1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
30 #include "basic-block.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
37 #include "common/common-target.h"
38 #include "tree-pass.h"
40 #include "except.h" /* expand_builtin_dwarf_sp_column */
41 #include "expr.h" /* init_return_column_size */
42 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
43 #include "output.h" /* asm_out_file */
44 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
47 /* ??? Poison these here until it can be done generically. They've been
48 totally replaced in this file; make sure it stays that way. */
49 #undef DWARF2_UNWIND_INFO
50 #undef DWARF2_FRAME_INFO
51 #if (GCC_VERSION >= 3000)
52 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
55 #ifndef INCOMING_RETURN_ADDR_RTX
56 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
59 /* Maximum size (in bytes) of an artificially generated label. */
60 #define MAX_ARTIFICIAL_LABEL_BYTES 30
62 /* A collected description of an entire row of the abstract CFI table. */
63 typedef struct GTY(()) dw_cfi_row_struct
65 /* The expression that computes the CFA, expressed in two different ways.
66 The CFA member for the simple cases, and the full CFI expression for
67 the complex cases. The later will be a DW_CFA_cfa_expression. */
71 /* The expressions for any register column that is saved. */
75 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
76 typedef struct GTY(()) reg_saved_in_data_struct
{
81 DEF_VEC_O (reg_saved_in_data
);
82 DEF_VEC_ALLOC_O (reg_saved_in_data
, heap
);
84 /* Since we no longer have a proper CFG, we're going to create a facsimile
85 of one on the fly while processing the frame-related insns.
87 We create dw_trace_info structures for each extended basic block beginning
88 and ending at a "save point". Save points are labels, barriers, certain
89 notes, and of course the beginning and end of the function.
91 As we encounter control transfer insns, we propagate the "current"
92 row state across the edges to the starts of traces. When checking is
93 enabled, we validate that we propagate the same data from all sources.
95 All traces are members of the TRACE_INFO array, in the order in which
96 they appear in the instruction stream.
98 All save points are present in the TRACE_INDEX hash, mapping the insn
99 starting a trace to the dw_trace_info describing the trace. */
103 /* The insn that begins the trace. */
106 /* The row state at the beginning and end of the trace. */
107 dw_cfi_row
*beg_row
, *end_row
;
109 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
110 while scanning insns. However, the args_size value is irrelevant at
111 any point except can_throw_internal_p insns. Therefore the "delay"
112 sizes the values that must actually be emitted for this trace. */
113 HOST_WIDE_INT beg_true_args_size
, end_true_args_size
;
114 HOST_WIDE_INT beg_delay_args_size
, end_delay_args_size
;
116 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
119 /* The following variables contain data used in interpreting frame related
120 expressions. These are not part of the "real" row state as defined by
121 Dwarf, but it seems like they need to be propagated into a trace in case
122 frame related expressions have been sunk. */
123 /* ??? This seems fragile. These variables are fragments of a larger
124 expression. If we do not keep the entire expression together, we risk
125 not being able to put it together properly. Consider forcing targets
126 to generate self-contained expressions and dropping all of the magic
127 interpretation code in this file. Or at least refusing to shrink wrap
128 any frame related insn that doesn't contain a complete expression. */
130 /* The register used for saving registers to the stack, and its offset
132 dw_cfa_location cfa_store
;
134 /* A temporary register holding an integral value used in adjusting SP
135 or setting up the store_reg. The "offset" field holds the integer
136 value, not an offset. */
137 dw_cfa_location cfa_temp
;
139 /* A set of registers saved in other registers. This is the inverse of
140 the row->reg_save info, if the entry is a DW_CFA_register. This is
141 implemented as a flat array because it normally contains zero or 1
142 entry, depending on the target. IA-64 is the big spender here, using
143 a maximum of 5 entries. */
144 VEC(reg_saved_in_data
, heap
) *regs_saved_in_regs
;
146 /* An identifier for this trace. Used only for debugging dumps. */
149 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
150 bool switch_sections
;
152 /* True if we've seen different values incoming to beg_true_args_size. */
153 bool args_size_undefined
;
156 DEF_VEC_O (dw_trace_info
);
157 DEF_VEC_ALLOC_O (dw_trace_info
, heap
);
159 typedef dw_trace_info
*dw_trace_info_ref
;
161 DEF_VEC_P (dw_trace_info_ref
);
162 DEF_VEC_ALLOC_P (dw_trace_info_ref
, heap
);
164 /* The variables making up the pseudo-cfg, as described above. */
165 static VEC (dw_trace_info
, heap
) *trace_info
;
166 static VEC (dw_trace_info_ref
, heap
) *trace_work_list
;
167 static htab_t trace_index
;
169 /* A vector of call frame insns for the CIE. */
172 /* The state of the first row of the FDE table, which includes the
173 state provided by the CIE. */
174 static GTY(()) dw_cfi_row
*cie_cfi_row
;
176 static GTY(()) reg_saved_in_data
*cie_return_save
;
178 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
180 /* The insn after which a new CFI note should be emitted. */
181 static rtx add_cfi_insn
;
183 /* When non-null, add_cfi will add the CFI to this vector. */
184 static cfi_vec
*add_cfi_vec
;
186 /* The current instruction trace. */
187 static dw_trace_info
*cur_trace
;
189 /* The current, i.e. most recently generated, row of the CFI table. */
190 static dw_cfi_row
*cur_row
;
192 /* A copy of the current CFA, for use during the processing of a
194 static dw_cfa_location
*cur_cfa
;
196 /* We delay emitting a register save until either (a) we reach the end
197 of the prologue or (b) the register is clobbered. This clusters
198 register saves so that there are fewer pc advances. */
203 HOST_WIDE_INT cfa_offset
;
206 DEF_VEC_O (queued_reg_save
);
207 DEF_VEC_ALLOC_O (queued_reg_save
, heap
);
209 static VEC(queued_reg_save
, heap
) *queued_reg_saves
;
211 /* True if any CFI directives were emitted at the current insn. */
212 static bool any_cfis_emitted
;
214 /* Short-hand for commonly used register numbers. */
215 static unsigned dw_stack_pointer_regnum
;
216 static unsigned dw_frame_pointer_regnum
;
218 /* Hook used by __throw. */
221 expand_builtin_dwarf_sp_column (void)
223 unsigned int dwarf_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
224 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum
, 1));
227 /* MEM is a memory reference for the register size table, each element of
228 which has mode MODE. Initialize column C as a return address column. */
231 init_return_column_size (enum machine_mode mode
, rtx mem
, unsigned int c
)
233 HOST_WIDE_INT offset
= c
* GET_MODE_SIZE (mode
);
234 HOST_WIDE_INT size
= GET_MODE_SIZE (Pmode
);
235 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
238 /* Generate code to initialize the register size table. */
241 expand_builtin_init_dwarf_reg_sizes (tree address
)
244 enum machine_mode mode
= TYPE_MODE (char_type_node
);
245 rtx addr
= expand_normal (address
);
246 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
247 bool wrote_return_column
= false;
249 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
251 unsigned int dnum
= DWARF_FRAME_REGNUM (i
);
252 unsigned int rnum
= DWARF2_FRAME_REG_OUT (dnum
, 1);
254 if (rnum
< DWARF_FRAME_REGISTERS
)
256 HOST_WIDE_INT offset
= rnum
* GET_MODE_SIZE (mode
);
257 enum machine_mode save_mode
= reg_raw_mode
[i
];
260 if (HARD_REGNO_CALL_PART_CLOBBERED (i
, save_mode
))
261 save_mode
= choose_hard_reg_mode (i
, 1, true);
262 if (dnum
== DWARF_FRAME_RETURN_COLUMN
)
264 if (save_mode
== VOIDmode
)
266 wrote_return_column
= true;
268 size
= GET_MODE_SIZE (save_mode
);
272 emit_move_insn (adjust_address (mem
, mode
, offset
),
273 gen_int_mode (size
, mode
));
277 if (!wrote_return_column
)
278 init_return_column_size (mode
, mem
, DWARF_FRAME_RETURN_COLUMN
);
280 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
281 init_return_column_size (mode
, mem
, DWARF_ALT_FRAME_RETURN_COLUMN
);
284 targetm
.init_dwarf_reg_sizes_extra (address
);
289 dw_trace_info_hash (const void *ptr
)
291 const dw_trace_info
*ti
= (const dw_trace_info
*) ptr
;
292 return INSN_UID (ti
->head
);
296 dw_trace_info_eq (const void *ptr_a
, const void *ptr_b
)
298 const dw_trace_info
*a
= (const dw_trace_info
*) ptr_a
;
299 const dw_trace_info
*b
= (const dw_trace_info
*) ptr_b
;
300 return a
->head
== b
->head
;
303 static dw_trace_info
*
304 get_trace_info (rtx insn
)
308 return (dw_trace_info
*)
309 htab_find_with_hash (trace_index
, &dummy
, INSN_UID (insn
));
313 save_point_p (rtx insn
)
315 /* Labels, except those that are really jump tables. */
317 return inside_basic_block_p (insn
);
319 /* We split traces at the prologue/epilogue notes because those
320 are points at which the unwind info is usually stable. This
321 makes it easier to find spots with identical unwind info so
322 that we can use remember/restore_state opcodes. */
324 switch (NOTE_KIND (insn
))
326 case NOTE_INSN_PROLOGUE_END
:
327 case NOTE_INSN_EPILOGUE_BEG
:
334 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
336 static inline HOST_WIDE_INT
337 div_data_align (HOST_WIDE_INT off
)
339 HOST_WIDE_INT r
= off
/ DWARF_CIE_DATA_ALIGNMENT
;
340 gcc_assert (r
* DWARF_CIE_DATA_ALIGNMENT
== off
);
344 /* Return true if we need a signed version of a given opcode
345 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
348 need_data_align_sf_opcode (HOST_WIDE_INT off
)
350 return DWARF_CIE_DATA_ALIGNMENT
< 0 ? off
> 0 : off
< 0;
353 /* Return a pointer to a newly allocated Call Frame Instruction. */
355 static inline dw_cfi_ref
358 dw_cfi_ref cfi
= ggc_alloc_dw_cfi_node ();
360 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
361 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
366 /* Return a newly allocated CFI row, with no defined data. */
371 dw_cfi_row
*row
= ggc_alloc_cleared_dw_cfi_row ();
373 row
->cfa
.reg
= INVALID_REGNUM
;
378 /* Return a copy of an existing CFI row. */
381 copy_cfi_row (dw_cfi_row
*src
)
383 dw_cfi_row
*dst
= ggc_alloc_dw_cfi_row ();
386 dst
->reg_save
= VEC_copy (dw_cfi_ref
, gc
, src
->reg_save
);
391 /* Generate a new label for the CFI info to refer to. */
394 dwarf2out_cfi_label (void)
396 int num
= dwarf2out_cfi_label_num
++;
399 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", num
);
401 return xstrdup (label
);
404 /* Add CFI either to the current insn stream or to a vector, or both. */
407 add_cfi (dw_cfi_ref cfi
)
409 any_cfis_emitted
= true;
411 if (add_cfi_insn
!= NULL
)
413 add_cfi_insn
= emit_note_after (NOTE_INSN_CFI
, add_cfi_insn
);
