Any_Composite
11089 or else Opnd_Type
= Any_String
11092 ("illegal operand for array conversion", Operand
);
11096 return Valid_Array_Conversion
;
11099 -- Ada 2005 (AI-251): Anonymous access types where target references an
11102 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
11103 E_Anonymous_Access_Type
)
11104 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
11106 -- Check the static accessibility rule of 4.6(17). Note that the
11107 -- check is not enforced when within an instance body, since the
11108 -- RM requires such cases to be caught at run time.
11110 -- If the operand is a rewriting of an allocator no check is needed
11111 -- because there are no accessibility issues.
11113 if Nkind
(Original_Node
(N
)) = N_Allocator
then
11116 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
11117 if Type_Access_Level
(Opnd_Type
) >
11118 Deepest_Type_Access_Level
(Target_Type
)
11120 -- In an instance, this is a run-time check, but one we know
11121 -- will fail, so generate an appropriate warning. The raise
11122 -- will be generated by Expand_N_Type_Conversion.
11124 if In_Instance_Body
then
11126 ("??cannot convert local pointer to non-local access type",
11129 ("\??Program_Error will be raised at run time", Operand
);
11133 ("cannot convert local pointer to non-local access type",
11138 -- Special accessibility checks are needed in the case of access
11139 -- discriminants declared for a limited type.
11141 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
11142 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
11144 -- When the operand is a selected access discriminant the check
11145 -- needs to be made against the level of the object denoted by
11146 -- the prefix of the selected name (Object_Access_Level handles
11147 -- checking the prefix of the operand for this case).
11149 if Nkind
(Operand
) = N_Selected_Component
11150 and then Object_Access_Level
(Operand
) >
11151 Deepest_Type_Access_Level
(Target_Type
)
11153 -- In an instance, this is a run-time check, but one we know
11154 -- will fail, so generate an appropriate warning. The raise
11155 -- will be generated by Expand_N_Type_Conversion.
11157 if In_Instance_Body
then
11159 ("??cannot convert access discriminant to non-local "
11160 & "access type", Operand
);
11162 ("\??Program_Error will be raised at run time",
11166 ("cannot convert access discriminant to non-local "
11167 & "access type", Operand
);
11172 -- The case of a reference to an access discriminant from
11173 -- within a limited type declaration (which will appear as
11174 -- a discriminal) is always illegal because the level of the
11175 -- discriminant is considered to be deeper than any (nameable)
11178 if Is_Entity_Name
(Operand
)
11179 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
11181 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
11182 and then Present
(Discriminal_Link
(Entity
(Operand
)))
11185 ("discriminant has deeper accessibility level than target",
11194 -- General and anonymous access types
11196 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
11197 E_Anonymous_Access_Type
)
11200 (Is_Access_Type
(Opnd_Type
)
11202 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
11203 E_Access_Protected_Subprogram_Type
),
11204 "must be an access-to-object type")
11206 if Is_Access_Constant
(Opnd_Type
)
11207 and then not Is_Access_Constant
(Target_Type
)
11210 ("access-to-constant operand type not allowed", Operand
);
11214 -- Check the static accessibility rule of 4.6(17). Note that the
11215 -- check is not enforced when within an instance body, since the RM
11216 -- requires such cases to be caught at run time.
11218 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
11219 or else Is_Local_Anonymous_Access
(Target_Type
)
11220 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
11221 N_Object_Declaration
11223 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
11224 -- conversions from an anonymous access type to a named general
11225 -- access type. Such conversions are not allowed in the case of
11226 -- access parameters and stand-alone objects of an anonymous
11227 -- access type. The implicit conversion case is recognized by
11228 -- testing that Comes_From_Source is False and that it's been
11229 -- rewritten. The Comes_From_Source test isn't sufficient because
11230 -- nodes in inlined calls to predefined library routines can have
11231 -- Comes_From_Source set to False. (Is there a better way to test
11232 -- for implicit conversions???)
11234 if Ada_Version
>= Ada_2012
11235 and then not Comes_From_Source
(N
)
11236 and then N
/= Original_Node
(N
)
11237 and then Ekind
(Target_Type
) = E_General_Access_Type
11238 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
11240 if Is_Itype
(Opnd_Type
) then
11242 -- Implicit conversions aren't allowed for objects of an
11243 -- anonymous access type, since such objects have nonstatic
11244 -- levels in Ada 2012.
