1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
60 /* Commonly used modes. */
62 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
71 static GTY(()) int label_num
= 1;
73 /* Nonzero means do not generate NOTEs for source line numbers. */
75 static int no_line_numbers
;
77 /* Commonly used rtx's, so that we only need space for one copy.
78 These are initialized once for the entire compilation.
79 All of these are unique; no other rtx-object will be equal to any
82 rtx global_rtl
[GR_MAX
];
84 /* Commonly used RTL for hard registers. These objects are not necessarily
85 unique, so we allocate them separately from global_rtl. They are
86 initialized once per compilation unit, then copied into regno_reg_rtx
87 at the beginning of each function. */
88 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx. */
94 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
98 REAL_VALUE_TYPE dconst0
;
99 REAL_VALUE_TYPE dconst1
;
100 REAL_VALUE_TYPE dconst2
;
101 REAL_VALUE_TYPE dconst3
;
102 REAL_VALUE_TYPE dconst10
;
103 REAL_VALUE_TYPE dconstm1
;
104 REAL_VALUE_TYPE dconstm2
;
105 REAL_VALUE_TYPE dconsthalf
;
106 REAL_VALUE_TYPE dconstthird
;
107 REAL_VALUE_TYPE dconstpi
;
108 REAL_VALUE_TYPE dconste
;
110 /* All references to the following fixed hard registers go through
111 these unique rtl objects. On machines where the frame-pointer and
112 arg-pointer are the same register, they use the same unique object.
114 After register allocation, other rtl objects which used to be pseudo-regs
115 may be clobbered to refer to the frame-pointer register.
116 But references that were originally to the frame-pointer can be
117 distinguished from the others because they contain frame_pointer_rtx.
119 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
120 tricky: until register elimination has taken place hard_frame_pointer_rtx
121 should be used if it is being set, and frame_pointer_rtx otherwise. After
122 register elimination hard_frame_pointer_rtx should always be used.
123 On machines where the two registers are same (most) then these are the
126 In an inline procedure, the stack and frame pointer rtxs may not be
127 used for anything else. */
128 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
141 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
146 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
147 htab_t const_int_htab
;
149 /* A hash table storing memory attribute structures. */
150 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
151 htab_t mem_attrs_htab
;
153 /* A hash table storing register attribute structures. */
154 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
155 htab_t reg_attrs_htab
;
157 /* A hash table storing all CONST_DOUBLEs. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
159 htab_t const_double_htab
;
161 #define first_insn (cfun->emit->x_first_insn)
162 #define last_insn (cfun->emit->x_last_insn)
163 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
164 #define last_location (cfun->emit->x_last_location)
165 #define first_label_num (cfun->emit->x_first_label_num)
167 static rtx
make_jump_insn_raw (rtx
);
168 static rtx
make_call_insn_raw (rtx
);
169 static rtx
find_line_note (rtx
);
170 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
171 static void unshare_all_decls (tree
);
172 static void reset_used_decls (tree
);
173 static void mark_label_nuses (rtx
);
174 static hashval_t
const_int_htab_hash (const void *);
175 static int const_int_htab_eq (const void *, const void *);
176 static hashval_t
const_double_htab_hash (const void *);
177 static int const_double_htab_eq (const void *, const void *);
178 static rtx
lookup_const_double (rtx
);
179 static hashval_t
mem_attrs_htab_hash (const void *);
180 static int mem_attrs_htab_eq (const void *, const void *);
181 static mem_attrs
*get_mem_attrs (HOST_WIDE_INT
, tree
, rtx
, rtx
, unsigned int,
183 static hashval_t
reg_attrs_htab_hash (const void *);
184 static int reg_attrs_htab_eq (const void *, const void *);
185 static reg_attrs
*get_reg_attrs (tree
, int);
186 static tree
component_ref_for_mem_expr (tree
);
187 static rtx
gen_const_vector (enum machine_mode
, int);
188 static void copy_rtx_if_shared_1 (rtx
*orig
);
190 /* Probability of the conditional branch currently proceeded by try_split.
191 Set to -1 otherwise. */
192 int split_branch_probability
= -1;
194 /* Returns a hash code for X (which is a really a CONST_INT). */
197 const_int_htab_hash (const void *x
)
199 return (hashval_t
) INTVAL ((rtx
) x
);
202 /* Returns nonzero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
207 const_int_htab_eq (const void *x
, const void *y
)
209 return (INTVAL ((rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
212 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
214 const_double_htab_hash (const void *x
)
219 if (GET_MODE (value
) == VOIDmode
)
220 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
223 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
224 /* MODE is used in the comparison, so it should be in the hash. */
225 h
^= GET_MODE (value
);
230 /* Returns nonzero if the value represented by X (really a ...)
231 is the same as that represented by Y (really a ...) */
233 const_double_htab_eq (const void *x
, const void *y
)
235 rtx a
= (rtx
)x
, b
= (rtx
)y
;
237 if (GET_MODE (a
) != GET_MODE (b
))
239 if (GET_MODE (a
) == VOIDmode
)
240 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
241 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
243 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
244 CONST_DOUBLE_REAL_VALUE (b
));
247 /* Returns a hash code for X (which is a really a mem_attrs *). */
250 mem_attrs_htab_hash (const void *x
)
252 mem_attrs
*p
= (mem_attrs
*) x
;
254 return (p
->alias
^ (p
->align
* 1000)
255 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
256 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
260 /* Returns nonzero if the value represented by X (which is really a
261 mem_attrs *) is the same as that given by Y (which is also really a
265 mem_attrs_htab_eq (const void *x
, const void *y
)
267 mem_attrs
*p
= (mem_attrs
*) x
;
268 mem_attrs
*q
= (mem_attrs
*) y
;
270 return (p
->alias
== q
->alias
&& p
->expr
== q
->expr
&& p
->offset
== q
->offset
271 && p
->size
== q
->size
&& p
->align
== q
->align
);
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
279 get_mem_attrs (HOST_WIDE_INT alias
, tree expr
, rtx offset
, rtx size
,
280 unsigned int align
, enum machine_mode mode
)
285 /* If everything is the default, we can just return zero.
286 This must match what the corresponding MEM_* macros return when the
287 field is not present. */
288 if (alias
== 0 && expr
== 0 && offset
== 0
290 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
291 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
292 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
297 attrs
.offset
= offset
;
301 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
304 *slot
= ggc_alloc (sizeof (mem_attrs
));
305 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
311 /* Returns a hash code for X (which is a really a reg_attrs *). */
314 reg_attrs_htab_hash (const void *x
)
316 reg_attrs
*p
= (reg_attrs
*) x
;
318 return ((p
->offset
* 1000) ^ (long) p
->decl
);
321 /* Returns nonzero if the value represented by X (which is really a
322 reg_attrs *) is the same as that given by Y (which is also really a
326 reg_attrs_htab_eq (const void *x
, const void *y
)
328 reg_attrs
*p
= (reg_attrs
*) x
;
329 reg_attrs
*q
= (reg_attrs
*) y
;
331 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
333 /* Allocate a new reg_attrs structure and insert it into the hash table if
334 one identical to it is not already in the table. We are doing this for
338 get_reg_attrs (tree decl
, int offset
)
343 /* If everything is the default, we can just return zero. */
344 if (decl
== 0 && offset
== 0)
348 attrs
.offset
= offset
;
350 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
353 *slot
= ggc_alloc (sizeof (reg_attrs
));
354 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
360 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
361 don't attempt to share with the various global pieces of rtl (such as
362 frame_pointer_rtx). */
365 gen_raw_REG (enum machine_mode mode
, int regno
)
367 rtx x
= gen_rtx_raw_REG (mode
, regno
);
368 ORIGINAL_REGNO (x
) = regno
;
372 /* There are some RTL codes that require special attention; the generation
373 functions do the raw handling. If you add to this list, modify
374 special_rtx in gengenrtl.c as well. */
377 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
381 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
382 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
384 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
385 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
386 return const_true_rtx
;
389 /* Look up the CONST_INT in the hash table. */
390 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
391 (hashval_t
) arg
, INSERT
);
393 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
399 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
401 return GEN_INT (trunc_int_for_mode (c
, mode
));
404 /* CONST_DOUBLEs might be created from pairs of integers, or from
405 REAL_VALUE_TYPEs. Also, their length is known only at run time,
406 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
408 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
409 hash table. If so, return its counterpart; otherwise add it
410 to the hash table and return it. */
412 lookup_const_double (rtx real
)
414 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
421 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
422 VALUE in mode MODE. */
424 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
426 rtx real
= rtx_alloc (CONST_DOUBLE
);
427 PUT_MODE (real
, mode
);
429 memcpy (&CONST_DOUBLE_LOW (real
), &value
, sizeof (REAL_VALUE_TYPE
));
431 return lookup_const_double (real
);
434 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
435 of ints: I0 is the low-order word and I1 is the high-order word.