414 NOTE_CFI (add_cfi_insn
) = cfi
;
417 if (add_cfi_vec
!= NULL
)
418 VEC_safe_push (dw_cfi_ref
, gc
, *add_cfi_vec
, cfi
);
422 add_cfi_args_size (HOST_WIDE_INT size
)
424 dw_cfi_ref cfi
= new_cfi ();
426 /* While we can occasionally have args_size < 0 internally, this state
427 should not persist at a point we actually need an opcode. */
428 gcc_assert (size
>= 0);
430 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
431 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
437 add_cfi_restore (unsigned reg
)
439 dw_cfi_ref cfi
= new_cfi ();
441 cfi
->dw_cfi_opc
= (reg
& ~0x3f ? DW_CFA_restore_extended
: DW_CFA_restore
);
442 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
447 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
448 that the register column is no longer saved. */
451 update_row_reg_save (dw_cfi_row
*row
, unsigned column
, dw_cfi_ref cfi
)
453 if (VEC_length (dw_cfi_ref
, row
->reg_save
) <= column
)
454 VEC_safe_grow_cleared (dw_cfi_ref
, gc
, row
->reg_save
, column
+ 1);
455 VEC_replace (dw_cfi_ref
, row
->reg_save
, column
, cfi
);
458 /* This function fills in aa dw_cfa_location structure from a dwarf location
459 descriptor sequence. */
462 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_struct
*loc
)
464 struct dw_loc_descr_struct
*ptr
;
466 cfa
->base_offset
= 0;
470 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
472 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
508 cfa
->reg
= op
- DW_OP_reg0
;
511 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
545 cfa
->reg
= op
- DW_OP_breg0
;
546 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
549 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
550 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
555 case DW_OP_plus_uconst
:
556 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
564 /* Find the previous value for the CFA, iteratively. CFI is the opcode
565 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
566 one level of remember/restore state processing. */
569 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
, dw_cfa_location
*remember
)
571 switch (cfi
->dw_cfi_opc
)
573 case DW_CFA_def_cfa_offset
:
574 case DW_CFA_def_cfa_offset_sf
:
575 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
577 case DW_CFA_def_cfa_register
:
578 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
581 case DW_CFA_def_cfa_sf
:
582 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
583 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
585 case DW_CFA_def_cfa_expression
:
586 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
589 case DW_CFA_remember_state
:
590 gcc_assert (!remember
->in_use
);
592 remember
->in_use
= 1;
594 case DW_CFA_restore_state
:
595 gcc_assert (remember
->in_use
);
597 remember
->in_use
= 0;
605 /* Determine if two dw_cfa_location structures define the same data. */
608 cfa_equal_p (const dw_cfa_location
*loc1
, const dw_cfa_location
*loc2
)
610 return (loc1
->reg
== loc2
->reg
611 && loc1
->offset
== loc2
->offset
612 && loc1
->indirect
== loc2
->indirect
613 && (loc1
->indirect
== 0
614 || loc1
->base_offset
== loc2
->base_offset
));
617 /* Determine if two CFI operands are identical. */
620 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t
, dw_cfi_oprnd
*a
, dw_cfi_oprnd
*b
)
624 case dw_cfi_oprnd_unused
:
626 case dw_cfi_oprnd_reg_num
:
627 return a
->dw_cfi_reg_num
== b
->dw_cfi_reg_num
;
628 case dw_cfi_oprnd_offset
:
629 return a
->dw_cfi_offset
== b
->dw_cfi_offset
;
630 case dw_cfi_oprnd_addr
:
631 return (a
->dw_cfi_addr
== b
->dw_cfi_addr
632 || strcmp (a
->dw_cfi_addr
, b
->dw_cfi_addr
) == 0);
633 case dw_cfi_oprnd_loc
:
634 return loc_descr_equal_p (a
->dw_cfi_loc
, b
->dw_cfi_loc
);
639 /* Determine if two CFI entries are identical. */
642 cfi_equal_p (dw_cfi_ref a
, dw_cfi_ref b
)
644 enum dwarf_call_frame_info opc
;
646 /* Make things easier for our callers, including missing operands. */
649 if (a
== NULL
|| b
== NULL
)
652 /* Obviously, the opcodes must match. */
654 if (opc
!= b
->dw_cfi_opc
)
657 /* Compare the two operands, re-using the type of the operands as
658 already exposed elsewhere. */
659 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc
),
660 &a
->dw_cfi_oprnd1
, &b
->dw_cfi_oprnd1
)
661 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc
),
662 &a
->dw_cfi_oprnd2
, &b
->dw_cfi_oprnd2
));
665 /* Determine if two CFI_ROW structures are identical. */
668 cfi_row_equal_p (dw_cfi_row
*a
, dw_cfi_row
*b
)
670 size_t i
, n_a
, n_b
, n_max
;
674 if (!cfi_equal_p (a
->cfa_cfi
, b
->cfa_cfi
))
677 else if (!cfa_equal_p (&a
->cfa
, &b
->cfa
))
680 n_a
= VEC_length (dw_cfi_ref
, a
->reg_save
);
681 n_b
= VEC_length (dw_cfi_ref
, b
->reg_save
);
682 n_max
= MAX (n_a
, n_b
);
684 for (i
= 0; i
< n_max
; ++i
)
686 dw_cfi_ref r_a
= NULL
, r_b
= NULL
;
689 r_a
= VEC_index (dw_cfi_ref
, a
->reg_save
, i
);
691 r_b
= VEC_index (dw_cfi_ref
, b
->reg_save
, i
);
693 if (!cfi_equal_p (r_a
, r_b
))
700 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
701 what opcode to emit. Returns the CFI opcode to effect the change, or
702 NULL if NEW_CFA == OLD_CFA. */
705 def_cfa_0 (dw_cfa_location
*old_cfa
, dw_cfa_location
*new_cfa
)
709 /* If nothing changed, no need to issue any call frame instructions. */
710 if (cfa_equal_p (old_cfa
, new_cfa
))
715 if (new_cfa
->reg
== old_cfa
->reg
&& !new_cfa
->indirect
&& !old_cfa
->indirect
)
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
718 the CFA register did not change but the offset did. The data
719 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
720 in the assembler via the .cfi_def_cfa_offset directive. */
721 if (new_cfa
->offset
< 0)
722 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset_sf
;
724 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
725 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= new_cfa
->offset
;
728 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
729 else if (new_cfa
->offset
== old_cfa
->offset
730 && old_cfa
->reg
!= INVALID_REGNUM
731 && !new_cfa
->indirect
732 && !old_cfa
->indirect
)
734 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
735 indicating the CFA register has changed to <register> but the
736 offset has not changed. */
737 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
738 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
742 else if (new_cfa
->indirect
== 0)
744 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
745 indicating the CFA register has changed to <register> with
746 the specified offset. The data factoring for DW_CFA_def_cfa_sf
747 happens in output_cfi, or in the assembler via the .cfi_def_cfa
749 if (new_cfa
->offset
< 0)
750 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_sf
;
752 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
753 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
754 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= new_cfa
->offset
;
758 /* Construct a DW_CFA_def_cfa_expression instruction to
759 calculate the CFA using a full location expression since no
760 register-offset pair is available. */
761 struct dw_loc_descr_struct
*loc_list
;
763 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
764 loc_list
= build_cfa_loc (new_cfa
, 0);
765 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
771 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
774 def_cfa_1 (dw_cfa_location
*new_cfa
)
778 if (cur_trace
->cfa_store
.reg
== new_cfa
->reg
&& new_cfa
->indirect
== 0)
779 cur_trace
->cfa_store
.offset
= new_cfa
->offset
;
781 cfi
= def_cfa_0 (&cur_row
->cfa
, new_cfa
);
784 cur_row
->cfa
= *new_cfa
;
785 cur_row
->cfa_cfi
= (cfi
->dw_cfi_opc
== DW_CFA_def_cfa_expression
792 /* Add the CFI for saving a register. REG is the CFA column number.
793 If SREG is -1, the register is saved at OFFSET from the CFA;
794 otherwise it is saved in SREG. */
797 reg_save (unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
799 dw_fde_ref fde
= cfun
? cfun
->fde
: NULL
;
800 dw_cfi_ref cfi
= new_cfi ();
802 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
804 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
806 && fde
->stack_realign
807 && sreg
== INVALID_REGNUM
)
809 cfi
->dw_cfi_opc
= DW_CFA_expression
;
810 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
811 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
812 = build_cfa_aligned_loc (&cur_row
->cfa
, offset
,
813 fde
->stack_realignment
);
815 else if (sreg
== INVALID_REGNUM
)
817 if (need_data_align_sf_opcode (offset
))
818 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
819 else if (reg
& ~0x3f)
820 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
822 cfi
->dw_cfi_opc
= DW_CFA_offset
;
823 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
825 else if (sreg
== reg
)
827 /* While we could emit something like DW_CFA_same_value or
828 DW_CFA_restore, we never expect to see something like that
829 in a prologue. This is more likely to be a bug. A backend
830 can always bypass this by using REG_CFA_RESTORE directly. */
835 cfi
->dw_cfi_opc
= DW_CFA_register
;
836 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
840 update_row_reg_save (cur_row
, reg
, cfi
);
843 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
844 and adjust data structures to match. */
847 notice_args_size (rtx insn
)
849 HOST_WIDE_INT args_size
, delta
;
852 note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL
);
856 args_size
= INTVAL (XEXP (note
, 0));
857 delta
= args_size
- cur_trace
->end_true_args_size
;
861 cur_trace
->end_true_args_size
= args_size
;
863 /* If the CFA is computed off the stack pointer, then we must adjust
864 the computation of the CFA as well. */
865 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
867 gcc_assert (!cur_cfa
->indirect
);
869 /* Convert a change in args_size (always a positive in the
870 direction of stack growth) to a change in stack pointer. */
871 #ifndef STACK_GROWS_DOWNWARD
874 cur_cfa
->offset
+= delta
;
878 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
879 data within the trace related to EH insns and args_size. */
882 notice_eh_throw (rtx insn
)
884 HOST_WIDE_INT args_size
;
886 args_size
= cur_trace
->end_true_args_size
;
887 if (cur_trace
->eh_head
== NULL
)
889 cur_trace
->eh_head
= insn
;
890 cur_trace
->beg_delay_args_size
= args_size
;
891 cur_trace
->end_delay_args_size
= args_size
;
893 else if (cur_trace
->end_delay_args_size
!= args_size
)
895 cur_trace
->end_delay_args_size
= args_size
;
897 /* ??? If the CFA is the stack pointer, search backward for the last
898 CFI note and insert there. Given that the stack changed for the
899 args_size change, there *must* be such a note in between here and
901 add_cfi_args_size (args_size
);
905 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
906 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
907 used in places where rtl is prohibited. */
909 static inline unsigned
910 dwf_regno (const_rtx reg
