2009-08-24 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / tree-tailcall.c
blobefd6bc2c029702b770f1bb0c1c18155c8fa17cf8
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "diagnostic.h"
34 #include "except.h"
35 #include "tree-pass.h"
36 #include "flags.h"
37 #include "langhooks.h"
38 #include "dbgcnt.h"
40 /* The file implements the tail recursion elimination. It is also used to
41 analyze the tail calls in general, passing the results to the rtl level
42 where they are used for sibcall optimization.
44 In addition to the standard tail recursion elimination, we handle the most
45 trivial cases of making the call tail recursive by creating accumulators.
46 For example the following function
48 int sum (int n)
50 if (n > 0)
51 return n + sum (n - 1);
52 else
53 return 0;
56 is transformed into
58 int sum (int n)
60 int acc = 0;
62 while (n > 0)
63 acc += n--;
65 return acc;
68 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
69 when we reach the return x statement, we should return a_acc + x * m_acc
70 instead. They are initially initialized to 0 and 1, respectively,
71 so the semantics of the function is obviously preserved. If we are
72 guaranteed that the value of the accumulator never change, we
73 omit the accumulator.
75 There are three cases how the function may exit. The first one is
76 handled in adjust_return_value, the other two in adjust_accumulator_values
77 (the second case is actually a special case of the third one and we
78 present it separately just for clarity):
80 1) Just return x, where x is not in any of the remaining special shapes.
81 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
83 2) return f (...), where f is the current function, is rewritten in a
84 classical tail-recursion elimination way, into assignment of arguments
85 and jump to the start of the function. Values of the accumulators
86 are unchanged.
88 3) return a + m * f(...), where a and m do not depend on call to f.
89 To preserve the semantics described before we want this to be rewritten
90 in such a way that we finally return
92 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
94 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
95 eliminate the tail call to f. Special cases when the value is just
96 added or just multiplied are obtained by setting a = 0 or m = 1.
98 TODO -- it is possible to do similar tricks for other operations. */
100 /* A structure that describes the tailcall. */
102 struct tailcall
104 /* The iterator pointing to the call statement. */
105 gimple_stmt_iterator call_gsi;
107 /* True if it is a call to the current function. */
108 bool tail_recursion;
110 /* The return value of the caller is mult * f + add, where f is the return
111 value of the call. */
112 tree mult, add;
114 /* Next tailcall in the chain. */
115 struct tailcall *next;
118 /* The variables holding the value of multiplicative and additive
119 accumulator. */
120 static tree m_acc, a_acc;
122 static bool suitable_for_tail_opt_p (void);
123 static bool optimize_tail_call (struct tailcall *, bool);
124 static void eliminate_tail_call (struct tailcall *);
125 static void find_tail_calls (basic_block, struct tailcall **);
127 /* Returns false when the function is not suitable for tail call optimization
128 from some reason (e.g. if it takes variable number of arguments). */
130 static bool
131 suitable_for_tail_opt_p (void)
133 referenced_var_iterator rvi;
134 tree var;
136 if (cfun->stdarg)
137 return false;
139 /* No local variable nor structure field should be call-used. */
140 FOR_EACH_REFERENCED_VAR (var, rvi)
142 if (!is_global_var (var)
143 && is_call_used (var))
144 return false;
147 return true;
149 /* Returns false when the function is not suitable for tail call optimization
150 from some reason (e.g. if it takes variable number of arguments).