436 Do not use this routine for non-integer modes; convert to
437 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
440 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
445 if (mode
!= VOIDmode
)
449 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
450 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
451 /* We can get a 0 for an error mark. */
452 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
453 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
455 /* We clear out all bits that don't belong in MODE, unless they and
456 our sign bit are all one. So we get either a reasonable negative
457 value or a reasonable unsigned value for this mode. */
458 width
= GET_MODE_BITSIZE (mode
);
459 if (width
< HOST_BITS_PER_WIDE_INT
460 && ((i0
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
461 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
462 i0
&= ((HOST_WIDE_INT
) 1 << width
) - 1, i1
= 0;
463 else if (width
== HOST_BITS_PER_WIDE_INT
464 && ! (i1
== ~0 && i0
< 0))
467 /* We should be able to represent this value as a constant. */
468 gcc_assert (width
<= 2 * HOST_BITS_PER_WIDE_INT
);
470 /* If this would be an entire word for the target, but is not for
471 the host, then sign-extend on the host so that the number will
472 look the same way on the host that it would on the target.
474 For example, when building a 64 bit alpha hosted 32 bit sparc
475 targeted compiler, then we want the 32 bit unsigned value -1 to be
476 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
477 The latter confuses the sparc backend. */
479 if (width
< HOST_BITS_PER_WIDE_INT
480 && (i0
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
481 i0
|= ((HOST_WIDE_INT
) (-1) << width
);
483 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
486 ??? Strictly speaking, this is wrong if we create a CONST_INT for
487 a large unsigned constant with the size of MODE being
488 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
489 in a wider mode. In that case we will mis-interpret it as a
492 Unfortunately, the only alternative is to make a CONST_DOUBLE for
493 any constant in any mode if it is an unsigned constant larger
494 than the maximum signed integer in an int on the host. However,
495 doing this will break everyone that always expects to see a
496 CONST_INT for SImode and smaller.
498 We have always been making CONST_INTs in this case, so nothing
499 new is being broken. */
501 if (width
<= HOST_BITS_PER_WIDE_INT
)
502 i1
= (i0
< 0) ? ~(HOST_WIDE_INT
) 0 : 0;
505 /* If this integer fits in one word, return a CONST_INT. */
506 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
509 /* We use VOIDmode for integers. */
510 value
= rtx_alloc (CONST_DOUBLE
);
511 PUT_MODE (value
, VOIDmode
);
513 CONST_DOUBLE_LOW (value
) = i0
;
514 CONST_DOUBLE_HIGH (value
) = i1
;
516 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
517 XWINT (value
, i
) = 0;
519 return lookup_const_double (value
);
523 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
525 /* In case the MD file explicitly references the frame pointer, have
526 all such references point to the same frame pointer. This is
527 used during frame pointer elimination to distinguish the explicit
528 references to these registers from pseudos that happened to be
531 If we have eliminated the frame pointer or arg pointer, we will
532 be using it as a normal register, for example as a spill
533 register. In such cases, we might be accessing it in a mode that
534 is not Pmode and therefore cannot use the pre-allocated rtx.
536 Also don't do this when we are making new REGs in reload, since
537 we don't want to get confused with the real pointers. */
539 if (mode
== Pmode
&& !reload_in_progress
)
541 if (regno
== FRAME_POINTER_REGNUM
542 && (!reload_completed
|| frame_pointer_needed
))
543 return frame_pointer_rtx
;
544 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
545 if (regno
== HARD_FRAME_POINTER_REGNUM
546 && (!reload_completed
|| frame_pointer_needed
))
547 return hard_frame_pointer_rtx
;
549 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
550 if (regno
== ARG_POINTER_REGNUM
)
551 return arg_pointer_rtx
;
553 #ifdef RETURN_ADDRESS_POINTER_REGNUM
554 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
555 return return_address_pointer_rtx
;
557 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
558 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
559 return pic_offset_table_rtx
;
560 if (regno
== STACK_POINTER_REGNUM
)
561 return stack_pointer_rtx
;
565 /* If the per-function register table has been set up, try to re-use
566 an existing entry in that table to avoid useless generation of RTL.
568 This code is disabled for now until we can fix the various backends
569 which depend on having non-shared hard registers in some cases. Long
570 term we want to re-enable this code as it can significantly cut down
571 on the amount of useless RTL that gets generated.
573 We'll also need to fix some code that runs after reload that wants to
574 set ORIGINAL_REGNO. */
579 && regno
< FIRST_PSEUDO_REGISTER
580 && reg_raw_mode
[regno
] == mode
)
581 return regno_reg_rtx
[regno
];
584 return gen_raw_REG (mode
, regno
);
588 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
590 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
592 /* This field is not cleared by the mere allocation of the rtx, so
599 /* Generate a memory referring to non-trapping constant memory. */
602 gen_const_mem (enum machine_mode mode
, rtx addr
)
604 rtx mem
= gen_rtx_MEM (mode
, addr
);
605 MEM_READONLY_P (mem
) = 1;
606 MEM_NOTRAP_P (mem
) = 1;
610 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
611 this construct would be valid, and false otherwise. */
614 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
615 rtx reg
, unsigned int offset
)
617 unsigned int isize
= GET_MODE_SIZE (imode
);
618 unsigned int osize
= GET_MODE_SIZE (omode
);
620 /* All subregs must be aligned. */
621 if (offset
% osize
!= 0)
624 /* The subreg offset cannot be outside the inner object. */
628 /* ??? This should not be here. Temporarily continue to allow word_mode
629 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
630 Generally, backends are doing something sketchy but it'll take time to
632 if (omode
== word_mode
)
634 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
635 is the culprit here, and not the backends. */
636 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
638 /* Allow component subregs of complex and vector. Though given the below
639 extraction rules, it's not always clear what that means. */
640 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
641 && GET_MODE_INNER (imode
) == omode
)
643 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
644 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
645 represent this. It's questionable if this ought to be represented at
646 all -- why can't this all be hidden in post-reload splitters that make
647 arbitrarily mode changes to the registers themselves. */
648 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
650 /* Subregs involving floating point modes are not allowed to
651 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
652 (subreg:SI (reg:DF) 0) isn't. */
653 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
659 /* Paradoxical subregs must have offset zero. */
663 /* This is a normal subreg. Verify that the offset is representable. */
665 /* For hard registers, we already have most of these rules collected in
666 subreg_offset_representable_p. */
667 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
669 unsigned int regno
= REGNO (reg
);
671 #ifdef CANNOT_CHANGE_MODE_CLASS
672 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
673 && GET_MODE_INNER (imode
) == omode
)
675 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
679 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
682 /* For pseudo registers, we want most of the same checks. Namely:
683 If the register no larger than a word, the subreg must be lowpart.
684 If the register is larger than a word, the subreg must be the lowpart
685 of a subword. A subreg does *not* perform arbitrary bit extraction.