)
912 return DWARF_FRAME_REGNUM (REGNO (reg
));
915 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
918 compare_reg_or_pc (rtx x
, rtx y
)
920 if (REG_P (x
) && REG_P (y
))
921 return REGNO (x
) == REGNO (y
);
925 /* Record SRC as being saved in DEST. DEST may be null to delete an
926 existing entry. SRC may be a register or PC_RTX. */
929 record_reg_saved_in_reg (rtx dest
, rtx src
)
931 reg_saved_in_data
*elt
;
934 FOR_EACH_VEC_ELT (reg_saved_in_data
, cur_trace
->regs_saved_in_regs
, i
, elt
)
935 if (compare_reg_or_pc (elt
->orig_reg
, src
))
938 VEC_unordered_remove (reg_saved_in_data
,
939 cur_trace
->regs_saved_in_regs
, i
);
941 elt
->saved_in_reg
= dest
;
948 elt
= VEC_safe_push (reg_saved_in_data
, heap
,
949 cur_trace
->regs_saved_in_regs
, NULL
);
951 elt
->saved_in_reg
= dest
;
954 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
955 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
958 queue_reg_save (rtx reg
, rtx sreg
, HOST_WIDE_INT offset
)
963 /* Duplicates waste space, but it's also necessary to remove them
964 for correctness, since the queue gets output in reverse order. */
965 FOR_EACH_VEC_ELT (queued_reg_save
, queued_reg_saves
, i
, q
)
966 if (compare_reg_or_pc (q
->reg
, reg
))
969 q
= VEC_safe_push (queued_reg_save
, heap
, queued_reg_saves
, NULL
);
974 q
->cfa_offset
= offset
;
977 /* Output all the entries in QUEUED_REG_SAVES. */
980 dwarf2out_flush_queued_reg_saves (void)
985 FOR_EACH_VEC_ELT (queued_reg_save
, queued_reg_saves
, i
, q
)
987 unsigned int reg
, sreg
;
989 record_reg_saved_in_reg (q
->saved_reg
, q
->reg
);
991 if (q
->reg
== pc_rtx
)
992 reg
= DWARF_FRAME_RETURN_COLUMN
;
994 reg
= dwf_regno (q
->reg
);
996 sreg
= dwf_regno (q
->saved_reg
);
998 sreg
= INVALID_REGNUM
;
999 reg_save (reg
, sreg
, q
->cfa_offset
);
1002 VEC_truncate (queued_reg_save
, queued_reg_saves
, 0);
1005 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1006 location for? Or, does it clobber a register which we've previously
1007 said that some other register is saved in, and for which we now
1008 have a new location for? */
1011 clobbers_queued_reg_save (const_rtx insn
)
1016 FOR_EACH_VEC_ELT (queued_reg_save
, queued_reg_saves
, iq
, q
)
1019 reg_saved_in_data
*rir
;
1021 if (modified_in_p (q
->reg
, insn
))
1024 FOR_EACH_VEC_ELT (reg_saved_in_data
,
1025 cur_trace
->regs_saved_in_regs
, ir
, rir
)
1026 if (compare_reg_or_pc (q
->reg
, rir
->orig_reg
)
1027 && modified_in_p (rir
->saved_in_reg
, insn
))
1034 /* What register, if any, is currently saved in REG? */
1037 reg_saved_in (rtx reg
)
1039 unsigned int regn
= REGNO (reg
);
1041 reg_saved_in_data
*rir
;
1044 FOR_EACH_VEC_ELT (queued_reg_save
, queued_reg_saves
, i
, q
)
1045 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1048 FOR_EACH_VEC_ELT (reg_saved_in_data
, cur_trace
->regs_saved_in_regs
, i
, rir
)
1049 if (regn
== REGNO (rir
->saved_in_reg
))
1050 return rir
->orig_reg
;
1055 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1058 dwarf2out_frame_debug_def_cfa (rtx pat
)
1060 memset (cur_cfa
, 0, sizeof (*cur_cfa
));
1062 if (GET_CODE (pat
) == PLUS
)
1064 cur_cfa
->offset
= INTVAL (XEXP (pat
, 1));
1065 pat
= XEXP (pat
, 0);
1069 cur_cfa
->indirect
= 1;
1070 pat
= XEXP (pat
, 0);
1071 if (GET_CODE (pat
) == PLUS
)
1073 cur_cfa
->base_offset
= INTVAL (XEXP (pat
, 1));
1074 pat
= XEXP (pat
, 0);
1077 /* ??? If this fails, we could be calling into the _loc functions to
1078 define a full expression. So far no port does that. */
1079 gcc_assert (REG_P (pat
));
1080 cur_cfa
->reg
= dwf_regno (pat
);
1083 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1086 dwarf2out_frame_debug_adjust_cfa (rtx pat
)
1090 gcc_assert (GET_CODE (pat
) == SET
);
1091 dest
= XEXP (pat
, 0);
1092 src
= XEXP (pat
, 1);
1094 switch (GET_CODE (src
))
1097 gcc_assert (dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
);
1098 cur_cfa
->offset
-= INTVAL (XEXP (src
, 1));
1108 cur_cfa
->reg
= dwf_regno (dest
);
1109 gcc_assert (cur_cfa
->indirect
== 0);
1112 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1115 dwarf2out_frame_debug_cfa_offset (rtx set
)
1117 HOST_WIDE_INT offset
;
1118 rtx src
, addr
, span
;
1119 unsigned int sregno
;
1121 src
= XEXP (set
, 1);
1122 addr
= XEXP (set
, 0);
1123 gcc_assert (MEM_P (addr
));
1124 addr
= XEXP (addr
, 0);
1126 /* As documented, only consider extremely simple addresses. */
1127 switch (GET_CODE (addr
))
1130 gcc_assert (dwf_regno (addr
) == cur_cfa
->reg
);
1131 offset
= -cur_cfa
->offset
;
1134 gcc_assert (dwf_regno (XEXP (addr
, 0)) == cur_cfa
->reg
);
1135 offset
= INTVAL (XEXP (addr
, 1)) - cur_cfa
->offset
;
1144 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1148 span
= targetm
.dwarf_register_span (src
);
1149 sregno
= dwf_regno (src
);
1152 /* ??? We'd like to use queue_reg_save, but we need to come up with
1153 a different flushing heuristic for epilogues. */
1155 reg_save (sregno
, INVALID_REGNUM
, offset
);
1158 /* We have a PARALLEL describing where the contents of SRC live.
1159 Queue register saves for each piece of the PARALLEL. */
1162 HOST_WIDE_INT span_offset
= offset
;
1164 gcc_assert (GET_CODE (span
) == PARALLEL
);
1166 limit
= XVECLEN (span
, 0);
1167 for (par_index
= 0; par_index
< limit
; par_index
++)
1169 rtx elem
= XVECEXP (span
, 0, par_index
);
1171 sregno
= dwf_regno (src
);
1172 reg_save (sregno
, INVALID_REGNUM
, span_offset
);
1173 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1178 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1181 dwarf2out_frame_debug_cfa_register (rtx set
)
1184 unsigned sregno
, dregno
;
1186 src
= XEXP (set
, 1);
1187 dest
= XEXP (set
, 0);
1189 record_reg_saved_in_reg (dest
, src
);
1191 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1193 sregno
= dwf_regno (src
);
1195 dregno
= dwf_regno (dest
);
1197 /* ??? We'd like to use queue_reg_save, but we need to come up with
1198 a different flushing heuristic for epilogues. */
1199 reg_save (sregno
, dregno
, 0);
1202 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1205 dwarf2out_frame_debug_cfa_expression (rtx set
)
1207 rtx src
, dest
, span
;
1208 dw_cfi_ref cfi
= new_cfi ();
1211 dest
= SET_DEST (set
);
1212 src
= SET_SRC (set
);
1214 gcc_assert (REG_P (src
));
1215 gcc_assert (MEM_P (dest
));
1217 span
= targetm
.dwarf_register_span (src
);
1220 regno
= dwf_regno (src
);
1222 cfi
->dw_cfi_opc
= DW_CFA_expression
;
1223 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= regno
;
1224 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
1225 = mem_loc_descriptor (XEXP (dest
, 0), get_address_mode (dest
),
1226 GET_MODE (dest
), VAR_INIT_STATUS_INITIALIZED
);
1228 /* ??? We'd like to use queue_reg_save, were the interface different,
1229 and, as above, we could manage flushing for epilogues. */
1231 update_row_reg_save (cur_row
, regno
, cfi
);
1234 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1237 dwarf2out_frame_debug_cfa_restore (rtx reg
)
1239 unsigned int regno
= dwf_regno (reg
);
1241 add_cfi_restore (regno
);
1242 update_row_reg_save (cur_row
, regno
, NULL
);
1245 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1246 ??? Perhaps we should note in the CIE where windows are saved (instead of
1247 assuming 0(cfa)) and what registers are in the window. */
1250 dwarf2out_frame_debug_cfa_window_save (void)
1252 dw_cfi_ref cfi
= new_cfi ();
1254 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
1258 /* Record call frame debugging information for an expression EXPR,
1259 which either sets SP or FP (adjusting how we calculate the frame
1260 address) or saves a register to the stack or another register.
1261 LABEL indicates the address of EXPR.
1263 This function encodes a state machine mapping rtxes to actions on
1264 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1265 users need not read the source code.
1267 The High-Level Picture
1269 Changes in the register we use to calculate the CFA: Currently we
1270 assume that if you copy the CFA register into another register, we
1271 should take the other one as the new CFA register; this seems to
1272 work pretty well. If it's wrong for some target, it's simple
1273 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1275 Changes in the register we use for saving registers to the stack:
1276 This is usually SP, but not always. Again, we deduce that if you
1277 copy SP into another register (and SP is not the CFA register),
1278 then the new register is the one we will be using for register
1279 saves. This also seems to work.
1281 Register saves: There's not much guesswork about this one; if
1282 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1283 register save, and the register used to calculate the destination
1284 had better be the one we think we're using for this purpose.
1285 It's also assumed that a copy from a call-saved register to another
1286 register is saving that register if RTX_FRAME_RELATED_P is set on
1287 that instruction. If the copy is from a call-saved register to
1288 the *same* register, that means that the register is now the same
1289 value as in the caller.
1291 Except: If the register being saved is the CFA register, and the
1292 offset is nonzero, we are saving the CFA, so we assume we have to
1293 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1294 the intent is to save the value of SP from the previous frame.
1296 In addition, if a register has previously been saved to a different
1299 Invariants / Summaries of Rules
1301 cfa current rule for calculating the CFA. It usually
1302 consists of a register and an offset. This is
1303 actually stored in *cur_cfa, but abbreviated
1304 for the purposes of this documentation.
1305 cfa_store register used by prologue code to save things to the stack
1306 cfa_store.offset is the offset from the value of
1307 cfa_store.reg to the actual CFA
1308 cfa_temp register holding an integral value. cfa_temp.offset
1309 stores the value, which will be used to adjust the
1310 stack pointer. cfa_temp is also used like cfa_store,
1311 to track stores to the stack via fp or a temp reg.
1313 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1314 with cfa.reg as the first operand changes the cfa.reg and its
1315 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1318 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1319 expression yielding a constant. This sets cfa_temp.reg
1320 and cfa_temp.offset.
1322 Rule 5: Create a new register cfa_store used to save items to the
1325 Rules 10-14: Save a register to the stack. Define offset as the
1326 difference of the original location and cfa_store's
1327 location (or cfa_temp's location if cfa_temp is used).
1329 Rules 16-20: If AND operation happens on sp in prologue, we assume
1330 stack is realigned. We will use a group of DW_OP_XXX
1331 expressions to represent the location of the stored
1332 register instead of CFA+offset.
1336 "{a,b}" indicates a choice of a xor b.
