config.rpath (ld_shlibs): Fix detection of FreeBSD-10 and up.
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob4bc9ffd0effc4c14433dcdfca37bf82e1d8236b6
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "domwalk.h"
36 #include "params.h"
37 #include "tree-pass.h"
38 #include "flags.h"
39 #include "hashtab.h"
40 #include "tree-affine.h"
41 #include "pointer-set.h"
42 #include "tree-ssa-propagate.h"
44 /* TODO: Support for predicated code motion. I.e.
46 while (1)
48 if (cond)
50 a = inv;
51 something;
55 Where COND and INV are is invariants, but evaluating INV may trap or be
56 invalid from some other reason if !COND. This may be transformed to
58 if (cond)
59 a = inv;
60 while (1)
62 if (cond)
63 something;
64 } */
66 /* A type for the list of statements that have to be moved in order to be able
67 to hoist an invariant computation. */
69 struct depend
71 gimple stmt;
72 struct depend *next;
75 /* The auxiliary data kept for each statement. */
77 struct lim_aux_data
79 struct loop *max_loop; /* The outermost loop in that the statement
80 is invariant. */
82 struct loop *tgt_loop; /* The loop out of that we want to move the
83 invariant. */
85 struct loop *always_executed_in;
86 /* The outermost loop for that we are sure
87 the statement is executed if the loop
88 is entered. */
90 unsigned cost; /* Cost of the computation performed by the
91 statement. */
93 struct depend *depends; /* List of statements that must be also hoisted
94 out of the loop when this statement is
95 hoisted; i.e. those that define the operands
96 of the statement and are inside of the
97 MAX_LOOP loop. */
100 /* Maps statements to their lim_aux_data. */
102 static struct pointer_map_t *lim_aux_data_map;
104 /* Description of a memory reference location. */
106 typedef struct mem_ref_loc
108 tree *ref; /* The reference itself. */
109 gimple stmt; /* The statement in that it occurs. */
110 } *mem_ref_loc_p;
112 DEF_VEC_P(mem_ref_loc_p);
113 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
115 /* The list of memory reference locations in a loop. */
117 typedef struct mem_ref_locs
119 VEC (mem_ref_loc_p, heap) *locs;
120 } *mem_ref_locs_p;
122 DEF_VEC_P(mem_ref_locs_p);
123 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
125 /* Description of a memory reference. */
127 typedef struct mem_ref
129 tree mem; /* The memory itself. */
130 unsigned id; /* ID assigned to the memory reference
131 (its index in memory_accesses.refs_list) */
132 hashval_t hash; /* Its hash value. */
133 bitmap stored; /* The set of loops in that this memory location
134 is stored to. */
135 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
136 /* The locations of the accesses. Vector
137 indexed by the loop number. */
138 bitmap vops; /* Vops corresponding to this memory
139 location. */
141 /* The following sets are computed on demand. We keep both set and
142 its complement, so that we know whether the information was
143 already computed or not. */
144 bitmap indep_loop; /* The set of loops in that the memory
145 reference is independent, meaning:
146 If it is stored in the loop, this store
147 is independent on all other loads and
148 stores.
149 If it is only loaded, then it is independent
150 on all stores in the loop. */
151 bitmap dep_loop; /* The complement of INDEP_LOOP. */
153 bitmap indep_ref; /* The set of memory references on that
154 this reference is independent. */
155 bitmap dep_ref; /* The complement of DEP_REF. */
156 } *mem_ref_p;
158 DEF_VEC_P(mem_ref_p);
159 DEF_VEC_ALLOC_P(mem_ref_p, heap);
161 DEF_VEC_P(bitmap);
162 DEF_VEC_ALLOC_P(bitmap, heap);
164 DEF_VEC_P(htab_t);
165 DEF_VEC_ALLOC_P(htab_t, heap);
167 /* Description of memory accesses in loops. */
169 static struct
171 /* The hash table of memory references accessed in loops. */
172 htab_t refs;
174 /* The list of memory references. */
175 VEC (mem_ref_p, heap) *refs_list;
177 /* The set of memory references accessed in each loop. */
178 VEC (bitmap, heap) *refs_in_loop;
180 /* The set of memory references accessed in each loop, including
181 subloops. */
182 VEC (bitmap, heap) *all_refs_in_loop;
184 /* The set of virtual operands clobbered in a given loop. */
185 VEC (bitmap, heap) *clobbered_vops;
187 /* Map from the pair (loop, virtual operand) to the set of refs that
188 touch the virtual operand in the loop. */
189 VEC (htab_t, heap) *vop_ref_map;
191 /* Cache for expanding memory addresses. */
192 struct pointer_map_t *ttae_cache;
193 } memory_accesses;
195 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
197 /* Minimum cost of an expensive expression. */
198 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
200 /* The outermost loop for which execution of the header guarantees that the
201 block will be executed. */
202 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
203 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
205 static struct lim_aux_data *
206 init_lim_data (gimple stmt)
208 void **p = pointer_map_insert (lim_aux_data_map, stmt);
210 *p = XCNEW (struct lim_aux_data);
211 return (struct lim_aux_data *) *p;
214 static struct lim_aux_data *
215 get_lim_data (gimple stmt)
217 void **p = pointer_map_contains (lim_aux_data_map, stmt);
218 if (!p)
219 return NULL;
221 return (struct lim_aux_data *) *p;
224 /* Releases the memory occupied by DATA. */
226 static void
227 free_lim_aux_data (struct lim_aux_data *data)
229 struct depend *dep, *next;
231 for (dep = data->depends; dep; dep = next)
233 next = dep->next;
234 free (dep);
236 free (data);
239 static void
240 clear_lim_data (gimple stmt)
242 void **p = pointer_map_contains (lim_aux_data_map, stmt);
243 if (!p)
244 return;
246 free_lim_aux_data ((struct lim_aux_data *) *p);
247 *p = NULL;
250 /* Calls CBCK for each index in memory reference ADDR_P. There are two
251 kinds situations handled; in each of these cases, the memory reference
252 and DATA are passed to the callback:
254 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
255 pass the pointer to the index to the callback.
257 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
258 pointer to addr to the callback.
260 If the callback returns false, the whole search stops and false is returned.
261 Otherwise the function returns true after traversing through the whole
262 reference *ADDR_P. */
264 bool
265 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
267 tree *nxt, *idx;
269 for (; ; addr_p = nxt)
271 switch (TREE_CODE (*addr_p))
273 case SSA_NAME:
274 return cbck (*addr_p, addr_p, data);
276 case MEM_REF:
277 nxt = &TREE_OPERAND (*addr_p, 0);
278 return cbck (*addr_p, nxt, data);
280 case BIT_FIELD_REF:
281 case VIEW_CONVERT_EXPR:
282 case REALPART_EXPR:
283 case IMAGPART_EXPR:
284 nxt = &TREE_OPERAND (*addr_p, 0);
285 break;
287 case COMPONENT_REF:
288 /* If the component has varying offset, it behaves like index
289 as well. */
290 idx = &TREE_OPERAND (*addr_p, 2);
291 if (*idx
292 && !cbck (*addr_p, idx, data))
293 return false;
295 nxt = &TREE_OPERAND (*addr_p, 0);
296 break;
298 case ARRAY_REF:
299 case ARRAY_RANGE_REF:
300 nxt = &TREE_OPERAND (*addr_p, 0);
301 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
302 return false;
303 break;
305 case VAR_DECL:
306 case PARM_DECL:
307 case STRING_CST:
308 case RESULT_DECL:
309 case VECTOR_CST:
310 case COMPLEX_CST:
311 case INTEGER_CST:
312 case REAL_CST:
313 case FIXED_CST:
314 case CONSTRUCTOR:
315 return true;
317 case ADDR_EXPR:
318 gcc_assert (is_gimple_min_invariant (*addr_p));
319 return true;
321 case TARGET_MEM_REF:
322 idx = &TMR_BASE (*addr_p);
323 if (*idx
324 && !cbck (*addr_p, idx, data))
325 return false;
326 idx = &TMR_INDEX (*addr_p);
327 if (*idx
328 && !cbck (*addr_p, idx, data))
329 return false;
330 idx = &TMR_INDEX2 (*addr_p);
331 if (*idx
332 && !cbck (*addr_p, idx, data))
333 return false;
334 return true;
336 default:
337 gcc_unreachable ();
342 /* If it is possible to hoist the statement STMT unconditionally,
343 returns MOVE_POSSIBLE.
344 If it is possible to hoist the statement STMT, but we must avoid making
345 it executed if it would not be executed in the original program (e.g.
