* system.h (ENCODE_SECTION_INFO): Poison it.
[official-gcc.git] / gcc / config / v850 / v850.h
blob54a1bec63243759b8c3874da2163fe80b3d154d1
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #ifndef GCC_V850_H
24 #define GCC_V850_H
26 /* These are defiend in svr4.h but we want to override them. */
27 #undef ASM_FINAL_SPEC
28 #undef LIB_SPEC
29 #undef ENDFILE_SPEC
30 #undef LINK_SPEC
31 #undef STARTFILE_SPEC
32 #undef ASM_SPEC
35 #define TARGET_CPU_generic 1
37 #ifndef TARGET_CPU_DEFAULT
38 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
39 #endif
41 #define MASK_DEFAULT MASK_V850
42 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
43 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
44 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
47 #define ASM_SPEC "%{mv*:-mv%*}"
48 #define CPP_SPEC "%{mv850ea:-D__v850ea__} %{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
50 #define EXTRA_SPECS \
51 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
52 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
54 /* Names to predefine in the preprocessor for this target machine. */
55 #define CPP_PREDEFINES "-D__v851__ -D__v850"
57 /* Run-time compilation parameters selecting different hardware subsets. */
59 extern int target_flags;
61 /* Target flags bits, see below for an explanation of the bits. */
62 #define MASK_GHS 0x00000001
63 #define MASK_LONG_CALLS 0x00000002
64 #define MASK_EP 0x00000004
65 #define MASK_PROLOG_FUNCTION 0x00000008
66 #define MASK_DEBUG 0x40000000
68 #define MASK_CPU 0x00000030
69 #define MASK_V850 0x00000010
71 #define MASK_BIG_SWITCH 0x00000100
73 /* Macros used in the machine description to test the flags. */
75 /* The GHS calling convention support doesn't really work,
76 mostly due to a lack of documentation. Outstanding issues:
78 * How do varargs & stdarg really work. How to they handle
79 passing structures (if at all).
81 * Doubles are normally 4 byte aligned, except in argument
82 lists where they are 8 byte aligned. Is the alignment
83 in the argument list based on the first parameter,
84 first stack parameter, etc etc.
86 * Passing/returning of large structures probably isn't the same
87 as GHS. We don't have enough documentation on their conventions
88 to be compatible.
90 * Tests of SETUP_INCOMING_VARARGS need to be made runtime checks
91 since it depends on TARGET_GHS. */
92 #define TARGET_GHS (target_flags & MASK_GHS)
94 /* Don't do PC-relative calls, instead load the address of the target
95 function into a register and perform a register indirect call. */
96 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
98 /* Whether to optimize space by using ep (r30) for pointers with small offsets
99 in basic blocks. */
100 #define TARGET_EP (target_flags & MASK_EP)
102 /* Whether to call out-of-line functions to save registers or not. */
103 #define TARGET_PROLOG_FUNCTION (target_flags & MASK_PROLOG_FUNCTION)
105 #define TARGET_V850 ((target_flags & MASK_CPU) == MASK_V850)
107 /* Whether to emit 2 byte per entry or 4 byte per entry switch tables. */
108 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
110 /* General debug flag */
111 #define TARGET_DEBUG (target_flags & MASK_DEBUG)
113 /* Macro to define tables used to set the flags.
114 This is a list in braces of pairs in braces,
115 each pair being { "NAME", VALUE }
116 where VALUE is the bits to set or minus the bits to clear.
117 An empty string NAME is used to identify the default VALUE. */
119 #define TARGET_SWITCHES \
120 {{ "ghs", MASK_GHS, N_("Support Green Hills ABI") }, \
121 { "no-ghs", -MASK_GHS, "" }, \
122 { "long-calls", MASK_LONG_CALLS, \
123 N_("Prohibit PC relative function calls") },\
124 { "no-long-calls", -MASK_LONG_CALLS, "" }, \
125 { "ep", MASK_EP, \
126 N_("Reuse r30 on a per function basis") }, \
127 { "no-ep", -MASK_EP, "" }, \
128 { "prolog-function", MASK_PROLOG_FUNCTION, \
129 N_("Use stubs for function prologues") }, \
130 { "no-prolog-function", -MASK_PROLOG_FUNCTION, "" }, \
131 { "space", MASK_EP | MASK_PROLOG_FUNCTION, \
132 N_("Same as: -mep -mprolog-function") }, \
133 { "debug", MASK_DEBUG, N_("Enable backend debugging") }, \
134 { "v850", MASK_V850, \
135 N_("Compile for the v850 processor") }, \
136 { "v850", -(MASK_V850 ^ MASK_CPU), "" }, \
137 { "big-switch", MASK_BIG_SWITCH, \
138 N_("Use 4 byte entries in switch tables") },\
139 { "", MASK_DEFAULT, ""}}
141 /* Information about the various small memory areas. */
142 struct small_memory_info {
143 const char *name;
144 const char *value;
145 long max;
146 long physical_max;
149 enum small_memory_type {
150 /* tiny data area, using EP as base register */
151 SMALL_MEMORY_TDA = 0,
152 /* small data area using dp as base register */
153 SMALL_MEMORY_SDA,
154 /* zero data area using r0 as base register */
155 SMALL_MEMORY_ZDA,
156 SMALL_MEMORY_max
159 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
161 #define TARGET_OPTIONS \
163 { "tda=", &small_memory[ (int)SMALL_MEMORY_TDA ].value, \
164 N_("Set the max size of data eligible for the TDA area") }, \
165 { "tda-", &small_memory[ (int)SMALL_MEMORY_TDA ].value, "" }, \
166 { "sda=", &small_memory[ (int)SMALL_MEMORY_SDA ].value, \
167 N_("Set the max size of data eligible for the SDA area") }, \
168 { "sda-", &small_memory[ (int)SMALL_MEMORY_SDA ].value, "" }, \
169 { "zda=", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, \
170 N_("Set the max size of data eligible for the ZDA area") }, \
171 { "zda-", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, "" }, \
174 /* Sometimes certain combinations of command options do not make
175 sense on a particular target machine. You can define a macro
176 `OVERRIDE_OPTIONS' to take account of this. This macro, if
177 defined, is executed once just after all the command options have
178 been parsed.