686 Given that we've already checked mode/offset alignment, we only have
687 to check subword subregs here. */
688 if (osize
< UNITS_PER_WORD
)
690 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
691 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
692 if (offset
% UNITS_PER_WORD
!= low_off
)
699 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
701 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
702 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
705 /* Generate a SUBREG representing the least-significant part of REG if MODE
706 is smaller than mode of REG, otherwise paradoxical SUBREG. */
709 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
711 enum machine_mode inmode
;
713 inmode
= GET_MODE (reg
);
714 if (inmode
== VOIDmode
)
716 return gen_rtx_SUBREG (mode
, reg
,
717 subreg_lowpart_offset (mode
, inmode
));
720 /* gen_rtvec (n, [rt1, ..., rtn])
722 ** This routine creates an rtvec and stores within it the
723 ** pointers to rtx's which are its arguments.
728 gen_rtvec (int n
, ...)
737 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
739 vector
= alloca (n
* sizeof (rtx
));
741 for (i
= 0; i
< n
; i
++)
742 vector
[i
] = va_arg (p
, rtx
);
744 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
748 return gen_rtvec_v (save_n
, vector
);
752 gen_rtvec_v (int n
, rtx
*argp
)
758 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
760 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
762 for (i
= 0; i
< n
; i
++)
763 rt_val
->elem
[i
] = *argp
++;
768 /* Generate a REG rtx for a new pseudo register of mode MODE.
769 This pseudo is assigned the next sequential register number. */
772 gen_reg_rtx (enum machine_mode mode
)
774 struct function
*f
= cfun
;
777 /* Don't let anything called after initial flow analysis create new
779 gcc_assert (!no_new_pseudos
);
781 if (generating_concat_p
782 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
783 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
785 /* For complex modes, don't make a single pseudo.
786 Instead, make a CONCAT of two pseudos.
787 This allows noncontiguous allocation of the real and imaginary parts,
788 which makes much better code. Besides, allocating DCmode
789 pseudos overstrains reload on some machines like the 386. */
790 rtx realpart
, imagpart
;
791 enum machine_mode partmode
= GET_MODE_INNER (mode
);
793 realpart
= gen_reg_rtx (partmode
);
794 imagpart
= gen_reg_rtx (partmode
);
795 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
798 /* Make sure regno_pointer_align, and regno_reg_rtx are large
799 enough to have an element for this pseudo reg number. */
801 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
803 int old_size
= f
->emit
->regno_pointer_align_length
;
807 new = ggc_realloc (f
->emit
->regno_pointer_align
, old_size
* 2);
808 memset (new + old_size
, 0, old_size
);
809 f
->emit
->regno_pointer_align
= (unsigned char *) new;
811 new1
= ggc_realloc (f
->emit
->x_regno_reg_rtx
,
812 old_size
* 2 * sizeof (rtx
));
813 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
814 regno_reg_rtx
= new1
;
816 f
->emit
->regno_pointer_align_length
= old_size
* 2;
819 val
= gen_raw_REG (mode
, reg_rtx_no
);
820 regno_reg_rtx
[reg_rtx_no
++] = val
;
824 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
825 Do the big endian correction if needed. */
828 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
, int offset
)
830 rtx
new = gen_rtx_REG (mode
, regno
);
832 HOST_WIDE_INT var_size
;
834 /* PR middle-end/14084
835 The problem appears when a variable is stored in a larger register
836 and later it is used in the original mode or some mode in between
837 or some part of variable is accessed.
839 On little endian machines there is no problem because
840 the REG_OFFSET of the start of the variable is the same when
841 accessed in any mode (it is 0).
843 However, this is not true on big endian machines.
844 The offset of the start of the variable is different when accessed
846 When we are taking a part of the REG we have to change the OFFSET
847 from offset WRT size of mode of REG to offset WRT size of variable.
849 If we would not do the big endian correction the resulting REG_OFFSET
850 would be larger than the size of the DECL.
852 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
854 REG.mode MODE DECL size old offset new offset description
855 DI SI 4 4 0 int32 in SImode
856 DI SI 1 4 0 char in SImode
857 DI QI 1 7 0 char in QImode
858 DI QI 4 5 1 1st element in QImode
860 DI HI 4 6 2 1st element in HImode
863 If the size of DECL is equal or greater than the size of REG
864 we can't do this correction because the register holds the
865 whole variable or a part of the variable and thus the REG_OFFSET
866 is already correct. */
868 decl
= REG_EXPR (reg
);
869 if ((BYTES_BIG_ENDIAN
|| WORDS_BIG_ENDIAN
)
872 && GET_MODE_SIZE (GET_MODE (reg
)) > GET_MODE_SIZE (mode
)
873 && ((var_size
= int_size_in_bytes (TREE_TYPE (decl
))) > 0
874 && var_size
< GET_MODE_SIZE (GET_MODE (reg
))))
878 /* Convert machine endian to little endian WRT size of mode of REG. */
879 if (WORDS_BIG_ENDIAN
)
880 offset_le
= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
881 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
883 offset_le
= (offset
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
885 if (BYTES_BIG_ENDIAN
)
886 offset_le
+= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
889 offset_le
+= offset
% UNITS_PER_WORD
;
891 if (offset_le
>= var_size
)
893 /* MODE is wider than the variable so the new reg will cover
894 the whole variable so the resulting OFFSET should be 0. */
899 /* Convert little endian to machine endian WRT size of variable. */
900 if (WORDS_BIG_ENDIAN
)
901 offset
= ((var_size
- 1 - offset_le
)
902 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
904 offset
= (offset_le
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
906 if (BYTES_BIG_ENDIAN
)
907 offset
+= ((var_size
- 1 - offset_le
)
910 offset
+= offset_le
% UNITS_PER_WORD
;
914 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg
),
915 REG_OFFSET (reg
) + offset
);
919 /* Set the decl for MEM to DECL. */
922 set_reg_attrs_from_mem (rtx reg
, rtx mem
)
924 if (MEM_OFFSET (mem
) && GET_CODE (MEM_OFFSET (mem
)) == CONST_INT
)
926 = get_reg_attrs (MEM_EXPR (mem
), INTVAL (MEM_OFFSET (mem
)));
929 /* Set the register attributes for registers contained in PARM_RTX.