1337 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1340 (set <reg1> <reg2>:cfa.reg)
1341 effects: cfa.reg = <reg1>
1342 cfa.offset unchanged
1343 cfa_temp.reg = <reg1>
1344 cfa_temp.offset = cfa.offset
1347 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1348 {<const_int>,<reg>:cfa_temp.reg}))
1349 effects: cfa.reg = sp if fp used
1350 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1351 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1352 if cfa_store.reg==sp
1355 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1356 effects: cfa.reg = fp
1357 cfa_offset += +/- <const_int>
1360 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1361 constraints: <reg1> != fp
1363 effects: cfa.reg = <reg1>
1364 cfa_temp.reg = <reg1>
1365 cfa_temp.offset = cfa.offset
1368 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1369 constraints: <reg1> != fp
1371 effects: cfa_store.reg = <reg1>
1372 cfa_store.offset = cfa.offset - cfa_temp.offset
1375 (set <reg> <const_int>)
1376 effects: cfa_temp.reg = <reg>
1377 cfa_temp.offset = <const_int>
1380 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1381 effects: cfa_temp.reg = <reg1>
1382 cfa_temp.offset |= <const_int>
1385 (set <reg> (high <exp>))
1389 (set <reg> (lo_sum <exp> <const_int>))
1390 effects: cfa_temp.reg = <reg>
1391 cfa_temp.offset = <const_int>
1394 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1395 effects: cfa_store.offset -= <const_int>
1396 cfa.offset = cfa_store.offset if cfa.reg == sp
1398 cfa.base_offset = -cfa_store.offset
1401 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1402 effects: cfa_store.offset += -/+ mode_size(mem)
1403 cfa.offset = cfa_store.offset if cfa.reg == sp
1405 cfa.base_offset = -cfa_store.offset
1408 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1411 effects: cfa.reg = <reg1>
1412 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1415 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1416 effects: cfa.reg = <reg1>
1417 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1420 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1421 effects: cfa.reg = <reg1>
1422 cfa.base_offset = -cfa_temp.offset
1423 cfa_temp.offset -= mode_size(mem)
1426 (set <reg> {unspec, unspec_volatile})
1427 effects: target-dependent
1430 (set sp (and: sp <const_int>))
1431 constraints: cfa_store.reg == sp
1432 effects: cfun->fde.stack_realign = 1
1433 cfa_store.offset = 0
1434 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1437 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1438 effects: cfa_store.offset += -/+ mode_size(mem)
1441 (set (mem ({pre_inc, pre_dec} sp)) fp)
1442 constraints: fde->stack_realign == 1
1443 effects: cfa_store.offset = 0
1444 cfa.reg != HARD_FRAME_POINTER_REGNUM
1447 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1448 constraints: fde->stack_realign == 1
1450 && cfa.indirect == 0
1451 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1452 effects: Use DW_CFA_def_cfa_expression to define cfa
1453 cfa.reg == fde->drap_reg */
1456 dwarf2out_frame_debug_expr (rtx expr
)
1458 rtx src
, dest
, span
;
1459 HOST_WIDE_INT offset
;
1462 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1463 the PARALLEL independently. The first element is always processed if
1464 it is a SET. This is for backward compatibility. Other elements
1465 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1466 flag is set in them. */
1467 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1470 int limit
= XVECLEN (expr
, 0);
1473 /* PARALLELs have strict read-modify-write semantics, so we
1474 ought to evaluate every rvalue before changing any lvalue.
1475 It's cumbersome to do that in general, but there's an
1476 easy approximation that is enough for all current users:
1477 handle register saves before register assignments. */
1478 if (GET_CODE (expr
) == PARALLEL
)
1479 for (par_index
= 0; par_index
< limit
; par_index
++)
1481 elem
= XVECEXP (expr
, 0, par_index
);
1482 if (GET_CODE (elem
) == SET
1483 && MEM_P (SET_DEST (elem
))
1484 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1485 dwarf2out_frame_debug_expr (elem
);
1488 for (par_index
= 0; par_index
< limit
; par_index
++)
1490 elem
= XVECEXP (expr
, 0, par_index
);
1491 if (GET_CODE (elem
) == SET
1492 && (!MEM_P (SET_DEST (elem
)) || GET_CODE (expr
) == SEQUENCE
)
1493 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1494 dwarf2out_frame_debug_expr (elem
);
1499 gcc_assert (GET_CODE (expr
) == SET
);
1501 src
= SET_SRC (expr
);
1502 dest
= SET_DEST (expr
);
1506 rtx rsi
= reg_saved_in (src
);
1513 switch (GET_CODE (dest
))
1516 switch (GET_CODE (src
))
1518 /* Setting FP from SP. */
1520 if (cur_cfa
->reg
== dwf_regno (src
))
1523 /* Update the CFA rule wrt SP or FP. Make sure src is
1524 relative to the current CFA register.
1526 We used to require that dest be either SP or FP, but the
1527 ARM copies SP to a temporary register, and from there to
1528 FP. So we just rely on the backends to only set
1529 RTX_FRAME_RELATED_P on appropriate insns. */
1530 cur_cfa
->reg
= dwf_regno (dest
);
1531 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1532 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1536 /* Saving a register in a register. */
1537 gcc_assert (!fixed_regs
[REGNO (dest
)]
1538 /* For the SPARC and its register window. */
1539 || (dwf_regno (src
) == DWARF_FRAME_RETURN_COLUMN
));
1541 /* After stack is aligned, we can only save SP in FP
1542 if drap register is used. In this case, we have
1543 to restore stack pointer with the CFA value and we
1544 don't generate this DWARF information. */
1546 && fde
->stack_realign
1547 && REGNO (src
) == STACK_POINTER_REGNUM
)
1548 gcc_assert (REGNO (dest
) == HARD_FRAME_POINTER_REGNUM
1549 && fde
->drap_reg
!= INVALID_REGNUM
1550 && cur_cfa
->reg
!= dwf_regno (src
));
1552 queue_reg_save (src
, dest
, 0);
1559 if (dest
== stack_pointer_rtx
)
1563 switch (GET_CODE (XEXP (src
, 1)))
1566 offset
= INTVAL (XEXP (src
, 1));
1569 gcc_assert (dwf_regno (XEXP (src
, 1))
1570 == cur_trace
->cfa_temp
.reg
);
1571 offset
= cur_trace
->cfa_temp
.offset
;
1577 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1579 /* Restoring SP from FP in the epilogue. */
1580 gcc_assert (cur_cfa
->reg
== dw_frame_pointer_regnum
);
1581 cur_cfa
->reg
= dw_stack_pointer_regnum
;
1583 else if (GET_CODE (src
) == LO_SUM
)
1584 /* Assume we've set the source reg of the LO_SUM from sp. */
1587 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1589 if (GET_CODE (src
) != MINUS
)
1591 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1592 cur_cfa
->offset
+= offset
;
1593 if (cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
)
1594 cur_trace
->cfa_store
.offset
+= offset
;
1596 else if (dest
== hard_frame_pointer_rtx
)
1599 /* Either setting the FP from an offset of the SP,
1600 or adjusting the FP */
1601 gcc_assert (frame_pointer_needed
);
1603 gcc_assert (REG_P (XEXP (src
, 0))
1604 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1605 && CONST_INT_P (XEXP (src
, 1)));
1606 offset
= INTVAL (XEXP (src
, 1));
1607 if (GET_CODE (src
) != MINUS
)
1609 cur_cfa
->offset
+= offset
;
1610 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1614 gcc_assert (GET_CODE (src
) != MINUS
);
1617 if (REG_P (XEXP (src
, 0))
1618 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1619 && CONST_INT_P (XEXP (src
, 1)))
1621 /* Setting a temporary CFA register that will be copied
1622 into the FP later on. */
1623 offset
= - INTVAL (XEXP (src
, 1));
1624 cur_cfa
->offset
+= offset
;
1625 cur_cfa
->reg
= dwf_regno (dest
);
1626 /* Or used to save regs to the stack. */
1627 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1628 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1632 else if (REG_P (XEXP (src
, 0))
1633 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1634 && XEXP (src
, 1) == stack_pointer_rtx
)
1636 /* Setting a scratch register that we will use instead
1637 of SP for saving registers to the stack. */
1638 gcc_assert (cur_cfa
->reg
== dw_stack_pointer_regnum
);
1639 cur_trace
->cfa_store
.reg
= dwf_regno (dest
);
1640 cur_trace
->cfa_store
.offset
1641 = cur_cfa
->offset
- cur_trace
->cfa_temp
.offset
;
1645 else if (GET_CODE (src
) == LO_SUM
1646 && CONST_INT_P (XEXP (src
, 1)))
1648 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1649 cur_trace
->cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1658 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1659 cur_trace
->cfa_temp
.offset
= INTVAL (src
);
1664 gcc_assert (REG_P (XEXP (src
, 0))
1665 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1666 && CONST_INT_P (XEXP (src
, 1)));
1668 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1669 cur_trace
->cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1672 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1673 which will fill in all of the bits. */
1680 case UNSPEC_VOLATILE
:
1681 /* All unspecs should be represented by REG_CFA_* notes. */
1687 /* If this AND operation happens on stack pointer in prologue,
1688 we assume the stack is realigned and we extract the
1690 if (fde
&& XEXP (src
, 0) == stack_pointer_rtx
)
1692 /* We interpret reg_save differently with stack_realign set.
1693 Thus we must flush whatever we have queued first. */
1694 dwarf2out_flush_queued_reg_saves ();
1696 gcc_assert (cur_trace
->cfa_store
.reg
1697 == dwf_regno (XEXP (src
, 0)));
1698 fde
->stack_realign
= 1;
1699 fde
->stack_realignment
= INTVAL (XEXP (src
, 1));
1700 cur_trace
->cfa_store
.offset
= 0;
1702 if (cur_cfa
->reg
!= dw_stack_pointer_regnum
1703 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1704 fde
->drap_reg
= cur_cfa
->reg
;
1715 /* Saving a register to the stack. Make sure dest is relative to the
1717 switch (GET_CODE (XEXP (dest
, 0)))
1723 /* We can't handle variable size modifications. */
1724 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1))
1726 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1728 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1729 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1731 cur_trace
->cfa_store
.offset
+= offset
;
1732 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1733 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1735 if (GET_CODE (XEXP (dest
, 0)) == POST_MODIFY
)
1736 offset
-= cur_trace
->cfa_store
.offset
;
1738 offset
= -cur_trace
->cfa_store
.offset
;
1745 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1746 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1749 gcc_assert ((REGNO (XEXP (XEXP (dest
, 0), 0))
1750 == STACK_POINTER_REGNUM
)
1751 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1753 cur_trace
->cfa_store
.offset
+= offset
;
1755 /* Rule 18: If stack is aligned, we will use FP as a
1756 reference to represent the address of the stored
1759 && fde
->stack_realign
1761 && REGNO (src
) == HARD_FRAME_POINTER_REGNUM
)
1763 gcc_assert (cur_cfa
->reg
!= dw_frame_pointer_regnum
);
1764 cur_trace
->cfa_store
.offset
= 0;
1767 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1768 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1770 if (GET_CODE (XEXP (dest
, 0)) == POST_DEC
)
1771 offset
+= -cur_trace
->cfa_store
.offset
;
1773 offset
= -cur_trace
->cfa_store
.offset
;
1777 /* With an offset. */
1784 gcc_assert (CONST_INT_P (XEXP (XEXP (dest
, 0), 1))
1785 && REG_P (XEXP (XEXP (dest
, 0), 0)));
1786 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1787 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1790 regno
= dwf_regno (XEXP (XEXP (dest
, 0), 0));
1792 if (cur_cfa
->reg
== regno
)
1793 offset
-= cur_cfa
->offset
;
1794 else if (cur_trace
->cfa_store
.reg
== regno
)
1795 offset
-= cur_trace
->cfa_store
.offset
;
1798 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1799 offset
-= cur_trace
->cfa_temp
.offset
;
1805 /* Without an offset. */
1808 unsigned int regno
= dwf_regno (XEXP (dest
, 0));
1810 if (cur_cfa
->reg
== regno
)
1811 offset
= -cur_cfa
->offset
;
1812 else if (cur_trace
->cfa_store
.reg
== regno
)
1813 offset
= -cur_trace
->cfa_store
.offset
;
1816 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1817 offset
= -cur_trace
->cfa_temp
.offset
;
1824 gcc_assert (cur_trace
->cfa_temp
.reg
1825 == dwf_regno (XEXP (XEXP (dest
, 0), 0)));
1826 offset
= -cur_trace
->cfa_temp
.offset
;
1827 cur_trace
->cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1835 /* If the source operand of this MEM operation is a memory,
1836 we only care how much stack grew. */
1841 && REGNO (src
) != STACK_POINTER_REGNUM
1842 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1843 && dwf_regno (src
) == cur_cfa
->reg
)
1845 /* We're storing the current CFA reg into the stack. */
1847 if (cur_cfa
->offset
== 0)
1850 /* If stack is aligned, putting CFA reg into stack means
1851 we can no longer use reg + offset to represent CFA.