180 Don't use this macro to turn on various extra optimizations for
181 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
182 #define OVERRIDE_OPTIONS override_options ()
185 /* Show we can debug even without a frame pointer. */
186 #define CAN_DEBUG_WITHOUT_FP
188 /* Some machines may desire to change what optimizations are
189 performed for various optimization levels. This macro, if
190 defined, is executed once just after the optimization level is
191 determined and before the remainder of the command options have
192 been parsed. Values set in this macro are used as the default
193 values for the other command line options.
195 LEVEL is the optimization level specified; 2 if `-O2' is
196 specified, 1 if `-O' is specified, and 0 if neither is specified.
198 SIZE is non-zero if `-Os' is specified, 0 otherwise.
200 You should not use this macro to change options that are not
201 machine-specific. These should uniformly selected by the same
202 optimization level on all supported machines. Use this macro to
203 enable machine-specific optimizations.
205 *Do not examine `write_symbols' in this macro!* The debugging
206 options are not supposed to alter the generated code. */
208 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
210 if (LEVEL) \
211 target_flags |= (MASK_EP | MASK_PROLOG_FUNCTION); \
215 /* Target machine storage layout */
217 /* Define this if most significant bit is lowest numbered
218 in instructions that operate on numbered bit-fields.
219 This is not true on the NEC V850. */
220 #define BITS_BIG_ENDIAN 0
222 /* Define this if most significant byte of a word is the lowest numbered. */
223 /* This is not true on the NEC V850. */
224 #define BYTES_BIG_ENDIAN 0
226 /* Define this if most significant word of a multiword number is lowest
227 numbered.
228 This is not true on the NEC V850. */
229 #define WORDS_BIG_ENDIAN 0
231 /* Width of a word, in units (bytes). */
232 #define UNITS_PER_WORD 4
234 /* Define this macro if it is advisable to hold scalars in registers
235 in a wider mode than that declared by the program. In such cases,
236 the value is constrained to be within the bounds of the declared
237 type, but kept valid in the wider mode. The signedness of the
238 extension may differ from that of the type.
240 Some simple experiments have shown that leaving UNSIGNEDP alone
241 generates the best overall code. */
243 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
244 if (GET_MODE_CLASS (MODE) == MODE_INT \
245 && GET_MODE_SIZE (MODE) < 4) \
246 { (MODE) = SImode; }
248 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
249 #define PARM_BOUNDARY 32
251 /* The stack goes in 32 bit lumps. */
252 #define STACK_BOUNDARY 32
254 /* Allocation boundary (in *bits*) for the code of a function.
255 16 is the minimum boundary; 32 would give better performance. */
256 #define FUNCTION_BOUNDARY 16
258 /* No data type wants to be aligned rounder than this. */
259 #define BIGGEST_ALIGNMENT 32
261 /* Alignment of field after `int : 0' in a structure. */
262 #define EMPTY_FIELD_BOUNDARY 32
264 /* No structure field wants to be aligned rounder than this. */
265 #define BIGGEST_FIELD_ALIGNMENT 32
267 /* Define this if move instructions will actually fail to work
268 when given unaligned data. */
269 #define STRICT_ALIGNMENT 1
271 /* Define this as 1 if `char' should by default be signed; else as 0.
273 On the NEC V850, loads do sign extension, so make this default. */
274 #define DEFAULT_SIGNED_CHAR 1
276 /* Standard register usage. */
278 /* Number of actual hardware registers.
279 The hardware registers are assigned numbers for the compiler
280 from 0 to just below FIRST_PSEUDO_REGISTER.
282 All registers that the compiler knows about must be given numbers,
283 even those that are not normally considered general registers. */
285 #define FIRST_PSEUDO_REGISTER 34
287 /* 1 for registers that have pervasive standard uses
288 and are not available for the register allocator. */
290 #define FIXED_REGISTERS \
291 { 1, 1, 0, 1, 1, 0, 0, 0, \
292 0, 0, 0, 0, 0, 0, 0, 0, \
293 0, 0, 0, 0, 0, 0, 0, 0, \
294 0, 0, 0, 0, 0, 0, 1, 0, \
295 1, 1}
297 /* 1 for registers not available across function calls.
298 These must include the FIXED_REGISTERS and also any
299 registers that can be used without being saved.
300 The latter must include the registers where values are returned
301 and the register where structure-value addresses are passed.
302 Aside from that, you can include as many other registers as you
303 like. */
305 #define CALL_USED_REGISTERS \
306 { 1, 1, 0, 1, 1, 1, 1, 1, \
307 1, 1, 1, 1, 1, 1, 1, 1, \
308 1, 1, 1, 1, 0, 0, 0, 0, \
309 0, 0, 0, 0, 0, 0, 1, 1, \
310 1, 1}
312 /* List the order in which to allocate registers. Each register must be
313 listed once, even those in FIXED_REGISTERS.
315 On the 850, we make the return registers first, then all of the volatile
316 registers, then the saved registers in reverse order to better save the
317 registers with an out of line function, and finally the fixed
318 registers. */
320 #define REG_ALLOC_ORDER \
322 10, 11, /* return registers */ \
323 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
324 6, 7, 8, 9, 31, /* argument registers */ \
325 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
326 21, 20, 2, \
327 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
330 /* Return number of consecutive hard regs needed starting at reg REGNO
331 to hold something of mode MODE.
333 This is ordinarily the length in words of a value of mode MODE
334 but can be less for certain modes in special long registers. */
336 #define HARD_REGNO_NREGS(REGNO, MODE) \
337 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
339 /* Value is 1 if hard register REGNO can hold a value of machine-mode
340 MODE. */
342 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
343 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
345 /* Value is 1 if it is a good idea to tie two pseudo registers
346 when one has mode MODE1 and one has mode MODE2.