930 Use needed values from memory attributes of MEM. */
933 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
935 if (REG_P (parm_rtx
))
936 set_reg_attrs_from_mem (parm_rtx
, mem
);
937 else if (GET_CODE (parm_rtx
) == PARALLEL
)
939 /* Check for a NULL entry in the first slot, used to indicate that the
940 parameter goes both on the stack and in registers. */
941 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
942 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
944 rtx x
= XVECEXP (parm_rtx
, 0, i
);
945 if (REG_P (XEXP (x
, 0)))
946 REG_ATTRS (XEXP (x
, 0))
947 = get_reg_attrs (MEM_EXPR (mem
),
948 INTVAL (XEXP (x
, 1)));
953 /* Assign the RTX X to declaration T. */
955 set_decl_rtl (tree t
, rtx x
)
957 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
961 /* For register, we maintain the reverse information too. */
963 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
964 else if (GET_CODE (x
) == SUBREG
)
965 REG_ATTRS (SUBREG_REG (x
))
966 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
967 if (GET_CODE (x
) == CONCAT
)
969 if (REG_P (XEXP (x
, 0)))
970 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
971 if (REG_P (XEXP (x
, 1)))
972 REG_ATTRS (XEXP (x
, 1))
973 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
975 if (GET_CODE (x
) == PARALLEL
)
978 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
980 rtx y
= XVECEXP (x
, 0, i
);
981 if (REG_P (XEXP (y
, 0)))
982 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
987 /* Assign the RTX X to parameter declaration T. */
989 set_decl_incoming_rtl (tree t
, rtx x
)
991 DECL_INCOMING_RTL (t
) = x
;
995 /* For register, we maintain the reverse information too. */
997 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
998 else if (GET_CODE (x
) == SUBREG
)
999 REG_ATTRS (SUBREG_REG (x
))
1000 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
1001 if (GET_CODE (x
) == CONCAT
)
1003 if (REG_P (XEXP (x
, 0)))
1004 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1005 if (REG_P (XEXP (x
, 1)))
1006 REG_ATTRS (XEXP (x
, 1))
1007 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1009 if (GET_CODE (x
) == PARALLEL
)
1013 /* Check for a NULL entry, used to indicate that the parameter goes
1014 both on the stack and in registers. */
1015 if (XEXP (XVECEXP (x
, 0, 0), 0))
1020 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1022 rtx y
= XVECEXP (x
, 0, i
);
1023 if (REG_P (XEXP (y
, 0)))
1024 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1029 /* Identify REG (which may be a CONCAT) as a user register. */
1032 mark_user_reg (rtx reg
)
1034 if (GET_CODE (reg
) == CONCAT
)
1036 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1037 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1041 gcc_assert (REG_P (reg
));
1042 REG_USERVAR_P (reg
) = 1;
1046 /* Identify REG as a probable pointer register and show its alignment
1047 as ALIGN, if nonzero. */
1050 mark_reg_pointer (rtx reg
, int align
)
1052 if (! REG_POINTER (reg
))
1054 REG_POINTER (reg
) = 1;
1057 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1059 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1060 /* We can no-longer be sure just how aligned this pointer is. */
1061 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1064 /* Return 1 plus largest pseudo reg number used in the current function. */
1072 /* Return 1 + the largest label number used so far in the current function. */
1075 max_label_num (void)
1080 /* Return first label number used in this function (if any were used). */
1083 get_first_label_num (void)
1085 return first_label_num
;
1088 /* If the rtx for label was created during the expansion of a nested
1089 function, then first_label_num won't include this label number.
1090 Fix this now so that array indicies work later. */
1093 maybe_set_first_label_num (rtx x
)
1095 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1096 first_label_num
= CODE_LABEL_NUMBER (x
);
1099 /* Return a value representing some low-order bits of X, where the number
1100 of low-order bits is given by MODE. Note that no conversion is done
1101 between floating-point and fixed-point values, rather, the bit
1102 representation is returned.
1104 This function handles the cases in common between gen_lowpart, below,
1105 and two variants in cse.c and combine.c. These are the cases that can
1106 be safely handled at all points in the compilation.
1108 If this is not a case we can handle, return 0. */
1111 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1113 int msize
= GET_MODE_SIZE (mode
);
1116 enum machine_mode innermode
;
1118 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1119 so we have to make one up. Yuk. */
1120 innermode
= GET_MODE (x
);
1121 if (GET_CODE (x
) == CONST_INT
1122 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1123 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1124 else if (innermode
== VOIDmode
)
1125 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1127 xsize
= GET_MODE_SIZE (innermode
);
1129 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1131 if (innermode
== mode
)
1134 /* MODE must occupy no more words than the mode of X. */
1135 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1136 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1139 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1140 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
&& msize
> xsize
)
1143 offset
= subreg_lowpart_offset (mode
, innermode
);
1145 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1146 && (GET_MODE_CLASS (mode
) == MODE_INT
1147 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1149 /* If we are getting the low-order part of something that has been
1150 sign- or zero-extended, we can either just use the object being
1151 extended or make a narrower extension. If we want an even smaller
1152 piece than the size of the object being extended, call ourselves
1155 This case is used mostly by combine and cse. */
1157 if (GET_MODE (XEXP (x
, 0)) == mode
)
1159 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1160 return gen_lowpart_common (mode
, XEXP (x
, 0));
1161 else if (msize
< xsize
)
1162 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1164 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1165 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1166 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1167 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1169 /* Otherwise, we can't do this. */
1174 gen_highpart (enum machine_mode mode
, rtx x
)
1176 unsigned int msize
= GET_MODE_SIZE (mode
);
1179 /* This case loses if X is a subreg. To catch bugs early,
1180 complain if an invalid MODE is used even in other cases. */
1181 gcc_assert (msize
<= UNITS_PER_WORD
1182 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1184 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1185 subreg_highpart_offset (mode
, GET_MODE (x
)));
1186 gcc_assert (result
);
1188 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1189 the target if we have a MEM. gen_highpart must return a valid operand,
1190 emitting code if necessary to do so. */
1193 result
= validize_mem (result
);
1194 gcc_assert (result
);
1200 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1201 be VOIDmode constant. */
1203 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1205 if (GET_MODE (exp
) != VOIDmode
)
1207 gcc_assert (GET_MODE (exp
) == innermode
);
1208 return gen_highpart (outermode
, exp
);
1210 return simplify_gen_subreg (outermode
, exp
, innermode
,
1211 subreg_highpart_offset (outermode
, innermode
));
1214 /* Return offset in bytes to get OUTERMODE low part
1215 of the value in mode INNERMODE stored in memory in target format. */
1218 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1220 unsigned int offset
= 0;
1221 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1225 if (WORDS_BIG_ENDIAN
)
1226 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1227 if (BYTES_BIG_ENDIAN
)
1228 offset
+= difference
% UNITS_PER_WORD
;
1234 /* Return offset in bytes to get OUTERMODE high part
1235 of the value in mode INNERMODE stored in memory in target format. */
1237 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1239 unsigned int offset
= 0;
1240 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1242 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1246 if (! WORDS_BIG_ENDIAN
)
1247 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1248 if (! BYTES_BIG_ENDIAN
)
1249 offset
+= difference
% UNITS_PER_WORD
;
1255 /* Return 1 iff X, assumed to be a SUBREG,
1256 refers to the least significant part of its containing reg.
1257 If X is not a SUBREG, always return 1 (it is its own low part!). */
1260 subreg_lowpart_p (rtx x
)
1262 if (GET_CODE (x
) != SUBREG
)
1264 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1267 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1268 == SUBREG_BYTE (x
));
1271 /* Return subword OFFSET of operand OP.
1272 The word number, OFFSET, is interpreted as the word number starting
1273 at the low-order address. OFFSET 0 is the low-order word if not
1274 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1276 If we cannot extract the required word, we return zero. Otherwise,
1277 an rtx corresponding to the requested word will be returned.
1279 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1280 reload has completed, a valid address will always be returned. After
1281 reload, if a valid address cannot be returned, we return zero.
1283 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1284 it is the responsibility of the caller.
1286 MODE is the mode of OP in case it is a CONST_INT.
1288 ??? This is still rather broken for some cases. The problem for the
1289 moment is that all callers of this thing provide no 'goal mode' to
1290 tell us to work with. This exists because all callers were written
1291 in a word based SUBREG world.
1292 Now use of this function can be deprecated by simplify_subreg in most
1297 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1299 if (mode
== VOIDmode
)
1300 mode
= GET_MODE (op
);
1302 gcc_assert (mode
!= VOIDmode
);
1304 /* If OP is narrower than a word, fail. */
1306 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1309 /* If we want a word outside OP, return zero. */
1311 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1314 /* Form a new MEM at the requested address. */
1317 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1319 if (! validate_address
)
1322 else if (reload_completed
)
1324 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1328 return replace_equiv_address (new, XEXP (new, 0));
1331 /* Rest can be handled by simplify_subreg. */
1332 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1335 /* Similar to `operand_subword', but never return 0. If we can't
1336 extract the required subword, put OP into a register and try again.