1852 Here we use DW_CFA_def_cfa_expression instead. The
1853 result of this expression equals to the original CFA
1856 && fde
->stack_realign
1857 && cur_cfa
->indirect
== 0
1858 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1860 gcc_assert (fde
->drap_reg
== cur_cfa
->reg
);
1862 cur_cfa
->indirect
= 1;
1863 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1864 cur_cfa
->base_offset
= offset
;
1865 cur_cfa
->offset
= 0;
1867 fde
->drap_reg_saved
= 1;
1871 /* If the source register is exactly the CFA, assume
1872 we're saving SP like any other register; this happens
1874 queue_reg_save (stack_pointer_rtx
, NULL_RTX
, offset
);
1879 /* Otherwise, we'll need to look in the stack to
1880 calculate the CFA. */
1881 rtx x
= XEXP (dest
, 0);
1885 gcc_assert (REG_P (x
));
1887 cur_cfa
->reg
= dwf_regno (x
);
1888 cur_cfa
->base_offset
= offset
;
1889 cur_cfa
->indirect
= 1;
1896 span
= targetm
.dwarf_register_span (src
);
1898 queue_reg_save (src
, NULL_RTX
, offset
);
1901 /* We have a PARALLEL describing where the contents of SRC live.
1902 Queue register saves for each piece of the PARALLEL. */
1905 HOST_WIDE_INT span_offset
= offset
;
1907 gcc_assert (GET_CODE (span
) == PARALLEL
);
1909 limit
= XVECLEN (span
, 0);
1910 for (par_index
= 0; par_index
< limit
; par_index
++)
1912 rtx elem
= XVECEXP (span
, 0, par_index
);
1913 queue_reg_save (elem
, NULL_RTX
, span_offset
);
1914 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1924 /* Record call frame debugging information for INSN, which either sets
1925 SP or FP (adjusting how we calculate the frame address) or saves a
1926 register to the stack. */
1929 dwarf2out_frame_debug (rtx insn
)
1932 bool handled_one
= false;
1933 bool need_flush
= false;
1935 any_cfis_emitted
= false;
1937 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1938 switch (REG_NOTE_KIND (note
))
1940 case REG_FRAME_RELATED_EXPR
:
1941 insn
= XEXP (note
, 0);
1944 case REG_CFA_DEF_CFA
:
1945 dwarf2out_frame_debug_def_cfa (XEXP (note
, 0));
1949 case REG_CFA_ADJUST_CFA
:
1954 if (GET_CODE (n
) == PARALLEL
)
1955 n
= XVECEXP (n
, 0, 0);
1957 dwarf2out_frame_debug_adjust_cfa (n
);
1961 case REG_CFA_OFFSET
:
1964 n
= single_set (insn
);
1965 dwarf2out_frame_debug_cfa_offset (n
);
1969 case REG_CFA_REGISTER
:
1974 if (GET_CODE (n
) == PARALLEL
)
1975 n
= XVECEXP (n
, 0, 0);
1977 dwarf2out_frame_debug_cfa_register (n
);
1981 case REG_CFA_EXPRESSION
:
1984 n
= single_set (insn
);
1985 dwarf2out_frame_debug_cfa_expression (n
);
1989 case REG_CFA_RESTORE
:
1994 if (GET_CODE (n
) == PARALLEL
)
1995 n
= XVECEXP (n
, 0, 0);
1998 dwarf2out_frame_debug_cfa_restore (n
);
2002 case REG_CFA_SET_VDRAP
:
2006 dw_fde_ref fde
= cfun
->fde
;
2009 gcc_assert (fde
->vdrap_reg
== INVALID_REGNUM
);
2011 fde
->vdrap_reg
= dwf_regno (n
);
2017 case REG_CFA_WINDOW_SAVE
:
2018 dwarf2out_frame_debug_cfa_window_save ();
2022 case REG_CFA_FLUSH_QUEUE
:
2023 /* The actual flush happens below. */
2034 /* Minimize the number of advances by emitting the entire queue
2035 once anything is emitted. */
2036 need_flush
|= any_cfis_emitted
;
2040 insn
= PATTERN (insn
);
2042 dwarf2out_frame_debug_expr (insn
);
2044 /* Check again. A parallel can save and update the same register.
2045 We could probably check just once, here, but this is safer than
2046 removing the check at the start of the function. */
2047 if (any_cfis_emitted
|| clobbers_queued_reg_save (insn
))
2052 dwarf2out_flush_queued_reg_saves ();
2055 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2058 change_cfi_row (dw_cfi_row
*old_row
, dw_cfi_row
*new_row
)
2060 size_t i
, n_old
, n_new
, n_max
;
2063 if (new_row
->cfa_cfi
&& !cfi_equal_p (old_row
->cfa_cfi
, new_row
->cfa_cfi
))
2064 add_cfi (new_row
->cfa_cfi
);
2067 cfi
= def_cfa_0 (&old_row
->cfa
, &new_row
->cfa
);
2072 n_old
= VEC_length (dw_cfi_ref
, old_row
->reg_save
);
2073 n_new
= VEC_length (dw_cfi_ref
, new_row
->reg_save
);
2074 n_max
= MAX (n_old
, n_new
);
2076 for (i
= 0; i
< n_max
; ++i
)
2078 dw_cfi_ref r_old
= NULL
, r_new
= NULL
;
2081 r_old
= VEC_index (dw_cfi_ref
, old_row
->reg_save
, i
);
2083 r_new
= VEC_index (dw_cfi_ref
, new_row
->reg_save
, i
);
2087 else if (r_new
== NULL
)
2088 add_cfi_restore (i
);
2089 else if (!cfi_equal_p (r_old
, r_new
))
2094 /* Examine CFI and return true if a cfi label and set_loc is needed
2095 beforehand. Even when generating CFI assembler instructions, we
2096 still have to add the cfi to the list so that lookup_cfa_1 works
2097 later on. When -g2 and above we even need to force emitting of
2098 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2099 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2100 and so don't use convert_cfa_to_fb_loc_list. */
2103 cfi_label_required_p (dw_cfi_ref cfi
)
2105 if (!dwarf2out_do_cfi_asm ())
2108 if (dwarf_version
== 2
2109 && debug_info_level
> DINFO_LEVEL_TERSE
2110 && (write_symbols
== DWARF2_DEBUG
2111 || write_symbols
== VMS_AND_DWARF2_DEBUG
))
2113 switch (cfi
->dw_cfi_opc
)
2115 case DW_CFA_def_cfa_offset
:
2116 case DW_CFA_def_cfa_offset_sf
:
2117 case DW_CFA_def_cfa_register
:
2118 case DW_CFA_def_cfa
:
2119 case DW_CFA_def_cfa_sf
:
2120 case DW_CFA_def_cfa_expression
:
2121 case DW_CFA_restore_state
:
2130 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2131 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2134 add_cfis_to_fde (void)
2136 dw_fde_ref fde
= cfun
->fde
;
2138 /* We always start with a function_begin label. */
2141 for (insn
= get_insns (); insn
; insn
= next
)
2143 next
= NEXT_INSN (insn
);
2145 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2147 fde
->dw_fde_switch_cfi_index
2148 = VEC_length (dw_cfi_ref
, fde
->dw_fde_cfi
);
2149 /* Don't attempt to advance_loc4 between labels
2150 in different sections. */
2154 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2156 bool required
= cfi_label_required_p (NOTE_CFI (insn
));
2158 if (NOTE_P (next
) && NOTE_KIND (next
) == NOTE_INSN_CFI
)
2160 required
|= cfi_label_required_p (NOTE_CFI (next
));
2161 next
= NEXT_INSN (next
);
2163 else if (active_insn_p (next
)
2164 || (NOTE_P (next
) && (NOTE_KIND (next
)
2165 == NOTE_INSN_SWITCH_TEXT_SECTIONS
)))
2168 next
= NEXT_INSN (next
);
2171 int num
= dwarf2out_cfi_label_num
;
2172 const char *label
= dwarf2out_cfi_label ();
2176 /* Set the location counter to the new label. */
2178 xcfi
->dw_cfi_opc
= (first
? DW_CFA_set_loc
2179 : DW_CFA_advance_loc4
);
2180 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
2181 VEC_safe_push (dw_cfi_ref
, gc
, fde
->dw_fde_cfi
, xcfi
);
2183 tmp
= emit_note_before (NOTE_INSN_CFI_LABEL
, insn
);
2184 NOTE_LABEL_NUMBER (tmp
) = num
;
2189 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2190 VEC_safe_push (dw_cfi_ref
, gc
, fde
->dw_fde_cfi
,
2192 insn
= NEXT_INSN (insn
);
2194 while (insn
!= next
);
2200 /* If LABEL is the start of a trace, then initialize the state of that
2201 trace from CUR_TRACE and CUR_ROW. */
2204 maybe_record_trace_start (rtx start
, rtx origin
)
2207 HOST_WIDE_INT args_size
;
2209 ti
= get_trace_info (start
);
2210 gcc_assert (ti
!= NULL
);
2214 fprintf (dump_file
, " saw edge from trace %u to %u (via %s %d)\n",
2215 cur_trace
->id
, ti
->id
,
2216 (origin
? rtx_name
[(int) GET_CODE (origin
)] : "fallthru"),
2217 (origin
? INSN_UID (origin
) : 0));
2220 args_size
= cur_trace
->end_true_args_size
;
2221 if (ti
->beg_row
== NULL
)
2223 /* This is the first time we've encountered this trace. Propagate
2224 state across the edge and push the trace onto the work list. */
2225 ti
->beg_row
= copy_cfi_row (cur_row
);
2226 ti
->beg_true_args_size
= args_size
;
2228 ti
->cfa_store
= cur_trace
->cfa_store
;
2229 ti
->cfa_temp
= cur_trace
->cfa_temp
;
2230 ti
->regs_saved_in_regs
= VEC_copy (reg_saved_in_data
, heap
,
2231 cur_trace
->regs_saved_in_regs
);
2233 VEC_safe_push (dw_trace_info_ref
, heap
, trace_work_list
, ti
);
2236 fprintf (dump_file
, "\tpush trace %u to worklist\n", ti
->id
);
2241 /* We ought to have the same state incoming to a given trace no
2242 matter how we arrive at the trace. Anything else means we've
2243 got some kind of optimization error. */
2244 gcc_checking_assert (cfi_row_equal_p (cur_row
, ti
->beg_row
));
2246 /* The args_size is allowed to conflict if it isn't actually used. */
2247 if (ti
->beg_true_args_size
!= args_size
)
2248 ti
->args_size_undefined
= true;
2252 /* Similarly, but handle the args_size and CFA reset across EH
2253 and non-local goto edges. */
2256 maybe_record_trace_start_abnormal (rtx start
, rtx origin
)
2258 HOST_WIDE_INT save_args_size
, delta
;
2259 dw_cfa_location save_cfa
;
2261 save_args_size
= cur_trace
->end_true_args_size
;
2262 if (save_args_size
== 0)
2264 maybe_record_trace_start (start
, origin
);
2268 delta
= -save_args_size
;
2269 cur_trace
->end_true_args_size
= 0;
2271 save_cfa
= cur_row
->cfa
;
2272 if (cur_row
->cfa
.reg
== dw_stack_pointer_regnum
)
2274 /* Convert a change in args_size (always a positive in the
2275 direction of stack growth) to a change in stack pointer. */
2276 #ifndef STACK_GROWS_DOWNWARD
2279 cur_row
->cfa
.offset
+= delta
;
2282 maybe_record_trace_start (start
, origin
);
2284 cur_trace
->end_true_args_size
= save_args_size
;
2285 cur_row
->cfa
= save_cfa
;