346 because it may trap), return MOVE_PRESERVE_EXECUTION.
347 Otherwise return MOVE_IMPOSSIBLE. */
349 enum move_pos
350 movement_possibility (gimple stmt)
352 tree lhs;
353 enum move_pos ret = MOVE_POSSIBLE;
355 if (flag_unswitch_loops
356 && gimple_code (stmt) == GIMPLE_COND)
358 /* If we perform unswitching, force the operands of the invariant
359 condition to be moved out of the loop. */
360 return MOVE_POSSIBLE;
363 if (gimple_code (stmt) == GIMPLE_PHI
364 && gimple_phi_num_args (stmt) <= 2
365 && is_gimple_reg (gimple_phi_result (stmt))
366 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
367 return MOVE_POSSIBLE;
369 if (gimple_get_lhs (stmt) == NULL_TREE)
370 return MOVE_IMPOSSIBLE;
372 if (gimple_vdef (stmt))
373 return MOVE_IMPOSSIBLE;
375 if (stmt_ends_bb_p (stmt)
376 || gimple_has_volatile_ops (stmt)
377 || gimple_has_side_effects (stmt)
378 || stmt_could_throw_p (stmt))
379 return MOVE_IMPOSSIBLE;
381 if (is_gimple_call (stmt))
383 /* While pure or const call is guaranteed to have no side effects, we
384 cannot move it arbitrarily. Consider code like
386 char *s = something ();
388 while (1)
390 if (s)
391 t = strlen (s);
392 else
393 t = 0;
396 Here the strlen call cannot be moved out of the loop, even though
397 s is invariant. In addition to possibly creating a call with
398 invalid arguments, moving out a function call that is not executed
399 may cause performance regressions in case the call is costly and
400 not executed at all. */
401 ret = MOVE_PRESERVE_EXECUTION;
402 lhs = gimple_call_lhs (stmt);
404 else if (is_gimple_assign (stmt))
405 lhs = gimple_assign_lhs (stmt);
406 else
407 return MOVE_IMPOSSIBLE;
409 if (TREE_CODE (lhs) == SSA_NAME
410 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
411 return MOVE_IMPOSSIBLE;
413 if (TREE_CODE (lhs) != SSA_NAME
414 || gimple_could_trap_p (stmt))
415 return MOVE_PRESERVE_EXECUTION;
417 return ret;
420 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
421 loop to that we could move the expression using DEF if it did not have
422 other operands, i.e. the outermost loop enclosing LOOP in that the value
423 of DEF is invariant. */
425 static struct loop *
426 outermost_invariant_loop (tree def, struct loop *loop)
428 gimple def_stmt;
429 basic_block def_bb;
430 struct loop *max_loop;
431 struct lim_aux_data *lim_data;
433 if (!def)
434 return superloop_at_depth (loop, 1);
436 if (TREE_CODE (def) != SSA_NAME)
438 gcc_assert (is_gimple_min_invariant (def));
439 return superloop_at_depth (loop, 1);
442 def_stmt = SSA_NAME_DEF_STMT (def);
443 def_bb = gimple_bb (def_stmt);
444 if (!def_bb)
445 return superloop_at_depth (loop, 1);
447 max_loop = find_common_loop (loop, def_bb->loop_father);
449 lim_data = get_lim_data (def_stmt);
450 if (lim_data != NULL && lim_data->max_loop != NULL)
451 max_loop = find_common_loop (max_loop,
452 loop_outer (lim_data->max_loop));
453 if (max_loop == loop)
454 return NULL;
455 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
457 return max_loop;
460 /* DATA is a structure containing information associated with a statement
461 inside LOOP. DEF is one of the operands of this statement.
463 Find the outermost loop enclosing LOOP in that value of DEF is invariant
464 and record this in DATA->max_loop field. If DEF itself is defined inside
465 this loop as well (i.e. we need to hoist it out of the loop if we want
466 to hoist the statement represented by DATA), record the statement in that
467 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
468 add the cost of the computation of DEF to the DATA->cost.
470 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
472 static bool
473 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
474 bool add_cost)
476 gimple def_stmt = SSA_NAME_DEF_STMT (def);
477 basic_block def_bb = gimple_bb (def_stmt);
478 struct loop *max_loop;
479 struct depend *dep;
480 struct lim_aux_data *def_data;
482 if (!def_bb)
483 return true;
485 max_loop = outermost_invariant_loop (def, loop);
486 if (!max_loop)
487 return false;
489 if (flow_loop_nested_p (data->max_loop, max_loop))
490 data->max_loop = max_loop;
492 def_data = get_lim_data (def_stmt);
493 if (!def_data)
494 return true;
496 if (add_cost
497 /* Only add the cost if the statement defining DEF is inside LOOP,
498 i.e. if it is likely that by moving the invariants dependent
499 on it, we will be able to avoid creating a new register for
500 it (since it will be only used in these dependent invariants). */
501 && def_bb->loop_father == loop)
502 data->cost += def_data->cost;
504 dep = XNEW (struct depend);
505 dep->stmt = def_stmt;
506 dep->next = data->depends;
507 data->depends = dep;
509 return true;
512 /* Returns an estimate for a cost of statement STMT. TODO -- the values here
513 are just ad-hoc constants. The estimates should be based on target-specific
514 values. */
516 static unsigned
517 stmt_cost (gimple stmt)
519 tree fndecl;
520 unsigned cost = 1;
522 /* Always try to create possibilities for unswitching. */
523 if (gimple_code (stmt) == GIMPLE_COND
524 || gimple_code (stmt) == GIMPLE_PHI)
525 return LIM_EXPENSIVE;
527 /* Hoisting memory references out should almost surely be a win. */
528 if (gimple_references_memory_p (stmt))
529 cost += 20;
531 if (is_gimple_call (stmt))
533 /* We should be hoisting calls if possible. */
535 /* Unless the call is a builtin_constant_p; this always folds to a
536 constant, so moving it is useless. */
537 fndecl = gimple_call_fndecl (stmt);
538 if (fndecl
539 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
540 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
541 return 0;
543 return cost + 20;
546 if (gimple_code (stmt) != GIMPLE_ASSIGN)
547 return cost;
549 switch (gimple_assign_rhs_code (stmt))
551 case MULT_EXPR:
552 case WIDEN_MULT_EXPR:
553 case WIDEN_MULT_PLUS_EXPR:
554 case WIDEN_MULT_MINUS_EXPR:
555 case DOT_PROD_EXPR:
556 case FMA_EXPR:
557 case TRUNC_DIV_EXPR:
558 case CEIL_DIV_EXPR:
559 case FLOOR_DIV_EXPR:
560 case ROUND_DIV_EXPR:
561 case EXACT_DIV_EXPR:
562 case CEIL_MOD_EXPR:
563 case FLOOR_MOD_EXPR:
564 case ROUND_MOD_EXPR:
565 case TRUNC_MOD_EXPR:
566 case RDIV_EXPR:
567 /* Division and multiplication are usually expensive. */
568 cost += 20;
569 break;
571 case LSHIFT_EXPR:
572 case RSHIFT_EXPR:
573 case WIDEN_LSHIFT_EXPR:
574 case LROTATE_EXPR:
575 case RROTATE_EXPR:
576 cost += 20;
577 break;
579 default:
580 break;
583 return cost;
586 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
587 REF is independent. If REF is not independent in LOOP, NULL is returned
588 instead. */
590 static struct loop *
591 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
593 struct loop *aloop;
595 if (bitmap_bit_p (ref->stored, loop->num))
596 return NULL;
598 for (aloop = outer;
599 aloop != loop;
600 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
601 if (!bitmap_bit_p (ref->stored, aloop->num)
602 && ref_indep_loop_p (aloop, ref))
603 return aloop;
605 if (ref_indep_loop_p (loop, ref))
606 return loop;
607 else
608 return NULL;
611 /* If there is a simple load or store to a memory reference in STMT, returns
612 the location of the memory reference, and sets IS_STORE according to whether
613 it is a store or load. Otherwise, returns NULL. */
615 static tree *
616 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
618 tree *lhs;
619 enum tree_code code;
621 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
622 if (gimple_code (stmt) != GIMPLE_ASSIGN)
623 return NULL;
625 code = gimple_assign_rhs_code (stmt);
627 lhs = gimple_assign_lhs_ptr (stmt);
629 if (TREE_CODE (*lhs) == SSA_NAME)
631 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
632 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
633 return NULL;
635 *is_store = false;
636 return gimple_assign_rhs1_ptr (stmt);
638 else if (code == SSA_NAME
639 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
640 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
642 *is_store = true;
643 return lhs;
645 else
646 return NULL;
649 /* Returns the memory reference contained in STMT. */
651 static mem_ref_p
652 mem_ref_in_stmt (gimple stmt)
654 bool store;
655 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
656 hashval_t hash;
657 mem_ref_p ref;
659 if (!mem)
660 return NULL;
661 gcc_assert (!store);
663 hash = iterative_hash_expr (*mem, 0);
664 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
666 gcc_assert (ref != NULL);
667 return ref;
670 /* From a controlling predicate in DOM determine the arguments from
671 the PHI node PHI that are chosen if the predicate evaluates to
672 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
673 they are non-NULL. Returns true if the arguments can be determined,
674 else return false. */
676 static bool
677 extract_true_false_args_from_phi (basic_block dom, gimple phi,
678 tree *true_arg_p, tree *false_arg_p)
680 basic_block bb = gimple_bb (phi);
681 edge true_edge, false_edge, tem;
682 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
684 /* We have to verify that one edge into the PHI node is dominated
685 by the true edge of the predicate block and the other edge
686 dominated by the false edge. This ensures that the PHI argument
687 we are going to take is completely determined by the path we
688 take from the predicate block.
