1 /* Global constant/copy propagation for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
24 #include "diagnostic-core.h"
30 #include "double-int.h"
39 #include "hard-reg-set.h"
41 #include "insn-config.h"
46 #include "dominance.h"
51 #include "cfgcleanup.h"
52 #include "basic-block.h"
53 #include "statistics.h"
55 #include "fixed-value.h"
69 #include "tree-pass.h"
76 /* An obstack for our working variables. */
77 static struct obstack cprop_obstack
;
79 /* Occurrence of an expression.
80 There is one per basic block. If a pattern appears more than once the
81 last appearance is used. */
85 /* Next occurrence of this expression. */
86 struct cprop_occr
*next
;
87 /* The insn that computes the expression. */
91 typedef struct cprop_occr
*occr_t
;
93 /* Hash table entry for assignment expressions. */
97 /* The expression (DEST := SRC). */
101 /* Index in the available expression bitmaps. */
103 /* Next entry with the same hash. */
104 struct cprop_expr
*next_same_hash
;
105 /* List of available occurrence in basic blocks in the function.
106 An "available occurrence" is one that is the last occurrence in the
107 basic block and whose operands are not modified by following statements
108 in the basic block [including this insn]. */
109 struct cprop_occr
*avail_occr
;
112 /* Hash table for copy propagation expressions.
113 Each hash table is an array of buckets.
114 ??? It is known that if it were an array of entries, structure elements
115 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
116 not clear whether in the final analysis a sufficient amount of memory would
117 be saved as the size of the available expression bitmaps would be larger
118 [one could build a mapping table without holes afterwards though].
119 Someday I'll perform the computation and figure it out. */
124 This is an array of `set_hash_table_size' elements. */
125 struct cprop_expr
**table
;
127 /* Size of the hash table, in elements. */
130 /* Number of hash table elements. */
131 unsigned int n_elems
;
134 /* Copy propagation hash table. */
135 static struct hash_table_d set_hash_table
;
137 /* Array of implicit set patterns indexed by basic block index. */
138 static rtx
*implicit_sets
;
140 /* Array of indexes of expressions for implicit set patterns indexed by basic
141 block index. In other words, implicit_set_indexes[i] is the bitmap_index
142 of the expression whose RTX is implicit_sets[i]. */
143 static int *implicit_set_indexes
;
145 /* Bitmap containing one bit for each register in the program.
146 Used when performing GCSE to track which registers have been set since
147 the start or end of the basic block while traversing that block. */
148 static regset reg_set_bitmap
;
150 /* Various variables for statistics gathering. */
152 /* Memory used in a pass.
153 This isn't intended to be absolutely precise. Its intent is only
154 to keep an eye on memory usage. */
155 static int bytes_used
;
157 /* Number of local constants propagated. */
158 static int local_const_prop_count
;
159 /* Number of local copies propagated. */
160 static int local_copy_prop_count
;
161 /* Number of global constants propagated. */
162 static int global_const_prop_count
;
163 /* Number of global copies propagated. */
164 static int global_copy_prop_count
;
166 #define GOBNEW(T) ((T *) cprop_alloc (sizeof (T)))
167 #define GOBNEWVAR(T, S) ((T *) cprop_alloc ((S)))
169 /* Cover function to obstack_alloc. */
172 cprop_alloc (unsigned long size
)
175 return obstack_alloc (&cprop_obstack
, size
);
178 /* Return nonzero if register X is unchanged from INSN to the end
179 of INSN's basic block. */
182 reg_available_p (const_rtx x
, const rtx_insn
*insn ATTRIBUTE_UNUSED
)
184 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
187 /* Hash a set of register REGNO.
189 Sets are hashed on the register that is set. This simplifies the PRE copy
192 ??? May need to make things more elaborate. Later, as necessary. */
195 hash_mod (int regno
, int hash_table_size
)
197 return (unsigned) regno
% hash_table_size
;
200 /* Insert assignment DEST:=SET from INSN in the hash table.
201 DEST is a register and SET is a register or a suitable constant.
202 If the assignment is already present in the table, record it as
203 the last occurrence in INSN's basic block.
204 IMPLICIT is true if it's an implicit set, false otherwise. */
207 insert_set_in_table (rtx dest
, rtx src
, rtx_insn
*insn
,
208 struct hash_table_d
*table
, bool implicit
)
212 struct cprop_expr
*cur_expr
, *last_expr
= NULL
;
213 struct cprop_occr
*cur_occr
;
215 hash
= hash_mod (REGNO (dest
), table
->size
);
217 for (cur_expr
= table
->table
[hash
]; cur_expr
;
218 cur_expr
= cur_expr
->next_same_hash
)
220 if (dest
== cur_expr
->dest
221 && src
== cur_expr
->src
)
226 last_expr
= cur_expr
;
231 cur_expr
= GOBNEW (struct cprop_expr
);
232 bytes_used
+= sizeof (struct cprop_expr
);
233 if (table
->table
[hash
] == NULL
)
234 /* This is the first pattern that hashed to this index. */
235 table
->table
[hash
] = cur_expr
;
237 /* Add EXPR to end of this hash chain. */
238 last_expr
->next_same_hash
= cur_expr
;
240 /* Set the fields of the expr element.
241 We must copy X because it can be modified when copy propagation is
242 performed on its operands. */
243 cur_expr
->dest
= copy_rtx (dest
);
244 cur_expr
->src
= copy_rtx (src
);
245 cur_expr
->bitmap_index
= table
->n_elems
++;
246 cur_expr
->next_same_hash
= NULL
;
247 cur_expr
->avail_occr
= NULL
;
250 /* Now record the occurrence. */
251 cur_occr
= cur_expr
->avail_occr
;
254 && BLOCK_FOR_INSN (cur_occr
->insn
) == BLOCK_FOR_INSN (insn
))
256 /* Found another instance of the expression in the same basic block.
257 Prefer this occurrence to the currently recorded one. We want
258 the last one in the block and the block is scanned from start
260 cur_occr
->insn
= insn
;
264 /* First occurrence of this expression in this basic block. */
265 cur_occr
= GOBNEW (struct cprop_occr
);
266 bytes_used
+= sizeof (struct cprop_occr
);
267 cur_occr
->insn
= insn
;
268 cur_occr
->next
= cur_expr
->avail_occr
;
269 cur_expr
->avail_occr
= cur_occr
;
272 /* Record bitmap_index of the implicit set in implicit_set_indexes. */
274 implicit_set_indexes
[BLOCK_FOR_INSN (insn
)->index
]
275 = cur_expr
->bitmap_index
;
278 /* Determine whether the rtx X should be treated as a constant for CPROP.