2288 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2289 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2292 create_trace_edges (rtx insn
)
2299 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
2302 if (tablejump_p (insn
, NULL
, &tmp
))
2306 tmp
= PATTERN (tmp
);
2307 vec
= XVEC (tmp
, GET_CODE (tmp
) == ADDR_DIFF_VEC
);
2309 n
= GET_NUM_ELEM (vec
);
2310 for (i
= 0; i
< n
; ++i
)
2312 lab
= XEXP (RTVEC_ELT (vec
, i
), 0);
2313 maybe_record_trace_start (lab
, insn
);
2316 else if (computed_jump_p (insn
))
2318 for (lab
= forced_labels
; lab
; lab
= XEXP (lab
, 1))
2319 maybe_record_trace_start (XEXP (lab
, 0), insn
);
2321 else if (returnjump_p (insn
))
2323 else if ((tmp
= extract_asm_operands (PATTERN (insn
))) != NULL
)
2325 n
= ASM_OPERANDS_LABEL_LENGTH (tmp
);
2326 for (i
= 0; i
< n
; ++i
)
2328 lab
= XEXP (ASM_OPERANDS_LABEL (tmp
, i
), 0);
2329 maybe_record_trace_start (lab
, insn
);
2334 lab
= JUMP_LABEL (insn
);
2335 gcc_assert (lab
!= NULL
);
2336 maybe_record_trace_start (lab
, insn
);
2339 else if (CALL_P (insn
))
2341 /* Sibling calls don't have edges inside this function. */
2342 if (SIBLING_CALL_P (insn
))
2345 /* Process non-local goto edges. */
2346 if (can_nonlocal_goto (insn
))
2347 for (lab
= nonlocal_goto_handler_labels
; lab
; lab
= XEXP (lab
, 1))
2348 maybe_record_trace_start_abnormal (XEXP (lab
, 0), insn
);
2350 else if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2352 rtx seq
= PATTERN (insn
);
2353 int i
, n
= XVECLEN (seq
, 0);
2354 for (i
= 0; i
< n
; ++i
)
2355 create_trace_edges (XVECEXP (seq
, 0, i
));
2359 /* Process EH edges. */
2360 if (CALL_P (insn
) || cfun
->can_throw_non_call_exceptions
)
2362 eh_landing_pad lp
= get_eh_landing_pad_from_rtx (insn
);
2364 maybe_record_trace_start_abnormal (lp
->landing_pad
, insn
);
2368 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2371 scan_insn_after (rtx insn
)
2373 if (RTX_FRAME_RELATED_P (insn
))
2374 dwarf2out_frame_debug (insn
);
2375 notice_args_size (insn
);
2378 /* Scan the trace beginning at INSN and create the CFI notes for the
2379 instructions therein. */
2382 scan_trace (dw_trace_info
*trace
)
2384 rtx prev
, insn
= trace
->head
;
2385 dw_cfa_location this_cfa
;
2388 fprintf (dump_file
, "Processing trace %u : start at %s %d\n",
2389 trace
->id
, rtx_name
[(int) GET_CODE (insn
)],
2392 trace
->end_row
= copy_cfi_row (trace
->beg_row
);
2393 trace
->end_true_args_size
= trace
->beg_true_args_size
;
2396 cur_row
= trace
->end_row
;
2398 this_cfa
= cur_row
->cfa
;
2399 cur_cfa
= &this_cfa
;
2401 for (prev
= insn
, insn
= NEXT_INSN (insn
);
2403 prev
= insn
, insn
= NEXT_INSN (insn
))
2407 /* Do everything that happens "before" the insn. */
2408 add_cfi_insn
= prev
;
2410 /* Notice the end of a trace. */
2411 if (BARRIER_P (insn
))
2413 /* Don't bother saving the unneeded queued registers at all. */
2414 VEC_truncate (queued_reg_save
, queued_reg_saves
, 0);
2417 if (save_point_p (insn
))
2419 /* Propagate across fallthru edges. */
2420 dwarf2out_flush_queued_reg_saves ();
2421 maybe_record_trace_start (insn
, NULL
);
2425 if (DEBUG_INSN_P (insn
) || !inside_basic_block_p (insn
))
2428 /* Handle all changes to the row state. Sequences require special
2429 handling for the positioning of the notes. */
2430 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2432 rtx elt
, pat
= PATTERN (insn
);
2433 int i
, n
= XVECLEN (pat
, 0);
2435 control
= XVECEXP (pat
, 0, 0);
2436 if (can_throw_internal (control
))
2437 notice_eh_throw (control
);
2438 dwarf2out_flush_queued_reg_saves ();
2440 if (JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
))
2442 /* ??? Hopefully multiple delay slots are not annulled. */
2443 gcc_assert (n
== 2);
2444 gcc_assert (!RTX_FRAME_RELATED_P (control
));
2445 gcc_assert (!find_reg_note (control
, REG_ARGS_SIZE
, NULL
));
2447 elt
= XVECEXP (pat
, 0, 1);
2449 /* If ELT is an instruction from target of an annulled branch,
2450 the effects are for the target only and so the args_size
2451 and CFA along the current path shouldn't change. */
2452 if (INSN_FROM_TARGET_P (elt
))
2454 HOST_WIDE_INT restore_args_size
;
2456 add_cfi_insn
= NULL
;
2457 restore_args_size
= cur_trace
->end_true_args_size
;
2458 cur_cfa
= &cur_row
->cfa
;
2460 scan_insn_after (elt
);
2462 /* ??? Should we instead save the entire row state? */
2463 gcc_assert (!VEC_length (queued_reg_save
, queued_reg_saves
));
2465 create_trace_edges (control
);
2467 cur_trace
->end_true_args_size
= restore_args_size
;
2468 cur_row
->cfa
= this_cfa
;
2469 cur_cfa
= &this_cfa
;
2474 /* The insns in the delay slot should all be considered to happen
2475 "before" a call insn. Consider a call with a stack pointer
2476 adjustment in the delay slot. The backtrace from the callee
2477 should include the sp adjustment. Unfortunately, that leaves
2478 us with an unavoidable unwinding error exactly at the call insn
2479 itself. For jump insns we'd prefer to avoid this error by
2480 placing the notes after the sequence. */
2481 if (JUMP_P (control
))
2482 add_cfi_insn
= insn
;
2484 for (i
= 1; i
< n
; ++i
)
2486 elt
= XVECEXP (pat
, 0, i
);
2487 scan_insn_after (elt
);
2490 /* Make sure any register saves are visible at the jump target. */
2491 dwarf2out_flush_queued_reg_saves ();
2493 /* However, if there is some adjustment on the call itself, e.g.
2494 a call_pop, that action should be considered to happen after
2495 the call returns. */
2496 add_cfi_insn
= insn
;
2497 scan_insn_after (control
);
2501 /* Flush data before calls and jumps, and of course if necessary. */
2502 if (can_throw_internal (insn
))
2504 notice_eh_throw (insn
);
2505 dwarf2out_flush_queued_reg_saves ();
2507 else if (!NONJUMP_INSN_P (insn
)
2508 || clobbers_queued_reg_save (insn
)
2509 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2510 dwarf2out_flush_queued_reg_saves ();
2512 add_cfi_insn
= insn
;
2513 scan_insn_after (insn
);
2517 /* Between frame-related-p and args_size we might have otherwise
2518 emitted two cfa adjustments. Do it now. */
2519 def_cfa_1 (&this_cfa
);
2521 /* Note that a test for control_flow_insn_p does exactly the
2522 same tests as are done to actually create the edges. So
2523 always call the routine and let it not create edges for
2524 non-control-flow insns. */
2525 create_trace_edges (control
);
2528 add_cfi_insn
= NULL
;
2534 /* Scan the function and create the initial set of CFI notes. */
2537 create_cfi_notes (void)
2541 gcc_checking_assert (queued_reg_saves
== NULL
);
2542 gcc_checking_assert (trace_work_list
== NULL
);
2544 /* Always begin at the entry trace. */
2545 ti
= VEC_index (dw_trace_info
, trace_info
, 0);
2548 while (!VEC_empty (dw_trace_info_ref
, trace_work_list
))
2550 ti
= VEC_pop (dw_trace_info_ref
, trace_work_list
);
2554 VEC_free (queued_reg_save
, heap
, queued_reg_saves
);
2555 VEC_free (dw_trace_info_ref
, heap
, trace_work_list
);
2558 /* Return the insn before the first NOTE_INSN_CFI after START. */
2561 before_next_cfi_note (rtx start
)
2566 if (NOTE_P (start
) && NOTE_KIND (start
) == NOTE_INSN_CFI
)
2569 start
= NEXT_INSN (start
);
2574 /* Insert CFI notes between traces to properly change state between them. */
2577 connect_traces (void)
2579 unsigned i
, n
= VEC_length (dw_trace_info
, trace_info
);
2580 dw_trace_info
*prev_ti
, *ti
;
2582 /* ??? Ideally, we should have both queued and processed every trace.
2583 However the current representation of constant pools on various targets
2584 is indistinguishable from unreachable code. Assume for the moment that
2585 we can simply skip over such traces. */
2586 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2587 these are not "real" instructions, and should not be considered.
2588 This could be generically useful for tablejump data as well. */
2589 /* Remove all unprocessed traces from the list. */
2590 for (i
= n
- 1; i
> 0; --i
)
2592 ti
= VEC_index (dw_trace_info
, trace_info
, i
);
2593 if (ti
->beg_row
== NULL
)
2595 VEC_ordered_remove (dw_trace_info
, trace_info
, i
);
2599 gcc_assert (ti
->end_row
!= NULL
);
2602 /* Work from the end back to the beginning. This lets us easily insert
2603 remember/restore_state notes in the correct order wrt other notes. */
2604 prev_ti
= VEC_index (dw_trace_info
, trace_info
, n
- 1);
2605 for (i
= n
- 1; i
> 0; --i
)
2607 dw_cfi_row
*old_row
;
2610 prev_ti
= VEC_index (dw_trace_info
, trace_info
, i
- 1);
2612 add_cfi_insn
= ti
->head
;
2614 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2615 for the portion of the function in the alternate text
2616 section. The row state at the very beginning of that
2617 new FDE will be exactly the row state from the CIE. */
2618 if (ti
->switch_sections
)
2619 old_row
= cie_cfi_row
;
2622 old_row
= prev_ti
->end_row
;
2623 /* If there's no change from the previous end state, fine. */
2624 if (cfi_row_equal_p (old_row
, ti
->beg_row
))
2626 /* Otherwise check for the common case of sharing state with
2627 the beginning of an epilogue, but not the end. Insert
2628 remember/restore opcodes in that case. */
2629 else if (cfi_row_equal_p (prev_ti
->beg_row
, ti
->beg_row
))
2633 /* Note that if we blindly insert the remember at the
2634 start of the trace, we can wind up increasing the
2635 size of the unwind info due to extra advance opcodes.