151 This test must pass in addition to suitable_for_tail_opt_p in order to make
152 tail call discovery happen. */
154 static bool
155 suitable_for_tail_call_opt_p (void)
157 tree param;
159 /* alloca (until we have stack slot life analysis) inhibits
160 sibling call optimizations, but not tail recursion. */
161 if (cfun->calls_alloca)
162 return false;
164 /* If we are using sjlj exceptions, we may need to add a call to
165 _Unwind_SjLj_Unregister at exit of the function. Which means
166 that we cannot do any sibcall transformations. */
167 if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
168 return false;
170 /* Any function that calls setjmp might have longjmp called from
171 any called function. ??? We really should represent this
172 properly in the CFG so that this needn't be special cased. */
173 if (cfun->calls_setjmp)
174 return false;
176 /* ??? It is OK if the argument of a function is taken in some cases,
177 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
178 for (param = DECL_ARGUMENTS (current_function_decl);
179 param;
180 param = TREE_CHAIN (param))
181 if (TREE_ADDRESSABLE (param))
182 return false;
184 return true;
187 /* Checks whether the expression EXPR in stmt AT is independent of the
188 statement pointed to by GSI (in a sense that we already know EXPR's value
189 at GSI). We use the fact that we are only called from the chain of
190 basic blocks that have only single successor. Returns the expression
191 containing the value of EXPR at GSI. */
193 static tree
194 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
196 basic_block bb, call_bb, at_bb;
197 edge e;
198 edge_iterator ei;
200 if (is_gimple_min_invariant (expr))
201 return expr;
203 if (TREE_CODE (expr) != SSA_NAME)
204 return NULL_TREE;
206 /* Mark the blocks in the chain leading to the end. */
207 at_bb = gimple_bb (at);
208 call_bb = gimple_bb (gsi_stmt (gsi));
209 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
210 bb->aux = &bb->aux;
211 bb->aux = &bb->aux;
213 while (1)
215 at = SSA_NAME_DEF_STMT (expr);
216 bb = gimple_bb (at);
218 /* The default definition or defined before the chain. */
219 if (!bb || !bb->aux)
220 break;
222 if (bb == call_bb)
224 for (; !gsi_end_p (gsi); gsi_next (&gsi))
225 if (gsi_stmt (gsi) == at)
226 break;
228 if (!gsi_end_p (gsi))
229 expr = NULL_TREE;
230 break;
233 if (gimple_code (at) != GIMPLE_PHI)
235 expr = NULL_TREE;
236 break;
239 FOR_EACH_EDGE (e, ei, bb->preds)
240 if (e->src->aux)
241 break;
242 gcc_assert (e);
244 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
245 if (TREE_CODE (expr) != SSA_NAME)
247 /* The value is a constant. */
248 break;
252 /* Unmark the blocks. */
253 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
254 bb->aux = NULL;
255 bb->aux = NULL;
257 return expr;
260 /* Simulates the effect of an assignment STMT on the return value of the tail
261 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
262 additive factor for the real return value. */
264 static bool
265 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
266 tree *a, tree *ass_var)
268 tree op0, op1, non_ass_var;
269 tree dest = gimple_assign_lhs (stmt);
270 enum tree_code code = gimple_assign_rhs_code (stmt);
271 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
272 tree src_var = gimple_assign_rhs1 (stmt);
274 /* See if this is a simple copy operation of an SSA name to the function
275 result. In that case we may have a simple tail call. Ignore type
276 conversions that can never produce extra code between the function
277 call and the function return. */
278 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
279 && (TREE_CODE (src_var) == SSA_NAME))
281 /* Reject a tailcall if the type conversion might need
282 additional code. */
283 if (gimple_assign_cast_p (stmt)
284 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
285 return false;
287 if (src_var != *ass_var)
288 return false;
290 *ass_var = dest;
291 return true;
294 if (rhs_class != GIMPLE_BINARY_RHS)
295 return false;
297 /* Accumulator optimizations will reverse the order of operations.