279 Since X might be inserted more than once we have to take care that it
283 cprop_constant_p (const_rtx x
)
285 return CONSTANT_P (x
) && (GET_CODE (x
) != CONST
|| shared_const_p (x
));
288 /* Determine whether the rtx X should be treated as a register that can
289 be propagated. Any pseudo-register is fine. */
292 cprop_reg_p (const_rtx x
)
294 return REG_P (x
) && !HARD_REGISTER_P (x
);
297 /* Scan SET present in INSN and add an entry to the hash TABLE.
298 IMPLICIT is true if it's an implicit set, false otherwise. */
301 hash_scan_set (rtx set
, rtx_insn
*insn
, struct hash_table_d
*table
,
304 rtx src
= SET_SRC (set
);
305 rtx dest
= SET_DEST (set
);
307 if (cprop_reg_p (dest
)
308 && reg_available_p (dest
, insn
)
309 && can_copy_p (GET_MODE (dest
)))
311 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
313 This allows us to do a single CPROP pass and still eliminate
314 redundant constants, addresses or other expressions that are
315 constructed with multiple instructions.
317 However, keep the original SRC if INSN is a simple reg-reg move. In
318 In this case, there will almost always be a REG_EQUAL note on the
319 insn that sets SRC. By recording the REG_EQUAL value here as SRC
320 for INSN, we miss copy propagation opportunities.
322 Note that this does not impede profitable constant propagations. We
323 "look through" reg-reg sets in lookup_set. */
324 rtx note
= find_reg_equal_equiv_note (insn
);
326 && REG_NOTE_KIND (note
) == REG_EQUAL
328 && cprop_constant_p (XEXP (note
, 0)))
329 src
= XEXP (note
, 0), set
= gen_rtx_SET (VOIDmode
, dest
, src
);
331 /* Record sets for constant/copy propagation. */
332 if ((cprop_reg_p (src
)
334 && reg_available_p (src
, insn
))
335 || cprop_constant_p (src
))
336 insert_set_in_table (dest
, src
, insn
, table
, implicit
);
340 /* Process INSN and add hash table entries as appropriate. */
343 hash_scan_insn (rtx_insn
*insn
, struct hash_table_d
*table
)
345 rtx pat
= PATTERN (insn
);
348 /* Pick out the sets of INSN and for other forms of instructions record
349 what's been modified. */
351 if (GET_CODE (pat
) == SET
)
352 hash_scan_set (pat
, insn
, table
, false);
353 else if (GET_CODE (pat
) == PARALLEL
)
354 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
356 rtx x
= XVECEXP (pat
, 0, i
);
358 if (GET_CODE (x
) == SET
)
359 hash_scan_set (x
, insn
, table
, false);
363 /* Dump the hash table TABLE to file FILE under the name NAME. */
366 dump_hash_table (FILE *file
, const char *name
, struct hash_table_d
*table
)
369 /* Flattened out table, so it's printed in proper order. */
370 struct cprop_expr
**flat_table
;
371 unsigned int *hash_val
;
372 struct cprop_expr
*expr
;
374 flat_table
= XCNEWVEC (struct cprop_expr
*, table
->n_elems
);
375 hash_val
= XNEWVEC (unsigned int, table
->n_elems
);
377 for (i
= 0; i
< (int) table
->size
; i
++)
378 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
380 flat_table
[expr
->bitmap_index
] = expr
;
381 hash_val
[expr
->bitmap_index
] = i
;
384 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
385 name
, table
->size
, table
->n_elems
);
387 for (i
= 0; i
< (int) table
->n_elems
; i
++)
388 if (flat_table
[i
] != 0)
390 expr
= flat_table
[i
];
391 fprintf (file
, "Index %d (hash value %d)\n ",
392 expr
->bitmap_index
, hash_val
[i
]);
393 print_rtl (file
, expr
->dest
);
394 fprintf (file
, " := ");
395 print_rtl (file
, expr
->src
);
396 fprintf (file
, "\n");
399 fprintf (file
, "\n");
405 /* Record as unavailable all registers that are DEF operands of INSN. */
408 make_set_regs_unavailable (rtx_insn
*insn
)
412 FOR_EACH_INSN_DEF (def
, insn
)
413 SET_REGNO_REG_SET (reg_set_bitmap
, DF_REF_REGNO (def
));
416 /* Top level function to create an assignment hash table.
418 Assignment entries are placed in the hash table if
419 - they are of the form (set (pseudo-reg) src),
420 - src is something we want to perform const/copy propagation on,
421 - none of the operands or target are subsequently modified in the block
423 Currently src must be a pseudo-reg or a const_int.
425 TABLE is the table computed. */
428 compute_hash_table_work (struct hash_table_d
*table
)
432 /* Allocate vars to track sets of regs. */
433 reg_set_bitmap
= ALLOC_REG_SET (NULL
);
435 FOR_EACH_BB_FN (bb
, cfun
)
439 /* Reset tables used to keep track of what's not yet invalid [since
440 the end of the block]. */
441 CLEAR_REG_SET (reg_set_bitmap
);
443 /* Go over all insns from the last to the first. This is convenient
444 for tracking available registers, i.e. not set between INSN and
445 the end of the basic block BB. */
446 FOR_BB_INSNS_REVERSE (bb
, insn
)
448 /* Only real insns are interesting. */
449 if (!NONDEBUG_INSN_P (insn
))
452 /* Record interesting sets from INSN in the hash table. */
453 hash_scan_insn (insn
, table
);
455 /* Any registers set in INSN will make SETs above it not AVAIL. */
456 make_set_regs_unavailable (insn
);
459 /* Insert implicit sets in the hash table, pretending they appear as
460 insns at the head of the basic block. */
461 if (implicit_sets
[bb
->index
] != NULL_RTX
)
462 hash_scan_set (implicit_sets
[bb
->index
], BB_HEAD (bb
), table
, true);
465 FREE_REG_SET (reg_set_bitmap
);
468 /* Allocate space for the set/expr hash TABLE.
469 It is used to determine the number of buckets to use. */
472 alloc_hash_table (struct hash_table_d
*table
)
476 n
= get_max_insn_count ();
479 if (table
->size
< 11)
482 /* Attempt to maintain efficient use of hash table.
