PR c/60439
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
blob65b5a4e4420fbfff56e64e90fa694a2eca472f5c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2014 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
184 SWITCHES
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "stor-layout.h"
194 #include "trans-mem.h"
195 #include "tm_p.h"
196 #include "basic-block.h"
197 #include "flags.h"
198 #include "function.h"
199 #include "hash-table.h"
200 #include "tree-ssa-alias.h"
201 #include "internal-fn.h"
202 #include "tree-eh.h"
203 #include "gimple-expr.h"
204 #include "is-a.h"
205 #include "gimple.h"
206 #include "gimple-iterator.h"
207 #include "gimple-ssa.h"
208 #include "tree-cfg.h"
209 #include "tree-phinodes.h"
210 #include "ssa-iterators.h"
211 #include "tree-into-ssa.h"
212 #include "params.h"
213 #include "gimple-pretty-print.h"
214 #include "tree-ssa-sccvn.h"
215 #include "tree-dump.h"
216 #include "cfgloop.h"
217 #include "tree-pass.h"
218 #include "trans-mem.h"
220 /* Describes a group of bbs with the same successors. The successor bbs are
221 cached in succs, and the successor edge flags are cached in succ_flags.
222 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
223 it's marked in inverse.
224 Additionally, the hash value for the struct is cached in hashval, and
225 in_worklist indicates whether it's currently part of worklist. */
227 struct same_succ_def
229 /* The bbs that have the same successor bbs. */
230 bitmap bbs;
231 /* The successor bbs. */
232 bitmap succs;
233 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
234 bb. */
235 bitmap inverse;
236 /* The edge flags for each of the successor bbs. */
237 vec<int> succ_flags;
238 /* Indicates whether the struct is currently in the worklist. */
239 bool in_worklist;
240 /* The hash value of the struct. */
241 hashval_t hashval;
243 /* hash_table support. */
244 typedef same_succ_def value_type;
245 typedef same_succ_def compare_type;
246 static inline hashval_t hash (const value_type *);
247 static int equal (const value_type *, const compare_type *);
248 static void remove (value_type *);
250 typedef struct same_succ_def *same_succ;
251 typedef const struct same_succ_def *const_same_succ;
253 /* hash routine for hash_table support, returns hashval of E. */
255 inline hashval_t
256 same_succ_def::hash (const value_type *e)
258 return e->hashval;
261 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
263 struct bb_cluster_def
265 /* The bbs in the cluster. */
266 bitmap bbs;
267 /* The preds of the bbs in the cluster. */
268 bitmap preds;
269 /* Index in all_clusters vector. */
270 int index;
271 /* The bb to replace the cluster with. */
272 basic_block rep_bb;
274 typedef struct bb_cluster_def *bb_cluster;
275 typedef const struct bb_cluster_def *const_bb_cluster;
277 /* Per bb-info. */
279 struct aux_bb_info
281 /* The number of non-debug statements in the bb. */
282 int size;
283 /* The same_succ that this bb is a member of. */
284 same_succ bb_same_succ;
285 /* The cluster that this bb is a member of. */
286 bb_cluster cluster;
287 /* The vop state at the exit of a bb. This is shortlived data, used to
288 communicate data between update_block_by and update_vuses. */
289 tree vop_at_exit;
290 /* The bb that either contains or is dominated by the dependencies of the
291 bb. */
292 basic_block dep_bb;
295 /* Macros to access the fields of struct aux_bb_info. */
297 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
298 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
299 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
300 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
301 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
303 /* Returns true if the only effect a statement STMT has, is to define locally
304 used SSA_NAMEs. */
306 static bool
307 stmt_local_def (gimple stmt)
309 basic_block bb, def_bb;
310 imm_use_iterator iter;
311 use_operand_p use_p;
312 tree val;
313 def_operand_p def_p;
315 if (gimple_has_side_effects (stmt)
316 || stmt_could_throw_p (stmt)
317 || gimple_vdef (stmt) != NULL_TREE)
318 return false;
320 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
321 if (def_p == NULL)
322 return false;
324 val = DEF_FROM_PTR (def_p);
325 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
326 return false;
328 def_bb = gimple_bb (stmt);
330 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
332 if (is_gimple_debug (USE_STMT (use_p)))
333 continue;
334 bb = gimple_bb (USE_STMT (use_p));
335 if (bb == def_bb)
336 continue;
338 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
339 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
340 continue;
342 return false;
345 return true;
348 /* Let GSI skip forwards over local defs. */
350 static void
351 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
353 gimple stmt;
355 while (true)
357 if (gsi_end_p (*gsi))
358 return;
359 stmt = gsi_stmt (*gsi);
360 if (!stmt_local_def (stmt))
361 return;
362 gsi_next_nondebug (gsi);
366 /* VAL1 and VAL2 are either:
367 - uses in BB1 and BB2, or
368 - phi alternatives for BB1 and BB2.