689 We can only use BB dominance checks below if the destination of
690 the true/false edges are dominated by their edge, thus only
691 have a single predecessor. */
692 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
693 tem = EDGE_PRED (bb, 0);
694 if (tem == true_edge
695 || (single_pred_p (true_edge->dest)
696 && (tem->src == true_edge->dest
697 || dominated_by_p (CDI_DOMINATORS,
698 tem->src, true_edge->dest))))
699 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
700 else if (tem == false_edge
701 || (single_pred_p (false_edge->dest)
702 && (tem->src == false_edge->dest
703 || dominated_by_p (CDI_DOMINATORS,
704 tem->src, false_edge->dest))))
705 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
706 else
707 return false;
708 tem = EDGE_PRED (bb, 1);
709 if (tem == true_edge
710 || (single_pred_p (true_edge->dest)
711 && (tem->src == true_edge->dest
712 || dominated_by_p (CDI_DOMINATORS,
713 tem->src, true_edge->dest))))
714 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
715 else if (tem == false_edge
716 || (single_pred_p (false_edge->dest)
717 && (tem->src == false_edge->dest
718 || dominated_by_p (CDI_DOMINATORS,
719 tem->src, false_edge->dest))))
720 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
721 else
722 return false;
723 if (!arg0 || !arg1)
724 return false;
726 if (true_arg_p)
727 *true_arg_p = arg0;
728 if (false_arg_p)
729 *false_arg_p = arg1;
731 return true;
734 /* Determine the outermost loop to that it is possible to hoist a statement
735 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
736 the outermost loop in that the value computed by STMT is invariant.
737 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
738 we preserve the fact whether STMT is executed. It also fills other related
739 information to LIM_DATA (STMT).
741 The function returns false if STMT cannot be hoisted outside of the loop it
742 is defined in, and true otherwise. */
744 static bool
745 determine_max_movement (gimple stmt, bool must_preserve_exec)
747 basic_block bb = gimple_bb (stmt);
748 struct loop *loop = bb->loop_father;
749 struct loop *level;
750 struct lim_aux_data *lim_data = get_lim_data (stmt);
751 tree val;
752 ssa_op_iter iter;
754 if (must_preserve_exec)
755 level = ALWAYS_EXECUTED_IN (bb);
756 else
757 level = superloop_at_depth (loop, 1);
758 lim_data->max_loop = level;
760 if (gimple_code (stmt) == GIMPLE_PHI)
762 use_operand_p use_p;
763 unsigned min_cost = UINT_MAX;
764 unsigned total_cost = 0;
765 struct lim_aux_data *def_data;
767 /* We will end up promoting dependencies to be unconditionally
768 evaluated. For this reason the PHI cost (and thus the
769 cost we remove from the loop by doing the invariant motion)
770 is that of the cheapest PHI argument dependency chain. */
771 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
773 val = USE_FROM_PTR (use_p);
774 if (TREE_CODE (val) != SSA_NAME)
775 continue;
776 if (!add_dependency (val, lim_data, loop, false))
777 return false;
778 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
779 if (def_data)
781 min_cost = MIN (min_cost, def_data->cost);
782 total_cost += def_data->cost;
786 lim_data->cost += min_cost;
788 if (gimple_phi_num_args (stmt) > 1)
790 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
791 gimple cond;
792 if (gsi_end_p (gsi_last_bb (dom)))
793 return false;
794 cond = gsi_stmt (gsi_last_bb (dom));
795 if (gimple_code (cond) != GIMPLE_COND)
796 return false;
797 /* Verify that this is an extended form of a diamond and
798 the PHI arguments are completely controlled by the
799 predicate in DOM. */
800 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
801 return false;
803 /* Fold in dependencies and cost of the condition. */
804 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
806 if (!add_dependency (val, lim_data, loop, false))
807 return false;
808 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
809 if (def_data)
810 total_cost += def_data->cost;
813 /* We want to avoid unconditionally executing very expensive
814 operations. As costs for our dependencies cannot be
815 negative just claim we are not invariand for this case.
816 We also are not sure whether the control-flow inside the
817 loop will vanish. */
818 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
819 && !(min_cost != 0
820 && total_cost / min_cost <= 2))
821 return false;
823 /* Assume that the control-flow in the loop will vanish.
824 ??? We should verify this and not artificially increase
825 the cost if that is not the case. */
826 lim_data->cost += stmt_cost (stmt);
829 return true;
831 else
832 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
833 if (!add_dependency (val, lim_data, loop, true))
834 return false;
836 if (gimple_vuse (stmt))
838 mem_ref_p ref = mem_ref_in_stmt (stmt);
840 if (ref)
842 lim_data->max_loop
843 = outermost_indep_loop (lim_data->max_loop, loop, ref);
844 if (!lim_data->max_loop)
845 return false;
847 else
849 if ((val = gimple_vuse (stmt)) != NULL_TREE)
851 if (!add_dependency (val, lim_data, loop, false))
852 return false;
857 lim_data->cost += stmt_cost (stmt);
859 return true;
862 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
863 and that one of the operands of this statement is computed by STMT.
864 Ensure that STMT (together with all the statements that define its
865 operands) is hoisted at least out of the loop LEVEL. */
867 static void
868 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
870 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
871 struct depend *dep;
872 struct lim_aux_data *lim_data;
874 stmt_loop = find_common_loop (orig_loop, stmt_loop);
875 lim_data = get_lim_data (stmt);
876 if (lim_data != NULL && lim_data->tgt_loop != NULL)
877 stmt_loop = find_common_loop (stmt_loop,
878 loop_outer (lim_data->tgt_loop));
879 if (flow_loop_nested_p (stmt_loop, level))
880 return;
882 gcc_assert (level == lim_data->max_loop
883 || flow_loop_nested_p (lim_data->max_loop, level));
885 lim_data->tgt_loop = level;
886 for (dep = lim_data->depends; dep; dep = dep->next)
887 set_level (dep->stmt, orig_loop, level);
890 /* Determines an outermost loop from that we want to hoist the statement STMT.
891 For now we chose the outermost possible loop. TODO -- use profiling
892 information to set it more sanely. */
894 static void
895 set_profitable_level (gimple stmt)
897 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
900 /* Returns true if STMT is a call that has side effects. */
902 static bool
903 nonpure_call_p (gimple stmt)
905 if (gimple_code (stmt) != GIMPLE_CALL)
906 return false;
908 return gimple_has_side_effects (stmt);
911 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
913 static gimple
914 rewrite_reciprocal (gimple_stmt_iterator *bsi)
916 gimple stmt, stmt1, stmt2;
917 tree var, name, lhs, type;
918 tree real_one;
919 gimple_stmt_iterator gsi;
921 stmt = gsi_stmt (*bsi);
922 lhs = gimple_assign_lhs (stmt);
923 type = TREE_TYPE (lhs);
925 var = create_tmp_var (type, "reciptmp");
926 add_referenced_var (var);
927 DECL_GIMPLE_REG_P (var) = 1;
929 real_one = build_one_cst (type);
931 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
932 var, real_one, gimple_assign_rhs2 (stmt));
933 name = make_ssa_name (var, stmt1);
934 gimple_assign_set_lhs (stmt1, name);
936 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
937 gimple_assign_rhs1 (stmt));
939 /* Replace division stmt with reciprocal and multiply stmts.