1337 The second attempt must succeed. We always validate the address in
1340 MODE is the mode of OP, in case it is CONST_INT. */
1343 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1345 rtx result
= operand_subword (op
, offset
, 1, mode
);
1350 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1352 /* If this is a register which can not be accessed by words, copy it
1353 to a pseudo register. */
1355 op
= copy_to_reg (op
);
1357 op
= force_reg (mode
, op
);
1360 result
= operand_subword (op
, offset
, 1, mode
);
1361 gcc_assert (result
);
1366 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1367 or (2) a component ref of something variable. Represent the later with
1368 a NULL expression. */
1371 component_ref_for_mem_expr (tree ref
)
1373 tree inner
= TREE_OPERAND (ref
, 0);
1375 if (TREE_CODE (inner
) == COMPONENT_REF
)
1376 inner
= component_ref_for_mem_expr (inner
);
1379 /* Now remove any conversions: they don't change what the underlying
1380 object is. Likewise for SAVE_EXPR. */
1381 while (TREE_CODE (inner
) == NOP_EXPR
|| TREE_CODE (inner
) == CONVERT_EXPR
1382 || TREE_CODE (inner
) == NON_LVALUE_EXPR
1383 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1384 || TREE_CODE (inner
) == SAVE_EXPR
)
1385 inner
= TREE_OPERAND (inner
, 0);
1387 if (! DECL_P (inner
))
1391 if (inner
== TREE_OPERAND (ref
, 0))
1394 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1395 TREE_OPERAND (ref
, 1), NULL_TREE
);
1398 /* Returns 1 if both MEM_EXPR can be considered equal
1402 mem_expr_equal_p (tree expr1
, tree expr2
)
1407 if (! expr1
|| ! expr2
)
1410 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1413 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1415 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1416 TREE_OPERAND (expr2
, 0))
1417 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1418 TREE_OPERAND (expr2
, 1));
1420 if (INDIRECT_REF_P (expr1
))
1421 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1422 TREE_OPERAND (expr2
, 0));
1424 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1425 have been resolved here. */
1426 gcc_assert (DECL_P (expr1
));
1428 /* Decls with different pointers can't be equal. */
1432 /* Given REF, a MEM, and T, either the type of X or the expression
1433 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1434 if we are making a new object of this type. BITPOS is nonzero if
1435 there is an offset outstanding on T that will be applied later. */
1438 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1439 HOST_WIDE_INT bitpos
)
1441 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1442 tree expr
= MEM_EXPR (ref
);
1443 rtx offset
= MEM_OFFSET (ref
);
1444 rtx size
= MEM_SIZE (ref
);
1445 unsigned int align
= MEM_ALIGN (ref
);
1446 HOST_WIDE_INT apply_bitpos
= 0;
1449 /* It can happen that type_for_mode was given a mode for which there
1450 is no language-level type. In which case it returns NULL, which
1455 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1456 if (type
== error_mark_node
)
1459 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1460 wrong answer, as it assumes that DECL_RTL already has the right alias
1461 info. Callers should not set DECL_RTL until after the call to
1462 set_mem_attributes. */
1463 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1465 /* Get the alias set from the expression or type (perhaps using a
1466 front-end routine) and use it. */
1467 alias
= get_alias_set (t
);
1469 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1470 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1471 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1472 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (t
);
1474 /* If we are making an object of this type, or if this is a DECL, we know
1475 that it is a scalar if the type is not an aggregate. */
1476 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1477 MEM_SCALAR_P (ref
) = 1;
1479 /* We can set the alignment from the type if we are making an object,
1480 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1481 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1482 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1483 || TYPE_ALIGN_OK (type
))
1484 align
= MAX (align
, TYPE_ALIGN (type
));
1486 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1488 if (integer_zerop (TREE_OPERAND (t
, 1)))
1489 /* We don't know anything about the alignment. */
1490 align
= BITS_PER_UNIT
;
1492 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1495 /* If the size is known, we can set that. */
1496 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1497 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1499 /* If T is not a type, we may be able to deduce some more information about
1503 tree base
= get_base_address (t
);
1504 if (base
&& DECL_P (base
)
1505 && TREE_READONLY (base
)
1506 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1508 tree base_type
= TREE_TYPE (base
);
1509 gcc_assert (!(base_type
&& TYPE_NEEDS_CONSTRUCTING (base_type
))
1510 || DECL_ARTIFICIAL (base
));
1511 MEM_READONLY_P (ref
) = 1;
1514 if (TREE_THIS_VOLATILE (t
))
1515 MEM_VOLATILE_P (ref
) = 1;
1517 /* Now remove any conversions: they don't change what the underlying
1518 object is. Likewise for SAVE_EXPR. */
1519 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1520 || TREE_CODE (t
) == NON_LVALUE_EXPR
1521 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1522 || TREE_CODE (t
) == SAVE_EXPR
)
1523 t
= TREE_OPERAND (t
, 0);
1525 /* If this expression uses it's parent's alias set, mark it such
1526 that we won't change it. */
1527 if (component_uses_parent_alias_set (t
))
1528 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1530 /* If this is a decl, set the attributes of the MEM from it. */
1534 offset
= const0_rtx
;
1535 apply_bitpos
= bitpos
;
1536 size
= (DECL_SIZE_UNIT (t
)
1537 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1538 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1539 align
= DECL_ALIGN (t
);
1542 /* If this is a constant, we know the alignment. */
1543 else if (CONSTANT_CLASS_P (t
))
1545 align
= TYPE_ALIGN (type
);
1546 #ifdef CONSTANT_ALIGNMENT
1547 align
= CONSTANT_ALIGNMENT (t
, align
);
1551 /* If this is a field reference and not a bit-field, record it. */
1552 /* ??? There is some information that can be gleened from bit-fields,
1553 such as the word offset in the structure that might be modified.
1554 But skip it for now. */
1555 else if (TREE_CODE (t
) == COMPONENT_REF
1556 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1558 expr
= component_ref_for_mem_expr (t
);
1559 offset
= const0_rtx
;
1560 apply_bitpos
= bitpos
;
1561 /* ??? Any reason the field size would be different than
1562 the size we got from the type? */
1565 /* If this is an array reference, look for an outer field reference. */
1566 else if (TREE_CODE (t
) == ARRAY_REF
)
1568 tree off_tree
= size_zero_node
;
1569 /* We can't modify t, because we use it at the end of the
1575 tree index
= TREE_OPERAND (t2
, 1);
1576 tree low_bound
= array_ref_low_bound (t2
);
1577 tree unit_size
= array_ref_element_size (t2
);
1579 /* We assume all arrays have sizes that are a multiple of a byte.