11246 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
11247 N_Object_Declaration
11250 ("implicit conversion of stand-alone anonymous "
11251 & "access object not allowed", Operand
);
11254 -- Implicit conversions aren't allowed for anonymous access
11255 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
11256 -- is done to exclude anonymous access results.
11258 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
11259 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
11260 N_Function_Specification
,
11261 N_Procedure_Specification
)
11264 ("implicit conversion of anonymous access formal "
11265 & "not allowed", Operand
);
11268 -- This is a case where there's an enclosing object whose
11269 -- to which the "statically deeper than" relationship does
11270 -- not apply (such as an access discriminant selected from
11271 -- a dereference of an access parameter).
11273 elsif Object_Access_Level
(Operand
)
11274 = Scope_Depth
(Standard_Standard
)
11277 ("implicit conversion of anonymous access value "
11278 & "not allowed", Operand
);
11281 -- In other cases, the level of the operand's type must be
11282 -- statically less deep than that of the target type, else
11283 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
11285 elsif Type_Access_Level
(Opnd_Type
) >
11286 Deepest_Type_Access_Level
(Target_Type
)
11289 ("implicit conversion of anonymous access value "
11290 & "violates accessibility", Operand
);
11295 elsif Type_Access_Level
(Opnd_Type
) >
11296 Deepest_Type_Access_Level
(Target_Type
)
11298 -- In an instance, this is a run-time check, but one we know
11299 -- will fail, so generate an appropriate warning. The raise
11300 -- will be generated by Expand_N_Type_Conversion.
11302 if In_Instance_Body
then
11304 ("??cannot convert local pointer to non-local access type",
11307 ("\??Program_Error will be raised at run time", Operand
);
11310 -- Avoid generation of spurious error message
11312 if not Error_Posted
(N
) then
11314 ("cannot convert local pointer to non-local access type",
11321 -- Special accessibility checks are needed in the case of access
11322 -- discriminants declared for a limited type.
11324 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
11325 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
11327 -- When the operand is a selected access discriminant the check
11328 -- needs to be made against the level of the object denoted by
11329 -- the prefix of the selected name (Object_Access_Level handles
11330 -- checking the prefix of the operand for this case).
11332 if Nkind
(Operand
) = N_Selected_Component
11333 and then Object_Access_Level
(Operand
) >
11334 Deepest_Type_Access_Level
(Target_Type
)
11336 -- In an instance, this is a run-time check, but one we know
11337 -- will fail, so generate an appropriate warning. The raise
11338 -- will be generated by Expand_N_Type_Conversion.
11340 if In_Instance_Body
then
11342 ("??cannot convert access discriminant to non-local "
11343 & "access type", Operand
);
11345 ("\??Program_Error will be raised at run time",
11350 ("cannot convert access discriminant to non-local "
11351 & "access type", Operand
);
11356 -- The case of a reference to an access discriminant from
11357 -- within a limited type declaration (which will appear as
11358 -- a discriminal) is always illegal because the level of the
11359 -- discriminant is considered to be deeper than any (nameable)
11362 if Is_Entity_Name
(Operand
)
11364 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
11365 and then Present
(Discriminal_Link
(Entity
(Operand
)))
11368 ("discriminant has deeper accessibility level than target",
11375 -- In the presence of limited_with clauses we have to use non-limited
11376 -- views, if available.
11378 Check_Limited
: declare
11379 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
11380 -- Helper function to handle limited views
11382 --------------------------
11383 -- Full_Designated_Type --
11384 --------------------------
11386 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
11387 Desig
: constant Entity_Id
:= Designated_Type
(T
);
11390 -- Handle the limited view of a type
11392 if Is_Incomplete_Type
(Desig
)
11393 and then From_Limited_With
(Desig
)
11394 and then Present
(Non_Limited_View
(Desig
))
11396 return Available_View
(Desig
);
11400 end Full_Designated_Type
;
11402 -- Local Declarations
11404 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
11405 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
11407 Same_Base
: constant Boolean :=
11408 Base_Type
(Target
) = Base_Type
(Opnd
);
11410 -- Start of processing for Check_Limited
11413 if Is_Tagged_Type
(Target
) then
11414 return Valid_Tagged_Conversion
(Target
, Opnd
);
11417 if not Same_Base
then
11418 Conversion_Error_NE
11419 ("target designated type not compatible with }",
11420 N
, Base_Type
(Opnd
));
11423 -- Ada 2005 AI-384: legality rule is symmetric in both
11424 -- designated types. The conversion is legal (with possible
11425 -- constraint check) if either designated type is
11428 elsif Subtypes_Statically_Match
(Target
, Opnd
)
11430 (Has_Discriminants
(Target
)
11432 (not Is_Constrained
(Opnd
)
11433 or else not Is_Constrained
(Target
)))
11435 -- Special case, if Value_Size has been used to make the
11436 -- sizes different, the conversion is not allowed even
11437 -- though the subtypes statically match.