940 The multiply stmt is not invariant, so update iterator
941 and avoid rescanning. */
942 gsi = *bsi;
943 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
944 gsi_replace (&gsi, stmt2, true);
946 /* Continue processing with invariant reciprocal statement. */
947 return stmt1;
950 /* Check if the pattern at *BSI is a bittest of the form
951 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
953 static gimple
954 rewrite_bittest (gimple_stmt_iterator *bsi)
956 gimple stmt, use_stmt, stmt1, stmt2;
957 tree lhs, var, name, t, a, b;
958 use_operand_p use;
960 stmt = gsi_stmt (*bsi);
961 lhs = gimple_assign_lhs (stmt);
963 /* Verify that the single use of lhs is a comparison against zero. */
964 if (TREE_CODE (lhs) != SSA_NAME
965 || !single_imm_use (lhs, &use, &use_stmt)
966 || gimple_code (use_stmt) != GIMPLE_COND)
967 return stmt;
968 if (gimple_cond_lhs (use_stmt) != lhs
969 || (gimple_cond_code (use_stmt) != NE_EXPR
970 && gimple_cond_code (use_stmt) != EQ_EXPR)
971 || !integer_zerop (gimple_cond_rhs (use_stmt)))
972 return stmt;
974 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
975 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
976 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
977 return stmt;
979 /* There is a conversion in between possibly inserted by fold. */
980 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
982 t = gimple_assign_rhs1 (stmt1);
983 if (TREE_CODE (t) != SSA_NAME
984 || !has_single_use (t))
985 return stmt;
986 stmt1 = SSA_NAME_DEF_STMT (t);
987 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
988 return stmt;
991 /* Verify that B is loop invariant but A is not. Verify that with
992 all the stmt walking we are still in the same loop. */
993 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
994 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
995 return stmt;
997 a = gimple_assign_rhs1 (stmt1);
998 b = gimple_assign_rhs2 (stmt1);
1000 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1001 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1003 gimple_stmt_iterator rsi;
1005 /* 1 << B */
1006 var = create_tmp_var (TREE_TYPE (a), "shifttmp");
1007 add_referenced_var (var);
1008 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1009 build_int_cst (TREE_TYPE (a), 1), b);
1010 stmt1 = gimple_build_assign (var, t);
1011 name = make_ssa_name (var, stmt1);
1012 gimple_assign_set_lhs (stmt1, name);
1014 /* A & (1 << B) */
1015 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1016 stmt2 = gimple_build_assign (var, t);
1017 name = make_ssa_name (var, stmt2);
1018 gimple_assign_set_lhs (stmt2, name);
1020 /* Replace the SSA_NAME we compare against zero. Adjust
1021 the type of zero accordingly. */
1022 SET_USE (use, name);
1023 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1025 /* Don't use gsi_replace here, none of the new assignments sets
1026 the variable originally set in stmt. Move bsi to stmt1, and
1027 then remove the original stmt, so that we get a chance to
1028 retain debug info for it. */
1029 rsi = *bsi;
1030 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1031 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1032 gsi_remove (&rsi, true);
1034 return stmt1;
1037 return stmt;
1041 /* Determine the outermost loops in that statements in basic block BB are
1042 invariant, and record them to the LIM_DATA associated with the statements.
1043 Callback for walk_dominator_tree. */
1045 static void
1046 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1047 basic_block bb)
1049 enum move_pos pos;
1050 gimple_stmt_iterator bsi;
1051 gimple stmt;
1052 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1053 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1054 struct lim_aux_data *lim_data;
1056 if (!loop_outer (bb->loop_father))
1057 return;
1059 if (dump_file && (dump_flags & TDF_DETAILS))
1060 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1061 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1063 /* Look at PHI nodes, but only if there is at most two.
1064 ??? We could relax this further by post-processing the inserted
1065 code and transforming adjacent cond-exprs with the same predicate
1066 to control flow again. */
1067 bsi = gsi_start_phis (bb);
1068 if (!gsi_end_p (bsi)
1069 && ((gsi_next (&bsi), gsi_end_p (bsi))
1070 || (gsi_next (&bsi), gsi_end_p (bsi))))
1071 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1073 stmt = gsi_stmt (bsi);
1075 pos = movement_possibility (stmt);
1076 if (pos == MOVE_IMPOSSIBLE)
1077 continue;
1079 lim_data = init_lim_data (stmt);
1080 lim_data->always_executed_in = outermost;
1082 if (!determine_max_movement (stmt, false))
1084 lim_data->max_loop = NULL;
1085 continue;
1088 if (dump_file && (dump_flags & TDF_DETAILS))
1090 print_gimple_stmt (dump_file, stmt, 2, 0);
1091 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1092 loop_depth (lim_data->max_loop),
1093 lim_data->cost);
1096 if (lim_data->cost >= LIM_EXPENSIVE)
1097 set_profitable_level (stmt);
1100 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1102 stmt = gsi_stmt (bsi);
1104 pos = movement_possibility (stmt);
1105 if (pos == MOVE_IMPOSSIBLE)
1107 if (nonpure_call_p (stmt))
1109 maybe_never = true;
1110 outermost = NULL;
1112 /* Make sure to note always_executed_in for stores to make
1113 store-motion work. */
1114 else if (stmt_makes_single_store (stmt))
1116 struct lim_aux_data *lim_data = init_lim_data (stmt);
1117 lim_data->always_executed_in = outermost;
1119 continue;
1122 if (is_gimple_assign (stmt)
1123 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1124 == GIMPLE_BINARY_RHS))
1126 tree op0 = gimple_assign_rhs1 (stmt);
1127 tree op1 = gimple_assign_rhs2 (stmt);
1128 struct loop *ol1 = outermost_invariant_loop (op1,
1129 loop_containing_stmt (stmt));
1131 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1132 to be hoisted out of loop, saving expensive divide. */
1133 if (pos == MOVE_POSSIBLE
1134 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1135 && flag_unsafe_math_optimizations
1136 && !flag_trapping_math
1137 && ol1 != NULL
1138 && outermost_invariant_loop (op0, ol1) == NULL)
1139 stmt = rewrite_reciprocal (&bsi);
1141 /* If the shift count is invariant, convert (A >> B) & 1 to
1142 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1143 saving an expensive shift. */
1144 if (pos == MOVE_POSSIBLE
1145 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1146 && integer_onep (op1)
1147 && TREE_CODE (op0) == SSA_NAME
1148 && has_single_use (op0))
1149 stmt = rewrite_bittest (&bsi);
1152 lim_data = init_lim_data (stmt);
1153 lim_data->always_executed_in = outermost;
1155 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1156 continue;
1158 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1160 lim_data->max_loop = NULL;
1161 continue;
1164 if (dump_file && (dump_flags & TDF_DETAILS))
1166 print_gimple_stmt (dump_file, stmt, 2, 0);
1167 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1168 loop_depth (lim_data->max_loop),
1169 lim_data->cost);
1172 if (lim_data->cost >= LIM_EXPENSIVE)
1173 set_profitable_level (stmt);
1177 /* For each statement determines the outermost loop in that it is invariant,
1178 statements on whose motion it depends and the cost of the computation.