483 Making it an odd number is simplest for now.
484 ??? Later take some measurements. */
486 n
= table
->size
* sizeof (struct cprop_expr
*);
487 table
->table
= XNEWVAR (struct cprop_expr
*, n
);
490 /* Free things allocated by alloc_hash_table. */
493 free_hash_table (struct hash_table_d
*table
)
498 /* Compute the hash TABLE for doing copy/const propagation or
499 expression hash table. */
502 compute_hash_table (struct hash_table_d
*table
)
504 /* Initialize count of number of entries in hash table. */
506 memset (table
->table
, 0, table
->size
* sizeof (struct cprop_expr
*));
508 compute_hash_table_work (table
);
511 /* Expression tracking support. */
513 /* Lookup REGNO in the set TABLE. The result is a pointer to the
514 table entry, or NULL if not found. */
516 static struct cprop_expr
*
517 lookup_set (unsigned int regno
, struct hash_table_d
*table
)
519 unsigned int hash
= hash_mod (regno
, table
->size
);
520 struct cprop_expr
*expr
;
522 expr
= table
->table
[hash
];
524 while (expr
&& REGNO (expr
->dest
) != regno
)
525 expr
= expr
->next_same_hash
;
530 /* Return the next entry for REGNO in list EXPR. */
532 static struct cprop_expr
*
533 next_set (unsigned int regno
, struct cprop_expr
*expr
)
536 expr
= expr
->next_same_hash
;
537 while (expr
&& REGNO (expr
->dest
) != regno
);
542 /* Reset tables used to keep track of what's still available [since the
543 start of the block]. */
546 reset_opr_set_tables (void)
548 /* Maintain a bitmap of which regs have been set since beginning of
550 CLEAR_REG_SET (reg_set_bitmap
);
553 /* Return nonzero if the register X has not been set yet [since the
554 start of the basic block containing INSN]. */
557 reg_not_set_p (const_rtx x
, const rtx_insn
*insn ATTRIBUTE_UNUSED
)
559 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
562 /* Record things set by INSN.
563 This data is used by reg_not_set_p. */
566 mark_oprs_set (rtx_insn
*insn
)
570 FOR_EACH_INSN_DEF (def
, insn
)
571 SET_REGNO_REG_SET (reg_set_bitmap
, DF_REF_REGNO (def
));
574 /* Compute copy/constant propagation working variables. */
576 /* Local properties of assignments. */
577 static sbitmap
*cprop_avloc
;
578 static sbitmap
*cprop_kill
;
580 /* Global properties of assignments (computed from the local properties). */
581 static sbitmap
*cprop_avin
;
582 static sbitmap
*cprop_avout
;
584 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
585 basic blocks. N_SETS is the number of sets. */
588 alloc_cprop_mem (int n_blocks
, int n_sets
)
590 cprop_avloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
591 cprop_kill
= sbitmap_vector_alloc (n_blocks
, n_sets
);
593 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
594 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
597 /* Free vars used by copy/const propagation. */
600 free_cprop_mem (void)
602 sbitmap_vector_free (cprop_avloc
);
603 sbitmap_vector_free (cprop_kill
);
604 sbitmap_vector_free (cprop_avin
);
605 sbitmap_vector_free (cprop_avout
);
608 /* Compute the local properties of each recorded expression.
610 Local properties are those that are defined by the block, irrespective of
613 An expression is killed in a block if its operands, either DEST or SRC, are
614 modified in the block.
616 An expression is computed (locally available) in a block if it is computed
617 at least once and expression would contain the same value if the
618 computation was moved to the end of the block.
620 KILL and COMP are destination sbitmaps for recording local properties. */
623 compute_local_properties (sbitmap
*kill
, sbitmap
*comp
,
624 struct hash_table_d
*table
)
628 /* Initialize the bitmaps that were passed in. */
629 bitmap_vector_clear (kill
, last_basic_block_for_fn (cfun
));
630 bitmap_vector_clear (comp
, last_basic_block_for_fn (cfun
));
632 for (i
= 0; i
< table
->size
; i
++)
634 struct cprop_expr
*expr
;
636 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
638 int indx
= expr
->bitmap_index
;
640 struct cprop_occr
*occr
;
642 /* For each definition of the destination pseudo-reg, the expression
643 is killed in the block where the definition is. */
644 for (def
= DF_REG_DEF_CHAIN (REGNO (expr
->dest
));
645 def
; def
= DF_REF_NEXT_REG (def
))
646 bitmap_set_bit (kill
[DF_REF_BB (def
)->index
], indx
);
648 /* If the source is a pseudo-reg, for each definition of the source,
649 the expression is killed in the block where the definition is. */
650 if (REG_P (expr
->src
))
651 for (def
= DF_REG_DEF_CHAIN (REGNO (expr
->src
));
652 def
; def
= DF_REF_NEXT_REG (def
))
653 bitmap_set_bit (kill
[DF_REF_BB (def
)->index
], indx
);
655 /* The occurrences recorded in avail_occr are exactly those that
656 are locally available in the block where they are. */
657 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
659 bitmap_set_bit (comp
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
665 /* Hash table support. */
667 /* Top level routine to do the dataflow analysis needed by copy/const
671 compute_cprop_data (void)
675 compute_local_properties (cprop_kill
, cprop_avloc
, &set_hash_table
);
676 compute_available (cprop_avloc
, cprop_kill
, cprop_avout
, cprop_avin
);
678 /* Merge implicit sets into CPROP_AVIN. They are always available at the
679 entry of their basic block. We need to do this because 1) implicit sets
680 aren't recorded for the local pass so they cannot be propagated within
681 their basic block by this pass and 2) the global pass would otherwise
682 propagate them only in the successors of their basic block. */
683 FOR_EACH_BB_FN (bb
, cfun
)
685 int index
= implicit_set_indexes
[bb
->index
];
687 bitmap_set_bit (cprop_avin
[bb
->index
], index
);
691 /* Copy/constant propagation. */
693 /* Maximum number of register uses in an insn that we handle. */
696 /* Table of uses (registers, both hard and pseudo) found in an insn.
697 Allocated statically to avoid alloc/free complexity and overhead. */
698 static rtx reg_use_table
[MAX_USES
];
700 /* Index into `reg_use_table' while building it. */
701 static unsigned reg_use_count
;
703 /* Set up a list of register numbers used in INSN. The found uses are stored
704 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
705 and contains the number of uses in the table upon exit.
707 ??? If a register appears multiple times we will record it multiple times.
708 This doesn't hurt anything but it will slow things down. */
711 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
718 /* repeat is used to turn tail-recursion into iteration since GCC
719 can't do it when there's no return value. */
727 if (reg_use_count
== MAX_USES
)
730 reg_use_table
[reg_use_count
] = x
;
734 /* Recursively scan the operands of this expression. */
736 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
740 /* If we are about to do the last recursive call
741 needed at this level, change it into iteration.
742 This function is called enough to be worth it. */
749 find_used_regs (&XEXP (x
, i
), data
);
751 else if (fmt
[i
] == 'E')
752 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
753 find_used_regs (&XVECEXP (x
, i
, j
), data
);
757 /* Try to replace all uses of FROM in INSN with TO.