369 Return true if the uses have the same gvn value. */
371 static bool
372 gvn_uses_equal (tree val1, tree val2)
374 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
376 if (val1 == val2)
377 return true;
379 if (vn_valueize (val1) != vn_valueize (val2))
380 return false;
382 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
383 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
386 /* Prints E to FILE. */
388 static void
389 same_succ_print (FILE *file, const same_succ e)
391 unsigned int i;
392 bitmap_print (file, e->bbs, "bbs:", "\n");
393 bitmap_print (file, e->succs, "succs:", "\n");
394 bitmap_print (file, e->inverse, "inverse:", "\n");
395 fprintf (file, "flags:");
396 for (i = 0; i < e->succ_flags.length (); ++i)
397 fprintf (file, " %x", e->succ_flags[i]);
398 fprintf (file, "\n");
401 /* Prints same_succ VE to VFILE. */
403 inline int
404 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
406 const same_succ e = *pe;
407 same_succ_print (file, e);
408 return 1;
411 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
413 static void
414 update_dep_bb (basic_block use_bb, tree val)
416 basic_block dep_bb;
418 /* Not a dep. */
419 if (TREE_CODE (val) != SSA_NAME)
420 return;
422 /* Skip use of global def. */
423 if (SSA_NAME_IS_DEFAULT_DEF (val))
424 return;
426 /* Skip use of local def. */
427 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
428 if (dep_bb == use_bb)
429 return;
431 if (BB_DEP_BB (use_bb) == NULL
432 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
433 BB_DEP_BB (use_bb) = dep_bb;
436 /* Update BB_DEP_BB, given the dependencies in STMT. */
438 static void
439 stmt_update_dep_bb (gimple stmt)
441 ssa_op_iter iter;
442 use_operand_p use;
444 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
445 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
448 /* Calculates hash value for same_succ VE. */
450 static hashval_t
451 same_succ_hash (const_same_succ e)
453 hashval_t hashval = bitmap_hash (e->succs);
454 int flags;
455 unsigned int i;
456 unsigned int first = bitmap_first_set_bit (e->bbs);
457 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
458 int size = 0;
459 gimple_stmt_iterator gsi;
460 gimple stmt;
461 tree arg;
462 unsigned int s;
463 bitmap_iterator bs;
465 for (gsi = gsi_start_nondebug_bb (bb);
466 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
468 stmt = gsi_stmt (gsi);
469 stmt_update_dep_bb (stmt);
470 if (stmt_local_def (stmt))
471 continue;
472 size++;
474 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
475 if (is_gimple_assign (stmt))
476 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
477 hashval);
478 if (!is_gimple_call (stmt))
479 continue;
480 if (gimple_call_internal_p (stmt))
481 hashval = iterative_hash_hashval_t
482 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
483 else
485 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
486 if (gimple_call_chain (stmt))
487 hashval = iterative_hash_expr (gimple_call_chain (stmt), hashval);
489 for (i = 0; i < gimple_call_num_args (stmt); i++)
491 arg = gimple_call_arg (stmt, i);
492 arg = vn_valueize (arg);
493 hashval = iterative_hash_expr (arg, hashval);
497 hashval = iterative_hash_hashval_t (size, hashval);
498 BB_SIZE (bb) = size;
500 for (i = 0; i < e->succ_flags.length (); ++i)
502 flags = e->succ_flags[i];
503 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
504 hashval = iterative_hash_hashval_t (flags, hashval);
507 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
509 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
510 for (gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s)); !gsi_end_p (gsi);
511 gsi_next (&gsi))
513 gimple phi = gsi_stmt (gsi);
514 tree lhs = gimple_phi_result (phi);
515 tree val = gimple_phi_arg_def (phi, n);
517 if (virtual_operand_p (lhs))
518 continue;
519 update_dep_bb (bb, val);
523 return hashval;
526 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
527 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
528 the other edge flags. */
530 static bool
531 inverse_flags (const_same_succ e1, const_same_succ e2)
533 int f1a, f1b, f2a, f2b;