347 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
348 for any hard reg, then this must be 0 for correct output. */
349 #define MODES_TIEABLE_P(MODE1, MODE2) \
350 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
353 /* Define the classes of registers for register constraints in the
354 machine description. Also define ranges of constants.
356 One of the classes must always be named ALL_REGS and include all hard regs.
357 If there is more than one class, another class must be named NO_REGS
358 and contain no registers.
360 The name GENERAL_REGS must be the name of a class (or an alias for
361 another name such as ALL_REGS). This is the class of registers
362 that is allowed by "g" or "r" in a register constraint.
363 Also, registers outside this class are allocated only when
364 instructions express preferences for them.
366 The classes must be numbered in nondecreasing order; that is,
367 a larger-numbered class must never be contained completely
368 in a smaller-numbered class.
370 For any two classes, it is very desirable that there be another
371 class that represents their union. */
373 enum reg_class
375 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
378 #define N_REG_CLASSES (int) LIM_REG_CLASSES
380 /* Give names of register classes as strings for dump file. */
382 #define REG_CLASS_NAMES \
383 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
385 /* Define which registers fit in which classes.
386 This is an initializer for a vector of HARD_REG_SET
387 of length N_REG_CLASSES. */
389 #define REG_CLASS_CONTENTS \
391 { 0x00000000 }, /* NO_REGS */ \
392 { 0xffffffff }, /* GENERAL_REGS */ \
393 { 0xffffffff }, /* ALL_REGS */ \
396 /* The same information, inverted:
397 Return the class number of the smallest class containing
398 reg number REGNO. This could be a conditional expression
399 or could index an array. */
401 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
403 /* The class value for index registers, and the one for base regs. */
405 #define INDEX_REG_CLASS NO_REGS
406 #define BASE_REG_CLASS GENERAL_REGS
408 /* Get reg_class from a letter such as appears in the machine description. */
410 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
412 /* Macros to check register numbers against specific register classes. */
414 /* These assume that REGNO is a hard or pseudo reg number.
415 They give nonzero only if REGNO is a hard reg of the suitable class
416 or a pseudo reg currently allocated to a suitable hard reg.
417 Since they use reg_renumber, they are safe only once reg_renumber
418 has been allocated, which happens in local-alloc.c. */
420 #define REGNO_OK_FOR_BASE_P(regno) \
421 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
423 #define REGNO_OK_FOR_INDEX_P(regno) 0
425 /* Given an rtx X being reloaded into a reg required to be
426 in class CLASS, return the class of reg to actually use.
427 In general this is just CLASS; but on some machines
428 in some cases it is preferable to use a more restrictive class. */
430 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
432 /* Return the maximum number of consecutive registers
433 needed to represent mode MODE in a register of class CLASS. */
435 #define CLASS_MAX_NREGS(CLASS, MODE) \
436 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
438 /* The letters I, J, K, L, M, N, O, P in a register constraint string
439 can be used to stand for particular ranges of immediate operands.
440 This macro defines what the ranges are.
441 C is the letter, and VALUE is a constant value.
442 Return 1 if VALUE is in the range specified by C. */
444 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
445 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
446 /* zero */
447 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
448 /* 5 bit signed immediate */
449 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
450 /* 16 bit signed immediate */
451 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
452 /* valid constant for movhi instruction. */
453 #define CONST_OK_FOR_L(VALUE) \
454 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
455 && CONST_OK_FOR_I ((VALUE & 0xffff)))
456 /* 16 bit unsigned immediate */
457 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
458 /* 5 bit unsigned immediate in shift instructions */
459 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
461 #define CONST_OK_FOR_O(VALUE) 0
462 #define CONST_OK_FOR_P(VALUE) 0
465 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
466 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
467 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
468 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
469 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
470 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
471 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
472 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
473 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
476 /* Similar, but for floating constants, and defining letters G and H.
477 Here VALUE is the CONST_DOUBLE rtx itself.
479 `G' is a zero of some form. */
481 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
482 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
483 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
484 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
485 && CONST_DOUBLE_LOW (VALUE) == 0 \
486 && CONST_DOUBLE_HIGH (VALUE) == 0))
488 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
490 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
491 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
492 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
493 : 0)
496 /* Stack layout; function entry, exit and calling. */
498 /* Define this if pushing a word on the stack
499 makes the stack pointer a smaller address. */
501 #define STACK_GROWS_DOWNWARD
503 /* Define this if the nominal address of the stack frame
504 is at the high-address end of the local variables;
505 that is, each additional local variable allocated
506 goes at a more negative offset in the frame. */
508 #define FRAME_GROWS_DOWNWARD
510 /* Offset within stack frame to start allocating local variables at.
511 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
512 first local allocated. Otherwise, it is the offset to the BEGINNING
513 of the first local allocated. */
515 #define STARTING_FRAME_OFFSET 0
517 /* Offset of first parameter from the argument pointer register value. */
518 /* Is equal to the size of the saved fp + pc, even if an fp isn't
519 saved since the value is used before we know. */
521 #define FIRST_PARM_OFFSET(FNDECL) 0
523 /* Specify the registers used for certain standard purposes.
524 The values of these macros are register numbers. */
526 /* Register to use for pushing function arguments. */
527 #define STACK_POINTER_REGNUM 3
529 /* Base register for access to local variables of the function. */
530 #define FRAME_POINTER_REGNUM 32
532 /* Register containing return address from latest function call. */
533 #define LINK_POINTER_REGNUM 31
535 /* On some machines the offset between the frame pointer and starting
536 offset of the automatic variables is not known until after register
537 allocation has been done (for example, because the saved registers
538 are between these two locations). On those machines, define
539 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
540 be used internally until the offset is known, and define
541 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
542 used for the frame pointer.