758 Return nonzero if successful. */
761 try_replace_reg (rtx from
, rtx to
, rtx_insn
*insn
)
763 rtx note
= find_reg_equal_equiv_note (insn
);
766 rtx set
= single_set (insn
);
768 /* Usually we substitute easy stuff, so we won't copy everything.
769 We however need to take care to not duplicate non-trivial CONST
773 validate_replace_src_group (from
, to
, insn
);
774 if (num_changes_pending () && apply_change_group ())
777 /* Try to simplify SET_SRC if we have substituted a constant. */
778 if (success
&& set
&& CONSTANT_P (to
))
780 src
= simplify_rtx (SET_SRC (set
));
783 validate_change (insn
, &SET_SRC (set
), src
, 0);
786 /* If there is already a REG_EQUAL note, update the expression in it
787 with our replacement. */
788 if (note
!= 0 && REG_NOTE_KIND (note
) == REG_EQUAL
)
789 set_unique_reg_note (insn
, REG_EQUAL
,
790 simplify_replace_rtx (XEXP (note
, 0), from
, to
));
791 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
793 /* If above failed and this is a single set, try to simplify the source
794 of the set given our substitution. We could perhaps try this for
795 multiple SETs, but it probably won't buy us anything. */
796 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
798 if (!rtx_equal_p (src
, SET_SRC (set
))
799 && validate_change (insn
, &SET_SRC (set
), src
, 0))
802 /* If we've failed perform the replacement, have a single SET to
803 a REG destination and don't yet have a note, add a REG_EQUAL note
804 to not lose information. */
805 if (!success
&& note
== 0 && set
!= 0 && REG_P (SET_DEST (set
)))
806 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
809 if (set
&& MEM_P (SET_DEST (set
)) && reg_mentioned_p (from
, SET_DEST (set
)))
811 /* Registers can also appear as uses in SET_DEST if it is a MEM.
812 We could perhaps try this for multiple SETs, but it probably
813 won't buy us anything. */
814 rtx dest
= simplify_replace_rtx (SET_DEST (set
), from
, to
);
816 if (!rtx_equal_p (dest
, SET_DEST (set
))
817 && validate_change (insn
, &SET_DEST (set
), dest
, 0))
821 /* REG_EQUAL may get simplified into register.
822 We don't allow that. Remove that note. This code ought
823 not to happen, because previous code ought to synthesize
824 reg-reg move, but be on the safe side. */
825 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
&& REG_P (XEXP (note
, 0)))
826 remove_note (insn
, note
);
831 /* Find a set of REGNOs that are available on entry to INSN's block. If found,
832 SET_RET[0] will be assigned a set with a register source and SET_RET[1] a
833 set with a constant source. If not found the corresponding entry is set to
837 find_avail_set (int regno
, rtx_insn
*insn
, struct cprop_expr
*set_ret
[2])
839 set_ret
[0] = set_ret
[1] = NULL
;
841 /* Loops are not possible here. To get a loop we would need two sets
842 available at the start of the block containing INSN. i.e. we would
843 need two sets like this available at the start of the block:
845 (set (reg X) (reg Y))
846 (set (reg Y) (reg X))
848 This can not happen since the set of (reg Y) would have killed the
849 set of (reg X) making it unavailable at the start of this block. */
853 struct cprop_expr
*set
= lookup_set (regno
, &set_hash_table
);
855 /* Find a set that is available at the start of the block
856 which contains INSN. */
859 if (bitmap_bit_p (cprop_avin
[BLOCK_FOR_INSN (insn
)->index
],
862 set
= next_set (regno
, set
);
865 /* If no available set was found we've reached the end of the
866 (possibly empty) copy chain. */
872 /* We know the set is available.
873 Now check that SRC is locally anticipatable (i.e. none of the
874 source operands have changed since the start of the block).
876 If the source operand changed, we may still use it for the next
877 iteration of this loop, but we may not use it for substitutions. */
879 if (cprop_constant_p (src
))
881 else if (reg_not_set_p (src
, insn
))
884 /* If the source of the set is anything except a register, then
885 we have reached the end of the copy chain. */
889 /* Follow the copy chain, i.e. start another iteration of the loop
890 and see if we have an available copy into SRC. */
895 /* Subroutine of cprop_insn that tries to propagate constants into
896 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
897 it is the instruction that immediately precedes JUMP, and must be a
898 single SET of a register. FROM is what we will try to replace,
899 SRC is the constant we will try to substitute for it. Return nonzero
900 if a change was made. */
903 cprop_jump (basic_block bb
, rtx_insn
*setcc
, rtx_insn
*jump
, rtx from
, rtx src
)
905 rtx new_rtx
, set_src
, note_src
;
906 rtx set
= pc_set (jump
);
907 rtx note
= find_reg_equal_equiv_note (jump
);
911 note_src
= XEXP (note
, 0);
912 if (GET_CODE (note_src
) == EXPR_LIST
)
915 else note_src
= NULL_RTX
;
917 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
918 set_src
= note_src
? note_src
: SET_SRC (set
);
920 /* First substitute the SETCC condition into the JUMP instruction,
921 then substitute that given values into this expanded JUMP. */
922 if (setcc
!= NULL_RTX
923 && !modified_between_p (from
, setcc
, jump
)
924 && !modified_between_p (src
, setcc
, jump
))
927 rtx setcc_set
= single_set (setcc
);
928 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
929 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
930 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
931 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
937 new_rtx
= simplify_replace_rtx (set_src
, from
, src
);
939 /* If no simplification can be made, then try the next register. */
940 if (rtx_equal_p (new_rtx
, SET_SRC (set
)))
943 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
944 if (new_rtx
== pc_rtx
)
948 /* Ensure the value computed inside the jump insn to be equivalent
949 to one computed by setcc. */
950 if (setcc
&& modified_in_p (new_rtx
, setcc
))
952 if (! validate_unshare_change (jump
, &SET_SRC (set
), new_rtx
, 0))
954 /* When (some) constants are not valid in a comparison, and there
955 are two registers to be replaced by constants before the entire
956 comparison can be folded into a constant, we need to keep
957 intermediate information in REG_EQUAL notes. For targets with
958 separate compare insns, such notes are added by try_replace_reg.