298 We can only do that for floating-point types if we're assuming
299 that addition and multiplication are associative. */
300 if (!flag_associative_math)
301 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
302 return false;
304 /* We only handle the code like
306 x = call ();
307 y = m * x;
308 z = y + a;
309 return z;
311 TODO -- Extend it for cases where the linear transformation of the output
312 is expressed in a more complicated way. */
314 op0 = gimple_assign_rhs1 (stmt);
315 op1 = gimple_assign_rhs2 (stmt);
317 if (op0 == *ass_var
318 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
320 else if (op1 == *ass_var
321 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
323 else
324 return false;
326 switch (code)
328 case PLUS_EXPR:
329 /* There should be no previous addition. TODO -- it should be fairly
330 straightforward to lift this restriction -- just allow storing
331 more complicated expressions in *A, and gimplify it in
332 adjust_accumulator_values. */
333 if (*a)
334 return false;
335 *a = non_ass_var;
336 *ass_var = dest;
337 return true;
339 case MULT_EXPR:
340 /* Similar remark applies here. Handling multiplication after addition
341 is just slightly more complicated -- we need to multiply both *A and
342 *M. */
343 if (*a || *m)
344 return false;
345 *m = non_ass_var;
346 *ass_var = dest;
347 return true;
349 /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR,
350 POINTER_PLUS_EXPR). */
352 default:
353 return false;
357 /* Propagate VAR through phis on edge E. */
359 static tree
360 propagate_through_phis (tree var, edge e)
362 basic_block dest = e->dest;
363 gimple_stmt_iterator gsi;
365 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
367 gimple phi = gsi_stmt (gsi);
368 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
369 return PHI_RESULT (phi);
371 return var;
374 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
375 added to the start of RET. */
377 static void
378 find_tail_calls (basic_block bb, struct tailcall **ret)
380 tree ass_var = NULL_TREE, ret_var, func, param;
381 gimple stmt, call = NULL;
382 gimple_stmt_iterator gsi, agsi;
383 bool tail_recursion;
384 struct tailcall *nw;
385 edge e;
386 tree m, a;
387 basic_block abb;
388 size_t idx;
390 if (!single_succ_p (bb))
391 return;
393 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
395 stmt = gsi_stmt (gsi);
397 /* Ignore labels. */
398 if (gimple_code (stmt) == GIMPLE_LABEL)
399 continue;
401 /* Check for a call. */
402 if (is_gimple_call (stmt))
404 call = stmt;
405 ass_var = gimple_call_lhs (stmt);
406 break;
409 /* If the statement references memory or volatile operands, fail. */
410 if (gimple_references_memory_p (stmt)
411 || gimple_has_volatile_ops (stmt))
412 return;
415 if (gsi_end_p (gsi))
417 edge_iterator ei;
418 /* Recurse to the predecessors. */
419 FOR_EACH_EDGE (e, ei, bb->preds)
420 find_tail_calls (e->src, ret);
422 return;
425 /* If the LHS of our call is not just a simple register, we can't
426 transform this into a tail or sibling call. This situation happens,
427 in (e.g.) "*p = foo()" where foo returns a struct. In this case
428 we won't have a temporary here, but we need to carry out the side
429 effect anyway, so tailcall is impossible.