534 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
536 if (e1->succ_flags.length () != 2)
537 return false;
539 f1a = e1->succ_flags[0];
540 f1b = e1->succ_flags[1];
541 f2a = e2->succ_flags[0];
542 f2b = e2->succ_flags[1];
544 if (f1a == f2a && f1b == f2b)
545 return false;
547 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
550 /* Compares SAME_SUCCs E1 and E2. */
553 same_succ_def::equal (const value_type *e1, const compare_type *e2)
555 unsigned int i, first1, first2;
556 gimple_stmt_iterator gsi1, gsi2;
557 gimple s1, s2;
558 basic_block bb1, bb2;
560 if (e1->hashval != e2->hashval)
561 return 0;
563 if (e1->succ_flags.length () != e2->succ_flags.length ())
564 return 0;
566 if (!bitmap_equal_p (e1->succs, e2->succs))
567 return 0;
569 if (!inverse_flags (e1, e2))
571 for (i = 0; i < e1->succ_flags.length (); ++i)
572 if (e1->succ_flags[i] != e1->succ_flags[i])
573 return 0;
576 first1 = bitmap_first_set_bit (e1->bbs);
577 first2 = bitmap_first_set_bit (e2->bbs);
579 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
580 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
582 if (BB_SIZE (bb1) != BB_SIZE (bb2))
583 return 0;
585 gsi1 = gsi_start_nondebug_bb (bb1);
586 gsi2 = gsi_start_nondebug_bb (bb2);
587 gsi_advance_fw_nondebug_nonlocal (&gsi1);
588 gsi_advance_fw_nondebug_nonlocal (&gsi2);
589 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
591 s1 = gsi_stmt (gsi1);
592 s2 = gsi_stmt (gsi2);
593 if (gimple_code (s1) != gimple_code (s2))
594 return 0;
595 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
596 return 0;
597 gsi_next_nondebug (&gsi1);
598 gsi_next_nondebug (&gsi2);
599 gsi_advance_fw_nondebug_nonlocal (&gsi1);
600 gsi_advance_fw_nondebug_nonlocal (&gsi2);
603 return 1;
606 /* Alloc and init a new SAME_SUCC. */
608 static same_succ
609 same_succ_alloc (void)
611 same_succ same = XNEW (struct same_succ_def);
613 same->bbs = BITMAP_ALLOC (NULL);
614 same->succs = BITMAP_ALLOC (NULL);
615 same->inverse = BITMAP_ALLOC (NULL);
616 same->succ_flags.create (10);
617 same->in_worklist = false;
619 return same;
622 /* Delete same_succ E. */
624 void
625 same_succ_def::remove (same_succ e)
627 BITMAP_FREE (e->bbs);
628 BITMAP_FREE (e->succs);
629 BITMAP_FREE (e->inverse);
630 e->succ_flags.release ();
632 XDELETE (e);
635 /* Reset same_succ SAME. */
637 static void
638 same_succ_reset (same_succ same)
640 bitmap_clear (same->bbs);
641 bitmap_clear (same->succs);
642 bitmap_clear (same->inverse);
643 same->succ_flags.truncate (0);
646 static hash_table <same_succ_def> same_succ_htab;
648 /* Array that is used to store the edge flags for a successor. */
650 static int *same_succ_edge_flags;
652 /* Bitmap that is used to mark bbs that are recently deleted. */
654 static bitmap deleted_bbs;
656 /* Bitmap that is used to mark predecessors of bbs that are
657 deleted. */
659 static bitmap deleted_bb_preds;
661 /* Prints same_succ_htab to stderr. */
663 extern void debug_same_succ (void);
664 DEBUG_FUNCTION void
665 debug_same_succ ( void)
667 same_succ_htab.traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
671 /* Vector of bbs to process. */
673 static vec<same_succ> worklist;
675 /* Prints worklist to FILE. */
677 static void
678 print_worklist (FILE *file)
680 unsigned int i;
681 for (i = 0; i < worklist.length (); ++i)
682 same_succ_print (file, worklist[i]);
685 /* Adds SAME to worklist. */
687 static void
688 add_to_worklist (same_succ same)
690 if (same->in_worklist)
691 return;
693 if (bitmap_count_bits (same->bbs) < 2)
694 return;
696 same->in_worklist = true;
697 worklist.safe_push (same);
700 /* Add BB to same_succ_htab. */
702 static void
703 find_same_succ_bb (basic_block bb, same_succ *same_p)
705 unsigned int j;
706 bitmap_iterator bj;
707 same_succ same = *same_p;
708 same_succ *slot;
709 edge_iterator ei;
710 edge e;
712 if (bb == NULL
713 /* Be conservative with loop structure. It's not evident that this test
714 is sufficient. Before tail-merge, we've just called
715 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
716 set, so there's no guarantee that the loop->latch value is still valid.