1580 First subtract the lower bound, if any, in the type of the
1581 index, then convert to sizetype and multiply by the size of
1582 the array element. */
1583 if (! integer_zerop (low_bound
))
1584 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1587 off_tree
= size_binop (PLUS_EXPR
,
1588 size_binop (MULT_EXPR
, convert (sizetype
,
1592 t2
= TREE_OPERAND (t2
, 0);
1594 while (TREE_CODE (t2
) == ARRAY_REF
);
1600 if (host_integerp (off_tree
, 1))
1602 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1603 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1604 align
= DECL_ALIGN (t2
);
1605 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1607 offset
= GEN_INT (ioff
);
1608 apply_bitpos
= bitpos
;
1611 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1613 expr
= component_ref_for_mem_expr (t2
);
1614 if (host_integerp (off_tree
, 1))
1616 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1617 apply_bitpos
= bitpos
;
1619 /* ??? Any reason the field size would be different than
1620 the size we got from the type? */
1622 else if (flag_argument_noalias
> 1
1623 && (INDIRECT_REF_P (t2
))
1624 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1631 /* If this is a Fortran indirect argument reference, record the
1633 else if (flag_argument_noalias
> 1
1634 && (INDIRECT_REF_P (t
))
1635 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1642 /* If we modified OFFSET based on T, then subtract the outstanding
1643 bit position offset. Similarly, increase the size of the accessed
1644 object to contain the negative offset. */
1647 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1649 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1652 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1654 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1655 we're overlapping. */
1660 /* Now set the attributes we computed above. */
1662 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1664 /* If this is already known to be a scalar or aggregate, we are done. */
1665 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1668 /* If it is a reference into an aggregate, this is part of an aggregate.
1669 Otherwise we don't know. */
1670 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1671 || TREE_CODE (t
) == ARRAY_RANGE_REF
1672 || TREE_CODE (t
) == BIT_FIELD_REF
)
1673 MEM_IN_STRUCT_P (ref
) = 1;
1677 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1679 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1682 /* Set the decl for MEM to DECL. */
1685 set_mem_attrs_from_reg (rtx mem
, rtx reg
)
1688 = get_mem_attrs (MEM_ALIAS_SET (mem
), REG_EXPR (reg
),
1689 GEN_INT (REG_OFFSET (reg
)),
1690 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1693 /* Set the alias set of MEM to SET. */
1696 set_mem_alias_set (rtx mem
, HOST_WIDE_INT set
)
1698 #ifdef ENABLE_CHECKING
1699 /* If the new and old alias sets don't conflict, something is wrong. */
1700 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1703 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1704 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1708 /* Set the alignment of MEM to ALIGN bits. */
1711 set_mem_align (rtx mem
, unsigned int align
)
1713 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1714 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1718 /* Set the expr for MEM to EXPR. */
1721 set_mem_expr (rtx mem
, tree expr
)
1724 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1725 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1728 /* Set the offset of MEM to OFFSET. */
1731 set_mem_offset (rtx mem
, rtx offset
)
1733 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1734 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1738 /* Set the size of MEM to SIZE. */
1741 set_mem_size (rtx mem
, rtx size
)
1743 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1744 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1748 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1749 and its address changed to ADDR. (VOIDmode means don't change the mode.
1750 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1751 returned memory location is required to be valid. The memory
1752 attributes are not changed. */
1755 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1759 gcc_assert (MEM_P (memref
));
1760 if (mode
== VOIDmode
)
1761 mode
= GET_MODE (memref
);
1763 addr
= XEXP (memref
, 0);
1764 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1765 && (!validate
|| memory_address_p (mode
, addr
)))
1770 if (reload_in_progress
|| reload_completed
)
1771 gcc_assert (memory_address_p (mode
, addr
));
1773 addr
= memory_address (mode
, addr
);
1776 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1779 new = gen_rtx_MEM (mode
, addr
);
1780 MEM_COPY_ATTRIBUTES (new, memref
);
1784 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1785 way we are changing MEMREF, so we only preserve the alias set. */
1788 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1790 rtx
new = change_address_1 (memref
, mode
, addr
, 1), size
;
1791 enum machine_mode mmode
= GET_MODE (new);
1794 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1795 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1797 /* If there are no changes, just return the original memory reference. */
1800 if (MEM_ATTRS (memref
) == 0
1801 || (MEM_EXPR (memref
) == NULL
1802 && MEM_OFFSET (memref
) == NULL
1803 && MEM_SIZE (memref
) == size
1804 && MEM_ALIGN (memref
) == align
))
1807 new = gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1808 MEM_COPY_ATTRIBUTES (new, memref
);
1812 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1817 /* Return a memory reference like MEMREF, but with its mode changed
1818 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1819 nonzero, the memory address is forced to be valid.
1820 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1821 and caller is responsible for adjusting MEMREF base register. */
1824 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1825 int validate
, int adjust
)
1827 rtx addr
= XEXP (memref
, 0);
1829 rtx memoffset
= MEM_OFFSET (memref
);
1831 unsigned int memalign
= MEM_ALIGN (memref
);
1833 /* If there are no changes, just return the original memory reference. */
1834 if (mode
== GET_MODE (memref
) && !offset
1835 && (!validate
|| memory_address_p (mode
, addr
)))
1838 /* ??? Prefer to create garbage instead of creating shared rtl.
1839 This may happen even if offset is nonzero -- consider
1840 (plus (plus reg reg) const_int) -- so do this always. */
1841 addr
= copy_rtx (addr
);
1845 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1846 object, we can merge it into the LO_SUM. */
1847 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1849 && (unsigned HOST_WIDE_INT
) offset
1850 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1851 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1852 plus_constant (XEXP (addr
, 1), offset
));
1854 addr
= plus_constant (addr
, offset
);
1857 new = change_address_1 (memref
, mode
, addr
, validate
);
1859 /* Compute the new values of the memory attributes due to this adjustment.
1860 We add the offsets and update the alignment. */
1862 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1864 /* Compute the new alignment by taking the MIN of the alignment and the
1865 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1870 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1872 /* We can compute the size in a number of ways. */
1873 if (GET_MODE (new) != BLKmode
)
1874 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1875 else if (MEM_SIZE (memref
))
1876 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1878 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1879 memoffset
, size
, memalign
, GET_MODE (new));
1881 /* At some point, we should validate that this offset is within the object,
1882 if all the appropriate values are known. */
1886 /* Return a memory reference like MEMREF, but with its mode changed
1887 to MODE and its address changed to ADDR, which is assumed to be
1888 MEMREF offseted by OFFSET bytes. If VALIDATE is
1889 nonzero, the memory address is forced to be valid. */
1892 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
1893 HOST_WIDE_INT offset
, int validate
)
1895 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
1896 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
1899 /* Return a memory reference like MEMREF, but whose address is changed by
1900 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1901 known to be in OFFSET (possibly 1). */
1904 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
1906 rtx
new, addr
= XEXP (memref
, 0);
1908 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1910 /* At this point we don't know _why_ the address is invalid. It
1911 could have secondary memory references, multiplies or anything.
1913 However, if we did go and rearrange things, we can wind up not
1914 being able to recognize the magic around pic_offset_table_rtx.
1915 This stuff is fragile, and is yet another example of why it is
1916 bad to expose PIC machinery too early. */
1917 if (! memory_address_p (GET_MODE (memref
), new)
1918 && GET_CODE (addr
) == PLUS
1919 && XEXP (addr
, 0) == pic_offset_table_rtx
)
1921 addr
= force_reg (GET_MODE (addr
), addr
);
1922 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1925 update_temp_slot_address (XEXP (memref
, 0), new);
1926 new = change_address_1 (memref
, VOIDmode
, new, 1);
1928 /* If there are no changes, just return the original memory reference. */
1932 /* Update the alignment to reflect the offset. Reset the offset, which
1935 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
1936 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
1941 /* Return a memory reference like MEMREF, but with its address changed to
1942 ADDR. The caller is asserting that the actual piece of memory pointed
1943 to is the same, just the form of the address is being changed, such as
1944 by putting something into a register. */
1947 replace_equiv_address (rtx memref
, rtx addr
)
1949 /* change_address_1 copies the memory attribute structure without change
1950 and that's exactly what we want here. */
1951 update_temp_slot_address (XEXP (memref
, 0), addr
);
1952 return change_address_1 (memref
, VOIDmode
, addr
, 1);
1955 /* Likewise, but the reference is not required to be valid. */
1958 replace_equiv_address_nv (rtx memref
, rtx addr
)
1960 return change_address_1 (memref
, VOIDmode
, addr
, 0);