431 ??? In some situations (when the struct is returned in memory via
432 invisible argument) we could deal with this, e.g. by passing 'p'
433 itself as that argument to foo, but it's too early to do this here,
434 and expand_call() will not handle it anyway. If it ever can, then
435 we need to revisit this here, to allow that situation. */
436 if (ass_var && !is_gimple_reg (ass_var))
437 return;
439 /* We found the call, check whether it is suitable. */
440 tail_recursion = false;
441 func = gimple_call_fndecl (call);
442 if (func == current_function_decl)
444 tree arg;
445 for (param = DECL_ARGUMENTS (func), idx = 0;
446 param && idx < gimple_call_num_args (call);
447 param = TREE_CHAIN (param), idx ++)
449 arg = gimple_call_arg (call, idx);
450 if (param != arg)
452 /* Make sure there are no problems with copying. The parameter
453 have a copyable type and the two arguments must have reasonably
454 equivalent types. The latter requirement could be relaxed if
455 we emitted a suitable type conversion statement. */
456 if (!is_gimple_reg_type (TREE_TYPE (param))
457 || !useless_type_conversion_p (TREE_TYPE (param),
458 TREE_TYPE (arg)))
459 break;
461 /* The parameter should be a real operand, so that phi node
462 created for it at the start of the function has the meaning
463 of copying the value. This test implies is_gimple_reg_type
464 from the previous condition, however this one could be
465 relaxed by being more careful with copying the new value
466 of the parameter (emitting appropriate GIMPLE_ASSIGN and
467 updating the virtual operands). */
468 if (!is_gimple_reg (param))
469 break;
472 if (idx == gimple_call_num_args (call) && !param)
473 tail_recursion = true;
476 /* Now check the statements after the call. None of them has virtual
477 operands, so they may only depend on the call through its return
478 value. The return value should also be dependent on each of them,
479 since we are running after dce. */
480 m = NULL_TREE;
481 a = NULL_TREE;
483 abb = bb;
484 agsi = gsi;
485 while (1)
487 gsi_next (&agsi);
489 while (gsi_end_p (agsi))
491 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
492 abb = single_succ (abb);
493 agsi = gsi_start_bb (abb);
496 stmt = gsi_stmt (agsi);
498 if (gimple_code (stmt) == GIMPLE_LABEL)
499 continue;
501 if (gimple_code (stmt) == GIMPLE_RETURN)
502 break;
504 if (gimple_code (stmt) != GIMPLE_ASSIGN)
505 return;
507 /* This is a gimple assign. */
508 if (! process_assignment (stmt, gsi, &m, &a, &ass_var))
509 return;
512 /* See if this is a tail call we can handle. */
513 ret_var = gimple_return_retval (stmt);
515 /* We may proceed if there either is no return value, or the return value
516 is identical to the call's return. */
517 if (ret_var
518 && (ret_var != ass_var))
519 return;
521 /* If this is not a tail recursive call, we cannot handle addends or
522 multiplicands. */
523 if (!tail_recursion && (m || a))
524 return;
526 nw = XNEW (struct tailcall);
528 nw->call_gsi = gsi;
530 nw->tail_recursion = tail_recursion;
532 nw->mult = m;
533 nw->add = a;
535 nw->next = *ret;
536 *ret = nw;
539 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
541 static void
542 add_successor_phi_arg (edge e, tree var, tree phi_arg)
544 gimple_stmt_iterator gsi;
546 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
547 if (PHI_RESULT (gsi_stmt (gsi)) == var)
548 break;
550 gcc_assert (!gsi_end_p (gsi));
551 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
554 /* Creates a GIMPLE statement which computes the operation specified by
555 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
556 statement in the position specified by GSI and UPDATE. Returns the
557 tree node of the statement's result. */
559 static tree
560 adjust_return_value_with_ops (enum tree_code code, const char *label,
561 tree op0, tree op1, gimple_stmt_iterator gsi,
562 enum gsi_iterator_update update)
565 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
566 tree tmp = create_tmp_var (ret_type, label);
567 gimple stmt = gimple_build_assign_with_ops (code, tmp, op0, op1);
568 tree result;
570 if (TREE_CODE (ret_type) == COMPLEX_TYPE
571 || TREE_CODE (ret_type) == VECTOR_TYPE)