717 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
718 start of pre, we've kept that property intact throughout pre, and are
719 keeping it throughout tail-merge using this test. */
720 || bb->loop_father->latch == bb)
721 return;
722 bitmap_set_bit (same->bbs, bb->index);
723 FOR_EACH_EDGE (e, ei, bb->succs)
725 int index = e->dest->index;
726 bitmap_set_bit (same->succs, index);
727 same_succ_edge_flags[index] = e->flags;
729 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
730 same->succ_flags.safe_push (same_succ_edge_flags[j]);
732 same->hashval = same_succ_hash (same);
734 slot = same_succ_htab.find_slot_with_hash (same, same->hashval, INSERT);
735 if (*slot == NULL)
737 *slot = same;
738 BB_SAME_SUCC (bb) = same;
739 add_to_worklist (same);
740 *same_p = NULL;
742 else
744 bitmap_set_bit ((*slot)->bbs, bb->index);
745 BB_SAME_SUCC (bb) = *slot;
746 add_to_worklist (*slot);
747 if (inverse_flags (same, *slot))
748 bitmap_set_bit ((*slot)->inverse, bb->index);
749 same_succ_reset (same);
753 /* Find bbs with same successors. */
755 static void
756 find_same_succ (void)
758 same_succ same = same_succ_alloc ();
759 basic_block bb;
761 FOR_EACH_BB_FN (bb, cfun)
763 find_same_succ_bb (bb, &same);
764 if (same == NULL)
765 same = same_succ_alloc ();
768 same_succ_def::remove (same);
771 /* Initializes worklist administration. */
773 static void
774 init_worklist (void)
776 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
777 same_succ_htab.create (n_basic_blocks_for_fn (cfun));
778 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
779 deleted_bbs = BITMAP_ALLOC (NULL);
780 deleted_bb_preds = BITMAP_ALLOC (NULL);
781 worklist.create (n_basic_blocks_for_fn (cfun));
782 find_same_succ ();
784 if (dump_file && (dump_flags & TDF_DETAILS))
786 fprintf (dump_file, "initial worklist:\n");
787 print_worklist (dump_file);
791 /* Deletes worklist administration. */
793 static void
794 delete_worklist (void)
796 free_aux_for_blocks ();
797 same_succ_htab.dispose ();
798 XDELETEVEC (same_succ_edge_flags);
799 same_succ_edge_flags = NULL;
800 BITMAP_FREE (deleted_bbs);
801 BITMAP_FREE (deleted_bb_preds);
802 worklist.release ();
805 /* Mark BB as deleted, and mark its predecessors. */
807 static void
808 mark_basic_block_deleted (basic_block bb)
810 edge e;
811 edge_iterator ei;
813 bitmap_set_bit (deleted_bbs, bb->index);
815 FOR_EACH_EDGE (e, ei, bb->preds)
816 bitmap_set_bit (deleted_bb_preds, e->src->index);
819 /* Removes BB from its corresponding same_succ. */
821 static void
822 same_succ_flush_bb (basic_block bb)
824 same_succ same = BB_SAME_SUCC (bb);
825 BB_SAME_SUCC (bb) = NULL;
826 if (bitmap_single_bit_set_p (same->bbs))
827 same_succ_htab.remove_elt_with_hash (same, same->hashval);
828 else
829 bitmap_clear_bit (same->bbs, bb->index);
832 /* Removes all bbs in BBS from their corresponding same_succ. */
834 static void
835 same_succ_flush_bbs (bitmap bbs)
837 unsigned int i;
838 bitmap_iterator bi;
840 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
841 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
844 /* Release the last vdef in BB, either normal or phi result. */
846 static void
847 release_last_vdef (basic_block bb)
849 gimple_stmt_iterator i;
851 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
853 gimple stmt = gsi_stmt (i);
854 if (gimple_vdef (stmt) == NULL_TREE)
855 continue;
857 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
858 return;
861 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
863 gimple phi = gsi_stmt (i);
864 tree res = gimple_phi_result (phi);
866 if (!virtual_operand_p (res))
867 continue;
869 mark_virtual_phi_result_for_renaming (phi);
870 return;
875 /* For deleted_bb_preds, find bbs with same successors. */
877 static void
878 update_worklist (void)
880 unsigned int i;
881 bitmap_iterator bi;
882 basic_block bb;
883 same_succ same;
885 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
886 bitmap_clear (deleted_bbs);
888 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
889 same_succ_flush_bbs (deleted_bb_preds);
891 same = same_succ_alloc ();
892 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
894 bb = BASIC_BLOCK_FOR_FN (cfun, i);
895 gcc_assert (bb != NULL);
896 find_same_succ_bb (bb, &same);
897 if (same == NULL)
898 same = same_succ_alloc ();
900 same_succ_def::remove (same);
901 bitmap_clear (deleted_bb_preds);
904 /* Prints cluster C to FILE. */
906 static void
907 print_cluster (FILE *file, bb_cluster c)
909 if (c == NULL)
910 return;
911 bitmap_print (file, c->bbs, "bbs:", "\n");
912 bitmap_print (file, c->preds, "preds:", "\n");
915 /* Prints cluster C to stderr. */
917 extern void debug_cluster (bb_cluster);
918 DEBUG_FUNCTION void
919 debug_cluster (bb_cluster c)
921 print_cluster (stderr, c);
924 /* Update C->rep_bb, given that BB is added to the cluster. */
926 static void
927 update_rep_bb (bb_cluster c, basic_block bb)
929 /* Initial. */
930 if (c->rep_bb == NULL)
932 c->rep_bb = bb;
933 return;
936 /* Current needs no deps, keep it. */
937 if (BB_DEP_BB (c->rep_bb) == NULL)
938 return;
940 /* Bb needs no deps, change rep_bb. */
941 if (BB_DEP_BB (bb) == NULL)
943 c->rep_bb = bb;
944 return;