1179 This information is stored to the LIM_DATA structure associated with
1180 each statement. */
1182 static void
1183 determine_invariantness (void)
1185 struct dom_walk_data walk_data;
1187 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1188 walk_data.dom_direction = CDI_DOMINATORS;
1189 walk_data.before_dom_children = determine_invariantness_stmt;
1191 init_walk_dominator_tree (&walk_data);
1192 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1193 fini_walk_dominator_tree (&walk_data);
1196 /* Hoist the statements in basic block BB out of the loops prescribed by
1197 data stored in LIM_DATA structures associated with each statement. Callback
1198 for walk_dominator_tree. */
1200 static void
1201 move_computations_stmt (struct dom_walk_data *dw_data,
1202 basic_block bb)
1204 struct loop *level;
1205 gimple_stmt_iterator bsi;
1206 gimple stmt;
1207 unsigned cost = 0;
1208 struct lim_aux_data *lim_data;
1210 if (!loop_outer (bb->loop_father))
1211 return;
1213 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1215 gimple new_stmt;
1216 stmt = gsi_stmt (bsi);
1218 lim_data = get_lim_data (stmt);
1219 if (lim_data == NULL)
1221 gsi_next (&bsi);
1222 continue;
1225 cost = lim_data->cost;
1226 level = lim_data->tgt_loop;
1227 clear_lim_data (stmt);
1229 if (!level)
1231 gsi_next (&bsi);
1232 continue;
1235 if (dump_file && (dump_flags & TDF_DETAILS))
1237 fprintf (dump_file, "Moving PHI node\n");
1238 print_gimple_stmt (dump_file, stmt, 0, 0);
1239 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1240 cost, level->num);
1243 if (gimple_phi_num_args (stmt) == 1)
1245 tree arg = PHI_ARG_DEF (stmt, 0);
1246 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1247 gimple_phi_result (stmt),
1248 arg, NULL_TREE);
1249 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1251 else
1253 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1254 gimple cond = gsi_stmt (gsi_last_bb (dom));
1255 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1256 /* Get the PHI arguments corresponding to the true and false
1257 edges of COND. */
1258 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1259 gcc_assert (arg0 && arg1);
1260 t = build2 (gimple_cond_code (cond), boolean_type_node,
1261 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1262 new_stmt = gimple_build_assign_with_ops3 (COND_EXPR,
1263 gimple_phi_result (stmt),
1264 t, arg0, arg1);
1265 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1266 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1268 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1269 remove_phi_node (&bsi, false);
1272 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1274 stmt = gsi_stmt (bsi);
1276 lim_data = get_lim_data (stmt);
1277 if (lim_data == NULL)
1279 gsi_next (&bsi);
1280 continue;
1283 cost = lim_data->cost;
1284 level = lim_data->tgt_loop;
1285 clear_lim_data (stmt);
1287 if (!level)
1289 gsi_next (&bsi);
1290 continue;
1293 /* We do not really want to move conditionals out of the loop; we just
1294 placed it here to force its operands to be moved if necessary. */
1295 if (gimple_code (stmt) == GIMPLE_COND)
1296 continue;
1298 if (dump_file && (dump_flags & TDF_DETAILS))
1300 fprintf (dump_file, "Moving statement\n");
1301 print_gimple_stmt (dump_file, stmt, 0, 0);
1302 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1303 cost, level->num);
1306 mark_virtual_ops_for_renaming (stmt);
1307 gsi_insert_on_edge (loop_preheader_edge (level), stmt);
1308 gsi_remove (&bsi, false);
1312 /* Hoist the statements out of the loops prescribed by data stored in
1313 LIM_DATA structures associated with each statement.*/
1315 static unsigned int
1316 move_computations (void)
1318 struct dom_walk_data walk_data;
1319 unsigned int todo = 0;
1321 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1322 walk_data.global_data = &todo;
1323 walk_data.dom_direction = CDI_DOMINATORS;
1324 walk_data.before_dom_children = move_computations_stmt;
1326 init_walk_dominator_tree (&walk_data);
1327 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1328 fini_walk_dominator_tree (&walk_data);
1330 gsi_commit_edge_inserts ();
1331 if (need_ssa_update_p (cfun))
1332 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1334 return todo;
1337 /* Checks whether the statement defining variable *INDEX can be hoisted
1338 out of the loop passed in DATA. Callback for for_each_index. */
1340 static bool
1341 may_move_till (tree ref, tree *index, void *data)
1343 struct loop *loop = (struct loop *) data, *max_loop;
1345 /* If REF is an array reference, check also that the step and the lower
1346 bound is invariant in LOOP. */
1347 if (TREE_CODE (ref) == ARRAY_REF)
1349 tree step = TREE_OPERAND (ref, 3);
1350 tree lbound = TREE_OPERAND (ref, 2);
1352 max_loop = outermost_invariant_loop (step, loop);
1353 if (!max_loop)
1354 return false;
1356 max_loop = outermost_invariant_loop (lbound, loop);
1357 if (!max_loop)
1358 return false;
1361 max_loop = outermost_invariant_loop (*index, loop);
1362 if (!max_loop)
1363 return false;
1365 return true;
1368 /* If OP is SSA NAME, force the statement that defines it to be
1369 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1371 static void
1372 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1374 gimple stmt;
1376 if (!op
1377 || is_gimple_min_invariant (op))
1378 return;
1380 gcc_assert (TREE_CODE (op) == SSA_NAME);
1382 stmt = SSA_NAME_DEF_STMT (op);
1383 if (gimple_nop_p (stmt))
1384 return;
1386 set_level (stmt, orig_loop, loop);
1389 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1390 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1391 for_each_index. */
1393 struct fmt_data
1395 struct loop *loop;
1396 struct loop *orig_loop;
1399 static bool
1400 force_move_till (tree ref, tree *index, void *data)
1402 struct fmt_data *fmt_data = (struct fmt_data *) data;
1404 if (TREE_CODE (ref) == ARRAY_REF)
1406 tree step = TREE_OPERAND (ref, 3);
1407 tree lbound = TREE_OPERAND (ref, 2);
1409 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1410 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1413 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1415 return true;
1418 /* A hash function for struct mem_ref object OBJ. */
1420 static hashval_t
1421 memref_hash (const void *obj)
1423 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1425 return mem->hash;
1428 /* An equality function for struct mem_ref object OBJ1 with
1429 memory reference OBJ2. */
1431 static int
1432 memref_eq (const void *obj1, const void *obj2)
1434 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1436 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1439 /* Releases list of memory reference locations ACCS. */
1441 static void
1442 free_mem_ref_locs (mem_ref_locs_p accs)
1444 unsigned i;
1445 mem_ref_loc_p loc;
1447 if (!accs)
1448 return;
1450 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1451 free (loc);
1452 VEC_free (mem_ref_loc_p, heap, accs->locs);
1453 free (accs);
1456 /* A function to free the mem_ref object OBJ. */
1458 static void
1459 memref_free (void *obj)
1461 struct mem_ref *const mem = (struct mem_ref *) obj;
1462 unsigned i;
1463 mem_ref_locs_p accs;
1465 BITMAP_FREE (mem->stored);
1466 BITMAP_FREE (mem->indep_loop);
1467 BITMAP_FREE (mem->dep_loop);
1468 BITMAP_FREE (mem->indep_ref);
1469 BITMAP_FREE (mem->dep_ref);
1471 FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
1472 free_mem_ref_locs (accs);
1473 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1475 BITMAP_FREE (mem->vops);
1476 free (mem);
1479 /* Allocates and returns a memory reference description for MEM whose hash
1480 value is HASH and id is ID. */
1482 static mem_ref_p
1483 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1485 mem_ref_p ref = XNEW (struct mem_ref);
1486 ref->mem = mem;
1487 ref->id = id;
1488 ref->hash = hash;
1489 ref->stored = BITMAP_ALLOC (NULL);
1490 ref->indep_loop = BITMAP_ALLOC (NULL);
1491 ref->dep_loop = BITMAP_ALLOC (NULL);
1492 ref->indep_ref = BITMAP_ALLOC (NULL);
1493 ref->dep_ref = BITMAP_ALLOC (NULL);
1494 ref->accesses_in_loop = NULL;
1495 ref->vops = BITMAP_ALLOC (NULL);
1497 return ref;
1500 /* Allocates and returns the new list of locations. */
1502 static mem_ref_locs_p
1503 mem_ref_locs_alloc (void)
1505 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1506 accs->locs = NULL;
1507 return accs;
1510 /* Records memory reference location *LOC in LOOP to the memory reference
1511 description REF. The reference occurs in statement STMT. */
1513 static void
1514 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1516 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1517 mem_ref_locs_p accs;
1518 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1520 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1521 <= (unsigned) loop->num)
1522 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1523 loop->num + 1);
1524 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1525 if (!accs)
1527 accs = mem_ref_locs_alloc ();
1528 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1531 aref->stmt = stmt;
1532 aref->ref = loc;
1534 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1535 bitmap_set_bit (ril, ref->id);
1538 /* Marks reference REF as stored in LOOP. */
1540 static void
1541 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1543 for (;
1544 loop != current_loops->tree_root
1545 && !bitmap_bit_p (ref->stored, loop->num);
1546 loop = loop_outer (loop))
1547 bitmap_set_bit (ref->stored, loop->num);
1550 /* Gathers memory references in statement STMT in LOOP, storing the
1551 information about them in the memory_accesses structure. Marks
1552 the vops accessed through unrecognized statements there as
1553 well. */
1555 static void