2636 Instead, put the remember immediately before the next
2637 state change. We know there must be one, because the
2638 state at the beginning and head of the trace differ. */
2639 add_cfi_insn
= before_next_cfi_note (prev_ti
->head
);
2641 cfi
->dw_cfi_opc
= DW_CFA_remember_state
;
2644 add_cfi_insn
= ti
->head
;
2646 cfi
->dw_cfi_opc
= DW_CFA_restore_state
;
2649 old_row
= prev_ti
->beg_row
;
2651 /* Otherwise, we'll simply change state from the previous end. */
2654 change_cfi_row (old_row
, ti
->beg_row
);
2656 if (dump_file
&& add_cfi_insn
!= ti
->head
)
2660 fprintf (dump_file
, "Fixup between trace %u and %u:\n",
2661 prev_ti
->id
, ti
->id
);
2666 note
= NEXT_INSN (note
);
2667 gcc_assert (NOTE_P (note
) && NOTE_KIND (note
) == NOTE_INSN_CFI
);
2668 output_cfi_directive (dump_file
, NOTE_CFI (note
));
2670 while (note
!= add_cfi_insn
);
2674 /* Connect args_size between traces that have can_throw_internal insns. */
2675 if (cfun
->eh
->lp_array
!= NULL
)
2677 HOST_WIDE_INT prev_args_size
= 0;
2679 for (i
= 0; i
< n
; ++i
)
2681 ti
= VEC_index (dw_trace_info
, trace_info
, i
);
2683 if (ti
->switch_sections
)
2685 if (ti
->eh_head
== NULL
)
2687 gcc_assert (!ti
->args_size_undefined
);
2689 if (ti
->beg_delay_args_size
!= prev_args_size
)
2691 /* ??? Search back to previous CFI note. */
2692 add_cfi_insn
= PREV_INSN (ti
->eh_head
);
2693 add_cfi_args_size (ti
->beg_delay_args_size
);
2696 prev_args_size
= ti
->end_delay_args_size
;
2701 /* Set up the pseudo-cfg of instruction traces, as described at the
2702 block comment at the top of the file. */
2705 create_pseudo_cfg (void)
2707 bool saw_barrier
, switch_sections
;
2712 /* The first trace begins at the start of the function,
2713 and begins with the CIE row state. */
2714 trace_info
= VEC_alloc (dw_trace_info
, heap
, 16);
2715 ti
= VEC_quick_push (dw_trace_info
, trace_info
, NULL
);
2717 memset (ti
, 0, sizeof (*ti
));
2718 ti
->head
= get_insns ();
2719 ti
->beg_row
= cie_cfi_row
;
2720 ti
->cfa_store
= cie_cfi_row
->cfa
;
2721 ti
->cfa_temp
.reg
= INVALID_REGNUM
;
2722 if (cie_return_save
)
2723 VEC_safe_push (reg_saved_in_data
, heap
,
2724 ti
->regs_saved_in_regs
, cie_return_save
);
2726 /* Walk all the insns, collecting start of trace locations. */
2727 saw_barrier
= false;
2728 switch_sections
= false;
2729 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2731 if (BARRIER_P (insn
))
2733 else if (NOTE_P (insn
)
2734 && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2736 /* We should have just seen a barrier. */
2737 gcc_assert (saw_barrier
);
2738 switch_sections
= true;
2740 /* Watch out for save_point notes between basic blocks.
2741 In particular, a note after a barrier. Do not record these,
2742 delaying trace creation until the label. */
2743 else if (save_point_p (insn
)
2744 && (LABEL_P (insn
) || !saw_barrier
))
2746 ti
= VEC_safe_push (dw_trace_info
, heap
, trace_info
, NULL
);
2747 memset (ti
, 0, sizeof (*ti
));
2749 ti
->switch_sections
= switch_sections
;
2750 ti
->id
= VEC_length (dw_trace_info
, trace_info
) - 1;
2752 saw_barrier
= false;
2753 switch_sections
= false;
2757 /* Create the trace index after we've finished building trace_info,
2758 avoiding stale pointer problems due to reallocation. */
2759 trace_index
= htab_create (VEC_length (dw_trace_info
, trace_info
),
2760 dw_trace_info_hash
, dw_trace_info_eq
, NULL
);
2761 FOR_EACH_VEC_ELT (dw_trace_info
, trace_info
, i
, ti
)
2766 fprintf (dump_file
, "Creating trace %u : start at %s %d%s\n", i
,
2767 rtx_name
[(int) GET_CODE (ti
->head
)], INSN_UID (ti
->head
),
2768 ti
->switch_sections
? " (section switch)" : "");
2770 slot
= htab_find_slot_with_hash (trace_index
, ti
,
2771 INSN_UID (ti
->head
), INSERT
);
2772 gcc_assert (*slot
== NULL
);
2773 *slot
= (void *) ti
;
2777 /* Record the initial position of the return address. RTL is
2778 INCOMING_RETURN_ADDR_RTX. */
2781 initial_return_save (rtx rtl
)
2783 unsigned int reg
= INVALID_REGNUM
;
2784 HOST_WIDE_INT offset
= 0;
2786 switch (GET_CODE (rtl
))
2789 /* RA is in a register. */
2790 reg
= dwf_regno (rtl
);
2794 /* RA is on the stack. */
2795 rtl
= XEXP (rtl
, 0);
2796 switch (GET_CODE (rtl
))
2799 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
2804 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2805 offset
= INTVAL (XEXP (rtl
, 1));
2809 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2810 offset
= -INTVAL (XEXP (rtl
, 1));
2820 /* The return address is at some offset from any value we can
2821 actually load. For instance, on the SPARC it is in %i7+8. Just
2822 ignore the offset for now; it doesn't matter for unwinding frames. */
2823 gcc_assert (CONST_INT_P (XEXP (rtl
, 1)));
2824 initial_return_save (XEXP (rtl
, 0));
2831 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
2833 if (reg
!= INVALID_REGNUM
)
2834 record_reg_saved_in_reg (rtl
, pc_rtx
);
2835 reg_save (DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cur_row
->cfa
.offset
);
2840 create_cie_data (void)
2842 dw_cfa_location loc
;
2843 dw_trace_info cie_trace
;
2845 dw_stack_pointer_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
2846 dw_frame_pointer_regnum
= DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
);
2848 memset (&cie_trace
, 0, sizeof(cie_trace
));
2849 cur_trace
= &cie_trace
;
2851 add_cfi_vec
= &cie_cfi_vec
;
2852 cie_cfi_row
= cur_row
= new_cfi_row ();
2854 /* On entry, the Canonical Frame Address is at SP. */
2855 memset(&loc
, 0, sizeof (loc
));
2856 loc
.reg
= dw_stack_pointer_regnum
;
2857 loc
.offset
= INCOMING_FRAME_SP_OFFSET
;
2860 if (targetm
.debug_unwind_info () == UI_DWARF2
2861 || targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
2863 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2865 /* For a few targets, we have the return address incoming into a
2866 register, but choose a different return column. This will result
2867 in a DW_CFA_register for the return, and an entry in
2868 regs_saved_in_regs to match. If the target later stores that
2869 return address register to the stack, we want to be able to emit
2870 the DW_CFA_offset against the return column, not the intermediate
2871 save register. Save the contents of regs_saved_in_regs so that
2872 we can re-initialize it at the start of each function. */
2873 switch (VEC_length (reg_saved_in_data
, cie_trace
.regs_saved_in_regs
))
2878 cie_return_save
= ggc_alloc_reg_saved_in_data ();
2879 *cie_return_save
= *VEC_index (reg_saved_in_data
,
2880 cie_trace
.regs_saved_in_regs
, 0);
2881 VEC_free (reg_saved_in_data
, heap
, cie_trace
.regs_saved_in_regs
);
2893 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2894 state at each location within the function. These notes will be
2895 emitted during pass_final. */
2898 execute_dwarf2_frame (void)
2900 /* The first time we're called, compute the incoming frame state. */
2901 if (cie_cfi_vec
== NULL
)
2904 dwarf2out_alloc_current_fde ();
2906 create_pseudo_cfg ();
2909 create_cfi_notes ();
2913 /* Free all the data we allocated. */
2918 FOR_EACH_VEC_ELT (dw_trace_info
, trace_info
, i
, ti
)
2919 VEC_free (reg_saved_in_data
, heap
, ti
->regs_saved_in_regs
);
2921 VEC_free (dw_trace_info
, heap
, trace_info
);
2923 htab_delete (trace_index
);
2929 /* Convert a DWARF call frame info. operation to its string name */
2932 dwarf_cfi_name (unsigned int cfi_opc
)
2936 case DW_CFA_advance_loc
:
2937 return "DW_CFA_advance_loc";
2939 return "DW_CFA_offset";
2940 case DW_CFA_restore
:
2941 return "DW_CFA_restore";
2943 return "DW_CFA_nop";
2944 case DW_CFA_set_loc
:
2945 return "DW_CFA_set_loc";
2946 case DW_CFA_advance_loc1
:
2947 return "DW_CFA_advance_loc1";
2948 case DW_CFA_advance_loc2
:
2949 return "DW_CFA_advance_loc2";
2950 case DW_CFA_advance_loc4
:
2951 return "DW_CFA_advance_loc4";
2952 case DW_CFA_offset_extended
:
2953 return "DW_CFA_offset_extended";
2954 case DW_CFA_restore_extended
:
2955 return "DW_CFA_restore_extended";
2956 case DW_CFA_undefined
:
2957 return "DW_CFA_undefined";
2958 case DW_CFA_same_value
:
2959 return "DW_CFA_same_value";
2960 case DW_CFA_register
:
2961 return "DW_CFA_register";
2962 case DW_CFA_remember_state
:
2963 return "DW_CFA_remember_state";
2964 case DW_CFA_restore_state
:
2965 return "DW_CFA_restore_state";
2966 case DW_CFA_def_cfa
:
2967 return "DW_CFA_def_cfa";
2968 case DW_CFA_def_cfa_register
:
2969 return "DW_CFA_def_cfa_register";
2970 case DW_CFA_def_cfa_offset
:
2971 return "DW_CFA_def_cfa_offset";
2974 case DW_CFA_def_cfa_expression
:
2975 return "DW_CFA_def_cfa_expression";
2976 case DW_CFA_expression
:
2977 return "DW_CFA_expression";
2978 case DW_CFA_offset_extended_sf
:
2979 return "DW_CFA_offset_extended_sf";
2980 case DW_CFA_def_cfa_sf
:
2981 return "DW_CFA_def_cfa_sf";
2982 case DW_CFA_def_cfa_offset_sf
:
2983 return "DW_CFA_def_cfa_offset_sf";
2985 /* SGI/MIPS specific */
2986 case DW_CFA_MIPS_advance_loc8
:
2987 return "DW_CFA_MIPS_advance_loc8";
2989 /* GNU extensions */
2990 case DW_CFA_GNU_window_save
:
2991 return "DW_CFA_GNU_window_save";
2992 case DW_CFA_GNU_args_size
:
2993 return "DW_CFA_GNU_args_size";
2994 case DW_CFA_GNU_negative_offset_extended
:
2995 return "DW_CFA_GNU_negative_offset_extended";
2998 return "DW_CFA_<unknown>";
3002 /* This routine will generate the correct assembly data for a location
3003 description based on a cfi entry with a complex address. */
3006 output_cfa_loc (dw_cfi_ref cfi
, int for_eh
)
3008 dw_loc_descr_ref loc
;
3011 if (cfi
->dw_cfi_opc
== DW_CFA_expression
)
3014 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3015 dw2_asm_output_data (1, r
, NULL
);
3016 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3019 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3021 /* Output the size of the block. */
3022 size
= size_of_locs (loc
);
3023 dw2_asm_output_data_uleb128 (size
, NULL
);
3025 /* Now output the operations themselves. */
3026 output_loc_sequence (loc
, for_eh
);
3029 /* Similar, but used for .cfi_escape. */
3032 output_cfa_loc_raw (dw_cfi_ref cfi
)
3034 dw_loc_descr_ref loc
;
3037 if (cfi
->dw_cfi_opc
== DW_CFA_expression
)
3040 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3041 fprintf (asm_out_file
, "%#x,", r
);
3042 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3045 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3047 /* Output the size of the block. */
3048 size
= size_of_locs (loc
);
3049 dw2_asm_output_data_uleb128_raw (size
);
3050 fputc (',', asm_out_file
);
3052 /* Now output the operations themselves. */
3053 output_loc_sequence_raw (loc
);
3056 /* Output a Call Frame Information opcode and its operand(s). */