959 When we have a combined compare-and-branch instruction, however,
960 we need to attach a note to the branch itself to make this
961 optimization work. */
963 if (!rtx_equal_p (new_rtx
, note_src
))
964 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new_rtx
));
968 /* Remove REG_EQUAL note after simplification. */
970 remove_note (jump
, note
);
973 /* Delete the cc0 setter. */
974 if (HAVE_cc0
&& setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
977 global_const_prop_count
++;
978 if (dump_file
!= NULL
)
981 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with"
982 "constant ", REGNO (from
), INSN_UID (jump
));
983 print_rtl (dump_file
, src
);
984 fprintf (dump_file
, "\n");
986 purge_dead_edges (bb
);
988 /* If a conditional jump has been changed into unconditional jump, remove
989 the jump and make the edge fallthru - this is always called in
991 if (new_rtx
!= pc_rtx
&& simplejump_p (jump
))
996 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
997 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
998 && BB_HEAD (e
->dest
) == JUMP_LABEL (jump
))
1000 e
->flags
|= EDGE_FALLTHRU
;
1009 /* Subroutine of cprop_insn that tries to propagate constants. FROM is what
1010 we will try to replace, SRC is the constant we will try to substitute for
1011 it and INSN is the instruction where this will be happening. */
1014 constprop_register (rtx from
, rtx src
, rtx_insn
*insn
)
1018 /* Check for reg or cc0 setting instructions followed by
1019 conditional branch instructions first. */
1020 if ((sset
= single_set (insn
)) != NULL
1022 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
1024 rtx dest
= SET_DEST (sset
);
1025 if ((REG_P (dest
) || CC0_P (dest
))
1026 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
),
1031 /* Handle normal insns next. */
1032 if (NONJUMP_INSN_P (insn
) && try_replace_reg (from
, src
, insn
))
1035 /* Try to propagate a CONST_INT into a conditional jump.
1036 We're pretty specific about what we will handle in this
1037 code, we can extend this as necessary over time.
1039 Right now the insn in question must look like
1040 (set (pc) (if_then_else ...)) */
1041 else if (any_condjump_p (insn
) && onlyjump_p (insn
))
1042 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, src
);
1046 /* Perform constant and copy propagation on INSN.
1047 Return nonzero if a change was made. */
1050 cprop_insn (rtx_insn
*insn
)
1053 int changed
= 0, changed_this_round
;
1058 changed_this_round
= 0;
1060 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
1062 /* We may win even when propagating constants into notes. */
1063 note
= find_reg_equal_equiv_note (insn
);
1065 find_used_regs (&XEXP (note
, 0), NULL
);
1067 for (i
= 0; i
< reg_use_count
; i
++)
1069 rtx reg_used
= reg_use_table
[i
];
1070 unsigned int regno
= REGNO (reg_used
);
1071 rtx src_cst
= NULL
, src_reg
= NULL
;
1072 struct cprop_expr
*set
[2];
1074 /* If the register has already been set in this block, there's
1075 nothing we can do. */
1076 if (! reg_not_set_p (reg_used
, insn
))
1079 /* Find an assignment that sets reg_used and is available
1080 at the start of the block. */
1081 find_avail_set (regno
, insn
, set
);
1083 src_reg
= set
[0]->src
;
1085 src_cst
= set
[1]->src
;
1087 /* Constant propagation. */
1088 if (src_cst
&& cprop_constant_p (src_cst
)
1089 && constprop_register (reg_used
, src_cst
, insn
))
1091 changed_this_round
= changed
= 1;
1092 global_const_prop_count
++;
1093 if (dump_file
!= NULL
)
1096 "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
1097 fprintf (dump_file
, "insn %d with constant ",
1099 print_rtl (dump_file
, src_cst
);
1100 fprintf (dump_file
, "\n");
1102 if (insn
->deleted ())
1105 /* Copy propagation. */
1106 else if (src_reg
&& cprop_reg_p (src_reg
)
1107 && REGNO (src_reg
) != regno
1108 && try_replace_reg (reg_used
, src_reg
, insn
))
1110 changed_this_round
= changed
= 1;
1111 global_copy_prop_count
++;
1112 if (dump_file
!= NULL
)
1115 "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
1116 regno
, INSN_UID (insn
));
1117 fprintf (dump_file
, " with reg %d\n", REGNO (src_reg
));
1120 /* The original insn setting reg_used may or may not now be
1121 deletable. We leave the deletion to DCE. */
1122 /* FIXME: If it turns out that the insn isn't deletable,
1123 then we may have unnecessarily extended register lifetimes
1124 and made things worse. */
1128 /* If try_replace_reg simplified the insn, the regs found by find_used_regs
1129 may not be valid anymore. Start over. */
1130 while (changed_this_round
);
1132 if (changed
&& DEBUG_INSN_P (insn
))
1138 /* Like find_used_regs, but avoid recording uses that appear in
1139 input-output contexts such as zero_extract or pre_dec. This
1140 restricts the cases we consider to those for which local cprop
1141 can legitimately make replacements. */
1144 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
1151 switch (GET_CODE (x
))
1155 case STRICT_LOW_PART
:
1164 /* Can only legitimately appear this early in the context of
1165 stack pushes for function arguments, but handle all of the
1166 codes nonetheless. */
1170 /* Setting a subreg of a register larger than word_mode leaves
1171 the non-written words unchanged. */
1172 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
1180 find_used_regs (xptr
, data
);
1183 /* Try to perform local const/copy propagation on X in INSN. */
1186 do_local_cprop (rtx x
, rtx_insn
*insn
)
1188 rtx newreg
= NULL
, newcnst
= NULL
;
1190 /* Rule out USE instructions and ASM statements as we don't want to
1191 change the hard registers mentioned. */
1194 || (GET_CODE (PATTERN (insn
)) != USE
1195 && asm_noperands (PATTERN (insn
)) < 0)))
1197 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
1198 struct elt_loc_list
*l
;
1202 for (l
= val
->locs
; l
; l
= l
->next
)
1204 rtx this_rtx
= l
->loc
;
1207 if (cprop_constant_p (this_rtx
))
1209 if (cprop_reg_p (this_rtx
)
1210 /* Don't copy propagate if it has attached REG_EQUIV note.