1556 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1558 tree *mem = NULL;
1559 hashval_t hash;
1560 PTR *slot;
1561 mem_ref_p ref;
1562 tree vname;
1563 bool is_stored;
1564 bitmap clvops;
1565 unsigned id;
1567 if (!gimple_vuse (stmt))
1568 return;
1570 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1571 if (!mem)
1572 goto fail;
1574 hash = iterative_hash_expr (*mem, 0);
1575 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1577 if (*slot)
1579 ref = (mem_ref_p) *slot;
1580 id = ref->id;
1582 else
1584 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1585 ref = mem_ref_alloc (*mem, hash, id);
1586 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1587 *slot = ref;
1589 if (dump_file && (dump_flags & TDF_DETAILS))
1591 fprintf (dump_file, "Memory reference %u: ", id);
1592 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1593 fprintf (dump_file, "\n");
1596 if (is_stored)
1597 mark_ref_stored (ref, loop);
1599 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1600 bitmap_set_bit (ref->vops, DECL_UID (SSA_NAME_VAR (vname)));
1601 record_mem_ref_loc (ref, loop, stmt, mem);
1602 return;
1604 fail:
1605 clvops = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1606 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1607 bitmap_set_bit (clvops, DECL_UID (SSA_NAME_VAR (vname)));
1610 /* Gathers memory references in loops. */
1612 static void
1613 gather_mem_refs_in_loops (void)
1615 gimple_stmt_iterator bsi;
1616 basic_block bb;
1617 struct loop *loop;
1618 loop_iterator li;
1619 bitmap clvo, clvi;
1620 bitmap lrefs, alrefs, alrefso;
1622 FOR_EACH_BB (bb)
1624 loop = bb->loop_father;
1625 if (loop == current_loops->tree_root)
1626 continue;
1628 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1629 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1632 /* Propagate the information about clobbered vops and accessed memory
1633 references up the loop hierarchy. */
1634 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1636 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1637 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1638 bitmap_ior_into (alrefs, lrefs);
1640 if (loop_outer (loop) == current_loops->tree_root)
1641 continue;
1643 clvi = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1644 clvo = VEC_index (bitmap, memory_accesses.clobbered_vops,
1645 loop_outer (loop)->num);
1646 bitmap_ior_into (clvo, clvi);
1648 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1649 loop_outer (loop)->num);
1650 bitmap_ior_into (alrefso, alrefs);
1654 /* Element of the hash table that maps vops to memory references. */
1656 struct vop_to_refs_elt
1658 /* DECL_UID of the vop. */
1659 unsigned uid;
1661 /* List of the all references. */
1662 bitmap refs_all;
1664 /* List of stored references. */
1665 bitmap refs_stored;
1668 /* A hash function for struct vop_to_refs_elt object OBJ. */
1670 static hashval_t
1671 vtoe_hash (const void *obj)
1673 const struct vop_to_refs_elt *const vtoe =
1674 (const struct vop_to_refs_elt *) obj;
1676 return vtoe->uid;
1679 /* An equality function for struct vop_to_refs_elt object OBJ1 with
1680 uid of a vop OBJ2. */
1682 static int
1683 vtoe_eq (const void *obj1, const void *obj2)
1685 const struct vop_to_refs_elt *const vtoe =
1686 (const struct vop_to_refs_elt *) obj1;
1687 const unsigned *const uid = (const unsigned *) obj2;
1689 return vtoe->uid == *uid;
1692 /* A function to free the struct vop_to_refs_elt object. */
1694 static void
1695 vtoe_free (void *obj)
1697 struct vop_to_refs_elt *const vtoe =
1698 (struct vop_to_refs_elt *) obj;
1700 BITMAP_FREE (vtoe->refs_all);
1701 BITMAP_FREE (vtoe->refs_stored);
1702 free (vtoe);
1705 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true
1706 if the reference REF is stored. */
1708 static void
1709 record_vop_access (htab_t vop_to_refs, unsigned vop, unsigned ref, bool stored)
1711 void **slot = htab_find_slot_with_hash (vop_to_refs, &vop, vop, INSERT);
1712 struct vop_to_refs_elt *vtoe;
1714 if (!*slot)
1716 vtoe = XNEW (struct vop_to_refs_elt);
1717 vtoe->uid = vop;
1718 vtoe->refs_all = BITMAP_ALLOC (NULL);
1719 vtoe->refs_stored = BITMAP_ALLOC (NULL);
1720 *slot = vtoe;
1722 else
1723 vtoe = (struct vop_to_refs_elt *) *slot;
1725 bitmap_set_bit (vtoe->refs_all, ref);
1726 if (stored)
1727 bitmap_set_bit (vtoe->refs_stored, ref);
1730 /* Returns the set of references that access VOP according to the table
1731 VOP_TO_REFS. */
1733 static bitmap
1734 get_vop_accesses (htab_t vop_to_refs, unsigned vop)
1736 struct vop_to_refs_elt *const vtoe =
1737 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1738 return vtoe->refs_all;
1741 /* Returns the set of stores that access VOP according to the table
1742 VOP_TO_REFS. */
1744 static bitmap
1745 get_vop_stores (htab_t vop_to_refs, unsigned vop)
1747 struct vop_to_refs_elt *const vtoe =
1748 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1749 return vtoe->refs_stored;
1752 /* Adds REF to mapping from virtual operands to references in LOOP. */
1754 static void
1755 add_vop_ref_mapping (struct loop *loop, mem_ref_p ref)
1757 htab_t map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
1758 bool stored = bitmap_bit_p (ref->stored, loop->num);
1759 bitmap clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops,
1760 loop->num);
1761 bitmap_iterator bi;
1762 unsigned vop;
1764 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, vop, bi)
1766 record_vop_access (map, vop, ref->id, stored);
1770 /* Create a mapping from virtual operands to references that touch them
1771 in LOOP. */
1773 static void
1774 create_vop_ref_mapping_loop (struct loop *loop)
1776 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1777 struct loop *sloop;
1778 bitmap_iterator bi;
1779 unsigned i;
1780 mem_ref_p ref;
1782 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1784 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1785 for (sloop = loop; sloop != current_loops->tree_root; sloop = loop_outer (sloop))
1786 add_vop_ref_mapping (sloop, ref);
1790 /* For each non-clobbered virtual operand and each loop, record the memory
1791 references in this loop that touch the operand. */
1793 static void
1794 create_vop_ref_mapping (void)
1796 loop_iterator li;
1797 struct loop *loop;
1799 FOR_EACH_LOOP (li, loop, 0)
1801 create_vop_ref_mapping_loop (loop);
1805 /* Gathers information about memory accesses in the loops. */
1807 static void
1808 analyze_memory_references (void)
1810 unsigned i;
1811 bitmap empty;
1812 htab_t hempty;
1814 memory_accesses.refs
1815 = htab_create (100, memref_hash, memref_eq, memref_free);
1816 memory_accesses.refs_list = NULL;
1817 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1818 number_of_loops ());
1819 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1820 number_of_loops ());
1821 memory_accesses.clobbered_vops = VEC_alloc (bitmap, heap,
1822 number_of_loops ());
1823 memory_accesses.vop_ref_map = VEC_alloc (htab_t, heap,
1824 number_of_loops ());
1826 for (i = 0; i < number_of_loops (); i++)
1828 empty = BITMAP_ALLOC (NULL);
1829 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1830 empty = BITMAP_ALLOC (NULL);
1831 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1832 empty = BITMAP_ALLOC (NULL);
1833 VEC_quick_push (bitmap, memory_accesses.clobbered_vops, empty);
1834 hempty = htab_create (10, vtoe_hash, vtoe_eq, vtoe_free);
1835 VEC_quick_push (htab_t, memory_accesses.vop_ref_map, hempty);
1838 memory_accesses.ttae_cache = NULL;
1840 gather_mem_refs_in_loops ();
1841 create_vop_ref_mapping ();
1844 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1845 tree_to_aff_combination_expand. */
1847 static bool
1848 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1850 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1851 object and their offset differ in such a way that the locations cannot
1852 overlap, then they cannot alias. */
1853 double_int size1, size2;
1854 aff_tree off1, off2;
1856 /* Perform basic offset and type-based disambiguation. */
1857 if (!refs_may_alias_p (mem1, mem2))
1858 return false;
1860 /* The expansion of addresses may be a bit expensive, thus we only do
1861 the check at -O2 and higher optimization levels. */
1862 if (optimize < 2)
1863 return true;
1865 get_inner_reference_aff (mem1, &off1, &size1);
1866 get_inner_reference_aff (mem2, &off2, &size2);
1867 aff_combination_expand (&off1, ttae_cache);
1868 aff_combination_expand (&off2, ttae_cache);
1869 aff_combination_scale (&off1, double_int_minus_one);
1870 aff_combination_add (&off2, &off1);
1872 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1873 return false;
1875 return true;
1878 /* Rewrites location LOC by TMP_VAR. */
1880 static void
1881 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1883 mark_virtual_ops_for_renaming (loc->stmt);
1884 *loc->ref = tmp_var;
1885 update_stmt (loc->stmt);
1888 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1890 static void
1891 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1892 VEC (mem_ref_loc_p, heap) **locs)
1894 mem_ref_locs_p accs;
1895 unsigned i;
1896 mem_ref_loc_p loc;
1897 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1898 loop->num);
1899 struct loop *subloop;
1901 if (!bitmap_bit_p (refs, ref->id))
1902 return;
1904 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1905 > (unsigned) loop->num)
1907 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1908 if (accs)
1910 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1911 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1915 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1916 get_all_locs_in_loop (subloop, ref, locs);
1919 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1921 static void
1922 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1924 unsigned i;