3059 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
3064 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
3065 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
3066 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
3067 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
3068 ((unsigned HOST_WIDE_INT
)
3069 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
));
3070 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
3072 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3073 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3074 "DW_CFA_offset, column %#lx", r
);
3075 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3076 dw2_asm_output_data_uleb128 (off
, NULL
);
3078 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
3080 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3081 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3082 "DW_CFA_restore, column %#lx", r
);
3086 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
3087 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
3089 switch (cfi
->dw_cfi_opc
)
3091 case DW_CFA_set_loc
:
3093 dw2_asm_output_encoded_addr_rtx (
3094 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3095 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
3098 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
3099 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
3100 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3103 case DW_CFA_advance_loc1
:
3104 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3105 fde
->dw_fde_current_label
, NULL
);
3106 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3109 case DW_CFA_advance_loc2
:
3110 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3111 fde
->dw_fde_current_label
, NULL
);
3112 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3115 case DW_CFA_advance_loc4
:
3116 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3117 fde
->dw_fde_current_label
, NULL
);
3118 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3121 case DW_CFA_MIPS_advance_loc8
:
3122 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3123 fde
->dw_fde_current_label
, NULL
);
3124 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3127 case DW_CFA_offset_extended
:
3128 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3129 dw2_asm_output_data_uleb128 (r
, NULL
);
3130 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3131 dw2_asm_output_data_uleb128 (off
, NULL
);
3134 case DW_CFA_def_cfa
:
3135 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3136 dw2_asm_output_data_uleb128 (r
, NULL
);
3137 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
3140 case DW_CFA_offset_extended_sf
:
3141 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3142 dw2_asm_output_data_uleb128 (r
, NULL
);
3143 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3144 dw2_asm_output_data_sleb128 (off
, NULL
);
3147 case DW_CFA_def_cfa_sf
:
3148 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3149 dw2_asm_output_data_uleb128 (r
, NULL
);
3150 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3151 dw2_asm_output_data_sleb128 (off
, NULL
);
3154 case DW_CFA_restore_extended
:
3155 case DW_CFA_undefined
:
3156 case DW_CFA_same_value
:
3157 case DW_CFA_def_cfa_register
:
3158 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3159 dw2_asm_output_data_uleb128 (r
, NULL
);
3162 case DW_CFA_register
:
3163 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3164 dw2_asm_output_data_uleb128 (r
, NULL
);
3165 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
3166 dw2_asm_output_data_uleb128 (r
, NULL
);
3169 case DW_CFA_def_cfa_offset
:
3170 case DW_CFA_GNU_args_size
:
3171 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
3174 case DW_CFA_def_cfa_offset_sf
:
3175 off
= div_data_align (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3176 dw2_asm_output_data_sleb128 (off
, NULL
);
3179 case DW_CFA_GNU_window_save
:
3182 case DW_CFA_def_cfa_expression
:
3183 case DW_CFA_expression
:
3184 output_cfa_loc (cfi
, for_eh
);
3187 case DW_CFA_GNU_negative_offset_extended
:
3188 /* Obsoleted by DW_CFA_offset_extended_sf. */
3197 /* Similar, but do it via assembler directives instead. */
3200 output_cfi_directive (FILE *f
, dw_cfi_ref cfi
)
3202 unsigned long r
, r2
;
3204 switch (cfi
->dw_cfi_opc
)
3206 case DW_CFA_advance_loc
:
3207 case DW_CFA_advance_loc1
:
3208 case DW_CFA_advance_loc2
:
3209 case DW_CFA_advance_loc4
:
3210 case DW_CFA_MIPS_advance_loc8
:
3211 case DW_CFA_set_loc
:
3212 /* Should only be created in a code path not followed when emitting
3213 via directives. The assembler is going to take care of this for
3214 us. But this routines is also used for debugging dumps, so
3216 gcc_assert (f
!= asm_out_file
);
3217 fprintf (f
, "\t.cfi_advance_loc\n");
3221 case DW_CFA_offset_extended
:
3222 case DW_CFA_offset_extended_sf
:
3223 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3224 fprintf (f
, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC
"\n",
3225 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3228 case DW_CFA_restore
:
3229 case DW_CFA_restore_extended
:
3230 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3231 fprintf (f
, "\t.cfi_restore %lu\n", r
);
3234 case DW_CFA_undefined
:
3235 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3236 fprintf (f
, "\t.cfi_undefined %lu\n", r
);
3239 case DW_CFA_same_value
:
3240 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3241 fprintf (f
, "\t.cfi_same_value %lu\n", r
);
3244 case DW_CFA_def_cfa
:
3245 case DW_CFA_def_cfa_sf
:
3246 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3247 fprintf (f
, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC
"\n",
3248 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3251 case DW_CFA_def_cfa_register
:
3252 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3253 fprintf (f
, "\t.cfi_def_cfa_register %lu\n", r
);
3256 case DW_CFA_register
:
3257 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3258 r2
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, 1);
3259 fprintf (f
, "\t.cfi_register %lu, %lu\n", r
, r2
);
3262 case DW_CFA_def_cfa_offset
:
3263 case DW_CFA_def_cfa_offset_sf
:
3264 fprintf (f
, "\t.cfi_def_cfa_offset "
3265 HOST_WIDE_INT_PRINT_DEC
"\n",
3266 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3269 case DW_CFA_remember_state
:
3270 fprintf (f
, "\t.cfi_remember_state\n");
3272 case DW_CFA_restore_state
:
3273 fprintf (f
, "\t.cfi_restore_state\n");
3276 case DW_CFA_GNU_args_size
:
3277 if (f
== asm_out_file
)
3279 fprintf (f
, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size
);
3280 dw2_asm_output_data_uleb128_raw (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3282 fprintf (f
, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC
,
3283 ASM_COMMENT_START
, cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3288 fprintf (f
, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC
"\n",
3289 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3293 case DW_CFA_GNU_window_save
:
3294 fprintf (f
, "\t.cfi_window_save\n");
3297 case DW_CFA_def_cfa_expression
:
3298 if (f
!= asm_out_file
)
3300 fprintf (f
, "\t.cfi_def_cfa_expression ...\n");
3304 case DW_CFA_expression
:
3305 if (f
!= asm_out_file
)
3307 fprintf (f
, "\t.cfi_cfa_expression ...\n");
3310 fprintf (f
, "\t.cfi_escape %#x,", cfi
->dw_cfi_opc
);
3311 output_cfa_loc_raw (cfi
);
3321 dwarf2out_emit_cfi (dw_cfi_ref cfi
)
3323 if (dwarf2out_do_cfi_asm ())
3324 output_cfi_directive (asm_out_file
, cfi
);
3328 dump_cfi_row (FILE *f
, dw_cfi_row
*row
)
3336 dw_cfa_location dummy
;
3337 memset(&dummy
, 0, sizeof(dummy
));
3338 dummy
.reg
= INVALID_REGNUM
;
3339 cfi
= def_cfa_0 (&dummy
, &row
->cfa
);
3341 output_cfi_directive (f
, cfi
);
3343 FOR_EACH_VEC_ELT (dw_cfi_ref
, row
->reg_save
, i
, cfi
)
3345 output_cfi_directive (f
, cfi
);
3348 void debug_cfi_row (dw_cfi_row
*row
);
3351 debug_cfi_row (dw_cfi_row
*row
)
3353 dump_cfi_row (stderr
, row
);
3357 /* Save the result of dwarf2out_do_frame across PCH.
3358 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3359 static GTY(()) signed char saved_do_cfi_asm
= 0;
3361 /* Decide whether we want to emit frame unwind information for the current
3362 translation unit. */
3365 dwarf2out_do_frame (void)
3367 /* We want to emit correct CFA location expressions or lists, so we
3368 have to return true if we're going to output debug info, even if
3369 we're not going to output frame or unwind info. */
3370 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3373 if (saved_do_cfi_asm
> 0)
3376 if (targetm
.debug_unwind_info () == UI_DWARF2
)
3379 if ((flag_unwind_tables
|| flag_exceptions
)
3380 && targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
3386 /* Decide whether to emit frame unwind via assembler directives. */
3389 dwarf2out_do_cfi_asm (void)
3393 #ifdef MIPS_DEBUGGING_INFO
3397 if (saved_do_cfi_asm
!= 0)
3398 return saved_do_cfi_asm
> 0;
3400 /* Assume failure for a moment. */
3401 saved_do_cfi_asm
= -1;
3403 if (!flag_dwarf2_cfi_asm
|| !dwarf2out_do_frame ())
3405 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE
)
3408 /* Make sure the personality encoding is one the assembler can support.
3409 In particular, aligned addresses can't be handled. */
3410 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3411 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3413 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3414 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3417 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3418 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3419 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3420 && !flag_unwind_tables
&& !flag_exceptions
3421 && targetm_common
.except_unwind_info (&global_options
) != UI_DWARF2
)
3425 saved_do_cfi_asm
= 1;
3430 gate_dwarf2_frame (void)
3432 #ifndef HAVE_prologue
3433 /* Targets which still implement the prologue in assembler text
3434 cannot use the generic dwarf2 unwinding. */
3438 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3439 from the optimized shrink-wrapping annotations that we will compute.
3440 For now, only produce the CFI notes for dwarf2. */
3441 return dwarf2out_do_frame ();
3444 struct rtl_opt_pass pass_dwarf2_frame
=
3448 "dwarf2", /* name */
3449 gate_dwarf2_frame
, /* gate */
3450 execute_dwarf2_frame
, /* execute */
3453 0, /* static_pass_number */
3454 TV_FINAL
, /* tv_id */
3455 0, /* properties_required */
3456 0, /* properties_provided */
3457 0, /* properties_destroyed */
3458 0, /* todo_flags_start */
3459 0 /* todo_flags_finish */
3463 #include "gt-dwarf2cfi.h"