1211 At this point this only function parameters should have
1212 REG_EQUIV notes and if the argument slot is used somewhere
1213 explicitly, it means address of parameter has been taken,
1214 so we should not extend the lifetime of the pseudo. */
1215 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
1216 || ! MEM_P (XEXP (note
, 0))))
1219 if (newcnst
&& constprop_register (x
, newcnst
, insn
))
1221 if (dump_file
!= NULL
)
1223 fprintf (dump_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
1225 fprintf (dump_file
, "insn %d with constant ",
1227 print_rtl (dump_file
, newcnst
);
1228 fprintf (dump_file
, "\n");
1230 local_const_prop_count
++;
1233 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
1235 if (dump_file
!= NULL
)
1238 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
1239 REGNO (x
), INSN_UID (insn
));
1240 fprintf (dump_file
, " with reg %d\n", REGNO (newreg
));
1242 local_copy_prop_count
++;
1249 /* Do local const/copy propagation (i.e. within each basic block). */
1252 local_cprop_pass (void)
1256 bool changed
= false;
1260 FOR_EACH_BB_FN (bb
, cfun
)
1262 FOR_BB_INSNS (bb
, insn
)
1266 rtx note
= find_reg_equal_equiv_note (insn
);
1270 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
1273 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
1275 for (i
= 0; i
< reg_use_count
; i
++)
1277 if (do_local_cprop (reg_use_table
[i
], insn
))
1279 if (!DEBUG_INSN_P (insn
))
1284 if (insn
->deleted ())
1287 while (i
< reg_use_count
);
1289 cselib_process_insn (insn
);
1292 /* Forget everything at the end of a basic block. */
1293 cselib_clear_table ();
1301 /* Similar to get_condition, only the resulting condition must be
1302 valid at JUMP, instead of at EARLIEST.
1304 This differs from noce_get_condition in ifcvt.c in that we prefer not to
1305 settle for the condition variable in the jump instruction being integral.
1306 We prefer to be able to record the value of a user variable, rather than
1307 the value of a temporary used in a condition. This could be solved by
1308 recording the value of *every* register scanned by canonicalize_condition,
1309 but this would require some code reorganization. */
1312 fis_get_condition (rtx_insn
*jump
)
1314 return get_condition (jump
, NULL
, false, true);
1317 /* Check the comparison COND to see if we can safely form an implicit
1321 implicit_set_cond_p (const_rtx cond
)
1326 /* COND must be either an EQ or NE comparison. */
1327 if (GET_CODE (cond
) != EQ
&& GET_CODE (cond
) != NE
)
1330 /* The first operand of COND must be a register we can propagate. */
1331 if (!cprop_reg_p (XEXP (cond
, 0)))
1334 /* The second operand of COND must be a suitable constant. */
1335 mode
= GET_MODE (XEXP (cond
, 0));
1336 cst
= XEXP (cond
, 1);
1338 /* We can't perform this optimization if either operand might be or might
1339 contain a signed zero. */
1340 if (HONOR_SIGNED_ZEROS (mode
))
1342 /* It is sufficient to check if CST is or contains a zero. We must
1343 handle float, complex, and vector. If any subpart is a zero, then
1344 the optimization can't be performed. */
1345 /* ??? The complex and vector checks are not implemented yet. We just
1346 always return zero for them. */
1347 if (CONST_DOUBLE_AS_FLOAT_P (cst
))
1350 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
1351 if (REAL_VALUES_EQUAL (d
, dconst0
))
1358 return cprop_constant_p (cst
);
1361 /* Find the implicit sets of a function. An "implicit set" is a constraint
1362 on the value of a variable, implied by a conditional jump. For example,
1363 following "if (x == 2)", the then branch may be optimized as though the
1364 conditional performed an "explicit set", in this example, "x = 2". This
1365 function records the set patterns that are implicit at the start of each
1368 If an implicit set is found but the set is implicit on a critical edge,
1369 this critical edge is split.
1371 Return true if the CFG was modified, false otherwise. */
1374 find_implicit_sets (void)
1376 basic_block bb
, dest
;
1378 unsigned int count
= 0;
1379 bool edges_split
= false;
1380 size_t implicit_sets_size
= last_basic_block_for_fn (cfun
) + 10;
1382 implicit_sets
= XCNEWVEC (rtx
, implicit_sets_size
);
1384 FOR_EACH_BB_FN (bb
, cfun
)
1386 /* Check for more than one successor. */
1387 if (EDGE_COUNT (bb
->succs
) <= 1)
1390 cond
= fis_get_condition (BB_END (bb
));
1392 /* If no condition is found or if it isn't of a suitable form,
1394 if (! cond
|| ! implicit_set_cond_p (cond
))
1397 dest
= GET_CODE (cond
) == EQ
1398 ? BRANCH_EDGE (bb
)->dest
: FALLTHRU_EDGE (bb
)->dest
;
1400 /* If DEST doesn't go anywhere, ignore it. */
1401 if (! dest
|| dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1404 /* We have found a suitable implicit set. Try to record it now as
1405 a SET in DEST. If DEST has more than one predecessor, the edge
1406 between BB and DEST is a critical edge and we must split it,
1407 because we can only record one implicit set per DEST basic block. */
1408 if (! single_pred_p (dest
))
1410 dest
= split_edge (find_edge (bb
, dest
));
1414 if (implicit_sets_size
<= (size_t) dest
->index
)
1416 size_t old_implicit_sets_size
= implicit_sets_size
;
1417 implicit_sets_size
*= 2;
1418 implicit_sets
= XRESIZEVEC (rtx
, implicit_sets
, implicit_sets_size
);
1419 memset (implicit_sets
+ old_implicit_sets_size
, 0,
1420 (implicit_sets_size
- old_implicit_sets_size
) * sizeof (rtx
));
1423 new_rtx
= gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
1425 implicit_sets
[dest
->index
] = new_rtx
;
1428 fprintf (dump_file
, "Implicit set of reg %d in ",
1429 REGNO (XEXP (cond
, 0)));
1430 fprintf (dump_file
, "basic block %d\n", dest
->index
);
1436 fprintf (dump_file
, "Found %d implicit sets\n", count
);
1438 /* Confess our sins. */
1442 /* Bypass conditional jumps. */
1444 /* The value of last_basic_block at the beginning of the jump_bypass
1445 pass. The use of redirect_edge_and_branch_force may introduce new
1446 basic blocks, but the data flow analysis is only valid for basic
1447 block indices less than bypass_last_basic_block. */
1449 static int bypass_last_basic_block
;
1451 /* Find a set of REGNO to a constant that is available at the end of basic
1452 block BB. Return NULL if no such set is found. Based heavily upon
1455 static struct cprop_expr
*
1456 find_bypass_set (int regno
, int bb
)
1458 struct cprop_expr
*result
= 0;
1463 struct cprop_expr
*set
= lookup_set (regno
, &set_hash_table
);
1467 if (bitmap_bit_p (cprop_avout
[bb
], set
->bitmap_index
))
1469 set
= next_set (regno
, set
);
1476 if (cprop_constant_p (src
))
1482 regno
= REGNO (src
);
1487 /* Subroutine of bypass_block that checks whether a pseudo is killed by
1488 any of the instructions inserted on an edge. Jump bypassing places
1489 condition code setters on CFG edges using insert_insn_on_edge. This
1490 function is required to check that our data flow analysis is still
1491 valid prior to commit_edge_insertions. */
1494 reg_killed_on_edge (const_rtx reg
, const_edge e
)