1963 /* Return a memory reference like MEMREF, but with its mode widened to
1964 MODE and offset by OFFSET. This would be used by targets that e.g.
1965 cannot issue QImode memory operations and have to use SImode memory
1966 operations plus masking logic. */
1969 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
1971 rtx
new = adjust_address_1 (memref
, mode
, offset
, 1, 1);
1972 tree expr
= MEM_EXPR (new);
1973 rtx memoffset
= MEM_OFFSET (new);
1974 unsigned int size
= GET_MODE_SIZE (mode
);
1976 /* If there are no changes, just return the original memory reference. */
1980 /* If we don't know what offset we were at within the expression, then
1981 we can't know if we've overstepped the bounds. */
1987 if (TREE_CODE (expr
) == COMPONENT_REF
)
1989 tree field
= TREE_OPERAND (expr
, 1);
1990 tree offset
= component_ref_field_offset (expr
);
1992 if (! DECL_SIZE_UNIT (field
))
1998 /* Is the field at least as large as the access? If so, ok,
1999 otherwise strip back to the containing structure. */
2000 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2001 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2002 && INTVAL (memoffset
) >= 0)
2005 if (! host_integerp (offset
, 1))
2011 expr
= TREE_OPERAND (expr
, 0);
2013 = (GEN_INT (INTVAL (memoffset
)
2014 + tree_low_cst (offset
, 1)
2015 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2018 /* Similarly for the decl. */
2019 else if (DECL_P (expr
)
2020 && DECL_SIZE_UNIT (expr
)
2021 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2022 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2023 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2027 /* The widened memory access overflows the expression, which means
2028 that it could alias another expression. Zap it. */
2035 memoffset
= NULL_RTX
;
2037 /* The widened memory may alias other stuff, so zap the alias set. */
2038 /* ??? Maybe use get_alias_set on any remaining expression. */
2040 MEM_ATTRS (new) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2041 MEM_ALIGN (new), mode
);
2046 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2049 gen_label_rtx (void)
2051 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2052 NULL
, label_num
++, NULL
);
2055 /* For procedure integration. */
2057 /* Install new pointers to the first and last insns in the chain.
2058 Also, set cur_insn_uid to one higher than the last in use.
2059 Used for an inline-procedure after copying the insn chain. */
2062 set_new_first_and_last_insn (rtx first
, rtx last
)
2070 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2071 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2076 /* Go through all the RTL insn bodies and copy any invalid shared
2077 structure. This routine should only be called once. */
2080 unshare_all_rtl_1 (tree fndecl
, rtx insn
)
2084 /* Make sure that virtual parameters are not shared. */
2085 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2086 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2088 /* Make sure that virtual stack slots are not shared. */
2089 unshare_all_decls (DECL_INITIAL (fndecl
));
2091 /* Unshare just about everything else. */
2092 unshare_all_rtl_in_chain (insn
);
2094 /* Make sure the addresses of stack slots found outside the insn chain
2095 (such as, in DECL_RTL of a variable) are not shared
2096 with the insn chain.
2098 This special care is necessary when the stack slot MEM does not
2099 actually appear in the insn chain. If it does appear, its address
2100 is unshared from all else at that point. */
2101 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2104 /* Go through all the RTL insn bodies and copy any invalid shared
2105 structure, again. This is a fairly expensive thing to do so it
2106 should be done sparingly. */
2109 unshare_all_rtl_again (rtx insn
)
2114 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2117 reset_used_flags (PATTERN (p
));
2118 reset_used_flags (REG_NOTES (p
));
2119 reset_used_flags (LOG_LINKS (p
));
2122 /* Make sure that virtual stack slots are not shared. */
2123 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2125 /* Make sure that virtual parameters are not shared. */
2126 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2127 reset_used_flags (DECL_RTL (decl
));
2129 reset_used_flags (stack_slot_list
);
2131 unshare_all_rtl_1 (cfun
->decl
, insn
);
2135 unshare_all_rtl (void)
2137 unshare_all_rtl_1 (current_function_decl
, get_insns ());
2140 struct tree_opt_pass pass_unshare_all_rtl
=
2144 unshare_all_rtl
, /* execute */
2147 0, /* static_pass_number */
2149 0, /* properties_required */
2150 0, /* properties_provided */
2151 0, /* properties_destroyed */
2152 0, /* todo_flags_start */
2153 0, /* todo_flags_finish */
2158 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2159 Recursively does the same for subexpressions. */
2162 verify_rtx_sharing (rtx orig
, rtx insn
)
2167 const char *format_ptr
;
2172 code
= GET_CODE (x
);
2174 /* These types may be freely shared. */
2189 /* SCRATCH must be shared because they represent distinct values. */
2191 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2196 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2197 a LABEL_REF, it isn't sharable. */
2198 if (GET_CODE (XEXP (x
, 0)) == PLUS
2199 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2200 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2205 /* A MEM is allowed to be shared if its address is constant. */
2206 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2207 || reload_completed
|| reload_in_progress
)
2216 /* This rtx may not be shared. If it has already been seen,
2217 replace it with a copy of itself. */
2218 #ifdef ENABLE_CHECKING
2219 if (RTX_FLAG (x
, used
))
2221 error ("invalid rtl sharing found in the insn");
2223 error ("shared rtx");
2225 internal_error ("internal consistency failure");
2228 gcc_assert (!RTX_FLAG (x
, used
));
2230 RTX_FLAG (x
, used
) = 1;
2232 /* Now scan the subexpressions recursively. */
2234 format_ptr
= GET_RTX_FORMAT (code
);
2236 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2238 switch (*format_ptr
++)
2241 verify_rtx_sharing (XEXP (x
, i
), insn
);
2245 if (XVEC (x
, i
) != NULL
)
2248 int len
= XVECLEN (x
, i
);
2250 for (j
= 0; j
< len
; j
++)
2252 /* We allow sharing of ASM_OPERANDS inside single
2254 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2255 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2257 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2259 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2268 /* Go through all the RTL insn bodies and check that there is no unexpected
2269 sharing in between the subexpressions. */
2272 verify_rtl_sharing (void)
2276 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2279 reset_used_flags (PATTERN (p
));
2280 reset_used_flags (REG_NOTES (p
));
2281 reset_used_flags (LOG_LINKS (p
));
2284 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2287 verify_rtx_sharing (PATTERN (p
), p
);
2288 verify_rtx_sharing (REG_NOTES (p
), p
);
2289 verify_rtx_sharing (LOG_LINKS (p
), p
);
2293 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2294 Assumes the mark bits are cleared at entry. */
2297 unshare_all_rtl_in_chain (rtx insn
)
2299 for (; insn
; insn
= NEXT_INSN (insn
))
2302 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2303 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2304 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2308 /* Go through all virtual stack slots of a function and copy any
2309 shared structure. */
2311 unshare_all_decls (tree blk
)
2315 /* Copy shared decls. */
2316 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2317 if (DECL_RTL_SET_P (t
))
2318 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2320 /* Now process sub-blocks. */
2321 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2322 unshare_all_decls (t
);
2325 /* Go through all virtual stack slots of a function and mark them as
2328 reset_used_decls (tree blk
)
2333 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2334 if (DECL_RTL_SET_P (t
))
2335 reset_used_flags (DECL_RTL (t
));
2337 /* Now process sub-blocks. */
2338 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2339 reset_used_decls (t
);
2342 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2343 Recursively does the same for subexpressions. Uses
2344 copy_rtx_if_shared_1 to reduce stack space. */
2347 copy_rtx_if_shared (rtx orig
)
2349 copy_rtx_if_shared_1 (&orig
);
2353 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2354 use. Recursively does the same for subexpressions. */
2357 copy_rtx_if_shared_1 (rtx
*orig1
)
2363 const char *format_ptr
;
2367 /* Repeat is used to turn tail-recursion into iteration. */
2374 code
= GET_CODE (x
);
2376 /* These types may be freely shared. */
2390 /* SCRATCH must be shared because they represent distinct values. */
2393 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2398 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2399 a LABEL_REF, it isn't sharable. */
2400 if (GET_CODE (XEXP (x
, 0)) == PLUS
2401 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2402 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2411 /* The chain of insns is not being copied. */
2418 /* This rtx may not be shared. If it has already been seen,
2419 replace it with a copy of itself. */
2421 if (RTX_FLAG (x
, used
))
2425 copy
= rtx_alloc (code
);
2426 memcpy (copy
, x
, RTX_SIZE (code
));
2430 RTX_FLAG (x
, used
) = 1;
2432 /* Now scan the subexpressions recursively.