572 DECL_GIMPLE_REG_P (tmp) = 1;
573 add_referenced_var (tmp);
574 result = make_ssa_name (tmp, stmt);
575 gimple_assign_set_lhs (stmt, result);
576 update_stmt (stmt);
577 gsi_insert_before (&gsi, stmt, update);
578 return result;
581 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
582 the computation specified by CODE and OP1 and insert the statement
583 at the position specified by GSI as a new statement. Returns new SSA name
584 of updated accumulator. */
586 static tree
587 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
588 gimple_stmt_iterator gsi)
590 gimple stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc,
591 op1);
592 tree var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
593 gimple_assign_set_lhs (stmt, var);
594 update_stmt (stmt);
595 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
596 return var;
599 /* Adjust the accumulator values according to A and M after GSI, and update
600 the phi nodes on edge BACK. */
602 static void
603 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
605 tree var, a_acc_arg = a_acc, m_acc_arg = m_acc;
607 if (a)
609 if (m_acc)
611 if (integer_onep (a))
612 var = m_acc;
613 else
614 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
615 a, gsi, GSI_NEW_STMT);
617 else
618 var = a;
620 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
623 if (m)
624 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
626 if (a_acc)
627 add_successor_phi_arg (back, a_acc, a_acc_arg);
629 if (m_acc)
630 add_successor_phi_arg (back, m_acc, m_acc_arg);
633 /* Adjust value of the return at the end of BB according to M and A
634 accumulators. */
636 static void
637 adjust_return_value (basic_block bb, tree m, tree a)
639 tree retval;
640 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
641 gimple_stmt_iterator gsi = gsi_last_bb (bb);
643 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
645 retval = gimple_return_retval (ret_stmt);
646 if (!retval || retval == error_mark_node)
647 return;
649 if (m)
650 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
651 gsi, GSI_SAME_STMT);
652 if (a)
653 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
654 gsi, GSI_SAME_STMT);
655 gimple_return_set_retval (ret_stmt, retval);
656 update_stmt (ret_stmt);
659 /* Subtract COUNT and FREQUENCY from the basic block and it's
660 outgoing edge. */
661 static void
662 decrease_profile (basic_block bb, gcov_type count, int frequency)
664 edge e;
665 bb->count -= count;
666 if (bb->count < 0)
667 bb->count = 0;
668 bb->frequency -= frequency;
669 if (bb->frequency < 0)
670 bb->frequency = 0;
671 if (!single_succ_p (bb))
673 gcc_assert (!EDGE_COUNT (bb->succs));
674 return;
676 e = single_succ_edge (bb);
677 e->count -= count;
678 if (e->count < 0)
679 e->count = 0;
682 /* Returns true if argument PARAM of the tail recursive call needs to be copied
683 when the call is eliminated. */
685 static bool
686 arg_needs_copy_p (tree param)
688 tree def;
690 if (!is_gimple_reg (param) || !var_ann (param))
691 return false;
693 /* Parameters that are only defined but never used need not be copied. */
694 def = gimple_default_def (cfun, param);
695 if (!def)
696 return false;
698 return true;
701 /* Eliminates tail call described by T. TMP_VARS is a list of
702 temporary variables used to copy the function arguments. */
704 static void
705 eliminate_tail_call (struct tailcall *t)
707 tree param, rslt;
708 gimple stmt, call;
709 tree arg;
710 size_t idx;
711 basic_block bb, first;
712 edge e;
713 gimple phi;
714 gimple_stmt_iterator gsi;
715 gimple orig_stmt;
717 stmt = orig_stmt = gsi_stmt (t->call_gsi);
718 bb = gsi_bb (t->call_gsi);
720 if (dump_file && (dump_flags & TDF_DETAILS))
722 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
723 bb->index);
724 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
725 fprintf (dump_file, "\n");
728 gcc_assert (is_gimple_call (stmt));
730 first = single_succ (ENTRY_BLOCK_PTR);
732 /* Remove the code after call_gsi that will become unreachable. The
733 possibly unreachable code in other blocks is removed later in
734 cfg cleanup. */
735 gsi = t->call_gsi;
736 gsi_next (&gsi);