1498 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
1499 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
1505 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
1506 basic block BB which has more than one predecessor. If not NULL, SETCC
1507 is the first instruction of BB, which is immediately followed by JUMP_INSN
1508 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
1509 Returns nonzero if a change was made.
1511 During the jump bypassing pass, we may place copies of SETCC instructions
1512 on CFG edges. The following routine must be careful to pay attention to
1513 these inserted insns when performing its transformations. */
1516 bypass_block (basic_block bb
, rtx_insn
*setcc
, rtx_insn
*jump
)
1522 int may_be_loop_header
= false;
1527 insn
= (setcc
!= NULL
) ? setcc
: jump
;
1529 /* Determine set of register uses in INSN. */
1531 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
1532 note
= find_reg_equal_equiv_note (insn
);
1534 find_used_regs (&XEXP (note
, 0), NULL
);
1538 /* If we are to preserve loop structure then do not bypass
1539 a loop header. This will either rotate the loop, create
1540 multiple entry loops or even irreducible regions. */
1541 if (bb
== bb
->loop_father
->header
)
1546 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1547 if (e
->flags
& EDGE_DFS_BACK
)
1549 may_be_loop_header
= true;
1555 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
1559 if (e
->flags
& EDGE_COMPLEX
)
1565 /* We can't redirect edges from new basic blocks. */
1566 if (e
->src
->index
>= bypass_last_basic_block
)
1572 /* The irreducible loops created by redirecting of edges entering the
1573 loop from outside would decrease effectiveness of some of the
1574 following optimizations, so prevent this. */
1575 if (may_be_loop_header
1576 && !(e
->flags
& EDGE_DFS_BACK
))
1582 for (i
= 0; i
< reg_use_count
; i
++)
1584 rtx reg_used
= reg_use_table
[i
];
1585 unsigned int regno
= REGNO (reg_used
);
1586 basic_block dest
, old_dest
;
1587 struct cprop_expr
*set
;
1590 set
= find_bypass_set (regno
, e
->src
->index
);
1595 /* Check the data flow is valid after edge insertions. */
1596 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
, e
))
1599 src
= SET_SRC (pc_set (jump
));
1602 src
= simplify_replace_rtx (src
,
1603 SET_DEST (PATTERN (setcc
)),
1604 SET_SRC (PATTERN (setcc
)));
1606 new_rtx
= simplify_replace_rtx (src
, reg_used
, set
->src
);
1608 /* Jump bypassing may have already placed instructions on
1609 edges of the CFG. We can't bypass an outgoing edge that
1610 has instructions associated with it, as these insns won't
1611 get executed if the incoming edge is redirected. */
1612 if (new_rtx
== pc_rtx
)
1614 edest
= FALLTHRU_EDGE (bb
);
1615 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
1617 else if (GET_CODE (new_rtx
) == LABEL_REF
)
1619 dest
= BLOCK_FOR_INSN (XEXP (new_rtx
, 0));
1620 /* Don't bypass edges containing instructions. */
1621 edest
= find_edge (bb
, dest
);
1622 if (edest
&& edest
->insns
.r
)
1628 /* Avoid unification of the edge with other edges from original
1629 branch. We would end up emitting the instruction on "both"
1631 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
1632 && find_edge (e
->src
, dest
))
1638 && dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1640 redirect_edge_and_branch_force (e
, dest
);
1642 /* Copy the register setter to the redirected edge.
1643 Don't copy CC0 setters, as CC0 is dead after jump. */
1646 rtx pat
= PATTERN (setcc
);
1647 if (!CC0_P (SET_DEST (pat
)))
1648 insert_insn_on_edge (copy_insn (pat
), e
);
1651 if (dump_file
!= NULL
)
1653 fprintf (dump_file
, "JUMP-BYPASS: Proved reg %d "
1654 "in jump_insn %d equals constant ",
1655 regno
, INSN_UID (jump
));
1656 print_rtl (dump_file
, set
->src
);
1657 fprintf (dump_file
, "\n\t when BB %d is entered from "
1658 "BB %d. Redirect edge %d->%d to %d.\n",
1659 old_dest
->index
, e
->src
->index
, e
->src
->index
,
1660 old_dest
->index
, dest
->index
);
1673 /* Find basic blocks with more than one predecessor that only contain a
1674 single conditional jump. If the result of the comparison is known at
1675 compile-time from any incoming edge, redirect that edge to the
1676 appropriate target. Return nonzero if a change was made.
1678 This function is now mis-named, because we also handle indirect jumps. */
1681 bypass_conditional_jumps (void)
1689 /* Note we start at block 1. */
1690 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1693 bypass_last_basic_block
= last_basic_block_for_fn (cfun
);
1694 mark_dfs_back_edges ();
1697 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
->next_bb
,
1698 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
1700 /* Check for more than one predecessor. */
1701 if (!single_pred_p (bb
))
1704 FOR_BB_INSNS (bb
, insn
)
1705 if (DEBUG_INSN_P (insn
))
1707 else if (NONJUMP_INSN_P (insn
))
1711 if (GET_CODE (PATTERN (insn
)) != SET
)
1714 dest
= SET_DEST (PATTERN (insn
));
1715 if (REG_P (dest
) || CC0_P (dest
))
1720 else if (JUMP_P (insn
))
1722 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
1723 && onlyjump_p (insn
))
1724 changed
|= bypass_block (bb
, setcc
, insn
);
1727 else if (INSN_P (insn
))
1732 /* If we bypassed any register setting insns, we inserted a
1733 copy on the redirected edge. These need to be committed. */
1735 commit_edge_insertions ();
1740 /* Return true if the graph is too expensive to optimize. PASS is the
1741 optimization about to be performed. */
1744 is_too_expensive (const char *pass
)
1746 /* Trying to perform global optimizations on flow graphs which have
1747 a high connectivity will take a long time and is unlikely to be
1748 particularly useful.