947 /* Bb needs last deps earlier than current, change rep_bb. A potential
948 problem with this, is that the first deps might also be earlier, which
949 would mean we prefer longer lifetimes for the deps. To be able to check
950 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
951 BB_DEP_BB, which is really BB_LAST_DEP_BB.
952 The benefit of choosing the bb with last deps earlier, is that it can
953 potentially be used as replacement for more bbs. */
954 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
955 c->rep_bb = bb;
958 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
960 static void
961 add_bb_to_cluster (bb_cluster c, basic_block bb)
963 edge e;
964 edge_iterator ei;
966 bitmap_set_bit (c->bbs, bb->index);
968 FOR_EACH_EDGE (e, ei, bb->preds)
969 bitmap_set_bit (c->preds, e->src->index);
971 update_rep_bb (c, bb);
974 /* Allocate and init new cluster. */
976 static bb_cluster
977 new_cluster (void)
979 bb_cluster c;
980 c = XCNEW (struct bb_cluster_def);
981 c->bbs = BITMAP_ALLOC (NULL);
982 c->preds = BITMAP_ALLOC (NULL);
983 c->rep_bb = NULL;
984 return c;
987 /* Delete clusters. */
989 static void
990 delete_cluster (bb_cluster c)
992 if (c == NULL)
993 return;
994 BITMAP_FREE (c->bbs);
995 BITMAP_FREE (c->preds);
996 XDELETE (c);
1000 /* Array that contains all clusters. */
1002 static vec<bb_cluster> all_clusters;
1004 /* Allocate all cluster vectors. */
1006 static void
1007 alloc_cluster_vectors (void)
1009 all_clusters.create (n_basic_blocks_for_fn (cfun));
1012 /* Reset all cluster vectors. */
1014 static void
1015 reset_cluster_vectors (void)
1017 unsigned int i;
1018 basic_block bb;
1019 for (i = 0; i < all_clusters.length (); ++i)
1020 delete_cluster (all_clusters[i]);
1021 all_clusters.truncate (0);
1022 FOR_EACH_BB_FN (bb, cfun)
1023 BB_CLUSTER (bb) = NULL;
1026 /* Delete all cluster vectors. */
1028 static void
1029 delete_cluster_vectors (void)
1031 unsigned int i;
1032 for (i = 0; i < all_clusters.length (); ++i)
1033 delete_cluster (all_clusters[i]);
1034 all_clusters.release ();
1037 /* Merge cluster C2 into C1. */
1039 static void
1040 merge_clusters (bb_cluster c1, bb_cluster c2)
1042 bitmap_ior_into (c1->bbs, c2->bbs);
1043 bitmap_ior_into (c1->preds, c2->preds);
1046 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1047 all_clusters, or merge c with existing cluster. */
1049 static void
1050 set_cluster (basic_block bb1, basic_block bb2)
1052 basic_block merge_bb, other_bb;
1053 bb_cluster merge, old, c;
1055 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1057 c = new_cluster ();
1058 add_bb_to_cluster (c, bb1);
1059 add_bb_to_cluster (c, bb2);
1060 BB_CLUSTER (bb1) = c;
1061 BB_CLUSTER (bb2) = c;
1062 c->index = all_clusters.length ();
1063 all_clusters.safe_push (c);
1065 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1067 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1068 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1069 merge = BB_CLUSTER (merge_bb);
1070 add_bb_to_cluster (merge, other_bb);
1071 BB_CLUSTER (other_bb) = merge;
1073 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1075 unsigned int i;
1076 bitmap_iterator bi;
1078 old = BB_CLUSTER (bb2);
1079 merge = BB_CLUSTER (bb1);
1080 merge_clusters (merge, old);
1081 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1082 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1083 all_clusters[old->index] = NULL;
1084 update_rep_bb (merge, old->rep_bb);
1085 delete_cluster (old);
1087 else
1088 gcc_unreachable ();
1091 /* Return true if gimple operands T1 and T2 have the same value. */
1093 static bool
1094 gimple_operand_equal_value_p (tree t1, tree t2)
1096 if (t1 == t2)
1097 return true;
1099 if (t1 == NULL_TREE
1100 || t2 == NULL_TREE)
1101 return false;
1103 if (operand_equal_p (t1, t2, 0))
1104 return true;
1106 return gvn_uses_equal (t1, t2);
1109 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1110 gimple_bb (s2) are members of SAME_SUCC. */
1112 static bool
1113 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1115 unsigned int i;
1116 tree lhs1, lhs2;
1117 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1118 tree t1, t2;
1119 bool inv_cond;
1120 enum tree_code code1, code2;
1122 if (gimple_code (s1) != gimple_code (s2))
1123 return false;
1125 switch (gimple_code (s1))
1127 case GIMPLE_CALL:
1128 if (!gimple_call_same_target_p (s1, s2))
1129 return false;
1131 t1 = gimple_call_chain (s1);
1132 t2 = gimple_call_chain (s2);
1133 if (!gimple_operand_equal_value_p (t1, t2))
1134 return false;
1136 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1137 return false;
1139 for (i = 0; i < gimple_call_num_args (s1); ++i)
1141 t1 = gimple_call_arg (s1, i);
1142 t2 = gimple_call_arg (s2, i);
1143 if (!gimple_operand_equal_value_p (t1, t2))
1144 return false;
1147 lhs1 = gimple_get_lhs (s1);
1148 lhs2 = gimple_get_lhs (s2);
1149 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1150 return true;
1151 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1152 return false;