1925 mem_ref_loc_p loc;
1926 VEC (mem_ref_loc_p, heap) *locs = NULL;
1928 get_all_locs_in_loop (loop, ref, &locs);
1929 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
1930 rewrite_mem_ref_loc (loc, tmp_var);
1931 VEC_free (mem_ref_loc_p, heap, locs);
1934 /* The name and the length of the currently generated variable
1935 for lsm. */
1936 #define MAX_LSM_NAME_LENGTH 40
1937 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1938 static int lsm_tmp_name_length;
1940 /* Adds S to lsm_tmp_name. */
1942 static void
1943 lsm_tmp_name_add (const char *s)
1945 int l = strlen (s) + lsm_tmp_name_length;
1946 if (l > MAX_LSM_NAME_LENGTH)
1947 return;
1949 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1950 lsm_tmp_name_length = l;
1953 /* Stores the name for temporary variable that replaces REF to
1954 lsm_tmp_name. */
1956 static void
1957 gen_lsm_tmp_name (tree ref)
1959 const char *name;
1961 switch (TREE_CODE (ref))
1963 case MEM_REF:
1964 case TARGET_MEM_REF:
1965 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1966 lsm_tmp_name_add ("_");
1967 break;
1969 case ADDR_EXPR:
1970 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1971 break;
1973 case BIT_FIELD_REF:
1974 case VIEW_CONVERT_EXPR:
1975 case ARRAY_RANGE_REF:
1976 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1977 break;
1979 case REALPART_EXPR:
1980 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1981 lsm_tmp_name_add ("_RE");
1982 break;
1984 case IMAGPART_EXPR:
1985 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1986 lsm_tmp_name_add ("_IM");
1987 break;
1989 case COMPONENT_REF:
1990 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1991 lsm_tmp_name_add ("_");
1992 name = get_name (TREE_OPERAND (ref, 1));
1993 if (!name)
1994 name = "F";
1995 lsm_tmp_name_add (name);
1996 break;
1998 case ARRAY_REF:
1999 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2000 lsm_tmp_name_add ("_I");
2001 break;
2003 case SSA_NAME:
2004 ref = SSA_NAME_VAR (ref);
2005 /* Fallthru. */
2007 case VAR_DECL:
2008 case PARM_DECL:
2009 name = get_name (ref);
2010 if (!name)
2011 name = "D";
2012 lsm_tmp_name_add (name);
2013 break;
2015 case STRING_CST:
2016 lsm_tmp_name_add ("S");
2017 break;
2019 case RESULT_DECL:
2020 lsm_tmp_name_add ("R");
2021 break;
2023 case INTEGER_CST:
2024 /* Nothing. */
2025 break;
2027 default:
2028 gcc_unreachable ();
2032 /* Determines name for temporary variable that replaces REF.
2033 The name is accumulated into the lsm_tmp_name variable.
2034 N is added to the name of the temporary. */
2036 char *
2037 get_lsm_tmp_name (tree ref, unsigned n)
2039 char ns[2];
2041 lsm_tmp_name_length = 0;
2042 gen_lsm_tmp_name (ref);
2043 lsm_tmp_name_add ("_lsm");
2044 if (n < 10)
2046 ns[0] = '0' + n;
2047 ns[1] = 0;
2048 lsm_tmp_name_add (ns);
2050 return lsm_tmp_name;
2053 /* Executes store motion of memory reference REF from LOOP.
2054 Exits from the LOOP are stored in EXITS. The initialization of the
2055 temporary variable is put to the preheader of the loop, and assignments
2056 to the reference from the temporary variable are emitted to exits. */
2058 static void
2059 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
2061 tree tmp_var;
2062 unsigned i;
2063 gimple load, store;
2064 struct fmt_data fmt_data;
2065 edge ex;
2066 struct lim_aux_data *lim_data;
2068 if (dump_file && (dump_flags & TDF_DETAILS))
2070 fprintf (dump_file, "Executing store motion of ");
2071 print_generic_expr (dump_file, ref->mem, 0);
2072 fprintf (dump_file, " from loop %d\n", loop->num);
2075 tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
2076 get_lsm_tmp_name (ref->mem, ~0));
2078 fmt_data.loop = loop;
2079 fmt_data.orig_loop = loop;
2080 for_each_index (&ref->mem, force_move_till, &fmt_data);
2082 rewrite_mem_refs (loop, ref, tmp_var);
2084 /* Emit the load & stores. */
2085 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
2086 lim_data = init_lim_data (load);
2087 lim_data->max_loop = loop;
2088 lim_data->tgt_loop = loop;
2090 /* Put this into the latch, so that we are sure it will be processed after
2091 all dependencies. */
2092 gsi_insert_on_edge (loop_latch_edge (loop), load);
2094 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2096 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
2097 gsi_insert_on_edge (ex, store);
2101 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2102 edges of the LOOP. */
2104 static void
2105 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2106 VEC (edge, heap) *exits)
2108 mem_ref_p ref;
2109 unsigned i;
2110 bitmap_iterator bi;
2112 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2114 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2115 execute_sm (loop, exits, ref);
2119 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2120 make sure REF is always stored to in LOOP. */
2122 static bool
2123 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2125 VEC (mem_ref_loc_p, heap) *locs = NULL;
2126 unsigned i;
2127 mem_ref_loc_p loc;
2128 bool ret = false;
2129 struct loop *must_exec;
2130 tree base;
2132 base = get_base_address (ref->mem);
2133 if (INDIRECT_REF_P (base)
2134 || TREE_CODE (base) == MEM_REF)
2135 base = TREE_OPERAND (base, 0);
2137 get_all_locs_in_loop (loop, ref, &locs);
2138 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2140 if (!get_lim_data (loc->stmt))
2141 continue;
2143 /* If we require an always executed store make sure the statement
2144 stores to the reference. */
2145 if (stored_p)
2147 tree lhs;
2148 if (!gimple_get_lhs (loc->stmt))
2149 continue;
2150 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2151 if (!lhs)
2152 continue;
2153 if (INDIRECT_REF_P (lhs)
2154 || TREE_CODE (lhs) == MEM_REF)
2155 lhs = TREE_OPERAND (lhs, 0);
2156 if (lhs != base)
2157 continue;
2160 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2161 if (!must_exec)
2162 continue;
2164 if (must_exec == loop
2165 || flow_loop_nested_p (must_exec, loop))
2167 ret = true;
2168 break;
2171 VEC_free (mem_ref_loc_p, heap, locs);
2173 return ret;
2176 /* Returns true if REF1 and REF2 are independent. */
2178 static bool
2179 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2181 if (ref1 == ref2
2182 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2183 return true;
2184 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2185 return false;
2187 if (dump_file && (dump_flags & TDF_DETAILS))
2188 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2189 ref1->id, ref2->id);
2191 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
2192 &memory_accesses.ttae_cache))
2194 bitmap_set_bit (ref1->dep_ref, ref2->id);
2195 bitmap_set_bit (ref2->dep_ref, ref1->id);
2196 if (dump_file && (dump_flags & TDF_DETAILS))
2197 fprintf (dump_file, "dependent.\n");
2198 return false;
2200 else
2202 bitmap_set_bit (ref1->indep_ref, ref2->id);
2203 bitmap_set_bit (ref2->indep_ref, ref1->id);
2204 if (dump_file && (dump_flags & TDF_DETAILS))
2205 fprintf (dump_file, "independent.\n");
2206 return true;
2210 /* Records the information whether REF is independent in LOOP (according
2211 to INDEP). */
2213 static void
2214 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
2216 if (indep)
2217 bitmap_set_bit (ref->indep_loop, loop->num);
2218 else
2219 bitmap_set_bit (ref->dep_loop, loop->num);
2222 /* Returns true if REF is independent on all other memory references in
2223 LOOP. */
2225 static bool
2226 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
2228 bitmap clobbers, refs_to_check, refs;
2229 unsigned i;
2230 bitmap_iterator bi;
2231 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
2232 htab_t map;
2233 mem_ref_p aref;
2235 /* If the reference is clobbered, it is not independent. */
2236 clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
2237 if (bitmap_intersect_p (ref->vops, clobbers))
2238 return false;
2240 refs_to_check = BITMAP_ALLOC (NULL);
2242 map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
2243 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, i, bi)
2245 if (stored)
2246 refs = get_vop_accesses (map, i);
2247 else
2248 refs = get_vop_stores (map, i);
2250 bitmap_ior_into (refs_to_check, refs);
2253 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2255 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2256 if (!refs_independent_p (ref, aref))
2258 ret = false;
2259 record_indep_loop (loop, aref, false);
2260 break;
2264 BITMAP_FREE (refs_to_check);
2265 return ret;
2268 /* Returns true if REF is independent on all other memory references in
2269 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2271 static bool
2272 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2274 bool ret;
2276 if (bitmap_bit_p (ref->indep_loop, loop->num))
2277 return true;
2278 if (bitmap_bit_p (ref->dep_loop, loop->num))
2279 return false;
2281 ret = ref_indep_loop_p_1 (loop, ref);
2283 if (dump_file && (dump_flags & TDF_DETAILS))
2284 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2285 ref->id, loop->num, ret ? "independent" : "dependent");
2287 record_indep_loop (loop, ref, ret);
2289 return ret;
2292 /* Returns true if we can perform store motion of REF from LOOP. */
2294 static bool
2295 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2297 tree base;
2299 /* Unless the reference is stored in the loop, there is nothing to do. */
2300 if (!bitmap_bit_p (ref->stored, loop->num))
2301 return false;
2303 /* It should be movable. */
2304 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2305 || TREE_THIS_VOLATILE (ref->mem)
2306 || !for_each_index (&ref->mem, may_move_till, loop))
2307 return false;
2309 /* If it can throw fail, we do not properly update EH info. */
2310 if (tree_could_throw_p (ref->mem))
2311 return false;
2313 /* If it can trap, it must be always executed in LOOP.