1750 In normal circumstances a cfg should have about twice as many
1751 edges as blocks. But we do not want to punish small functions
1752 which have a couple switch statements. Rather than simply
1753 threshold the number of blocks, uses something with a more
1754 graceful degradation. */
1755 if (n_edges_for_fn (cfun
) > 20000 + n_basic_blocks_for_fn (cfun
) * 4)
1757 warning (OPT_Wdisabled_optimization
,
1758 "%s: %d basic blocks and %d edges/basic block",
1759 pass
, n_basic_blocks_for_fn (cfun
),
1760 n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
));
1765 /* If allocating memory for the cprop bitmap would take up too much
1766 storage it's better just to disable the optimization. */
1767 if ((n_basic_blocks_for_fn (cfun
)
1768 * SBITMAP_SET_SIZE (max_reg_num ())
1769 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
1771 warning (OPT_Wdisabled_optimization
,
1772 "%s: %d basic blocks and %d registers",
1773 pass
, n_basic_blocks_for_fn (cfun
), max_reg_num ());
1781 /* Main function for the CPROP pass. */
1784 one_cprop_pass (void)
1789 /* Return if there's nothing to do, or it is too expensive. */
1790 if (n_basic_blocks_for_fn (cfun
) <= NUM_FIXED_BLOCKS
+ 1
1791 || is_too_expensive (_ ("const/copy propagation disabled")))
1794 global_const_prop_count
= local_const_prop_count
= 0;
1795 global_copy_prop_count
= local_copy_prop_count
= 0;
1798 gcc_obstack_init (&cprop_obstack
);
1800 /* Do a local const/copy propagation pass first. The global pass
1801 only handles global opportunities.
1802 If the local pass changes something, remove any unreachable blocks
1803 because the CPROP global dataflow analysis may get into infinite
1804 loops for CFGs with unreachable blocks.
1806 FIXME: This local pass should not be necessary after CSE (but for
1807 some reason it still is). It is also (proven) not necessary
1808 to run the local pass right after FWPWOP.
1810 FIXME: The global analysis would not get into infinite loops if it
1811 would use the DF solver (via df_simple_dataflow) instead of
1812 the solver implemented in this file. */
1813 changed
|= local_cprop_pass ();
1815 delete_unreachable_blocks ();
1817 /* Determine implicit sets. This may change the CFG (split critical
1818 edges if that exposes an implicit set).
1819 Note that find_implicit_sets() does not rely on up-to-date DF caches
1820 so that we do not have to re-run df_analyze() even if local CPROP
1822 ??? This could run earlier so that any uncovered implicit sets
1823 sets could be exploited in local_cprop_pass() also. Later. */
1824 changed
|= find_implicit_sets ();
1826 /* If local_cprop_pass() or find_implicit_sets() changed something,
1827 run df_analyze() to bring all insn caches up-to-date, and to take
1828 new basic blocks from edge splitting on the DF radar.
1829 NB: This also runs the fast DCE pass, because execute_rtl_cprop
1830 sets DF_LR_RUN_DCE. */
1834 /* Initialize implicit_set_indexes array. */
1835 implicit_set_indexes
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1836 for (i
= 0; i
< last_basic_block_for_fn (cfun
); i
++)
1837 implicit_set_indexes
[i
] = -1;
1839 alloc_hash_table (&set_hash_table
);
1840 compute_hash_table (&set_hash_table
);
1842 /* Free implicit_sets before peak usage. */
1843 free (implicit_sets
);
1844 implicit_sets
= NULL
;
1847 dump_hash_table (dump_file
, "SET", &set_hash_table
);
1848 if (set_hash_table
.n_elems
> 0)
1853 alloc_cprop_mem (last_basic_block_for_fn (cfun
),
1854 set_hash_table
.n_elems
);
1855 compute_cprop_data ();
1857 free (implicit_set_indexes
);
1858 implicit_set_indexes
= NULL
;
1860 /* Allocate vars to track sets of regs. */
1861 reg_set_bitmap
= ALLOC_REG_SET (NULL
);
1863 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
->next_bb
,
1864 EXIT_BLOCK_PTR_FOR_FN (cfun
),
1867 /* Reset tables used to keep track of what's still valid [since
1868 the start of the block]. */
1869 reset_opr_set_tables ();
1871 FOR_BB_INSNS (bb
, insn
)
1874 changed
|= cprop_insn (insn
);
1876 /* Keep track of everything modified by this insn. */
1877 /* ??? Need to be careful w.r.t. mods done to INSN.
1878 Don't call mark_oprs_set if we turned the
1879 insn into a NOTE, or deleted the insn. */
1880 if (! NOTE_P (insn
) && ! insn
->deleted ())
1881 mark_oprs_set (insn
);
1885 changed
|= bypass_conditional_jumps ();
1887 FREE_REG_SET (reg_set_bitmap
);
1892 free (implicit_set_indexes
);
1893 implicit_set_indexes
= NULL
;
1896 free_hash_table (&set_hash_table
);
1897 obstack_free (&cprop_obstack
, NULL
);
1901 fprintf (dump_file
, "CPROP of %s, %d basic blocks, %d bytes needed, ",
1902 current_function_name (), n_basic_blocks_for_fn (cfun
),
1904 fprintf (dump_file
, "%d local const props, %d local copy props, ",
1905 local_const_prop_count
, local_copy_prop_count
);
1906 fprintf (dump_file
, "%d global const props, %d global copy props\n\n",
1907 global_const_prop_count
, global_copy_prop_count
);
1913 /* All the passes implemented in this file. Each pass has its
1914 own gate and execute function, and at the end of the file a
1915 pass definition for passes.c.
1917 We do not construct an accurate cfg in functions which call
1918 setjmp, so none of these passes runs if the function calls
1920 FIXME: Should just handle setjmp via REG_SETJMP notes. */
1923 execute_rtl_cprop (void)
1926 delete_unreachable_blocks ();
1927 df_set_flags (DF_LR_RUN_DCE
);
1929 changed
= one_cprop_pass ();
1930 flag_rerun_cse_after_global_opts
|= changed
;
1932 cleanup_cfg (CLEANUP_CFG_CHANGED
);
1938 const pass_data pass_data_rtl_cprop
=
1940 RTL_PASS
, /* type */
1942 OPTGROUP_NONE
, /* optinfo_flags */
1943 TV_CPROP
, /* tv_id */
1944 PROP_cfglayout
, /* properties_required */
1945 0, /* properties_provided */
1946 0, /* properties_destroyed */
1947 0, /* todo_flags_start */
1948 TODO_df_finish
, /* todo_flags_finish */
1951 class pass_rtl_cprop
: public rtl_opt_pass
1954 pass_rtl_cprop (gcc::context
*ctxt
)
1955 : rtl_opt_pass (pass_data_rtl_cprop
, ctxt
)
1958 /* opt_pass methods: */
1959 opt_pass
* clone () { return new pass_rtl_cprop (m_ctxt
); }
1960 virtual bool gate (function
*fun
)
1962 return optimize
> 0 && flag_gcse
1963 && !fun
->calls_setjmp
1967 virtual unsigned int execute (function
*) { return execute_rtl_cprop (); }
1969 }; // class pass_rtl_cprop
1974 make_pass_rtl_cprop (gcc::context
*ctxt
)
1976 return new pass_rtl_cprop (ctxt
);