1153 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1154 return vn_valueize (lhs1) == vn_valueize (lhs2);
1155 return operand_equal_p (lhs1, lhs2, 0);
1157 case GIMPLE_ASSIGN:
1158 lhs1 = gimple_get_lhs (s1);
1159 lhs2 = gimple_get_lhs (s2);
1160 if (TREE_CODE (lhs1) != SSA_NAME
1161 && TREE_CODE (lhs2) != SSA_NAME)
1163 /* If the vdef is the same, it's the same statement. */
1164 if (vn_valueize (gimple_vdef (s1))
1165 == vn_valueize (gimple_vdef (s2)))
1166 return true;
1168 /* Test for structural equality. */
1169 return (operand_equal_p (lhs1, lhs2, 0)
1170 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1171 gimple_assign_rhs1 (s2)));
1173 else if (TREE_CODE (lhs1) == SSA_NAME
1174 && TREE_CODE (lhs2) == SSA_NAME)
1175 return vn_valueize (lhs1) == vn_valueize (lhs2);
1176 return false;
1178 case GIMPLE_COND:
1179 t1 = gimple_cond_lhs (s1);
1180 t2 = gimple_cond_lhs (s2);
1181 if (!gimple_operand_equal_value_p (t1, t2))
1182 return false;
1184 t1 = gimple_cond_rhs (s1);
1185 t2 = gimple_cond_rhs (s2);
1186 if (!gimple_operand_equal_value_p (t1, t2))
1187 return false;
1189 code1 = gimple_expr_code (s1);
1190 code2 = gimple_expr_code (s2);
1191 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1192 != bitmap_bit_p (same_succ->inverse, bb2->index));
1193 if (inv_cond)
1195 bool honor_nans
1196 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1197 code2 = invert_tree_comparison (code2, honor_nans);
1199 return code1 == code2;
1201 default:
1202 return false;
1206 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1207 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1208 processed statements. */
1210 static void
1211 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1212 bool *vuse_escaped)
1214 gimple stmt;
1215 tree lvuse;
1217 while (true)
1219 if (gsi_end_p (*gsi))
1220 return;
1221 stmt = gsi_stmt (*gsi);
1223 lvuse = gimple_vuse (stmt);
1224 if (lvuse != NULL_TREE)
1226 *vuse = lvuse;
1227 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1228 *vuse_escaped = true;
1231 if (!stmt_local_def (stmt))
1232 return;
1233 gsi_prev_nondebug (gsi);
1237 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1238 clusters them. */
1240 static void
1241 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1243 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1244 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1245 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1246 bool vuse_escaped = false;
1248 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1249 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1251 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1253 gimple stmt1 = gsi_stmt (gsi1);
1254 gimple stmt2 = gsi_stmt (gsi2);
1256 /* What could be better than to this this here is to blacklist the bb
1257 containing the stmt, when encountering the stmt f.i. in
1258 same_succ_hash. */
1259 if (is_tm_ending (stmt1)
1260 || is_tm_ending (stmt2))
1261 return;
1263 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1264 return;
1266 gsi_prev_nondebug (&gsi1);
1267 gsi_prev_nondebug (&gsi2);
1268 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1269 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1272 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1273 return;
1275 /* If the incoming vuses are not the same, and the vuse escaped into an
1276 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1277 which potentially means the semantics of one of the blocks will be changed.
1278 TODO: make this check more precise. */
1279 if (vuse_escaped && vuse1 != vuse2)
1280 return;
1282 if (dump_file)
1283 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1284 bb1->index, bb2->index);
1286 set_cluster (bb1, bb2);
1289 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1290 E2 are equal. */
1292 static bool
1293 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1295 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1296 gimple_stmt_iterator gsi;
1298 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1300 gimple phi = gsi_stmt (gsi);
1301 tree lhs = gimple_phi_result (phi);
1302 tree val1 = gimple_phi_arg_def (phi, n1);
1303 tree val2 = gimple_phi_arg_def (phi, n2);
1305 if (virtual_operand_p (lhs))
1306 continue;
1308 if (operand_equal_for_phi_arg_p (val1, val2))
1309 continue;
1310 if (gvn_uses_equal (val1, val2))
1311 continue;
1313 return false;
1316 return true;
1319 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1320 phi alternatives for BB1 and BB2 are equal. */
1322 static bool
1323 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1325 unsigned int s;
1326 bitmap_iterator bs;
1327 edge e1, e2;
1328 basic_block succ;
1330 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1332 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1333 e1 = find_edge (bb1, succ);
1334 e2 = find_edge (bb2, succ);
1335 if (e1->flags & EDGE_COMPLEX
1336 || e2->flags & EDGE_COMPLEX)
1337 return false;