11439 if Known_Static_RM_Size
(Target
)
11440 and then Known_Static_RM_Size
(Opnd
)
11441 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
11443 Conversion_Error_NE
11444 ("target designated subtype not compatible with }",
11446 Conversion_Error_NE
11447 ("\because sizes of the two designated subtypes differ",
11451 -- Normal case where conversion is allowed
11459 ("target designated subtype not compatible with }",
11466 -- Access to subprogram types. If the operand is an access parameter,
11467 -- the type has a deeper accessibility that any master, and cannot be
11468 -- assigned. We must make an exception if the conversion is part of an
11469 -- assignment and the target is the return object of an extended return
11470 -- statement, because in that case the accessibility check takes place
11471 -- after the return.
11473 elsif Is_Access_Subprogram_Type
(Target_Type
)
11474 and then No
(Corresponding_Remote_Type
(Opnd_Type
))
11476 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
11477 and then Is_Entity_Name
(Operand
)
11478 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
11480 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
11481 or else not Is_Entity_Name
(Name
(Parent
(N
)))
11482 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
11485 ("illegal attempt to store anonymous access to subprogram",
11488 ("\value has deeper accessibility than any master "
11489 & "(RM 3.10.2 (13))",
11493 ("\use named access type for& instead of access parameter",
11494 Operand
, Entity
(Operand
));
11497 -- Check that the designated types are subtype conformant
11499 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
11500 Old_Id
=> Designated_Type
(Opnd_Type
),
11503 -- Check the static accessibility rule of 4.6(20)
11505 if Type_Access_Level
(Opnd_Type
) >
11506 Deepest_Type_Access_Level
(Target_Type
)
11509 ("operand type has deeper accessibility level than target",
11512 -- Check that if the operand type is declared in a generic body,
11513 -- then the target type must be declared within that same body
11514 -- (enforces last sentence of 4.6(20)).
11516 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
11518 O_Gen
: constant Node_Id
:=
11519 Enclosing_Generic_Body
(Opnd_Type
);
11524 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
11525 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
11526 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
11529 if T_Gen
/= O_Gen
then
11531 ("target type must be declared in same generic body "
11532 & "as operand type", N
);
11539 -- Remote subprogram access types
11541 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
11542 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
11544 -- It is valid to convert from one RAS type to another provided
11545 -- that their specification statically match.
11547 Check_Subtype_Conformant
11549 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
11551 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
11556 -- If it was legal in the generic, it's legal in the instance
11558 elsif In_Instance_Body
then
11561 -- If both are tagged types, check legality of view conversions
11563 elsif Is_Tagged_Type
(Target_Type
)
11565 Is_Tagged_Type
(Opnd_Type
)
11567 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
11569 -- Types derived from the same root type are convertible
11571 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
11574 -- In an instance or an inlined body, there may be inconsistent views of
11575 -- the same type, or of types derived from a common root.
11577 elsif (In_Instance
or In_Inlined_Body
)
11579 Root_Type
(Underlying_Type
(Target_Type
)) =
11580 Root_Type
(Underlying_Type
(Opnd_Type
))
11584 -- Special check for common access type error case
11586 elsif Ekind
(Target_Type
) = E_Access_Type
11587 and then Is_Access_Type
(Opnd_Type
)
11589 Conversion_Error_N
("target type must be general access type!", N
);
11590 Conversion_Error_NE
-- CODEFIX
11591 ("add ALL to }!", N
, Target_Type
);
11595 Conversion_Error_NE
11596 ("invalid conversion, not compatible with }", N
, Opnd_Type
);
11599 end Valid_Conversion
;