2314 Readonly memory locations may trap when storing to them, but
2315 tree_could_trap_p is a predicate for rvalues, so check that
2316 explicitly. */
2317 base = get_base_address (ref->mem);
2318 if ((tree_could_trap_p (ref->mem)
2319 || (DECL_P (base) && TREE_READONLY (base)))
2320 && !ref_always_accessed_p (loop, ref, true))
2321 return false;
2323 /* And it must be independent on all other memory references
2324 in LOOP. */
2325 if (!ref_indep_loop_p (loop, ref))
2326 return false;
2328 return true;
2331 /* Marks the references in LOOP for that store motion should be performed
2332 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2333 motion was performed in one of the outer loops. */
2335 static void
2336 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2338 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2339 loop->num);
2340 unsigned i;
2341 bitmap_iterator bi;
2342 mem_ref_p ref;
2344 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2346 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2347 if (can_sm_ref_p (loop, ref))
2348 bitmap_set_bit (refs_to_sm, i);
2352 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2353 for a store motion optimization (i.e. whether we can insert statement
2354 on its exits). */
2356 static bool
2357 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2358 VEC (edge, heap) *exits)
2360 unsigned i;
2361 edge ex;
2363 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2364 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2365 return false;
2367 return true;
2370 /* Try to perform store motion for all memory references modified inside
2371 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2372 store motion was executed in one of the outer loops. */
2374 static void
2375 store_motion_loop (struct loop *loop, bitmap sm_executed)
2377 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2378 struct loop *subloop;
2379 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2381 if (loop_suitable_for_sm (loop, exits))
2383 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2384 hoist_memory_references (loop, sm_in_loop, exits);
2386 VEC_free (edge, heap, exits);
2388 bitmap_ior_into (sm_executed, sm_in_loop);
2389 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2390 store_motion_loop (subloop, sm_executed);
2391 bitmap_and_compl_into (sm_executed, sm_in_loop);
2392 BITMAP_FREE (sm_in_loop);
2395 /* Try to perform store motion for all memory references modified inside
2396 loops. */
2398 static void
2399 store_motion (void)
2401 struct loop *loop;
2402 bitmap sm_executed = BITMAP_ALLOC (NULL);
2404 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2405 store_motion_loop (loop, sm_executed);
2407 BITMAP_FREE (sm_executed);
2408 gsi_commit_edge_inserts ();
2411 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2412 for each such basic block bb records the outermost loop for that execution
2413 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2414 blocks that contain a nonpure call. */
2416 static void
2417 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2419 basic_block bb = NULL, *bbs, last = NULL;
2420 unsigned i;
2421 edge e;
2422 struct loop *inn_loop = loop;
2424 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2426 bbs = get_loop_body_in_dom_order (loop);
2428 for (i = 0; i < loop->num_nodes; i++)
2430 edge_iterator ei;
2431 bb = bbs[i];
2433 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2434 last = bb;
2436 if (TEST_BIT (contains_call, bb->index))
2437 break;
2439 FOR_EACH_EDGE (e, ei, bb->succs)
2440 if (!flow_bb_inside_loop_p (loop, e->dest))
2441 break;
2442 if (e)
2443 break;
2445 /* A loop might be infinite (TODO use simple loop analysis
2446 to disprove this if possible). */
2447 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2448 break;
2450 if (!flow_bb_inside_loop_p (inn_loop, bb))
2451 break;
2453 if (bb->loop_father->header == bb)
2455 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2456 break;
2458 /* In a loop that is always entered we may proceed anyway.
2459 But record that we entered it and stop once we leave it. */
2460 inn_loop = bb->loop_father;
2464 while (1)
2466 SET_ALWAYS_EXECUTED_IN (last, loop);
2467 if (last == loop->header)
2468 break;
2469 last = get_immediate_dominator (CDI_DOMINATORS, last);
2472 free (bbs);
2475 for (loop = loop->inner; loop; loop = loop->next)
2476 fill_always_executed_in (loop, contains_call);
2479 /* Compute the global information needed by the loop invariant motion pass. */
2481 static void
2482 tree_ssa_lim_initialize (void)
2484 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2485 gimple_stmt_iterator bsi;
2486 struct loop *loop;
2487 basic_block bb;
2489 sbitmap_zero (contains_call);
2490 FOR_EACH_BB (bb)
2492 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2494 if (nonpure_call_p (gsi_stmt (bsi)))
2495 break;
2498 if (!gsi_end_p (bsi))
2499 SET_BIT (contains_call, bb->index);
2502 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2503 fill_always_executed_in (loop, contains_call);
2505 sbitmap_free (contains_call);
2507 lim_aux_data_map = pointer_map_create ();
2510 /* Cleans up after the invariant motion pass. */
2512 static void
2513 tree_ssa_lim_finalize (void)
2515 basic_block bb;
2516 unsigned i;
2517 bitmap b;
2518 htab_t h;
2520 FOR_EACH_BB (bb)
2521 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2523 pointer_map_destroy (lim_aux_data_map);
2525 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2526 htab_delete (memory_accesses.refs);
2528 FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
2529 BITMAP_FREE (b);
2530 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2532 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
2533 BITMAP_FREE (b);
2534 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2536 FOR_EACH_VEC_ELT (bitmap, memory_accesses.clobbered_vops, i, b)
2537 BITMAP_FREE (b);
2538 VEC_free (bitmap, heap, memory_accesses.clobbered_vops);
2540 FOR_EACH_VEC_ELT (htab_t, memory_accesses.vop_ref_map, i, h)
2541 htab_delete (h);
2542 VEC_free (htab_t, heap, memory_accesses.vop_ref_map);
2544 if (memory_accesses.ttae_cache)
2545 pointer_map_destroy (memory_accesses.ttae_cache);
2548 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2549 i.e. those that are likely to be win regardless of the register pressure. */
2551 unsigned int
2552 tree_ssa_lim (void)
2554 unsigned int todo;
2556 tree_ssa_lim_initialize ();
2558 /* Gathers information about memory accesses in the loops. */
2559 analyze_memory_references ();
2561 /* For each statement determine the outermost loop in that it is
2562 invariant and cost for computing the invariant. */
2563 determine_invariantness ();
2565 /* Execute store motion. Force the necessary invariants to be moved
2566 out of the loops as well. */
2567 store_motion ();
2569 /* Move the expressions that are expensive enough. */
2570 todo = move_computations ();
2572 tree_ssa_lim_finalize ();
2574 return todo;