737 while (!gsi_end_p (gsi))
739 gimple t = gsi_stmt (gsi);
740 /* Do not remove the return statement, so that redirect_edge_and_branch
741 sees how the block ends. */
742 if (gimple_code (t) == GIMPLE_RETURN)
743 break;
745 gsi_remove (&gsi, true);
746 release_defs (t);
749 /* Number of executions of function has reduced by the tailcall. */
750 e = single_succ_edge (gsi_bb (t->call_gsi));
751 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
752 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
753 if (e->dest != EXIT_BLOCK_PTR)
754 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
756 /* Replace the call by a jump to the start of function. */
757 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
758 first);
759 gcc_assert (e);
760 PENDING_STMT (e) = NULL;
762 /* Add phi node entries for arguments. The ordering of the phi nodes should
763 be the same as the ordering of the arguments. */
764 for (param = DECL_ARGUMENTS (current_function_decl),
765 idx = 0, gsi = gsi_start_phis (first);
766 param;
767 param = TREE_CHAIN (param), idx++)
769 if (!arg_needs_copy_p (param))
770 continue;
772 arg = gimple_call_arg (stmt, idx);
773 phi = gsi_stmt (gsi);
774 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
776 add_phi_arg (phi, arg, e, gimple_location (stmt));
777 gsi_next (&gsi);
780 /* Update the values of accumulators. */
781 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
783 call = gsi_stmt (t->call_gsi);
784 rslt = gimple_call_lhs (call);
785 if (rslt != NULL_TREE)
787 /* Result of the call will no longer be defined. So adjust the
788 SSA_NAME_DEF_STMT accordingly. */
789 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
792 gsi_remove (&t->call_gsi, true);
793 release_defs (call);
796 /* Add phi nodes for the virtual operands defined in the function to the
797 header of the loop created by tail recursion elimination.
799 Originally, we used to add phi nodes only for call clobbered variables,
800 as the value of the non-call clobbered ones obviously cannot be used
801 or changed within the recursive call. However, the local variables
802 from multiple calls now share the same location, so the virtual ssa form
803 requires us to say that the location dies on further iterations of the loop,
804 which requires adding phi nodes.
806 static void
807 add_virtual_phis (void)
809 referenced_var_iterator rvi;
810 tree var;
812 /* The problematic part is that there is no way how to know what
813 to put into phi nodes (there in fact does not have to be such
814 ssa name available). A solution would be to have an artificial
815 use/kill for all virtual operands in EXIT node. Unless we have
816 this, we cannot do much better than to rebuild the ssa form for
817 possibly affected virtual ssa names from scratch. */
819 FOR_EACH_REFERENCED_VAR (var, rvi)
821 if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
822 mark_sym_for_renaming (var);
826 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
827 mark the tailcalls for the sibcall optimization. */
829 static bool
830 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
832 if (t->tail_recursion)
834 eliminate_tail_call (t);
835 return true;
838 if (opt_tailcalls)
840 gimple stmt = gsi_stmt (t->call_gsi);
842 gimple_call_set_tail (stmt, true);
843 if (dump_file && (dump_flags & TDF_DETAILS))
845 fprintf (dump_file, "Found tail call ");
846 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
847 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
851 return false;
854 /* Creates a tail-call accumulator of the same type as the return type of the
855 current function. LABEL is the name used to creating the temporary
856 variable for the accumulator. The accumulator will be inserted in the
857 phis of a basic block BB with single predecessor with an initial value
858 INIT converted to the current function return type. */
860 static tree
861 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
863 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
864 tree tmp = create_tmp_var (ret_type, label);
865 gimple phi;
867 if (TREE_CODE (ret_type) == COMPLEX_TYPE
868 || TREE_CODE (ret_type) == VECTOR_TYPE)