544 You should define this macro only in the very rare circumstances
545 when it is not possible to calculate the offset between the frame
546 pointer and the automatic variables until after register
547 allocation has been completed. When this macro is defined, you
548 must also indicate in your definition of `ELIMINABLE_REGS' how to
549 eliminate `FRAME_POINTER_REGNUM' into either
550 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
552 Do not define this macro if it would be the same as
553 `FRAME_POINTER_REGNUM'. */
554 #undef HARD_FRAME_POINTER_REGNUM
555 #define HARD_FRAME_POINTER_REGNUM 29
557 /* Base register for access to arguments of the function. */
558 #define ARG_POINTER_REGNUM 33
560 /* Register in which static-chain is passed to a function. */
561 #define STATIC_CHAIN_REGNUM 20
563 /* Value should be nonzero if functions must have frame pointers.
564 Zero means the frame pointer need not be set up (and parms
565 may be accessed via the stack pointer) in functions that seem suitable.
566 This is computed in `reload', in reload1.c. */
567 #define FRAME_POINTER_REQUIRED 0
569 /* If defined, this macro specifies a table of register pairs used to
570 eliminate unneeded registers that point into the stack frame. If
571 it is not defined, the only elimination attempted by the compiler
572 is to replace references to the frame pointer with references to
573 the stack pointer.
575 The definition of this macro is a list of structure
576 initializations, each of which specifies an original and
577 replacement register.
579 On some machines, the position of the argument pointer is not
580 known until the compilation is completed. In such a case, a
581 separate hard register must be used for the argument pointer.
582 This register can be eliminated by replacing it with either the
583 frame pointer or the argument pointer, depending on whether or not
584 the frame pointer has been eliminated.
586 In this case, you might specify:
587 #define ELIMINABLE_REGS \
588 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
589 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
590 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
592 Note that the elimination of the argument pointer with the stack
593 pointer is specified first since that is the preferred elimination. */
595 #define ELIMINABLE_REGS \
596 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
597 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
598 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
599 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
601 /* A C expression that returns non-zero if the compiler is allowed to
602 try to replace register number FROM-REG with register number
603 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
604 defined, and will usually be the constant 1, since most of the
605 cases preventing register elimination are things that the compiler
606 already knows about. */
608 #define CAN_ELIMINATE(FROM, TO) \
609 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
611 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
612 specifies the initial difference between the specified pair of
613 registers. This macro must be defined if `ELIMINABLE_REGS' is
614 defined. */
616 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
618 if ((FROM) == FRAME_POINTER_REGNUM) \
619 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
620 else if ((FROM) == ARG_POINTER_REGNUM) \
621 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
622 else \
623 abort (); \
626 /* A guess for the V850. */
627 #define PROMOTE_PROTOTYPES 1
629 /* Keep the stack pointer constant throughout the function. */
630 #define ACCUMULATE_OUTGOING_ARGS 1
632 /* Value is the number of bytes of arguments automatically
633 popped when returning from a subroutine call.
634 FUNDECL is the declaration node of the function (as a tree),
635 FUNTYPE is the data type of the function (as a tree),
636 or for a library call it is an identifier node for the subroutine name.
637 SIZE is the number of bytes of arguments passed on the stack. */
639 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
641 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
643 /* Define a data type for recording info about an argument list
644 during the scan of that argument list. This data type should
645 hold all necessary information about the function itself
646 and about the args processed so far, enough to enable macros
647 such as FUNCTION_ARG to determine where the next arg should go. */
649 #define CUMULATIVE_ARGS struct cum_arg
650 struct cum_arg { int nbytes; };
652 /* Define where to put the arguments to a function.
653 Value is zero to push the argument on the stack,
654 or a hard register in which to store the argument.
656 MODE is the argument's machine mode.
657 TYPE is the data type of the argument (as a tree).
658 This is null for libcalls where that information may
659 not be available.
660 CUM is a variable of type CUMULATIVE_ARGS which gives info about
661 the preceding args and about the function being called.
662 NAMED is nonzero if this argument is a named parameter
663 (otherwise it is an extra parameter matching an ellipsis). */
665 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
666 function_arg (&CUM, MODE, TYPE, NAMED)
668 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
669 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
671 /* Initialize a variable CUM of type CUMULATIVE_ARGS
672 for a call to a function whose data type is FNTYPE.
673 For a library call, FNTYPE is 0. */
675 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
676 ((CUM).nbytes = 0)
678 /* Update the data in CUM to advance over an argument
679 of mode MODE and data type TYPE.
680 (TYPE is null for libcalls where that information may not be available.) */
682 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
683 ((CUM).nbytes += ((MODE) != BLKmode \
684 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
685 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
687 /* When a parameter is passed in a register, stack space is still
688 allocated for it. */
689 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
691 /* Define this if the above stack space is to be considered part of the
692 space allocated by the caller. */
693 #define OUTGOING_REG_PARM_STACK_SPACE
695 extern int current_function_anonymous_args;
696 /* Do any setup necessary for varargs/stdargs functions. */
697 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PAS, SECOND) \
698 current_function_anonymous_args = (!TARGET_GHS ? 1 : 0);
700 /* Implement `va_arg'. */
701 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
702 v850_va_arg (valist, type)
704 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
705 ((TYPE) && int_size_in_bytes (TYPE) > 8)
707 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
708 ((TYPE) && int_size_in_bytes (TYPE) > 8)
710 /* 1 if N is a possible register number for function argument passing. */
712 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
714 /* Define how to find the value returned by a function.
715 VALTYPE is the data type of the value (as a tree).
716 If the precise function being called is known, FUNC is its FUNCTION_DECL;
717 otherwise, FUNC is 0. */
719 #define FUNCTION_VALUE(VALTYPE, FUNC) \
720 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
722 /* Define how to find the value returned by a library function
723 assuming the value has mode MODE. */
725 #define LIBCALL_VALUE(MODE) \
726 gen_rtx_REG (MODE, 10)
728 /* 1 if N is a possible register number for a function value. */
730 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
732 /* Return values > 8 bytes in length in memory. */
733 #define DEFAULT_PCC_STRUCT_RETURN 0
734 #define RETURN_IN_MEMORY(TYPE) \
735 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
737 /* Register in which address to store a structure value
738 is passed to a function. On the V850 it's passed as
739 the first parameter. */
741 #define STRUCT_VALUE 0
743 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
744 the stack pointer does not matter. The value is tested only in
745 functions that have frame pointers.
746 No definition is equivalent to always zero. */
748 #define EXIT_IGNORE_STACK 1
750 /* Output assembler code to FILE to increment profiler label # LABELNO
751 for profiling a function entry. */
753 #define FUNCTION_PROFILER(FILE, LABELNO) ;
755 #define TRAMPOLINE_TEMPLATE(FILE) \
756 do { \
757 fprintf (FILE, "\tjarl .+4,r12\n"); \
758 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
759 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
760 fprintf (FILE, "\tjmp [r12]\n"); \
761 fprintf (FILE, "\tnop\n"); \
762 fprintf (FILE, "\t.long 0\n"); \
763 fprintf (FILE, "\t.long 0\n"); \
764 } while (0)
766 /* Length in units of the trampoline for entering a nested function. */
768 #define TRAMPOLINE_SIZE 24
770 /* Emit RTL insns to initialize the variable parts of a trampoline.
771 FNADDR is an RTX for the address of the function's pure code.
772 CXT is an RTX for the static chain value for the function. */
774 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
776 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
777 (CXT)); \
778 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
779 (FNADDR)); \
782 /* Addressing modes, and classification of registers for them. */
785 /* 1 if X is an rtx for a constant that is a valid address. */
787 /* ??? This seems too exclusive. May get better code by accepting more
788 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
790 #define CONSTANT_ADDRESS_P(X) \
791 (GET_CODE (X) == CONST_INT \
792 && CONST_OK_FOR_K (INTVAL (X)))
794 /* Maximum number of registers that can appear in a valid memory address. */
796 #define MAX_REGS_PER_ADDRESS 1
798 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
799 and check its validity for a certain class.
800 We have two alternate definitions for each of them.
801 The usual definition accepts all pseudo regs; the other rejects
802 them unless they have been allocated suitable hard regs.
803 The symbol REG_OK_STRICT causes the latter definition to be used.
805 Most source files want to accept pseudo regs in the hope that
806 they will get allocated to the class that the insn wants them to be in.
807 Source files for reload pass need to be strict.
808 After reload, it makes no difference, since pseudo regs have
809 been eliminated by then. */
811 #ifndef REG_OK_STRICT
813 /* Nonzero if X is a hard reg that can be used as an index
814 or if it is a pseudo reg. */
815 #define REG_OK_FOR_INDEX_P(X) 0
816 /* Nonzero if X is a hard reg that can be used as a base reg
817 or if it is a pseudo reg. */
818 #define REG_OK_FOR_BASE_P(X) 1
819 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
820 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
821 #define STRICT 0
823 #else
825 /* Nonzero if X is a hard reg that can be used as an index. */
826 #define REG_OK_FOR_INDEX_P(X) 0
827 /* Nonzero if X is a hard reg that can be used as a base reg. */
828 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
829 #define STRICT 1
831 #endif
833 /* A C expression that defines the optional machine-dependent
834 constraint letters that can be used to segregate specific types of
835 operands, usually memory references, for the target machine.
836 Normally this macro will not be defined. If it is required for a
837 particular target machine, it should return 1 if VALUE corresponds
838 to the operand type represented by the constraint letter C. If C
839 is not defined as an extra constraint, the value returned should
840 be 0 regardless of VALUE.
842 For example, on the ROMP, load instructions cannot have their
843 output in r0 if the memory reference contains a symbolic address.
844 Constraint letter `Q' is defined as representing a memory address
845 that does *not* contain a symbolic address. An alternative is
846 specified with a `Q' constraint on the input and `r' on the
847 output. The next alternative specifies `m' on the input and a
848 register class that does not include r0 on the output. */
850 #define EXTRA_CONSTRAINT(OP, C) \
851 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), 0) \
852 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
853 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF && ! ZDA_NAME_P (XSTR (OP, 0))) \
854 : (C) == 'T' ? 0 \
855 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF && ZDA_NAME_P (XSTR (OP, 0))) \
856 || (GET_CODE (OP) == CONST \
857 && GET_CODE (XEXP (OP, 0)) == PLUS \
858 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
859 && ZDA_NAME_P (XSTR (XEXP (XEXP (OP, 0), 0), 0)))) \
860 : 0)
862 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
863 that is a valid memory address for an instruction.
864 The MODE argument is the machine mode for the MEM expression
865 that wants to use this address.
867 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
868 except for CONSTANT_ADDRESS_P which is actually
869 machine-independent. */
871 /* Accept either REG or SUBREG where a register is valid. */
873 #define RTX_OK_FOR_BASE_P(X) \
874 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
875 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
876 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
878 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
879 do { \
880 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
881 if (CONSTANT_ADDRESS_P (X) \
882 && (MODE == QImode || INTVAL (X) % 2 == 0) \
883 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
884 goto ADDR; \
885 if (GET_CODE (X) == LO_SUM \
886 && GET_CODE (XEXP (X, 0)) == REG \
887 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
888 && CONSTANT_P (XEXP (X, 1)) \
889 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
890 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
891 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
892 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
893 goto ADDR; \
894 if (special_symbolref_operand (X, MODE) \
895 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
896 goto ADDR; \
897 if (GET_CODE (X) == PLUS \
898 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
899 && (MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
900 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR; \
901 } while (0)
904 /* Try machine-dependent ways of modifying an illegitimate address
905 to be legitimate. If we find one, return the new, valid address.
906 This macro is used in only one place: `memory_address' in explow.c.
908 OLDX is the address as it was before break_out_memory_refs was called.
909 In some cases it is useful to look at this to decide what needs to be done.
911 MODE and WIN are passed so that this macro can use
912 GO_IF_LEGITIMATE_ADDRESS.
914 It is always safe for this macro to do nothing. It exists to recognize
915 opportunities to optimize the output. */
917 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
919 /* Go to LABEL if ADDR (a legitimate address expression)
920 has an effect that depends on the machine mode it is used for. */
922 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
924 /* Nonzero if the constant value X is a legitimate general operand.
925 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
927 #define LEGITIMATE_CONSTANT_P(X) \
928 (GET_CODE (X) == CONST_DOUBLE \
929 || !(GET_CODE (X) == CONST \
930 && GET_CODE (XEXP (X, 0)) == PLUS \
931 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
932 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
933 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
935 /* In rare cases, correct code generation requires extra machine
936 dependent processing between the second jump optimization pass and
937 delayed branch scheduling. On those machines, define this macro
938 as a C statement to act on the code starting at INSN. */
940 #define MACHINE_DEPENDENT_REORG(INSN) v850_reorg (INSN)
943 /* Tell final.c how to eliminate redundant test instructions. */
945 /* Here we define machine-dependent flags and fields in cc_status
946 (see `conditions.h'). No extra ones are needed for the VAX. */
948 /* Store in cc_status the expressions
949 that the condition codes will describe
950 after execution of an instruction whose pattern is EXP.
951 Do not alter them if the instruction would not alter the cc's. */
953 #define CC_OVERFLOW_UNUSABLE 0x200
954 #define CC_NO_CARRY CC_NO_OVERFLOW
955 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
957 /* A part of a C `switch' statement that describes the relative costs
958 of constant RTL expressions. It must contain `case' labels for
959 expression codes `const_int', `const', `symbol_ref', `label_ref'
960 and `const_double'. Each case must ultimately reach a `return'
961 statement to return the relative cost of the use of that kind of
962 constant value in an expression. The cost may depend on the
963 precise value of the constant, which is available for examination
964 in X, and the rtx code of the expression in which it is contained,
965 found in OUTER_CODE.
967 CODE is the expression code--redundant, since it can be obtained
968 with `GET_CODE (X)'. */
970 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
971 case CONST_INT: \
972 case CONST_DOUBLE: \
973 case CONST: \
974 case SYMBOL_REF: \
975 case LABEL_REF: \
977 int _zxy = const_costs(RTX, CODE); \
978 return (_zxy) ? COSTS_N_INSNS (_zxy) : 0; \
981 /* A crude cut at RTX_COSTS for the V850. */
983 /* Provide the costs of a rtl expression. This is in the body of a
984 switch on CODE.
986 There aren't DImode MOD, DIV or MULT operations, so call them
987 very expensive. Everything else is pretty much a constant cost. */
989 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
990 case MOD: \
991 case DIV: \
992 return 60; \
993 case MULT: \
994 return 20;
996 /* All addressing modes have the same cost on the V850 series. */
997 #define ADDRESS_COST(ADDR) 1
999 /* Nonzero if access to memory by bytes or half words is no faster
1000 than accessing full words. */
1001 #define SLOW_BYTE_ACCESS 1
1003 /* According expr.c, a value of around 6 should minimize code size, and
1004 for the V850 series, that's our primary concern. */
1005 #define MOVE_RATIO 6
1007 /* Indirect calls are expensive, never turn a direct call
1008 into an indirect call. */
1009 #define NO_FUNCTION_CSE
1011 /* The four different data regions on the v850. */
1012 typedef enum
1014 DATA_AREA_NORMAL,
1015 DATA_AREA_SDA,
1016 DATA_AREA_TDA,
1017 DATA_AREA_ZDA
1018 } v850_data_area;
1020 /* A list of names for sections other than the standard two, which are
1021 `in_text' and `in_data'. You need not define this macro on a
1022 system with no other sections (that GCC needs to use). */
1023 #undef EXTRA_SECTIONS
1024 #define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, \
1025 in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon
1027 /* One or more functions to be defined in `varasm.c'. These
1028 functions should do jobs analogous to those of `text_section' and
1029 `data_section', for your additional sections. Do not define this
1030 macro if you do not define `EXTRA_SECTIONS'. */
1031 #undef EXTRA_SECTION_FUNCTIONS
1033 /* This could be done a lot more cleanly using ANSI C ... */
1034 #define EXTRA_SECTION_FUNCTIONS \
1035 void \
1036 sdata_section () \
1038 if (in_section != in_sdata) \
1040 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
1041 in_section = in_sdata; \
1045 void \
1046 rosdata_section () \
1048 if (in_section != in_rosdata) \
1050 fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP); \
1051 in_section = in_sdata; \
1055 void \
1056 sbss_section () \
1058 if (in_section != in_sbss) \
1060 fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
1061 in_section = in_sbss; \
1065 void \
1066 tdata_section () \
1068 if (in_section != in_tdata) \
1070 fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
1071 in_section = in_tdata; \
1075 void \
1076 zdata_section () \
1078 if (in_section != in_zdata) \
1080 fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
1081 in_section = in_zdata; \
1085 void \
1086 rozdata_section () \
1088 if (in_section != in_rozdata) \
1090 fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP); \
1091 in_section = in_rozdata; \
1095 void \
1096 zbss_section () \
1098 if (in_section != in_zbss) \
1100 fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP); \
1101 in_section = in_zbss; \
1105 #define TEXT_SECTION_ASM_OP "\t.section .text"
1106 #define DATA_SECTION_ASM_OP "\t.section .data"
1107 #define BSS_SECTION_ASM_OP "\t.section .bss"
1108 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
1109 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
1110 #define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
1111 #define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
1112 #define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
1113 #define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
1114 #define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""
1116 #define SCOMMON_ASM_OP "\t.scomm\t"
1117 #define ZCOMMON_ASM_OP "\t.zcomm\t"
1118 #define TCOMMON_ASM_OP "\t.tcomm\t"
1120 /* Output at beginning/end of assembler file. */
1121 #undef ASM_FILE_START
1122 #define ASM_FILE_START(FILE) asm_file_start(FILE)
1124 #define ASM_COMMENT_START "#"
1126 /* Output to assembler file text saying following lines
1127 may contain character constants, extra white space, comments, etc. */
1129 #define ASM_APP_ON "#APP\n"
1131 /* Output to assembler file text saying following lines
1132 no longer contain unusual constructs. */
1134 #define ASM_APP_OFF "#NO_APP\n"
1136 #undef USER_LABEL_PREFIX
1137 #define USER_LABEL_PREFIX "_"
1139 /* When assemble_integer is used to emit the offsets for a switch
1140 table it can encounter (TRUNCATE:HI (MINUS:SI (LABEL_REF:SI) (LABEL_REF:SI))).
1141 output_addr_const will normally barf at this, but it is OK to omit
1142 the truncate and just emit the difference of the two labels. The
1143 .hword directive will automatically handle the truncation for us. */
1145 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
1146 if (GET_CODE (x) == TRUNCATE) \
1147 output_addr_const (FILE, XEXP (X, 0)); \
1148 else \
1149 goto FAIL;
1151 /* This says how to output the assembler to define a global
1152 uninitialized but not common symbol. */
1154 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1155 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
1157 #undef ASM_OUTPUT_ALIGNED_BSS
1158 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1159 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1161 /* This says how to output the assembler to define a global
1162 uninitialized, common symbol. */
1163 #undef ASM_OUTPUT_ALIGNED_COMMON
1164 #undef ASM_OUTPUT_COMMON
1165 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
1166 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
1168 /* This says how to output the assembler to define a local
1169 uninitialized symbol. */
1170 #undef ASM_OUTPUT_ALIGNED_LOCAL
1171 #undef ASM_OUTPUT_LOCAL
1172 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
1173 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
1175 /* This is how to output the definition of a user-level label named NAME,
1176 such as the label on a static function or variable NAME. */
1178 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1179 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1181 /* This is how to output a command to make the user-level label named NAME
1182 defined for reference from other files. */
1184 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1185 do \
1187 fputs ("\t.global ", FILE); \
1188 assemble_name (FILE, NAME); \
1189 fputs ("\n", FILE); \
1191 while (0)
1193 /* This is how to output a reference to a user-level label named NAME.
1194 `assemble_name' uses this. */
1196 #undef ASM_OUTPUT_LABELREF
1197 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1198 do { \
1199 const char* real_name; \
1200 STRIP_NAME_ENCODING (real_name, (NAME)); \
1201 asm_fprintf (FILE, "%U%s", real_name); \
1202 } while (0)
1205 /* Store in OUTPUT a string (made with alloca) containing
1206 an assembler-name for a local static variable named NAME.
1207 LABELNO is an integer which is different for each call. */
1209 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1210 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1211 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1213 /* This is how we tell the assembler that two symbols have the same value. */
1215 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
1216 do { assemble_name(FILE, NAME1); \
1217 fputs(" = ", FILE); \
1218 assemble_name(FILE, NAME2); \
1219 fputc('\n', FILE); } while (0)
1222 /* How to refer to registers in assembler output.
1223 This sequence is indexed by compiler's hard-register-number (see above). */
1225 #define REGISTER_NAMES \
1226 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
1227 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1228 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1229 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
1230 ".fp", ".ap"}
1232 #define ADDITIONAL_REGISTER_NAMES \
1233 { { "zero", 0 }, \
1234 { "hp", 2 }, \
1235 { "r3", 3 }, \
1236 { "r4", 4 }, \
1237 { "tp", 5 }, \
1238 { "fp", 29 }, \
1239 { "r30", 30 }, \
1240 { "lp", 31} }
1242 /* Print an instruction operand X on file FILE.
1243 look in v850.c for details */
1245 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1247 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1248 ((CODE) == '.')
1250 /* Print a memory operand whose address is X, on file FILE.
1251 This uses a function in output-vax.c. */
1253 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1255 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1256 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1258 /* This is how to output an element of a case-vector that is absolute. */
1260 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1261 asm_fprintf (FILE, "\t%s .L%d\n", \
1262 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
1264 /* This is how to output an element of a case-vector that is relative. */
1266 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1267 fprintf (FILE, "\t%s .L%d-.L%d\n", \
1268 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
1269 VALUE, REL)
1271 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1272 if ((LOG) != 0) \
1273 fprintf (FILE, "\t.align %d\n", (LOG))
1275 /* We don't have to worry about dbx compatibility for the v850. */
1276 #define DEFAULT_GDB_EXTENSIONS 1
1278 /* Use stabs debugging info by default. */
1279 #undef PREFERRED_DEBUGGING_TYPE
1280 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1282 /* Specify the machine mode that this machine uses
1283 for the index in the tablejump instruction. */
1284 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1286 /* Define this if the case instruction drops through after the table
1287 when the index is out of range. Don't define it if the case insn
1288 jumps to the default label instead. */
1289 /* #define CASE_DROPS_THROUGH */
1291 /* Define as C expression which evaluates to nonzero if the tablejump
1292 instruction expects the table to contain offsets from the address of the
1293 table.
1294 Do not define this if the table should contain absolute addresses. */
1295 #define CASE_VECTOR_PC_RELATIVE 1
1297 /* The switch instruction requires that the jump table immediately follow
1298 it. */
1299 #define JUMP_TABLES_IN_TEXT_SECTION 1
1301 /* svr4.h defines this assuming that 4 byte alignment is required. */
1302 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1303 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1304 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1306 #define WORD_REGISTER_OPERATIONS
1308 /* Byte and short loads sign extend the value to a word. */
1309 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1311 /* This flag, if defined, says the same insns that convert to a signed fixnum
1312 also convert validly to an unsigned one. */
1313 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1315 /* Max number of bytes we can move from memory to memory
1316 in one reasonably fast instruction. */
1317 #define MOVE_MAX 4
1319 /* Define if shifts truncate the shift count
1320 which implies one can omit a sign-extension or zero-extension
1321 of a shift count. */
1322 #define SHIFT_COUNT_TRUNCATED 1
1324 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1325 is done just by pretending it is already truncated. */
1326 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1328 #define STORE_FLAG_VALUE 1
1330 /* Specify the machine mode that pointers have.
1331 After generation of rtl, the compiler makes no further distinction
1332 between pointers and any other objects of this machine mode. */
1333 #define Pmode SImode
1335 /* A function address in a call instruction
1336 is a byte address (for indexing purposes)
1337 so give the MEM rtx a byte's mode. */
1338 #define FUNCTION_MODE QImode
1340 /* Tell compiler we want to support GHS pragmas */
1341 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
1342 cpp_register_pragma (PFILE, "ghs", "interrupt", ghs_pragma_interrupt); \
1343 cpp_register_pragma (PFILE, "ghs", "section", ghs_pragma_section); \
1344 cpp_register_pragma (PFILE, "ghs", "starttda", ghs_pragma_starttda); \
1345 cpp_register_pragma (PFILE, "ghs", "startsda", ghs_pragma_startsda); \
1346 cpp_register_pragma (PFILE, "ghs", "startzda", ghs_pragma_startzda); \
1347 cpp_register_pragma (PFILE, "ghs", "endtda", ghs_pragma_endtda); \
1348 cpp_register_pragma (PFILE, "ghs", "endsda", ghs_pragma_endsda); \
1349 cpp_register_pragma (PFILE, "ghs", "endzda", ghs_pragma_endzda); \
1350 } while (0)
1352 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1353 can appear in the "ghs section" pragma. These names are used to index
1354 into the GHS_default_section_names[] and GHS_current_section_names[]
1355 that are defined in v850.c, and so the ordering of each must remain
1356 consistant.
1358 These arrays give the default and current names for each kind of
1359 section defined by the GHS pragmas. The current names can be changed
1360 by the "ghs section" pragma. If the current names are null, use
1361 the default names. Note that the two arrays have different types.
1363 For the *normal* section kinds (like .data, .text, etc.) we do not
1364 want to explicitly force the name of these sections, but would rather
1365 let the linker (or at least the back end) choose the name of the
1366 section, UNLESS the user has force a specific name for these section
1367 kinds. To accomplish this set the name in ghs_default_section_names
1368 to null. */
1370 enum GHS_section_kind
1372 GHS_SECTION_KIND_DEFAULT,
1374 GHS_SECTION_KIND_TEXT,
1375 GHS_SECTION_KIND_DATA,
1376 GHS_SECTION_KIND_RODATA,
1377 GHS_SECTION_KIND_BSS,
1378 GHS_SECTION_KIND_SDATA,
1379 GHS_SECTION_KIND_ROSDATA,
1380 GHS_SECTION_KIND_TDATA,
1381 GHS_SECTION_KIND_ZDATA,
1382 GHS_SECTION_KIND_ROZDATA,
1384 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1387 /* The following code is for handling pragmas supported by the
1388 v850 compiler produced by Green Hills Software. This is at
1389 the specific request of a customer. */
1391 typedef struct data_area_stack_element
1393 struct data_area_stack_element * prev;
1394 v850_data_area data_area; /* Current default data area. */
1395 } data_area_stack_element;
1397 /* Track the current data area set by the
1398 data area pragma (which can be nested). */
1399 extern data_area_stack_element * data_area_stack;
1401 /* Names of the various data areas used on the v850. */
1402 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1403 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1405 /* The assembler op to start the file. */
1407 #define FILE_ASM_OP "\t.file\n"
1409 /* Enable the register move pass to improve code. */
1410 #define ENABLE_REGMOVE_PASS
1413 /* Implement ZDA, TDA, and SDA */
1415 #define EP_REGNUM 30 /* ep register number */
1417 #define ZDA_NAME_FLAG_CHAR '@'
1418 #define TDA_NAME_FLAG_CHAR '%'
1419 #define SDA_NAME_FLAG_CHAR '&'
1421 #define ZDA_NAME_P(NAME) (*(NAME) == ZDA_NAME_FLAG_CHAR)
1422 #define TDA_NAME_P(NAME) (*(NAME) == TDA_NAME_FLAG_CHAR)
1423 #define SDA_NAME_P(NAME) (*(NAME) == SDA_NAME_FLAG_CHAR)
1425 #define ENCODED_NAME_P(SYMBOL_NAME) \
1426 ( ZDA_NAME_P (SYMBOL_NAME) \
1427 || TDA_NAME_P (SYMBOL_NAME) \
1428 || SDA_NAME_P (SYMBOL_NAME))
1430 #define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1431 (VAR) = (SYMBOL_NAME) + (ENCODED_NAME_P (SYMBOL_NAME) || *(SYMBOL_NAME) == '*')
1433 /* Define this if you have defined special-purpose predicates in the
1434 file `MACHINE.c'. This macro is called within an initializer of an
1435 array of structures. The first field in the structure is the name
1436 of a predicate and the second field is an array of rtl codes. For
1437 each predicate, list all rtl codes that can be in expressions
1438 matched by the predicate. The list should have a trailing comma. */
1440 #define PREDICATE_CODES \
1441 { "reg_or_0_operand", { REG, SUBREG, CONST_INT, CONST_DOUBLE }}, \
1442 { "reg_or_int5_operand", { REG, SUBREG, CONST_INT }}, \
1443 { "call_address_operand", { REG, SYMBOL_REF }}, \
1444 { "movsi_source_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
1445 CONST_DOUBLE, CONST, HIGH, MEM, \
1446 REG, SUBREG }}, \
1447 { "special_symbolref_operand", { SYMBOL_REF }}, \
1448 { "power_of_two_operand", { CONST_INT }}, \
1449 { "pattern_is_ok_for_prologue", { PARALLEL }}, \
1450 { "pattern_is_ok_for_epilogue", { PARALLEL }}, \
1451 { "register_is_ok_for_epilogue",{ REG }}, \
1452 { "not_power_of_two_operand", { CONST_INT }},
1454 #endif /* ! GCC_V850_H */