1339 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1340 the same value. */
1341 if (!same_phi_alternatives_1 (succ, e1, e2))
1342 return false;
1345 return true;
1348 /* Return true if BB has non-vop phis. */
1350 static bool
1351 bb_has_non_vop_phi (basic_block bb)
1353 gimple_seq phis = phi_nodes (bb);
1354 gimple phi;
1356 if (phis == NULL)
1357 return false;
1359 if (!gimple_seq_singleton_p (phis))
1360 return true;
1362 phi = gimple_seq_first_stmt (phis);
1363 return !virtual_operand_p (gimple_phi_result (phi));
1366 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1367 invariant that uses in FROM are dominates by their defs. */
1369 static bool
1370 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1372 basic_block cd, dep_bb = BB_DEP_BB (to);
1373 edge_iterator ei;
1374 edge e;
1375 bitmap from_preds = BITMAP_ALLOC (NULL);
1377 if (dep_bb == NULL)
1378 return true;
1380 FOR_EACH_EDGE (e, ei, from->preds)
1381 bitmap_set_bit (from_preds, e->src->index);
1382 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1383 BITMAP_FREE (from_preds);
1385 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1388 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1389 replacement bb) and vice versa maintains the invariant that uses in the
1390 replacement are dominates by their defs. */
1392 static bool
1393 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1395 if (BB_CLUSTER (bb1) != NULL)
1396 bb1 = BB_CLUSTER (bb1)->rep_bb;
1398 if (BB_CLUSTER (bb2) != NULL)
1399 bb2 = BB_CLUSTER (bb2)->rep_bb;
1401 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1402 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1405 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1407 static void
1408 find_clusters_1 (same_succ same_succ)
1410 basic_block bb1, bb2;
1411 unsigned int i, j;
1412 bitmap_iterator bi, bj;
1413 int nr_comparisons;
1414 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1416 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1418 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1420 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1421 phi-nodes in bb1 and bb2, with the same alternatives for the same
1422 preds. */
1423 if (bb_has_non_vop_phi (bb1))
1424 continue;
1426 nr_comparisons = 0;
1427 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1429 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1431 if (bb_has_non_vop_phi (bb2))
1432 continue;
1434 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1435 continue;
1437 /* Limit quadratic behaviour. */
1438 nr_comparisons++;
1439 if (nr_comparisons > max_comparisons)
1440 break;
1442 /* This is a conservative dependency check. We could test more
1443 precise for allowed replacement direction. */
1444 if (!deps_ok_for_redirect (bb1, bb2))
1445 continue;
1447 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1448 continue;
1450 find_duplicate (same_succ, bb1, bb2);
1455 /* Find clusters of bbs which can be merged. */
1457 static void
1458 find_clusters (void)
1460 same_succ same;
1462 while (!worklist.is_empty ())
1464 same = worklist.pop ();
1465 same->in_worklist = false;
1466 if (dump_file && (dump_flags & TDF_DETAILS))
1468 fprintf (dump_file, "processing worklist entry\n");
1469 same_succ_print (dump_file, same);
1471 find_clusters_1 (same);
1475 /* Returns the vop phi of BB, if any. */
1477 static gimple
1478 vop_phi (basic_block bb)
1480 gimple stmt;
1481 gimple_stmt_iterator gsi;
1482 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1484 stmt = gsi_stmt (gsi);
1485 if (! virtual_operand_p (gimple_phi_result (stmt)))
1486 continue;
1487 return stmt;
1489 return NULL;
1492 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1494 static void
1495 replace_block_by (basic_block bb1, basic_block bb2)
1497 edge pred_edge;
1498 edge e1, e2;
1499 edge_iterator ei;
1500 unsigned int i;
1501 gimple bb2_phi;
1503 bb2_phi = vop_phi (bb2);
1505 /* Mark the basic block as deleted. */
1506 mark_basic_block_deleted (bb1);
1508 /* Redirect the incoming edges of bb1 to bb2. */
1509 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1511 pred_edge = EDGE_PRED (bb1, i - 1);
1512 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1513 gcc_assert (pred_edge != NULL);
1515 if (bb2_phi == NULL)
1516 continue;
1518 /* The phi might have run out of capacity when the redirect added an
1519 argument, which means it could have been replaced. Refresh it. */
1520 bb2_phi = vop_phi (bb2);
1522 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1523 pred_edge, UNKNOWN_LOCATION);
1526 bb2->frequency += bb1->frequency;
1527 if (bb2->frequency > BB_FREQ_MAX)
1528 bb2->frequency = BB_FREQ_MAX;
1530 bb2->count += bb1->count;
1532 /* Merge the outgoing edge counts from bb1 onto bb2. */
1533 gcov_type out_sum = 0;
1534 FOR_EACH_EDGE (e1, ei, bb1->succs)
1536 e2 = find_edge (bb2, e1->dest);
1537 gcc_assert (e2);
1538 e2->count += e1->count;
1539 out_sum += e2->count;
1541 /* Recompute the edge probabilities from the new merged edge count.