869 DECL_GIMPLE_REG_P (tmp) = 1;
870 add_referenced_var (tmp);
871 phi = create_phi_node (tmp, bb);
872 /* RET_TYPE can be a float when -ffast-maths is enabled. */
873 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
874 UNKNOWN_LOCATION);
875 return PHI_RESULT (phi);
878 /* Optimizes tail calls in the function, turning the tail recursion
879 into iteration. */
881 static unsigned int
882 tree_optimize_tail_calls_1 (bool opt_tailcalls)
884 edge e;
885 bool phis_constructed = false;
886 struct tailcall *tailcalls = NULL, *act, *next;
887 bool changed = false;
888 basic_block first = single_succ (ENTRY_BLOCK_PTR);
889 tree param;
890 gimple stmt;
891 edge_iterator ei;
893 if (!suitable_for_tail_opt_p ())
894 return 0;
895 if (opt_tailcalls)
896 opt_tailcalls = suitable_for_tail_call_opt_p ();
898 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
900 /* Only traverse the normal exits, i.e. those that end with return
901 statement. */
902 stmt = last_stmt (e->src);
904 if (stmt
905 && gimple_code (stmt) == GIMPLE_RETURN)
906 find_tail_calls (e->src, &tailcalls);
909 /* Construct the phi nodes and accumulators if necessary. */
910 a_acc = m_acc = NULL_TREE;
911 for (act = tailcalls; act; act = act->next)
913 if (!act->tail_recursion)
914 continue;
916 if (!phis_constructed)
918 /* Ensure that there is only one predecessor of the block
919 or if there are existing degenerate PHI nodes. */
920 if (!single_pred_p (first)
921 || !gimple_seq_empty_p (phi_nodes (first)))
922 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
924 /* Copy the args if needed. */
925 for (param = DECL_ARGUMENTS (current_function_decl);
926 param;
927 param = TREE_CHAIN (param))
928 if (arg_needs_copy_p (param))
930 tree name = gimple_default_def (cfun, param);
931 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
932 gimple phi;
934 set_default_def (param, new_name);
935 phi = create_phi_node (name, first);
936 SSA_NAME_DEF_STMT (name) = phi;
937 add_phi_arg (phi, new_name, single_pred_edge (first),
938 EXPR_LOCATION (param));
940 phis_constructed = true;
943 if (act->add && !a_acc)
944 a_acc = create_tailcall_accumulator ("add_acc", first,
945 integer_zero_node);
947 if (act->mult && !m_acc)
948 m_acc = create_tailcall_accumulator ("mult_acc", first,
949 integer_one_node);
952 for (; tailcalls; tailcalls = next)
954 next = tailcalls->next;
955 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
956 free (tailcalls);
959 if (a_acc || m_acc)
961 /* Modify the remaining return statements. */
962 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
964 stmt = last_stmt (e->src);
966 if (stmt
967 && gimple_code (stmt) == GIMPLE_RETURN)
968 adjust_return_value (e->src, m_acc, a_acc);
972 if (changed)
973 free_dominance_info (CDI_DOMINATORS);
975 if (phis_constructed)
976 add_virtual_phis ();
977 if (changed)
978 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
979 return 0;
982 static unsigned int
983 execute_tail_recursion (void)
985 return tree_optimize_tail_calls_1 (false);
988 static bool
989 gate_tail_calls (void)
991 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
994 static unsigned int
995 execute_tail_calls (void)
997 return tree_optimize_tail_calls_1 (true);
1000 struct gimple_opt_pass pass_tail_recursion =
1003 GIMPLE_PASS,
1004 "tailr", /* name */
1005 gate_tail_calls, /* gate */
1006 execute_tail_recursion, /* execute */
1007 NULL, /* sub */
1008 NULL, /* next */
1009 0, /* static_pass_number */
1010 TV_NONE, /* tv_id */
1011 PROP_cfg | PROP_ssa, /* properties_required */
1012 0, /* properties_provided */
1013 0, /* properties_destroyed */
1014 0, /* todo_flags_start */
1015 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1019 struct gimple_opt_pass pass_tail_calls =
1022 GIMPLE_PASS,
1023 "tailc", /* name */
1024 gate_tail_calls, /* gate */
1025 execute_tail_calls, /* execute */
1026 NULL, /* sub */
1027 NULL, /* next */
1028 0, /* static_pass_number */
1029 TV_NONE, /* tv_id */
1030 PROP_cfg | PROP_ssa, /* properties_required */
1031 0, /* properties_provided */
1032 0, /* properties_destroyed */
1033 0, /* todo_flags_start */
1034 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */