1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
38 #include "diagnostic.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
45 #include "insn-attr.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
52 #include "optabs-tree.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
63 #include "gimple-iterator.h"
64 #include "gimple-fold.h"
65 #include "rtx-vector-builder.h"
66 #include "tree-pretty-print.h"
70 /* If this is nonzero, we do not bother generating VOLATILE
71 around volatile memory references, and we are willing to
72 output indirect addresses. If cse is to follow, we reject
73 indirect addresses so a useful potential cse is generated;
74 if it is used only once, instruction combination will produce
75 the same indirect address eventually. */
78 static bool block_move_libcall_safe_for_call_parm (void);
79 static bool emit_block_move_via_pattern (rtx
, rtx
, rtx
, unsigned, unsigned,
80 HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
81 unsigned HOST_WIDE_INT
,
82 unsigned HOST_WIDE_INT
, bool);
83 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned, int);
84 static void emit_block_move_via_sized_loop (rtx
, rtx
, rtx
, unsigned, unsigned);
85 static void emit_block_move_via_oriented_loop (rtx
, rtx
, rtx
, unsigned, unsigned);
86 static rtx
emit_block_cmp_via_loop (rtx
, rtx
, rtx
, tree
, rtx
, bool,
88 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
89 static rtx_insn
*compress_float_constant (rtx
, rtx
);
90 static rtx
get_subtarget (rtx
);
91 static rtx
store_field (rtx
, poly_int64
, poly_int64
, poly_uint64
, poly_uint64
,
92 machine_mode
, tree
, alias_set_type
, bool, bool);
94 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
96 static bool is_aligning_offset (const_tree
, const_tree
);
97 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
98 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
100 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
102 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
,
103 profile_probability
);
104 static rtx
const_vector_from_tree (tree
);
105 static tree
tree_expr_size (const_tree
);
106 static void convert_mode_scalar (rtx
, rtx
, int);
109 /* This is run to set up which modes can be used
110 directly in memory and to initialize the block move optab. It is run
111 at the beginning of compilation and when the target is reinitialized. */
114 init_expr_target (void)
121 /* Try indexing by frame ptr and try by stack ptr.
122 It is known that on the Convex the stack ptr isn't a valid index.
123 With luck, one or the other is valid on any machine. */
124 mem
= gen_rtx_MEM (word_mode
, stack_pointer_rtx
);
125 mem1
= gen_rtx_MEM (word_mode
, frame_pointer_rtx
);
127 /* A scratch register we can modify in-place below to avoid
128 useless RTL allocations. */
129 reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
131 rtx_insn
*insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
132 pat
= gen_rtx_SET (NULL_RTX
, NULL_RTX
);
133 PATTERN (insn
) = pat
;
135 for (machine_mode mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
136 mode
= (machine_mode
) ((int) mode
+ 1))
140 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
141 PUT_MODE (mem
, mode
);
142 PUT_MODE (mem1
, mode
);
144 /* See if there is some register that can be used in this mode and
145 directly loaded or stored from memory. */
147 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
148 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
149 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
152 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
155 set_mode_and_regno (reg
, mode
, regno
);
158 SET_DEST (pat
) = reg
;
159 if (recog (pat
, insn
, &num_clobbers
) >= 0)
160 direct_load
[(int) mode
] = 1;
162 SET_SRC (pat
) = mem1
;
163 SET_DEST (pat
) = reg
;
164 if (recog (pat
, insn
, &num_clobbers
) >= 0)
165 direct_load
[(int) mode
] = 1;
168 SET_DEST (pat
) = mem
;
169 if (recog (pat
, insn
, &num_clobbers
) >= 0)
170 direct_store
[(int) mode
] = 1;
173 SET_DEST (pat
) = mem1
;
174 if (recog (pat
, insn
, &num_clobbers
) >= 0)
175 direct_store
[(int) mode
] = 1;
179 mem
= gen_rtx_MEM (VOIDmode
, gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1));
181 opt_scalar_float_mode mode_iter
;
182 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_FLOAT
)
184 scalar_float_mode mode
= mode_iter
.require ();
185 scalar_float_mode srcmode
;
186 FOR_EACH_MODE_UNTIL (srcmode
, mode
)
190 ic
= can_extend_p (mode
, srcmode
, 0);
191 if (ic
== CODE_FOR_nothing
)
194 PUT_MODE (mem
, srcmode
);
196 if (insn_operand_matches (ic
, 1, mem
))
197 float_extend_from_mem
[mode
][srcmode
] = true;
202 /* This is run at the start of compiling a function. */
207 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
210 /* Copy data from FROM to TO, where the machine modes are not the same.
211 Both modes may be integer, or both may be floating, or both may be
213 UNSIGNEDP should be nonzero if FROM is an unsigned type.
214 This causes zero-extension instead of sign-extension. */
217 convert_move (rtx to
, rtx from
, int unsignedp
)
219 machine_mode to_mode
= GET_MODE (to
);
220 machine_mode from_mode
= GET_MODE (from
);
222 gcc_assert (to_mode
!= BLKmode
);
223 gcc_assert (from_mode
!= BLKmode
);
225 /* If the source and destination are already the same, then there's
230 /* If FROM is a SUBREG that indicates that we have already done at least
231 the required extension, strip it. We don't handle such SUBREGs as
234 scalar_int_mode to_int_mode
;
235 if (GET_CODE (from
) == SUBREG
236 && SUBREG_PROMOTED_VAR_P (from
)
237 && is_a
<scalar_int_mode
> (to_mode
, &to_int_mode
)
238 && (GET_MODE_PRECISION (subreg_promoted_mode (from
))
239 >= GET_MODE_PRECISION (to_int_mode
))
240 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
242 scalar_int_mode int_orig_mode
;
243 scalar_int_mode int_inner_mode
;
244 machine_mode orig_mode
= GET_MODE (from
);
246 from
= gen_lowpart (to_int_mode
, SUBREG_REG (from
));
247 from_mode
= to_int_mode
;
249 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
250 the original mode, but narrower than the inner mode. */
251 if (GET_CODE (from
) == SUBREG
252 && is_a
<scalar_int_mode
> (orig_mode
, &int_orig_mode
)
253 && GET_MODE_PRECISION (to_int_mode
)
254 > GET_MODE_PRECISION (int_orig_mode
)
255 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (from
)),
257 && GET_MODE_PRECISION (int_inner_mode
)
258 > GET_MODE_PRECISION (to_int_mode
))
260 SUBREG_PROMOTED_VAR_P (from
) = 1;
261 SUBREG_PROMOTED_SET (from
, unsignedp
);
265 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
267 if (to_mode
== from_mode
268 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
270 emit_move_insn (to
, from
);
274 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
276 if (GET_MODE_UNIT_PRECISION (to_mode
)
277 > GET_MODE_UNIT_PRECISION (from_mode
))
279 optab op
= unsignedp
? zext_optab
: sext_optab
;
280 insn_code icode
= convert_optab_handler (op
, to_mode
, from_mode
);
281 if (icode
!= CODE_FOR_nothing
)
283 emit_unop_insn (icode
, to
, from
,
284 unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
);
289 if (GET_MODE_UNIT_PRECISION (to_mode
)
290 < GET_MODE_UNIT_PRECISION (from_mode
))
292 insn_code icode
= convert_optab_handler (trunc_optab
,
294 if (icode
!= CODE_FOR_nothing
)
296 emit_unop_insn (icode
, to
, from
, TRUNCATE
);
301 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode
),
302 GET_MODE_BITSIZE (to_mode
)));
304 if (VECTOR_MODE_P (to_mode
))
305 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
307 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
309 emit_move_insn (to
, from
);
313 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
315 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
316 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
320 convert_mode_scalar (to
, from
, unsignedp
);
323 /* Like convert_move, but deals only with scalar modes. */
326 convert_mode_scalar (rtx to
, rtx from
, int unsignedp
)
328 /* Both modes should be scalar types. */
329 scalar_mode from_mode
= as_a
<scalar_mode
> (GET_MODE (from
));
330 scalar_mode to_mode
= as_a
<scalar_mode
> (GET_MODE (to
));
331 bool to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
332 bool from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
336 gcc_assert (to_real
== from_real
);
338 /* rtx code for making an equivalent value. */
339 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
340 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
348 gcc_assert ((GET_MODE_PRECISION (from_mode
)
349 != GET_MODE_PRECISION (to_mode
))
350 || (DECIMAL_FLOAT_MODE_P (from_mode
)
351 != DECIMAL_FLOAT_MODE_P (to_mode
))
352 || (REAL_MODE_FORMAT (from_mode
) == &arm_bfloat_half_format
353 && REAL_MODE_FORMAT (to_mode
) == &ieee_half_format
)
354 || (REAL_MODE_FORMAT (to_mode
) == &arm_bfloat_half_format
355 && REAL_MODE_FORMAT (from_mode
) == &ieee_half_format
));
357 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
358 /* Conversion between decimal float and binary float, same size. */
359 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
360 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
365 /* Try converting directly if the insn is supported. */
367 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
368 if (code
!= CODE_FOR_nothing
)
370 emit_unop_insn (code
, to
, from
,
371 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
376 if (REAL_MODE_FORMAT (from_mode
) == &arm_bfloat_half_format
377 && REAL_MODE_FORMAT (SFmode
) == &ieee_single_format
)
379 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (SFmode
))
381 /* To cut down on libgcc size, implement
382 BFmode -> {DF,XF,TF}mode conversions by
383 BFmode -> SFmode -> {DF,XF,TF}mode conversions. */
384 rtx temp
= gen_reg_rtx (SFmode
);
385 convert_mode_scalar (temp
, from
, unsignedp
);
386 convert_mode_scalar (to
, temp
, unsignedp
);
389 if (REAL_MODE_FORMAT (to_mode
) == &ieee_half_format
)
391 /* Similarly, implement BFmode -> HFmode as
392 BFmode -> SFmode -> HFmode conversion where SFmode
393 has superset of BFmode values. We don't need
394 to handle sNaNs by raising exception and turning
395 into into qNaN though, as that can be done in the
396 SFmode -> HFmode conversion too. */
397 rtx temp
= gen_reg_rtx (SFmode
);
398 int save_flag_finite_math_only
= flag_finite_math_only
;
399 flag_finite_math_only
= true;
400 convert_mode_scalar (temp
, from
, unsignedp
);
401 flag_finite_math_only
= save_flag_finite_math_only
;
402 convert_mode_scalar (to
, temp
, unsignedp
);
405 if (to_mode
== SFmode
406 && !HONOR_NANS (from_mode
)
407 && !HONOR_NANS (to_mode
)
408 && optimize_insn_for_speed_p ())
410 /* If we don't expect sNaNs, for BFmode -> SFmode we can just
411 shift the bits up. */
412 machine_mode fromi_mode
, toi_mode
;
413 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode
),
414 0).exists (&fromi_mode
)
415 && int_mode_for_size (GET_MODE_BITSIZE (to_mode
),
416 0).exists (&toi_mode
))
419 rtx fromi
= lowpart_subreg (fromi_mode
, from
, from_mode
);
424 if (GET_MODE (fromi
) == VOIDmode
)
425 toi
= simplify_unary_operation (ZERO_EXTEND
, toi_mode
,
429 toi
= gen_reg_rtx (toi_mode
);
430 convert_mode_scalar (toi
, fromi
, 1);
433 = maybe_expand_shift (LSHIFT_EXPR
, toi_mode
, toi
,
434 GET_MODE_PRECISION (to_mode
)
435 - GET_MODE_PRECISION (from_mode
),
439 tof
= lowpart_subreg (to_mode
, toi
, toi_mode
);
441 emit_move_insn (to
, tof
);
444 insns
= get_insns ();
454 if (REAL_MODE_FORMAT (from_mode
) == &ieee_single_format
455 && REAL_MODE_FORMAT (to_mode
) == &arm_bfloat_half_format
456 && !HONOR_NANS (from_mode
)
457 && !HONOR_NANS (to_mode
)
458 && !flag_rounding_math
459 && optimize_insn_for_speed_p ())
461 /* If we don't expect qNaNs nor sNaNs and can assume rounding
462 to nearest, we can expand the conversion inline as
463 (fromi + 0x7fff + ((fromi >> 16) & 1)) >> 16. */
464 machine_mode fromi_mode
, toi_mode
;
465 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode
),
466 0).exists (&fromi_mode
)
467 && int_mode_for_size (GET_MODE_BITSIZE (to_mode
),
468 0).exists (&toi_mode
))
471 rtx fromi
= lowpart_subreg (fromi_mode
, from
, from_mode
);
477 int shift
= (GET_MODE_PRECISION (from_mode
)
478 - GET_MODE_PRECISION (to_mode
));
480 = maybe_expand_shift (RSHIFT_EXPR
, fromi_mode
, fromi
,
485 = expand_binop (fromi_mode
, and_optab
, temp1
, const1_rtx
,
486 NULL_RTX
, 1, OPTAB_DIRECT
);
490 = expand_binop (fromi_mode
, add_optab
, fromi
,
491 gen_int_mode ((HOST_WIDE_INT_1U
493 fromi_mode
), NULL_RTX
,
498 = expand_binop (fromi_mode
, add_optab
, temp3
, temp2
,
499 NULL_RTX
, 1, OPTAB_DIRECT
);
502 rtx temp5
= maybe_expand_shift (RSHIFT_EXPR
, fromi_mode
,
503 temp4
, shift
, NULL_RTX
, 1);
506 rtx temp6
= lowpart_subreg (toi_mode
, temp5
, fromi_mode
);
509 tof
= lowpart_subreg (to_mode
, force_reg (toi_mode
, temp6
),
512 emit_move_insn (to
, tof
);
515 insns
= get_insns ();
526 /* Otherwise use a libcall. */
527 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
529 /* Is this conversion implemented yet? */
530 gcc_assert (libcall
);
533 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
535 insns
= get_insns ();
537 emit_libcall_block (insns
, to
, value
,
538 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
540 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
544 /* Handle pointer conversion. */ /* SPEE 900220. */
545 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
549 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
556 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
559 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
565 /* Targets are expected to provide conversion insns between PxImode and
566 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
567 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
569 scalar_int_mode full_mode
570 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode
));
572 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
573 != CODE_FOR_nothing
);
575 if (full_mode
!= from_mode
)
576 from
= convert_to_mode (full_mode
, from
, unsignedp
);
577 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
581 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
584 scalar_int_mode full_mode
585 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode
));
586 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
587 enum insn_code icode
;
589 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
590 gcc_assert (icode
!= CODE_FOR_nothing
);
592 if (to_mode
== full_mode
)
594 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
598 new_from
= gen_reg_rtx (full_mode
);
599 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
601 /* else proceed to integer conversions below. */
602 from_mode
= full_mode
;
606 /* Make sure both are fixed-point modes or both are not. */
607 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
608 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
609 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
611 /* If we widen from_mode to to_mode and they are in the same class,
612 we won't saturate the result.
613 Otherwise, always saturate the result to play safe. */
614 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
615 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
616 expand_fixed_convert (to
, from
, 0, 0);
618 expand_fixed_convert (to
, from
, 0, 1);
622 /* Now both modes are integers. */
624 /* Handle expanding beyond a word. */
625 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
626 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
633 scalar_mode lowpart_mode
;
634 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
636 /* Try converting directly if the insn is supported. */
637 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
640 /* If FROM is a SUBREG, put it into a register. Do this
641 so that we always generate the same set of insns for
642 better cse'ing; if an intermediate assignment occurred,
643 we won't be doing the operation directly on the SUBREG. */
644 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
645 from
= force_reg (from_mode
, from
);
646 emit_unop_insn (code
, to
, from
, equiv_code
);
649 /* Next, try converting via full word. */
650 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
651 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
652 != CODE_FOR_nothing
))
654 rtx word_to
= gen_reg_rtx (word_mode
);
657 if (reg_overlap_mentioned_p (to
, from
))
658 from
= force_reg (from_mode
, from
);
661 convert_move (word_to
, from
, unsignedp
);
662 emit_unop_insn (code
, to
, word_to
, equiv_code
);
666 /* No special multiword conversion insn; do it by hand. */
669 /* Since we will turn this into a no conflict block, we must ensure
670 the source does not overlap the target so force it into an isolated
671 register when maybe so. Likewise for any MEM input, since the
672 conversion sequence might require several references to it and we
673 must ensure we're getting the same value every time. */
675 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
676 from
= force_reg (from_mode
, from
);
678 /* Get a copy of FROM widened to a word, if necessary. */
679 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
680 lowpart_mode
= word_mode
;
682 lowpart_mode
= from_mode
;
684 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
686 lowpart
= gen_lowpart (lowpart_mode
, to
);
687 emit_move_insn (lowpart
, lowfrom
);
689 /* Compute the value to put in each remaining word. */
691 fill_value
= const0_rtx
;
693 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
694 LT
, lowfrom
, const0_rtx
,
695 lowpart_mode
, 0, -1);
697 /* Fill the remaining words. */
698 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
700 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
701 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
703 gcc_assert (subword
);
705 if (fill_value
!= subword
)
706 emit_move_insn (subword
, fill_value
);
709 insns
= get_insns ();
716 /* Truncating multi-word to a word or less. */
717 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
718 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
721 && ! MEM_VOLATILE_P (from
)
722 && direct_load
[(int) to_mode
]
723 && ! mode_dependent_address_p (XEXP (from
, 0),
724 MEM_ADDR_SPACE (from
)))
726 || GET_CODE (from
) == SUBREG
))
727 from
= force_reg (from_mode
, from
);
728 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
732 /* Now follow all the conversions between integers
733 no more than a word long. */
735 /* For truncation, usually we can just refer to FROM in a narrower mode. */
736 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
737 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
740 && ! MEM_VOLATILE_P (from
)
741 && direct_load
[(int) to_mode
]
742 && ! mode_dependent_address_p (XEXP (from
, 0),
743 MEM_ADDR_SPACE (from
)))
745 || GET_CODE (from
) == SUBREG
))
746 from
= force_reg (from_mode
, from
);
747 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
748 && !targetm
.hard_regno_mode_ok (REGNO (from
), to_mode
))
749 from
= copy_to_reg (from
);
750 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
754 /* Handle extension. */
755 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
757 /* Convert directly if that works. */
758 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
761 emit_unop_insn (code
, to
, from
, equiv_code
);
769 /* Search for a mode to convert via. */
770 opt_scalar_mode intermediate_iter
;
771 FOR_EACH_MODE_FROM (intermediate_iter
, from_mode
)
773 scalar_mode intermediate
= intermediate_iter
.require ();
774 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
776 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
777 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
,
779 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
780 != CODE_FOR_nothing
))
782 convert_move (to
, convert_to_mode (intermediate
, from
,
783 unsignedp
), unsignedp
);
788 /* No suitable intermediate mode.
789 Generate what we need with shifts. */
790 shift_amount
= (GET_MODE_PRECISION (to_mode
)
791 - GET_MODE_PRECISION (from_mode
));
792 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
793 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
795 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
798 emit_move_insn (to
, tmp
);
803 /* Support special truncate insns for certain modes. */
804 if (convert_optab_handler (trunc_optab
, to_mode
,
805 from_mode
) != CODE_FOR_nothing
)
807 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
812 /* Handle truncation of volatile memrefs, and so on;
813 the things that couldn't be truncated directly,
814 and for which there was no special instruction.
816 ??? Code above formerly short-circuited this, for most integer
817 mode pairs, with a force_reg in from_mode followed by a recursive
818 call to this routine. Appears always to have been wrong. */
819 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
821 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
822 emit_move_insn (to
, temp
);
826 /* Mode combination is not recognized. */
830 /* Return an rtx for a value that would result
831 from converting X to mode MODE.
832 Both X and MODE may be floating, or both integer.
833 UNSIGNEDP is nonzero if X is an unsigned value.
834 This can be done by referring to a part of X in place
835 or by copying to a new temporary with conversion. */
838 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
840 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
843 /* Return an rtx for a value that would result
844 from converting X from mode OLDMODE to mode MODE.
845 Both modes may be floating, or both integer.
846 UNSIGNEDP is nonzero if X is an unsigned value.
848 This can be done by referring to a part of X in place
849 or by copying to a new temporary with conversion.
851 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
854 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
857 scalar_int_mode int_mode
;
859 /* If FROM is a SUBREG that indicates that we have already done at least
860 the required extension, strip it. */
862 if (GET_CODE (x
) == SUBREG
863 && SUBREG_PROMOTED_VAR_P (x
)
864 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
865 && (GET_MODE_PRECISION (subreg_promoted_mode (x
))
866 >= GET_MODE_PRECISION (int_mode
))
867 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
869 scalar_int_mode int_orig_mode
;
870 scalar_int_mode int_inner_mode
;
871 machine_mode orig_mode
= GET_MODE (x
);
872 x
= gen_lowpart (int_mode
, SUBREG_REG (x
));
874 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
875 the original mode, but narrower than the inner mode. */
876 if (GET_CODE (x
) == SUBREG
877 && is_a
<scalar_int_mode
> (orig_mode
, &int_orig_mode
)
878 && GET_MODE_PRECISION (int_mode
)
879 > GET_MODE_PRECISION (int_orig_mode
)
880 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (x
)),
882 && GET_MODE_PRECISION (int_inner_mode
)
883 > GET_MODE_PRECISION (int_mode
))
885 SUBREG_PROMOTED_VAR_P (x
) = 1;
886 SUBREG_PROMOTED_SET (x
, unsignedp
);
890 if (GET_MODE (x
) != VOIDmode
)
891 oldmode
= GET_MODE (x
);
896 if (CONST_SCALAR_INT_P (x
)
897 && is_a
<scalar_int_mode
> (mode
, &int_mode
))
899 /* If the caller did not tell us the old mode, then there is not
900 much to do with respect to canonicalization. We have to
901 assume that all the bits are significant. */
902 if (!is_a
<scalar_int_mode
> (oldmode
))
903 oldmode
= MAX_MODE_INT
;
904 wide_int w
= wide_int::from (rtx_mode_t (x
, oldmode
),
905 GET_MODE_PRECISION (int_mode
),
906 unsignedp
? UNSIGNED
: SIGNED
);
907 return immed_wide_int_const (w
, int_mode
);
910 /* We can do this with a gen_lowpart if both desired and current modes
911 are integer, and this is either a constant integer, a register, or a
913 scalar_int_mode int_oldmode
;
914 if (is_int_mode (mode
, &int_mode
)
915 && is_int_mode (oldmode
, &int_oldmode
)
916 && GET_MODE_PRECISION (int_mode
) <= GET_MODE_PRECISION (int_oldmode
)
917 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) int_mode
])
918 || CONST_POLY_INT_P (x
)
920 && (!HARD_REGISTER_P (x
)
921 || targetm
.hard_regno_mode_ok (REGNO (x
), int_mode
))
922 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode
, GET_MODE (x
)))))
923 return gen_lowpart (int_mode
, x
);
925 /* Converting from integer constant into mode is always equivalent to an
927 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
929 gcc_assert (known_eq (GET_MODE_BITSIZE (mode
),
930 GET_MODE_BITSIZE (oldmode
)));
931 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
934 temp
= gen_reg_rtx (mode
);
935 convert_move (temp
, x
, unsignedp
);
939 /* Variant of convert_modes for ABI parameter passing/return.
940 Return an rtx for a value that would result from converting X from
941 a floating point mode FMODE to wider integer mode MODE. */
944 convert_float_to_wider_int (machine_mode mode
, machine_mode fmode
, rtx x
)
946 gcc_assert (SCALAR_INT_MODE_P (mode
) && SCALAR_FLOAT_MODE_P (fmode
));
947 scalar_int_mode tmp_mode
= int_mode_for_mode (fmode
).require ();
948 rtx tmp
= force_reg (tmp_mode
, gen_lowpart (tmp_mode
, x
));
949 return convert_modes (mode
, tmp_mode
, tmp
, 1);
952 /* Variant of convert_modes for ABI parameter passing/return.
953 Return an rtx for a value that would result from converting X from
954 an integer mode IMODE to a narrower floating point mode MODE. */
957 convert_wider_int_to_float (machine_mode mode
, machine_mode imode
, rtx x
)
959 gcc_assert (SCALAR_FLOAT_MODE_P (mode
) && SCALAR_INT_MODE_P (imode
));
960 scalar_int_mode tmp_mode
= int_mode_for_mode (mode
).require ();
961 rtx tmp
= force_reg (tmp_mode
, gen_lowpart (tmp_mode
, x
));
962 return gen_lowpart_SUBREG (mode
, tmp
);
965 /* Return the largest alignment we can use for doing a move (or store)
966 of MAX_PIECES. ALIGN is the largest alignment we could use. */
969 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
971 scalar_int_mode tmode
972 = int_mode_for_size (max_pieces
* BITS_PER_UNIT
, 0).require ();
974 if (align
>= GET_MODE_ALIGNMENT (tmode
))
975 align
= GET_MODE_ALIGNMENT (tmode
);
978 scalar_int_mode xmode
= NARROWEST_INT_MODE
;
979 opt_scalar_int_mode mode_iter
;
980 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
982 tmode
= mode_iter
.require ();
983 if (GET_MODE_SIZE (tmode
) > max_pieces
984 || targetm
.slow_unaligned_access (tmode
, align
))
989 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
995 /* Return true if we know how to implement OP using vectors of bytes. */
997 can_use_qi_vectors (by_pieces_operation op
)
999 return (op
== COMPARE_BY_PIECES
1000 || op
== SET_BY_PIECES
1001 || op
== CLEAR_BY_PIECES
);
1004 /* Return true if optabs exists for the mode and certain by pieces
1007 by_pieces_mode_supported_p (fixed_size_mode mode
, by_pieces_operation op
)
1009 if (optab_handler (mov_optab
, mode
) == CODE_FOR_nothing
)
1012 if ((op
== SET_BY_PIECES
|| op
== CLEAR_BY_PIECES
)
1013 && VECTOR_MODE_P (mode
)
1014 && optab_handler (vec_duplicate_optab
, mode
) == CODE_FOR_nothing
)
1017 if (op
== COMPARE_BY_PIECES
1018 && !can_compare_p (EQ
, mode
, ccp_jump
))
1024 /* Return the widest mode that can be used to perform part of an
1025 operation OP on SIZE bytes. Try to use QI vector modes where
1027 static fixed_size_mode
1028 widest_fixed_size_mode_for_size (unsigned int size
, by_pieces_operation op
)
1030 fixed_size_mode result
= NARROWEST_INT_MODE
;
1032 gcc_checking_assert (size
> 1);
1034 /* Use QI vector only if size is wider than a WORD. */
1035 if (can_use_qi_vectors (op
) && size
> UNITS_PER_WORD
)
1038 fixed_size_mode candidate
;
1039 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_INT
)
1040 if (is_a
<fixed_size_mode
> (mode
, &candidate
)
1041 && GET_MODE_INNER (candidate
) == QImode
)
1043 if (GET_MODE_SIZE (candidate
) >= size
)
1045 if (by_pieces_mode_supported_p (candidate
, op
))
1049 if (result
!= NARROWEST_INT_MODE
)
1053 opt_scalar_int_mode tmode
;
1054 scalar_int_mode mode
;
1055 FOR_EACH_MODE_IN_CLASS (tmode
, MODE_INT
)
1057 mode
= tmode
.require ();
1058 if (GET_MODE_SIZE (mode
) < size
1059 && by_pieces_mode_supported_p (mode
, op
))
1066 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
1067 and should be performed piecewise. */
1070 can_do_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
,
1071 enum by_pieces_operation op
)
1073 return targetm
.use_by_pieces_infrastructure_p (len
, align
, op
,
1074 optimize_insn_for_speed_p ());
1077 /* Determine whether the LEN bytes can be moved by using several move
1078 instructions. Return nonzero if a call to move_by_pieces should
1082 can_move_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
)
1084 return can_do_by_pieces (len
, align
, MOVE_BY_PIECES
);
1087 /* Return number of insns required to perform operation OP by pieces
1088 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
1090 unsigned HOST_WIDE_INT
1091 by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1092 unsigned int max_size
, by_pieces_operation op
)
1094 unsigned HOST_WIDE_INT n_insns
= 0;
1095 fixed_size_mode mode
;
1097 if (targetm
.overlap_op_by_pieces_p ())
1099 /* NB: Round up L and ALIGN to the widest integer mode for
1101 mode
= widest_fixed_size_mode_for_size (max_size
, op
);
1102 gcc_assert (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
);
1103 unsigned HOST_WIDE_INT up
= ROUND_UP (l
, GET_MODE_SIZE (mode
));
1106 align
= GET_MODE_ALIGNMENT (mode
);
1109 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1111 while (max_size
> 1 && l
> 0)
1113 mode
= widest_fixed_size_mode_for_size (max_size
, op
);
1114 gcc_assert (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
);
1116 unsigned int modesize
= GET_MODE_SIZE (mode
);
1118 if (align
>= GET_MODE_ALIGNMENT (mode
))
1120 unsigned HOST_WIDE_INT n_pieces
= l
/ modesize
;
1125 n_insns
+= n_pieces
;
1128 case COMPARE_BY_PIECES
:
1129 int batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
1130 int batch_ops
= 4 * batch
- 1;
1131 unsigned HOST_WIDE_INT full
= n_pieces
/ batch
;
1132 n_insns
+= full
* batch_ops
;
1133 if (n_pieces
% batch
!= 0)
1139 max_size
= modesize
;
1146 /* Used when performing piecewise block operations, holds information
1147 about one of the memory objects involved. The member functions
1148 can be used to generate code for loading from the object and
1149 updating the address when iterating. */
1153 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
1156 /* The address of the object. Can differ from that seen in the
1157 MEM rtx if we copied the address to a register. */
1159 /* Nonzero if the address on the object has an autoincrement already,
1160 signifies whether that was an increment or decrement. */
1161 signed char m_addr_inc
;
1162 /* Nonzero if we intend to use autoinc without the address already
1163 having autoinc form. We will insert add insns around each memory
1164 reference, expecting later passes to form autoinc addressing modes.
1165 The only supported options are predecrement and postincrement. */
1166 signed char m_explicit_inc
;
1167 /* True if we have either of the two possible cases of using
1170 /* True if this is an address to be used for load operations rather
1174 /* Optionally, a function to obtain constants for any given offset into
1175 the objects, and data associated with it. */
1176 by_pieces_constfn m_constfn
;
1179 pieces_addr (rtx
, bool, by_pieces_constfn
, void *);
1180 rtx
adjust (fixed_size_mode
, HOST_WIDE_INT
, by_pieces_prev
* = nullptr);
1181 void increment_address (HOST_WIDE_INT
);
1182 void maybe_predec (HOST_WIDE_INT
);
1183 void maybe_postinc (HOST_WIDE_INT
);
1184 void decide_autoinc (machine_mode
, bool, HOST_WIDE_INT
);
1191 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
1192 true if the operation to be performed on this object is a load
1193 rather than a store. For stores, OBJ can be NULL, in which case we
1194 assume the operation is a stack push. For loads, the optional
1195 CONSTFN and its associated CFNDATA can be used in place of the
1198 pieces_addr::pieces_addr (rtx obj
, bool is_load
, by_pieces_constfn constfn
,
1200 : m_obj (obj
), m_is_load (is_load
), m_constfn (constfn
), m_cfndata (cfndata
)
1206 rtx addr
= XEXP (obj
, 0);
1207 rtx_code code
= GET_CODE (addr
);
1209 bool dec
= code
== PRE_DEC
|| code
== POST_DEC
;
1210 bool inc
= code
== PRE_INC
|| code
== POST_INC
;
1211 m_auto
= inc
|| dec
;
1213 m_addr_inc
= dec
? -1 : 1;
1215 /* While we have always looked for these codes here, the code
1216 implementing the memory operation has never handled them.
1217 Support could be added later if necessary or beneficial. */
1218 gcc_assert (code
!= PRE_INC
&& code
!= POST_DEC
);
1226 if (STACK_GROWS_DOWNWARD
)
1232 gcc_assert (constfn
!= NULL
);
1236 gcc_assert (is_load
);
1239 /* Decide whether to use autoinc for an address involved in a memory op.
1240 MODE is the mode of the accesses, REVERSE is true if we've decided to
1241 perform the operation starting from the end, and LEN is the length of
1242 the operation. Don't override an earlier decision to set m_auto. */
1245 pieces_addr::decide_autoinc (machine_mode
ARG_UNUSED (mode
), bool reverse
,
1248 if (m_auto
|| m_obj
== NULL_RTX
)
1251 bool use_predec
= (m_is_load
1252 ? USE_LOAD_PRE_DECREMENT (mode
)
1253 : USE_STORE_PRE_DECREMENT (mode
));
1254 bool use_postinc
= (m_is_load
1255 ? USE_LOAD_POST_INCREMENT (mode
)
1256 : USE_STORE_POST_INCREMENT (mode
));
1257 machine_mode addr_mode
= get_address_mode (m_obj
);
1259 if (use_predec
&& reverse
)
1261 m_addr
= copy_to_mode_reg (addr_mode
,
1262 plus_constant (addr_mode
,
1265 m_explicit_inc
= -1;
1267 else if (use_postinc
&& !reverse
)
1269 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
1273 else if (CONSTANT_P (m_addr
))
1274 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
1277 /* Adjust the address to refer to the data at OFFSET in MODE. If we
1278 are using autoincrement for this address, we don't add the offset,
1279 but we still modify the MEM's properties. */
1282 pieces_addr::adjust (fixed_size_mode mode
, HOST_WIDE_INT offset
,
1283 by_pieces_prev
*prev
)
1286 /* Pass the previous data to m_constfn. */
1287 return m_constfn (m_cfndata
, prev
, offset
, mode
);
1288 if (m_obj
== NULL_RTX
)
1291 return adjust_automodify_address (m_obj
, mode
, m_addr
, offset
);
1293 return adjust_address (m_obj
, mode
, offset
);
1296 /* Emit an add instruction to increment the address by SIZE. */
1299 pieces_addr::increment_address (HOST_WIDE_INT size
)
1301 rtx amount
= gen_int_mode (size
, GET_MODE (m_addr
));
1302 emit_insn (gen_add2_insn (m_addr
, amount
));
1305 /* If we are supposed to decrement the address after each access, emit code
1306 to do so now. Increment by SIZE (which has should have the correct sign
1310 pieces_addr::maybe_predec (HOST_WIDE_INT size
)
1312 if (m_explicit_inc
>= 0)
1314 gcc_assert (HAVE_PRE_DECREMENT
);
1315 increment_address (size
);
1318 /* If we are supposed to decrement the address after each access, emit code
1319 to do so now. Increment by SIZE. */
1322 pieces_addr::maybe_postinc (HOST_WIDE_INT size
)
1324 if (m_explicit_inc
<= 0)
1326 gcc_assert (HAVE_POST_INCREMENT
);
1327 increment_address (size
);
1330 /* This structure is used by do_op_by_pieces to describe the operation
1333 class op_by_pieces_d
1336 fixed_size_mode
get_usable_mode (fixed_size_mode
, unsigned int);
1337 fixed_size_mode
smallest_fixed_size_mode_for_size (unsigned int);
1340 pieces_addr m_to
, m_from
;
1341 /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
1342 use it to check the valid mode size. */
1343 const unsigned HOST_WIDE_INT m_len
;
1344 HOST_WIDE_INT m_offset
;
1345 unsigned int m_align
;
1346 unsigned int m_max_size
;
1348 /* True if this is a stack push. */
1350 /* True if targetm.overlap_op_by_pieces_p () returns true. */
1351 bool m_overlap_op_by_pieces
;
1352 /* The type of operation that we're performing. */
1353 by_pieces_operation m_op
;
1355 /* Virtual functions, overriden by derived classes for the specific
1357 virtual void generate (rtx
, rtx
, machine_mode
) = 0;
1358 virtual bool prepare_mode (machine_mode
, unsigned int) = 0;
1359 virtual void finish_mode (machine_mode
)
1364 op_by_pieces_d (unsigned int, rtx
, bool, rtx
, bool, by_pieces_constfn
,
1365 void *, unsigned HOST_WIDE_INT
, unsigned int, bool,
1366 by_pieces_operation
);
1370 /* The constructor for an op_by_pieces_d structure. We require two
1371 objects named TO and FROM, which are identified as loads or stores
1372 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1373 and its associated FROM_CFN_DATA can be used to replace loads with
1374 constant values. MAX_PIECES describes the maximum number of bytes
1375 at a time which can be moved efficiently. LEN describes the length
1376 of the operation. */
1378 op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces
, rtx to
,
1379 bool to_load
, rtx from
, bool from_load
,
1380 by_pieces_constfn from_cfn
,
1381 void *from_cfn_data
,
1382 unsigned HOST_WIDE_INT len
,
1383 unsigned int align
, bool push
,
1384 by_pieces_operation op
)
1385 : m_to (to
, to_load
, NULL
, NULL
),
1386 m_from (from
, from_load
, from_cfn
, from_cfn_data
),
1387 m_len (len
), m_max_size (max_pieces
+ 1),
1388 m_push (push
), m_op (op
)
1390 int toi
= m_to
.get_addr_inc ();
1391 int fromi
= m_from
.get_addr_inc ();
1392 if (toi
>= 0 && fromi
>= 0)
1394 else if (toi
<= 0 && fromi
<= 0)
1399 m_offset
= m_reverse
? len
: 0;
1400 align
= MIN (to
? MEM_ALIGN (to
) : align
,
1401 from
? MEM_ALIGN (from
) : align
);
1403 /* If copying requires more than two move insns,
1404 copy addresses to registers (to make displacements shorter)
1405 and use post-increment if available. */
1406 if (by_pieces_ninsns (len
, align
, m_max_size
, MOVE_BY_PIECES
) > 2)
1408 /* Find the mode of the largest comparison. */
1409 fixed_size_mode mode
1410 = widest_fixed_size_mode_for_size (m_max_size
, m_op
);
1412 m_from
.decide_autoinc (mode
, m_reverse
, len
);
1413 m_to
.decide_autoinc (mode
, m_reverse
, len
);
1416 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1419 m_overlap_op_by_pieces
= targetm
.overlap_op_by_pieces_p ();
1422 /* This function returns the largest usable integer mode for LEN bytes
1423 whose size is no bigger than size of MODE. */
1426 op_by_pieces_d::get_usable_mode (fixed_size_mode mode
, unsigned int len
)
1431 size
= GET_MODE_SIZE (mode
);
1432 if (len
>= size
&& prepare_mode (mode
, m_align
))
1434 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1435 mode
= widest_fixed_size_mode_for_size (size
, m_op
);
1441 /* Return the smallest integer or QI vector mode that is not narrower
1445 op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size
)
1447 /* Use QI vector only for > size of WORD. */
1448 if (can_use_qi_vectors (m_op
) && size
> UNITS_PER_WORD
)
1451 fixed_size_mode candidate
;
1452 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_INT
)
1453 if (is_a
<fixed_size_mode
> (mode
, &candidate
)
1454 && GET_MODE_INNER (candidate
) == QImode
)
1456 /* Don't return a mode wider than M_LEN. */
1457 if (GET_MODE_SIZE (candidate
) > m_len
)
1460 if (GET_MODE_SIZE (candidate
) >= size
1461 && by_pieces_mode_supported_p (candidate
, m_op
))
1466 return smallest_int_mode_for_size (size
* BITS_PER_UNIT
);
1469 /* This function contains the main loop used for expanding a block
1470 operation. First move what we can in the largest integer mode,
1471 then go to successively smaller modes. For every access, call
1472 GENFUN with the two operands and the EXTRA_DATA. */
1475 op_by_pieces_d::run ()
1480 unsigned HOST_WIDE_INT length
= m_len
;
1482 /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
1483 fixed_size_mode mode
1484 = widest_fixed_size_mode_for_size (m_max_size
, m_op
);
1485 mode
= get_usable_mode (mode
, length
);
1487 by_pieces_prev to_prev
= { nullptr, mode
};
1488 by_pieces_prev from_prev
= { nullptr, mode
};
1492 unsigned int size
= GET_MODE_SIZE (mode
);
1493 rtx to1
= NULL_RTX
, from1
;
1495 while (length
>= size
)
1500 to1
= m_to
.adjust (mode
, m_offset
, &to_prev
);
1502 to_prev
.mode
= mode
;
1503 from1
= m_from
.adjust (mode
, m_offset
, &from_prev
);
1504 from_prev
.data
= from1
;
1505 from_prev
.mode
= mode
;
1507 m_to
.maybe_predec (-(HOST_WIDE_INT
)size
);
1508 m_from
.maybe_predec (-(HOST_WIDE_INT
)size
);
1510 generate (to1
, from1
, mode
);
1512 m_to
.maybe_postinc (size
);
1513 m_from
.maybe_postinc (size
);
1526 if (!m_push
&& m_overlap_op_by_pieces
)
1528 /* NB: Generate overlapping operations if it is not a stack
1529 push since stack push must not overlap. Get the smallest
1530 fixed size mode for M_LEN bytes. */
1531 mode
= smallest_fixed_size_mode_for_size (length
);
1532 mode
= get_usable_mode (mode
, GET_MODE_SIZE (mode
));
1533 int gap
= GET_MODE_SIZE (mode
) - length
;
1536 /* If size of MODE > M_LEN, generate the last operation
1537 in MODE for the remaining bytes with ovelapping memory
1538 from the previois operation. */
1548 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1549 mode
= widest_fixed_size_mode_for_size (size
, m_op
);
1550 mode
= get_usable_mode (mode
, length
);
1556 /* Derived class from op_by_pieces_d, providing support for block move
1559 #ifdef PUSH_ROUNDING
1560 #define PUSHG_P(to) ((to) == nullptr)
1562 #define PUSHG_P(to) false
1565 class move_by_pieces_d
: public op_by_pieces_d
1567 insn_gen_fn m_gen_fun
;
1568 void generate (rtx
, rtx
, machine_mode
) final override
;
1569 bool prepare_mode (machine_mode
, unsigned int) final override
;
1572 move_by_pieces_d (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1574 : op_by_pieces_d (MOVE_MAX_PIECES
, to
, false, from
, true, NULL
,
1575 NULL
, len
, align
, PUSHG_P (to
), MOVE_BY_PIECES
)
1578 rtx
finish_retmode (memop_ret
);
1581 /* Return true if MODE can be used for a set of copies, given an
1582 alignment ALIGN. Prepare whatever data is necessary for later
1583 calls to generate. */
1586 move_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1588 insn_code icode
= optab_handler (mov_optab
, mode
);
1589 m_gen_fun
= GEN_FCN (icode
);
1590 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1593 /* A callback used when iterating for a compare_by_pieces_operation.
1594 OP0 and OP1 are the values that have been loaded and should be
1595 compared in MODE. If OP0 is NULL, this means we should generate a
1596 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1597 gen function that should be used to generate the mode. */
1600 move_by_pieces_d::generate (rtx op0
, rtx op1
,
1601 machine_mode mode ATTRIBUTE_UNUSED
)
1603 #ifdef PUSH_ROUNDING
1604 if (op0
== NULL_RTX
)
1606 emit_single_push_insn (mode
, op1
, NULL
);
1610 emit_insn (m_gen_fun (op0
, op1
));
1613 /* Perform the final adjustment at the end of a string to obtain the
1614 correct return value for the block operation.
1615 Return value is based on RETMODE argument. */
1618 move_by_pieces_d::finish_retmode (memop_ret retmode
)
1620 gcc_assert (!m_reverse
);
1621 if (retmode
== RETURN_END_MINUS_ONE
)
1623 m_to
.maybe_postinc (-1);
1626 return m_to
.adjust (QImode
, m_offset
);
1629 /* Generate several move instructions to copy LEN bytes from block FROM to
1630 block TO. (These are MEM rtx's with BLKmode).
1632 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1633 used to push FROM to the stack.
1635 ALIGN is maximum stack alignment we can assume.
1637 Return value is based on RETMODE argument. */
1640 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1641 unsigned int align
, memop_ret retmode
)
1643 #ifndef PUSH_ROUNDING
1648 move_by_pieces_d
data (to
, from
, len
, align
);
1652 if (retmode
!= RETURN_BEGIN
)
1653 return data
.finish_retmode (retmode
);
1658 /* Derived class from op_by_pieces_d, providing support for block move
1661 class store_by_pieces_d
: public op_by_pieces_d
1663 insn_gen_fn m_gen_fun
;
1665 void generate (rtx
, rtx
, machine_mode
) final override
;
1666 bool prepare_mode (machine_mode
, unsigned int) final override
;
1669 store_by_pieces_d (rtx to
, by_pieces_constfn cfn
, void *cfn_data
,
1670 unsigned HOST_WIDE_INT len
, unsigned int align
,
1671 by_pieces_operation op
)
1672 : op_by_pieces_d (STORE_MAX_PIECES
, to
, false, NULL_RTX
, true, cfn
,
1673 cfn_data
, len
, align
, false, op
)
1676 rtx
finish_retmode (memop_ret
);
1679 /* Return true if MODE can be used for a set of stores, given an
1680 alignment ALIGN. Prepare whatever data is necessary for later
1681 calls to generate. */
1684 store_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1686 insn_code icode
= optab_handler (mov_optab
, mode
);
1687 m_gen_fun
= GEN_FCN (icode
);
1688 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1691 /* A callback used when iterating for a store_by_pieces_operation.
1692 OP0 and OP1 are the values that have been loaded and should be
1693 compared in MODE. If OP0 is NULL, this means we should generate a
1694 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1695 gen function that should be used to generate the mode. */
1698 store_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode
)
1700 emit_insn (m_gen_fun (op0
, op1
));
1703 /* Perform the final adjustment at the end of a string to obtain the
1704 correct return value for the block operation.
1705 Return value is based on RETMODE argument. */
1708 store_by_pieces_d::finish_retmode (memop_ret retmode
)
1710 gcc_assert (!m_reverse
);
1711 if (retmode
== RETURN_END_MINUS_ONE
)
1713 m_to
.maybe_postinc (-1);
1716 return m_to
.adjust (QImode
, m_offset
);
1719 /* Determine whether the LEN bytes generated by CONSTFUN can be
1720 stored to memory using several move instructions. CONSTFUNDATA is
1721 a pointer which will be passed as argument in every CONSTFUN call.
1722 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1723 a memset operation and false if it's a copy of a constant string.
1724 Return true if a call to store_by_pieces should succeed. */
1727 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
1728 by_pieces_constfn constfun
,
1729 void *constfundata
, unsigned int align
, bool memsetp
)
1731 unsigned HOST_WIDE_INT l
;
1732 unsigned int max_size
;
1733 HOST_WIDE_INT offset
= 0;
1734 enum insn_code icode
;
1736 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1737 rtx cst ATTRIBUTE_UNUSED
;
1742 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
1746 optimize_insn_for_speed_p ()))
1749 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
1751 /* We would first store what we can in the largest integer mode, then go to
1752 successively smaller modes. */
1755 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
1759 max_size
= STORE_MAX_PIECES
+ 1;
1760 while (max_size
> 1 && l
> 0)
1762 auto op
= memsetp
? SET_BY_PIECES
: STORE_BY_PIECES
;
1763 auto mode
= widest_fixed_size_mode_for_size (max_size
, op
);
1765 icode
= optab_handler (mov_optab
, mode
);
1766 if (icode
!= CODE_FOR_nothing
1767 && align
>= GET_MODE_ALIGNMENT (mode
))
1769 unsigned int size
= GET_MODE_SIZE (mode
);
1776 cst
= (*constfun
) (constfundata
, nullptr, offset
, mode
);
1777 /* All CONST_VECTORs can be loaded for memset since
1778 vec_duplicate_optab is a precondition to pick a
1779 vector mode for the memset expander. */
1780 if (!((memsetp
&& VECTOR_MODE_P (mode
))
1781 || targetm
.legitimate_constant_p (mode
, cst
)))
1791 max_size
= GET_MODE_SIZE (mode
);
1794 /* The code above should have handled everything. */
1801 /* Generate several move instructions to store LEN bytes generated by
1802 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1803 pointer which will be passed as argument in every CONSTFUN call.
1804 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1805 a memset operation and false if it's a copy of a constant string.
1806 Return value is based on RETMODE argument. */
1809 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
1810 by_pieces_constfn constfun
,
1811 void *constfundata
, unsigned int align
, bool memsetp
,
1816 gcc_assert (retmode
!= RETURN_END_MINUS_ONE
);
1820 gcc_assert (targetm
.use_by_pieces_infrastructure_p
1822 memsetp
? SET_BY_PIECES
: STORE_BY_PIECES
,
1823 optimize_insn_for_speed_p ()));
1825 store_by_pieces_d
data (to
, constfun
, constfundata
, len
, align
,
1826 memsetp
? SET_BY_PIECES
: STORE_BY_PIECES
);
1829 if (retmode
!= RETURN_BEGIN
)
1830 return data
.finish_retmode (retmode
);
1835 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1836 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1839 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
1844 /* Use builtin_memset_read_str to support vector mode broadcast. */
1846 store_by_pieces_d
data (to
, builtin_memset_read_str
, &c
, len
, align
,
1851 /* Context used by compare_by_pieces_genfn. It stores the fail label
1852 to jump to in case of miscomparison, and for branch ratios greater than 1,
1853 it stores an accumulator and the current and maximum counts before
1854 emitting another branch. */
1856 class compare_by_pieces_d
: public op_by_pieces_d
1858 rtx_code_label
*m_fail_label
;
1860 int m_count
, m_batch
;
1862 void generate (rtx
, rtx
, machine_mode
) final override
;
1863 bool prepare_mode (machine_mode
, unsigned int) final override
;
1864 void finish_mode (machine_mode
) final override
;
1867 compare_by_pieces_d (rtx op0
, rtx op1
, by_pieces_constfn op1_cfn
,
1868 void *op1_cfn_data
, HOST_WIDE_INT len
, int align
,
1869 rtx_code_label
*fail_label
)
1870 : op_by_pieces_d (COMPARE_MAX_PIECES
, op0
, true, op1
, true, op1_cfn
,
1871 op1_cfn_data
, len
, align
, false, COMPARE_BY_PIECES
)
1873 m_fail_label
= fail_label
;
1877 /* A callback used when iterating for a compare_by_pieces_operation.
1878 OP0 and OP1 are the values that have been loaded and should be
1879 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1880 context structure. */
1883 compare_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode mode
)
1887 rtx temp
= expand_binop (mode
, sub_optab
, op0
, op1
, NULL_RTX
,
1888 true, OPTAB_LIB_WIDEN
);
1890 temp
= expand_binop (mode
, ior_optab
, m_accumulator
, temp
, temp
,
1891 true, OPTAB_LIB_WIDEN
);
1892 m_accumulator
= temp
;
1894 if (++m_count
< m_batch
)
1898 op0
= m_accumulator
;
1900 m_accumulator
= NULL_RTX
;
1902 do_compare_rtx_and_jump (op0
, op1
, NE
, true, mode
, NULL_RTX
, NULL
,
1903 m_fail_label
, profile_probability::uninitialized ());
1906 /* Return true if MODE can be used for a set of moves and comparisons,
1907 given an alignment ALIGN. Prepare whatever data is necessary for
1908 later calls to generate. */
1911 compare_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1913 insn_code icode
= optab_handler (mov_optab
, mode
);
1914 if (icode
== CODE_FOR_nothing
1915 || align
< GET_MODE_ALIGNMENT (mode
)
1916 || !can_compare_p (EQ
, mode
, ccp_jump
))
1918 m_batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
1921 m_accumulator
= NULL_RTX
;
1926 /* Called after expanding a series of comparisons in MODE. If we have
1927 accumulated results for which we haven't emitted a branch yet, do
1931 compare_by_pieces_d::finish_mode (machine_mode mode
)
1933 if (m_accumulator
!= NULL_RTX
)
1934 do_compare_rtx_and_jump (m_accumulator
, const0_rtx
, NE
, true, mode
,
1935 NULL_RTX
, NULL
, m_fail_label
,
1936 profile_probability::uninitialized ());
1939 /* Generate several move instructions to compare LEN bytes from blocks
1940 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1942 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1943 used to push FROM to the stack.
1945 ALIGN is maximum stack alignment we can assume.
1947 Optionally, the caller can pass a constfn and associated data in A1_CFN
1948 and A1_CFN_DATA. describing that the second operand being compared is a
1949 known constant and how to obtain its data. */
1952 compare_by_pieces (rtx arg0
, rtx arg1
, unsigned HOST_WIDE_INT len
,
1953 rtx target
, unsigned int align
,
1954 by_pieces_constfn a1_cfn
, void *a1_cfn_data
)
1956 rtx_code_label
*fail_label
= gen_label_rtx ();
1957 rtx_code_label
*end_label
= gen_label_rtx ();
1959 if (target
== NULL_RTX
1960 || !REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
1961 target
= gen_reg_rtx (TYPE_MODE (integer_type_node
));
1963 compare_by_pieces_d
data (arg0
, arg1
, a1_cfn
, a1_cfn_data
, len
, align
,
1968 emit_move_insn (target
, const0_rtx
);
1969 emit_jump (end_label
);
1971 emit_label (fail_label
);
1972 emit_move_insn (target
, const1_rtx
);
1973 emit_label (end_label
);
1978 /* Emit code to move a block Y to a block X. This may be done with
1979 string-move instructions, with multiple scalar move instructions,
1980 or with a library call.
1982 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1983 SIZE is an rtx that says how long they are.
1984 ALIGN is the maximum alignment we can assume they have.
1985 METHOD describes what kind of copy this is, and what mechanisms may be used.
1986 MIN_SIZE is the minimal size of block to move
1987 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1988 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1989 CTZ_SIZE is the trailing-zeros count of SIZE; even a nonconstant SIZE is
1990 known to be a multiple of 1<<CTZ_SIZE.
1992 Return the address of the new block, if memcpy is called and returns it,
1996 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1997 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1998 unsigned HOST_WIDE_INT min_size
,
1999 unsigned HOST_WIDE_INT max_size
,
2000 unsigned HOST_WIDE_INT probable_max_size
,
2001 bool bail_out_libcall
, bool *is_move_done
,
2002 bool might_overlap
, unsigned ctz_size
)
2009 *is_move_done
= true;
2012 if (CONST_INT_P (size
) && INTVAL (size
) == 0)
2017 case BLOCK_OP_NORMAL
:
2018 case BLOCK_OP_TAILCALL
:
2022 case BLOCK_OP_CALL_PARM
:
2023 may_use_call
= block_move_libcall_safe_for_call_parm ();
2025 /* Make inhibit_defer_pop nonzero around the library call
2026 to force it to pop the arguments right away. */
2030 case BLOCK_OP_NO_LIBCALL
:
2034 case BLOCK_OP_NO_LIBCALL_RET
:
2042 gcc_assert (MEM_P (x
) && MEM_P (y
));
2043 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
2044 gcc_assert (align
>= BITS_PER_UNIT
);
2046 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
2047 block copy is more efficient for other large modes, e.g. DCmode. */
2048 x
= adjust_address (x
, BLKmode
, 0);
2049 y
= adjust_address (y
, BLKmode
, 0);
2051 /* If source and destination are the same, no need to copy anything. */
2052 if (rtx_equal_p (x
, y
)
2053 && !MEM_VOLATILE_P (x
)
2054 && !MEM_VOLATILE_P (y
))
2057 /* Set MEM_SIZE as appropriate for this block copy. The main place this
2058 can be incorrect is coming from __builtin_memcpy. */
2059 poly_int64 const_size
;
2060 if (poly_int_rtx_p (size
, &const_size
))
2062 x
= shallow_copy_rtx (x
);
2063 y
= shallow_copy_rtx (y
);
2064 set_mem_size (x
, const_size
);
2065 set_mem_size (y
, const_size
);
2068 bool pieces_ok
= CONST_INT_P (size
)
2069 && can_move_by_pieces (INTVAL (size
), align
);
2070 bool pattern_ok
= false;
2072 if (!pieces_ok
|| might_overlap
)
2075 = emit_block_move_via_pattern (x
, y
, size
, align
,
2076 expected_align
, expected_size
,
2077 min_size
, max_size
, probable_max_size
,
2079 if (!pattern_ok
&& might_overlap
)
2081 /* Do not try any of the other methods below as they are not safe
2082 for overlapping moves. */
2083 *is_move_done
= false;
2088 bool dynamic_direction
= false;
2089 if (!pattern_ok
&& !pieces_ok
&& may_use_call
2090 && (flag_inline_stringops
& (might_overlap
? ILSOP_MEMMOVE
: ILSOP_MEMCPY
)))
2093 dynamic_direction
= might_overlap
;
2099 move_by_pieces (x
, y
, INTVAL (size
), align
, RETURN_BEGIN
);
2100 else if (may_use_call
&& !might_overlap
2101 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
2102 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
2104 if (bail_out_libcall
)
2107 *is_move_done
= false;
2111 if (may_use_call
< 0)
2114 retval
= emit_block_copy_via_libcall (x
, y
, size
,
2115 method
== BLOCK_OP_TAILCALL
);
2117 else if (dynamic_direction
)
2118 emit_block_move_via_oriented_loop (x
, y
, size
, align
, ctz_size
);
2119 else if (might_overlap
)
2120 *is_move_done
= false;
2122 emit_block_move_via_sized_loop (x
, y
, size
, align
, ctz_size
);
2124 if (method
== BLOCK_OP_CALL_PARM
)
2131 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
2132 unsigned int ctz_size
)
2134 unsigned HOST_WIDE_INT max
, min
= 0;
2135 if (GET_CODE (size
) == CONST_INT
)
2136 min
= max
= UINTVAL (size
);
2138 max
= GET_MODE_MASK (GET_MODE (size
));
2139 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
2141 false, NULL
, false, ctz_size
);
2144 /* A subroutine of emit_block_move. Returns true if calling the
2145 block move libcall will not clobber any parameters which may have
2146 already been placed on the stack. */
2149 block_move_libcall_safe_for_call_parm (void)
2153 /* If arguments are pushed on the stack, then they're safe. */
2154 if (targetm
.calls
.push_argument (0))
2157 /* If registers go on the stack anyway, any argument is sure to clobber
2158 an outgoing argument. */
2159 #if defined (REG_PARM_STACK_SPACE)
2160 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
2161 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
2162 depend on its argument. */
2164 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
2165 && REG_PARM_STACK_SPACE (fn
) != 0)
2169 /* If any argument goes in memory, then it might clobber an outgoing
2172 CUMULATIVE_ARGS args_so_far_v
;
2173 cumulative_args_t args_so_far
;
2176 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
2177 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2178 args_so_far
= pack_cumulative_args (&args_so_far_v
);
2180 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2181 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
2183 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2184 function_arg_info
arg_info (mode
, /*named=*/true);
2185 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, arg_info
);
2186 if (!tmp
|| !REG_P (tmp
))
2188 if (targetm
.calls
.arg_partial_bytes (args_so_far
, arg_info
))
2190 targetm
.calls
.function_arg_advance (args_so_far
, arg_info
);
2196 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
2197 return true if successful.
2199 X is the destination of the copy or move.
2200 Y is the source of the copy or move.
2201 SIZE is the size of the block to be moved.
2203 MIGHT_OVERLAP indicates this originated with expansion of a
2204 builtin_memmove() and the source and destination blocks may
2209 emit_block_move_via_pattern (rtx x
, rtx y
, rtx size
, unsigned int align
,
2210 unsigned int expected_align
,
2211 HOST_WIDE_INT expected_size
,
2212 unsigned HOST_WIDE_INT min_size
,
2213 unsigned HOST_WIDE_INT max_size
,
2214 unsigned HOST_WIDE_INT probable_max_size
,
2217 if (expected_align
< align
)
2218 expected_align
= align
;
2219 if (expected_size
!= -1)
2221 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
2222 expected_size
= probable_max_size
;
2223 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2224 expected_size
= min_size
;
2227 /* Since this is a move insn, we don't care about volatility. */
2228 temporary_volatile_ok
v (true);
2230 /* Try the most limited insn first, because there's no point
2231 including more than one in the machine description unless
2232 the more limited one has some advantage. */
2234 opt_scalar_int_mode mode_iter
;
2235 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2237 scalar_int_mode mode
= mode_iter
.require ();
2238 enum insn_code code
;
2240 code
= direct_optab_handler (movmem_optab
, mode
);
2242 code
= direct_optab_handler (cpymem_optab
, mode
);
2244 if (code
!= CODE_FOR_nothing
2245 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2246 here because if SIZE is less than the mode mask, as it is
2247 returned by the macro, it will definitely be less than the
2248 actual mode mask. Since SIZE is within the Pmode address
2249 space, we limit MODE to Pmode. */
2250 && ((CONST_INT_P (size
)
2251 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2252 <= (GET_MODE_MASK (mode
) >> 1)))
2253 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2254 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2256 class expand_operand ops
[9];
2259 /* ??? When called via emit_block_move_for_call, it'd be
2260 nice if there were some way to inform the backend, so
2261 that it doesn't fail the expansion because it thinks
2262 emitting the libcall would be more efficient. */
2263 nops
= insn_data
[(int) code
].n_generator_args
;
2264 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2266 create_fixed_operand (&ops
[0], x
);
2267 create_fixed_operand (&ops
[1], y
);
2268 /* The check above guarantees that this size conversion is valid. */
2269 create_convert_operand_to (&ops
[2], size
, mode
, true);
2270 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2273 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2274 create_integer_operand (&ops
[5], expected_size
);
2278 create_integer_operand (&ops
[6], min_size
);
2279 /* If we cannot represent the maximal size,
2280 make parameter NULL. */
2281 if ((HOST_WIDE_INT
) max_size
!= -1)
2282 create_integer_operand (&ops
[7], max_size
);
2284 create_fixed_operand (&ops
[7], NULL
);
2288 /* If we cannot represent the maximal size,
2289 make parameter NULL. */
2290 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2291 create_integer_operand (&ops
[8], probable_max_size
);
2293 create_fixed_operand (&ops
[8], NULL
);
2295 if (maybe_expand_insn (code
, nops
, ops
))
2303 /* Like emit_block_move_via_loop, but choose a suitable INCR based on
2304 ALIGN and CTZ_SIZE. */
2307 emit_block_move_via_sized_loop (rtx x
, rtx y
, rtx size
,
2309 unsigned int ctz_size
)
2311 int incr
= align
/ BITS_PER_UNIT
;
2313 if (CONST_INT_P (size
))
2314 ctz_size
= MAX (ctz_size
, (unsigned) wi::ctz (UINTVAL (size
)));
2316 if (HOST_WIDE_INT_1U
<< ctz_size
< (unsigned HOST_WIDE_INT
) incr
)
2317 incr
= HOST_WIDE_INT_1U
<< ctz_size
;
2319 while (incr
> 1 && !can_move_by_pieces (incr
, align
))
2322 gcc_checking_assert (incr
);
2324 return emit_block_move_via_loop (x
, y
, size
, align
, incr
);
2327 /* Like emit_block_move_via_sized_loop, but besides choosing INCR so
2328 as to ensure safe moves even in case of overlap, output dynamic
2329 tests to choose between two loops, one moving downwards, another
2333 emit_block_move_via_oriented_loop (rtx x
, rtx y
, rtx size
,
2335 unsigned int ctz_size
)
2337 int incr
= align
/ BITS_PER_UNIT
;
2339 if (CONST_INT_P (size
))
2340 ctz_size
= MAX (ctz_size
, (unsigned) wi::ctz (UINTVAL (size
)));
2342 if (HOST_WIDE_INT_1U
<< ctz_size
< (unsigned HOST_WIDE_INT
) incr
)
2343 incr
= HOST_WIDE_INT_1U
<< ctz_size
;
2345 while (incr
> 1 && !int_mode_for_size (incr
, 0).exists ())
2348 gcc_checking_assert (incr
);
2350 rtx_code_label
*upw_label
, *end_label
;
2351 upw_label
= gen_label_rtx ();
2352 end_label
= gen_label_rtx ();
2354 rtx x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
2355 rtx y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
2356 do_pending_stack_adjust ();
2358 machine_mode mode
= GET_MODE (x_addr
);
2359 if (mode
!= GET_MODE (y_addr
))
2361 scalar_int_mode xmode
2362 = smallest_int_mode_for_size (GET_MODE_BITSIZE (mode
));
2363 scalar_int_mode ymode
2364 = smallest_int_mode_for_size (GET_MODE_BITSIZE
2365 (GET_MODE (y_addr
)));
2366 if (GET_MODE_BITSIZE (xmode
) < GET_MODE_BITSIZE (ymode
))
2371 #ifndef POINTERS_EXTEND_UNSIGNED
2372 const int POINTERS_EXTEND_UNSIGNED
= 1;
2374 x_addr
= convert_modes (mode
, GET_MODE (x_addr
), x_addr
,
2375 POINTERS_EXTEND_UNSIGNED
);
2376 y_addr
= convert_modes (mode
, GET_MODE (y_addr
), y_addr
,
2377 POINTERS_EXTEND_UNSIGNED
);
2380 /* Test for overlap: if (x >= y || x + size <= y) goto upw_label. */
2381 emit_cmp_and_jump_insns (x_addr
, y_addr
, GEU
, NULL_RTX
, mode
,
2383 profile_probability::guessed_always ()
2384 .apply_scale (5, 10));
2385 rtx tmp
= convert_modes (GET_MODE (x_addr
), GET_MODE (size
), size
, true);
2386 tmp
= simplify_gen_binary (PLUS
, GET_MODE (x_addr
), x_addr
, tmp
);
2388 emit_cmp_and_jump_insns (tmp
, y_addr
, LEU
, NULL_RTX
, mode
,
2390 profile_probability::guessed_always ()
2391 .apply_scale (8, 10));
2393 emit_block_move_via_loop (x
, y
, size
, align
, -incr
);
2395 emit_jump (end_label
);
2396 emit_label (upw_label
);
2398 emit_block_move_via_loop (x
, y
, size
, align
, incr
);
2400 emit_label (end_label
);
2403 /* A subroutine of emit_block_move. Copy the data via an explicit
2404 loop. This is used only when libcalls are forbidden, or when
2405 inlining is required. INCR is the block size to be copied in each
2406 loop iteration. If it is negative, the absolute value is used, and
2407 the block is copied backwards. INCR must be a power of two, an
2408 exact divisor for SIZE and ALIGN, and imply a mode that can be
2409 safely copied per iteration assuming no overlap. */
2412 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
2413 unsigned int align
, int incr
)
2415 rtx_code_label
*cmp_label
, *top_label
;
2416 rtx iter
, x_addr
, y_addr
, tmp
;
2417 machine_mode x_addr_mode
= get_address_mode (x
);
2418 machine_mode y_addr_mode
= get_address_mode (y
);
2419 machine_mode iter_mode
;
2421 iter_mode
= GET_MODE (size
);
2422 if (iter_mode
== VOIDmode
)
2423 iter_mode
= word_mode
;
2425 top_label
= gen_label_rtx ();
2426 cmp_label
= gen_label_rtx ();
2427 iter
= gen_reg_rtx (iter_mode
);
2429 bool downwards
= incr
< 0;
2434 machine_mode move_mode
;
2440 iter_limit
= const0_rtx
;
2441 iter_incr
= GEN_INT (incr
);
2445 iter_init
= const0_rtx
;
2448 iter_incr
= GEN_INT (incr
);
2450 emit_move_insn (iter
, iter_init
);
2452 scalar_int_mode int_move_mode
2453 = smallest_int_mode_for_size (incr
* BITS_PER_UNIT
);
2454 if (GET_MODE_BITSIZE (int_move_mode
) != incr
* BITS_PER_UNIT
)
2456 move_mode
= BLKmode
;
2457 gcc_checking_assert (can_move_by_pieces (incr
, align
));
2460 move_mode
= int_move_mode
;
2462 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
2463 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
2464 do_pending_stack_adjust ();
2466 emit_jump (cmp_label
);
2467 emit_label (top_label
);
2469 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
2470 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
2472 if (x_addr_mode
!= y_addr_mode
)
2473 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
2474 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
2476 x
= change_address (x
, move_mode
, x_addr
);
2477 y
= change_address (y
, move_mode
, y_addr
);
2479 if (move_mode
== BLKmode
)
2482 emit_block_move_hints (x
, y
, iter_incr
, BLOCK_OP_NO_LIBCALL
,
2483 align
, incr
, incr
, incr
, incr
,
2484 false, &done
, false);
2485 gcc_checking_assert (done
);
2488 emit_move_insn (x
, y
);
2491 emit_label (cmp_label
);
2493 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, iter_incr
, iter
,
2494 true, OPTAB_LIB_WIDEN
);
2496 emit_move_insn (iter
, tmp
);
2499 emit_label (cmp_label
);
2501 emit_cmp_and_jump_insns (iter
, iter_limit
, iter_cond
, NULL_RTX
, iter_mode
,
2503 profile_probability::guessed_always ()
2504 .apply_scale (9, 10));
2507 /* Expand a call to memcpy or memmove or memcmp, and return the result.
2508 TAILCALL is true if this is a tail call. */
2511 emit_block_op_via_libcall (enum built_in_function fncode
, rtx dst
, rtx src
,
2512 rtx size
, bool tailcall
)
2514 rtx dst_addr
, src_addr
;
2515 tree call_expr
, dst_tree
, src_tree
, size_tree
;
2516 machine_mode size_mode
;
2518 /* Since dst and src are passed to a libcall, mark the corresponding
2519 tree EXPR as addressable. */
2520 tree dst_expr
= MEM_EXPR (dst
);
2521 tree src_expr
= MEM_EXPR (src
);
2523 mark_addressable (dst_expr
);
2525 mark_addressable (src_expr
);
2527 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
2528 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
2529 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
2531 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
2532 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
2533 src_tree
= make_tree (ptr_type_node
, src_addr
);
2535 size_mode
= TYPE_MODE (sizetype
);
2536 size
= convert_to_mode (size_mode
, size
, 1);
2537 size
= copy_to_mode_reg (size_mode
, size
);
2538 size_tree
= make_tree (sizetype
, size
);
2540 /* It is incorrect to use the libcall calling conventions for calls to
2541 memcpy/memmove/memcmp because they can be provided by the user. */
2542 tree fn
= builtin_decl_implicit (fncode
);
2543 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
2544 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2546 return expand_call (call_expr
, NULL_RTX
, false);
2549 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
2550 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
2551 otherwise return null. */
2554 expand_cmpstrn_or_cmpmem (insn_code icode
, rtx target
, rtx arg1_rtx
,
2555 rtx arg2_rtx
, tree arg3_type
, rtx arg3_rtx
,
2556 HOST_WIDE_INT align
)
2558 machine_mode insn_mode
= insn_data
[icode
].operand
[0].mode
;
2560 if (target
&& (!REG_P (target
) || HARD_REGISTER_P (target
)))
2563 class expand_operand ops
[5];
2564 create_output_operand (&ops
[0], target
, insn_mode
);
2565 create_fixed_operand (&ops
[1], arg1_rtx
);
2566 create_fixed_operand (&ops
[2], arg2_rtx
);
2567 create_convert_operand_from (&ops
[3], arg3_rtx
, TYPE_MODE (arg3_type
),
2568 TYPE_UNSIGNED (arg3_type
));
2569 create_integer_operand (&ops
[4], align
);
2570 if (maybe_expand_insn (icode
, 5, ops
))
2571 return ops
[0].value
;
2575 /* Expand a block compare between X and Y with length LEN using the
2576 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2577 of the expression that was used to calculate the length. ALIGN
2578 gives the known minimum common alignment. */
2581 emit_block_cmp_via_cmpmem (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
2584 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2585 implementing memcmp because it will stop if it encounters two
2587 insn_code icode
= direct_optab_handler (cmpmem_optab
, SImode
);
2589 if (icode
== CODE_FOR_nothing
)
2592 return expand_cmpstrn_or_cmpmem (icode
, target
, x
, y
, len_type
, len
, align
);
2595 /* Emit code to compare a block Y to a block X. This may be done with
2596 string-compare instructions, with multiple scalar instructions,
2597 or with a library call.
2599 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2600 they are. LEN_TYPE is the type of the expression that was used to
2601 calculate it, and CTZ_LEN is the known trailing-zeros count of LEN,
2602 so LEN must be a multiple of 1<<CTZ_LEN even if it's not constant.
2604 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2605 value of a normal memcmp call, instead we can just compare for equality.
2606 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2609 Optionally, the caller can pass a constfn and associated data in Y_CFN
2610 and Y_CFN_DATA. describing that the second operand being compared is a
2611 known constant and how to obtain its data.
2612 Return the result of the comparison, or NULL_RTX if we failed to
2613 perform the operation. */
2616 emit_block_cmp_hints (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
2617 bool equality_only
, by_pieces_constfn y_cfn
,
2618 void *y_cfndata
, unsigned ctz_len
)
2622 if (CONST_INT_P (len
) && INTVAL (len
) == 0)
2625 gcc_assert (MEM_P (x
) && MEM_P (y
));
2626 unsigned int align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
2627 gcc_assert (align
>= BITS_PER_UNIT
);
2629 x
= adjust_address (x
, BLKmode
, 0);
2630 y
= adjust_address (y
, BLKmode
, 0);
2633 && CONST_INT_P (len
)
2634 && can_do_by_pieces (INTVAL (len
), align
, COMPARE_BY_PIECES
))
2635 result
= compare_by_pieces (x
, y
, INTVAL (len
), target
, align
,
2638 result
= emit_block_cmp_via_cmpmem (x
, y
, len
, len_type
, target
, align
);
2640 if (!result
&& (flag_inline_stringops
& ILSOP_MEMCMP
))
2641 result
= emit_block_cmp_via_loop (x
, y
, len
, len_type
,
2642 target
, equality_only
,
2648 /* Like emit_block_cmp_hints, but with known alignment and no support
2649 for constats. Always expand to a loop with iterations that compare
2650 blocks of the largest compare-by-pieces size that divides both len
2651 and align, and then, if !EQUALITY_ONLY, identify the word and then
2652 the unit that first differs to return the result. */
2655 emit_block_cmp_via_loop (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
2656 bool equality_only
, unsigned align
, unsigned ctz_len
)
2658 unsigned incr
= align
/ BITS_PER_UNIT
;
2660 if (CONST_INT_P (len
))
2661 ctz_len
= MAX (ctz_len
, (unsigned) wi::ctz (UINTVAL (len
)));
2663 if (HOST_WIDE_INT_1U
<< ctz_len
< (unsigned HOST_WIDE_INT
) incr
)
2664 incr
= HOST_WIDE_INT_1U
<< ctz_len
;
2667 && !can_do_by_pieces (incr
, align
, COMPARE_BY_PIECES
))
2670 rtx_code_label
*cmp_label
, *top_label
, *ne_label
, *res_label
;
2671 rtx iter
, x_addr
, y_addr
, tmp
;
2672 machine_mode x_addr_mode
= get_address_mode (x
);
2673 machine_mode y_addr_mode
= get_address_mode (y
);
2674 machine_mode iter_mode
;
2676 iter_mode
= GET_MODE (len
);
2677 if (iter_mode
== VOIDmode
)
2678 iter_mode
= word_mode
;
2680 rtx iter_init
= const0_rtx
;
2681 rtx_code iter_cond
= LTU
;
2682 rtx_code entry_cond
= GEU
;
2683 rtx iter_limit
= len
;
2684 rtx iter_incr
= GEN_INT (incr
);
2685 machine_mode cmp_mode
;
2687 /* We can drop the loop back edge if we know there's exactly one
2689 top_label
= (!rtx_equal_p (len
, iter_incr
)
2692 /* We need not test before entering the loop if len is known
2693 nonzero. ??? This could be even stricter, testing whether a
2694 nonconstant LEN could possibly be zero. */
2695 cmp_label
= (!CONSTANT_P (len
) || rtx_equal_p (len
, iter_init
)
2698 ne_label
= gen_label_rtx ();
2699 res_label
= gen_label_rtx ();
2701 iter
= gen_reg_rtx (iter_mode
);
2702 emit_move_insn (iter
, iter_init
);
2704 scalar_int_mode int_cmp_mode
2705 = smallest_int_mode_for_size (incr
* BITS_PER_UNIT
);
2706 if (GET_MODE_BITSIZE (int_cmp_mode
) != incr
* BITS_PER_UNIT
2707 || !can_compare_p (NE
, int_cmp_mode
, ccp_jump
))
2710 gcc_checking_assert (incr
!= 1);
2713 cmp_mode
= int_cmp_mode
;
2715 /* Save the base addresses. */
2716 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
2717 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
2718 do_pending_stack_adjust ();
2723 emit_jump (cmp_label
);
2725 emit_cmp_and_jump_insns (iter
, iter_limit
, entry_cond
,
2726 NULL_RTX
, iter_mode
,
2728 profile_probability::guessed_always ()
2729 .apply_scale (1, 10));
2732 emit_label (top_label
);
2734 /* Offset the base addresses by ITER. */
2735 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
2736 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
2738 if (x_addr_mode
!= y_addr_mode
)
2739 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
2740 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
2742 x
= change_address (x
, cmp_mode
, x_addr
);
2743 y
= change_address (y
, cmp_mode
, y_addr
);
2745 /* Compare one block. */
2747 if (cmp_mode
== BLKmode
)
2748 part_res
= compare_by_pieces (x
, y
, incr
, target
, align
, 0, 0);
2750 part_res
= expand_binop (cmp_mode
, sub_optab
, x
, y
, NULL_RTX
,
2751 true, OPTAB_LIB_WIDEN
);
2753 /* Stop if we found a difference. */
2754 emit_cmp_and_jump_insns (part_res
, GEN_INT (0), NE
, NULL_RTX
,
2755 GET_MODE (part_res
), true, ne_label
,
2756 profile_probability::guessed_always ()
2757 .apply_scale (1, 10));
2759 /* Increment ITER. */
2760 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, iter_incr
, iter
,
2761 true, OPTAB_LIB_WIDEN
);
2763 emit_move_insn (iter
, tmp
);
2766 emit_label (cmp_label
);
2767 /* Loop until we reach the limit. */
2770 emit_cmp_and_jump_insns (iter
, iter_limit
, iter_cond
, NULL_RTX
, iter_mode
,
2772 profile_probability::guessed_always ()
2773 .apply_scale (9, 10));
2775 /* We got to the end without differences, so the result is zero. */
2776 if (target
== NULL_RTX
2777 || !REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
2778 target
= gen_reg_rtx (TYPE_MODE (integer_type_node
));
2780 emit_move_insn (target
, const0_rtx
);
2781 emit_jump (res_label
);
2783 emit_label (ne_label
);
2785 /* Return nonzero, or pinpoint the difference to return the expected
2786 result for non-equality tests. */
2788 emit_move_insn (target
, const1_rtx
);
2791 if (incr
> UNITS_PER_WORD
)
2792 /* ??? Re-compare the block found to be different one word at a
2794 part_res
= emit_block_cmp_via_loop (x
, y
, GEN_INT (incr
), len_type
,
2795 target
, equality_only
,
2798 /* ??? Re-compare the block found to be different one byte at a
2799 time. We could do better using part_res, and being careful
2800 about endianness. */
2801 part_res
= emit_block_cmp_via_loop (x
, y
, GEN_INT (incr
), len_type
,
2802 target
, equality_only
,
2804 else if (known_gt (GET_MODE_BITSIZE (GET_MODE (target
)),
2805 GET_MODE_BITSIZE (cmp_mode
)))
2806 part_res
= expand_binop (GET_MODE (target
), sub_optab
, x
, y
, target
,
2807 true, OPTAB_LIB_WIDEN
);
2810 /* In the odd chance target is QImode, we can't count on
2811 widening subtract to capture the result of the unsigned
2813 rtx_code_label
*ltu_label
;
2814 ltu_label
= gen_label_rtx ();
2815 emit_cmp_and_jump_insns (x
, y
, LTU
, NULL_RTX
,
2816 cmp_mode
, true, ltu_label
,
2817 profile_probability::guessed_always ()
2818 .apply_scale (5, 10));
2820 emit_move_insn (target
, const1_rtx
);
2821 emit_jump (res_label
);
2823 emit_label (ltu_label
);
2824 emit_move_insn (target
, constm1_rtx
);
2828 if (target
!= part_res
)
2829 convert_move (target
, part_res
, false);
2832 emit_label (res_label
);
2838 /* Copy all or part of a value X into registers starting at REGNO.
2839 The number of registers to be filled is NREGS. */
2842 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
2847 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
2848 x
= validize_mem (force_const_mem (mode
, x
));
2850 /* See if the machine can do this with a load multiple insn. */
2851 if (targetm
.have_load_multiple ())
2853 rtx_insn
*last
= get_last_insn ();
2854 rtx first
= gen_rtx_REG (word_mode
, regno
);
2855 if (rtx_insn
*pat
= targetm
.gen_load_multiple (first
, x
,
2862 delete_insns_since (last
);
2865 for (int i
= 0; i
< nregs
; i
++)
2866 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
2867 operand_subword_force (x
, i
, mode
));
2870 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2871 The number of registers to be filled is NREGS. */
2874 move_block_from_reg (int regno
, rtx x
, int nregs
)
2879 /* See if the machine can do this with a store multiple insn. */
2880 if (targetm
.have_store_multiple ())
2882 rtx_insn
*last
= get_last_insn ();
2883 rtx first
= gen_rtx_REG (word_mode
, regno
);
2884 if (rtx_insn
*pat
= targetm
.gen_store_multiple (x
, first
,
2891 delete_insns_since (last
);
2894 for (int i
= 0; i
< nregs
; i
++)
2896 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
2900 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
2904 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2905 ORIG, where ORIG is a non-consecutive group of registers represented by
2906 a PARALLEL. The clone is identical to the original except in that the
2907 original set of registers is replaced by a new set of pseudo registers.
2908 The new set has the same modes as the original set. */
2911 gen_group_rtx (rtx orig
)
2916 gcc_assert (GET_CODE (orig
) == PARALLEL
);
2918 length
= XVECLEN (orig
, 0);
2919 tmps
= XALLOCAVEC (rtx
, length
);
2921 /* Skip a NULL entry in first slot. */
2922 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
2927 for (; i
< length
; i
++)
2929 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
2930 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
2932 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
2935 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
2938 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2939 except that values are placed in TMPS[i], and must later be moved
2940 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2943 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
,
2948 machine_mode m
= GET_MODE (orig_src
);
2950 gcc_assert (GET_CODE (dst
) == PARALLEL
);
2953 && !SCALAR_INT_MODE_P (m
)
2954 && !MEM_P (orig_src
)
2955 && GET_CODE (orig_src
) != CONCAT
)
2957 scalar_int_mode imode
;
2958 if (int_mode_for_mode (GET_MODE (orig_src
)).exists (&imode
))
2960 src
= gen_reg_rtx (imode
);
2961 emit_move_insn (gen_lowpart (GET_MODE (orig_src
), src
), orig_src
);
2965 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
2966 emit_move_insn (src
, orig_src
);
2968 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2972 /* Check for a NULL entry, used to indicate that the parameter goes
2973 both on the stack and in registers. */
2974 if (XEXP (XVECEXP (dst
, 0, 0), 0))
2979 /* Process the pieces. */
2980 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
2982 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
2983 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (dst
, 0, i
), 1));
2984 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2985 poly_int64 shift
= 0;
2987 /* Handle trailing fragments that run over the size of the struct.
2988 It's the target's responsibility to make sure that the fragment
2989 cannot be strictly smaller in some cases and strictly larger
2991 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2992 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2994 /* Arrange to shift the fragment to where it belongs.
2995 extract_bit_field loads to the lsb of the reg. */
2997 #ifdef BLOCK_REG_PADDING
2998 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
2999 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
3004 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
3005 bytelen
= ssize
- bytepos
;
3006 gcc_assert (maybe_gt (bytelen
, 0));
3009 /* If we won't be loading directly from memory, protect the real source
3010 from strange tricks we might play; but make sure that the source can
3011 be loaded directly into the destination. */
3013 if (!MEM_P (orig_src
)
3014 && (!REG_P (orig_src
) || HARD_REGISTER_P (orig_src
))
3015 && !CONSTANT_P (orig_src
))
3017 gcc_assert (GET_MODE (orig_src
) != VOIDmode
);
3018 src
= force_reg (GET_MODE (orig_src
), orig_src
);
3021 /* Optimize the access just a bit. */
3023 && (! targetm
.slow_unaligned_access (mode
, MEM_ALIGN (src
))
3024 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
3025 && multiple_p (bytepos
* BITS_PER_UNIT
, GET_MODE_ALIGNMENT (mode
))
3026 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
3028 tmps
[i
] = gen_reg_rtx (mode
);
3029 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
3031 else if (COMPLEX_MODE_P (mode
)
3032 && GET_MODE (src
) == mode
3033 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
3034 /* Let emit_move_complex do the bulk of the work. */
3036 else if (GET_CODE (src
) == CONCAT
)
3038 poly_int64 slen
= GET_MODE_SIZE (GET_MODE (src
));
3039 poly_int64 slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
3043 if (can_div_trunc_p (bytepos
, slen0
, &elt
, &subpos
)
3044 && known_le (subpos
+ bytelen
, slen0
))
3046 /* The following assumes that the concatenated objects all
3047 have the same size. In this case, a simple calculation
3048 can be used to determine the object and the bit field
3050 tmps
[i
] = XEXP (src
, elt
);
3051 if (maybe_ne (subpos
, 0)
3052 || maybe_ne (subpos
+ bytelen
, slen0
)
3053 || (!CONSTANT_P (tmps
[i
])
3054 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
)))
3055 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
3056 subpos
* BITS_PER_UNIT
,
3057 1, NULL_RTX
, mode
, mode
, false,
3064 gcc_assert (known_eq (bytepos
, 0));
3065 mem
= assign_stack_temp (GET_MODE (src
), slen
);
3066 emit_move_insn (mem
, src
);
3067 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
3068 0, 1, NULL_RTX
, mode
, mode
, false,
3072 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
3073 && XVECLEN (dst
, 0) > 1)
3074 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
3075 else if (CONSTANT_P (src
))
3077 if (known_eq (bytelen
, ssize
))
3083 /* TODO: const_wide_int can have sizes other than this... */
3084 gcc_assert (known_eq (2 * bytelen
, ssize
));
3085 split_double (src
, &first
, &second
);
3092 else if (REG_P (src
) && GET_MODE (src
) == mode
)
3095 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
3096 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
3097 mode
, mode
, false, NULL
);
3099 if (maybe_ne (shift
, 0))
3100 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
3105 /* Emit code to move a block SRC of type TYPE to a block DST,
3106 where DST is non-consecutive registers represented by a PARALLEL.
3107 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
3111 emit_group_load (rtx dst
, rtx src
, tree type
, poly_int64 ssize
)
3116 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
3117 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
3119 /* Copy the extracted pieces into the proper (probable) hard regs. */
3120 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
3122 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
3125 emit_move_insn (d
, tmps
[i
]);
3129 /* Similar, but load SRC into new pseudos in a format that looks like
3130 PARALLEL. This can later be fed to emit_group_move to get things
3131 in the right place. */
3134 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, poly_int64 ssize
)
3139 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
3140 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
3142 /* Convert the vector to look just like the original PARALLEL, except
3143 with the computed values. */
3144 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
3146 rtx e
= XVECEXP (parallel
, 0, i
);
3147 rtx d
= XEXP (e
, 0);
3151 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
3152 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
3154 RTVEC_ELT (vec
, i
) = e
;
3157 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
3160 /* Emit code to move a block SRC to block DST, where SRC and DST are
3161 non-consecutive groups of registers, each represented by a PARALLEL. */
3164 emit_group_move (rtx dst
, rtx src
)
3168 gcc_assert (GET_CODE (src
) == PARALLEL
3169 && GET_CODE (dst
) == PARALLEL
3170 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
3172 /* Skip first entry if NULL. */
3173 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
3174 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
3175 XEXP (XVECEXP (src
, 0, i
), 0));
3178 /* Move a group of registers represented by a PARALLEL into pseudos. */
3181 emit_group_move_into_temps (rtx src
)
3183 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
3186 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
3188 rtx e
= XVECEXP (src
, 0, i
);
3189 rtx d
= XEXP (e
, 0);
3192 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
3193 RTVEC_ELT (vec
, i
) = e
;
3196 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
3199 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
3200 where SRC is non-consecutive registers represented by a PARALLEL.
3201 SSIZE represents the total size of block ORIG_DST, or -1 if not
3205 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
,
3209 int start
, finish
, i
;
3210 machine_mode m
= GET_MODE (orig_dst
);
3212 gcc_assert (GET_CODE (src
) == PARALLEL
);
3214 if (!SCALAR_INT_MODE_P (m
)
3215 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
3217 scalar_int_mode imode
;
3218 if (int_mode_for_mode (GET_MODE (orig_dst
)).exists (&imode
))
3220 dst
= gen_reg_rtx (imode
);
3221 emit_group_store (dst
, src
, type
, ssize
);
3222 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
3226 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
3227 emit_group_store (dst
, src
, type
, ssize
);
3229 emit_move_insn (orig_dst
, dst
);
3233 /* Check for a NULL entry, used to indicate that the parameter goes
3234 both on the stack and in registers. */
3235 if (XEXP (XVECEXP (src
, 0, 0), 0))
3239 finish
= XVECLEN (src
, 0);
3241 tmps
= XALLOCAVEC (rtx
, finish
);
3243 /* Copy the (probable) hard regs into pseudos. */
3244 for (i
= start
; i
< finish
; i
++)
3246 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
3247 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
3249 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
3250 emit_move_insn (tmps
[i
], reg
);
3256 /* If we won't be storing directly into memory, protect the real destination
3257 from strange tricks we might play. */
3259 if (GET_CODE (dst
) == PARALLEL
)
3263 /* We can get a PARALLEL dst if there is a conditional expression in
3264 a return statement. In that case, the dst and src are the same,
3265 so no action is necessary. */
3266 if (rtx_equal_p (dst
, src
))
3269 /* It is unclear if we can ever reach here, but we may as well handle
3270 it. Allocate a temporary, and split this into a store/load to/from
3272 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
3273 emit_group_store (temp
, src
, type
, ssize
);
3274 emit_group_load (dst
, temp
, type
, ssize
);
3277 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
3279 machine_mode outer
= GET_MODE (dst
);
3285 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
3286 dst
= gen_reg_rtx (outer
);
3288 /* Make life a bit easier for combine: if the first element of the
3289 vector is the low part of the destination mode, use a paradoxical
3290 subreg to initialize the destination. */
3293 inner
= GET_MODE (tmps
[start
]);
3294 bytepos
= subreg_lowpart_offset (inner
, outer
);
3295 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0, start
), 1)),
3298 temp
= simplify_gen_subreg (outer
, tmps
[start
], inner
, 0);
3301 emit_move_insn (dst
, temp
);
3308 /* If the first element wasn't the low part, try the last. */
3310 && start
< finish
- 1)
3312 inner
= GET_MODE (tmps
[finish
- 1]);
3313 bytepos
= subreg_lowpart_offset (inner
, outer
);
3314 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0,
3318 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1], inner
, 0);
3321 emit_move_insn (dst
, temp
);
3328 /* Otherwise, simply initialize the result to zero. */
3330 emit_move_insn (dst
, CONST0_RTX (outer
));
3333 /* Process the pieces. */
3334 for (i
= start
; i
< finish
; i
++)
3336 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0, i
), 1));
3337 machine_mode mode
= GET_MODE (tmps
[i
]);
3338 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
3339 poly_uint64 adj_bytelen
;
3342 /* Handle trailing fragments that run over the size of the struct.
3343 It's the target's responsibility to make sure that the fragment
3344 cannot be strictly smaller in some cases and strictly larger
3346 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
3347 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
3348 adj_bytelen
= ssize
- bytepos
;
3350 adj_bytelen
= bytelen
;
3352 /* Deal with destination CONCATs by either storing into one of the parts
3353 or doing a copy after storing into a register or stack temporary. */
3354 if (GET_CODE (dst
) == CONCAT
)
3356 if (known_le (bytepos
+ adj_bytelen
,
3357 GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
3358 dest
= XEXP (dst
, 0);
3360 else if (known_ge (bytepos
, GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
3362 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
3363 dest
= XEXP (dst
, 1);
3368 machine_mode dest_mode
= GET_MODE (dest
);
3369 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
3370 scalar_int_mode dest_imode
;
3372 gcc_assert (known_eq (bytepos
, 0) && XVECLEN (src
, 0));
3374 /* If the source is a single scalar integer register, and the
3375 destination has a complex mode for which a same-sized integer
3376 mode exists, then we can take the left-justified part of the
3377 source in the complex mode. */
3378 if (finish
== start
+ 1
3380 && SCALAR_INT_MODE_P (tmp_mode
)
3381 && COMPLEX_MODE_P (dest_mode
)
3382 && int_mode_for_mode (dest_mode
).exists (&dest_imode
))
3384 const scalar_int_mode tmp_imode
3385 = as_a
<scalar_int_mode
> (tmp_mode
);
3387 if (GET_MODE_BITSIZE (dest_imode
)
3388 < GET_MODE_BITSIZE (tmp_imode
))
3390 dest
= gen_reg_rtx (dest_imode
);
3391 if (BYTES_BIG_ENDIAN
)
3392 tmps
[i
] = expand_shift (RSHIFT_EXPR
, tmp_mode
, tmps
[i
],
3393 GET_MODE_BITSIZE (tmp_imode
)
3394 - GET_MODE_BITSIZE (dest_imode
),
3396 emit_move_insn (dest
, gen_lowpart (dest_imode
, tmps
[i
]));
3397 dst
= gen_lowpart (dest_mode
, dest
);
3400 dst
= gen_lowpart (dest_mode
, tmps
[i
]);
3403 /* Otherwise spill the source onto the stack using the more
3404 aligned of the two modes. */
3405 else if (GET_MODE_ALIGNMENT (dest_mode
)
3406 >= GET_MODE_ALIGNMENT (tmp_mode
))
3408 dest
= assign_stack_temp (dest_mode
,
3409 GET_MODE_SIZE (dest_mode
));
3410 emit_move_insn (adjust_address (dest
, tmp_mode
, bytepos
),
3417 dest
= assign_stack_temp (tmp_mode
,
3418 GET_MODE_SIZE (tmp_mode
));
3419 emit_move_insn (dest
, tmps
[i
]);
3420 dst
= adjust_address (dest
, dest_mode
, bytepos
);
3427 /* Handle trailing fragments that run over the size of the struct. */
3428 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
3430 /* store_bit_field always takes its value from the lsb.
3431 Move the fragment to the lsb if it's not already there. */
3433 #ifdef BLOCK_REG_PADDING
3434 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
3435 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
3441 poly_int64 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
3442 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
3446 /* Make sure not to write past the end of the struct. */
3447 store_bit_field (dest
,
3448 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
3449 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
3450 VOIDmode
, tmps
[i
], false, false);
3453 /* Optimize the access just a bit. */
3454 else if (MEM_P (dest
)
3455 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (dest
))
3456 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
3457 && multiple_p (bytepos
* BITS_PER_UNIT
,
3458 GET_MODE_ALIGNMENT (mode
))
3459 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
3460 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
3463 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
3464 0, 0, mode
, tmps
[i
], false, false);
3467 /* Copy from the pseudo into the (probable) hard reg. */
3468 if (orig_dst
!= dst
)
3469 emit_move_insn (orig_dst
, dst
);
3472 /* Return a form of X that does not use a PARALLEL. TYPE is the type
3473 of the value stored in X. */
3476 maybe_emit_group_store (rtx x
, tree type
)
3478 machine_mode mode
= TYPE_MODE (type
);
3479 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
3480 if (GET_CODE (x
) == PARALLEL
)
3482 rtx result
= gen_reg_rtx (mode
);
3483 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
3489 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
3491 This is used on targets that return BLKmode values in registers. */
3494 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
3496 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
3497 rtx src
= NULL
, dst
= NULL
;
3498 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
3499 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
3500 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3501 fixed_size_mode mode
= as_a
<fixed_size_mode
> (GET_MODE (srcreg
));
3502 fixed_size_mode tmode
= as_a
<fixed_size_mode
> (GET_MODE (target
));
3503 fixed_size_mode copy_mode
;
3505 /* BLKmode registers created in the back-end shouldn't have survived. */
3506 gcc_assert (mode
!= BLKmode
);
3508 /* If the structure doesn't take up a whole number of words, see whether
3509 SRCREG is padded on the left or on the right. If it's on the left,
3510 set PADDING_CORRECTION to the number of bits to skip.
3512 In most ABIs, the structure will be returned at the least end of
3513 the register, which translates to right padding on little-endian
3514 targets and left padding on big-endian targets. The opposite
3515 holds if the structure is returned at the most significant
3516 end of the register. */
3517 if (bytes
% UNITS_PER_WORD
!= 0
3518 && (targetm
.calls
.return_in_msb (type
)
3520 : BYTES_BIG_ENDIAN
))
3522 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
3524 /* We can use a single move if we have an exact mode for the size. */
3525 else if (MEM_P (target
)
3526 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
))
3527 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
3528 && bytes
== GET_MODE_SIZE (mode
))
3530 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
3534 /* And if we additionally have the same mode for a register. */
3535 else if (REG_P (target
)
3536 && GET_MODE (target
) == mode
3537 && bytes
== GET_MODE_SIZE (mode
))
3539 emit_move_insn (target
, srcreg
);
3543 /* This code assumes srcreg is at least a full word. If it isn't, copy it
3544 into a new pseudo which is a full word. */
3545 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
3547 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
3551 /* Copy the structure BITSIZE bits at a time. If the target lives in
3552 memory, take care of not reading/writing past its end by selecting
3553 a copy mode suited to BITSIZE. This should always be possible given
3556 If the target lives in register, make sure not to select a copy mode
3557 larger than the mode of the register.
3559 We could probably emit more efficient code for machines which do not use
3560 strict alignment, but it doesn't seem worth the effort at the current
3563 copy_mode
= word_mode
;
3566 opt_scalar_int_mode mem_mode
= int_mode_for_size (bitsize
, 1);
3567 if (mem_mode
.exists ())
3568 copy_mode
= mem_mode
.require ();
3570 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
3573 for (bitpos
= 0, xbitpos
= padding_correction
;
3574 bitpos
< bytes
* BITS_PER_UNIT
;
3575 bitpos
+= bitsize
, xbitpos
+= bitsize
)
3577 /* We need a new source operand each time xbitpos is on a
3578 word boundary and when xbitpos == padding_correction
3579 (the first time through). */
3580 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
3581 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
3583 /* We need a new destination operand each time bitpos is on
3585 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
3587 else if (bitpos
% BITS_PER_WORD
== 0)
3588 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
3590 /* Use xbitpos for the source extraction (right justified) and
3591 bitpos for the destination store (left justified). */
3592 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
3593 extract_bit_field (src
, bitsize
,
3594 xbitpos
% BITS_PER_WORD
, 1,
3595 NULL_RTX
, copy_mode
, copy_mode
,
3601 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
3602 register if it contains any data, otherwise return null.
3604 This is used on targets that return BLKmode values in registers. */
3607 copy_blkmode_to_reg (machine_mode mode_in
, tree src
)
3610 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
3611 unsigned int bitsize
;
3612 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
3613 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3614 fixed_size_mode mode
= as_a
<fixed_size_mode
> (mode_in
);
3615 fixed_size_mode dst_mode
;
3616 scalar_int_mode min_mode
;
3618 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
3620 x
= expand_normal (src
);
3622 bytes
= arg_int_size_in_bytes (TREE_TYPE (src
));
3626 /* If the structure doesn't take up a whole number of words, see
3627 whether the register value should be padded on the left or on
3628 the right. Set PADDING_CORRECTION to the number of padding
3629 bits needed on the left side.
3631 In most ABIs, the structure will be returned at the least end of
3632 the register, which translates to right padding on little-endian
3633 targets and left padding on big-endian targets. The opposite
3634 holds if the structure is returned at the most significant
3635 end of the register. */
3636 if (bytes
% UNITS_PER_WORD
!= 0
3637 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
3639 : BYTES_BIG_ENDIAN
))
3640 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
3643 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
3644 dst_words
= XALLOCAVEC (rtx
, n_regs
);
3645 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
3646 min_mode
= smallest_int_mode_for_size (bitsize
);
3648 /* Copy the structure BITSIZE bits at a time. */
3649 for (bitpos
= 0, xbitpos
= padding_correction
;
3650 bitpos
< bytes
* BITS_PER_UNIT
;
3651 bitpos
+= bitsize
, xbitpos
+= bitsize
)
3653 /* We need a new destination pseudo each time xbitpos is
3654 on a word boundary and when xbitpos == padding_correction
3655 (the first time through). */
3656 if (xbitpos
% BITS_PER_WORD
== 0
3657 || xbitpos
== padding_correction
)
3659 /* Generate an appropriate register. */
3660 dst_word
= gen_reg_rtx (word_mode
);
3661 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
3663 /* Clear the destination before we move anything into it. */
3664 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
3667 /* Find the largest integer mode that can be used to copy all or as
3668 many bits as possible of the structure if the target supports larger
3669 copies. There are too many corner cases here w.r.t to alignments on
3670 the read/writes. So if there is any padding just use single byte
3672 opt_scalar_int_mode mode_iter
;
3673 if (padding_correction
== 0 && !STRICT_ALIGNMENT
)
3675 FOR_EACH_MODE_FROM (mode_iter
, min_mode
)
3677 unsigned int msize
= GET_MODE_BITSIZE (mode_iter
.require ());
3678 if (msize
<= ((bytes
* BITS_PER_UNIT
) - bitpos
)
3679 && msize
<= BITS_PER_WORD
)
3686 /* We need a new source operand each time bitpos is on a word
3688 if (bitpos
% BITS_PER_WORD
== 0)
3689 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
3691 /* Use bitpos for the source extraction (left justified) and
3692 xbitpos for the destination store (right justified). */
3693 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
3695 extract_bit_field (src_word
, bitsize
,
3696 bitpos
% BITS_PER_WORD
, 1,
3697 NULL_RTX
, word_mode
, word_mode
,
3702 if (mode
== BLKmode
)
3704 /* Find the smallest integer mode large enough to hold the
3705 entire structure. */
3706 opt_scalar_int_mode mode_iter
;
3707 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
3708 if (GET_MODE_SIZE (mode_iter
.require ()) >= bytes
)
3711 /* A suitable mode should have been found. */
3712 mode
= mode_iter
.require ();
3715 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
3716 dst_mode
= word_mode
;
3719 dst
= gen_reg_rtx (dst_mode
);
3721 for (i
= 0; i
< n_regs
; i
++)
3722 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
3724 if (mode
!= dst_mode
)
3725 dst
= gen_lowpart (mode
, dst
);
3730 /* Add a USE expression for REG to the (possibly empty) list pointed
3731 to by CALL_FUSAGE. REG must denote a hard register. */
3734 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
3736 gcc_assert (REG_P (reg
));
3738 if (!HARD_REGISTER_P (reg
))
3742 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
3745 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
3746 to by CALL_FUSAGE. REG must denote a hard register. */
3749 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
3751 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
3754 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
3757 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
3758 starting at REGNO. All of these registers must be hard registers. */
3761 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
3765 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
3767 for (i
= 0; i
< nregs
; i
++)
3768 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
3771 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
3772 PARALLEL REGS. This is for calls that pass values in multiple
3773 non-contiguous locations. The Irix 6 ABI has examples of this. */
3776 use_group_regs (rtx
*call_fusage
, rtx regs
)
3780 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
3782 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
3784 /* A NULL entry means the parameter goes both on the stack and in
3785 registers. This can also be a MEM for targets that pass values
3786 partially on the stack and partially in registers. */
3787 if (reg
!= 0 && REG_P (reg
))
3788 use_reg (call_fusage
, reg
);
3792 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3793 assigment and the code of the expresion on the RHS is CODE. Return
3797 get_def_for_expr (tree name
, enum tree_code code
)
3801 if (TREE_CODE (name
) != SSA_NAME
)
3804 def_stmt
= get_gimple_for_ssa_name (name
);
3806 || gimple_assign_rhs_code (def_stmt
) != code
)
3812 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3813 assigment and the class of the expresion on the RHS is CLASS. Return
3817 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
3821 if (TREE_CODE (name
) != SSA_NAME
)
3824 def_stmt
= get_gimple_for_ssa_name (name
);
3826 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
3832 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3833 its length in bytes. */
3836 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
3837 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3838 unsigned HOST_WIDE_INT min_size
,
3839 unsigned HOST_WIDE_INT max_size
,
3840 unsigned HOST_WIDE_INT probable_max_size
,
3843 machine_mode mode
= GET_MODE (object
);
3846 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
3848 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3849 just move a zero. Otherwise, do this a piece at a time. */
3850 poly_int64 size_val
;
3852 && poly_int_rtx_p (size
, &size_val
)
3853 && known_eq (size_val
, GET_MODE_SIZE (mode
)))
3855 rtx zero
= CONST0_RTX (mode
);
3858 emit_move_insn (object
, zero
);
3862 if (COMPLEX_MODE_P (mode
))
3864 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
3867 write_complex_part (object
, zero
, 0, true);
3868 write_complex_part (object
, zero
, 1, false);
3874 if (size
== const0_rtx
)
3877 align
= MEM_ALIGN (object
);
3879 if (CONST_INT_P (size
)
3880 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
3882 optimize_insn_for_speed_p ()))
3883 clear_by_pieces (object
, INTVAL (size
), align
);
3884 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
3885 expected_align
, expected_size
,
3886 min_size
, max_size
, probable_max_size
))
3888 else if (try_store_by_multiple_pieces (object
, size
, ctz_size
,
3890 NULL_RTX
, 0, align
))
3892 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
3893 return set_storage_via_libcall (object
, size
, const0_rtx
,
3894 method
== BLOCK_OP_TAILCALL
);
3902 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
3904 unsigned HOST_WIDE_INT max
, min
= 0;
3905 if (GET_CODE (size
) == CONST_INT
)
3906 min
= max
= UINTVAL (size
);
3908 max
= GET_MODE_MASK (GET_MODE (size
));
3909 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
, 0);
3913 /* A subroutine of clear_storage. Expand a call to memset.
3914 Return the return value of memset, 0 otherwise. */
3917 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
3919 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
3920 machine_mode size_mode
;
3922 object
= copy_addr_to_reg (XEXP (object
, 0));
3923 object_tree
= make_tree (ptr_type_node
, object
);
3925 if (!CONST_INT_P (val
))
3926 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
3927 val_tree
= make_tree (integer_type_node
, val
);
3929 size_mode
= TYPE_MODE (sizetype
);
3930 size
= convert_to_mode (size_mode
, size
, 1);
3931 size
= copy_to_mode_reg (size_mode
, size
);
3932 size_tree
= make_tree (sizetype
, size
);
3934 /* It is incorrect to use the libcall calling conventions for calls to
3935 memset because it can be provided by the user. */
3936 fn
= builtin_decl_implicit (BUILT_IN_MEMSET
);
3937 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
3938 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
3940 return expand_call (call_expr
, NULL_RTX
, false);
3943 /* Expand a setmem pattern; return true if successful. */
3946 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
3947 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3948 unsigned HOST_WIDE_INT min_size
,
3949 unsigned HOST_WIDE_INT max_size
,
3950 unsigned HOST_WIDE_INT probable_max_size
)
3952 /* Try the most limited insn first, because there's no point
3953 including more than one in the machine description unless
3954 the more limited one has some advantage. */
3956 if (expected_align
< align
)
3957 expected_align
= align
;
3958 if (expected_size
!= -1)
3960 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
3961 expected_size
= max_size
;
3962 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
3963 expected_size
= min_size
;
3966 opt_scalar_int_mode mode_iter
;
3967 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
3969 scalar_int_mode mode
= mode_iter
.require ();
3970 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
3972 if (code
!= CODE_FOR_nothing
3973 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3974 here because if SIZE is less than the mode mask, as it is
3975 returned by the macro, it will definitely be less than the
3976 actual mode mask. Since SIZE is within the Pmode address
3977 space, we limit MODE to Pmode. */
3978 && ((CONST_INT_P (size
)
3979 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
3980 <= (GET_MODE_MASK (mode
) >> 1)))
3981 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
3982 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
3984 class expand_operand ops
[9];
3987 nops
= insn_data
[(int) code
].n_generator_args
;
3988 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
3990 create_fixed_operand (&ops
[0], object
);
3991 /* The check above guarantees that this size conversion is valid. */
3992 create_convert_operand_to (&ops
[1], size
, mode
, true);
3993 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
3994 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
3997 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
3998 create_integer_operand (&ops
[5], expected_size
);
4002 create_integer_operand (&ops
[6], min_size
);
4003 /* If we cannot represent the maximal size,
4004 make parameter NULL. */
4005 if ((HOST_WIDE_INT
) max_size
!= -1)
4006 create_integer_operand (&ops
[7], max_size
);
4008 create_fixed_operand (&ops
[7], NULL
);
4012 /* If we cannot represent the maximal size,
4013 make parameter NULL. */
4014 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
4015 create_integer_operand (&ops
[8], probable_max_size
);
4017 create_fixed_operand (&ops
[8], NULL
);
4019 if (maybe_expand_insn (code
, nops
, ops
))
4028 /* Write to one of the components of the complex value CPLX. Write VAL to
4029 the real part if IMAG_P is false, and the imaginary part if its true.
4030 If UNDEFINED_P then the value in CPLX is currently undefined. */
4033 write_complex_part (rtx cplx
, rtx val
, bool imag_p
, bool undefined_p
)
4039 if (GET_CODE (cplx
) == CONCAT
)
4041 emit_move_insn (XEXP (cplx
, imag_p
), val
);
4045 cmode
= GET_MODE (cplx
);
4046 imode
= GET_MODE_INNER (cmode
);
4047 ibitsize
= GET_MODE_BITSIZE (imode
);
4049 /* For MEMs simplify_gen_subreg may generate an invalid new address
4050 because, e.g., the original address is considered mode-dependent
4051 by the target, which restricts simplify_subreg from invoking
4052 adjust_address_nv. Instead of preparing fallback support for an
4053 invalid address, we call adjust_address_nv directly. */
4056 emit_move_insn (adjust_address_nv (cplx
, imode
,
4057 imag_p
? GET_MODE_SIZE (imode
) : 0),
4062 /* If the sub-object is at least word sized, then we know that subregging
4063 will work. This special case is important, since store_bit_field
4064 wants to operate on integer modes, and there's rarely an OImode to
4065 correspond to TCmode. */
4066 if (ibitsize
>= BITS_PER_WORD
4067 /* For hard regs we have exact predicates. Assume we can split
4068 the original object if it spans an even number of hard regs.
4069 This special case is important for SCmode on 64-bit platforms
4070 where the natural size of floating-point regs is 32-bit. */
4072 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
4073 && REG_NREGS (cplx
) % 2 == 0))
4075 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
4076 imag_p
? GET_MODE_SIZE (imode
) : 0);
4079 emit_move_insn (part
, val
);
4083 /* simplify_gen_subreg may fail for sub-word MEMs. */
4084 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
4087 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
,
4088 false, undefined_p
);
4091 /* Extract one of the components of the complex value CPLX. Extract the
4092 real part if IMAG_P is false, and the imaginary part if it's true. */
4095 read_complex_part (rtx cplx
, bool imag_p
)
4101 if (GET_CODE (cplx
) == CONCAT
)
4102 return XEXP (cplx
, imag_p
);
4104 cmode
= GET_MODE (cplx
);
4105 imode
= GET_MODE_INNER (cmode
);
4106 ibitsize
= GET_MODE_BITSIZE (imode
);
4108 /* Special case reads from complex constants that got spilled to memory. */
4109 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
4111 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
4112 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
4114 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
4115 if (CONSTANT_CLASS_P (part
))
4116 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
4120 /* For MEMs simplify_gen_subreg may generate an invalid new address
4121 because, e.g., the original address is considered mode-dependent
4122 by the target, which restricts simplify_subreg from invoking
4123 adjust_address_nv. Instead of preparing fallback support for an
4124 invalid address, we call adjust_address_nv directly. */
4126 return adjust_address_nv (cplx
, imode
,
4127 imag_p
? GET_MODE_SIZE (imode
) : 0);
4129 /* If the sub-object is at least word sized, then we know that subregging
4130 will work. This special case is important, since extract_bit_field
4131 wants to operate on integer modes, and there's rarely an OImode to
4132 correspond to TCmode. */
4133 if (ibitsize
>= BITS_PER_WORD
4134 /* For hard regs we have exact predicates. Assume we can split
4135 the original object if it spans an even number of hard regs.
4136 This special case is important for SCmode on 64-bit platforms
4137 where the natural size of floating-point regs is 32-bit. */
4139 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
4140 && REG_NREGS (cplx
) % 2 == 0))
4142 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
4143 imag_p
? GET_MODE_SIZE (imode
) : 0);
4147 /* simplify_gen_subreg may fail for sub-word MEMs. */
4148 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
4151 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
4152 true, NULL_RTX
, imode
, imode
, false, NULL
);
4155 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
4156 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
4157 represented in NEW_MODE. If FORCE is true, this will never happen, as
4158 we'll force-create a SUBREG if needed. */
4161 emit_move_change_mode (machine_mode new_mode
,
4162 machine_mode old_mode
, rtx x
, bool force
)
4166 if (push_operand (x
, GET_MODE (x
)))
4168 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
4169 MEM_COPY_ATTRIBUTES (ret
, x
);
4173 /* We don't have to worry about changing the address since the
4174 size in bytes is supposed to be the same. */
4175 if (reload_in_progress
)
4177 /* Copy the MEM to change the mode and move any
4178 substitutions from the old MEM to the new one. */
4179 ret
= adjust_address_nv (x
, new_mode
, 0);
4180 copy_replacements (x
, ret
);
4183 ret
= adjust_address (x
, new_mode
, 0);
4187 /* Note that we do want simplify_subreg's behavior of validating
4188 that the new mode is ok for a hard register. If we were to use
4189 simplify_gen_subreg, we would create the subreg, but would
4190 probably run into the target not being able to implement it. */
4191 /* Except, of course, when FORCE is true, when this is exactly what
4192 we want. Which is needed for CCmodes on some targets. */
4194 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
4196 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
4202 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
4203 an integer mode of the same size as MODE. Returns the instruction
4204 emitted, or NULL if such a move could not be generated. */
4207 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
4209 scalar_int_mode imode
;
4210 enum insn_code code
;
4212 /* There must exist a mode of the exact size we require. */
4213 if (!int_mode_for_mode (mode
).exists (&imode
))
4216 /* The target must support moves in this mode. */
4217 code
= optab_handler (mov_optab
, imode
);
4218 if (code
== CODE_FOR_nothing
)
4221 x
= emit_move_change_mode (imode
, mode
, x
, force
);
4224 y
= emit_move_change_mode (imode
, mode
, y
, force
);
4227 return emit_insn (GEN_FCN (code
) (x
, y
));
4230 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
4231 Return an equivalent MEM that does not use an auto-increment. */
4234 emit_move_resolve_push (machine_mode mode
, rtx x
)
4236 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
4239 poly_int64 adjust
= GET_MODE_SIZE (mode
);
4240 #ifdef PUSH_ROUNDING
4241 adjust
= PUSH_ROUNDING (adjust
);
4243 if (code
== PRE_DEC
|| code
== POST_DEC
)
4245 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
4247 rtx expr
= XEXP (XEXP (x
, 0), 1);
4249 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
4250 poly_int64 val
= rtx_to_poly_int64 (XEXP (expr
, 1));
4251 if (GET_CODE (expr
) == MINUS
)
4253 gcc_assert (known_eq (adjust
, val
) || known_eq (adjust
, -val
));
4257 /* Do not use anti_adjust_stack, since we don't want to update
4258 stack_pointer_delta. */
4259 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
4260 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
4261 0, OPTAB_LIB_WIDEN
);
4262 if (temp
!= stack_pointer_rtx
)
4263 emit_move_insn (stack_pointer_rtx
, temp
);
4270 temp
= stack_pointer_rtx
;
4275 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
4281 return replace_equiv_address (x
, temp
);
4284 /* A subroutine of emit_move_complex. Generate a move from Y into X.
4285 X is known to satisfy push_operand, and MODE is known to be complex.
4286 Returns the last instruction emitted. */
4289 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
4291 scalar_mode submode
= GET_MODE_INNER (mode
);
4294 #ifdef PUSH_ROUNDING
4295 poly_int64 submodesize
= GET_MODE_SIZE (submode
);
4297 /* In case we output to the stack, but the size is smaller than the
4298 machine can push exactly, we need to use move instructions. */
4299 if (maybe_ne (PUSH_ROUNDING (submodesize
), submodesize
))
4301 x
= emit_move_resolve_push (mode
, x
);
4302 return emit_move_insn (x
, y
);
4306 /* Note that the real part always precedes the imag part in memory
4307 regardless of machine's endianness. */
4308 switch (GET_CODE (XEXP (x
, 0)))
4322 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
4323 read_complex_part (y
, imag_first
));
4324 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
4325 read_complex_part (y
, !imag_first
));
4328 /* A subroutine of emit_move_complex. Perform the move from Y to X
4329 via two moves of the parts. Returns the last instruction emitted. */
4332 emit_move_complex_parts (rtx x
, rtx y
)
4334 /* Show the output dies here. This is necessary for SUBREGs
4335 of pseudos since we cannot track their lifetimes correctly;
4336 hard regs shouldn't appear here except as return values. */
4337 if (!reload_completed
&& !reload_in_progress
4338 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
4341 write_complex_part (x
, read_complex_part (y
, false), false, true);
4342 write_complex_part (x
, read_complex_part (y
, true), true, false);
4344 return get_last_insn ();
4347 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4348 MODE is known to be complex. Returns the last instruction emitted. */
4351 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
4355 /* Need to take special care for pushes, to maintain proper ordering
4356 of the data, and possibly extra padding. */
4357 if (push_operand (x
, mode
))
4358 return emit_move_complex_push (mode
, x
, y
);
4360 /* See if we can coerce the target into moving both values at once, except
4361 for floating point where we favor moving as parts if this is easy. */
4362 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
4363 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
4365 && HARD_REGISTER_P (x
)
4366 && REG_NREGS (x
) == 1)
4368 && HARD_REGISTER_P (y
)
4369 && REG_NREGS (y
) == 1))
4371 /* Not possible if the values are inherently not adjacent. */
4372 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
4374 /* Is possible if both are registers (or subregs of registers). */
4375 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
4377 /* If one of the operands is a memory, and alignment constraints
4378 are friendly enough, we may be able to do combined memory operations.
4379 We do not attempt this if Y is a constant because that combination is
4380 usually better with the by-parts thing below. */
4381 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
4382 && (!STRICT_ALIGNMENT
4383 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
4392 /* For memory to memory moves, optimal behavior can be had with the
4393 existing block move logic. But use normal expansion if optimizing
4395 if (MEM_P (x
) && MEM_P (y
))
4397 emit_block_move (x
, y
, gen_int_mode (GET_MODE_SIZE (mode
), Pmode
),
4398 (optimize_insn_for_speed_p()
4399 ? BLOCK_OP_NO_LIBCALL
: BLOCK_OP_NORMAL
));
4400 return get_last_insn ();
4403 ret
= emit_move_via_integer (mode
, x
, y
, true);
4408 return emit_move_complex_parts (x
, y
);
4411 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4412 MODE is known to be MODE_CC. Returns the last instruction emitted. */
4415 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
4419 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
4422 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
4423 if (code
!= CODE_FOR_nothing
)
4425 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
4426 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
4427 return emit_insn (GEN_FCN (code
) (x
, y
));
4431 /* Otherwise, find the MODE_INT mode of the same width. */
4432 ret
= emit_move_via_integer (mode
, x
, y
, false);
4433 gcc_assert (ret
!= NULL
);
4437 /* Return true if word I of OP lies entirely in the
4438 undefined bits of a paradoxical subreg. */
4441 undefined_operand_subword_p (const_rtx op
, int i
)
4443 if (GET_CODE (op
) != SUBREG
)
4445 machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
4446 poly_int64 offset
= i
* UNITS_PER_WORD
+ subreg_memory_offset (op
);
4447 return (known_ge (offset
, GET_MODE_SIZE (innermostmode
))
4448 || known_le (offset
, -UNITS_PER_WORD
));
4451 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4452 MODE is any multi-word or full-word mode that lacks a move_insn
4453 pattern. Note that you will get better code if you define such
4454 patterns, even if they must turn into multiple assembler instructions. */
4457 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
4459 rtx_insn
*last_insn
= 0;
4465 /* This function can only handle cases where the number of words is
4466 known at compile time. */
4467 mode_size
= GET_MODE_SIZE (mode
).to_constant ();
4468 gcc_assert (mode_size
>= UNITS_PER_WORD
);
4470 /* If X is a push on the stack, do the push now and replace
4471 X with a reference to the stack pointer. */
4472 if (push_operand (x
, mode
))
4473 x
= emit_move_resolve_push (mode
, x
);
4475 /* If we are in reload, see if either operand is a MEM whose address
4476 is scheduled for replacement. */
4477 if (reload_in_progress
&& MEM_P (x
)
4478 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
4479 x
= replace_equiv_address_nv (x
, inner
);
4480 if (reload_in_progress
&& MEM_P (y
)
4481 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
4482 y
= replace_equiv_address_nv (y
, inner
);
4486 need_clobber
= false;
4487 for (i
= 0; i
< CEIL (mode_size
, UNITS_PER_WORD
); i
++)
4489 /* Do not generate code for a move if it would go entirely
4490 to the non-existing bits of a paradoxical subreg. */
4491 if (undefined_operand_subword_p (x
, i
))
4494 rtx xpart
= operand_subword (x
, i
, 1, mode
);
4497 /* Do not generate code for a move if it would come entirely
4498 from the undefined bits of a paradoxical subreg. */
4499 if (undefined_operand_subword_p (y
, i
))
4502 ypart
= operand_subword (y
, i
, 1, mode
);
4504 /* If we can't get a part of Y, put Y into memory if it is a
4505 constant. Otherwise, force it into a register. Then we must
4506 be able to get a part of Y. */
4507 if (ypart
== 0 && CONSTANT_P (y
))
4509 y
= use_anchored_address (force_const_mem (mode
, y
));
4510 ypart
= operand_subword (y
, i
, 1, mode
);
4512 else if (ypart
== 0)
4513 ypart
= operand_subword_force (y
, i
, mode
);
4515 gcc_assert (xpart
&& ypart
);
4517 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
4519 last_insn
= emit_move_insn (xpart
, ypart
);
4525 /* Show the output dies here. This is necessary for SUBREGs
4526 of pseudos since we cannot track their lifetimes correctly;
4527 hard regs shouldn't appear here except as return values.
4528 We never want to emit such a clobber after reload. */
4530 && ! (reload_in_progress
|| reload_completed
)
4531 && need_clobber
!= 0)
4539 /* Low level part of emit_move_insn.
4540 Called just like emit_move_insn, but assumes X and Y
4541 are basically valid. */
4544 emit_move_insn_1 (rtx x
, rtx y
)
4546 machine_mode mode
= GET_MODE (x
);
4547 enum insn_code code
;
4549 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
4551 code
= optab_handler (mov_optab
, mode
);
4552 if (code
!= CODE_FOR_nothing
)
4553 return emit_insn (GEN_FCN (code
) (x
, y
));
4555 /* Expand complex moves by moving real part and imag part. */
4556 if (COMPLEX_MODE_P (mode
))
4557 return emit_move_complex (mode
, x
, y
);
4559 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
4560 || ALL_FIXED_POINT_MODE_P (mode
))
4562 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
4564 /* If we can't find an integer mode, use multi words. */
4568 return emit_move_multi_word (mode
, x
, y
);
4571 if (GET_MODE_CLASS (mode
) == MODE_CC
)
4572 return emit_move_ccmode (mode
, x
, y
);
4574 /* Try using a move pattern for the corresponding integer mode. This is
4575 only safe when simplify_subreg can convert MODE constants into integer
4576 constants. At present, it can only do this reliably if the value
4577 fits within a HOST_WIDE_INT. */
4579 || known_le (GET_MODE_BITSIZE (mode
), HOST_BITS_PER_WIDE_INT
))
4581 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
4585 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
4590 return emit_move_multi_word (mode
, x
, y
);
4593 /* Generate code to copy Y into X.
4594 Both Y and X must have the same mode, except that
4595 Y can be a constant with VOIDmode.
4596 This mode cannot be BLKmode; use emit_block_move for that.
4598 Return the last instruction emitted. */
4601 emit_move_insn (rtx x
, rtx y
)
4603 machine_mode mode
= GET_MODE (x
);
4604 rtx y_cst
= NULL_RTX
;
4605 rtx_insn
*last_insn
;
4608 gcc_assert (mode
!= BLKmode
4609 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
4611 /* If we have a copy that looks like one of the following patterns:
4612 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
4613 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
4614 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
4615 (set (subreg:M1 (reg:M2 ...)) (constant C))
4616 where mode M1 is equal in size to M2, try to detect whether the
4617 mode change involves an implicit round trip through memory.
4618 If so, see if we can avoid that by removing the subregs and
4619 doing the move in mode M2 instead. */
4621 rtx x_inner
= NULL_RTX
;
4622 rtx y_inner
= NULL_RTX
;
4624 auto candidate_subreg_p
= [&](rtx subreg
) {
4625 return (REG_P (SUBREG_REG (subreg
))
4626 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg
))),
4627 GET_MODE_SIZE (GET_MODE (subreg
)))
4628 && optab_handler (mov_optab
, GET_MODE (SUBREG_REG (subreg
)))
4629 != CODE_FOR_nothing
);
4632 auto candidate_mem_p
= [&](machine_mode innermode
, rtx mem
) {
4633 return (!targetm
.can_change_mode_class (innermode
, GET_MODE (mem
), ALL_REGS
)
4634 && !push_operand (mem
, GET_MODE (mem
))
4635 /* Not a candiate if innermode requires too much alignment. */
4636 && (MEM_ALIGN (mem
) >= GET_MODE_ALIGNMENT (innermode
)
4637 || targetm
.slow_unaligned_access (GET_MODE (mem
),
4639 || !targetm
.slow_unaligned_access (innermode
,
4643 if (SUBREG_P (x
) && candidate_subreg_p (x
))
4644 x_inner
= SUBREG_REG (x
);
4646 if (SUBREG_P (y
) && candidate_subreg_p (y
))
4647 y_inner
= SUBREG_REG (y
);
4649 if (x_inner
!= NULL_RTX
4650 && y_inner
!= NULL_RTX
4651 && GET_MODE (x_inner
) == GET_MODE (y_inner
)
4652 && !targetm
.can_change_mode_class (GET_MODE (x_inner
), mode
, ALL_REGS
))
4656 mode
= GET_MODE (x_inner
);
4658 else if (x_inner
!= NULL_RTX
4660 && candidate_mem_p (GET_MODE (x_inner
), y
))
4663 y
= adjust_address (y
, GET_MODE (x_inner
), 0);
4664 mode
= GET_MODE (x_inner
);
4666 else if (y_inner
!= NULL_RTX
4668 && candidate_mem_p (GET_MODE (y_inner
), x
))
4670 x
= adjust_address (x
, GET_MODE (y_inner
), 0);
4672 mode
= GET_MODE (y_inner
);
4674 else if (x_inner
!= NULL_RTX
4676 && !targetm
.can_change_mode_class (GET_MODE (x_inner
),
4678 && (y_inner
= simplify_subreg (GET_MODE (x_inner
), y
, mode
, 0)))
4682 mode
= GET_MODE (x_inner
);
4688 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
4689 && (last_insn
= compress_float_constant (x
, y
)))
4694 if (!targetm
.legitimate_constant_p (mode
, y
))
4696 y
= force_const_mem (mode
, y
);
4698 /* If the target's cannot_force_const_mem prevented the spill,
4699 assume that the target's move expanders will also take care
4700 of the non-legitimate constant. */
4704 y
= use_anchored_address (y
);
4708 /* If X or Y are memory references, verify that their addresses are valid
4711 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4713 && ! push_operand (x
, GET_MODE (x
))))
4714 x
= validize_mem (x
);
4717 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
4718 MEM_ADDR_SPACE (y
)))
4719 y
= validize_mem (y
);
4721 gcc_assert (mode
!= BLKmode
);
4723 last_insn
= emit_move_insn_1 (x
, y
);
4725 if (y_cst
&& REG_P (x
)
4726 && (set
= single_set (last_insn
)) != NULL_RTX
4727 && SET_DEST (set
) == x
4728 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
4729 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
4734 /* Generate the body of an instruction to copy Y into X.
4735 It may be a list of insns, if one insn isn't enough. */
4738 gen_move_insn (rtx x
, rtx y
)
4743 emit_move_insn_1 (x
, y
);
4749 /* If Y is representable exactly in a narrower mode, and the target can
4750 perform the extension directly from constant or memory, then emit the
4751 move as an extension. */
4754 compress_float_constant (rtx x
, rtx y
)
4756 machine_mode dstmode
= GET_MODE (x
);
4757 machine_mode orig_srcmode
= GET_MODE (y
);
4758 machine_mode srcmode
;
4759 const REAL_VALUE_TYPE
*r
;
4760 int oldcost
, newcost
;
4761 bool speed
= optimize_insn_for_speed_p ();
4763 r
= CONST_DOUBLE_REAL_VALUE (y
);
4765 if (targetm
.legitimate_constant_p (dstmode
, y
))
4766 oldcost
= set_src_cost (y
, orig_srcmode
, speed
);
4768 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), dstmode
, speed
);
4770 FOR_EACH_MODE_UNTIL (srcmode
, orig_srcmode
)
4774 rtx_insn
*last_insn
;
4776 /* Skip if the target can't extend this way. */
4777 ic
= can_extend_p (dstmode
, srcmode
, 0);
4778 if (ic
== CODE_FOR_nothing
)
4781 /* Skip if the narrowed value isn't exact. */
4782 if (! exact_real_truncate (srcmode
, r
))
4785 trunc_y
= const_double_from_real_value (*r
, srcmode
);
4787 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
4789 /* Skip if the target needs extra instructions to perform
4791 if (!insn_operand_matches (ic
, 1, trunc_y
))
4793 /* This is valid, but may not be cheaper than the original. */
4794 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
4796 if (oldcost
< newcost
)
4799 else if (float_extend_from_mem
[dstmode
][srcmode
])
4801 trunc_y
= force_const_mem (srcmode
, trunc_y
);
4802 /* This is valid, but may not be cheaper than the original. */
4803 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
4805 if (oldcost
< newcost
)
4807 trunc_y
= validize_mem (trunc_y
);
4812 /* For CSE's benefit, force the compressed constant pool entry
4813 into a new pseudo. This constant may be used in different modes,
4814 and if not, combine will put things back together for us. */
4815 trunc_y
= force_reg (srcmode
, trunc_y
);
4817 /* If x is a hard register, perform the extension into a pseudo,
4818 so that e.g. stack realignment code is aware of it. */
4820 if (REG_P (x
) && HARD_REGISTER_P (x
))
4821 target
= gen_reg_rtx (dstmode
);
4823 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
4824 last_insn
= get_last_insn ();
4827 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
4830 return emit_move_insn (x
, target
);
4837 /* Pushing data onto the stack. */
4839 /* Push a block of length SIZE (perhaps variable)
4840 and return an rtx to address the beginning of the block.
4841 The value may be virtual_outgoing_args_rtx.
4843 EXTRA is the number of bytes of padding to push in addition to SIZE.
4844 BELOW nonzero means this padding comes at low addresses;
4845 otherwise, the padding comes at high addresses. */
4848 push_block (rtx size
, poly_int64 extra
, int below
)
4852 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
4853 if (CONSTANT_P (size
))
4854 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
4855 else if (REG_P (size
) && known_eq (extra
, 0))
4856 anti_adjust_stack (size
);
4859 temp
= copy_to_mode_reg (Pmode
, size
);
4860 if (maybe_ne (extra
, 0))
4861 temp
= expand_binop (Pmode
, add_optab
, temp
,
4862 gen_int_mode (extra
, Pmode
),
4863 temp
, 0, OPTAB_LIB_WIDEN
);
4864 anti_adjust_stack (temp
);
4867 if (STACK_GROWS_DOWNWARD
)
4869 temp
= virtual_outgoing_args_rtx
;
4870 if (maybe_ne (extra
, 0) && below
)
4871 temp
= plus_constant (Pmode
, temp
, extra
);
4876 if (poly_int_rtx_p (size
, &csize
))
4877 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
4878 -csize
- (below
? 0 : extra
));
4879 else if (maybe_ne (extra
, 0) && !below
)
4880 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
4881 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
4884 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
4885 negate_rtx (Pmode
, size
));
4888 return memory_address (NARROWEST_INT_MODE
, temp
);
4891 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4894 mem_autoinc_base (rtx mem
)
4898 rtx addr
= XEXP (mem
, 0);
4899 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
4900 return XEXP (addr
, 0);
4905 /* A utility routine used here, in reload, and in try_split. The insns
4906 after PREV up to and including LAST are known to adjust the stack,
4907 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4908 placing notes as appropriate. PREV may be NULL, indicating the
4909 entire insn sequence prior to LAST should be scanned.
4911 The set of allowed stack pointer modifications is small:
4912 (1) One or more auto-inc style memory references (aka pushes),
4913 (2) One or more addition/subtraction with the SP as destination,
4914 (3) A single move insn with the SP as destination,
4915 (4) A call_pop insn,
4916 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4918 Insns in the sequence that do not modify the SP are ignored,
4919 except for noreturn calls.
4921 The return value is the amount of adjustment that can be trivially
4922 verified, via immediate operand or auto-inc. If the adjustment
4923 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4926 find_args_size_adjust (rtx_insn
*insn
)
4931 pat
= PATTERN (insn
);
4934 /* Look for a call_pop pattern. */
4937 /* We have to allow non-call_pop patterns for the case
4938 of emit_single_push_insn of a TLS address. */
4939 if (GET_CODE (pat
) != PARALLEL
)
4942 /* All call_pop have a stack pointer adjust in the parallel.
4943 The call itself is always first, and the stack adjust is
4944 usually last, so search from the end. */
4945 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
4947 set
= XVECEXP (pat
, 0, i
);
4948 if (GET_CODE (set
) != SET
)
4950 dest
= SET_DEST (set
);
4951 if (dest
== stack_pointer_rtx
)
4954 /* We'd better have found the stack pointer adjust. */
4957 /* Fall through to process the extracted SET and DEST
4958 as if it was a standalone insn. */
4960 else if (GET_CODE (pat
) == SET
)
4962 else if ((set
= single_set (insn
)) != NULL
)
4964 else if (GET_CODE (pat
) == PARALLEL
)
4966 /* ??? Some older ports use a parallel with a stack adjust
4967 and a store for a PUSH_ROUNDING pattern, rather than a
4968 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4969 /* ??? See h8300 and m68k, pushqi1. */
4970 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
4972 set
= XVECEXP (pat
, 0, i
);
4973 if (GET_CODE (set
) != SET
)
4975 dest
= SET_DEST (set
);
4976 if (dest
== stack_pointer_rtx
)
4979 /* We do not expect an auto-inc of the sp in the parallel. */
4980 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
4981 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4982 != stack_pointer_rtx
);
4990 dest
= SET_DEST (set
);
4992 /* Look for direct modifications of the stack pointer. */
4993 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
4995 /* Look for a trivial adjustment, otherwise assume nothing. */
4996 /* Note that the SPU restore_stack_block pattern refers to
4997 the stack pointer in V4SImode. Consider that non-trivial. */
4999 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
5000 && strip_offset (SET_SRC (set
), &offset
) == stack_pointer_rtx
)
5002 /* ??? Reload can generate no-op moves, which will be cleaned
5003 up later. Recognize it and continue searching. */
5004 else if (rtx_equal_p (dest
, SET_SRC (set
)))
5007 return HOST_WIDE_INT_MIN
;
5013 /* Otherwise only think about autoinc patterns. */
5014 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
5017 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
5018 != stack_pointer_rtx
);
5020 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
5021 mem
= SET_SRC (set
);
5025 addr
= XEXP (mem
, 0);
5026 switch (GET_CODE (addr
))
5030 return GET_MODE_SIZE (GET_MODE (mem
));
5033 return -GET_MODE_SIZE (GET_MODE (mem
));
5036 addr
= XEXP (addr
, 1);
5037 gcc_assert (GET_CODE (addr
) == PLUS
);
5038 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
5039 return rtx_to_poly_int64 (XEXP (addr
, 1));
5047 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
,
5048 poly_int64 end_args_size
)
5050 poly_int64 args_size
= end_args_size
;
5051 bool saw_unknown
= false;
5054 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
5056 if (!NONDEBUG_INSN_P (insn
))
5059 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
5060 a call argument containing a TLS address that itself requires
5061 a call to __tls_get_addr. The handling of stack_pointer_delta
5062 in emit_single_push_insn is supposed to ensure that any such
5063 notes are already correct. */
5064 rtx note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
);
5065 gcc_assert (!note
|| known_eq (args_size
, get_args_size (note
)));
5067 poly_int64 this_delta
= find_args_size_adjust (insn
);
5068 if (known_eq (this_delta
, 0))
5071 || ACCUMULATE_OUTGOING_ARGS
5072 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
5076 gcc_assert (!saw_unknown
);
5077 if (known_eq (this_delta
, HOST_WIDE_INT_MIN
))
5081 add_args_size_note (insn
, args_size
);
5082 if (STACK_GROWS_DOWNWARD
)
5083 this_delta
= -poly_uint64 (this_delta
);
5086 args_size
= HOST_WIDE_INT_MIN
;
5088 args_size
-= this_delta
;
5094 #ifdef PUSH_ROUNDING
5095 /* Emit single push insn. */
5098 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
5101 poly_int64 rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
5103 enum insn_code icode
;
5105 /* If there is push pattern, use it. Otherwise try old way of throwing
5106 MEM representing push operation to move expander. */
5107 icode
= optab_handler (push_optab
, mode
);
5108 if (icode
!= CODE_FOR_nothing
)
5110 class expand_operand ops
[1];
5112 create_input_operand (&ops
[0], x
, mode
);
5113 if (maybe_expand_insn (icode
, 1, ops
))
5116 if (known_eq (GET_MODE_SIZE (mode
), rounded_size
))
5117 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
5118 /* If we are to pad downward, adjust the stack pointer first and
5119 then store X into the stack location using an offset. This is
5120 because emit_move_insn does not know how to pad; it does not have
5122 else if (targetm
.calls
.function_arg_padding (mode
, type
) == PAD_DOWNWARD
)
5124 emit_move_insn (stack_pointer_rtx
,
5125 expand_binop (Pmode
,
5126 STACK_GROWS_DOWNWARD
? sub_optab
5129 gen_int_mode (rounded_size
, Pmode
),
5130 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
5132 poly_int64 offset
= rounded_size
- GET_MODE_SIZE (mode
);
5133 if (STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_DEC
)
5134 /* We have already decremented the stack pointer, so get the
5136 offset
+= rounded_size
;
5138 if (!STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_INC
)
5139 /* We have already incremented the stack pointer, so get the
5141 offset
-= rounded_size
;
5143 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, offset
);
5147 if (STACK_GROWS_DOWNWARD
)
5148 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
5149 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, -rounded_size
);
5151 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
5152 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, rounded_size
);
5154 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
5157 dest
= gen_rtx_MEM (mode
, dest_addr
);
5161 set_mem_attributes (dest
, type
, 1);
5163 if (cfun
->tail_call_marked
)
5164 /* Function incoming arguments may overlap with sibling call
5165 outgoing arguments and we cannot allow reordering of reads
5166 from function arguments with stores to outgoing arguments
5167 of sibling calls. */
5168 set_mem_alias_set (dest
, 0);
5170 emit_move_insn (dest
, x
);
5173 /* Emit and annotate a single push insn. */
5176 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
5178 poly_int64 delta
, old_delta
= stack_pointer_delta
;
5179 rtx_insn
*prev
= get_last_insn ();
5182 emit_single_push_insn_1 (mode
, x
, type
);
5184 /* Adjust stack_pointer_delta to describe the situation after the push
5185 we just performed. Note that we must do this after the push rather
5186 than before the push in case calculating X needs pushes and pops of
5187 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
5188 for such pushes and pops must not include the effect of the future
5190 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
5192 last
= get_last_insn ();
5194 /* Notice the common case where we emitted exactly one insn. */
5195 if (PREV_INSN (last
) == prev
)
5197 add_args_size_note (last
, stack_pointer_delta
);
5201 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
5202 gcc_assert (known_eq (delta
, HOST_WIDE_INT_MIN
)
5203 || known_eq (delta
, old_delta
));
5207 /* If reading SIZE bytes from X will end up reading from
5208 Y return the number of bytes that overlap. Return -1
5209 if there is no overlap or -2 if we can't determine
5210 (for example when X and Y have different base registers). */
5213 memory_load_overlap (rtx x
, rtx y
, HOST_WIDE_INT size
)
5215 rtx tmp
= plus_constant (Pmode
, x
, size
);
5216 rtx sub
= simplify_gen_binary (MINUS
, Pmode
, tmp
, y
);
5218 if (!CONST_INT_P (sub
))
5221 HOST_WIDE_INT val
= INTVAL (sub
);
5223 return IN_RANGE (val
, 1, size
) ? val
: -1;
5226 /* Generate code to push X onto the stack, assuming it has mode MODE and
5228 MODE is redundant except when X is a CONST_INT (since they don't
5230 SIZE is an rtx for the size of data to be copied (in bytes),
5231 needed only if X is BLKmode.
5232 Return true if successful. May return false if asked to push a
5233 partial argument during a sibcall optimization (as specified by
5234 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
5237 ALIGN (in bits) is maximum alignment we can assume.
5239 If PARTIAL and REG are both nonzero, then copy that many of the first
5240 bytes of X into registers starting with REG, and push the rest of X.
5241 The amount of space pushed is decreased by PARTIAL bytes.
5242 REG must be a hard register in this case.
5243 If REG is zero but PARTIAL is not, take any all others actions for an
5244 argument partially in registers, but do not actually load any
5247 EXTRA is the amount in bytes of extra space to leave next to this arg.
5248 This is ignored if an argument block has already been allocated.
5250 On a machine that lacks real push insns, ARGS_ADDR is the address of
5251 the bottom of the argument block for this call. We use indexing off there
5252 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
5253 argument block has not been preallocated.
5255 ARGS_SO_FAR is the size of args previously pushed for this call.
5257 REG_PARM_STACK_SPACE is nonzero if functions require stack space
5258 for arguments passed in registers. If nonzero, it will be the number
5259 of bytes required. */
5262 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
5263 unsigned int align
, int partial
, rtx reg
, poly_int64 extra
,
5264 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
5265 rtx alignment_pad
, bool sibcall_p
)
5268 pad_direction stack_direction
5269 = STACK_GROWS_DOWNWARD
? PAD_DOWNWARD
: PAD_UPWARD
;
5271 /* Decide where to pad the argument: PAD_DOWNWARD for below,
5272 PAD_UPWARD for above, or PAD_NONE for don't pad it.
5273 Default is below for small data on big-endian machines; else above. */
5274 pad_direction where_pad
= targetm
.calls
.function_arg_padding (mode
, type
);
5276 /* Invert direction if stack is post-decrement.
5278 if (STACK_PUSH_CODE
== POST_DEC
)
5279 if (where_pad
!= PAD_NONE
)
5280 where_pad
= (where_pad
== PAD_DOWNWARD
? PAD_UPWARD
: PAD_DOWNWARD
);
5284 int nregs
= partial
/ UNITS_PER_WORD
;
5285 rtx
*tmp_regs
= NULL
;
5286 int overlapping
= 0;
5289 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
5291 /* Copy a block into the stack, entirely or partially. */
5298 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
5299 used
= partial
- offset
;
5301 if (mode
!= BLKmode
)
5303 /* A value is to be stored in an insufficiently aligned
5304 stack slot; copy via a suitably aligned slot if
5306 size
= gen_int_mode (GET_MODE_SIZE (mode
), Pmode
);
5307 if (!MEM_P (xinner
))
5309 temp
= assign_temp (type
, 1, 1);
5310 emit_move_insn (temp
, xinner
);
5317 /* USED is now the # of bytes we need not copy to the stack
5318 because registers will take care of them. */
5321 xinner
= adjust_address (xinner
, BLKmode
, used
);
5323 /* If the partial register-part of the arg counts in its stack size,
5324 skip the part of stack space corresponding to the registers.
5325 Otherwise, start copying to the beginning of the stack space,
5326 by setting SKIP to 0. */
5327 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
5329 #ifdef PUSH_ROUNDING
5330 /* NB: Let the backend known the number of bytes to push and
5331 decide if push insns should be generated. */
5332 unsigned int push_size
;
5333 if (CONST_INT_P (size
))
5334 push_size
= INTVAL (size
);
5338 /* Do it with several push insns if that doesn't take lots of insns
5339 and if there is no difficulty with push insns that skip bytes
5340 on the stack for alignment purposes. */
5342 && targetm
.calls
.push_argument (push_size
)
5343 && CONST_INT_P (size
)
5345 && MEM_ALIGN (xinner
) >= align
5346 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
5347 /* Here we avoid the case of a structure whose weak alignment
5348 forces many pushes of a small amount of data,
5349 and such small pushes do rounding that causes trouble. */
5350 && ((!targetm
.slow_unaligned_access (word_mode
, align
))
5351 || align
>= BIGGEST_ALIGNMENT
5352 || known_eq (PUSH_ROUNDING (align
/ BITS_PER_UNIT
),
5353 align
/ BITS_PER_UNIT
))
5354 && known_eq (PUSH_ROUNDING (INTVAL (size
)), INTVAL (size
)))
5356 /* Push padding now if padding above and stack grows down,
5357 or if padding below and stack grows up.
5358 But if space already allocated, this has already been done. */
5359 if (maybe_ne (extra
, 0)
5361 && where_pad
!= PAD_NONE
5362 && where_pad
!= stack_direction
)
5363 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
5365 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
,
5369 #endif /* PUSH_ROUNDING */
5373 /* Otherwise make space on the stack and copy the data
5374 to the address of that space. */
5376 /* Deduct words put into registers from the size we must copy. */
5379 if (CONST_INT_P (size
))
5380 size
= GEN_INT (INTVAL (size
) - used
);
5382 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
5383 gen_int_mode (used
, GET_MODE (size
)),
5384 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5387 /* Get the address of the stack space.
5388 In this case, we do not deal with EXTRA separately.
5389 A single stack adjust will do. */
5390 poly_int64 const_args_so_far
;
5393 temp
= push_block (size
, extra
, where_pad
== PAD_DOWNWARD
);
5396 else if (poly_int_rtx_p (args_so_far
, &const_args_so_far
))
5397 temp
= memory_address (BLKmode
,
5398 plus_constant (Pmode
, args_addr
,
5399 skip
+ const_args_so_far
));
5401 temp
= memory_address (BLKmode
,
5402 plus_constant (Pmode
,
5403 gen_rtx_PLUS (Pmode
,
5408 if (!ACCUMULATE_OUTGOING_ARGS
)
5410 /* If the source is referenced relative to the stack pointer,
5411 copy it to another register to stabilize it. We do not need
5412 to do this if we know that we won't be changing sp. */
5414 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
5415 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
5416 temp
= copy_to_reg (temp
);
5419 target
= gen_rtx_MEM (BLKmode
, temp
);
5421 /* We do *not* set_mem_attributes here, because incoming arguments
5422 may overlap with sibling call outgoing arguments and we cannot
5423 allow reordering of reads from function arguments with stores
5424 to outgoing arguments of sibling calls. We do, however, want
5425 to record the alignment of the stack slot. */
5426 /* ALIGN may well be better aligned than TYPE, e.g. due to
5427 PARM_BOUNDARY. Assume the caller isn't lying. */
5428 set_mem_align (target
, align
);
5430 /* If part should go in registers and pushing to that part would
5431 overwrite some of the values that need to go into regs, load the
5432 overlapping values into temporary pseudos to be moved into the hard
5433 regs at the end after the stack pushing has completed.
5434 We cannot load them directly into the hard regs here because
5435 they can be clobbered by the block move expansions.
5438 if (partial
> 0 && reg
!= 0 && mode
== BLKmode
5439 && GET_CODE (reg
) != PARALLEL
)
5441 overlapping
= memory_load_overlap (XEXP (x
, 0), temp
, partial
);
5442 if (overlapping
> 0)
5444 gcc_assert (overlapping
% UNITS_PER_WORD
== 0);
5445 overlapping
/= UNITS_PER_WORD
;
5447 tmp_regs
= XALLOCAVEC (rtx
, overlapping
);
5449 for (int i
= 0; i
< overlapping
; i
++)
5450 tmp_regs
[i
] = gen_reg_rtx (word_mode
);
5452 for (int i
= 0; i
< overlapping
; i
++)
5453 emit_move_insn (tmp_regs
[i
],
5454 operand_subword_force (target
, i
, mode
));
5456 else if (overlapping
== -1)
5458 /* Could not determine whether there is overlap.
5459 Fail the sibcall. */
5468 /* If source is a constant VAR_DECL with a simple constructor,
5469 store the constructor to the stack instead of moving it. */
5473 && SYMBOL_REF_P (XEXP (xinner
, 0))
5474 && (decl
= SYMBOL_REF_DECL (XEXP (xinner
, 0))) != NULL_TREE
5476 && TREE_READONLY (decl
)
5477 && !TREE_SIDE_EFFECTS (decl
)
5478 && immediate_const_ctor_p (DECL_INITIAL (decl
), 2))
5479 store_constructor (DECL_INITIAL (decl
), target
, 0,
5480 int_expr_size (DECL_INITIAL (decl
)), false);
5482 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
5485 else if (partial
> 0)
5487 /* Scalar partly in registers. This case is only supported
5488 for fixed-wdth modes. */
5489 int num_words
= GET_MODE_SIZE (mode
).to_constant ();
5490 num_words
/= UNITS_PER_WORD
;
5493 /* # bytes of start of argument
5494 that we must make space for but need not store. */
5495 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
5496 int args_offset
= INTVAL (args_so_far
);
5499 /* Push padding now if padding above and stack grows down,
5500 or if padding below and stack grows up.
5501 But if space already allocated, this has already been done. */
5502 if (maybe_ne (extra
, 0)
5504 && where_pad
!= PAD_NONE
5505 && where_pad
!= stack_direction
)
5506 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
5508 /* If we make space by pushing it, we might as well push
5509 the real data. Otherwise, we can leave OFFSET nonzero
5510 and leave the space uninitialized. */
5514 /* Now NOT_STACK gets the number of words that we don't need to
5515 allocate on the stack. Convert OFFSET to words too. */
5516 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
5517 offset
/= UNITS_PER_WORD
;
5519 /* If the partial register-part of the arg counts in its stack size,
5520 skip the part of stack space corresponding to the registers.
5521 Otherwise, start copying to the beginning of the stack space,
5522 by setting SKIP to 0. */
5523 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
5525 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
5526 x
= validize_mem (force_const_mem (mode
, x
));
5528 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
5529 SUBREGs of such registers are not allowed. */
5530 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
5531 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
5532 x
= copy_to_reg (x
);
5534 /* Loop over all the words allocated on the stack for this arg. */
5535 /* We can do it by words, because any scalar bigger than a word
5536 has a size a multiple of a word. */
5537 for (i
= num_words
- 1; i
>= not_stack
; i
--)
5538 if (i
>= not_stack
+ offset
)
5539 if (!emit_push_insn (operand_subword_force (x
, i
, mode
),
5540 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
5542 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
5544 reg_parm_stack_space
, alignment_pad
, sibcall_p
))
5552 /* Push padding now if padding above and stack grows down,
5553 or if padding below and stack grows up.
5554 But if space already allocated, this has already been done. */
5555 if (maybe_ne (extra
, 0)
5557 && where_pad
!= PAD_NONE
5558 && where_pad
!= stack_direction
)
5559 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
5561 #ifdef PUSH_ROUNDING
5562 if (args_addr
== 0 && targetm
.calls
.push_argument (0))
5563 emit_single_push_insn (mode
, x
, type
);
5567 addr
= simplify_gen_binary (PLUS
, Pmode
, args_addr
, args_so_far
);
5568 dest
= gen_rtx_MEM (mode
, memory_address (mode
, addr
));
5570 /* We do *not* set_mem_attributes here, because incoming arguments
5571 may overlap with sibling call outgoing arguments and we cannot
5572 allow reordering of reads from function arguments with stores
5573 to outgoing arguments of sibling calls. We do, however, want
5574 to record the alignment of the stack slot. */
5575 /* ALIGN may well be better aligned than TYPE, e.g. due to
5576 PARM_BOUNDARY. Assume the caller isn't lying. */
5577 set_mem_align (dest
, align
);
5579 emit_move_insn (dest
, x
);
5583 /* Move the partial arguments into the registers and any overlapping
5584 values that we moved into the pseudos in tmp_regs. */
5585 if (partial
> 0 && reg
!= 0)
5587 /* Handle calls that pass values in multiple non-contiguous locations.
5588 The Irix 6 ABI has examples of this. */
5589 if (GET_CODE (reg
) == PARALLEL
)
5590 emit_group_load (reg
, x
, type
, -1);
5593 gcc_assert (partial
% UNITS_PER_WORD
== 0);
5594 move_block_to_reg (REGNO (reg
), x
, nregs
- overlapping
, mode
);
5596 for (int i
= 0; i
< overlapping
; i
++)
5597 emit_move_insn (gen_rtx_REG (word_mode
, REGNO (reg
)
5598 + nregs
- overlapping
+ i
),
5604 if (maybe_ne (extra
, 0) && args_addr
== 0 && where_pad
== stack_direction
)
5605 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
5607 if (alignment_pad
&& args_addr
== 0)
5608 anti_adjust_stack (alignment_pad
);
5613 /* Return X if X can be used as a subtarget in a sequence of arithmetic
5617 get_subtarget (rtx x
)
5621 /* Only registers can be subtargets. */
5623 /* Don't use hard regs to avoid extending their life. */
5624 || REGNO (x
) < FIRST_PSEUDO_REGISTER
5628 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
5629 FIELD is a bitfield. Returns true if the optimization was successful,
5630 and there's nothing else to do. */
5633 optimize_bitfield_assignment_op (poly_uint64 pbitsize
,
5634 poly_uint64 pbitpos
,
5635 poly_uint64 pbitregion_start
,
5636 poly_uint64 pbitregion_end
,
5637 machine_mode mode1
, rtx str_rtx
,
5638 tree to
, tree src
, bool reverse
)
5640 /* str_mode is not guaranteed to be a scalar type. */
5641 machine_mode str_mode
= GET_MODE (str_rtx
);
5642 unsigned int str_bitsize
;
5647 enum tree_code code
;
5649 unsigned HOST_WIDE_INT bitsize
, bitpos
, bitregion_start
, bitregion_end
;
5650 if (mode1
!= VOIDmode
5651 || !pbitsize
.is_constant (&bitsize
)
5652 || !pbitpos
.is_constant (&bitpos
)
5653 || !pbitregion_start
.is_constant (&bitregion_start
)
5654 || !pbitregion_end
.is_constant (&bitregion_end
)
5655 || bitsize
>= BITS_PER_WORD
5656 || !GET_MODE_BITSIZE (str_mode
).is_constant (&str_bitsize
)
5657 || str_bitsize
> BITS_PER_WORD
5658 || TREE_SIDE_EFFECTS (to
)
5659 || TREE_THIS_VOLATILE (to
))
5663 if (TREE_CODE (src
) != SSA_NAME
)
5665 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
5668 srcstmt
= get_gimple_for_ssa_name (src
);
5670 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
5673 code
= gimple_assign_rhs_code (srcstmt
);
5675 op0
= gimple_assign_rhs1 (srcstmt
);
5677 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
5678 to find its initialization. Hopefully the initialization will
5679 be from a bitfield load. */
5680 if (TREE_CODE (op0
) == SSA_NAME
)
5682 gimple
*op0stmt
= get_gimple_for_ssa_name (op0
);
5684 /* We want to eventually have OP0 be the same as TO, which
5685 should be a bitfield. */
5687 || !is_gimple_assign (op0stmt
)
5688 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
5690 op0
= gimple_assign_rhs1 (op0stmt
);
5693 op1
= gimple_assign_rhs2 (srcstmt
);
5695 if (!operand_equal_p (to
, op0
, 0))
5698 if (MEM_P (str_rtx
))
5700 unsigned HOST_WIDE_INT offset1
;
5702 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
5703 str_bitsize
= BITS_PER_WORD
;
5705 scalar_int_mode best_mode
;
5706 if (!get_best_mode (bitsize
, bitpos
, bitregion_start
, bitregion_end
,
5707 MEM_ALIGN (str_rtx
), str_bitsize
, false, &best_mode
))
5709 str_mode
= best_mode
;
5710 str_bitsize
= GET_MODE_BITSIZE (best_mode
);
5713 bitpos
%= str_bitsize
;
5714 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
5715 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
5717 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
5720 /* If the bit field covers the whole REG/MEM, store_field
5721 will likely generate better code. */
5722 if (bitsize
>= str_bitsize
)
5725 /* We can't handle fields split across multiple entities. */
5726 if (bitpos
+ bitsize
> str_bitsize
)
5729 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5730 bitpos
= str_bitsize
- bitpos
- bitsize
;
5736 /* For now, just optimize the case of the topmost bitfield
5737 where we don't need to do any masking and also
5738 1 bit bitfields where xor can be used.
5739 We might win by one instruction for the other bitfields
5740 too if insv/extv instructions aren't used, so that
5741 can be added later. */
5742 if ((reverse
|| bitpos
+ bitsize
!= str_bitsize
)
5743 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
5746 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
5747 value
= convert_modes (str_mode
,
5748 TYPE_MODE (TREE_TYPE (op1
)), value
,
5749 TYPE_UNSIGNED (TREE_TYPE (op1
)));
5751 /* We may be accessing data outside the field, which means
5752 we can alias adjacent data. */
5753 if (MEM_P (str_rtx
))
5755 str_rtx
= shallow_copy_rtx (str_rtx
);
5756 set_mem_alias_set (str_rtx
, 0);
5757 set_mem_expr (str_rtx
, 0);
5760 if (bitsize
== 1 && (reverse
|| bitpos
+ bitsize
!= str_bitsize
))
5762 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
5766 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
5768 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
5770 value
= flip_storage_order (str_mode
, value
);
5771 result
= expand_binop (str_mode
, binop
, str_rtx
,
5772 value
, str_rtx
, 1, OPTAB_WIDEN
);
5773 if (result
!= str_rtx
)
5774 emit_move_insn (str_rtx
, result
);
5779 if (TREE_CODE (op1
) != INTEGER_CST
)
5781 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
5782 value
= convert_modes (str_mode
,
5783 TYPE_MODE (TREE_TYPE (op1
)), value
,
5784 TYPE_UNSIGNED (TREE_TYPE (op1
)));
5786 /* We may be accessing data outside the field, which means
5787 we can alias adjacent data. */
5788 if (MEM_P (str_rtx
))
5790 str_rtx
= shallow_copy_rtx (str_rtx
);
5791 set_mem_alias_set (str_rtx
, 0);
5792 set_mem_expr (str_rtx
, 0);
5795 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
5796 if (bitpos
+ bitsize
!= str_bitsize
)
5798 rtx mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< bitsize
) - 1,
5800 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
5802 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
5804 value
= flip_storage_order (str_mode
, value
);
5805 result
= expand_binop (str_mode
, binop
, str_rtx
,
5806 value
, str_rtx
, 1, OPTAB_WIDEN
);
5807 if (result
!= str_rtx
)
5808 emit_move_insn (str_rtx
, result
);
5818 /* In the C++ memory model, consecutive bit fields in a structure are
5819 considered one memory location.
5821 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5822 returns the bit range of consecutive bits in which this COMPONENT_REF
5823 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5824 and *OFFSET may be adjusted in the process.
5826 If the access does not need to be restricted, 0 is returned in both
5827 *BITSTART and *BITEND. */
5830 get_bit_range (poly_uint64
*bitstart
, poly_uint64
*bitend
, tree exp
,
5831 poly_int64
*bitpos
, tree
*offset
)
5833 poly_int64 bitoffset
;
5836 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
5838 field
= TREE_OPERAND (exp
, 1);
5839 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
5840 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5841 need to limit the range we can access. */
5844 *bitstart
= *bitend
= 0;
5848 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5849 part of a larger bit field, then the representative does not serve any
5850 useful purpose. This can occur in Ada. */
5851 if (handled_component_p (TREE_OPERAND (exp
, 0)))
5854 poly_int64 rbitsize
, rbitpos
;
5856 int unsignedp
, reversep
, volatilep
= 0;
5857 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
5858 &roffset
, &rmode
, &unsignedp
, &reversep
,
5860 if (!multiple_p (rbitpos
, BITS_PER_UNIT
))
5862 *bitstart
= *bitend
= 0;
5867 /* Compute the adjustment to bitpos from the offset of the field
5868 relative to the representative. DECL_FIELD_OFFSET of field and
5869 repr are the same by construction if they are not constants,
5870 see finish_bitfield_layout. */
5871 poly_uint64 field_offset
, repr_offset
;
5872 if (poly_int_tree_p (DECL_FIELD_OFFSET (field
), &field_offset
)
5873 && poly_int_tree_p (DECL_FIELD_OFFSET (repr
), &repr_offset
))
5874 bitoffset
= (field_offset
- repr_offset
) * BITS_PER_UNIT
;
5877 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
5878 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
5880 /* If the adjustment is larger than bitpos, we would have a negative bit
5881 position for the lower bound and this may wreak havoc later. Adjust
5882 offset and bitpos to make the lower bound non-negative in that case. */
5883 if (maybe_gt (bitoffset
, *bitpos
))
5885 poly_int64 adjust_bits
= upper_bound (bitoffset
, *bitpos
) - *bitpos
;
5886 poly_int64 adjust_bytes
= exact_div (adjust_bits
, BITS_PER_UNIT
);
5888 *bitpos
+= adjust_bits
;
5889 if (*offset
== NULL_TREE
)
5890 *offset
= size_int (-adjust_bytes
);
5892 *offset
= size_binop (MINUS_EXPR
, *offset
, size_int (adjust_bytes
));
5896 *bitstart
= *bitpos
- bitoffset
;
5898 *bitend
= *bitstart
+ tree_to_poly_uint64 (DECL_SIZE (repr
)) - 1;
5901 /* Returns true if BASE is a DECL that does not reside in memory and
5902 has non-BLKmode. DECL_RTL must not be a MEM; if
5903 DECL_RTL was not set yet, return false. */
5906 non_mem_decl_p (tree base
)
5909 || TREE_ADDRESSABLE (base
)
5910 || DECL_MODE (base
) == BLKmode
)
5913 if (!DECL_RTL_SET_P (base
))
5916 return (!MEM_P (DECL_RTL (base
)));
5919 /* Returns true if REF refers to an object that does not
5920 reside in memory and has non-BLKmode. */
5923 mem_ref_refers_to_non_mem_p (tree ref
)
5927 if (TREE_CODE (ref
) == MEM_REF
5928 || TREE_CODE (ref
) == TARGET_MEM_REF
)
5930 tree addr
= TREE_OPERAND (ref
, 0);
5932 if (TREE_CODE (addr
) != ADDR_EXPR
)
5935 base
= TREE_OPERAND (addr
, 0);
5940 return non_mem_decl_p (base
);
5943 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5944 is true, try generating a nontemporal store. */
5947 expand_assignment (tree to
, tree from
, bool nontemporal
)
5953 enum insn_code icode
;
5955 /* Don't crash if the lhs of the assignment was erroneous. */
5956 if (TREE_CODE (to
) == ERROR_MARK
)
5958 expand_normal (from
);
5962 /* Optimize away no-op moves without side-effects. */
5963 if (operand_equal_p (to
, from
, 0))
5966 /* Handle misaligned stores. */
5967 mode
= TYPE_MODE (TREE_TYPE (to
));
5968 if ((TREE_CODE (to
) == MEM_REF
5969 || TREE_CODE (to
) == TARGET_MEM_REF
5972 && !mem_ref_refers_to_non_mem_p (to
)
5973 && ((align
= get_object_alignment (to
))
5974 < GET_MODE_ALIGNMENT (mode
))
5975 && (((icode
= optab_handler (movmisalign_optab
, mode
))
5976 != CODE_FOR_nothing
)
5977 || targetm
.slow_unaligned_access (mode
, align
)))
5981 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
5982 /* Handle PARALLEL. */
5983 reg
= maybe_emit_group_store (reg
, TREE_TYPE (from
));
5984 reg
= force_not_mem (reg
);
5985 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5986 if (TREE_CODE (to
) == MEM_REF
&& REF_REVERSE_STORAGE_ORDER (to
))
5987 reg
= flip_storage_order (mode
, reg
);
5989 if (icode
!= CODE_FOR_nothing
)
5991 class expand_operand ops
[2];
5993 create_fixed_operand (&ops
[0], mem
);
5994 create_input_operand (&ops
[1], reg
, mode
);
5995 /* The movmisalign<mode> pattern cannot fail, else the assignment
5996 would silently be omitted. */
5997 expand_insn (icode
, 2, ops
);
6000 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
,
6005 /* Assignment of a structure component needs special treatment
6006 if the structure component's rtx is not simply a MEM.
6007 Assignment of an array element at a constant index, and assignment of
6008 an array element in an unaligned packed structure field, has the same
6009 problem. Same for (partially) storing into a non-memory object. */
6010 if (handled_component_p (to
)
6011 || (TREE_CODE (to
) == MEM_REF
6012 && (REF_REVERSE_STORAGE_ORDER (to
)
6013 || mem_ref_refers_to_non_mem_p (to
)))
6014 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
6017 poly_int64 bitsize
, bitpos
;
6018 poly_uint64 bitregion_start
= 0;
6019 poly_uint64 bitregion_end
= 0;
6021 int unsignedp
, reversep
, volatilep
= 0;
6025 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
6026 &unsignedp
, &reversep
, &volatilep
);
6028 /* Make sure bitpos is not negative, it can wreak havoc later. */
6029 if (maybe_lt (bitpos
, 0))
6031 gcc_assert (offset
== NULL_TREE
);
6032 offset
= size_int (bits_to_bytes_round_down (bitpos
));
6033 bitpos
= num_trailing_bits (bitpos
);
6036 if (TREE_CODE (to
) == COMPONENT_REF
6037 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
6038 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
6039 /* The C++ memory model naturally applies to byte-aligned fields.
6040 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
6041 BITSIZE are not byte-aligned, there is no need to limit the range
6042 we can access. This can occur with packed structures in Ada. */
6043 else if (maybe_gt (bitsize
, 0)
6044 && multiple_p (bitsize
, BITS_PER_UNIT
)
6045 && multiple_p (bitpos
, BITS_PER_UNIT
))
6047 bitregion_start
= bitpos
;
6048 bitregion_end
= bitpos
+ bitsize
- 1;
6051 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
6053 /* If the field has a mode, we want to access it in the
6054 field's mode, not the computed mode.
6055 If a MEM has VOIDmode (external with incomplete type),
6056 use BLKmode for it instead. */
6059 if (mode1
!= VOIDmode
)
6060 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
6061 else if (GET_MODE (to_rtx
) == VOIDmode
)
6062 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
6067 machine_mode address_mode
;
6070 if (!MEM_P (to_rtx
))
6072 /* We can get constant negative offsets into arrays with broken
6073 user code. Translate this to a trap instead of ICEing. */
6074 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
6075 expand_builtin_trap ();
6076 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
6079 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6080 address_mode
= get_address_mode (to_rtx
);
6081 if (GET_MODE (offset_rtx
) != address_mode
)
6083 /* We cannot be sure that the RTL in offset_rtx is valid outside
6084 of a memory address context, so force it into a register
6085 before attempting to convert it to the desired mode. */
6086 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
6087 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
6090 /* If we have an expression in OFFSET_RTX and a non-zero
6091 byte offset in BITPOS, adding the byte offset before the
6092 OFFSET_RTX results in better intermediate code, which makes
6093 later rtl optimization passes perform better.
6095 We prefer intermediate code like this:
6097 r124:DI=r123:DI+0x18
6102 r124:DI=r123:DI+0x10
6103 [r124:DI+0x8]=r121:DI
6105 This is only done for aligned data values, as these can
6106 be expected to result in single move instructions. */
6108 if (mode1
!= VOIDmode
6109 && maybe_ne (bitpos
, 0)
6110 && maybe_gt (bitsize
, 0)
6111 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
6112 && multiple_p (bitpos
, bitsize
)
6113 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
6114 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
6116 to_rtx
= adjust_address (to_rtx
, mode1
, bytepos
);
6117 bitregion_start
= 0;
6118 if (known_ge (bitregion_end
, poly_uint64 (bitpos
)))
6119 bitregion_end
-= bitpos
;
6123 to_rtx
= offset_address (to_rtx
, offset_rtx
,
6124 highest_pow2_factor_for_target (to
,
6128 /* No action is needed if the target is not a memory and the field
6129 lies completely outside that target. This can occur if the source
6130 code contains an out-of-bounds access to a small array. */
6132 && GET_MODE (to_rtx
) != BLKmode
6133 && known_ge (bitpos
, GET_MODE_PRECISION (GET_MODE (to_rtx
))))
6135 expand_normal (from
);
6138 /* Handle expand_expr of a complex value returning a CONCAT. */
6139 else if (GET_CODE (to_rtx
) == CONCAT
)
6141 machine_mode to_mode
= GET_MODE (to_rtx
);
6142 gcc_checking_assert (COMPLEX_MODE_P (to_mode
));
6143 poly_int64 mode_bitsize
= GET_MODE_BITSIZE (to_mode
);
6144 unsigned short inner_bitsize
= GET_MODE_UNIT_BITSIZE (to_mode
);
6145 if (TYPE_MODE (TREE_TYPE (from
)) == to_mode
6146 && known_eq (bitpos
, 0)
6147 && known_eq (bitsize
, mode_bitsize
))
6148 result
= store_expr (from
, to_rtx
, false, nontemporal
, reversep
);
6149 else if (TYPE_MODE (TREE_TYPE (from
)) == GET_MODE_INNER (to_mode
)
6150 && known_eq (bitsize
, inner_bitsize
)
6151 && (known_eq (bitpos
, 0)
6152 || known_eq (bitpos
, inner_bitsize
)))
6153 result
= store_expr (from
, XEXP (to_rtx
, maybe_ne (bitpos
, 0)),
6154 false, nontemporal
, reversep
);
6155 else if (known_le (bitpos
+ bitsize
, inner_bitsize
))
6156 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
6157 bitregion_start
, bitregion_end
,
6158 mode1
, from
, get_alias_set (to
),
6159 nontemporal
, reversep
);
6160 else if (known_ge (bitpos
, inner_bitsize
))
6161 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
6162 bitpos
- inner_bitsize
,
6163 bitregion_start
, bitregion_end
,
6164 mode1
, from
, get_alias_set (to
),
6165 nontemporal
, reversep
);
6166 else if (known_eq (bitpos
, 0) && known_eq (bitsize
, mode_bitsize
))
6168 result
= expand_normal (from
);
6169 if (GET_CODE (result
) == CONCAT
)
6171 to_mode
= GET_MODE_INNER (to_mode
);
6172 machine_mode from_mode
= GET_MODE_INNER (GET_MODE (result
));
6174 = simplify_gen_subreg (to_mode
, XEXP (result
, 0),
6177 = simplify_gen_subreg (to_mode
, XEXP (result
, 1),
6179 if (!from_real
|| !from_imag
)
6180 goto concat_store_slow
;
6181 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
6182 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
6186 machine_mode from_mode
6187 = GET_MODE (result
) == VOIDmode
6188 ? TYPE_MODE (TREE_TYPE (from
))
6189 : GET_MODE (result
);
6192 from_rtx
= change_address (result
, to_mode
, NULL_RTX
);
6195 = simplify_gen_subreg (to_mode
, result
, from_mode
, 0);
6198 emit_move_insn (XEXP (to_rtx
, 0),
6199 read_complex_part (from_rtx
, false));
6200 emit_move_insn (XEXP (to_rtx
, 1),
6201 read_complex_part (from_rtx
, true));
6205 to_mode
= GET_MODE_INNER (to_mode
);
6207 = simplify_gen_subreg (to_mode
, result
, from_mode
, 0);
6209 = simplify_gen_subreg (to_mode
, result
, from_mode
,
6210 GET_MODE_SIZE (to_mode
));
6211 if (!from_real
|| !from_imag
)
6212 goto concat_store_slow
;
6213 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
6214 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
6221 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
6222 GET_MODE_SIZE (GET_MODE (to_rtx
)));
6223 write_complex_part (temp
, XEXP (to_rtx
, 0), false, true);
6224 write_complex_part (temp
, XEXP (to_rtx
, 1), true, false);
6225 result
= store_field (temp
, bitsize
, bitpos
,
6226 bitregion_start
, bitregion_end
,
6227 mode1
, from
, get_alias_set (to
),
6228 nontemporal
, reversep
);
6229 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
6230 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
6233 /* For calls to functions returning variable length structures, if TO_RTX
6234 is not a MEM, go through a MEM because we must not create temporaries
6236 else if (!MEM_P (to_rtx
)
6237 && TREE_CODE (from
) == CALL_EXPR
6238 && COMPLETE_TYPE_P (TREE_TYPE (from
))
6239 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) != INTEGER_CST
)
6241 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
6242 GET_MODE_SIZE (GET_MODE (to_rtx
)));
6243 result
= store_field (temp
, bitsize
, bitpos
, bitregion_start
,
6244 bitregion_end
, mode1
, from
, get_alias_set (to
),
6245 nontemporal
, reversep
);
6246 emit_move_insn (to_rtx
, temp
);
6252 /* If the field is at offset zero, we could have been given the
6253 DECL_RTX of the parent struct. Don't munge it. */
6254 to_rtx
= shallow_copy_rtx (to_rtx
);
6255 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
6257 MEM_VOLATILE_P (to_rtx
) = 1;
6260 gcc_checking_assert (known_ge (bitpos
, 0));
6261 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
6262 bitregion_start
, bitregion_end
,
6263 mode1
, to_rtx
, to
, from
,
6266 else if (SUBREG_P (to_rtx
)
6267 && SUBREG_PROMOTED_VAR_P (to_rtx
))
6269 /* If to_rtx is a promoted subreg, we need to zero or sign
6270 extend the value afterwards. */
6271 if (TREE_CODE (to
) == MEM_REF
6272 && TYPE_MODE (TREE_TYPE (from
)) != BLKmode
6273 && !REF_REVERSE_STORAGE_ORDER (to
)
6274 && known_eq (bitpos
, 0)
6275 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (to_rtx
))))
6276 result
= store_expr (from
, to_rtx
, 0, nontemporal
, false);
6280 = lowpart_subreg (subreg_unpromoted_mode (to_rtx
),
6281 SUBREG_REG (to_rtx
),
6282 subreg_promoted_mode (to_rtx
));
6283 result
= store_field (to_rtx1
, bitsize
, bitpos
,
6284 bitregion_start
, bitregion_end
,
6285 mode1
, from
, get_alias_set (to
),
6286 nontemporal
, reversep
);
6287 convert_move (SUBREG_REG (to_rtx
), to_rtx1
,
6288 SUBREG_PROMOTED_SIGN (to_rtx
));
6292 result
= store_field (to_rtx
, bitsize
, bitpos
,
6293 bitregion_start
, bitregion_end
,
6294 mode1
, from
, get_alias_set (to
),
6295 nontemporal
, reversep
);
6299 preserve_temp_slots (result
);
6304 /* If the rhs is a function call and its value is not an aggregate,
6305 call the function before we start to compute the lhs.
6306 This is needed for correct code for cases such as
6307 val = setjmp (buf) on machines where reference to val
6308 requires loading up part of an address in a separate insn.
6310 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
6311 since it might be a promoted variable where the zero- or sign- extension
6312 needs to be done. Handling this in the normal way is safe because no
6313 computation is done before the call. The same is true for SSA names. */
6314 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
6315 && COMPLETE_TYPE_P (TREE_TYPE (from
))
6316 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
6318 || TREE_CODE (to
) == PARM_DECL
6319 || TREE_CODE (to
) == RESULT_DECL
)
6320 && REG_P (DECL_RTL (to
)))
6321 || TREE_CODE (to
) == SSA_NAME
))
6326 value
= expand_normal (from
);
6329 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
6331 /* Handle calls that return values in multiple non-contiguous locations.
6332 The Irix 6 ABI has examples of this. */
6333 if (GET_CODE (to_rtx
) == PARALLEL
)
6335 if (GET_CODE (value
) == PARALLEL
)
6336 emit_group_move (to_rtx
, value
);
6338 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
6339 int_size_in_bytes (TREE_TYPE (from
)));
6341 else if (GET_CODE (value
) == PARALLEL
)
6342 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
6343 int_size_in_bytes (TREE_TYPE (from
)));
6344 else if (GET_MODE (to_rtx
) == BLKmode
)
6346 /* Handle calls that return BLKmode values in registers. */
6348 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
6350 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
6354 if (POINTER_TYPE_P (TREE_TYPE (to
)))
6355 value
= convert_memory_address_addr_space
6356 (as_a
<scalar_int_mode
> (GET_MODE (to_rtx
)), value
,
6357 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
6359 emit_move_insn (to_rtx
, value
);
6362 preserve_temp_slots (to_rtx
);
6367 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
6368 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
6370 /* Don't move directly into a return register. */
6371 if (TREE_CODE (to
) == RESULT_DECL
6372 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
6378 /* If the source is itself a return value, it still is in a pseudo at
6379 this point so we can move it back to the return register directly. */
6381 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
6382 && TREE_CODE (from
) != CALL_EXPR
)
6383 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
6385 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
6387 /* Handle calls that return values in multiple non-contiguous locations.
6388 The Irix 6 ABI has examples of this. */
6389 if (GET_CODE (to_rtx
) == PARALLEL
)
6391 if (GET_CODE (temp
) == PARALLEL
)
6392 emit_group_move (to_rtx
, temp
);
6394 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
6395 int_size_in_bytes (TREE_TYPE (from
)));
6398 emit_move_insn (to_rtx
, temp
);
6400 preserve_temp_slots (to_rtx
);
6405 /* In case we are returning the contents of an object which overlaps
6406 the place the value is being stored, use a safe function when copying
6407 a value through a pointer into a structure value return block. */
6408 if (TREE_CODE (to
) == RESULT_DECL
6409 && TREE_CODE (from
) == INDIRECT_REF
6410 && ADDR_SPACE_GENERIC_P
6411 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
6412 && refs_may_alias_p (to
, from
)
6413 && cfun
->returns_struct
6414 && !cfun
->returns_pcc_struct
)
6419 size
= expr_size (from
);
6420 from_rtx
= expand_normal (from
);
6422 emit_block_move_via_libcall (XEXP (to_rtx
, 0), XEXP (from_rtx
, 0), size
);
6424 preserve_temp_slots (to_rtx
);
6429 /* Compute FROM and store the value in the rtx we got. */
6432 result
= store_expr (from
, to_rtx
, 0, nontemporal
, false);
6433 preserve_temp_slots (result
);
6438 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
6439 succeeded, false otherwise. */
6442 emit_storent_insn (rtx to
, rtx from
)
6444 class expand_operand ops
[2];
6445 machine_mode mode
= GET_MODE (to
);
6446 enum insn_code code
= optab_handler (storent_optab
, mode
);
6448 if (code
== CODE_FOR_nothing
)
6451 create_fixed_operand (&ops
[0], to
);
6452 create_input_operand (&ops
[1], from
, mode
);
6453 return maybe_expand_insn (code
, 2, ops
);
6456 /* Helper function for store_expr storing of STRING_CST. */
6459 string_cst_read_str (void *data
, void *, HOST_WIDE_INT offset
,
6460 fixed_size_mode mode
)
6462 tree str
= (tree
) data
;
6464 gcc_assert (offset
>= 0);
6465 if (offset
>= TREE_STRING_LENGTH (str
))
6468 if ((unsigned HOST_WIDE_INT
) offset
+ GET_MODE_SIZE (mode
)
6469 > (unsigned HOST_WIDE_INT
) TREE_STRING_LENGTH (str
))
6471 char *p
= XALLOCAVEC (char, GET_MODE_SIZE (mode
));
6472 size_t l
= TREE_STRING_LENGTH (str
) - offset
;
6473 memcpy (p
, TREE_STRING_POINTER (str
) + offset
, l
);
6474 memset (p
+ l
, '\0', GET_MODE_SIZE (mode
) - l
);
6475 return c_readstr (p
, mode
, false);
6478 return c_readstr (TREE_STRING_POINTER (str
) + offset
, mode
, false);
6481 /* Generate code for computing expression EXP,
6482 and storing the value into TARGET.
6484 If the mode is BLKmode then we may return TARGET itself.
6485 It turns out that in BLKmode it doesn't cause a problem.
6486 because C has no operators that could combine two different
6487 assignments into the same BLKmode object with different values
6488 with no sequence point. Will other languages need this to
6491 If CALL_PARAM_P is nonzero, this is a store into a call param on the
6492 stack, and block moves may need to be treated specially.
6494 If NONTEMPORAL is true, try using a nontemporal store instruction.
6496 If REVERSE is true, the store is to be done in reverse order. */
6499 store_expr (tree exp
, rtx target
, int call_param_p
,
6500 bool nontemporal
, bool reverse
)
6503 rtx alt_rtl
= NULL_RTX
;
6504 location_t loc
= curr_insn_location ();
6505 bool shortened_string_cst
= false;
6507 if (VOID_TYPE_P (TREE_TYPE (exp
)))
6509 /* C++ can generate ?: expressions with a throw expression in one
6510 branch and an rvalue in the other. Here, we resolve attempts to
6511 store the throw expression's nonexistent result. */
6512 gcc_assert (!call_param_p
);
6513 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6516 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
6518 /* Perform first part of compound expression, then assign from second
6520 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6521 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
6522 return store_expr (TREE_OPERAND (exp
, 1), target
,
6523 call_param_p
, nontemporal
, reverse
);
6525 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
6527 /* For conditional expression, get safe form of the target. Then
6528 test the condition, doing the appropriate assignment on either
6529 side. This avoids the creation of unnecessary temporaries.
6530 For non-BLKmode, it is more efficient not to do this. */
6532 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
6534 do_pending_stack_adjust ();
6536 jumpifnot (TREE_OPERAND (exp
, 0), lab1
,
6537 profile_probability::uninitialized ());
6538 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
6539 nontemporal
, reverse
);
6540 emit_jump_insn (targetm
.gen_jump (lab2
));
6543 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
6544 nontemporal
, reverse
);
6550 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
6551 /* If this is a scalar in a register that is stored in a wider mode
6552 than the declared mode, compute the result into its declared mode
6553 and then convert to the wider mode. Our value is the computed
6556 rtx inner_target
= 0;
6557 scalar_int_mode outer_mode
= subreg_unpromoted_mode (target
);
6558 scalar_int_mode inner_mode
= subreg_promoted_mode (target
);
6560 /* We can do the conversion inside EXP, which will often result
6561 in some optimizations. Do the conversion in two steps: first
6562 change the signedness, if needed, then the extend. But don't
6563 do this if the type of EXP is a subtype of something else
6564 since then the conversion might involve more than just
6565 converting modes. */
6566 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6567 && TREE_TYPE (TREE_TYPE (exp
)) == 0
6568 && GET_MODE_PRECISION (outer_mode
)
6569 == TYPE_PRECISION (TREE_TYPE (exp
)))
6571 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
6572 TYPE_UNSIGNED (TREE_TYPE (exp
))))
6574 /* Some types, e.g. Fortran's logical*4, won't have a signed
6575 version, so use the mode instead. */
6577 = (signed_or_unsigned_type_for
6578 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
6580 ntype
= lang_hooks
.types
.type_for_mode
6581 (TYPE_MODE (TREE_TYPE (exp
)),
6582 SUBREG_PROMOTED_SIGN (target
));
6584 exp
= fold_convert_loc (loc
, ntype
, exp
);
6587 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
6588 (inner_mode
, SUBREG_PROMOTED_SIGN (target
)),
6591 inner_target
= SUBREG_REG (target
);
6594 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
6595 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
6598 /* If TEMP is a VOIDmode constant, use convert_modes to make
6599 sure that we properly convert it. */
6600 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
6602 temp
= convert_modes (outer_mode
, TYPE_MODE (TREE_TYPE (exp
)),
6603 temp
, SUBREG_PROMOTED_SIGN (target
));
6604 temp
= convert_modes (inner_mode
, outer_mode
, temp
,
6605 SUBREG_PROMOTED_SIGN (target
));
6607 else if (!SCALAR_INT_MODE_P (GET_MODE (temp
)))
6608 temp
= convert_modes (outer_mode
, TYPE_MODE (TREE_TYPE (exp
)),
6609 temp
, SUBREG_PROMOTED_SIGN (target
));
6611 convert_move (SUBREG_REG (target
), temp
,
6612 SUBREG_PROMOTED_SIGN (target
));
6616 else if ((TREE_CODE (exp
) == STRING_CST
6617 || (TREE_CODE (exp
) == MEM_REF
6618 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6619 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6621 && integer_zerop (TREE_OPERAND (exp
, 1))))
6622 && !nontemporal
&& !call_param_p
6625 /* Optimize initialization of an array with a STRING_CST. */
6626 HOST_WIDE_INT exp_len
, str_copy_len
;
6628 tree str
= TREE_CODE (exp
) == STRING_CST
6629 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6631 exp_len
= int_expr_size (exp
);
6635 if (TREE_STRING_LENGTH (str
) <= 0)
6638 if (can_store_by_pieces (exp_len
, string_cst_read_str
, (void *) str
,
6639 MEM_ALIGN (target
), false))
6641 store_by_pieces (target
, exp_len
, string_cst_read_str
, (void *) str
,
6642 MEM_ALIGN (target
), false, RETURN_BEGIN
);
6646 str_copy_len
= TREE_STRING_LENGTH (str
);
6648 /* Trailing NUL bytes in EXP will be handled by the call to
6649 clear_storage, which is more efficient than copying them from
6650 the STRING_CST, so trim those from STR_COPY_LEN. */
6651 while (str_copy_len
)
6653 if (TREE_STRING_POINTER (str
)[str_copy_len
- 1])
6658 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0)
6660 str_copy_len
+= STORE_MAX_PIECES
- 1;
6661 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
6663 if (str_copy_len
>= exp_len
)
6666 if (!can_store_by_pieces (str_copy_len
, string_cst_read_str
,
6667 (void *) str
, MEM_ALIGN (target
), false))
6670 dest_mem
= store_by_pieces (target
, str_copy_len
, string_cst_read_str
,
6671 (void *) str
, MEM_ALIGN (target
), false,
6673 clear_storage (adjust_address_1 (dest_mem
, BLKmode
, 0, 1, 1, 0,
6674 exp_len
- str_copy_len
),
6675 GEN_INT (exp_len
- str_copy_len
), BLOCK_OP_NORMAL
);
6683 /* If we want to use a nontemporal or a reverse order store, force the
6684 value into a register first. */
6685 tmp_target
= nontemporal
|| reverse
? NULL_RTX
: target
;
6687 if (TREE_CODE (exp
) == STRING_CST
6688 && tmp_target
== target
6689 && GET_MODE (target
) == BLKmode
6690 && TYPE_MODE (TREE_TYPE (exp
)) == BLKmode
)
6692 rtx size
= expr_size (exp
);
6693 if (CONST_INT_P (size
)
6694 && size
!= const0_rtx
6696 > ((unsigned HOST_WIDE_INT
) TREE_STRING_LENGTH (exp
) + 32)))
6698 /* If the STRING_CST has much larger array type than
6699 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
6700 it into the rodata section as the code later on will use
6701 memset zero for the remainder anyway. See PR95052. */
6702 tmp_target
= NULL_RTX
;
6703 rexp
= copy_node (exp
);
6705 = build_index_type (size_int (TREE_STRING_LENGTH (exp
) - 1));
6706 TREE_TYPE (rexp
) = build_array_type (TREE_TYPE (TREE_TYPE (exp
)),
6708 shortened_string_cst
= true;
6711 temp
= expand_expr_real (rexp
, tmp_target
, GET_MODE (target
),
6713 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
6715 if (shortened_string_cst
)
6717 gcc_assert (MEM_P (temp
));
6718 temp
= change_address (temp
, BLKmode
, NULL_RTX
);
6722 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
6723 the same as that of TARGET, adjust the constant. This is needed, for
6724 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
6725 only a word-sized value. */
6726 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
6727 && TREE_CODE (exp
) != ERROR_MARK
6728 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
6730 gcc_assert (!shortened_string_cst
);
6731 if (GET_MODE_CLASS (GET_MODE (target
))
6732 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
)))
6733 && known_eq (GET_MODE_BITSIZE (GET_MODE (target
)),
6734 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)))))
6736 rtx t
= simplify_gen_subreg (GET_MODE (target
), temp
,
6737 TYPE_MODE (TREE_TYPE (exp
)), 0);
6741 if (GET_MODE (temp
) == VOIDmode
)
6742 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
6743 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
6746 /* If value was not generated in the target, store it there.
6747 Convert the value to TARGET's type first if necessary and emit the
6748 pending incrementations that have been queued when expanding EXP.
6749 Note that we cannot emit the whole queue blindly because this will
6750 effectively disable the POST_INC optimization later.
6752 If TEMP and TARGET compare equal according to rtx_equal_p, but
6753 one or both of them are volatile memory refs, we have to distinguish
6755 - expand_expr has used TARGET. In this case, we must not generate
6756 another copy. This can be detected by TARGET being equal according
6758 - expand_expr has not used TARGET - that means that the source just
6759 happens to have the same RTX form. Since temp will have been created
6760 by expand_expr, it will compare unequal according to == .
6761 We must generate a copy in this case, to reach the correct number
6762 of volatile memory references. */
6764 if ((! rtx_equal_p (temp
, target
)
6765 || (temp
!= target
&& (side_effects_p (temp
)
6766 || side_effects_p (target
)
6768 && !mems_same_for_tbaa_p (temp
, target
)))))
6769 && TREE_CODE (exp
) != ERROR_MARK
6770 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
6771 but TARGET is not valid memory reference, TEMP will differ
6772 from TARGET although it is really the same location. */
6774 && rtx_equal_p (alt_rtl
, target
)
6775 && !side_effects_p (alt_rtl
)
6776 && !side_effects_p (target
))
6777 /* If there's nothing to copy, don't bother. Don't call
6778 expr_size unless necessary, because some front-ends (C++)
6779 expr_size-hook must not be given objects that are not
6780 supposed to be bit-copied or bit-initialized. */
6781 && expr_size (exp
) != const0_rtx
)
6783 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
6785 gcc_assert (!shortened_string_cst
);
6786 if (GET_MODE (target
) == BLKmode
)
6788 /* Handle calls that return BLKmode values in registers. */
6789 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6790 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
6792 store_bit_field (target
,
6793 rtx_to_poly_int64 (expr_size (exp
))
6795 0, 0, 0, GET_MODE (temp
), temp
, reverse
,
6799 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
6802 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
6804 /* Handle copying a string constant into an array. The string
6805 constant may be shorter than the array. So copy just the string's
6806 actual length, and clear the rest. First get the size of the data
6807 type of the string, which is actually the size of the target. */
6808 rtx size
= expr_size (exp
);
6810 if (CONST_INT_P (size
)
6811 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
6812 emit_block_move (target
, temp
, size
,
6814 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
6817 machine_mode pointer_mode
6818 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
6819 machine_mode address_mode
= get_address_mode (target
);
6821 /* Compute the size of the data to copy from the string. */
6823 = size_binop_loc (loc
, MIN_EXPR
,
6824 make_tree (sizetype
, size
),
6825 size_int (TREE_STRING_LENGTH (exp
)));
6827 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
6829 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
6830 rtx_code_label
*label
= 0;
6832 /* Copy that much. */
6833 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
6834 TYPE_UNSIGNED (sizetype
));
6835 emit_block_move (target
, temp
, copy_size_rtx
,
6837 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
6839 /* Figure out how much is left in TARGET that we have to clear.
6840 Do all calculations in pointer_mode. */
6841 poly_int64 const_copy_size
;
6842 if (poly_int_rtx_p (copy_size_rtx
, &const_copy_size
))
6844 size
= plus_constant (address_mode
, size
, -const_copy_size
);
6845 target
= adjust_address (target
, BLKmode
, const_copy_size
);
6849 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
6850 copy_size_rtx
, NULL_RTX
, 0,
6853 if (GET_MODE (copy_size_rtx
) != address_mode
)
6854 copy_size_rtx
= convert_to_mode (address_mode
,
6856 TYPE_UNSIGNED (sizetype
));
6858 target
= offset_address (target
, copy_size_rtx
,
6859 highest_pow2_factor (copy_size
));
6860 label
= gen_label_rtx ();
6861 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
6862 GET_MODE (size
), 0, label
);
6865 if (size
!= const0_rtx
)
6866 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
6872 else if (shortened_string_cst
)
6874 /* Handle calls that return values in multiple non-contiguous locations.
6875 The Irix 6 ABI has examples of this. */
6876 else if (GET_CODE (target
) == PARALLEL
)
6878 if (GET_CODE (temp
) == PARALLEL
)
6879 emit_group_move (target
, temp
);
6881 emit_group_load (target
, temp
, TREE_TYPE (exp
),
6882 int_size_in_bytes (TREE_TYPE (exp
)));
6884 else if (GET_CODE (temp
) == PARALLEL
)
6885 emit_group_store (target
, temp
, TREE_TYPE (exp
),
6886 int_size_in_bytes (TREE_TYPE (exp
)));
6887 else if (GET_MODE (temp
) == BLKmode
)
6888 emit_block_move (target
, temp
, expr_size (exp
),
6890 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
6891 /* If we emit a nontemporal store, there is nothing else to do. */
6892 else if (nontemporal
&& emit_storent_insn (target
, temp
))
6897 temp
= flip_storage_order (GET_MODE (target
), temp
);
6898 temp
= force_operand (temp
, target
);
6900 emit_move_insn (target
, temp
);
6904 gcc_assert (!shortened_string_cst
);
6909 /* Return true if field F of structure TYPE is a flexible array. */
6912 flexible_array_member_p (const_tree f
, const_tree type
)
6917 return (DECL_CHAIN (f
) == NULL
6918 && TREE_CODE (tf
) == ARRAY_TYPE
6920 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
6921 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
6922 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
6923 && int_size_in_bytes (type
) >= 0);
6926 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6927 must have in order for it to completely initialize a value of type TYPE.
6928 Return -1 if the number isn't known.
6930 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6932 static HOST_WIDE_INT
6933 count_type_elements (const_tree type
, bool for_ctor_p
)
6935 switch (TREE_CODE (type
))
6941 nelts
= array_type_nelts (type
);
6942 if (nelts
&& tree_fits_uhwi_p (nelts
))
6944 unsigned HOST_WIDE_INT n
;
6946 n
= tree_to_uhwi (nelts
) + 1;
6947 if (n
== 0 || for_ctor_p
)
6950 return n
* count_type_elements (TREE_TYPE (type
), false);
6952 return for_ctor_p
? -1 : 1;
6957 unsigned HOST_WIDE_INT n
;
6961 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
6962 if (TREE_CODE (f
) == FIELD_DECL
)
6965 n
+= count_type_elements (TREE_TYPE (f
), false);
6966 else if (!flexible_array_member_p (f
, type
))
6967 /* Don't count flexible arrays, which are not supposed
6968 to be initialized. */
6976 case QUAL_UNION_TYPE
:
6981 gcc_assert (!for_ctor_p
);
6982 /* Estimate the number of scalars in each field and pick the
6983 maximum. Other estimates would do instead; the idea is simply
6984 to make sure that the estimate is not sensitive to the ordering
6987 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
6988 if (TREE_CODE (f
) == FIELD_DECL
)
6990 m
= count_type_elements (TREE_TYPE (f
), false);
6991 /* If the field doesn't span the whole union, add an extra
6992 scalar for the rest. */
6993 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
6994 TYPE_SIZE (type
)) != 1)
7007 unsigned HOST_WIDE_INT nelts
;
7008 if (TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
7016 case FIXED_POINT_TYPE
:
7021 case REFERENCE_TYPE
:
7038 /* Helper for categorize_ctor_elements. Identical interface. */
7041 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
7042 HOST_WIDE_INT
*p_unique_nz_elts
,
7043 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
7045 unsigned HOST_WIDE_INT idx
;
7046 HOST_WIDE_INT nz_elts
, unique_nz_elts
, init_elts
, num_fields
;
7047 tree value
, purpose
, elt_type
;
7049 /* Whether CTOR is a valid constant initializer, in accordance with what
7050 initializer_constant_valid_p does. If inferred from the constructor
7051 elements, true until proven otherwise. */
7052 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
7053 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
7059 elt_type
= NULL_TREE
;
7061 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
7063 HOST_WIDE_INT mult
= 1;
7065 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
7067 tree lo_index
= TREE_OPERAND (purpose
, 0);
7068 tree hi_index
= TREE_OPERAND (purpose
, 1);
7070 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
7071 mult
= (tree_to_uhwi (hi_index
)
7072 - tree_to_uhwi (lo_index
) + 1);
7075 elt_type
= TREE_TYPE (value
);
7077 switch (TREE_CODE (value
))
7081 HOST_WIDE_INT nz
= 0, unz
= 0, ic
= 0;
7083 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &unz
,
7086 nz_elts
+= mult
* nz
;
7087 unique_nz_elts
+= unz
;
7088 init_elts
+= mult
* ic
;
7090 if (const_from_elts_p
&& const_p
)
7091 const_p
= const_elt_p
;
7098 if (!initializer_zerop (value
))
7107 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
7108 unique_nz_elts
+= TREE_STRING_LENGTH (value
);
7109 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
7113 if (!initializer_zerop (TREE_REALPART (value
)))
7118 if (!initializer_zerop (TREE_IMAGPART (value
)))
7123 init_elts
+= 2 * mult
;
7128 /* We can only construct constant-length vectors using
7130 unsigned int nunits
= VECTOR_CST_NELTS (value
).to_constant ();
7131 for (unsigned int i
= 0; i
< nunits
; ++i
)
7133 tree v
= VECTOR_CST_ELT (value
, i
);
7134 if (!initializer_zerop (v
))
7146 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
7147 nz_elts
+= mult
* tc
;
7148 unique_nz_elts
+= tc
;
7149 init_elts
+= mult
* tc
;
7151 if (const_from_elts_p
&& const_p
)
7153 = initializer_constant_valid_p (value
,
7155 TYPE_REVERSE_STORAGE_ORDER
7163 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
7164 num_fields
, elt_type
))
7165 *p_complete
= false;
7167 *p_nz_elts
+= nz_elts
;
7168 *p_unique_nz_elts
+= unique_nz_elts
;
7169 *p_init_elts
+= init_elts
;
7174 /* Examine CTOR to discover:
7175 * how many scalar fields are set to nonzero values,
7176 and place it in *P_NZ_ELTS;
7177 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
7178 high - low + 1 (this can be useful for callers to determine ctors
7179 that could be cheaply initialized with - perhaps nested - loops
7180 compared to copied from huge read-only data),
7181 and place it in *P_UNIQUE_NZ_ELTS;
7182 * how many scalar fields in total are in CTOR,
7183 and place it in *P_ELT_COUNT.
7184 * whether the constructor is complete -- in the sense that every
7185 meaningful byte is explicitly given a value --
7186 and place it in *P_COMPLETE.
7188 Return whether or not CTOR is a valid static constant initializer, the same
7189 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
7192 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
7193 HOST_WIDE_INT
*p_unique_nz_elts
,
7194 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
7197 *p_unique_nz_elts
= 0;
7201 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_unique_nz_elts
,
7202 p_init_elts
, p_complete
);
7205 /* Return true if constructor CTOR is simple enough to be materialized
7206 in an integer mode register. Limit the size to WORDS words, which
7210 immediate_const_ctor_p (const_tree ctor
, unsigned int words
)
7212 /* Allow function to be called with a VAR_DECL's DECL_INITIAL. */
7213 if (!ctor
|| TREE_CODE (ctor
) != CONSTRUCTOR
)
7216 return TREE_CONSTANT (ctor
)
7217 && !TREE_ADDRESSABLE (ctor
)
7218 && CONSTRUCTOR_NELTS (ctor
)
7219 && TREE_CODE (TREE_TYPE (ctor
)) != ARRAY_TYPE
7220 && int_expr_size (ctor
) <= words
* UNITS_PER_WORD
7221 && initializer_constant_valid_for_bitfield_p (ctor
);
7224 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
7225 of which had type LAST_TYPE. Each element was itself a complete
7226 initializer, in the sense that every meaningful byte was explicitly
7227 given a value. Return true if the same is true for the constructor
7231 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
7232 const_tree last_type
)
7234 if (TREE_CODE (type
) == UNION_TYPE
7235 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
7240 gcc_assert (num_elts
== 1 && last_type
);
7242 /* ??? We could look at each element of the union, and find the
7243 largest element. Which would avoid comparing the size of the
7244 initialized element against any tail padding in the union.
7245 Doesn't seem worth the effort... */
7246 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
7249 return count_type_elements (type
, true) == num_elts
;
7252 /* Return true if EXP contains mostly (3/4) zeros. */
7255 mostly_zeros_p (const_tree exp
)
7257 if (TREE_CODE (exp
) == CONSTRUCTOR
)
7259 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
7262 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
7264 return !complete_p
|| nz_elts
< init_elts
/ 4;
7267 return initializer_zerop (exp
);
7270 /* Return true if EXP contains all zeros. */
7273 all_zeros_p (const_tree exp
)
7275 if (TREE_CODE (exp
) == CONSTRUCTOR
)
7277 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
7280 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
7282 return nz_elts
== 0;
7285 return initializer_zerop (exp
);
7288 /* Helper function for store_constructor.
7289 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
7290 CLEARED is as for store_constructor.
7291 ALIAS_SET is the alias set to use for any stores.
7292 If REVERSE is true, the store is to be done in reverse order.
7294 This provides a recursive shortcut back to store_constructor when it isn't
7295 necessary to go through store_field. This is so that we can pass through
7296 the cleared field to let store_constructor know that we may not have to
7297 clear a substructure if the outer structure has already been cleared. */
7300 store_constructor_field (rtx target
, poly_uint64 bitsize
, poly_int64 bitpos
,
7301 poly_uint64 bitregion_start
,
7302 poly_uint64 bitregion_end
,
7304 tree exp
, int cleared
,
7305 alias_set_type alias_set
, bool reverse
)
7308 poly_uint64 bytesize
;
7309 if (TREE_CODE (exp
) == CONSTRUCTOR
7310 /* We can only call store_constructor recursively if the size and
7311 bit position are on a byte boundary. */
7312 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
7313 && maybe_ne (bitsize
, 0U)
7314 && multiple_p (bitsize
, BITS_PER_UNIT
, &bytesize
)
7315 /* If we have a nonzero bitpos for a register target, then we just
7316 let store_field do the bitfield handling. This is unlikely to
7317 generate unnecessary clear instructions anyways. */
7318 && (known_eq (bitpos
, 0) || MEM_P (target
)))
7322 machine_mode target_mode
= GET_MODE (target
);
7323 if (target_mode
!= BLKmode
7324 && !multiple_p (bitpos
, GET_MODE_ALIGNMENT (target_mode
)))
7325 target_mode
= BLKmode
;
7326 target
= adjust_address (target
, target_mode
, bytepos
);
7330 /* Update the alias set, if required. */
7331 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
7332 && MEM_ALIAS_SET (target
) != 0)
7334 target
= copy_rtx (target
);
7335 set_mem_alias_set (target
, alias_set
);
7338 store_constructor (exp
, target
, cleared
, bytesize
, reverse
);
7341 store_field (target
, bitsize
, bitpos
, bitregion_start
, bitregion_end
, mode
,
7342 exp
, alias_set
, false, reverse
);
7346 /* Returns the number of FIELD_DECLs in TYPE. */
7349 fields_length (const_tree type
)
7351 tree t
= TYPE_FIELDS (type
);
7354 for (; t
; t
= DECL_CHAIN (t
))
7355 if (TREE_CODE (t
) == FIELD_DECL
)
7362 /* Store the value of constructor EXP into the rtx TARGET.
7363 TARGET is either a REG or a MEM; we know it cannot conflict, since
7364 safe_from_p has been called.
7365 CLEARED is true if TARGET is known to have been zero'd.
7366 SIZE is the number of bytes of TARGET we are allowed to modify: this
7367 may not be the same as the size of EXP if we are assigning to a field
7368 which has been packed to exclude padding bits.
7369 If REVERSE is true, the store is to be done in reverse order. */
7372 store_constructor (tree exp
, rtx target
, int cleared
, poly_int64 size
,
7375 tree type
= TREE_TYPE (exp
);
7376 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
7377 poly_int64 bitregion_end
= known_gt (size
, 0) ? size
* BITS_PER_UNIT
- 1 : 0;
7379 switch (TREE_CODE (type
))
7383 case QUAL_UNION_TYPE
:
7385 unsigned HOST_WIDE_INT idx
;
7388 /* The storage order is specified for every aggregate type. */
7389 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
7391 /* If size is zero or the target is already cleared, do nothing. */
7392 if (known_eq (size
, 0) || cleared
)
7394 /* We either clear the aggregate or indicate the value is dead. */
7395 else if ((TREE_CODE (type
) == UNION_TYPE
7396 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
7397 && ! CONSTRUCTOR_ELTS (exp
))
7398 /* If the constructor is empty, clear the union. */
7400 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7404 /* If we are building a static constructor into a register,
7405 set the initial value as zero so we can fold the value into
7406 a constant. But if more than one register is involved,
7407 this probably loses. */
7408 else if (REG_P (target
) && TREE_STATIC (exp
)
7409 && known_le (GET_MODE_SIZE (GET_MODE (target
)),
7410 REGMODE_NATURAL_SIZE (GET_MODE (target
))))
7412 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
7416 /* If the constructor has fewer fields than the structure or
7417 if we are initializing the structure to mostly zeros, clear
7418 the whole structure first. Don't do this if TARGET is a
7419 register whose mode size isn't equal to SIZE since
7420 clear_storage can't handle this case. */
7421 else if (known_size_p (size
)
7422 && (((int) CONSTRUCTOR_NELTS (exp
) != fields_length (type
))
7423 || mostly_zeros_p (exp
))
7425 || known_eq (GET_MODE_SIZE (GET_MODE (target
)), size
)))
7427 clear_storage (target
, gen_int_mode (size
, Pmode
),
7432 if (REG_P (target
) && !cleared
)
7433 emit_clobber (target
);
7435 /* Store each element of the constructor into the
7436 corresponding field of TARGET. */
7437 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
7440 HOST_WIDE_INT bitsize
;
7441 HOST_WIDE_INT bitpos
= 0;
7443 rtx to_rtx
= target
;
7445 /* Just ignore missing fields. We cleared the whole
7446 structure, above, if any fields are missing. */
7450 if (cleared
&& initializer_zerop (value
))
7453 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
7454 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
7458 mode
= DECL_MODE (field
);
7459 if (DECL_BIT_FIELD (field
))
7462 offset
= DECL_FIELD_OFFSET (field
);
7463 if (tree_fits_shwi_p (offset
)
7464 && tree_fits_shwi_p (bit_position (field
)))
7466 bitpos
= int_bit_position (field
);
7472 /* If this initializes a field that is smaller than a
7473 word, at the start of a word, try to widen it to a full
7474 word. This special case allows us to output C++ member
7475 function initializations in a form that the optimizers
7477 if (WORD_REGISTER_OPERATIONS
7479 && bitsize
< BITS_PER_WORD
7480 && bitpos
% BITS_PER_WORD
== 0
7481 && GET_MODE_CLASS (mode
) == MODE_INT
7482 && TREE_CODE (value
) == INTEGER_CST
7484 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
7486 type
= TREE_TYPE (value
);
7488 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
7490 type
= lang_hooks
.types
.type_for_mode
7491 (word_mode
, TYPE_UNSIGNED (type
));
7492 value
= fold_convert (type
, value
);
7493 /* Make sure the bits beyond the original bitsize are zero
7494 so that we can correctly avoid extra zeroing stores in
7495 later constructor elements. */
7497 = wide_int_to_tree (type
, wi::mask (bitsize
, false,
7499 value
= fold_build2 (BIT_AND_EXPR
, type
, value
, bitsize_mask
);
7502 if (BYTES_BIG_ENDIAN
)
7504 = fold_build2 (LSHIFT_EXPR
, type
, value
,
7505 build_int_cst (type
,
7506 BITS_PER_WORD
- bitsize
));
7507 bitsize
= BITS_PER_WORD
;
7511 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
7512 && DECL_NONADDRESSABLE_P (field
))
7514 to_rtx
= copy_rtx (to_rtx
);
7515 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
7518 store_constructor_field (to_rtx
, bitsize
, bitpos
,
7519 0, bitregion_end
, mode
,
7521 get_alias_set (TREE_TYPE (field
)),
7529 unsigned HOST_WIDE_INT i
;
7532 tree elttype
= TREE_TYPE (type
);
7533 bool const_bounds_p
;
7534 HOST_WIDE_INT minelt
= 0;
7535 HOST_WIDE_INT maxelt
= 0;
7537 /* The storage order is specified for every aggregate type. */
7538 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
7540 domain
= TYPE_DOMAIN (type
);
7541 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
7542 && TYPE_MAX_VALUE (domain
)
7543 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
7544 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
7546 /* If we have constant bounds for the range of the type, get them. */
7549 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
7550 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
7553 /* If the constructor has fewer elements than the array, clear
7554 the whole array first. Similarly if this is static
7555 constructor of a non-BLKmode object. */
7557 need_to_clear
= false;
7558 else if (REG_P (target
) && TREE_STATIC (exp
))
7559 need_to_clear
= true;
7562 unsigned HOST_WIDE_INT idx
;
7563 HOST_WIDE_INT count
= 0, zero_count
= 0;
7564 need_to_clear
= ! const_bounds_p
;
7566 /* This loop is a more accurate version of the loop in
7567 mostly_zeros_p (it handles RANGE_EXPR in an index). It
7568 is also needed to check for missing elements. */
7569 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
7571 HOST_WIDE_INT this_node_count
;
7576 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
7578 tree lo_index
= TREE_OPERAND (index
, 0);
7579 tree hi_index
= TREE_OPERAND (index
, 1);
7581 if (! tree_fits_uhwi_p (lo_index
)
7582 || ! tree_fits_uhwi_p (hi_index
))
7584 need_to_clear
= true;
7588 this_node_count
= (tree_to_uhwi (hi_index
)
7589 - tree_to_uhwi (lo_index
) + 1);
7592 this_node_count
= 1;
7594 count
+= this_node_count
;
7595 if (mostly_zeros_p (value
))
7596 zero_count
+= this_node_count
;
7599 /* Clear the entire array first if there are any missing
7600 elements, or if the incidence of zero elements is >=
7603 && (count
< maxelt
- minelt
+ 1
7604 || 4 * zero_count
>= 3 * count
))
7605 need_to_clear
= true;
7608 if (need_to_clear
&& maybe_gt (size
, 0))
7611 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
7613 clear_storage (target
, gen_int_mode (size
, Pmode
),
7618 if (!cleared
&& REG_P (target
))
7619 /* Inform later passes that the old value is dead. */
7620 emit_clobber (target
);
7622 /* Store each element of the constructor into the
7623 corresponding element of TARGET, determined by counting the
7625 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
7629 HOST_WIDE_INT bitpos
;
7630 rtx xtarget
= target
;
7632 if (cleared
&& initializer_zerop (value
))
7635 mode
= TYPE_MODE (elttype
);
7636 if (mode
!= BLKmode
)
7637 bitsize
= GET_MODE_BITSIZE (mode
);
7638 else if (!poly_int_tree_p (TYPE_SIZE (elttype
), &bitsize
))
7641 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
7643 tree lo_index
= TREE_OPERAND (index
, 0);
7644 tree hi_index
= TREE_OPERAND (index
, 1);
7645 rtx index_r
, pos_rtx
;
7646 HOST_WIDE_INT lo
, hi
, count
;
7649 /* If the range is constant and "small", unroll the loop. */
7651 && tree_fits_shwi_p (lo_index
)
7652 && tree_fits_shwi_p (hi_index
)
7653 && (lo
= tree_to_shwi (lo_index
),
7654 hi
= tree_to_shwi (hi_index
),
7655 count
= hi
- lo
+ 1,
7658 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
7659 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
7662 lo
-= minelt
; hi
-= minelt
;
7663 for (; lo
<= hi
; lo
++)
7665 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
7668 && !MEM_KEEP_ALIAS_SET_P (target
)
7669 && TREE_CODE (type
) == ARRAY_TYPE
7670 && TYPE_NONALIASED_COMPONENT (type
))
7672 target
= copy_rtx (target
);
7673 MEM_KEEP_ALIAS_SET_P (target
) = 1;
7676 store_constructor_field
7677 (target
, bitsize
, bitpos
, 0, bitregion_end
,
7678 mode
, value
, cleared
,
7679 get_alias_set (elttype
), reverse
);
7684 rtx_code_label
*loop_start
= gen_label_rtx ();
7685 rtx_code_label
*loop_end
= gen_label_rtx ();
7688 expand_normal (hi_index
);
7690 index
= build_decl (EXPR_LOCATION (exp
),
7691 VAR_DECL
, NULL_TREE
, domain
);
7692 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
7693 SET_DECL_RTL (index
, index_r
);
7694 store_expr (lo_index
, index_r
, 0, false, reverse
);
7696 /* Build the head of the loop. */
7697 do_pending_stack_adjust ();
7698 emit_label (loop_start
);
7700 /* Assign value to element index. */
7702 fold_convert (ssizetype
,
7703 fold_build2 (MINUS_EXPR
,
7706 TYPE_MIN_VALUE (domain
)));
7709 size_binop (MULT_EXPR
, position
,
7710 fold_convert (ssizetype
,
7711 TYPE_SIZE_UNIT (elttype
)));
7713 pos_rtx
= expand_normal (position
);
7714 xtarget
= offset_address (target
, pos_rtx
,
7715 highest_pow2_factor (position
));
7716 xtarget
= adjust_address (xtarget
, mode
, 0);
7717 if (TREE_CODE (value
) == CONSTRUCTOR
)
7718 store_constructor (value
, xtarget
, cleared
,
7719 exact_div (bitsize
, BITS_PER_UNIT
),
7722 store_expr (value
, xtarget
, 0, false, reverse
);
7724 /* Generate a conditional jump to exit the loop. */
7725 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
7727 jumpif (exit_cond
, loop_end
,
7728 profile_probability::uninitialized ());
7730 /* Update the loop counter, and jump to the head of
7732 expand_assignment (index
,
7733 build2 (PLUS_EXPR
, TREE_TYPE (index
),
7734 index
, integer_one_node
),
7737 emit_jump (loop_start
);
7739 /* Build the end of the loop. */
7740 emit_label (loop_end
);
7743 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
7744 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
7749 index
= ssize_int (1);
7752 index
= fold_convert (ssizetype
,
7753 fold_build2 (MINUS_EXPR
,
7756 TYPE_MIN_VALUE (domain
)));
7759 size_binop (MULT_EXPR
, index
,
7760 fold_convert (ssizetype
,
7761 TYPE_SIZE_UNIT (elttype
)));
7762 xtarget
= offset_address (target
,
7763 expand_normal (position
),
7764 highest_pow2_factor (position
));
7765 xtarget
= adjust_address (xtarget
, mode
, 0);
7766 store_expr (value
, xtarget
, 0, false, reverse
);
7771 bitpos
= ((tree_to_shwi (index
) - minelt
)
7772 * tree_to_uhwi (TYPE_SIZE (elttype
)));
7774 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
7776 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
7777 && TREE_CODE (type
) == ARRAY_TYPE
7778 && TYPE_NONALIASED_COMPONENT (type
))
7780 target
= copy_rtx (target
);
7781 MEM_KEEP_ALIAS_SET_P (target
) = 1;
7783 store_constructor_field (target
, bitsize
, bitpos
, 0,
7784 bitregion_end
, mode
, value
,
7785 cleared
, get_alias_set (elttype
),
7794 unsigned HOST_WIDE_INT idx
;
7795 constructor_elt
*ce
;
7798 insn_code icode
= CODE_FOR_nothing
;
7800 tree elttype
= TREE_TYPE (type
);
7801 int elt_size
= vector_element_bits (type
);
7802 machine_mode eltmode
= TYPE_MODE (elttype
);
7803 HOST_WIDE_INT bitsize
;
7804 HOST_WIDE_INT bitpos
;
7805 rtvec vector
= NULL
;
7807 unsigned HOST_WIDE_INT const_n_elts
;
7808 alias_set_type alias
;
7809 bool vec_vec_init_p
= false;
7810 machine_mode mode
= GET_MODE (target
);
7812 gcc_assert (eltmode
!= BLKmode
);
7814 /* Try using vec_duplicate_optab for uniform vectors. */
7815 if (!TREE_SIDE_EFFECTS (exp
)
7816 && VECTOR_MODE_P (mode
)
7817 && eltmode
== GET_MODE_INNER (mode
)
7818 && ((icode
= optab_handler (vec_duplicate_optab
, mode
))
7819 != CODE_FOR_nothing
)
7820 && (elt
= uniform_vector_p (exp
))
7821 && !VECTOR_TYPE_P (TREE_TYPE (elt
)))
7823 class expand_operand ops
[2];
7824 create_output_operand (&ops
[0], target
, mode
);
7825 create_input_operand (&ops
[1], expand_normal (elt
), eltmode
);
7826 expand_insn (icode
, 2, ops
);
7827 if (!rtx_equal_p (target
, ops
[0].value
))
7828 emit_move_insn (target
, ops
[0].value
);
7831 /* Use sign-extension for uniform boolean vectors with
7832 integer modes. Effectively "vec_duplicate" for bitmasks. */
7833 if (!TREE_SIDE_EFFECTS (exp
)
7834 && VECTOR_BOOLEAN_TYPE_P (type
)
7835 && SCALAR_INT_MODE_P (mode
)
7836 && (elt
= uniform_vector_p (exp
))
7837 && !VECTOR_TYPE_P (TREE_TYPE (elt
)))
7839 rtx op0
= force_reg (TYPE_MODE (TREE_TYPE (elt
)),
7840 expand_normal (elt
));
7841 rtx tmp
= gen_reg_rtx (mode
);
7842 convert_move (tmp
, op0
, 0);
7844 /* Ensure no excess bits are set.
7845 GCN needs this for nunits < 64.
7846 x86 needs this for nunits < 8. */
7847 auto nunits
= TYPE_VECTOR_SUBPARTS (type
).to_constant ();
7848 if (maybe_ne (GET_MODE_PRECISION (mode
), nunits
))
7849 tmp
= expand_binop (mode
, and_optab
, tmp
,
7850 GEN_INT ((1 << nunits
) - 1), target
,
7853 emit_move_insn (target
, tmp
);
7857 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
7859 && VECTOR_MODE_P (mode
)
7860 && n_elts
.is_constant (&const_n_elts
))
7862 machine_mode emode
= eltmode
;
7863 bool vector_typed_elts_p
= false;
7865 if (CONSTRUCTOR_NELTS (exp
)
7866 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
))
7869 tree etype
= TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
);
7870 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp
)
7871 * TYPE_VECTOR_SUBPARTS (etype
),
7873 emode
= TYPE_MODE (etype
);
7874 vector_typed_elts_p
= true;
7876 icode
= convert_optab_handler (vec_init_optab
, mode
, emode
);
7877 if (icode
!= CODE_FOR_nothing
)
7879 unsigned int n
= const_n_elts
;
7881 if (vector_typed_elts_p
)
7883 n
= CONSTRUCTOR_NELTS (exp
);
7884 vec_vec_init_p
= true;
7886 vector
= rtvec_alloc (n
);
7887 for (unsigned int k
= 0; k
< n
; k
++)
7888 RTVEC_ELT (vector
, k
) = CONST0_RTX (emode
);
7892 /* Compute the size of the elements in the CTOR. It differs
7893 from the size of the vector type elements only when the
7894 CTOR elements are vectors themselves. */
7895 tree val_type
= (CONSTRUCTOR_NELTS (exp
) != 0
7896 ? TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
)
7898 if (VECTOR_TYPE_P (val_type
))
7899 bitsize
= tree_to_uhwi (TYPE_SIZE (val_type
));
7903 /* If the constructor has fewer elements than the vector,
7904 clear the whole array first. Similarly if this is static
7905 constructor of a non-BLKmode object. */
7907 need_to_clear
= false;
7908 else if (REG_P (target
) && TREE_STATIC (exp
))
7909 need_to_clear
= true;
7912 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
7915 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
7917 int n_elts_here
= bitsize
/ elt_size
;
7918 count
+= n_elts_here
;
7919 if (mostly_zeros_p (value
))
7920 zero_count
+= n_elts_here
;
7923 /* Clear the entire vector first if there are any missing elements,
7924 or if the incidence of zero elements is >= 75%. */
7925 need_to_clear
= (maybe_lt (count
, n_elts
)
7926 || 4 * zero_count
>= 3 * count
);
7929 if (need_to_clear
&& maybe_gt (size
, 0) && !vector
)
7932 emit_move_insn (target
, CONST0_RTX (mode
));
7934 clear_storage (target
, gen_int_mode (size
, Pmode
),
7939 /* Inform later passes that the old value is dead. */
7940 if (!cleared
&& !vector
&& REG_P (target
) && maybe_gt (n_elts
, 1u))
7942 emit_move_insn (target
, CONST0_RTX (mode
));
7947 alias
= MEM_ALIAS_SET (target
);
7949 alias
= get_alias_set (elttype
);
7951 /* Store each element of the constructor into the corresponding
7952 element of TARGET, determined by counting the elements. */
7953 for (idx
= 0, i
= 0;
7954 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
7955 idx
++, i
+= bitsize
/ elt_size
)
7957 HOST_WIDE_INT eltpos
;
7958 tree value
= ce
->value
;
7960 if (cleared
&& initializer_zerop (value
))
7964 eltpos
= tree_to_uhwi (ce
->index
);
7972 gcc_assert (ce
->index
== NULL_TREE
);
7973 gcc_assert (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
);
7977 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
7978 RTVEC_ELT (vector
, eltpos
) = expand_normal (value
);
7982 machine_mode value_mode
7983 = (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
7984 ? TYPE_MODE (TREE_TYPE (value
)) : eltmode
);
7985 bitpos
= eltpos
* elt_size
;
7986 store_constructor_field (target
, bitsize
, bitpos
, 0,
7987 bitregion_end
, value_mode
,
7988 value
, cleared
, alias
, reverse
);
7993 emit_insn (GEN_FCN (icode
) (target
,
7994 gen_rtx_PARALLEL (mode
, vector
)));
8003 /* Store the value of EXP (an expression tree)
8004 into a subfield of TARGET which has mode MODE and occupies
8005 BITSIZE bits, starting BITPOS bits from the start of TARGET.
8006 If MODE is VOIDmode, it means that we are storing into a bit-field.
8008 BITREGION_START is bitpos of the first bitfield in this region.
8009 BITREGION_END is the bitpos of the ending bitfield in this region.
8010 These two fields are 0, if the C++ memory model does not apply,
8011 or we are not interested in keeping track of bitfield regions.
8013 Always return const0_rtx unless we have something particular to
8016 ALIAS_SET is the alias set for the destination. This value will
8017 (in general) be different from that for TARGET, since TARGET is a
8018 reference to the containing structure.
8020 If NONTEMPORAL is true, try generating a nontemporal store.
8022 If REVERSE is true, the store is to be done in reverse order. */
8025 store_field (rtx target
, poly_int64 bitsize
, poly_int64 bitpos
,
8026 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
8027 machine_mode mode
, tree exp
,
8028 alias_set_type alias_set
, bool nontemporal
, bool reverse
)
8030 if (TREE_CODE (exp
) == ERROR_MARK
)
8033 /* If we have nothing to store, do nothing unless the expression has
8034 side-effects. Don't do that for zero sized addressable lhs of
8036 if (known_eq (bitsize
, 0)
8037 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
8038 || TREE_CODE (exp
) != CALL_EXPR
))
8039 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
8041 if (GET_CODE (target
) == CONCAT
)
8043 /* We're storing into a struct containing a single __complex. */
8045 gcc_assert (known_eq (bitpos
, 0));
8046 return store_expr (exp
, target
, 0, nontemporal
, reverse
);
8049 /* If the structure is in a register or if the component
8050 is a bit field, we cannot use addressing to access it.
8051 Use bit-field techniques or SUBREG to store in it. */
8053 poly_int64 decl_bitsize
;
8054 if (mode
== VOIDmode
8055 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
8056 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8057 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
8059 || GET_CODE (target
) == SUBREG
8060 /* If the field isn't aligned enough to store as an ordinary memref,
8061 store it as a bit field. */
8063 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
8064 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
8065 && targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
)))
8066 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
8067 || (known_size_p (bitsize
)
8069 && maybe_gt (GET_MODE_BITSIZE (mode
), bitsize
))
8070 /* If the RHS and field are a constant size and the size of the
8071 RHS isn't the same size as the bitfield, we must use bitfield
8073 || (known_size_p (bitsize
)
8074 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
8075 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
8077 /* Except for initialization of full bytes from a CONSTRUCTOR, which
8078 we will handle specially below. */
8079 && !(TREE_CODE (exp
) == CONSTRUCTOR
8080 && multiple_p (bitsize
, BITS_PER_UNIT
))
8081 /* And except for bitwise copying of TREE_ADDRESSABLE types,
8082 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
8083 includes some extra padding. store_expr / expand_expr will in
8084 that case call get_inner_reference that will have the bitsize
8085 we check here and thus the block move will not clobber the
8086 padding that shouldn't be clobbered. In the future we could
8087 replace the TREE_ADDRESSABLE check with a check that
8088 get_base_address needs to live in memory. */
8089 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
8090 || TREE_CODE (exp
) != COMPONENT_REF
8091 || !multiple_p (bitsize
, BITS_PER_UNIT
)
8092 || !multiple_p (bitpos
, BITS_PER_UNIT
)
8093 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp
, 1)),
8095 || maybe_ne (decl_bitsize
, bitsize
))
8096 /* A call with an addressable return type and return-slot
8097 optimization must not need bitfield operations but we must
8098 pass down the original target. */
8099 && (TREE_CODE (exp
) != CALL_EXPR
8100 || !TREE_ADDRESSABLE (TREE_TYPE (exp
))
8101 || !CALL_EXPR_RETURN_SLOT_OPT (exp
)))
8102 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8103 decl we must use bitfield operations. */
8104 || (known_size_p (bitsize
)
8105 && TREE_CODE (exp
) == MEM_REF
8106 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
8107 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
8108 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
8109 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
8114 /* If EXP is a NOP_EXPR of precision less than its mode, then that
8115 implies a mask operation. If the precision is the same size as
8116 the field we're storing into, that mask is redundant. This is
8117 particularly common with bit field assignments generated by the
8119 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
8122 tree type
= TREE_TYPE (exp
);
8123 if (INTEGRAL_TYPE_P (type
)
8124 && maybe_ne (TYPE_PRECISION (type
),
8125 GET_MODE_BITSIZE (TYPE_MODE (type
)))
8126 && known_eq (bitsize
, TYPE_PRECISION (type
)))
8128 tree op
= gimple_assign_rhs1 (nop_def
);
8129 type
= TREE_TYPE (op
);
8130 if (INTEGRAL_TYPE_P (type
)
8131 && known_ge (TYPE_PRECISION (type
), bitsize
))
8136 temp
= expand_normal (exp
);
8138 /* We don't support variable-sized BLKmode bitfields, since our
8139 handling of BLKmode is bound up with the ability to break
8140 things into words. */
8141 gcc_assert (mode
!= BLKmode
|| bitsize
.is_constant ());
8143 /* Handle calls that return values in multiple non-contiguous locations.
8144 The Irix 6 ABI has examples of this. */
8145 if (GET_CODE (temp
) == PARALLEL
)
8147 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
8148 machine_mode temp_mode
= GET_MODE (temp
);
8149 if (temp_mode
== BLKmode
|| temp_mode
== VOIDmode
)
8150 temp_mode
= smallest_int_mode_for_size (size
* BITS_PER_UNIT
);
8151 rtx temp_target
= gen_reg_rtx (temp_mode
);
8152 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
8156 /* Handle calls that return BLKmode values in registers. */
8157 else if (mode
== BLKmode
&& REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
8159 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
8160 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
8164 /* If the value has aggregate type and an integral mode then, if BITSIZE
8165 is narrower than this mode and this is for big-endian data, we first
8166 need to put the value into the low-order bits for store_bit_field,
8167 except when MODE is BLKmode and BITSIZE larger than the word size
8168 (see the handling of fields larger than a word in store_bit_field).
8169 Moreover, the field may be not aligned on a byte boundary; in this
8170 case, if it has reverse storage order, it needs to be accessed as a
8171 scalar field with reverse storage order and we must first put the
8172 value into target order. */
8173 scalar_int_mode temp_mode
;
8174 if (AGGREGATE_TYPE_P (TREE_TYPE (exp
))
8175 && is_int_mode (GET_MODE (temp
), &temp_mode
))
8177 HOST_WIDE_INT size
= GET_MODE_BITSIZE (temp_mode
);
8179 reverse
= TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp
));
8182 temp
= flip_storage_order (temp_mode
, temp
);
8184 gcc_checking_assert (known_le (bitsize
, size
));
8185 if (maybe_lt (bitsize
, size
)
8186 && reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
8187 /* Use of to_constant for BLKmode was checked above. */
8188 && !(mode
== BLKmode
&& bitsize
.to_constant () > BITS_PER_WORD
))
8189 temp
= expand_shift (RSHIFT_EXPR
, temp_mode
, temp
,
8190 size
- bitsize
, NULL_RTX
, 1);
8193 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
8194 if (mode
!= VOIDmode
&& mode
!= BLKmode
8195 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
8196 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
8198 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
8199 and BITPOS must be aligned on a byte boundary. If so, we simply do
8200 a block copy. Likewise for a BLKmode-like TARGET. */
8201 if (GET_MODE (temp
) == BLKmode
8202 && (GET_MODE (target
) == BLKmode
8204 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
8205 && multiple_p (bitpos
, BITS_PER_UNIT
)
8206 && multiple_p (bitsize
, BITS_PER_UNIT
))))
8208 gcc_assert (MEM_P (target
) && MEM_P (temp
));
8209 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
8210 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
8212 target
= adjust_address (target
, VOIDmode
, bytepos
);
8213 emit_block_move (target
, temp
,
8214 gen_int_mode (bytesize
, Pmode
),
8220 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
8221 word size, we need to load the value (see again store_bit_field). */
8222 if (GET_MODE (temp
) == BLKmode
&& known_le (bitsize
, BITS_PER_WORD
))
8224 temp_mode
= smallest_int_mode_for_size (bitsize
);
8225 temp
= extract_bit_field (temp
, bitsize
, 0, 1, NULL_RTX
, temp_mode
,
8226 temp_mode
, false, NULL
);
8229 /* Store the value in the bitfield. */
8230 gcc_checking_assert (known_ge (bitpos
, 0));
8231 store_bit_field (target
, bitsize
, bitpos
,
8232 bitregion_start
, bitregion_end
,
8233 mode
, temp
, reverse
, false);
8239 /* Now build a reference to just the desired component. */
8240 rtx to_rtx
= adjust_address (target
, mode
,
8241 exact_div (bitpos
, BITS_PER_UNIT
));
8243 if (to_rtx
== target
)
8244 to_rtx
= copy_rtx (to_rtx
);
8246 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
8247 set_mem_alias_set (to_rtx
, alias_set
);
8249 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
8250 into a target smaller than its type; handle that case now. */
8251 if (TREE_CODE (exp
) == CONSTRUCTOR
&& known_size_p (bitsize
))
8253 poly_int64 bytesize
= exact_div (bitsize
, BITS_PER_UNIT
);
8254 store_constructor (exp
, to_rtx
, 0, bytesize
, reverse
);
8258 return store_expr (exp
, to_rtx
, 0, nontemporal
, reverse
);
8262 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
8263 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
8264 codes and find the ultimate containing object, which we return.
8266 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
8267 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
8268 storage order of the field.
8269 If the position of the field is variable, we store a tree
8270 giving the variable offset (in units) in *POFFSET.
8271 This offset is in addition to the bit position.
8272 If the position is not variable, we store 0 in *POFFSET.
8274 If any of the extraction expressions is volatile,
8275 we store 1 in *PVOLATILEP. Otherwise we don't change that.
8277 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
8278 Otherwise, it is a mode that can be used to access the field.
8280 If the field describes a variable-sized object, *PMODE is set to
8281 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
8282 this case, but the address of the object can be found. */
8285 get_inner_reference (tree exp
, poly_int64
*pbitsize
,
8286 poly_int64
*pbitpos
, tree
*poffset
,
8287 machine_mode
*pmode
, int *punsignedp
,
8288 int *preversep
, int *pvolatilep
)
8291 machine_mode mode
= VOIDmode
;
8292 bool blkmode_bitfield
= false;
8293 tree offset
= size_zero_node
;
8294 poly_offset_int bit_offset
= 0;
8296 /* First get the mode, signedness, storage order and size. We do this from
8297 just the outermost expression. */
8299 if (TREE_CODE (exp
) == COMPONENT_REF
)
8301 tree field
= TREE_OPERAND (exp
, 1);
8302 size_tree
= DECL_SIZE (field
);
8303 if (flag_strict_volatile_bitfields
> 0
8304 && TREE_THIS_VOLATILE (exp
)
8305 && DECL_BIT_FIELD_TYPE (field
)
8306 && DECL_MODE (field
) != BLKmode
)
8307 /* Volatile bitfields should be accessed in the mode of the
8308 field's type, not the mode computed based on the bit
8310 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
8311 else if (!DECL_BIT_FIELD (field
))
8313 mode
= DECL_MODE (field
);
8314 /* For vector fields re-check the target flags, as DECL_MODE
8315 could have been set with different target flags than
8316 the current function has. */
8317 if (VECTOR_TYPE_P (TREE_TYPE (field
))
8318 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field
))))
8319 mode
= TYPE_MODE (TREE_TYPE (field
));
8321 else if (DECL_MODE (field
) == BLKmode
)
8322 blkmode_bitfield
= true;
8324 *punsignedp
= DECL_UNSIGNED (field
);
8326 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
8328 size_tree
= TREE_OPERAND (exp
, 1);
8329 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
8330 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
8332 /* For vector element types with the correct size of access or for
8333 vector typed accesses use the mode of the access type. */
8334 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
8335 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
8336 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
8337 || VECTOR_TYPE_P (TREE_TYPE (exp
)))
8338 mode
= TYPE_MODE (TREE_TYPE (exp
));
8342 mode
= TYPE_MODE (TREE_TYPE (exp
));
8343 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
8345 if (mode
== BLKmode
)
8346 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
8348 *pbitsize
= GET_MODE_BITSIZE (mode
);
8353 if (! tree_fits_uhwi_p (size_tree
))
8354 mode
= BLKmode
, *pbitsize
= -1;
8356 *pbitsize
= tree_to_uhwi (size_tree
);
8359 *preversep
= reverse_storage_order_for_component_p (exp
);
8361 /* Compute cumulative bit-offset for nested component-refs and array-refs,
8362 and find the ultimate containing object. */
8365 switch (TREE_CODE (exp
))
8368 bit_offset
+= wi::to_poly_offset (TREE_OPERAND (exp
, 2));
8373 tree field
= TREE_OPERAND (exp
, 1);
8374 tree this_offset
= component_ref_field_offset (exp
);
8376 /* If this field hasn't been filled in yet, don't go past it.
8377 This should only happen when folding expressions made during
8378 type construction. */
8379 if (this_offset
== 0)
8382 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
8383 bit_offset
+= wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field
));
8385 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
8390 case ARRAY_RANGE_REF
:
8392 tree index
= TREE_OPERAND (exp
, 1);
8393 tree low_bound
= array_ref_low_bound (exp
);
8394 tree unit_size
= array_ref_element_size (exp
);
8396 /* We assume all arrays have sizes that are a multiple of a byte.
8397 First subtract the lower bound, if any, in the type of the
8398 index, then convert to sizetype and multiply by the size of
8399 the array element. */
8400 if (! integer_zerop (low_bound
))
8401 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
8404 offset
= size_binop (PLUS_EXPR
, offset
,
8405 size_binop (MULT_EXPR
,
8406 fold_convert (sizetype
, index
),
8415 bit_offset
+= *pbitsize
;
8418 case VIEW_CONVERT_EXPR
:
8422 /* Hand back the decl for MEM[&decl, off]. */
8423 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
8425 tree off
= TREE_OPERAND (exp
, 1);
8426 if (!integer_zerop (off
))
8428 poly_offset_int boff
= mem_ref_offset (exp
);
8429 boff
<<= LOG2_BITS_PER_UNIT
;
8432 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
8440 /* If any reference in the chain is volatile, the effect is volatile. */
8441 if (TREE_THIS_VOLATILE (exp
))
8444 exp
= TREE_OPERAND (exp
, 0);
8448 /* If OFFSET is constant, see if we can return the whole thing as a
8449 constant bit position. Make sure to handle overflow during
8451 if (poly_int_tree_p (offset
))
8453 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset
),
8454 TYPE_PRECISION (sizetype
));
8455 tem
<<= LOG2_BITS_PER_UNIT
;
8457 if (tem
.to_shwi (pbitpos
))
8458 *poffset
= offset
= NULL_TREE
;
8461 /* Otherwise, split it up. */
8464 /* Avoid returning a negative bitpos as this may wreak havoc later. */
8465 if (!bit_offset
.to_shwi (pbitpos
) || maybe_lt (*pbitpos
, 0))
8467 *pbitpos
= num_trailing_bits (bit_offset
.force_shwi ());
8468 poly_offset_int bytes
= bits_to_bytes_round_down (bit_offset
);
8469 offset
= size_binop (PLUS_EXPR
, offset
,
8470 build_int_cst (sizetype
, bytes
.force_shwi ()));
8476 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
8477 if (mode
== VOIDmode
8479 && multiple_p (*pbitpos
, BITS_PER_UNIT
)
8480 && multiple_p (*pbitsize
, BITS_PER_UNIT
))
8488 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
8490 static unsigned HOST_WIDE_INT
8491 target_align (const_tree target
)
8493 /* We might have a chain of nested references with intermediate misaligning
8494 bitfields components, so need to recurse to find out. */
8496 unsigned HOST_WIDE_INT this_align
, outer_align
;
8498 switch (TREE_CODE (target
))
8504 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
8505 outer_align
= target_align (TREE_OPERAND (target
, 0));
8506 return MIN (this_align
, outer_align
);
8509 case ARRAY_RANGE_REF
:
8510 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
8511 outer_align
= target_align (TREE_OPERAND (target
, 0));
8512 return MIN (this_align
, outer_align
);
8515 case NON_LVALUE_EXPR
:
8516 case VIEW_CONVERT_EXPR
:
8517 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
8518 outer_align
= target_align (TREE_OPERAND (target
, 0));
8519 return MAX (this_align
, outer_align
);
8522 return TYPE_ALIGN (TREE_TYPE (target
));
8527 /* Given an rtx VALUE that may contain additions and multiplications, return
8528 an equivalent value that just refers to a register, memory, or constant.
8529 This is done by generating instructions to perform the arithmetic and
8530 returning a pseudo-register containing the value.
8532 The returned value may be a REG, SUBREG, MEM or constant. */
8535 force_operand (rtx value
, rtx target
)
8538 /* Use subtarget as the target for operand 0 of a binary operation. */
8539 rtx subtarget
= get_subtarget (target
);
8540 enum rtx_code code
= GET_CODE (value
);
8542 /* Check for subreg applied to an expression produced by loop optimizer. */
8544 && !REG_P (SUBREG_REG (value
))
8545 && !MEM_P (SUBREG_REG (value
)))
8548 = simplify_gen_subreg (GET_MODE (value
),
8549 force_reg (GET_MODE (SUBREG_REG (value
)),
8550 force_operand (SUBREG_REG (value
),
8552 GET_MODE (SUBREG_REG (value
)),
8553 SUBREG_BYTE (value
));
8554 code
= GET_CODE (value
);
8557 /* Check for a PIC address load. */
8558 if ((code
== PLUS
|| code
== MINUS
)
8559 && XEXP (value
, 0) == pic_offset_table_rtx
8560 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
8561 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
8562 || GET_CODE (XEXP (value
, 1)) == CONST
))
8565 subtarget
= gen_reg_rtx (GET_MODE (value
));
8566 emit_move_insn (subtarget
, value
);
8570 if (ARITHMETIC_P (value
))
8572 op2
= XEXP (value
, 1);
8573 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
8575 if (code
== MINUS
&& CONST_INT_P (op2
))
8578 op2
= negate_rtx (GET_MODE (value
), op2
);
8581 /* Check for an addition with OP2 a constant integer and our first
8582 operand a PLUS of a virtual register and something else. In that
8583 case, we want to emit the sum of the virtual register and the
8584 constant first and then add the other value. This allows virtual
8585 register instantiation to simply modify the constant rather than
8586 creating another one around this addition. */
8587 if (code
== PLUS
&& CONST_INT_P (op2
)
8588 && GET_CODE (XEXP (value
, 0)) == PLUS
8589 && REG_P (XEXP (XEXP (value
, 0), 0))
8590 && VIRTUAL_REGISTER_P (XEXP (XEXP (value
, 0), 0)))
8592 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
8593 XEXP (XEXP (value
, 0), 0), op2
,
8594 subtarget
, 0, OPTAB_LIB_WIDEN
);
8595 return expand_simple_binop (GET_MODE (value
), code
, temp
,
8596 force_operand (XEXP (XEXP (value
,
8598 target
, 0, OPTAB_LIB_WIDEN
);
8601 op1
= force_operand (XEXP (value
, 0), subtarget
);
8602 op2
= force_operand (op2
, NULL_RTX
);
8606 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
8608 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
8609 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
8610 target
, 1, OPTAB_LIB_WIDEN
);
8612 return expand_divmod (0,
8613 FLOAT_MODE_P (GET_MODE (value
))
8614 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
8615 GET_MODE (value
), op1
, op2
, target
, 0);
8617 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
8620 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
8623 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
8626 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
8627 target
, 0, OPTAB_LIB_WIDEN
);
8629 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
8630 target
, 1, OPTAB_LIB_WIDEN
);
8633 if (UNARY_P (value
))
8636 target
= gen_reg_rtx (GET_MODE (value
));
8637 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
8644 case FLOAT_TRUNCATE
:
8645 convert_move (target
, op1
, code
== ZERO_EXTEND
);
8650 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
8654 case UNSIGNED_FLOAT
:
8655 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
8659 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
8663 #ifdef INSN_SCHEDULING
8664 /* On machines that have insn scheduling, we want all memory reference to be
8665 explicit, so we need to deal with such paradoxical SUBREGs. */
8666 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
8668 = simplify_gen_subreg (GET_MODE (value
),
8669 force_reg (GET_MODE (SUBREG_REG (value
)),
8670 force_operand (SUBREG_REG (value
),
8672 GET_MODE (SUBREG_REG (value
)),
8673 SUBREG_BYTE (value
));
8679 /* Subroutine of expand_expr: return true iff there is no way that
8680 EXP can reference X, which is being modified. TOP_P is nonzero if this
8681 call is going to be used to determine whether we need a temporary
8682 for EXP, as opposed to a recursive call to this function.
8684 It is always safe for this routine to return false since it merely
8685 searches for optimization opportunities. */
8688 safe_from_p (const_rtx x
, tree exp
, int top_p
)
8694 /* If EXP has varying size, we MUST use a target since we currently
8695 have no way of allocating temporaries of variable size
8696 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
8697 So we assume here that something at a higher level has prevented a
8698 clash. This is somewhat bogus, but the best we can do. Only
8699 do this when X is BLKmode and when we are at the top level. */
8700 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
8701 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
8702 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
8703 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
8704 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
8706 && GET_MODE (x
) == BLKmode
)
8707 /* If X is in the outgoing argument area, it is always safe. */
8709 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
8710 || (GET_CODE (XEXP (x
, 0)) == PLUS
8711 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
8714 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
8715 find the underlying pseudo. */
8716 if (GET_CODE (x
) == SUBREG
)
8719 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
8723 /* Now look at our tree code and possibly recurse. */
8724 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
8726 case tcc_declaration
:
8727 exp_rtl
= DECL_RTL_IF_SET (exp
);
8733 case tcc_exceptional
:
8734 if (TREE_CODE (exp
) == TREE_LIST
)
8738 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
8740 exp
= TREE_CHAIN (exp
);
8743 if (TREE_CODE (exp
) != TREE_LIST
)
8744 return safe_from_p (x
, exp
, 0);
8747 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
8749 constructor_elt
*ce
;
8750 unsigned HOST_WIDE_INT idx
;
8752 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
8753 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
8754 || !safe_from_p (x
, ce
->value
, 0))
8758 else if (TREE_CODE (exp
) == ERROR_MARK
)
8759 return true; /* An already-visited SAVE_EXPR? */
8764 /* The only case we look at here is the DECL_INITIAL inside a
8766 return (TREE_CODE (exp
) != DECL_EXPR
8767 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
8768 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
8769 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
8772 case tcc_comparison
:
8773 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
8778 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
8780 case tcc_expression
:
8783 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
8784 the expression. If it is set, we conflict iff we are that rtx or
8785 both are in memory. Otherwise, we check all operands of the
8786 expression recursively. */
8788 switch (TREE_CODE (exp
))
8791 /* If the operand is static or we are static, we can't conflict.
8792 Likewise if we don't conflict with the operand at all. */
8793 if (staticp (TREE_OPERAND (exp
, 0))
8794 || TREE_STATIC (exp
)
8795 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
8798 /* Otherwise, the only way this can conflict is if we are taking
8799 the address of a DECL a that address if part of X, which is
8801 exp
= TREE_OPERAND (exp
, 0);
8804 if (!DECL_RTL_SET_P (exp
)
8805 || !MEM_P (DECL_RTL (exp
)))
8808 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
8814 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
8815 get_alias_set (exp
)))
8820 /* Assume that the call will clobber all hard registers and
8822 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
8827 case WITH_CLEANUP_EXPR
:
8828 case CLEANUP_POINT_EXPR
:
8829 /* Lowered by gimplify.cc. */
8833 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
8839 /* If we have an rtx, we do not need to scan our operands. */
8843 nops
= TREE_OPERAND_LENGTH (exp
);
8844 for (i
= 0; i
< nops
; i
++)
8845 if (TREE_OPERAND (exp
, i
) != 0
8846 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
8852 /* Should never get a type here. */
8856 /* If we have an rtl, find any enclosed object. Then see if we conflict
8860 if (GET_CODE (exp_rtl
) == SUBREG
)
8862 exp_rtl
= SUBREG_REG (exp_rtl
);
8864 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
8868 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
8869 are memory and they conflict. */
8870 return ! (rtx_equal_p (x
, exp_rtl
)
8871 || (MEM_P (x
) && MEM_P (exp_rtl
)
8872 && true_dependence (exp_rtl
, VOIDmode
, x
)));
8875 /* If we reach here, it is safe. */
8880 /* Return the highest power of two that EXP is known to be a multiple of.
8881 This is used in updating alignment of MEMs in array references. */
8883 unsigned HOST_WIDE_INT
8884 highest_pow2_factor (const_tree exp
)
8886 unsigned HOST_WIDE_INT ret
;
8887 int trailing_zeros
= tree_ctz (exp
);
8888 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
8889 return BIGGEST_ALIGNMENT
;
8890 ret
= HOST_WIDE_INT_1U
<< trailing_zeros
;
8891 if (ret
> BIGGEST_ALIGNMENT
)
8892 return BIGGEST_ALIGNMENT
;
8896 /* Similar, except that the alignment requirements of TARGET are
8897 taken into account. Assume it is at least as aligned as its
8898 type, unless it is a COMPONENT_REF in which case the layout of
8899 the structure gives the alignment. */
8901 static unsigned HOST_WIDE_INT
8902 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
8904 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
8905 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
8907 return MAX (factor
, talign
);
8910 /* Convert the tree comparison code TCODE to the rtl one where the
8911 signedness is UNSIGNEDP. */
8913 static enum rtx_code
8914 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
8926 code
= unsignedp
? LTU
: LT
;
8929 code
= unsignedp
? LEU
: LE
;
8932 code
= unsignedp
? GTU
: GT
;
8935 code
= unsignedp
? GEU
: GE
;
8937 case UNORDERED_EXPR
:
8968 /* Subroutine of expand_expr. Expand the two operands of a binary
8969 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8970 The value may be stored in TARGET if TARGET is nonzero. The
8971 MODIFIER argument is as documented by expand_expr. */
8974 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
8975 enum expand_modifier modifier
)
8977 if (! safe_from_p (target
, exp1
, 1))
8979 if (operand_equal_p (exp0
, exp1
, 0))
8981 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
8982 *op1
= copy_rtx (*op0
);
8986 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
8987 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
8992 /* Return a MEM that contains constant EXP. DEFER is as for
8993 output_constant_def and MODIFIER is as for expand_expr. */
8996 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
9000 mem
= output_constant_def (exp
, defer
);
9001 if (modifier
!= EXPAND_INITIALIZER
)
9002 mem
= use_anchored_address (mem
);
9006 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
9007 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
9010 expand_expr_addr_expr_1 (tree exp
, rtx target
, scalar_int_mode tmode
,
9011 enum expand_modifier modifier
, addr_space_t as
)
9013 rtx result
, subtarget
;
9015 poly_int64 bitsize
, bitpos
;
9016 int unsignedp
, reversep
, volatilep
= 0;
9019 /* If we are taking the address of a constant and are at the top level,
9020 we have to use output_constant_def since we can't call force_const_mem
9022 /* ??? This should be considered a front-end bug. We should not be
9023 generating ADDR_EXPR of something that isn't an LVALUE. The only
9024 exception here is STRING_CST. */
9025 if (CONSTANT_CLASS_P (exp
))
9027 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
9028 if (modifier
< EXPAND_SUM
)
9029 result
= force_operand (result
, target
);
9033 /* Everything must be something allowed by is_gimple_addressable. */
9034 switch (TREE_CODE (exp
))
9037 /* This case will happen via recursion for &a->b. */
9038 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
9042 tree tem
= TREE_OPERAND (exp
, 0);
9043 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9044 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
9045 return expand_expr (tem
, target
, tmode
, modifier
);
9048 case TARGET_MEM_REF
:
9049 return addr_for_mem_ref (exp
, as
, true);
9052 /* Expand the initializer like constants above. */
9053 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
9055 if (modifier
< EXPAND_SUM
)
9056 result
= force_operand (result
, target
);
9060 /* The real part of the complex number is always first, therefore
9061 the address is the same as the address of the parent object. */
9064 inner
= TREE_OPERAND (exp
, 0);
9068 /* The imaginary part of the complex number is always second.
9069 The expression is therefore always offset by the size of the
9072 bitpos
= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp
)));
9073 inner
= TREE_OPERAND (exp
, 0);
9076 case COMPOUND_LITERAL_EXPR
:
9077 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
9078 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
9079 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
9080 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
9081 the initializers aren't gimplified. */
9082 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
9083 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp
)))
9084 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
9085 target
, tmode
, modifier
, as
);
9088 /* If the object is a DECL, then expand it for its rtl. Don't bypass
9089 expand_expr, as that can have various side effects; LABEL_DECLs for
9090 example, may not have their DECL_RTL set yet. Expand the rtl of
9091 CONSTRUCTORs too, which should yield a memory reference for the
9092 constructor's contents. Assume language specific tree nodes can
9093 be expanded in some interesting way. */
9094 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
9096 || TREE_CODE (exp
) == CONSTRUCTOR
9097 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
9099 result
= expand_expr (exp
, target
, tmode
,
9100 modifier
== EXPAND_INITIALIZER
9101 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
9103 /* If the DECL isn't in memory, then the DECL wasn't properly
9104 marked TREE_ADDRESSABLE, which will be either a front-end
9105 or a tree optimizer bug. */
9107 gcc_assert (MEM_P (result
));
9108 result
= XEXP (result
, 0);
9110 /* ??? Is this needed anymore? */
9112 TREE_USED (exp
) = 1;
9114 if (modifier
!= EXPAND_INITIALIZER
9115 && modifier
!= EXPAND_CONST_ADDRESS
9116 && modifier
!= EXPAND_SUM
)
9117 result
= force_operand (result
, target
);
9121 /* Pass FALSE as the last argument to get_inner_reference although
9122 we are expanding to RTL. The rationale is that we know how to
9123 handle "aligning nodes" here: we can just bypass them because
9124 they won't change the final object whose address will be returned
9125 (they actually exist only for that purpose). */
9126 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
9127 &unsignedp
, &reversep
, &volatilep
);
9131 /* We must have made progress. */
9132 gcc_assert (inner
!= exp
);
9134 subtarget
= offset
|| maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
9135 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
9136 inner alignment, force the inner to be sufficiently aligned. */
9137 if (CONSTANT_CLASS_P (inner
)
9138 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
9140 inner
= copy_node (inner
);
9141 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
9142 SET_TYPE_ALIGN (TREE_TYPE (inner
), TYPE_ALIGN (TREE_TYPE (exp
)));
9143 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
9145 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
9151 if (modifier
!= EXPAND_NORMAL
)
9152 result
= force_operand (result
, NULL
);
9153 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
9154 modifier
== EXPAND_INITIALIZER
9155 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
9157 /* expand_expr is allowed to return an object in a mode other
9158 than TMODE. If it did, we need to convert. */
9159 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
9160 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
9161 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
9162 result
= convert_memory_address_addr_space (tmode
, result
, as
);
9163 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
9165 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
9166 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
9169 subtarget
= maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
9170 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
9171 1, OPTAB_LIB_WIDEN
);
9175 if (maybe_ne (bitpos
, 0))
9177 /* Someone beforehand should have rejected taking the address
9178 of an object that isn't byte-aligned. */
9179 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
9180 result
= convert_memory_address_addr_space (tmode
, result
, as
);
9181 result
= plus_constant (tmode
, result
, bytepos
);
9182 if (modifier
< EXPAND_SUM
)
9183 result
= force_operand (result
, target
);
9189 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
9190 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
9193 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
9194 enum expand_modifier modifier
)
9196 addr_space_t as
= ADDR_SPACE_GENERIC
;
9197 scalar_int_mode address_mode
= Pmode
;
9198 scalar_int_mode pointer_mode
= ptr_mode
;
9202 /* Target mode of VOIDmode says "whatever's natural". */
9203 if (tmode
== VOIDmode
)
9204 tmode
= TYPE_MODE (TREE_TYPE (exp
));
9206 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
9208 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
9209 address_mode
= targetm
.addr_space
.address_mode (as
);
9210 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
9213 /* We can get called with some Weird Things if the user does silliness
9214 like "(short) &a". In that case, convert_memory_address won't do
9215 the right thing, so ignore the given target mode. */
9216 scalar_int_mode new_tmode
= (tmode
== pointer_mode
9220 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
9221 new_tmode
, modifier
, as
);
9223 /* Despite expand_expr claims concerning ignoring TMODE when not
9224 strictly convenient, stuff breaks if we don't honor it. Note
9225 that combined with the above, we only do this for pointer modes. */
9226 rmode
= GET_MODE (result
);
9227 if (rmode
== VOIDmode
)
9229 if (rmode
!= new_tmode
)
9230 result
= convert_memory_address_addr_space (new_tmode
, result
, as
);
9235 /* Generate code for computing CONSTRUCTOR EXP.
9236 An rtx for the computed value is returned. If AVOID_TEMP_MEM
9237 is TRUE, instead of creating a temporary variable in memory
9238 NULL is returned and the caller needs to handle it differently. */
9241 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
9242 bool avoid_temp_mem
)
9244 tree type
= TREE_TYPE (exp
);
9245 machine_mode mode
= TYPE_MODE (type
);
9247 /* Try to avoid creating a temporary at all. This is possible
9248 if all of the initializer is zero.
9249 FIXME: try to handle all [0..255] initializers we can handle
9251 if (TREE_STATIC (exp
)
9252 && !TREE_ADDRESSABLE (exp
)
9253 && target
!= 0 && mode
== BLKmode
9254 && all_zeros_p (exp
))
9256 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
9260 /* All elts simple constants => refer to a constant in memory. But
9261 if this is a non-BLKmode mode, let it store a field at a time
9262 since that should make a CONST_INT, CONST_WIDE_INT or
9263 CONST_DOUBLE when we fold. Likewise, if we have a target we can
9264 use, it is best to store directly into the target unless the type
9265 is large enough that memcpy will be used. If we are making an
9266 initializer and all operands are constant, put it in memory as
9269 FIXME: Avoid trying to fill vector constructors piece-meal.
9270 Output them with output_constant_def below unless we're sure
9271 they're zeros. This should go away when vector initializers
9272 are treated like VECTOR_CST instead of arrays. */
9273 if ((TREE_STATIC (exp
)
9274 && ((mode
== BLKmode
9275 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
9276 || TREE_ADDRESSABLE (exp
)
9277 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
9278 && (! can_move_by_pieces
9279 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
9281 && ! mostly_zeros_p (exp
))))
9282 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
9283 && TREE_CONSTANT (exp
)))
9290 constructor
= expand_expr_constant (exp
, 1, modifier
);
9292 if (modifier
!= EXPAND_CONST_ADDRESS
9293 && modifier
!= EXPAND_INITIALIZER
9294 && modifier
!= EXPAND_SUM
)
9295 constructor
= validize_mem (constructor
);
9300 /* If the CTOR is available in static storage and not mostly
9301 zeros and we can move it by pieces prefer to do so since
9302 that's usually more efficient than performing a series of
9303 stores from immediates. */
9305 && TREE_STATIC (exp
)
9306 && TREE_CONSTANT (exp
)
9307 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
9308 && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
9310 && ! mostly_zeros_p (exp
))
9313 /* Handle calls that pass values in multiple non-contiguous
9314 locations. The Irix 6 ABI has examples of this. */
9315 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
9316 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
9317 /* Also make a temporary if the store is to volatile memory, to
9318 avoid individual accesses to aggregate members. */
9319 || (GET_CODE (target
) == MEM
9320 && MEM_VOLATILE_P (target
)
9321 && !TREE_ADDRESSABLE (TREE_TYPE (exp
))))
9326 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
9329 store_constructor (exp
, target
, 0, int_expr_size (exp
), false);
9334 /* expand_expr: generate code for computing expression EXP.
9335 An rtx for the computed value is returned. The value is never null.
9336 In the case of a void EXP, const0_rtx is returned.
9338 The value may be stored in TARGET if TARGET is nonzero.
9339 TARGET is just a suggestion; callers must assume that
9340 the rtx returned may not be the same as TARGET.
9342 If TARGET is CONST0_RTX, it means that the value will be ignored.
9344 If TMODE is not VOIDmode, it suggests generating the
9345 result in mode TMODE. But this is done only when convenient.
9346 Otherwise, TMODE is ignored and the value generated in its natural mode.
9347 TMODE is just a suggestion; callers must assume that
9348 the rtx returned may not have mode TMODE.
9350 Note that TARGET may have neither TMODE nor MODE. In that case, it
9351 probably will not be used.
9353 If MODIFIER is EXPAND_SUM then when EXP is an addition
9354 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
9355 or a nest of (PLUS ...) and (MINUS ...) where the terms are
9356 products as above, or REG or MEM, or constant.
9357 Ordinarily in such cases we would output mul or add instructions
9358 and then return a pseudo reg containing the sum.
9360 EXPAND_INITIALIZER is much like EXPAND_SUM except that
9361 it also marks a label as absolutely required (it can't be dead).
9362 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
9363 This is used for outputting expressions used in initializers.
9365 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
9366 with a constant address even if that address is not normally legitimate.
9367 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
9369 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
9370 a call parameter. Such targets require special care as we haven't yet
9371 marked TARGET so that it's safe from being trashed by libcalls. We
9372 don't want to use TARGET for anything but the final result;
9373 Intermediate values must go elsewhere. Additionally, calls to
9374 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
9376 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
9377 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
9378 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
9379 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
9381 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9382 then *ALT_RTL is set to TARGET (before legitimziation).
9384 If INNER_REFERENCE_P is true, we are expanding an inner reference.
9385 In this case, we don't adjust a returned MEM rtx that wouldn't be
9386 sufficiently aligned for its mode; instead, it's up to the caller
9387 to deal with it afterwards. This is used to make sure that unaligned
9388 base objects for which out-of-bounds accesses are supported, for
9389 example record types with trailing arrays, aren't realigned behind
9390 the back of the caller.
9391 The normal operating mode is to pass FALSE for this parameter. */
9394 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
9395 enum expand_modifier modifier
, rtx
*alt_rtl
,
9396 bool inner_reference_p
)
9400 /* Handle ERROR_MARK before anybody tries to access its type. */
9401 if (TREE_CODE (exp
) == ERROR_MARK
9402 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
9404 ret
= CONST0_RTX (tmode
);
9405 return ret
? ret
: const0_rtx
;
9408 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
9413 /* Try to expand the conditional expression which is represented by
9414 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
9415 return the rtl reg which represents the result. Otherwise return
9419 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
9420 tree treeop1 ATTRIBUTE_UNUSED
,
9421 tree treeop2 ATTRIBUTE_UNUSED
)
9424 rtx op00
, op01
, op1
, op2
;
9425 enum rtx_code comparison_code
;
9426 machine_mode comparison_mode
;
9429 tree type
= TREE_TYPE (treeop1
);
9430 int unsignedp
= TYPE_UNSIGNED (type
);
9431 machine_mode mode
= TYPE_MODE (type
);
9432 machine_mode orig_mode
= mode
;
9433 static bool expanding_cond_expr_using_cmove
= false;
9435 /* Conditional move expansion can end up TERing two operands which,
9436 when recursively hitting conditional expressions can result in
9437 exponential behavior if the cmove expansion ultimatively fails.
9438 It's hardly profitable to TER a cmove into a cmove so avoid doing
9439 that by failing early if we end up recursing. */
9440 if (expanding_cond_expr_using_cmove
)
9443 /* If we cannot do a conditional move on the mode, try doing it
9444 with the promoted mode. */
9445 if (!can_conditionally_move_p (mode
))
9447 mode
= promote_mode (type
, mode
, &unsignedp
);
9448 if (!can_conditionally_move_p (mode
))
9450 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
9453 temp
= assign_temp (type
, 0, 1);
9455 expanding_cond_expr_using_cmove
= true;
9457 expand_operands (treeop1
, treeop2
,
9458 mode
== orig_mode
? temp
: NULL_RTX
, &op1
, &op2
,
9461 if (TREE_CODE (treeop0
) == SSA_NAME
9462 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
9464 type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
9465 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
9466 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
9467 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
9468 comparison_mode
= TYPE_MODE (type
);
9469 unsignedp
= TYPE_UNSIGNED (type
);
9470 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
9472 else if (COMPARISON_CLASS_P (treeop0
))
9474 type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
9475 enum tree_code cmpcode
= TREE_CODE (treeop0
);
9476 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
9477 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
9478 unsignedp
= TYPE_UNSIGNED (type
);
9479 comparison_mode
= TYPE_MODE (type
);
9480 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
9484 op00
= expand_normal (treeop0
);
9486 comparison_code
= NE
;
9487 comparison_mode
= GET_MODE (op00
);
9488 if (comparison_mode
== VOIDmode
)
9489 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9491 expanding_cond_expr_using_cmove
= false;
9493 if (GET_MODE (op1
) != mode
)
9494 op1
= gen_lowpart (mode
, op1
);
9496 if (GET_MODE (op2
) != mode
)
9497 op2
= gen_lowpart (mode
, op2
);
9499 /* Try to emit the conditional move. */
9500 insn
= emit_conditional_move (temp
,
9501 { comparison_code
, op00
, op01
,
9506 /* If we could do the conditional move, emit the sequence,
9510 rtx_insn
*seq
= get_insns ();
9513 return convert_modes (orig_mode
, mode
, temp
, 0);
9516 /* Otherwise discard the sequence and fall back to code with
9522 /* A helper function for expand_expr_real_2 to be used with a
9523 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
9524 is nonzero, with alignment ALIGN in bits.
9525 Store the value at TARGET if possible (if TARGET is nonzero).
9526 Regardless of TARGET, we return the rtx for where the value is placed.
9527 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9528 then *ALT_RTL is set to TARGET (before legitimziation). */
9531 expand_misaligned_mem_ref (rtx temp
, machine_mode mode
, int unsignedp
,
9532 unsigned int align
, rtx target
, rtx
*alt_rtl
)
9534 enum insn_code icode
;
9536 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9537 != CODE_FOR_nothing
)
9539 class expand_operand ops
[2];
9541 /* We've already validated the memory, and we're creating a
9542 new pseudo destination. The predicates really can't fail,
9543 nor can the generator. */
9544 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9545 create_fixed_operand (&ops
[1], temp
);
9546 expand_insn (icode
, 2, ops
);
9547 temp
= ops
[0].value
;
9549 else if (targetm
.slow_unaligned_access (mode
, align
))
9550 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9551 0, unsignedp
, target
,
9552 mode
, mode
, false, alt_rtl
);
9556 /* Helper function of expand_expr_2, expand a division or modulo.
9557 op0 and op1 should be already expanded treeop0 and treeop1, using
9561 expand_expr_divmod (tree_code code
, machine_mode mode
, tree treeop0
,
9562 tree treeop1
, rtx op0
, rtx op1
, rtx target
, int unsignedp
)
9564 bool mod_p
= (code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
9565 || code
== CEIL_MOD_EXPR
|| code
== ROUND_MOD_EXPR
);
9566 if (SCALAR_INT_MODE_P (mode
)
9568 && get_range_pos_neg (treeop0
) == 1
9569 && get_range_pos_neg (treeop1
) == 1)
9571 /* If both arguments are known to be positive when interpreted
9572 as signed, we can expand it as both signed and unsigned
9573 division or modulo. Choose the cheaper sequence in that case. */
9574 bool speed_p
= optimize_insn_for_speed_p ();
9575 do_pending_stack_adjust ();
9577 rtx uns_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 1);
9578 rtx_insn
*uns_insns
= get_insns ();
9581 rtx sgn_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 0);
9582 rtx_insn
*sgn_insns
= get_insns ();
9584 unsigned uns_cost
= seq_cost (uns_insns
, speed_p
);
9585 unsigned sgn_cost
= seq_cost (sgn_insns
, speed_p
);
9587 /* If costs are the same then use as tie breaker the other other
9589 if (uns_cost
== sgn_cost
)
9591 uns_cost
= seq_cost (uns_insns
, !speed_p
);
9592 sgn_cost
= seq_cost (sgn_insns
, !speed_p
);
9595 if (uns_cost
< sgn_cost
|| (uns_cost
== sgn_cost
&& unsignedp
))
9597 emit_insn (uns_insns
);
9600 emit_insn (sgn_insns
);
9603 return expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, unsignedp
);
9607 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
9608 enum expand_modifier modifier
)
9610 rtx op0
, op1
, op2
, temp
;
9611 rtx_code_label
*lab
;
9615 scalar_int_mode int_mode
;
9616 enum tree_code code
= ops
->code
;
9618 rtx subtarget
, original_target
;
9620 bool reduce_bit_field
;
9621 location_t loc
= ops
->location
;
9622 tree treeop0
, treeop1
, treeop2
;
9623 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
9624 ? reduce_to_bit_field_precision ((expr), \
9630 mode
= TYPE_MODE (type
);
9631 unsignedp
= TYPE_UNSIGNED (type
);
9637 /* We should be called only on simple (binary or unary) expressions,
9638 exactly those that are valid in gimple expressions that aren't
9639 GIMPLE_SINGLE_RHS (or invalid). */
9640 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
9641 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
9642 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
9644 ignore
= (target
== const0_rtx
9645 || ((CONVERT_EXPR_CODE_P (code
)
9646 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9647 && TREE_CODE (type
) == VOID_TYPE
));
9649 /* We should be called only if we need the result. */
9650 gcc_assert (!ignore
);
9652 /* An operation in what may be a bit-field type needs the
9653 result to be reduced to the precision of the bit-field type,
9654 which is narrower than that of the type's mode. */
9655 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
9656 && !type_has_mode_precision_p (type
));
9658 if (reduce_bit_field
9659 && (modifier
== EXPAND_STACK_PARM
9660 || (target
&& GET_MODE (target
) != mode
)))
9663 /* Use subtarget as the target for operand 0 of a binary operation. */
9664 subtarget
= get_subtarget (target
);
9665 original_target
= target
;
9669 case NON_LVALUE_EXPR
:
9672 if (treeop0
== error_mark_node
)
9675 if (TREE_CODE (type
) == UNION_TYPE
)
9677 tree valtype
= TREE_TYPE (treeop0
);
9679 /* If both input and output are BLKmode, this conversion isn't doing
9680 anything except possibly changing memory attribute. */
9681 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
9683 rtx result
= expand_expr (treeop0
, target
, tmode
,
9686 result
= copy_rtx (result
);
9687 set_mem_attributes (result
, type
, 0);
9693 if (TYPE_MODE (type
) != BLKmode
)
9694 target
= gen_reg_rtx (TYPE_MODE (type
));
9696 target
= assign_temp (type
, 1, 1);
9700 /* Store data into beginning of memory target. */
9701 store_expr (treeop0
,
9702 adjust_address (target
, TYPE_MODE (valtype
), 0),
9703 modifier
== EXPAND_STACK_PARM
,
9704 false, TYPE_REVERSE_STORAGE_ORDER (type
));
9708 gcc_assert (REG_P (target
)
9709 && !TYPE_REVERSE_STORAGE_ORDER (type
));
9711 /* Store this field into a union of the proper type. */
9712 poly_uint64 op0_size
9713 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0
)));
9714 poly_uint64 union_size
= GET_MODE_BITSIZE (mode
);
9715 store_field (target
,
9716 /* The conversion must be constructed so that
9717 we know at compile time how many bits
9719 ordered_min (op0_size
, union_size
),
9720 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0,
9724 /* Return the entire union. */
9728 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
9730 op0
= expand_expr (treeop0
, target
, VOIDmode
,
9733 return REDUCE_BIT_FIELD (op0
);
9736 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
9737 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
9738 if (GET_MODE (op0
) == mode
)
9741 /* If OP0 is a constant, just convert it into the proper mode. */
9742 else if (CONSTANT_P (op0
))
9744 tree inner_type
= TREE_TYPE (treeop0
);
9745 machine_mode inner_mode
= GET_MODE (op0
);
9747 if (inner_mode
== VOIDmode
)
9748 inner_mode
= TYPE_MODE (inner_type
);
9750 if (modifier
== EXPAND_INITIALIZER
)
9751 op0
= lowpart_subreg (mode
, op0
, inner_mode
);
9753 op0
= convert_modes (mode
, inner_mode
, op0
,
9754 TYPE_UNSIGNED (inner_type
));
9757 else if (modifier
== EXPAND_INITIALIZER
)
9758 op0
= gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
9759 ? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
9761 else if (target
== 0)
9762 op0
= convert_to_mode (mode
, op0
,
9763 TYPE_UNSIGNED (TREE_TYPE
9767 convert_move (target
, op0
,
9768 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9772 return REDUCE_BIT_FIELD (op0
);
9774 case ADDR_SPACE_CONVERT_EXPR
:
9776 tree treeop0_type
= TREE_TYPE (treeop0
);
9778 gcc_assert (POINTER_TYPE_P (type
));
9779 gcc_assert (POINTER_TYPE_P (treeop0_type
));
9781 addr_space_t as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
9782 addr_space_t as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
9784 /* Conversions between pointers to the same address space should
9785 have been implemented via CONVERT_EXPR / NOP_EXPR. */
9786 gcc_assert (as_to
!= as_from
);
9788 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
9790 /* Ask target code to handle conversion between pointers
9791 to overlapping address spaces. */
9792 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
9793 || targetm
.addr_space
.subset_p (as_from
, as_to
))
9795 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
9799 /* For disjoint address spaces, converting anything but a null
9800 pointer invokes undefined behavior. We truncate or extend the
9801 value as if we'd converted via integers, which handles 0 as
9802 required, and all others as the programmer likely expects. */
9803 #ifndef POINTERS_EXTEND_UNSIGNED
9804 const int POINTERS_EXTEND_UNSIGNED
= 1;
9806 op0
= convert_modes (mode
, TYPE_MODE (treeop0_type
),
9807 op0
, POINTERS_EXTEND_UNSIGNED
);
9813 case POINTER_PLUS_EXPR
:
9814 /* Even though the sizetype mode and the pointer's mode can be different
9815 expand is able to handle this correctly and get the correct result out
9816 of the PLUS_EXPR code. */
9817 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
9818 if sizetype precision is smaller than pointer precision. */
9819 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
9820 treeop1
= fold_convert_loc (loc
, type
,
9821 fold_convert_loc (loc
, ssizetype
,
9823 /* If sizetype precision is larger than pointer precision, truncate the
9824 offset to have matching modes. */
9825 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
9826 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
9830 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
9831 something else, make sure we add the register to the constant and
9832 then to the other thing. This case can occur during strength
9833 reduction and doing it this way will produce better code if the
9834 frame pointer or argument pointer is eliminated.
9836 fold-const.cc will ensure that the constant is always in the inner
9837 PLUS_EXPR, so the only case we need to do anything about is if
9838 sp, ap, or fp is our second argument, in which case we must swap
9839 the innermost first argument and our second argument. */
9841 if (TREE_CODE (treeop0
) == PLUS_EXPR
9842 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
9844 && (DECL_RTL (treeop1
) == frame_pointer_rtx
9845 || DECL_RTL (treeop1
) == stack_pointer_rtx
9846 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
9851 /* If the result is to be ptr_mode and we are adding an integer to
9852 something, we might be forming a constant. So try to use
9853 plus_constant. If it produces a sum and we can't accept it,
9854 use force_operand. This allows P = &ARR[const] to generate
9855 efficient code on machines where a SYMBOL_REF is not a valid
9858 If this is an EXPAND_SUM call, always return the sum. */
9859 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
9860 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
9862 if (modifier
== EXPAND_STACK_PARM
)
9864 if (TREE_CODE (treeop0
) == INTEGER_CST
9865 && HWI_COMPUTABLE_MODE_P (mode
)
9866 && TREE_CONSTANT (treeop1
))
9870 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
9872 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
9874 /* Use wi::shwi to ensure that the constant is
9875 truncated according to the mode of OP1, then sign extended
9876 to a HOST_WIDE_INT. Using the constant directly can result
9877 in non-canonical RTL in a 64x32 cross compile. */
9878 wc
= TREE_INT_CST_LOW (treeop0
);
9880 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
9881 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
9882 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
9883 op1
= force_operand (op1
, target
);
9884 return REDUCE_BIT_FIELD (op1
);
9887 else if (TREE_CODE (treeop1
) == INTEGER_CST
9888 && HWI_COMPUTABLE_MODE_P (mode
)
9889 && TREE_CONSTANT (treeop0
))
9893 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
9895 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
9896 (modifier
== EXPAND_INITIALIZER
9897 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
9898 if (! CONSTANT_P (op0
))
9900 op1
= expand_expr (treeop1
, NULL_RTX
,
9901 VOIDmode
, modifier
);
9902 /* Return a PLUS if modifier says it's OK. */
9903 if (modifier
== EXPAND_SUM
9904 || modifier
== EXPAND_INITIALIZER
)
9905 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
9908 /* Use wi::shwi to ensure that the constant is
9909 truncated according to the mode of OP1, then sign extended
9910 to a HOST_WIDE_INT. Using the constant directly can result
9911 in non-canonical RTL in a 64x32 cross compile. */
9912 wc
= TREE_INT_CST_LOW (treeop1
);
9914 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
9915 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
9916 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
9917 op0
= force_operand (op0
, target
);
9918 return REDUCE_BIT_FIELD (op0
);
9922 /* Use TER to expand pointer addition of a negated value
9923 as pointer subtraction. */
9924 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
9925 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
9926 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
9927 && TREE_CODE (treeop1
) == SSA_NAME
9928 && TYPE_MODE (TREE_TYPE (treeop0
))
9929 == TYPE_MODE (TREE_TYPE (treeop1
)))
9931 gimple
*def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
9934 treeop1
= gimple_assign_rhs1 (def
);
9940 /* No sense saving up arithmetic to be done
9941 if it's all in the wrong mode to form part of an address.
9942 And force_operand won't know whether to sign-extend or
9944 if (modifier
!= EXPAND_INITIALIZER
9945 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
9947 expand_operands (treeop0
, treeop1
,
9948 subtarget
, &op0
, &op1
, modifier
);
9949 if (op0
== const0_rtx
)
9951 if (op1
== const0_rtx
)
9956 expand_operands (treeop0
, treeop1
,
9957 subtarget
, &op0
, &op1
, modifier
);
9958 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
9961 case POINTER_DIFF_EXPR
:
9963 /* For initializers, we are allowed to return a MINUS of two
9964 symbolic constants. Here we handle all cases when both operands
9966 /* Handle difference of two symbolic constants,
9967 for the sake of an initializer. */
9968 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
9969 && really_constant_p (treeop0
)
9970 && really_constant_p (treeop1
))
9972 expand_operands (treeop0
, treeop1
,
9973 NULL_RTX
, &op0
, &op1
, modifier
);
9974 return simplify_gen_binary (MINUS
, mode
, op0
, op1
);
9977 /* No sense saving up arithmetic to be done
9978 if it's all in the wrong mode to form part of an address.
9979 And force_operand won't know whether to sign-extend or
9981 if (modifier
!= EXPAND_INITIALIZER
9982 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
9985 expand_operands (treeop0
, treeop1
,
9986 subtarget
, &op0
, &op1
, modifier
);
9988 /* Convert A - const to A + (-const). */
9989 if (CONST_INT_P (op1
))
9991 op1
= negate_rtx (mode
, op1
);
9992 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
9997 case WIDEN_MULT_PLUS_EXPR
:
9998 case WIDEN_MULT_MINUS_EXPR
:
9999 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10000 op2
= expand_normal (treeop2
);
10001 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
10002 target
, unsignedp
);
10005 case WIDEN_MULT_EXPR
:
10006 /* If first operand is constant, swap them.
10007 Thus the following special case checks need only
10008 check the second operand. */
10009 if (TREE_CODE (treeop0
) == INTEGER_CST
)
10010 std::swap (treeop0
, treeop1
);
10012 /* First, check if we have a multiplication of one signed and one
10013 unsigned operand. */
10014 if (TREE_CODE (treeop1
) != INTEGER_CST
10015 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
10016 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
10018 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
10019 this_optab
= usmul_widen_optab
;
10020 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
10021 != CODE_FOR_nothing
)
10023 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
10024 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
10027 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
10029 /* op0 and op1 might still be constant, despite the above
10030 != INTEGER_CST check. Handle it. */
10031 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
10033 op0
= convert_modes (mode
, innermode
, op0
, true);
10034 op1
= convert_modes (mode
, innermode
, op1
, false);
10035 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
10036 target
, unsignedp
));
10041 /* Check for a multiplication with matching signedness. */
10042 else if ((TREE_CODE (treeop1
) == INTEGER_CST
10043 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
10044 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
10045 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
10047 tree op0type
= TREE_TYPE (treeop0
);
10048 machine_mode innermode
= TYPE_MODE (op0type
);
10049 bool zextend_p
= TYPE_UNSIGNED (op0type
);
10050 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
10051 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
10053 if (TREE_CODE (treeop0
) != INTEGER_CST
)
10055 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
10056 != CODE_FOR_nothing
)
10058 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
10060 /* op0 and op1 might still be constant, despite the above
10061 != INTEGER_CST check. Handle it. */
10062 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
10065 op0
= convert_modes (mode
, innermode
, op0
, zextend_p
);
10067 = convert_modes (mode
, innermode
, op1
,
10068 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
10069 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
10073 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
10074 unsignedp
, this_optab
);
10075 return REDUCE_BIT_FIELD (temp
);
10077 if (find_widening_optab_handler (other_optab
, mode
, innermode
)
10078 != CODE_FOR_nothing
10079 && innermode
== word_mode
)
10082 op0
= expand_normal (treeop0
);
10083 op1
= expand_normal (treeop1
);
10084 /* op0 and op1 might be constants, despite the above
10085 != INTEGER_CST check. Handle it. */
10086 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
10087 goto widen_mult_const
;
10088 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
10089 unsignedp
, OPTAB_LIB_WIDEN
);
10090 hipart
= gen_highpart (word_mode
, temp
);
10091 htem
= expand_mult_highpart_adjust (word_mode
, hipart
,
10094 if (htem
!= hipart
)
10095 emit_move_insn (hipart
, htem
);
10096 return REDUCE_BIT_FIELD (temp
);
10100 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
10101 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
10102 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10103 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
10106 /* If this is a fixed-point operation, then we cannot use the code
10107 below because "expand_mult" doesn't support sat/no-sat fixed-point
10108 multiplications. */
10109 if (ALL_FIXED_POINT_MODE_P (mode
))
10112 /* If first operand is constant, swap them.
10113 Thus the following special case checks need only
10114 check the second operand. */
10115 if (TREE_CODE (treeop0
) == INTEGER_CST
)
10116 std::swap (treeop0
, treeop1
);
10118 /* Attempt to return something suitable for generating an
10119 indexed address, for machines that support that. */
10121 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
10122 && tree_fits_shwi_p (treeop1
))
10124 tree exp1
= treeop1
;
10126 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
10130 op0
= force_operand (op0
, NULL_RTX
);
10132 op0
= copy_to_mode_reg (mode
, op0
);
10134 op1
= gen_int_mode (tree_to_shwi (exp1
),
10135 TYPE_MODE (TREE_TYPE (exp1
)));
10136 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
, op1
));
10139 if (modifier
== EXPAND_STACK_PARM
)
10142 if (SCALAR_INT_MODE_P (mode
) && optimize
>= 2)
10144 gimple
*def_stmt0
= get_def_for_expr (treeop0
, TRUNC_DIV_EXPR
);
10145 gimple
*def_stmt1
= get_def_for_expr (treeop1
, TRUNC_DIV_EXPR
);
10147 && !operand_equal_p (treeop1
, gimple_assign_rhs2 (def_stmt0
), 0))
10150 && !operand_equal_p (treeop0
, gimple_assign_rhs2 (def_stmt1
), 0))
10153 if (def_stmt0
|| def_stmt1
)
10155 /* X / Y * Y can be expanded as X - X % Y too.
10156 Choose the cheaper sequence of those two. */
10158 treeop0
= gimple_assign_rhs1 (def_stmt0
);
10162 treeop0
= gimple_assign_rhs1 (def_stmt1
);
10164 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
,
10166 bool speed_p
= optimize_insn_for_speed_p ();
10167 do_pending_stack_adjust ();
10170 = expand_expr_divmod (TRUNC_DIV_EXPR
, mode
, treeop0
, treeop1
,
10171 op0
, op1
, NULL_RTX
, unsignedp
);
10172 divmul_ret
= expand_mult (mode
, divmul_ret
, op1
, target
,
10174 rtx_insn
*divmul_insns
= get_insns ();
10178 = expand_expr_divmod (TRUNC_MOD_EXPR
, mode
, treeop0
, treeop1
,
10179 op0
, op1
, NULL_RTX
, unsignedp
);
10180 this_optab
= optab_for_tree_code (MINUS_EXPR
, type
,
10182 modsub_ret
= expand_binop (mode
, this_optab
, op0
, modsub_ret
,
10183 target
, unsignedp
, OPTAB_LIB_WIDEN
);
10184 rtx_insn
*modsub_insns
= get_insns ();
10186 unsigned divmul_cost
= seq_cost (divmul_insns
, speed_p
);
10187 unsigned modsub_cost
= seq_cost (modsub_insns
, speed_p
);
10188 /* If costs are the same then use as tie breaker the other other
10190 if (divmul_cost
== modsub_cost
)
10192 divmul_cost
= seq_cost (divmul_insns
, !speed_p
);
10193 modsub_cost
= seq_cost (modsub_insns
, !speed_p
);
10196 if (divmul_cost
<= modsub_cost
)
10198 emit_insn (divmul_insns
);
10199 return REDUCE_BIT_FIELD (divmul_ret
);
10201 emit_insn (modsub_insns
);
10202 return REDUCE_BIT_FIELD (modsub_ret
);
10206 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10208 /* Expand X*Y as X&-Y when Y must be zero or one. */
10209 if (SCALAR_INT_MODE_P (mode
))
10211 bool bit0_p
= tree_nonzero_bits (treeop0
) == 1;
10212 bool bit1_p
= tree_nonzero_bits (treeop1
) == 1;
10214 /* Expand X*Y as X&Y when both X and Y must be zero or one. */
10215 if (bit0_p
&& bit1_p
)
10216 return REDUCE_BIT_FIELD (expand_and (mode
, op0
, op1
, target
));
10218 if (bit0_p
|| bit1_p
)
10220 bool speed
= optimize_insn_for_speed_p ();
10221 int cost
= add_cost (speed
, mode
) + neg_cost (speed
, mode
);
10222 struct algorithm algorithm
;
10223 enum mult_variant variant
;
10224 if (CONST_INT_P (op1
)
10225 ? !choose_mult_variant (mode
, INTVAL (op1
),
10226 &algorithm
, &variant
, cost
)
10227 : cost
< mul_cost (speed
, mode
))
10229 target
= bit0_p
? expand_and (mode
, negate_rtx (mode
, op0
),
10231 : expand_and (mode
, op0
,
10232 negate_rtx (mode
, op1
),
10234 return REDUCE_BIT_FIELD (target
);
10239 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
10241 case TRUNC_MOD_EXPR
:
10242 case FLOOR_MOD_EXPR
:
10243 case CEIL_MOD_EXPR
:
10244 case ROUND_MOD_EXPR
:
10246 case TRUNC_DIV_EXPR
:
10247 case FLOOR_DIV_EXPR
:
10248 case CEIL_DIV_EXPR
:
10249 case ROUND_DIV_EXPR
:
10250 case EXACT_DIV_EXPR
:
10251 /* If this is a fixed-point operation, then we cannot use the code
10252 below because "expand_divmod" doesn't support sat/no-sat fixed-point
10254 if (ALL_FIXED_POINT_MODE_P (mode
))
10257 if (modifier
== EXPAND_STACK_PARM
)
10259 /* Possible optimization: compute the dividend with EXPAND_SUM
10260 then if the divisor is constant can optimize the case
10261 where some terms of the dividend have coeffs divisible by it. */
10262 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10263 return expand_expr_divmod (code
, mode
, treeop0
, treeop1
, op0
, op1
,
10264 target
, unsignedp
);
10269 case MULT_HIGHPART_EXPR
:
10270 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10271 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
10275 case FIXED_CONVERT_EXPR
:
10276 op0
= expand_normal (treeop0
);
10277 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
10278 target
= gen_reg_rtx (mode
);
10280 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
10281 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
10282 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
10283 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
10285 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
10288 case FIX_TRUNC_EXPR
:
10289 op0
= expand_normal (treeop0
);
10290 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
10291 target
= gen_reg_rtx (mode
);
10292 expand_fix (target
, op0
, unsignedp
);
10296 op0
= expand_normal (treeop0
);
10297 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
10298 target
= gen_reg_rtx (mode
);
10299 /* expand_float can't figure out what to do if FROM has VOIDmode.
10300 So give it the correct mode. With -O, cse will optimize this. */
10301 if (GET_MODE (op0
) == VOIDmode
)
10302 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
10304 expand_float (target
, op0
,
10305 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10309 op0
= expand_expr (treeop0
, subtarget
,
10310 VOIDmode
, EXPAND_NORMAL
);
10311 if (modifier
== EXPAND_STACK_PARM
)
10313 temp
= expand_unop (mode
,
10314 optab_for_tree_code (NEGATE_EXPR
, type
,
10318 return REDUCE_BIT_FIELD (temp
);
10322 op0
= expand_expr (treeop0
, subtarget
,
10323 VOIDmode
, EXPAND_NORMAL
);
10324 if (modifier
== EXPAND_STACK_PARM
)
10327 /* ABS_EXPR is not valid for complex arguments. */
10328 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10329 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
10331 /* Unsigned abs is simply the operand. Testing here means we don't
10332 risk generating incorrect code below. */
10333 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
10336 return expand_abs (mode
, op0
, target
, unsignedp
,
10337 safe_from_p (target
, treeop0
, 1));
10341 target
= original_target
;
10343 || modifier
== EXPAND_STACK_PARM
10344 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
10345 || GET_MODE (target
) != mode
10347 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
10348 target
= gen_reg_rtx (mode
);
10349 expand_operands (treeop0
, treeop1
,
10350 target
, &op0
, &op1
, EXPAND_NORMAL
);
10352 /* First try to do it with a special MIN or MAX instruction.
10353 If that does not win, use a conditional jump to select the proper
10355 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
10356 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
10361 if (VECTOR_TYPE_P (type
))
10362 gcc_unreachable ();
10364 /* At this point, a MEM target is no longer useful; we will get better
10365 code without it. */
10367 if (! REG_P (target
))
10368 target
= gen_reg_rtx (mode
);
10370 /* If op1 was placed in target, swap op0 and op1. */
10371 if (target
!= op0
&& target
== op1
)
10372 std::swap (op0
, op1
);
10374 /* We generate better code and avoid problems with op1 mentioning
10375 target by forcing op1 into a pseudo if it isn't a constant. */
10376 if (! CONSTANT_P (op1
))
10377 op1
= force_reg (mode
, op1
);
10380 enum rtx_code comparison_code
;
10383 if (code
== MAX_EXPR
)
10384 comparison_code
= unsignedp
? GEU
: GE
;
10386 comparison_code
= unsignedp
? LEU
: LE
;
10388 /* Canonicalize to comparisons against 0. */
10389 if (op1
== const1_rtx
)
10391 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
10392 or (a != 0 ? a : 1) for unsigned.
10393 For MIN we are safe converting (a <= 1 ? a : 1)
10394 into (a <= 0 ? a : 1) */
10395 cmpop1
= const0_rtx
;
10396 if (code
== MAX_EXPR
)
10397 comparison_code
= unsignedp
? NE
: GT
;
10399 if (op1
== constm1_rtx
&& !unsignedp
)
10401 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
10402 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
10403 cmpop1
= const0_rtx
;
10404 if (code
== MIN_EXPR
)
10405 comparison_code
= LT
;
10408 /* Use a conditional move if possible. */
10409 if (can_conditionally_move_p (mode
))
10415 /* Try to emit the conditional move. */
10416 insn
= emit_conditional_move (target
,
10418 op0
, cmpop1
, mode
},
10422 /* If we could do the conditional move, emit the sequence,
10426 rtx_insn
*seq
= get_insns ();
10432 /* Otherwise discard the sequence and fall back to code with
10438 emit_move_insn (target
, op0
);
10440 lab
= gen_label_rtx ();
10441 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
10442 unsignedp
, mode
, NULL_RTX
, NULL
, lab
,
10443 profile_probability::uninitialized ());
10445 emit_move_insn (target
, op1
);
10450 op0
= expand_expr (treeop0
, subtarget
,
10451 VOIDmode
, EXPAND_NORMAL
);
10452 if (modifier
== EXPAND_STACK_PARM
)
10454 /* In case we have to reduce the result to bitfield precision
10455 for unsigned bitfield expand this as XOR with a proper constant
10457 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
10459 int_mode
= SCALAR_INT_TYPE_MODE (type
);
10460 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
10461 false, GET_MODE_PRECISION (int_mode
));
10463 temp
= expand_binop (int_mode
, xor_optab
, op0
,
10464 immed_wide_int_const (mask
, int_mode
),
10465 target
, 1, OPTAB_LIB_WIDEN
);
10468 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
10472 /* ??? Can optimize bitwise operations with one arg constant.
10473 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
10474 and (a bitwise1 b) bitwise2 b (etc)
10475 but that is probably not worth while. */
10484 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
10485 || type_has_mode_precision_p (type
));
10491 /* If this is a fixed-point operation, then we cannot use the code
10492 below because "expand_shift" doesn't support sat/no-sat fixed-point
10494 if (ALL_FIXED_POINT_MODE_P (mode
))
10497 if (! safe_from_p (subtarget
, treeop1
, 1))
10499 if (modifier
== EXPAND_STACK_PARM
)
10501 op0
= expand_expr (treeop0
, subtarget
,
10502 VOIDmode
, EXPAND_NORMAL
);
10504 /* Left shift optimization when shifting across word_size boundary.
10506 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
10507 there isn't native instruction to support this wide mode
10508 left shift. Given below scenario:
10510 Type A = (Type) B << C
10513 | dest_high | dest_low |
10517 If the shift amount C caused we shift B to across the word
10518 size boundary, i.e part of B shifted into high half of
10519 destination register, and part of B remains in the low
10520 half, then GCC will use the following left shift expand
10523 1. Initialize dest_low to B.
10524 2. Initialize every bit of dest_high to the sign bit of B.
10525 3. Logic left shift dest_low by C bit to finalize dest_low.
10526 The value of dest_low before this shift is kept in a temp D.
10527 4. Logic left shift dest_high by C.
10528 5. Logic right shift D by (word_size - C).
10529 6. Or the result of 4 and 5 to finalize dest_high.
10531 While, by checking gimple statements, if operand B is
10532 coming from signed extension, then we can simplify above
10535 1. dest_high = src_low >> (word_size - C).
10536 2. dest_low = src_low << C.
10538 We can use one arithmetic right shift to finish all the
10539 purpose of steps 2, 4, 5, 6, thus we reduce the steps
10540 needed from 6 into 2.
10542 The case is similar for zero extension, except that we
10543 initialize dest_high to zero rather than copies of the sign
10544 bit from B. Furthermore, we need to use a logical right shift
10547 The choice of sign-extension versus zero-extension is
10548 determined entirely by whether or not B is signed and is
10549 independent of the current setting of unsignedp. */
10552 if (code
== LSHIFT_EXPR
10555 && GET_MODE_2XWIDER_MODE (word_mode
).exists (&int_mode
)
10556 && mode
== int_mode
10557 && TREE_CONSTANT (treeop1
)
10558 && TREE_CODE (treeop0
) == SSA_NAME
)
10560 gimple
*def
= SSA_NAME_DEF_STMT (treeop0
);
10561 if (is_gimple_assign (def
)
10562 && gimple_assign_rhs_code (def
) == NOP_EXPR
)
10564 scalar_int_mode rmode
= SCALAR_INT_TYPE_MODE
10565 (TREE_TYPE (gimple_assign_rhs1 (def
)));
10567 if (GET_MODE_SIZE (rmode
) < GET_MODE_SIZE (int_mode
)
10568 && TREE_INT_CST_LOW (treeop1
) < GET_MODE_BITSIZE (word_mode
)
10569 && ((TREE_INT_CST_LOW (treeop1
) + GET_MODE_BITSIZE (rmode
))
10570 >= GET_MODE_BITSIZE (word_mode
)))
10572 rtx_insn
*seq
, *seq_old
;
10573 poly_uint64 high_off
= subreg_highpart_offset (word_mode
,
10575 bool extend_unsigned
10576 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def
)));
10577 rtx low
= lowpart_subreg (word_mode
, op0
, int_mode
);
10578 rtx dest_low
= lowpart_subreg (word_mode
, target
, int_mode
);
10579 rtx dest_high
= simplify_gen_subreg (word_mode
, target
,
10580 int_mode
, high_off
);
10581 HOST_WIDE_INT ramount
= (BITS_PER_WORD
10582 - TREE_INT_CST_LOW (treeop1
));
10583 tree rshift
= build_int_cst (TREE_TYPE (treeop1
), ramount
);
10586 /* dest_high = src_low >> (word_size - C). */
10587 temp
= expand_variable_shift (RSHIFT_EXPR
, word_mode
, low
,
10590 if (temp
!= dest_high
)
10591 emit_move_insn (dest_high
, temp
);
10593 /* dest_low = src_low << C. */
10594 temp
= expand_variable_shift (LSHIFT_EXPR
, word_mode
, low
,
10595 treeop1
, dest_low
, unsignedp
);
10596 if (temp
!= dest_low
)
10597 emit_move_insn (dest_low
, temp
);
10599 seq
= get_insns ();
10603 if (have_insn_for (ASHIFT
, int_mode
))
10605 bool speed_p
= optimize_insn_for_speed_p ();
10607 rtx ret_old
= expand_variable_shift (code
, int_mode
,
10612 seq_old
= get_insns ();
10614 if (seq_cost (seq
, speed_p
)
10615 >= seq_cost (seq_old
, speed_p
))
10626 if (temp
== NULL_RTX
)
10627 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
10629 if (code
== LSHIFT_EXPR
)
10630 temp
= REDUCE_BIT_FIELD (temp
);
10634 /* Could determine the answer when only additive constants differ. Also,
10635 the addition of one can be handled by changing the condition. */
10642 case UNORDERED_EXPR
:
10651 temp
= do_store_flag (ops
,
10652 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
10653 tmode
!= VOIDmode
? tmode
: mode
);
10657 /* Use a compare and a jump for BLKmode comparisons, or for function
10658 type comparisons is have_canonicalize_funcptr_for_compare. */
10661 || modifier
== EXPAND_STACK_PARM
10662 || ! safe_from_p (target
, treeop0
, 1)
10663 || ! safe_from_p (target
, treeop1
, 1)
10664 /* Make sure we don't have a hard reg (such as function's return
10665 value) live across basic blocks, if not optimizing. */
10666 || (!optimize
&& REG_P (target
)
10667 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
10668 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10670 emit_move_insn (target
, const0_rtx
);
10672 rtx_code_label
*lab1
= gen_label_rtx ();
10673 jumpifnot_1 (code
, treeop0
, treeop1
, lab1
,
10674 profile_probability::uninitialized ());
10676 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
10677 emit_move_insn (target
, constm1_rtx
);
10679 emit_move_insn (target
, const1_rtx
);
10685 /* Get the rtx code of the operands. */
10686 op0
= expand_normal (treeop0
);
10687 op1
= expand_normal (treeop1
);
10690 target
= gen_reg_rtx (TYPE_MODE (type
));
10692 /* If target overlaps with op1, then either we need to force
10693 op1 into a pseudo (if target also overlaps with op0),
10694 or write the complex parts in reverse order. */
10695 switch (GET_CODE (target
))
10698 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
10700 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
10702 complex_expr_force_op1
:
10703 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
10704 emit_move_insn (temp
, op1
);
10708 complex_expr_swap_order
:
10709 /* Move the imaginary (op1) and real (op0) parts to their
10711 write_complex_part (target
, op1
, true, true);
10712 write_complex_part (target
, op0
, false, false);
10718 temp
= adjust_address_nv (target
,
10719 GET_MODE_INNER (GET_MODE (target
)), 0);
10720 if (reg_overlap_mentioned_p (temp
, op1
))
10722 scalar_mode imode
= GET_MODE_INNER (GET_MODE (target
));
10723 temp
= adjust_address_nv (target
, imode
,
10724 GET_MODE_SIZE (imode
));
10725 if (reg_overlap_mentioned_p (temp
, op0
))
10726 goto complex_expr_force_op1
;
10727 goto complex_expr_swap_order
;
10731 if (reg_overlap_mentioned_p (target
, op1
))
10733 if (reg_overlap_mentioned_p (target
, op0
))
10734 goto complex_expr_force_op1
;
10735 goto complex_expr_swap_order
;
10740 /* Move the real (op0) and imaginary (op1) parts to their location. */
10741 write_complex_part (target
, op0
, false, true);
10742 write_complex_part (target
, op1
, true, false);
10746 case WIDEN_SUM_EXPR
:
10748 tree oprnd0
= treeop0
;
10749 tree oprnd1
= treeop1
;
10751 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10752 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
10753 target
, unsignedp
);
10757 case VEC_UNPACK_HI_EXPR
:
10758 case VEC_UNPACK_LO_EXPR
:
10759 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
10760 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
10762 op0
= expand_normal (treeop0
);
10763 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
10764 target
, unsignedp
);
10769 case VEC_UNPACK_FLOAT_HI_EXPR
:
10770 case VEC_UNPACK_FLOAT_LO_EXPR
:
10772 op0
= expand_normal (treeop0
);
10773 /* The signedness is determined from input operand. */
10774 temp
= expand_widen_pattern_expr
10775 (ops
, op0
, NULL_RTX
, NULL_RTX
,
10776 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10782 case VEC_WIDEN_MULT_HI_EXPR
:
10783 case VEC_WIDEN_MULT_LO_EXPR
:
10784 case VEC_WIDEN_MULT_EVEN_EXPR
:
10785 case VEC_WIDEN_MULT_ODD_EXPR
:
10786 case VEC_WIDEN_LSHIFT_HI_EXPR
:
10787 case VEC_WIDEN_LSHIFT_LO_EXPR
:
10788 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10789 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
10790 target
, unsignedp
);
10791 gcc_assert (target
);
10794 case VEC_PACK_SAT_EXPR
:
10795 case VEC_PACK_FIX_TRUNC_EXPR
:
10796 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
10797 subtarget
= NULL_RTX
;
10800 case VEC_PACK_TRUNC_EXPR
:
10801 if (VECTOR_BOOLEAN_TYPE_P (type
)
10802 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0
))
10803 && mode
== TYPE_MODE (TREE_TYPE (treeop0
))
10804 && SCALAR_INT_MODE_P (mode
))
10806 class expand_operand eops
[4];
10807 machine_mode imode
= TYPE_MODE (TREE_TYPE (treeop0
));
10808 expand_operands (treeop0
, treeop1
,
10809 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10810 this_optab
= vec_pack_sbool_trunc_optab
;
10811 enum insn_code icode
= optab_handler (this_optab
, imode
);
10812 create_output_operand (&eops
[0], target
, mode
);
10813 create_convert_operand_from (&eops
[1], op0
, imode
, false);
10814 create_convert_operand_from (&eops
[2], op1
, imode
, false);
10815 temp
= GEN_INT (TYPE_VECTOR_SUBPARTS (type
).to_constant ());
10816 create_input_operand (&eops
[3], temp
, imode
);
10817 expand_insn (icode
, 4, eops
);
10818 return eops
[0].value
;
10820 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
10821 subtarget
= NULL_RTX
;
10824 case VEC_PACK_FLOAT_EXPR
:
10825 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
10826 expand_operands (treeop0
, treeop1
,
10827 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10828 this_optab
= optab_for_tree_code (code
, TREE_TYPE (treeop0
),
10830 target
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
10831 TYPE_UNSIGNED (TREE_TYPE (treeop0
)),
10833 gcc_assert (target
);
10836 case VEC_PERM_EXPR
:
10838 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
10839 vec_perm_builder sel
;
10840 if (TREE_CODE (treeop2
) == VECTOR_CST
10841 && tree_to_vec_perm_builder (&sel
, treeop2
))
10843 machine_mode sel_mode
= TYPE_MODE (TREE_TYPE (treeop2
));
10844 temp
= expand_vec_perm_const (mode
, op0
, op1
, sel
,
10849 op2
= expand_normal (treeop2
);
10850 temp
= expand_vec_perm_var (mode
, op0
, op1
, op2
, target
);
10856 case DOT_PROD_EXPR
:
10858 tree oprnd0
= treeop0
;
10859 tree oprnd1
= treeop1
;
10860 tree oprnd2
= treeop2
;
10862 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10863 op2
= expand_normal (oprnd2
);
10864 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
10865 target
, unsignedp
);
10871 tree oprnd0
= treeop0
;
10872 tree oprnd1
= treeop1
;
10873 tree oprnd2
= treeop2
;
10875 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10876 op2
= expand_normal (oprnd2
);
10877 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
10878 target
, unsignedp
);
10882 case REALIGN_LOAD_EXPR
:
10884 tree oprnd0
= treeop0
;
10885 tree oprnd1
= treeop1
;
10886 tree oprnd2
= treeop2
;
10888 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
10889 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10890 op2
= expand_normal (oprnd2
);
10891 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
10892 target
, unsignedp
);
10899 /* A COND_EXPR with its type being VOID_TYPE represents a
10900 conditional jump and is handled in
10901 expand_gimple_cond_expr. */
10902 gcc_assert (!VOID_TYPE_P (type
));
10904 /* Note that COND_EXPRs whose type is a structure or union
10905 are required to be constructed to contain assignments of
10906 a temporary variable, so that we can evaluate them here
10907 for side effect only. If type is void, we must do likewise. */
10909 gcc_assert (!TREE_ADDRESSABLE (type
)
10911 && TREE_TYPE (treeop1
) != void_type_node
10912 && TREE_TYPE (treeop2
) != void_type_node
);
10914 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
10918 /* If we are not to produce a result, we have no target. Otherwise,
10919 if a target was specified use it; it will not be used as an
10920 intermediate target unless it is safe. If no target, use a
10923 if (modifier
!= EXPAND_STACK_PARM
10925 && safe_from_p (original_target
, treeop0
, 1)
10926 && GET_MODE (original_target
) == mode
10927 && !MEM_P (original_target
))
10928 temp
= original_target
;
10930 temp
= assign_temp (type
, 0, 1);
10932 do_pending_stack_adjust ();
10934 rtx_code_label
*lab0
= gen_label_rtx ();
10935 rtx_code_label
*lab1
= gen_label_rtx ();
10936 jumpifnot (treeop0
, lab0
,
10937 profile_probability::uninitialized ());
10938 store_expr (treeop1
, temp
,
10939 modifier
== EXPAND_STACK_PARM
,
10942 emit_jump_insn (targetm
.gen_jump (lab1
));
10945 store_expr (treeop2
, temp
,
10946 modifier
== EXPAND_STACK_PARM
,
10954 case VEC_DUPLICATE_EXPR
:
10955 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
10956 target
= expand_vector_broadcast (mode
, op0
);
10957 gcc_assert (target
);
10960 case VEC_SERIES_EXPR
:
10961 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, modifier
);
10962 return expand_vec_series_expr (mode
, op0
, op1
, target
);
10964 case BIT_INSERT_EXPR
:
10966 unsigned bitpos
= tree_to_uhwi (treeop2
);
10968 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1
)))
10969 bitsize
= TYPE_PRECISION (TREE_TYPE (treeop1
));
10971 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1
)));
10972 op0
= expand_normal (treeop0
);
10973 op1
= expand_normal (treeop1
);
10974 rtx dst
= gen_reg_rtx (mode
);
10975 emit_move_insn (dst
, op0
);
10976 store_bit_field (dst
, bitsize
, bitpos
, 0, 0,
10977 TYPE_MODE (TREE_TYPE (treeop1
)), op1
, false, false);
10982 gcc_unreachable ();
10985 /* Here to do an ordinary binary operator. */
10987 expand_operands (treeop0
, treeop1
,
10988 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10990 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
10992 if (modifier
== EXPAND_STACK_PARM
)
10994 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
10995 unsignedp
, OPTAB_LIB_WIDEN
);
10997 /* Bitwise operations do not need bitfield reduction as we expect their
10998 operands being properly truncated. */
10999 if (code
== BIT_XOR_EXPR
11000 || code
== BIT_AND_EXPR
11001 || code
== BIT_IOR_EXPR
)
11003 return REDUCE_BIT_FIELD (temp
);
11005 #undef REDUCE_BIT_FIELD
11008 /* Return TRUE if expression STMT is suitable for replacement.
11009 Never consider memory loads as replaceable, because those don't ever lead
11010 into constant expressions. */
11013 stmt_is_replaceable_p (gimple
*stmt
)
11015 if (ssa_is_replaceable_p (stmt
))
11017 /* Don't move around loads. */
11018 if (!gimple_assign_single_p (stmt
)
11019 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
11026 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
11027 enum expand_modifier modifier
, rtx
*alt_rtl
,
11028 bool inner_reference_p
)
11030 rtx op0
, op1
, temp
, decl_rtl
;
11033 machine_mode mode
, dmode
;
11034 enum tree_code code
= TREE_CODE (exp
);
11035 rtx subtarget
, original_target
;
11037 bool reduce_bit_field
;
11038 location_t loc
= EXPR_LOCATION (exp
);
11039 struct separate_ops ops
;
11040 tree treeop0
, treeop1
, treeop2
;
11041 tree ssa_name
= NULL_TREE
;
11044 /* Some ABIs define padding bits in _BitInt uninitialized. Normally, RTL
11045 expansion sign/zero extends integral types with less than mode precision
11046 when reading from bit-fields and after arithmetic operations (see
11047 REDUCE_BIT_FIELD in expand_expr_real_2) and on subsequent loads relies
11048 on those extensions to have been already performed, but because of the
11049 above for _BitInt they need to be sign/zero extended when reading from
11050 locations that could be exposed to ABI boundaries (when loading from
11051 objects in memory, or function arguments, return value). Because we
11052 internally extend after arithmetic operations, we can avoid doing that
11053 when reading from SSA_NAMEs of vars. */
11054 #define EXTEND_BITINT(expr) \
11055 ((TREE_CODE (type) == BITINT_TYPE \
11056 && reduce_bit_field \
11057 && mode != BLKmode \
11058 && modifier != EXPAND_MEMORY \
11059 && modifier != EXPAND_WRITE \
11060 && modifier != EXPAND_INITIALIZER \
11061 && modifier != EXPAND_CONST_ADDRESS) \
11062 ? reduce_to_bit_field_precision ((expr), NULL_RTX, type) : (expr))
11064 type
= TREE_TYPE (exp
);
11065 mode
= TYPE_MODE (type
);
11066 unsignedp
= TYPE_UNSIGNED (type
);
11068 treeop0
= treeop1
= treeop2
= NULL_TREE
;
11069 if (!VL_EXP_CLASS_P (exp
))
11070 switch (TREE_CODE_LENGTH (code
))
11073 case 3: treeop2
= TREE_OPERAND (exp
, 2); /* FALLTHRU */
11074 case 2: treeop1
= TREE_OPERAND (exp
, 1); /* FALLTHRU */
11075 case 1: treeop0
= TREE_OPERAND (exp
, 0); /* FALLTHRU */
11083 ops
.location
= loc
;
11085 ignore
= (target
== const0_rtx
11086 || ((CONVERT_EXPR_CODE_P (code
)
11087 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
11088 && TREE_CODE (type
) == VOID_TYPE
));
11090 /* An operation in what may be a bit-field type needs the
11091 result to be reduced to the precision of the bit-field type,
11092 which is narrower than that of the type's mode. */
11093 reduce_bit_field
= (!ignore
11094 && INTEGRAL_TYPE_P (type
)
11095 && !type_has_mode_precision_p (type
));
11097 /* If we are going to ignore this result, we need only do something
11098 if there is a side-effect somewhere in the expression. If there
11099 is, short-circuit the most common cases here. Note that we must
11100 not call expand_expr with anything but const0_rtx in case this
11101 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
11105 if (! TREE_SIDE_EFFECTS (exp
))
11108 /* Ensure we reference a volatile object even if value is ignored, but
11109 don't do this if all we are doing is taking its address. */
11110 if (TREE_THIS_VOLATILE (exp
)
11111 && TREE_CODE (exp
) != FUNCTION_DECL
11112 && mode
!= VOIDmode
&& mode
!= BLKmode
11113 && modifier
!= EXPAND_CONST_ADDRESS
)
11115 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
11117 copy_to_reg (temp
);
11121 if (TREE_CODE_CLASS (code
) == tcc_unary
11122 || code
== BIT_FIELD_REF
11123 || code
== COMPONENT_REF
11124 || code
== INDIRECT_REF
)
11125 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
11128 else if (TREE_CODE_CLASS (code
) == tcc_binary
11129 || TREE_CODE_CLASS (code
) == tcc_comparison
11130 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
11132 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
11133 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
11140 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
11143 /* Use subtarget as the target for operand 0 of a binary operation. */
11144 subtarget
= get_subtarget (target
);
11145 original_target
= target
;
11151 tree function
= decl_function_context (exp
);
11153 temp
= label_rtx (exp
);
11154 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
11156 if (function
!= current_function_decl
11158 LABEL_REF_NONLOCAL_P (temp
) = 1;
11160 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
11165 /* ??? ivopts calls expander, without any preparation from
11166 out-of-ssa. So fake instructions as if this was an access to the
11167 base variable. This unnecessarily allocates a pseudo, see how we can
11168 reuse it, if partition base vars have it set already. */
11169 if (!currently_expanding_to_rtl
)
11171 tree var
= SSA_NAME_VAR (exp
);
11172 if (var
&& DECL_RTL_SET_P (var
))
11173 return DECL_RTL (var
);
11174 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
11175 LAST_VIRTUAL_REGISTER
+ 1);
11178 g
= get_gimple_for_ssa_name (exp
);
11179 /* For EXPAND_INITIALIZER try harder to get something simpler. */
11181 && modifier
== EXPAND_INITIALIZER
11182 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
11183 && (optimize
|| !SSA_NAME_VAR (exp
)
11184 || DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
11185 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
11186 g
= SSA_NAME_DEF_STMT (exp
);
11190 location_t saved_loc
= curr_insn_location ();
11191 loc
= gimple_location (g
);
11192 if (loc
!= UNKNOWN_LOCATION
)
11193 set_curr_insn_location (loc
);
11194 ops
.code
= gimple_assign_rhs_code (g
);
11195 switch (get_gimple_rhs_class (ops
.code
))
11197 case GIMPLE_TERNARY_RHS
:
11198 ops
.op2
= gimple_assign_rhs3 (g
);
11200 case GIMPLE_BINARY_RHS
:
11201 ops
.op1
= gimple_assign_rhs2 (g
);
11203 /* Try to expand conditonal compare. */
11204 if (targetm
.gen_ccmp_first
)
11206 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
11207 r
= expand_ccmp_expr (g
, mode
);
11212 case GIMPLE_UNARY_RHS
:
11213 ops
.op0
= gimple_assign_rhs1 (g
);
11214 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
11215 ops
.location
= loc
;
11216 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
11218 case GIMPLE_SINGLE_RHS
:
11220 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
11221 tmode
, modifier
, alt_rtl
,
11222 inner_reference_p
);
11226 gcc_unreachable ();
11228 set_curr_insn_location (saved_loc
);
11229 if (REG_P (r
) && !REG_EXPR (r
))
11230 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
11235 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
11236 exp
= SSA_NAME_VAR (ssa_name
);
11237 /* Optimize and avoid to EXTEND_BITINIT doing anything if it is an
11238 SSA_NAME computed within the current function. In such case the
11239 value have been already extended before. While if it is a function
11240 parameter, result or some memory location, we need to be prepared
11241 for some other compiler leaving the bits uninitialized. */
11242 if (!exp
|| VAR_P (exp
))
11243 reduce_bit_field
= false;
11244 goto expand_decl_rtl
;
11247 /* Allow accel compiler to handle variables that require special
11248 treatment, e.g. if they have been modified in some way earlier in
11249 compilation by the adjust_private_decl OpenACC hook. */
11250 if (flag_openacc
&& targetm
.goacc
.expand_var_decl
)
11252 temp
= targetm
.goacc
.expand_var_decl (exp
);
11256 /* Expand const VAR_DECLs with CONSTRUCTOR initializers that
11257 have scalar integer modes to a reg via store_constructor. */
11258 if (TREE_READONLY (exp
)
11259 && !TREE_SIDE_EFFECTS (exp
)
11260 && (modifier
== EXPAND_NORMAL
|| modifier
== EXPAND_STACK_PARM
)
11261 && immediate_const_ctor_p (DECL_INITIAL (exp
))
11262 && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (exp
)))
11263 && crtl
->emit
.regno_pointer_align_length
11266 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
11267 store_constructor (DECL_INITIAL (exp
), target
, 0,
11268 int_expr_size (DECL_INITIAL (exp
)), false);
11271 /* ... fall through ... */
11274 /* If a static var's type was incomplete when the decl was written,
11275 but the type is complete now, lay out the decl now. */
11276 if (DECL_SIZE (exp
) == 0
11277 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
11278 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
11279 layout_decl (exp
, 0);
11283 case FUNCTION_DECL
:
11285 decl_rtl
= DECL_RTL (exp
);
11287 gcc_assert (decl_rtl
);
11289 /* DECL_MODE might change when TYPE_MODE depends on attribute target
11290 settings for VECTOR_TYPE_P that might switch for the function. */
11291 if (currently_expanding_to_rtl
11292 && code
== VAR_DECL
&& MEM_P (decl_rtl
)
11293 && VECTOR_TYPE_P (type
) && exp
&& DECL_MODE (exp
) != mode
)
11294 decl_rtl
= change_address (decl_rtl
, TYPE_MODE (type
), 0);
11296 decl_rtl
= copy_rtx (decl_rtl
);
11298 /* Record writes to register variables. */
11299 if (modifier
== EXPAND_WRITE
11300 && REG_P (decl_rtl
)
11301 && HARD_REGISTER_P (decl_rtl
))
11302 add_to_hard_reg_set (&crtl
->asm_clobbers
,
11303 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
11305 /* Ensure variable marked as used even if it doesn't go through
11306 a parser. If it hasn't be used yet, write out an external
11309 TREE_USED (exp
) = 1;
11311 /* Show we haven't gotten RTL for this yet. */
11314 /* Variables inherited from containing functions should have
11315 been lowered by this point. */
11318 tree context
= decl_function_context (exp
);
11319 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
11320 || context
== current_function_decl
11321 || TREE_STATIC (exp
)
11322 || DECL_EXTERNAL (exp
)
11323 /* ??? C++ creates functions that are not
11325 || TREE_CODE (exp
) == FUNCTION_DECL
);
11328 /* This is the case of an array whose size is to be determined
11329 from its initializer, while the initializer is still being parsed.
11330 ??? We aren't parsing while expanding anymore. */
11332 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
11333 temp
= validize_mem (decl_rtl
);
11335 /* If DECL_RTL is memory, we are in the normal case and the
11336 address is not valid, get the address into a register. */
11338 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
11341 *alt_rtl
= decl_rtl
;
11342 decl_rtl
= use_anchored_address (decl_rtl
);
11343 if (modifier
!= EXPAND_CONST_ADDRESS
11344 && modifier
!= EXPAND_SUM
11345 && !memory_address_addr_space_p (exp
? DECL_MODE (exp
)
11346 : GET_MODE (decl_rtl
),
11347 XEXP (decl_rtl
, 0),
11348 MEM_ADDR_SPACE (decl_rtl
)))
11349 temp
= replace_equiv_address (decl_rtl
,
11350 copy_rtx (XEXP (decl_rtl
, 0)));
11353 /* If we got something, return it. But first, set the alignment
11354 if the address is a register. */
11357 if (exp
&& MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
11358 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
11360 else if (MEM_P (decl_rtl
))
11366 && modifier
!= EXPAND_WRITE
11367 && modifier
!= EXPAND_MEMORY
11368 && modifier
!= EXPAND_INITIALIZER
11369 && modifier
!= EXPAND_CONST_ADDRESS
11370 && modifier
!= EXPAND_SUM
11371 && !inner_reference_p
11373 && MEM_ALIGN (temp
) < GET_MODE_ALIGNMENT (mode
))
11374 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
11375 MEM_ALIGN (temp
), NULL_RTX
, NULL
);
11377 return EXTEND_BITINT (temp
);
11381 dmode
= DECL_MODE (exp
);
11383 dmode
= TYPE_MODE (TREE_TYPE (ssa_name
));
11385 /* If the mode of DECL_RTL does not match that of the decl,
11386 there are two cases: we are dealing with a BLKmode value
11387 that is returned in a register, or we are dealing with
11388 a promoted value. In the latter case, return a SUBREG
11389 of the wanted mode, but mark it so that we know that it
11390 was already extended. */
11391 if (REG_P (decl_rtl
)
11392 && dmode
!= BLKmode
11393 && GET_MODE (decl_rtl
) != dmode
)
11395 machine_mode pmode
;
11397 /* Get the signedness to be used for this variable. Ensure we get
11398 the same mode we got when the variable was declared. */
11399 if (code
!= SSA_NAME
)
11400 pmode
= promote_decl_mode (exp
, &unsignedp
);
11401 else if ((g
= SSA_NAME_DEF_STMT (ssa_name
))
11402 && gimple_code (g
) == GIMPLE_CALL
11403 && !gimple_call_internal_p (g
))
11404 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
11405 gimple_call_fntype (g
),
11408 pmode
= promote_ssa_mode (ssa_name
, &unsignedp
);
11409 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
11411 /* Some ABIs require scalar floating point modes to be passed
11412 in a wider scalar integer mode. We need to explicitly
11413 truncate to an integer mode of the correct precision before
11414 using a SUBREG to reinterpret as a floating point value. */
11415 if (SCALAR_FLOAT_MODE_P (mode
)
11416 && SCALAR_INT_MODE_P (pmode
)
11417 && known_lt (GET_MODE_SIZE (mode
), GET_MODE_SIZE (pmode
)))
11418 return convert_wider_int_to_float (mode
, pmode
, decl_rtl
);
11420 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
11421 SUBREG_PROMOTED_VAR_P (temp
) = 1;
11422 SUBREG_PROMOTED_SET (temp
, unsignedp
);
11423 return EXTEND_BITINT (temp
);
11426 return EXTEND_BITINT (decl_rtl
);
11430 if (TREE_CODE (type
) == BITINT_TYPE
)
11432 unsigned int prec
= TYPE_PRECISION (type
);
11433 struct bitint_info info
;
11434 bool ok
= targetm
.c
.bitint_type_info (prec
, &info
);
11436 scalar_int_mode limb_mode
11437 = as_a
<scalar_int_mode
> (info
.limb_mode
);
11438 unsigned int limb_prec
= GET_MODE_PRECISION (limb_mode
);
11439 if (prec
> limb_prec
&& prec
> MAX_FIXED_MODE_SIZE
)
11441 /* Emit large/huge _BitInt INTEGER_CSTs into memory. */
11442 exp
= tree_output_constant_def (exp
);
11443 return expand_expr (exp
, target
, VOIDmode
, modifier
);
11447 /* Given that TYPE_PRECISION (type) is not always equal to
11448 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
11449 the former to the latter according to the signedness of the
11451 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (type
);
11452 temp
= immed_wide_int_const
11453 (wi::to_wide (exp
, GET_MODE_PRECISION (int_mode
)), int_mode
);
11459 tree tmp
= NULL_TREE
;
11460 if (VECTOR_MODE_P (mode
))
11461 return const_vector_from_tree (exp
);
11462 scalar_int_mode int_mode
;
11463 if (is_int_mode (mode
, &int_mode
))
11465 tree type_for_mode
= lang_hooks
.types
.type_for_mode (int_mode
, 1);
11467 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
,
11468 type_for_mode
, exp
);
11472 vec
<constructor_elt
, va_gc
> *v
;
11473 /* Constructors need to be fixed-length. FIXME. */
11474 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
11475 vec_alloc (v
, nunits
);
11476 for (unsigned int i
= 0; i
< nunits
; ++i
)
11477 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
11478 tmp
= build_constructor (type
, v
);
11480 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
11485 if (modifier
== EXPAND_WRITE
)
11487 /* Writing into CONST_DECL is always invalid, but handle it
11489 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (exp
));
11490 scalar_int_mode address_mode
= targetm
.addr_space
.address_mode (as
);
11491 op0
= expand_expr_addr_expr_1 (exp
, NULL_RTX
, address_mode
,
11492 EXPAND_NORMAL
, as
);
11493 op0
= memory_address_addr_space (mode
, op0
, as
);
11494 temp
= gen_rtx_MEM (mode
, op0
);
11495 set_mem_addr_space (temp
, as
);
11498 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
11501 /* If optimized, generate immediate CONST_DOUBLE
11502 which will be turned into memory by reload if necessary.
11504 We used to force a register so that loop.c could see it. But
11505 this does not allow gen_* patterns to perform optimizations with
11506 the constants. It also produces two insns in cases like "x = 1.0;".
11507 On most machines, floating-point constants are not permitted in
11508 many insns, so we'd end up copying it to a register in any case.
11510 Now, we do the copying in expand_binop, if appropriate. */
11511 return const_double_from_real_value (TREE_REAL_CST (exp
),
11512 TYPE_MODE (TREE_TYPE (exp
)));
11515 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
11516 TYPE_MODE (TREE_TYPE (exp
)));
11519 /* Handle evaluating a complex constant in a CONCAT target. */
11520 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
11524 mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
11525 rtarg
= XEXP (original_target
, 0);
11526 itarg
= XEXP (original_target
, 1);
11528 /* Move the real and imaginary parts separately. */
11529 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
11530 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
11533 emit_move_insn (rtarg
, op0
);
11535 emit_move_insn (itarg
, op1
);
11537 return original_target
;
11543 temp
= expand_expr_constant (exp
, 1, modifier
);
11545 /* temp contains a constant address.
11546 On RISC machines where a constant address isn't valid,
11547 make some insns to get that address into a register. */
11548 if (modifier
!= EXPAND_CONST_ADDRESS
11549 && modifier
!= EXPAND_INITIALIZER
11550 && modifier
!= EXPAND_SUM
11551 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
11552 MEM_ADDR_SPACE (temp
)))
11553 return replace_equiv_address (temp
,
11554 copy_rtx (XEXP (temp
, 0)));
11558 return immed_wide_int_const (poly_int_cst_value (exp
), mode
);
11562 tree val
= treeop0
;
11563 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
11564 inner_reference_p
);
11566 if (!SAVE_EXPR_RESOLVED_P (exp
))
11568 /* We can indeed still hit this case, typically via builtin
11569 expanders calling save_expr immediately before expanding
11570 something. Assume this means that we only have to deal
11571 with non-BLKmode values. */
11572 gcc_assert (GET_MODE (ret
) != BLKmode
);
11574 val
= build_decl (curr_insn_location (),
11575 VAR_DECL
, NULL
, TREE_TYPE (exp
));
11576 DECL_ARTIFICIAL (val
) = 1;
11577 DECL_IGNORED_P (val
) = 1;
11579 TREE_OPERAND (exp
, 0) = treeop0
;
11580 SAVE_EXPR_RESOLVED_P (exp
) = 1;
11582 if (!CONSTANT_P (ret
))
11583 ret
= copy_to_reg (ret
);
11584 SET_DECL_RTL (val
, ret
);
11592 /* If we don't need the result, just ensure we evaluate any
11596 unsigned HOST_WIDE_INT idx
;
11599 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
11600 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
11605 return expand_constructor (exp
, target
, modifier
, false);
11607 case TARGET_MEM_REF
:
11610 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
11611 unsigned int align
;
11613 op0
= addr_for_mem_ref (exp
, as
, true);
11614 op0
= memory_address_addr_space (mode
, op0
, as
);
11615 temp
= gen_rtx_MEM (mode
, op0
);
11616 set_mem_attributes (temp
, exp
, 0);
11617 set_mem_addr_space (temp
, as
);
11618 align
= get_object_alignment (exp
);
11619 if (modifier
!= EXPAND_WRITE
11620 && modifier
!= EXPAND_MEMORY
11622 && align
< GET_MODE_ALIGNMENT (mode
))
11623 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
11624 align
, NULL_RTX
, NULL
);
11625 return EXTEND_BITINT (temp
);
11630 const bool reverse
= REF_REVERSE_STORAGE_ORDER (exp
);
11632 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
11633 machine_mode address_mode
;
11634 tree base
= TREE_OPERAND (exp
, 0);
11637 /* Handle expansion of non-aliased memory with non-BLKmode. That
11638 might end up in a register. */
11639 if (mem_ref_refers_to_non_mem_p (exp
))
11641 poly_int64 offset
= mem_ref_offset (exp
).force_shwi ();
11642 base
= TREE_OPERAND (base
, 0);
11643 poly_uint64 type_size
;
11644 if (known_eq (offset
, 0)
11646 && poly_int_tree_p (TYPE_SIZE (type
), &type_size
)
11647 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base
)), type_size
))
11648 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
11649 target
, tmode
, modifier
);
11650 if (TYPE_MODE (type
) == BLKmode
)
11652 temp
= assign_stack_temp (DECL_MODE (base
),
11653 GET_MODE_SIZE (DECL_MODE (base
)));
11654 store_expr (base
, temp
, 0, false, false);
11655 temp
= adjust_address (temp
, BLKmode
, offset
);
11656 set_mem_size (temp
, int_size_in_bytes (type
));
11659 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
11660 bitsize_int (offset
* BITS_PER_UNIT
));
11661 REF_REVERSE_STORAGE_ORDER (exp
) = reverse
;
11662 return expand_expr (exp
, target
, tmode
, modifier
);
11664 address_mode
= targetm
.addr_space
.address_mode (as
);
11665 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
11667 tree mask
= gimple_assign_rhs2 (def_stmt
);
11668 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
11669 gimple_assign_rhs1 (def_stmt
), mask
);
11670 TREE_OPERAND (exp
, 0) = base
;
11672 align
= get_object_alignment (exp
);
11673 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
11674 op0
= memory_address_addr_space (mode
, op0
, as
);
11675 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
11677 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
11678 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
11679 op0
= memory_address_addr_space (mode
, op0
, as
);
11681 temp
= gen_rtx_MEM (mode
, op0
);
11682 set_mem_attributes (temp
, exp
, 0);
11683 set_mem_addr_space (temp
, as
);
11684 if (TREE_THIS_VOLATILE (exp
))
11685 MEM_VOLATILE_P (temp
) = 1;
11686 if (modifier
== EXPAND_WRITE
|| modifier
== EXPAND_MEMORY
)
11688 if (!inner_reference_p
11690 && align
< GET_MODE_ALIGNMENT (mode
))
11691 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
, align
,
11692 modifier
== EXPAND_STACK_PARM
11693 ? NULL_RTX
: target
, alt_rtl
);
11695 temp
= flip_storage_order (mode
, temp
);
11696 return EXTEND_BITINT (temp
);
11702 tree array
= treeop0
;
11703 tree index
= treeop1
;
11706 /* Fold an expression like: "foo"[2].
11707 This is not done in fold so it won't happen inside &.
11708 Don't fold if this is for wide characters since it's too
11709 difficult to do correctly and this is a very rare case. */
11711 if (modifier
!= EXPAND_CONST_ADDRESS
11712 && modifier
!= EXPAND_INITIALIZER
11713 && modifier
!= EXPAND_MEMORY
)
11715 tree t
= fold_read_from_constant_string (exp
);
11718 return expand_expr (t
, target
, tmode
, modifier
);
11721 /* If this is a constant index into a constant array,
11722 just get the value from the array. Handle both the cases when
11723 we have an explicit constructor and when our operand is a variable
11724 that was declared const. */
11726 if (modifier
!= EXPAND_CONST_ADDRESS
11727 && modifier
!= EXPAND_INITIALIZER
11728 && modifier
!= EXPAND_MEMORY
11729 && TREE_CODE (array
) == CONSTRUCTOR
11730 && ! TREE_SIDE_EFFECTS (array
)
11731 && TREE_CODE (index
) == INTEGER_CST
)
11733 unsigned HOST_WIDE_INT ix
;
11736 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
11738 if (tree_int_cst_equal (field
, index
))
11740 if (!TREE_SIDE_EFFECTS (value
))
11741 return expand_expr (fold (value
), target
, tmode
, modifier
);
11746 else if (optimize
>= 1
11747 && modifier
!= EXPAND_CONST_ADDRESS
11748 && modifier
!= EXPAND_INITIALIZER
11749 && modifier
!= EXPAND_MEMORY
11750 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
11751 && TREE_CODE (index
) == INTEGER_CST
11752 && (VAR_P (array
) || TREE_CODE (array
) == CONST_DECL
)
11753 && (init
= ctor_for_folding (array
)) != error_mark_node
)
11755 if (init
== NULL_TREE
)
11757 tree value
= build_zero_cst (type
);
11758 if (TREE_CODE (value
) == CONSTRUCTOR
)
11760 /* If VALUE is a CONSTRUCTOR, this optimization is only
11761 useful if this doesn't store the CONSTRUCTOR into
11762 memory. If it does, it is more efficient to just
11763 load the data from the array directly. */
11764 rtx ret
= expand_constructor (value
, target
,
11766 if (ret
== NULL_RTX
)
11771 return expand_expr (value
, target
, tmode
, modifier
);
11773 else if (TREE_CODE (init
) == CONSTRUCTOR
)
11775 unsigned HOST_WIDE_INT ix
;
11778 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
11780 if (tree_int_cst_equal (field
, index
))
11782 if (TREE_SIDE_EFFECTS (value
))
11785 if (TREE_CODE (value
) == CONSTRUCTOR
)
11787 /* If VALUE is a CONSTRUCTOR, this
11788 optimization is only useful if
11789 this doesn't store the CONSTRUCTOR
11790 into memory. If it does, it is more
11791 efficient to just load the data from
11792 the array directly. */
11793 rtx ret
= expand_constructor (value
, target
,
11795 if (ret
== NULL_RTX
)
11800 expand_expr (fold (value
), target
, tmode
, modifier
);
11803 else if (TREE_CODE (init
) == STRING_CST
)
11805 tree low_bound
= array_ref_low_bound (exp
);
11806 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
11808 /* Optimize the special case of a zero lower bound.
11810 We convert the lower bound to sizetype to avoid problems
11811 with constant folding. E.g. suppose the lower bound is
11812 1 and its mode is QI. Without the conversion
11813 (ARRAY + (INDEX - (unsigned char)1))
11815 (ARRAY + (-(unsigned char)1) + INDEX)
11817 (ARRAY + 255 + INDEX). Oops! */
11818 if (!integer_zerop (low_bound
))
11819 index1
= size_diffop_loc (loc
, index1
,
11820 fold_convert_loc (loc
, sizetype
,
11823 if (tree_fits_uhwi_p (index1
)
11824 && compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
11826 tree char_type
= TREE_TYPE (TREE_TYPE (init
));
11827 scalar_int_mode char_mode
;
11829 if (is_int_mode (TYPE_MODE (char_type
), &char_mode
)
11830 && GET_MODE_SIZE (char_mode
) == 1)
11831 return gen_int_mode (TREE_STRING_POINTER (init
)
11832 [TREE_INT_CST_LOW (index1
)],
11838 goto normal_inner_ref
;
11840 case COMPONENT_REF
:
11841 gcc_assert (TREE_CODE (treeop0
) != CONSTRUCTOR
);
11842 /* Fall through. */
11843 case BIT_FIELD_REF
:
11844 case ARRAY_RANGE_REF
:
11847 machine_mode mode1
, mode2
;
11848 poly_int64 bitsize
, bitpos
, bytepos
;
11850 int reversep
, volatilep
= 0;
11852 = get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
11853 &unsignedp
, &reversep
, &volatilep
);
11854 rtx orig_op0
, memloc
;
11855 bool clear_mem_expr
= false;
11856 bool must_force_mem
;
11858 /* If we got back the original object, something is wrong. Perhaps
11859 we are evaluating an expression too early. In any event, don't
11860 infinitely recurse. */
11861 gcc_assert (tem
!= exp
);
11863 /* Make sure bitpos is not negative, this can wreak havoc later. */
11864 if (maybe_lt (bitpos
, 0))
11866 gcc_checking_assert (offset
== NULL_TREE
);
11867 offset
= size_int (bits_to_bytes_round_down (bitpos
));
11868 bitpos
= num_trailing_bits (bitpos
);
11871 /* If we have either an offset, a BLKmode result, or a reference
11872 outside the underlying object, we must force it to memory.
11873 Such a case can occur in Ada if we have unchecked conversion
11874 of an expression from a scalar type to an aggregate type or
11875 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
11876 passed a partially uninitialized object or a view-conversion
11877 to a larger size. */
11878 must_force_mem
= offset
!= NULL_TREE
11879 || mode1
== BLKmode
11880 || (mode
== BLKmode
11881 && !int_mode_for_size (bitsize
, 1).exists ());
11883 const enum expand_modifier tem_modifier
11886 : modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
;
11888 /* If TEM's type is a union of variable size, pass TARGET to the inner
11889 computation, since it will need a temporary and TARGET is known
11890 to have to do. This occurs in unchecked conversion in Ada. */
11891 const rtx tem_target
11892 = TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
11893 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
11894 && TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
))) != INTEGER_CST
11895 && modifier
!= EXPAND_STACK_PARM
11900 = expand_expr_real (tem
, tem_target
, VOIDmode
, tem_modifier
, NULL
,
11903 /* If the field has a mode, we want to access it in the
11904 field's mode, not the computed mode.
11905 If a MEM has VOIDmode (external with incomplete type),
11906 use BLKmode for it instead. */
11909 if (mode1
!= VOIDmode
)
11910 op0
= adjust_address (op0
, mode1
, 0);
11911 else if (GET_MODE (op0
) == VOIDmode
)
11912 op0
= adjust_address (op0
, BLKmode
, 0);
11916 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
11918 /* See above for the rationale. */
11919 if (maybe_gt (bitpos
+ bitsize
, GET_MODE_BITSIZE (mode2
)))
11920 must_force_mem
= true;
11922 /* Handle CONCAT first. */
11923 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
11925 if (known_eq (bitpos
, 0)
11926 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
)))
11927 && COMPLEX_MODE_P (mode1
)
11928 && COMPLEX_MODE_P (GET_MODE (op0
))
11929 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1
))
11930 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0
)))))
11933 op0
= flip_storage_order (GET_MODE (op0
), op0
);
11934 if (mode1
!= GET_MODE (op0
))
11937 for (int i
= 0; i
< 2; i
++)
11939 rtx op
= read_complex_part (op0
, i
!= 0);
11940 if (GET_CODE (op
) == SUBREG
)
11941 op
= force_reg (GET_MODE (op
), op
);
11942 temp
= gen_lowpart_common (GET_MODE_INNER (mode1
), op
);
11947 if (!REG_P (op
) && !MEM_P (op
))
11948 op
= force_reg (GET_MODE (op
), op
);
11949 op
= gen_lowpart (GET_MODE_INNER (mode1
), op
);
11953 op0
= gen_rtx_CONCAT (mode1
, parts
[0], parts
[1]);
11957 if (known_eq (bitpos
, 0)
11958 && known_eq (bitsize
,
11959 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
11960 && maybe_ne (bitsize
, 0))
11962 op0
= XEXP (op0
, 0);
11963 mode2
= GET_MODE (op0
);
11965 else if (known_eq (bitpos
,
11966 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
11967 && known_eq (bitsize
,
11968 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1))))
11969 && maybe_ne (bitpos
, 0)
11970 && maybe_ne (bitsize
, 0))
11972 op0
= XEXP (op0
, 1);
11974 mode2
= GET_MODE (op0
);
11977 /* Otherwise force into memory. */
11978 must_force_mem
= true;
11981 /* If this is a constant, put it in a register if it is a legitimate
11982 constant and we don't need a memory reference. */
11983 if (CONSTANT_P (op0
)
11984 && mode2
!= BLKmode
11985 && targetm
.legitimate_constant_p (mode2
, op0
)
11986 && !must_force_mem
)
11987 op0
= force_reg (mode2
, op0
);
11989 /* Otherwise, if this is a constant, try to force it to the constant
11990 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
11991 is a legitimate constant. */
11992 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
11993 op0
= validize_mem (memloc
);
11995 /* Otherwise, if this is a constant or the object is not in memory
11996 and need be, put it there. */
11997 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
11999 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
12000 emit_move_insn (memloc
, op0
);
12002 clear_mem_expr
= true;
12007 machine_mode address_mode
;
12008 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
12011 gcc_assert (MEM_P (op0
));
12013 address_mode
= get_address_mode (op0
);
12014 if (GET_MODE (offset_rtx
) != address_mode
)
12016 /* We cannot be sure that the RTL in offset_rtx is valid outside
12017 of a memory address context, so force it into a register
12018 before attempting to convert it to the desired mode. */
12019 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
12020 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
12023 /* See the comment in expand_assignment for the rationale. */
12024 if (mode1
!= VOIDmode
12025 && maybe_ne (bitpos
, 0)
12026 && maybe_gt (bitsize
, 0)
12027 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
12028 && multiple_p (bitpos
, bitsize
)
12029 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
12030 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
12032 op0
= adjust_address (op0
, mode1
, bytepos
);
12036 op0
= offset_address (op0
, offset_rtx
,
12037 highest_pow2_factor (offset
));
12040 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
12041 record its alignment as BIGGEST_ALIGNMENT. */
12043 && known_eq (bitpos
, 0)
12045 && is_aligning_offset (offset
, tem
))
12046 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
12048 /* Don't forget about volatility even if this is a bitfield. */
12049 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
12051 if (op0
== orig_op0
)
12052 op0
= copy_rtx (op0
);
12054 MEM_VOLATILE_P (op0
) = 1;
12057 if (MEM_P (op0
) && TREE_CODE (tem
) == FUNCTION_DECL
)
12059 if (op0
== orig_op0
)
12060 op0
= copy_rtx (op0
);
12062 set_mem_align (op0
, BITS_PER_UNIT
);
12065 /* In cases where an aligned union has an unaligned object
12066 as a field, we might be extracting a BLKmode value from
12067 an integer-mode (e.g., SImode) object. Handle this case
12068 by doing the extract into an object as wide as the field
12069 (which we know to be the width of a basic mode), then
12070 storing into memory, and changing the mode to BLKmode. */
12071 if (mode1
== VOIDmode
12072 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
12073 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
12074 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
12075 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
12076 && modifier
!= EXPAND_CONST_ADDRESS
12077 && modifier
!= EXPAND_INITIALIZER
12078 && modifier
!= EXPAND_MEMORY
)
12079 /* If the bitfield is volatile and the bitsize
12080 is narrower than the access size of the bitfield,
12081 we need to extract bitfields from the access. */
12082 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
12083 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
12084 && mode1
!= BLKmode
12085 && maybe_lt (bitsize
, GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
))
12086 /* If the field isn't aligned enough to fetch as a memref,
12087 fetch it as a bit field. */
12088 || (mode1
!= BLKmode
12090 ? MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
12091 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode1
))
12092 : TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
12093 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
12094 && modifier
!= EXPAND_MEMORY
12095 && ((modifier
== EXPAND_CONST_ADDRESS
12096 || modifier
== EXPAND_INITIALIZER
)
12098 : targetm
.slow_unaligned_access (mode1
,
12100 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
12101 /* If the type and the field are a constant size and the
12102 size of the type isn't the same size as the bitfield,
12103 we must use bitfield operations. */
12104 || (known_size_p (bitsize
)
12105 && TYPE_SIZE (TREE_TYPE (exp
))
12106 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
12107 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
12110 machine_mode ext_mode
= mode
;
12112 if (ext_mode
== BLKmode
12113 && ! (target
!= 0 && MEM_P (op0
)
12115 && multiple_p (bitpos
, BITS_PER_UNIT
)))
12116 ext_mode
= int_mode_for_size (bitsize
, 1).else_blk ();
12118 if (ext_mode
== BLKmode
)
12121 target
= assign_temp (type
, 1, 1);
12123 /* ??? Unlike the similar test a few lines below, this one is
12124 very likely obsolete. */
12125 if (known_eq (bitsize
, 0))
12128 /* In this case, BITPOS must start at a byte boundary and
12129 TARGET, if specified, must be a MEM. */
12130 gcc_assert (MEM_P (op0
)
12131 && (!target
|| MEM_P (target
)));
12133 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
12134 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
12135 emit_block_move (target
,
12136 adjust_address (op0
, VOIDmode
, bytepos
),
12137 gen_int_mode (bytesize
, Pmode
),
12138 (modifier
== EXPAND_STACK_PARM
12139 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
12144 /* If we have nothing to extract, the result will be 0 for targets
12145 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
12146 return 0 for the sake of consistency, as reading a zero-sized
12147 bitfield is valid in Ada and the value is fully specified. */
12148 if (known_eq (bitsize
, 0))
12151 op0
= validize_mem (op0
);
12153 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
12154 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
12156 /* If the result has aggregate type and the extraction is done in
12157 an integral mode, then the field may be not aligned on a byte
12158 boundary; in this case, if it has reverse storage order, it
12159 needs to be extracted as a scalar field with reverse storage
12160 order and put back into memory order afterwards. */
12161 if (AGGREGATE_TYPE_P (type
)
12162 && GET_MODE_CLASS (ext_mode
) == MODE_INT
)
12163 reversep
= TYPE_REVERSE_STORAGE_ORDER (type
);
12165 gcc_checking_assert (known_ge (bitpos
, 0));
12166 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
12167 (modifier
== EXPAND_STACK_PARM
12168 ? NULL_RTX
: target
),
12169 ext_mode
, ext_mode
, reversep
, alt_rtl
);
12171 /* If the result has aggregate type and the mode of OP0 is an
12172 integral mode then, if BITSIZE is narrower than this mode
12173 and this is for big-endian data, we must put the field
12174 into the high-order bits. And we must also put it back
12175 into memory order if it has been previously reversed. */
12176 scalar_int_mode op0_mode
;
12177 if (AGGREGATE_TYPE_P (type
)
12178 && is_int_mode (GET_MODE (op0
), &op0_mode
))
12180 HOST_WIDE_INT size
= GET_MODE_BITSIZE (op0_mode
);
12182 gcc_checking_assert (known_le (bitsize
, size
));
12183 if (maybe_lt (bitsize
, size
)
12184 && reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
12185 op0
= expand_shift (LSHIFT_EXPR
, op0_mode
, op0
,
12186 size
- bitsize
, op0
, 1);
12189 op0
= flip_storage_order (op0_mode
, op0
);
12192 /* If the result type is BLKmode, store the data into a temporary
12193 of the appropriate type, but with the mode corresponding to the
12194 mode for the data we have (op0's mode). */
12195 if (mode
== BLKmode
)
12198 = assign_stack_temp_for_type (ext_mode
,
12199 GET_MODE_BITSIZE (ext_mode
),
12201 emit_move_insn (new_rtx
, op0
);
12202 op0
= copy_rtx (new_rtx
);
12203 PUT_MODE (op0
, BLKmode
);
12209 /* If the result is BLKmode, use that to access the object
12211 if (mode
== BLKmode
)
12214 /* Get a reference to just this component. */
12215 bytepos
= bits_to_bytes_round_down (bitpos
);
12216 if (modifier
== EXPAND_CONST_ADDRESS
12217 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
12218 op0
= adjust_address_nv (op0
, mode1
, bytepos
);
12220 op0
= adjust_address (op0
, mode1
, bytepos
);
12222 if (op0
== orig_op0
)
12223 op0
= copy_rtx (op0
);
12225 /* Don't set memory attributes if the base expression is
12226 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
12227 we should just honor its original memory attributes. */
12228 if (!(TREE_CODE (tem
) == SSA_NAME
12229 && (MEM_P (orig_op0
) || CONSTANT_P (orig_op0
))))
12230 set_mem_attributes (op0
, exp
, 0);
12232 if (REG_P (XEXP (op0
, 0)))
12233 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
12235 /* If op0 is a temporary because the original expressions was forced
12236 to memory, clear MEM_EXPR so that the original expression cannot
12237 be marked as addressable through MEM_EXPR of the temporary. */
12238 if (clear_mem_expr
)
12239 set_mem_expr (op0
, NULL_TREE
);
12241 MEM_VOLATILE_P (op0
) |= volatilep
;
12244 && modifier
!= EXPAND_MEMORY
12245 && modifier
!= EXPAND_WRITE
)
12246 op0
= flip_storage_order (mode1
, op0
);
12248 op0
= EXTEND_BITINT (op0
);
12250 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
12251 || modifier
== EXPAND_CONST_ADDRESS
12252 || modifier
== EXPAND_INITIALIZER
)
12256 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
12258 convert_move (target
, op0
, unsignedp
);
12263 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
12266 /* All valid uses of __builtin_va_arg_pack () are removed during
12268 if (CALL_EXPR_VA_ARG_PACK (exp
))
12269 error ("invalid use of %<__builtin_va_arg_pack ()%>");
12271 tree fndecl
= get_callee_fndecl (exp
), attr
;
12274 /* Don't diagnose the error attribute in thunks, those are
12275 artificially created. */
12276 && !CALL_FROM_THUNK_P (exp
)
12277 && (attr
= lookup_attribute ("error",
12278 DECL_ATTRIBUTES (fndecl
))) != NULL
)
12280 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
12281 error ("call to %qs declared with attribute error: %s",
12282 identifier_to_locale (ident
),
12283 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
12286 /* Don't diagnose the warning attribute in thunks, those are
12287 artificially created. */
12288 && !CALL_FROM_THUNK_P (exp
)
12289 && (attr
= lookup_attribute ("warning",
12290 DECL_ATTRIBUTES (fndecl
))) != NULL
)
12292 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
12293 warning_at (EXPR_LOCATION (exp
),
12294 OPT_Wattribute_warning
,
12295 "call to %qs declared with attribute warning: %s",
12296 identifier_to_locale (ident
),
12297 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
12300 /* Check for a built-in function. */
12301 if (fndecl
&& fndecl_built_in_p (fndecl
))
12303 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
12304 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
12307 return expand_call (exp
, target
, ignore
);
12309 case VIEW_CONVERT_EXPR
:
12312 /* If we are converting to BLKmode, try to avoid an intermediate
12313 temporary by fetching an inner memory reference. */
12314 if (mode
== BLKmode
12315 && poly_int_tree_p (TYPE_SIZE (type
))
12316 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
12317 && handled_component_p (treeop0
))
12319 machine_mode mode1
;
12320 poly_int64 bitsize
, bitpos
, bytepos
;
12322 int reversep
, volatilep
= 0;
12324 = get_inner_reference (treeop0
, &bitsize
, &bitpos
, &offset
, &mode1
,
12325 &unsignedp
, &reversep
, &volatilep
);
12327 /* ??? We should work harder and deal with non-zero offsets. */
12329 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
12331 && known_size_p (bitsize
)
12332 && known_eq (wi::to_poly_offset (TYPE_SIZE (type
)), bitsize
))
12334 /* See the normal_inner_ref case for the rationale. */
12336 = expand_expr_real (tem
,
12337 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
12338 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
12340 && modifier
!= EXPAND_STACK_PARM
12341 ? target
: NULL_RTX
),
12343 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
12346 if (MEM_P (orig_op0
))
12350 /* Get a reference to just this component. */
12351 if (modifier
== EXPAND_CONST_ADDRESS
12352 || modifier
== EXPAND_SUM
12353 || modifier
== EXPAND_INITIALIZER
)
12354 op0
= adjust_address_nv (op0
, mode
, bytepos
);
12356 op0
= adjust_address (op0
, mode
, bytepos
);
12358 if (op0
== orig_op0
)
12359 op0
= copy_rtx (op0
);
12361 set_mem_attributes (op0
, treeop0
, 0);
12362 if (REG_P (XEXP (op0
, 0)))
12363 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
12365 MEM_VOLATILE_P (op0
) |= volatilep
;
12371 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
12372 NULL
, inner_reference_p
);
12374 /* If the input and output modes are both the same, we are done. */
12375 if (mode
== GET_MODE (op0
))
12377 /* If neither mode is BLKmode, and both modes are the same size
12378 then we can use gen_lowpart. */
12379 else if (mode
!= BLKmode
12380 && GET_MODE (op0
) != BLKmode
12381 && known_eq (GET_MODE_PRECISION (mode
),
12382 GET_MODE_PRECISION (GET_MODE (op0
)))
12383 && !COMPLEX_MODE_P (GET_MODE (op0
)))
12385 if (GET_CODE (op0
) == SUBREG
)
12386 op0
= force_reg (GET_MODE (op0
), op0
);
12387 temp
= gen_lowpart_common (mode
, op0
);
12392 if (!REG_P (op0
) && !MEM_P (op0
))
12393 op0
= force_reg (GET_MODE (op0
), op0
);
12394 op0
= gen_lowpart (mode
, op0
);
12397 /* If both types are integral, convert from one mode to the other. */
12398 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
12399 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
12400 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
12401 /* If the output type is a bit-field type, do an extraction. */
12402 else if (reduce_bit_field
)
12403 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
12404 TYPE_UNSIGNED (type
), NULL_RTX
,
12405 mode
, mode
, false, NULL
);
12406 /* As a last resort, spill op0 to memory, and reload it in a
12408 else if (!MEM_P (op0
))
12410 /* If the operand is not a MEM, force it into memory. Since we
12411 are going to be changing the mode of the MEM, don't call
12412 force_const_mem for constants because we don't allow pool
12413 constants to change mode. */
12414 tree inner_type
= TREE_TYPE (treeop0
);
12416 gcc_assert (!TREE_ADDRESSABLE (exp
));
12418 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
12420 = assign_stack_temp_for_type
12421 (TYPE_MODE (inner_type
),
12422 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
12424 emit_move_insn (target
, op0
);
12428 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
12429 output type is such that the operand is known to be aligned, indicate
12430 that it is. Otherwise, we need only be concerned about alignment for
12431 non-BLKmode results. */
12434 enum insn_code icode
;
12436 if (modifier
!= EXPAND_WRITE
12437 && modifier
!= EXPAND_MEMORY
12438 && !inner_reference_p
12440 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
12442 /* If the target does have special handling for unaligned
12443 loads of mode then use them. */
12444 if ((icode
= optab_handler (movmisalign_optab
, mode
))
12445 != CODE_FOR_nothing
)
12449 op0
= adjust_address (op0
, mode
, 0);
12450 /* We've already validated the memory, and we're creating a
12451 new pseudo destination. The predicates really can't
12453 reg
= gen_reg_rtx (mode
);
12455 /* Nor can the insn generator. */
12456 rtx_insn
*insn
= GEN_FCN (icode
) (reg
, op0
);
12460 else if (STRICT_ALIGNMENT
)
12462 poly_uint64 mode_size
= GET_MODE_SIZE (mode
);
12463 poly_uint64 temp_size
= mode_size
;
12464 if (GET_MODE (op0
) != BLKmode
)
12465 temp_size
= upper_bound (temp_size
,
12466 GET_MODE_SIZE (GET_MODE (op0
)));
12468 = assign_stack_temp_for_type (mode
, temp_size
, type
);
12469 rtx new_with_op0_mode
12470 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
12472 gcc_assert (!TREE_ADDRESSABLE (exp
));
12474 if (GET_MODE (op0
) == BLKmode
)
12476 rtx size_rtx
= gen_int_mode (mode_size
, Pmode
);
12477 emit_block_move (new_with_op0_mode
, op0
, size_rtx
,
12478 (modifier
== EXPAND_STACK_PARM
12479 ? BLOCK_OP_CALL_PARM
12480 : BLOCK_OP_NORMAL
));
12483 emit_move_insn (new_with_op0_mode
, op0
);
12489 op0
= adjust_address (op0
, mode
, 0);
12496 tree lhs
= treeop0
;
12497 tree rhs
= treeop1
;
12498 gcc_assert (ignore
);
12500 /* Check for |= or &= of a bitfield of size one into another bitfield
12501 of size 1. In this case, (unless we need the result of the
12502 assignment) we can do this more efficiently with a
12503 test followed by an assignment, if necessary.
12505 ??? At this point, we can't get a BIT_FIELD_REF here. But if
12506 things change so we do, this code should be enhanced to
12508 if (TREE_CODE (lhs
) == COMPONENT_REF
12509 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
12510 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
12511 && TREE_OPERAND (rhs
, 0) == lhs
12512 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
12513 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
12514 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
12516 rtx_code_label
*label
= gen_label_rtx ();
12517 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
12518 profile_probability prob
= profile_probability::uninitialized ();
12520 jumpifnot (TREE_OPERAND (rhs
, 1), label
, prob
);
12522 jumpif (TREE_OPERAND (rhs
, 1), label
, prob
);
12523 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
12525 do_pending_stack_adjust ();
12526 emit_label (label
);
12530 expand_assignment (lhs
, rhs
, false);
12535 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
12537 case REALPART_EXPR
:
12538 op0
= expand_normal (treeop0
);
12539 return read_complex_part (op0
, false);
12541 case IMAGPART_EXPR
:
12542 op0
= expand_normal (treeop0
);
12543 return read_complex_part (op0
, true);
12550 /* Expanded in cfgexpand.cc. */
12551 gcc_unreachable ();
12553 case TRY_CATCH_EXPR
:
12555 case EH_FILTER_EXPR
:
12556 case TRY_FINALLY_EXPR
:
12558 /* Lowered by tree-eh.cc. */
12559 gcc_unreachable ();
12561 case WITH_CLEANUP_EXPR
:
12562 case CLEANUP_POINT_EXPR
:
12564 case CASE_LABEL_EXPR
:
12569 case COMPOUND_EXPR
:
12570 case PREINCREMENT_EXPR
:
12571 case PREDECREMENT_EXPR
:
12572 case POSTINCREMENT_EXPR
:
12573 case POSTDECREMENT_EXPR
:
12576 case COMPOUND_LITERAL_EXPR
:
12577 /* Lowered by gimplify.cc. */
12578 gcc_unreachable ();
12581 /* Function descriptors are not valid except for as
12582 initialization constants, and should not be expanded. */
12583 gcc_unreachable ();
12585 case WITH_SIZE_EXPR
:
12586 /* WITH_SIZE_EXPR expands to its first argument. The caller should
12587 have pulled out the size to use in whatever context it needed. */
12588 return expand_expr_real (treeop0
, original_target
, tmode
,
12589 modifier
, alt_rtl
, inner_reference_p
);
12592 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
12595 #undef EXTEND_BITINT
12597 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
12598 signedness of TYPE), possibly returning the result in TARGET.
12599 TYPE is known to be a partial integer type. */
12601 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
12603 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (type
);
12604 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
12605 gcc_assert ((GET_MODE (exp
) == VOIDmode
|| GET_MODE (exp
) == mode
)
12606 && (!target
|| GET_MODE (target
) == mode
));
12608 /* For constant values, reduce using wide_int_to_tree. */
12609 if (poly_int_rtx_p (exp
))
12611 auto value
= wi::to_poly_wide (exp
, mode
);
12612 tree t
= wide_int_to_tree (type
, value
);
12613 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
12615 else if (TYPE_UNSIGNED (type
))
12617 rtx mask
= immed_wide_int_const
12618 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
12619 return expand_and (mode
, exp
, mask
, target
);
12623 int count
= GET_MODE_PRECISION (mode
) - prec
;
12624 exp
= expand_shift (LSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
12625 return expand_shift (RSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
12629 /* Subroutine of above: returns true if OFFSET corresponds to an offset that
12630 when applied to the address of EXP produces an address known to be
12631 aligned more than BIGGEST_ALIGNMENT. */
12634 is_aligning_offset (const_tree offset
, const_tree exp
)
12636 /* Strip off any conversions. */
12637 while (CONVERT_EXPR_P (offset
))
12638 offset
= TREE_OPERAND (offset
, 0);
12640 /* We must now have a BIT_AND_EXPR with a constant that is one less than
12641 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
12642 if (TREE_CODE (offset
) != BIT_AND_EXPR
12643 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
12644 || compare_tree_int (TREE_OPERAND (offset
, 1),
12645 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
12646 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1))
12649 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
12650 It must be NEGATE_EXPR. Then strip any more conversions. */
12651 offset
= TREE_OPERAND (offset
, 0);
12652 while (CONVERT_EXPR_P (offset
))
12653 offset
= TREE_OPERAND (offset
, 0);
12655 if (TREE_CODE (offset
) != NEGATE_EXPR
)
12658 offset
= TREE_OPERAND (offset
, 0);
12659 while (CONVERT_EXPR_P (offset
))
12660 offset
= TREE_OPERAND (offset
, 0);
12662 /* This must now be the address of EXP. */
12663 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
12666 /* Return a STRING_CST corresponding to ARG's constant initializer either
12667 if it's a string constant, or, when VALREP is set, any other constant,
12669 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
12670 within the byte string that ARG is references. If nonnull set *MEM_SIZE
12671 to the size of the byte string. If nonnull, set *DECL to the constant
12672 declaration ARG refers to. */
12675 constant_byte_string (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
,
12676 bool valrep
= false)
12678 tree dummy
= NULL_TREE
;
12682 /* Store the type of the original expression before conversions
12683 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
12685 tree argtype
= TREE_TYPE (arg
);
12690 /* Non-constant index into the character array in an ARRAY_REF
12691 expression or null. */
12692 tree varidx
= NULL_TREE
;
12694 poly_int64 base_off
= 0;
12696 if (TREE_CODE (arg
) == ADDR_EXPR
)
12698 arg
= TREE_OPERAND (arg
, 0);
12700 if (TREE_CODE (arg
) == ARRAY_REF
)
12702 tree idx
= TREE_OPERAND (arg
, 1);
12703 if (TREE_CODE (idx
) != INTEGER_CST
)
12705 /* From a pointer (but not array) argument extract the variable
12706 index to prevent get_addr_base_and_unit_offset() from failing
12707 due to it. Use it later to compute the non-constant offset
12708 into the string and return it to the caller. */
12710 ref
= TREE_OPERAND (arg
, 0);
12712 if (TREE_CODE (TREE_TYPE (arg
)) == ARRAY_TYPE
)
12715 if (!integer_zerop (array_ref_low_bound (arg
)))
12718 if (!integer_onep (array_ref_element_size (arg
)))
12722 array
= get_addr_base_and_unit_offset (ref
, &base_off
);
12724 || (TREE_CODE (array
) != VAR_DECL
12725 && TREE_CODE (array
) != CONST_DECL
12726 && TREE_CODE (array
) != STRING_CST
))
12729 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
12731 tree arg0
= TREE_OPERAND (arg
, 0);
12732 tree arg1
= TREE_OPERAND (arg
, 1);
12735 tree str
= string_constant (arg0
, &offset
, mem_size
, decl
);
12738 str
= string_constant (arg1
, &offset
, mem_size
, decl
);
12744 /* Avoid pointers to arrays (see bug 86622). */
12745 if (POINTER_TYPE_P (TREE_TYPE (arg
))
12746 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg
))) == ARRAY_TYPE
12747 && !(decl
&& !*decl
)
12748 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
12749 && tree_fits_uhwi_p (*mem_size
)
12750 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
12753 tree type
= TREE_TYPE (offset
);
12754 arg1
= fold_convert (type
, arg1
);
12755 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, arg1
);
12760 else if (TREE_CODE (arg
) == SSA_NAME
)
12762 gimple
*stmt
= SSA_NAME_DEF_STMT (arg
);
12763 if (!is_gimple_assign (stmt
))
12766 tree rhs1
= gimple_assign_rhs1 (stmt
);
12767 tree_code code
= gimple_assign_rhs_code (stmt
);
12768 if (code
== ADDR_EXPR
)
12769 return string_constant (rhs1
, ptr_offset
, mem_size
, decl
);
12770 else if (code
!= POINTER_PLUS_EXPR
)
12774 if (tree str
= string_constant (rhs1
, &offset
, mem_size
, decl
))
12776 /* Avoid pointers to arrays (see bug 86622). */
12777 if (POINTER_TYPE_P (TREE_TYPE (rhs1
))
12778 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1
))) == ARRAY_TYPE
12779 && !(decl
&& !*decl
)
12780 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
12781 && tree_fits_uhwi_p (*mem_size
)
12782 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
12785 tree rhs2
= gimple_assign_rhs2 (stmt
);
12786 tree type
= TREE_TYPE (offset
);
12787 rhs2
= fold_convert (type
, rhs2
);
12788 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, rhs2
);
12793 else if (DECL_P (arg
))
12798 tree offset
= wide_int_to_tree (sizetype
, base_off
);
12801 if (TREE_CODE (TREE_TYPE (array
)) != ARRAY_TYPE
)
12804 gcc_assert (TREE_CODE (arg
) == ARRAY_REF
);
12805 tree chartype
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg
, 0)));
12806 if (TREE_CODE (chartype
) != INTEGER_TYPE
)
12809 offset
= fold_convert (sizetype
, varidx
);
12812 if (TREE_CODE (array
) == STRING_CST
)
12814 *ptr_offset
= fold_convert (sizetype
, offset
);
12815 *mem_size
= TYPE_SIZE_UNIT (TREE_TYPE (array
));
12818 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array
)))
12819 >= TREE_STRING_LENGTH (array
));
12823 tree init
= ctor_for_folding (array
);
12824 if (!init
|| init
== error_mark_node
)
12829 HOST_WIDE_INT cstoff
;
12830 if (!base_off
.is_constant (&cstoff
))
12833 /* Check that the host and target are sane. */
12834 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
12837 HOST_WIDE_INT typesz
= int_size_in_bytes (TREE_TYPE (init
));
12838 if (typesz
<= 0 || (int) typesz
!= typesz
)
12841 HOST_WIDE_INT size
= typesz
;
12843 && DECL_SIZE_UNIT (array
)
12844 && tree_fits_shwi_p (DECL_SIZE_UNIT (array
)))
12846 size
= tree_to_shwi (DECL_SIZE_UNIT (array
));
12847 gcc_checking_assert (size
>= typesz
);
12850 /* If value representation was requested convert the initializer
12851 for the whole array or object into a string of bytes forming
12852 its value representation and return it. */
12853 unsigned char *bytes
= XNEWVEC (unsigned char, size
);
12854 int r
= native_encode_initializer (init
, bytes
, size
);
12857 XDELETEVEC (bytes
);
12862 memset (bytes
+ r
, '\0', size
- r
);
12864 const char *p
= reinterpret_cast<const char *>(bytes
);
12865 init
= build_string_literal (size
, p
, char_type_node
);
12866 init
= TREE_OPERAND (init
, 0);
12867 init
= TREE_OPERAND (init
, 0);
12870 *mem_size
= size_int (TREE_STRING_LENGTH (init
));
12871 *ptr_offset
= wide_int_to_tree (ssizetype
, base_off
);
12879 if (TREE_CODE (init
) == CONSTRUCTOR
)
12881 /* Convert the 64-bit constant offset to a wider type to avoid
12882 overflow and use it to obtain the initializer for the subobject
12885 if (!base_off
.is_constant (&wioff
))
12888 wioff
*= BITS_PER_UNIT
;
12889 if (!wi::fits_uhwi_p (wioff
))
12892 base_off
= wioff
.to_uhwi ();
12893 unsigned HOST_WIDE_INT fieldoff
= 0;
12894 init
= fold_ctor_reference (TREE_TYPE (arg
), init
, base_off
, 0, array
,
12896 if (!init
|| init
== error_mark_node
)
12899 HOST_WIDE_INT cstoff
;
12900 if (!base_off
.is_constant (&cstoff
))
12903 cstoff
= (cstoff
- fieldoff
) / BITS_PER_UNIT
;
12904 tree off
= build_int_cst (sizetype
, cstoff
);
12906 offset
= fold_build2 (PLUS_EXPR
, TREE_TYPE (offset
), offset
, off
);
12911 *ptr_offset
= offset
;
12913 tree inittype
= TREE_TYPE (init
);
12915 if (TREE_CODE (init
) == INTEGER_CST
12916 && (TREE_CODE (TREE_TYPE (array
)) == INTEGER_TYPE
12917 || TYPE_MAIN_VARIANT (inittype
) == char_type_node
))
12919 /* Check that the host and target are sane. */
12920 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
12923 /* For a reference to (address of) a single constant character,
12924 store the native representation of the character in CHARBUF.
12925 If the reference is to an element of an array or a member
12926 of a struct, only consider narrow characters until ctors
12927 for wide character arrays are transformed to STRING_CSTs
12928 like those for narrow arrays. */
12929 unsigned char charbuf
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
12930 int len
= native_encode_expr (init
, charbuf
, sizeof charbuf
, 0);
12933 /* Construct a string literal with elements of INITTYPE and
12934 the representation above. Then strip
12935 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
12936 init
= build_string_literal (len
, (char *)charbuf
, inittype
);
12937 init
= TREE_OPERAND (TREE_OPERAND (init
, 0), 0);
12941 tree initsize
= TYPE_SIZE_UNIT (inittype
);
12943 if (TREE_CODE (init
) == CONSTRUCTOR
&& initializer_zerop (init
))
12945 /* Fold an empty/zero constructor for an implicitly initialized
12946 object or subobject into the empty string. */
12948 /* Determine the character type from that of the original
12950 tree chartype
= argtype
;
12951 if (POINTER_TYPE_P (chartype
))
12952 chartype
= TREE_TYPE (chartype
);
12953 while (TREE_CODE (chartype
) == ARRAY_TYPE
)
12954 chartype
= TREE_TYPE (chartype
);
12956 if (INTEGRAL_TYPE_P (chartype
)
12957 && TYPE_PRECISION (chartype
) == TYPE_PRECISION (char_type_node
))
12959 /* Convert a char array to an empty STRING_CST having an array
12960 of the expected type and size. */
12962 initsize
= integer_zero_node
;
12964 unsigned HOST_WIDE_INT size
= tree_to_uhwi (initsize
);
12965 if (size
> (unsigned HOST_WIDE_INT
) INT_MAX
)
12968 init
= build_string_literal (size
, NULL
, chartype
, size
);
12969 init
= TREE_OPERAND (init
, 0);
12970 init
= TREE_OPERAND (init
, 0);
12972 *ptr_offset
= integer_zero_node
;
12979 if (TREE_CODE (init
) != STRING_CST
)
12982 *mem_size
= initsize
;
12984 gcc_checking_assert (tree_to_shwi (initsize
) >= TREE_STRING_LENGTH (init
));
12989 /* Return STRING_CST if an ARG corresponds to a string constant or zero
12990 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
12991 non-constant) offset in bytes within the string that ARG is accessing.
12992 If MEM_SIZE is non-zero the storage size of the memory is returned.
12993 If DECL is non-zero the constant declaration is returned if available. */
12996 string_constant (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
)
12998 return constant_byte_string (arg
, ptr_offset
, mem_size
, decl
, false);
13001 /* Similar to string_constant, return a STRING_CST corresponding
13002 to the value representation of the first argument if it's
13006 byte_representation (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
)
13008 return constant_byte_string (arg
, ptr_offset
, mem_size
, decl
, true);
13011 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
13012 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
13013 for C2 > 0 to x & C3 == C2
13014 for C2 < 0 to x & C3 == (C2 & C3). */
13016 maybe_optimize_pow2p_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
13018 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
13019 tree treeop0
= gimple_assign_rhs1 (stmt
);
13020 tree treeop1
= gimple_assign_rhs2 (stmt
);
13021 tree type
= TREE_TYPE (*arg0
);
13022 scalar_int_mode mode
;
13023 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
13025 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
13026 || TYPE_PRECISION (type
) <= 1
13027 || TYPE_UNSIGNED (type
)
13028 /* Signed x % c == 0 should have been optimized into unsigned modulo
13030 || integer_zerop (*arg1
)
13031 /* If c is known to be non-negative, modulo will be expanded as unsigned
13033 || get_range_pos_neg (treeop0
) == 1)
13036 /* x % c == d where d < 0 && d <= -c should be always false. */
13037 if (tree_int_cst_sgn (*arg1
) == -1
13038 && -wi::to_widest (treeop1
) >= wi::to_widest (*arg1
))
13041 int prec
= TYPE_PRECISION (type
);
13042 wide_int w
= wi::to_wide (treeop1
) - 1;
13043 w
|= wi::shifted_mask (0, prec
- 1, true, prec
);
13044 tree c3
= wide_int_to_tree (type
, w
);
13046 if (tree_int_cst_sgn (*arg1
) == -1)
13047 c4
= wide_int_to_tree (type
, w
& wi::to_wide (*arg1
));
13049 rtx op0
= expand_normal (treeop0
);
13050 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
13052 bool speed_p
= optimize_insn_for_speed_p ();
13054 do_pending_stack_adjust ();
13056 location_t loc
= gimple_location (stmt
);
13057 struct separate_ops ops
;
13058 ops
.code
= TRUNC_MOD_EXPR
;
13059 ops
.location
= loc
;
13060 ops
.type
= TREE_TYPE (treeop0
);
13063 ops
.op2
= NULL_TREE
;
13065 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
13067 rtx_insn
*moinsns
= get_insns ();
13070 unsigned mocost
= seq_cost (moinsns
, speed_p
);
13071 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
13072 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
13074 ops
.code
= BIT_AND_EXPR
;
13075 ops
.location
= loc
;
13076 ops
.type
= TREE_TYPE (treeop0
);
13079 ops
.op2
= NULL_TREE
;
13081 rtx mur
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
13083 rtx_insn
*muinsns
= get_insns ();
13086 unsigned mucost
= seq_cost (muinsns
, speed_p
);
13087 mucost
+= rtx_cost (mur
, mode
, EQ
, 0, speed_p
);
13088 mucost
+= rtx_cost (expand_normal (c4
), mode
, EQ
, 1, speed_p
);
13090 if (mocost
<= mucost
)
13092 emit_insn (moinsns
);
13093 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
13097 emit_insn (muinsns
);
13098 *arg0
= make_tree (TREE_TYPE (*arg0
), mur
);
13103 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
13105 (X - C2) * C3 <= C4 (or >), where
13106 C3 is modular multiplicative inverse of C1 and 1<<prec and
13107 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
13108 if C2 > ((1<<prec) - 1) % C1).
13109 If C1 is even, S = ctz (C1) and C2 is 0, use
13110 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
13111 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
13113 For signed (X % C1) == 0 if C1 is odd to (all operations in it
13115 (X * C3) + C4 <= 2 * C4, where
13116 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
13117 C4 is ((1<<(prec - 1) - 1) / C1).
13118 If C1 is even, S = ctz(C1), use
13119 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
13120 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
13121 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
13123 See the Hacker's Delight book, section 10-17. */
13125 maybe_optimize_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
13127 gcc_checking_assert (code
== EQ_EXPR
|| code
== NE_EXPR
);
13128 gcc_checking_assert (TREE_CODE (*arg1
) == INTEGER_CST
);
13133 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
13137 tree treeop0
= gimple_assign_rhs1 (stmt
);
13138 tree treeop1
= gimple_assign_rhs2 (stmt
);
13139 if (TREE_CODE (treeop0
) != SSA_NAME
13140 || TREE_CODE (treeop1
) != INTEGER_CST
13141 /* Don't optimize the undefined behavior case x % 0;
13142 x % 1 should have been optimized into zero, punt if
13143 it makes it here for whatever reason;
13144 x % -c should have been optimized into x % c. */
13145 || compare_tree_int (treeop1
, 2) <= 0
13146 /* Likewise x % c == d where d >= c should be always false. */
13147 || tree_int_cst_le (treeop1
, *arg1
))
13150 /* Unsigned x % pow2 is handled right already, for signed
13151 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
13152 if (integer_pow2p (treeop1
))
13153 return maybe_optimize_pow2p_mod_cmp (code
, arg0
, arg1
);
13155 tree type
= TREE_TYPE (*arg0
);
13156 scalar_int_mode mode
;
13157 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
13159 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
13160 || TYPE_PRECISION (type
) <= 1)
13163 signop sgn
= UNSIGNED
;
13164 /* If both operands are known to have the sign bit clear, handle
13165 even the signed modulo case as unsigned. treeop1 is always
13166 positive >= 2, checked above. */
13167 if (!TYPE_UNSIGNED (type
) && get_range_pos_neg (treeop0
) != 1)
13170 if (!TYPE_UNSIGNED (type
))
13172 if (tree_int_cst_sgn (*arg1
) == -1)
13174 type
= unsigned_type_for (type
);
13175 if (!type
|| TYPE_MODE (type
) != TYPE_MODE (TREE_TYPE (*arg0
)))
13179 int prec
= TYPE_PRECISION (type
);
13180 wide_int w
= wi::to_wide (treeop1
);
13181 int shift
= wi::ctz (w
);
13182 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
13183 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
13184 If C1 is odd, we can handle all cases by subtracting
13185 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
13186 e.g. by testing for overflow on the subtraction, punt on that for now
13188 if ((sgn
== SIGNED
|| shift
) && !integer_zerop (*arg1
))
13192 wide_int x
= wi::umod_trunc (wi::mask (prec
, false, prec
), w
);
13193 if (wi::gtu_p (wi::to_wide (*arg1
), x
))
13197 imm_use_iterator imm_iter
;
13198 use_operand_p use_p
;
13199 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, treeop0
)
13201 gimple
*use_stmt
= USE_STMT (use_p
);
13202 /* Punt if treeop0 is used in the same bb in a division
13203 or another modulo with the same divisor. We should expect
13204 the division and modulo combined together. */
13205 if (use_stmt
== stmt
13206 || gimple_bb (use_stmt
) != gimple_bb (stmt
))
13208 if (!is_gimple_assign (use_stmt
)
13209 || (gimple_assign_rhs_code (use_stmt
) != TRUNC_DIV_EXPR
13210 && gimple_assign_rhs_code (use_stmt
) != TRUNC_MOD_EXPR
))
13212 if (gimple_assign_rhs1 (use_stmt
) != treeop0
13213 || !operand_equal_p (gimple_assign_rhs2 (use_stmt
), treeop1
, 0))
13218 w
= wi::lrshift (w
, shift
);
13219 wide_int a
= wide_int::from (w
, prec
+ 1, UNSIGNED
);
13220 wide_int b
= wi::shifted_mask (prec
, 1, false, prec
+ 1);
13221 wide_int m
= wide_int::from (wi::mod_inv (a
, b
), prec
, UNSIGNED
);
13222 tree c3
= wide_int_to_tree (type
, m
);
13223 tree c5
= NULL_TREE
;
13225 if (sgn
== UNSIGNED
)
13227 d
= wi::divmod_trunc (wi::mask (prec
, false, prec
), w
, UNSIGNED
, &e
);
13228 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
13229 otherwise use < or subtract one from C4. E.g. for
13230 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
13231 x % 3U == 1 already needs to be
13232 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
13233 if (!shift
&& wi::gtu_p (wi::to_wide (*arg1
), e
))
13236 d
= wi::lrshift (d
, shift
);
13240 e
= wi::udiv_trunc (wi::mask (prec
- 1, false, prec
), w
);
13242 d
= wi::lshift (e
, 1);
13245 e
= wi::bit_and (e
, wi::mask (shift
, true, prec
));
13246 d
= wi::lrshift (e
, shift
- 1);
13248 c5
= wide_int_to_tree (type
, e
);
13250 tree c4
= wide_int_to_tree (type
, d
);
13252 rtx op0
= expand_normal (treeop0
);
13253 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
13255 bool speed_p
= optimize_insn_for_speed_p ();
13257 do_pending_stack_adjust ();
13259 location_t loc
= gimple_location (stmt
);
13260 struct separate_ops ops
;
13261 ops
.code
= TRUNC_MOD_EXPR
;
13262 ops
.location
= loc
;
13263 ops
.type
= TREE_TYPE (treeop0
);
13266 ops
.op2
= NULL_TREE
;
13268 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
13270 rtx_insn
*moinsns
= get_insns ();
13273 unsigned mocost
= seq_cost (moinsns
, speed_p
);
13274 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
13275 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
13277 tree t
= fold_convert_loc (loc
, type
, treeop0
);
13278 if (!integer_zerop (*arg1
))
13279 t
= fold_build2_loc (loc
, MINUS_EXPR
, type
, t
, fold_convert (type
, *arg1
));
13280 t
= fold_build2_loc (loc
, MULT_EXPR
, type
, t
, c3
);
13282 t
= fold_build2_loc (loc
, PLUS_EXPR
, type
, t
, c5
);
13285 tree s
= build_int_cst (NULL_TREE
, shift
);
13286 t
= fold_build2_loc (loc
, RROTATE_EXPR
, type
, t
, s
);
13290 rtx mur
= expand_normal (t
);
13291 rtx_insn
*muinsns
= get_insns ();
13294 unsigned mucost
= seq_cost (muinsns
, speed_p
);
13295 mucost
+= rtx_cost (mur
, mode
, LE
, 0, speed_p
);
13296 mucost
+= rtx_cost (expand_normal (c4
), mode
, LE
, 1, speed_p
);
13298 if (mocost
<= mucost
)
13300 emit_insn (moinsns
);
13301 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
13305 emit_insn (muinsns
);
13306 *arg0
= make_tree (type
, mur
);
13308 return code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
13311 /* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
13314 maybe_optimize_sub_cmp_0 (enum tree_code code
, tree
*arg0
, tree
*arg1
)
13316 gcc_checking_assert (code
== GT_EXPR
|| code
== GE_EXPR
13317 || code
== LT_EXPR
|| code
== LE_EXPR
);
13318 gcc_checking_assert (integer_zerop (*arg1
));
13323 gimple
*stmt
= get_def_for_expr (*arg0
, MINUS_EXPR
);
13327 tree treeop0
= gimple_assign_rhs1 (stmt
);
13328 tree treeop1
= gimple_assign_rhs2 (stmt
);
13329 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0
)))
13332 if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON
))
13333 warning_at (gimple_location (stmt
), OPT_Wstrict_overflow
,
13334 "assuming signed overflow does not occur when "
13335 "simplifying %<X - Y %s 0%> to %<X %s Y%>",
13336 op_symbol_code (code
), op_symbol_code (code
));
13343 /* Expand CODE with arguments INNER & (1<<BITNUM) and 0 that represents
13344 a single bit equality/inequality test, returns where the result is located. */
13347 expand_single_bit_test (location_t loc
, enum tree_code code
,
13348 tree inner
, int bitnum
,
13349 tree result_type
, rtx target
,
13352 gcc_assert (code
== NE_EXPR
|| code
== EQ_EXPR
);
13354 tree type
= TREE_TYPE (inner
);
13355 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
13357 tree signed_type
, unsigned_type
, intermediate_type
;
13360 /* First, see if we can fold the single bit test into a sign-bit
13362 if (bitnum
== TYPE_PRECISION (type
) - 1
13363 && type_has_mode_precision_p (type
))
13365 tree stype
= signed_type_for (type
);
13366 tree tmp
= fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
13368 fold_convert_loc (loc
, stype
, inner
),
13369 build_int_cst (stype
, 0));
13370 return expand_expr (tmp
, target
, VOIDmode
, EXPAND_NORMAL
);
13373 /* Otherwise we have (A & C) != 0 where C is a single bit,
13374 convert that into ((A >> C2) & 1). Where C2 = log2(C).
13375 Similarly for (A & C) == 0. */
13377 /* If INNER is a right shift of a constant and it plus BITNUM does
13378 not overflow, adjust BITNUM and INNER. */
13379 if ((inner_def
= get_def_for_expr (inner
, RSHIFT_EXPR
))
13380 && TREE_CODE (gimple_assign_rhs2 (inner_def
)) == INTEGER_CST
13381 && bitnum
< TYPE_PRECISION (type
)
13382 && wi::ltu_p (wi::to_wide (gimple_assign_rhs2 (inner_def
)),
13383 TYPE_PRECISION (type
) - bitnum
))
13385 bitnum
+= tree_to_uhwi (gimple_assign_rhs2 (inner_def
));
13386 inner
= gimple_assign_rhs1 (inner_def
);
13389 /* If we are going to be able to omit the AND below, we must do our
13390 operations as unsigned. If we must use the AND, we have a choice.
13391 Normally unsigned is faster, but for some machines signed is. */
13392 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
13393 && !flag_syntax_only
) ? 0 : 1;
13395 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
13396 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
13397 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
13398 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
13400 rtx inner0
= expand_expr (inner
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
13402 if (CONST_SCALAR_INT_P (inner0
))
13404 wide_int t
= rtx_mode_t (inner0
, operand_mode
);
13405 bool setp
= (wi::lrshift (t
, bitnum
) & 1) != 0;
13406 return (setp
^ (code
== EQ_EXPR
)) ? const1_rtx
: const0_rtx
;
13408 int bitpos
= bitnum
;
13410 if (BYTES_BIG_ENDIAN
)
13411 bitpos
= GET_MODE_BITSIZE (operand_mode
) - 1 - bitpos
;
13413 inner0
= extract_bit_field (inner0
, 1, bitpos
, 1, target
,
13414 operand_mode
, mode
, 0, NULL
);
13416 if (code
== EQ_EXPR
)
13417 inner0
= expand_binop (GET_MODE (inner0
), xor_optab
, inner0
, const1_rtx
,
13418 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
13419 if (GET_MODE (inner0
) != mode
)
13421 rtx t
= gen_reg_rtx (mode
);
13422 convert_move (t
, inner0
, 0);
13428 /* Generate code to calculate OPS, and exploded expression
13429 using a store-flag instruction and return an rtx for the result.
13430 OPS reflects a comparison.
13432 If TARGET is nonzero, store the result there if convenient.
13434 Return zero if there is no suitable set-flag instruction
13435 available on this machine.
13437 Once expand_expr has been called on the arguments of the comparison,
13438 we are committed to doing the store flag, since it is not safe to
13439 re-evaluate the expression. We emit the store-flag insn by calling
13440 emit_store_flag, but only expand the arguments if we have a reason
13441 to believe that emit_store_flag will be successful. If we think that
13442 it will, but it isn't, we have to simulate the store-flag with a
13443 set/jump/set sequence. */
13446 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
13448 enum rtx_code code
;
13449 tree arg0
, arg1
, type
;
13450 machine_mode operand_mode
;
13453 rtx subtarget
= target
;
13454 location_t loc
= ops
->location
;
13459 /* Don't crash if the comparison was erroneous. */
13460 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
13463 type
= TREE_TYPE (arg0
);
13464 operand_mode
= TYPE_MODE (type
);
13465 unsignedp
= TYPE_UNSIGNED (type
);
13467 /* We won't bother with BLKmode store-flag operations because it would mean
13468 passing a lot of information to emit_store_flag. */
13469 if (operand_mode
== BLKmode
)
13472 /* We won't bother with store-flag operations involving function pointers
13473 when function pointers must be canonicalized before comparisons. */
13474 if (targetm
.have_canonicalize_funcptr_for_compare ()
13475 && ((POINTER_TYPE_P (TREE_TYPE (arg0
))
13476 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0
))))
13477 || (POINTER_TYPE_P (TREE_TYPE (arg1
))
13478 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1
))))))
13484 /* For vector typed comparisons emit code to generate the desired
13485 all-ones or all-zeros mask. */
13486 if (VECTOR_TYPE_P (ops
->type
))
13488 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
13489 if (VECTOR_BOOLEAN_TYPE_P (ops
->type
)
13490 && expand_vec_cmp_expr_p (TREE_TYPE (arg0
), ops
->type
, ops
->code
))
13491 return expand_vec_cmp_expr (ops
->type
, ifexp
, target
);
13493 gcc_unreachable ();
13496 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
13497 into (x - C2) * C3 < C4. */
13498 if ((ops
->code
== EQ_EXPR
|| ops
->code
== NE_EXPR
)
13499 && TREE_CODE (arg0
) == SSA_NAME
13500 && TREE_CODE (arg1
) == INTEGER_CST
)
13502 enum tree_code new_code
= maybe_optimize_mod_cmp (ops
->code
,
13504 if (new_code
!= ops
->code
)
13506 struct separate_ops nops
= *ops
;
13507 nops
.code
= ops
->code
= new_code
;
13510 nops
.type
= TREE_TYPE (arg0
);
13511 return do_store_flag (&nops
, target
, mode
);
13515 /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
13517 && (ops
->code
== LT_EXPR
|| ops
->code
== LE_EXPR
13518 || ops
->code
== GT_EXPR
|| ops
->code
== GE_EXPR
)
13519 && integer_zerop (arg1
)
13520 && TREE_CODE (arg0
) == SSA_NAME
)
13521 maybe_optimize_sub_cmp_0 (ops
->code
, &arg0
, &arg1
);
13523 /* Get the rtx comparison code to use. We know that EXP is a comparison
13524 operation of some type. Some comparisons against 1 and -1 can be
13525 converted to comparisons with zero. Do so here so that the tests
13526 below will be aware that we have a comparison with zero. These
13527 tests will not catch constants in the first operand, but constants
13528 are rarely passed as the first operand. */
13539 if (integer_onep (arg1
))
13540 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
13542 code
= unsignedp
? LTU
: LT
;
13545 if (! unsignedp
&& integer_all_onesp (arg1
))
13546 arg1
= integer_zero_node
, code
= LT
;
13548 code
= unsignedp
? LEU
: LE
;
13551 if (! unsignedp
&& integer_all_onesp (arg1
))
13552 arg1
= integer_zero_node
, code
= GE
;
13554 code
= unsignedp
? GTU
: GT
;
13557 if (integer_onep (arg1
))
13558 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
13560 code
= unsignedp
? GEU
: GE
;
13563 case UNORDERED_EXPR
:
13589 gcc_unreachable ();
13592 /* Put a constant second. */
13593 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
13594 || TREE_CODE (arg0
) == FIXED_CST
)
13596 std::swap (arg0
, arg1
);
13597 code
= swap_condition (code
);
13600 /* If this is an equality or inequality test of a single bit, we can
13601 do this by shifting the bit being tested to the low-order bit and
13602 masking the result with the constant 1. If the condition was EQ,
13603 we xor it with 1. This does not require an scc insn and is faster
13604 than an scc insn even if we have it. */
13606 if ((code
== NE
|| code
== EQ
)
13607 && (integer_zerop (arg1
)
13608 || integer_pow2p (arg1
))
13609 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
13612 wide_int nz
= tree_nonzero_bits (narg0
);
13613 gimple
*srcstmt
= get_def_for_expr (narg0
, BIT_AND_EXPR
);
13614 /* If the defining statement was (x & POW2), then use that instead of
13615 the non-zero bits. */
13616 if (srcstmt
&& integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
13618 nz
= wi::to_wide (gimple_assign_rhs2 (srcstmt
));
13619 narg0
= gimple_assign_rhs1 (srcstmt
);
13622 if (wi::popcount (nz
) == 1
13623 && (integer_zerop (arg1
)
13624 || wi::to_wide (arg1
) == nz
))
13626 int bitnum
= wi::exact_log2 (nz
);
13627 enum tree_code tcode
= EQ_EXPR
;
13628 if ((code
== NE
) ^ !integer_zerop (arg1
))
13631 type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
13632 return expand_single_bit_test (loc
, tcode
,
13634 bitnum
, type
, target
, mode
);
13639 if (! get_subtarget (target
)
13640 || GET_MODE (subtarget
) != operand_mode
)
13643 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
13646 target
= gen_reg_rtx (mode
);
13648 /* Try a cstore if possible. */
13649 return emit_store_flag_force (target
, code
, op0
, op1
,
13650 operand_mode
, unsignedp
,
13651 (TYPE_PRECISION (ops
->type
) == 1
13652 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
13655 /* Attempt to generate a casesi instruction. Returns true if successful,
13656 false otherwise (i.e. if there is no casesi instruction).
13658 DEFAULT_PROBABILITY is the probability of jumping to the default
13661 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
13662 rtx table_label
, rtx default_label
, rtx fallback_label
,
13663 profile_probability default_probability
)
13665 class expand_operand ops
[5];
13666 scalar_int_mode index_mode
= SImode
;
13667 rtx op1
, op2
, index
;
13669 if (! targetm
.have_casesi ())
13672 /* The index must be some form of integer. Convert it to SImode. */
13673 scalar_int_mode omode
= SCALAR_INT_TYPE_MODE (index_type
);
13674 if (GET_MODE_BITSIZE (omode
) > GET_MODE_BITSIZE (index_mode
))
13676 rtx rangertx
= expand_normal (range
);
13678 /* We must handle the endpoints in the original mode. */
13679 index_expr
= build2 (MINUS_EXPR
, index_type
,
13680 index_expr
, minval
);
13681 minval
= integer_zero_node
;
13682 index
= expand_normal (index_expr
);
13684 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
13685 omode
, 1, default_label
,
13686 default_probability
);
13687 /* Now we can safely truncate. */
13688 index
= convert_to_mode (index_mode
, index
, 0);
13692 if (omode
!= index_mode
)
13694 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
13695 index_expr
= fold_convert (index_type
, index_expr
);
13698 index
= expand_normal (index_expr
);
13701 do_pending_stack_adjust ();
13703 op1
= expand_normal (minval
);
13704 op2
= expand_normal (range
);
13706 create_input_operand (&ops
[0], index
, index_mode
);
13707 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
13708 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
13709 create_fixed_operand (&ops
[3], table_label
);
13710 create_fixed_operand (&ops
[4], (default_label
13712 : fallback_label
));
13713 expand_jump_insn (targetm
.code_for_casesi
, 5, ops
);
13717 /* Attempt to generate a tablejump instruction; same concept. */
13718 /* Subroutine of the next function.
13720 INDEX is the value being switched on, with the lowest value
13721 in the table already subtracted.
13722 MODE is its expected mode (needed if INDEX is constant).
13723 RANGE is the length of the jump table.
13724 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
13726 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
13727 index value is out of range.
13728 DEFAULT_PROBABILITY is the probability of jumping to
13729 the default label. */
13732 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
13733 rtx default_label
, profile_probability default_probability
)
13737 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
13738 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
13740 /* Do an unsigned comparison (in the proper mode) between the index
13741 expression and the value which represents the length of the range.
13742 Since we just finished subtracting the lower bound of the range
13743 from the index expression, this comparison allows us to simultaneously
13744 check that the original index expression value is both greater than
13745 or equal to the minimum value of the range and less than or equal to
13746 the maximum value of the range. */
13749 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
13750 default_label
, default_probability
);
13752 /* If index is in range, it must fit in Pmode.
13753 Convert to Pmode so we can index with it. */
13756 unsigned int width
;
13758 /* We know the value of INDEX is between 0 and RANGE. If we have a
13759 sign-extended subreg, and RANGE does not have the sign bit set, then
13760 we have a value that is valid for both sign and zero extension. In
13761 this case, we get better code if we sign extend. */
13762 if (GET_CODE (index
) == SUBREG
13763 && SUBREG_PROMOTED_VAR_P (index
)
13764 && SUBREG_PROMOTED_SIGNED_P (index
)
13765 && ((width
= GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
)))
13766 <= HOST_BITS_PER_WIDE_INT
)
13767 && ! (UINTVAL (range
) & (HOST_WIDE_INT_1U
<< (width
- 1))))
13768 index
= convert_to_mode (Pmode
, index
, 0);
13770 index
= convert_to_mode (Pmode
, index
, 1);
13773 /* Don't let a MEM slip through, because then INDEX that comes
13774 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
13775 and break_out_memory_refs will go to work on it and mess it up. */
13776 #ifdef PIC_CASE_VECTOR_ADDRESS
13777 if (flag_pic
&& !REG_P (index
))
13778 index
= copy_to_mode_reg (Pmode
, index
);
13781 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
13782 GET_MODE_SIZE, because this indicates how large insns are. The other
13783 uses should all be Pmode, because they are addresses. This code
13784 could fail if addresses and insns are not the same size. */
13785 index
= simplify_gen_binary (MULT
, Pmode
, index
,
13786 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
13788 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
13789 gen_rtx_LABEL_REF (Pmode
, table_label
));
13791 #ifdef PIC_CASE_VECTOR_ADDRESS
13793 index
= PIC_CASE_VECTOR_ADDRESS (index
);
13796 index
= memory_address (CASE_VECTOR_MODE
, index
);
13797 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
13798 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
13799 convert_move (temp
, vector
, 0);
13801 emit_jump_insn (targetm
.gen_tablejump (temp
, table_label
));
13803 /* If we are generating PIC code or if the table is PC-relative, the
13804 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
13805 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
13810 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
13811 rtx table_label
, rtx default_label
,
13812 profile_probability default_probability
)
13816 if (! targetm
.have_tablejump ())
13819 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
13820 fold_convert (index_type
, index_expr
),
13821 fold_convert (index_type
, minval
));
13822 index
= expand_normal (index_expr
);
13823 do_pending_stack_adjust ();
13825 do_tablejump (index
, TYPE_MODE (index_type
),
13826 convert_modes (TYPE_MODE (index_type
),
13827 TYPE_MODE (TREE_TYPE (range
)),
13828 expand_normal (range
),
13829 TYPE_UNSIGNED (TREE_TYPE (range
))),
13830 table_label
, default_label
, default_probability
);
13834 /* Return a CONST_VECTOR rtx representing vector mask for
13835 a VECTOR_CST of booleans. */
13837 const_vector_mask_from_tree (tree exp
)
13839 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
13840 machine_mode inner
= GET_MODE_INNER (mode
);
13842 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
13843 VECTOR_CST_NELTS_PER_PATTERN (exp
));
13844 unsigned int count
= builder
.encoded_nelts ();
13845 for (unsigned int i
= 0; i
< count
; ++i
)
13847 tree elt
= VECTOR_CST_ELT (exp
, i
);
13848 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
13849 if (integer_zerop (elt
))
13850 builder
.quick_push (CONST0_RTX (inner
));
13851 else if (integer_onep (elt
)
13852 || integer_minus_onep (elt
))
13853 builder
.quick_push (CONSTM1_RTX (inner
));
13855 gcc_unreachable ();
13857 return builder
.build ();
13860 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
13862 const_vector_from_tree (tree exp
)
13864 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
13866 if (initializer_zerop (exp
))
13867 return CONST0_RTX (mode
);
13869 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
13870 return const_vector_mask_from_tree (exp
);
13872 machine_mode inner
= GET_MODE_INNER (mode
);
13874 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
13875 VECTOR_CST_NELTS_PER_PATTERN (exp
));
13876 unsigned int count
= builder
.encoded_nelts ();
13877 for (unsigned int i
= 0; i
< count
; ++i
)
13879 tree elt
= VECTOR_CST_ELT (exp
, i
);
13880 if (TREE_CODE (elt
) == REAL_CST
)
13881 builder
.quick_push (const_double_from_real_value (TREE_REAL_CST (elt
),
13883 else if (TREE_CODE (elt
) == FIXED_CST
)
13884 builder
.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
13887 builder
.quick_push (immed_wide_int_const (wi::to_poly_wide (elt
),
13890 return builder
.build ();
13893 /* Build a decl for a personality function given a language prefix. */
13896 build_personality_function (const char *lang
)
13898 const char *unwind_and_version
;
13902 switch (targetm_common
.except_unwind_info (&global_options
))
13907 unwind_and_version
= "_sj0";
13911 unwind_and_version
= "_v0";
13914 unwind_and_version
= "_seh0";
13917 gcc_unreachable ();
13920 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
13922 type
= build_function_type_list (unsigned_type_node
,
13923 integer_type_node
, integer_type_node
,
13924 long_long_unsigned_type_node
,
13925 ptr_type_node
, ptr_type_node
, NULL_TREE
);
13926 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
13927 get_identifier (name
), type
);
13928 DECL_ARTIFICIAL (decl
) = 1;
13929 DECL_EXTERNAL (decl
) = 1;
13930 TREE_PUBLIC (decl
) = 1;
13932 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
13933 are the flags assigned by targetm.encode_section_info. */
13934 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
13939 /* Extracts the personality function of DECL and returns the corresponding
13943 get_personality_function (tree decl
)
13945 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
13946 enum eh_personality_kind pk
;
13948 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
13949 if (pk
== eh_personality_none
)
13953 && pk
== eh_personality_any
)
13954 personality
= lang_hooks
.eh_personality ();
13956 if (pk
== eh_personality_lang
)
13957 gcc_assert (personality
!= NULL_TREE
);
13959 return XEXP (DECL_RTL (personality
), 0);
13962 /* Returns a tree for the size of EXP in bytes. */
13965 tree_expr_size (const_tree exp
)
13968 && DECL_SIZE_UNIT (exp
) != 0)
13969 return DECL_SIZE_UNIT (exp
);
13971 return size_in_bytes (TREE_TYPE (exp
));
13974 /* Return an rtx for the size in bytes of the value of EXP. */
13977 expr_size (tree exp
)
13981 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
13982 size
= TREE_OPERAND (exp
, 1);
13985 size
= tree_expr_size (exp
);
13987 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
13990 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
13993 /* Return a wide integer for the size in bytes of the value of EXP, or -1
13994 if the size can vary or is larger than an integer. */
13997 int_expr_size (const_tree exp
)
14001 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
14002 size
= TREE_OPERAND (exp
, 1);
14005 size
= tree_expr_size (exp
);
14009 if (size
== 0 || !tree_fits_shwi_p (size
))
14012 return tree_to_shwi (size
);