1542 Use the sum of the new merged edge counts computed above instead
1543 of bb2's merged count, in case there are profile count insanities
1544 making the bb count inconsistent with the edge weights. */
1545 FOR_EACH_EDGE (e2, ei, bb2->succs)
1547 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1550 /* Do updates that use bb1, before deleting bb1. */
1551 release_last_vdef (bb1);
1552 same_succ_flush_bb (bb1);
1554 delete_basic_block (bb1);
1557 /* Bbs for which update_debug_stmt need to be called. */
1559 static bitmap update_bbs;
1561 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1562 number of bbs removed. */
1564 static int
1565 apply_clusters (void)
1567 basic_block bb1, bb2;
1568 bb_cluster c;
1569 unsigned int i, j;
1570 bitmap_iterator bj;
1571 int nr_bbs_removed = 0;
1573 for (i = 0; i < all_clusters.length (); ++i)
1575 c = all_clusters[i];
1576 if (c == NULL)
1577 continue;
1579 bb2 = c->rep_bb;
1580 bitmap_set_bit (update_bbs, bb2->index);
1582 bitmap_clear_bit (c->bbs, bb2->index);
1583 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1585 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1586 bitmap_clear_bit (update_bbs, bb1->index);
1588 replace_block_by (bb1, bb2);
1589 nr_bbs_removed++;
1593 return nr_bbs_removed;
1596 /* Resets debug statement STMT if it has uses that are not dominated by their
1597 defs. */
1599 static void
1600 update_debug_stmt (gimple stmt)
1602 use_operand_p use_p;
1603 ssa_op_iter oi;
1604 basic_block bbdef, bbuse;
1605 gimple def_stmt;
1606 tree name;
1608 if (!gimple_debug_bind_p (stmt))
1609 return;
1611 bbuse = gimple_bb (stmt);
1612 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1614 name = USE_FROM_PTR (use_p);
1615 gcc_assert (TREE_CODE (name) == SSA_NAME);
1617 def_stmt = SSA_NAME_DEF_STMT (name);
1618 gcc_assert (def_stmt != NULL);
1620 bbdef = gimple_bb (def_stmt);
1621 if (bbdef == NULL || bbuse == bbdef
1622 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1623 continue;
1625 gimple_debug_bind_reset_value (stmt);
1626 update_stmt (stmt);
1630 /* Resets all debug statements that have uses that are not
1631 dominated by their defs. */
1633 static void
1634 update_debug_stmts (void)
1636 basic_block bb;
1637 bitmap_iterator bi;
1638 unsigned int i;
1640 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1642 gimple stmt;
1643 gimple_stmt_iterator gsi;
1645 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1646 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1648 stmt = gsi_stmt (gsi);
1649 if (!is_gimple_debug (stmt))
1650 continue;
1651 update_debug_stmt (stmt);
1656 /* Runs tail merge optimization. */
1658 unsigned int
1659 tail_merge_optimize (unsigned int todo)
1661 int nr_bbs_removed_total = 0;
1662 int nr_bbs_removed;
1663 bool loop_entered = false;
1664 int iteration_nr = 0;
1665 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1667 if (!flag_tree_tail_merge
1668 || max_iterations == 0)
1669 return 0;
1671 timevar_push (TV_TREE_TAIL_MERGE);
1673 if (!dom_info_available_p (CDI_DOMINATORS))
1675 /* PRE can leave us with unreachable blocks, remove them now. */
1676 delete_unreachable_blocks ();
1677 calculate_dominance_info (CDI_DOMINATORS);
1679 init_worklist ();
1681 while (!worklist.is_empty ())
1683 if (!loop_entered)
1685 loop_entered = true;
1686 alloc_cluster_vectors ();
1687 update_bbs = BITMAP_ALLOC (NULL);
1689 else
1690 reset_cluster_vectors ();
1692 iteration_nr++;
1693 if (dump_file && (dump_flags & TDF_DETAILS))
1694 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1696 find_clusters ();
1697 gcc_assert (worklist.is_empty ());
1698 if (all_clusters.is_empty ())
1699 break;
1701 nr_bbs_removed = apply_clusters ();
1702 nr_bbs_removed_total += nr_bbs_removed;
1703 if (nr_bbs_removed == 0)
1704 break;
1706 free_dominance_info (CDI_DOMINATORS);
1708 if (iteration_nr == max_iterations)
1709 break;
1711 calculate_dominance_info (CDI_DOMINATORS);
1712 update_worklist ();
1715 if (dump_file && (dump_flags & TDF_DETAILS))
1716 fprintf (dump_file, "htab collision / search: %f\n",
1717 same_succ_htab.collisions ());
1719 if (nr_bbs_removed_total > 0)
1721 if (MAY_HAVE_DEBUG_STMTS)
1723 calculate_dominance_info (CDI_DOMINATORS);
1724 update_debug_stmts ();
1727 if (dump_file && (dump_flags & TDF_DETAILS))
1729 fprintf (dump_file, "Before TODOs.\n");
1730 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1733 mark_virtual_operands_for_renaming (cfun);
1736 delete_worklist ();
1737 if (loop_entered)
1739 delete_cluster_vectors ();
1740 BITMAP_FREE (update_bbs);
1743 timevar_pop (TV_TREE_TAIL_MERGE);
1745 return todo;