2433 We can store any replaced subexpressions directly into X
2434 since we know X is not shared! Any vectors in X
2435 must be copied if X was copied. */
2437 format_ptr
= GET_RTX_FORMAT (code
);
2438 length
= GET_RTX_LENGTH (code
);
2441 for (i
= 0; i
< length
; i
++)
2443 switch (*format_ptr
++)
2447 copy_rtx_if_shared_1 (last_ptr
);
2448 last_ptr
= &XEXP (x
, i
);
2452 if (XVEC (x
, i
) != NULL
)
2455 int len
= XVECLEN (x
, i
);
2457 /* Copy the vector iff I copied the rtx and the length
2459 if (copied
&& len
> 0)
2460 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2462 /* Call recursively on all inside the vector. */
2463 for (j
= 0; j
< len
; j
++)
2466 copy_rtx_if_shared_1 (last_ptr
);
2467 last_ptr
= &XVECEXP (x
, i
, j
);
2482 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2483 to look for shared sub-parts. */
2486 reset_used_flags (rtx x
)
2490 const char *format_ptr
;
2493 /* Repeat is used to turn tail-recursion into iteration. */
2498 code
= GET_CODE (x
);
2500 /* These types may be freely shared so we needn't do any resetting
2521 /* The chain of insns is not being copied. */
2528 RTX_FLAG (x
, used
) = 0;
2530 format_ptr
= GET_RTX_FORMAT (code
);
2531 length
= GET_RTX_LENGTH (code
);
2533 for (i
= 0; i
< length
; i
++)
2535 switch (*format_ptr
++)
2543 reset_used_flags (XEXP (x
, i
));
2547 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2548 reset_used_flags (XVECEXP (x
, i
, j
));
2554 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2555 to look for shared sub-parts. */
2558 set_used_flags (rtx x
)
2562 const char *format_ptr
;
2567 code
= GET_CODE (x
);
2569 /* These types may be freely shared so we needn't do any resetting
2590 /* The chain of insns is not being copied. */
2597 RTX_FLAG (x
, used
) = 1;
2599 format_ptr
= GET_RTX_FORMAT (code
);
2600 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2602 switch (*format_ptr
++)
2605 set_used_flags (XEXP (x
, i
));
2609 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2610 set_used_flags (XVECEXP (x
, i
, j
));
2616 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2617 Return X or the rtx for the pseudo reg the value of X was copied into.
2618 OTHER must be valid as a SET_DEST. */
2621 make_safe_from (rtx x
, rtx other
)
2624 switch (GET_CODE (other
))
2627 other
= SUBREG_REG (other
);
2629 case STRICT_LOW_PART
:
2632 other
= XEXP (other
, 0);
2641 && GET_CODE (x
) != SUBREG
)
2643 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2644 || reg_mentioned_p (other
, x
))))
2646 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2647 emit_move_insn (temp
, x
);
2653 /* Emission of insns (adding them to the doubly-linked list). */
2655 /* Return the first insn of the current sequence or current function. */
2663 /* Specify a new insn as the first in the chain. */
2666 set_first_insn (rtx insn
)
2668 gcc_assert (!PREV_INSN (insn
));
2672 /* Return the last insn emitted in current sequence or current function. */
2675 get_last_insn (void)
2680 /* Specify a new insn as the last in the chain. */
2683 set_last_insn (rtx insn
)
2685 gcc_assert (!NEXT_INSN (insn
));
2689 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2692 get_last_insn_anywhere (void)
2694 struct sequence_stack
*stack
;
2697 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2698 if (stack
->last
!= 0)
2703 /* Return the first nonnote insn emitted in current sequence or current
2704 function. This routine looks inside SEQUENCEs. */
2707 get_first_nonnote_insn (void)
2709 rtx insn
= first_insn
;
2714 for (insn
= next_insn (insn
);
2715 insn
&& NOTE_P (insn
);
2716 insn
= next_insn (insn
))
2720 if (NONJUMP_INSN_P (insn
)
2721 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2722 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2729 /* Return the last nonnote insn emitted in current sequence or current
2730 function. This routine looks inside SEQUENCEs. */
2733 get_last_nonnote_insn (void)
2735 rtx insn
= last_insn
;
2740 for (insn
= previous_insn (insn
);
2741 insn
&& NOTE_P (insn
);
2742 insn
= previous_insn (insn
))
2746 if (NONJUMP_INSN_P (insn
)
2747 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2748 insn
= XVECEXP (PATTERN (insn
), 0,
2749 XVECLEN (PATTERN (insn
), 0) - 1);
2756 /* Return a number larger than any instruction's uid in this function. */
2761 return cur_insn_uid
;
2764 /* Renumber instructions so that no instruction UIDs are wasted. */
2767 renumber_insns (FILE *stream
)
2771 /* If we're not supposed to renumber instructions, don't. */
2772 if (!flag_renumber_insns
)
2775 /* If there aren't that many instructions, then it's not really
2776 worth renumbering them. */
2777 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2782 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2785 fprintf (stream
, "Renumbering insn %d to %d\n",
2786 INSN_UID (insn
), cur_insn_uid
);
2787 INSN_UID (insn
) = cur_insn_uid
++;
2791 /* Return the next insn. If it is a SEQUENCE, return the first insn
2795 next_insn (rtx insn
)
2799 insn
= NEXT_INSN (insn
);
2800 if (insn
&& NONJUMP_INSN_P (insn
)
2801 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2802 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2808 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2812 previous_insn (rtx insn
)
2816 insn
= PREV_INSN (insn
);
2817 if (insn
&& NONJUMP_INSN_P (insn
)
2818 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2819 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2825 /* Return the next insn after INSN that is not a NOTE. This routine does not
2826 look inside SEQUENCEs. */
2829 next_nonnote_insn (rtx insn
)
2833 insn
= NEXT_INSN (insn
);
2834 if (insn
== 0 || !NOTE_P (insn
))
2841 /* Return the previous insn before INSN that is not a NOTE. This routine does
2842 not look inside SEQUENCEs. */
2845 prev_nonnote_insn (rtx insn
)
2849 insn
= PREV_INSN (insn
);
2850 if (insn
== 0 || !NOTE_P (insn
))
2857 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2858 or 0, if there is none. This routine does not look inside
2862 next_real_insn (rtx insn
)
2866 insn
= NEXT_INSN (insn
);
2867 if (insn
== 0 || INSN_P (insn
))
2874 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2875 or 0, if there is none. This routine does not look inside
2879 prev_real_insn (rtx insn
)
2883 insn
= PREV_INSN (insn
);
2884 if (insn
== 0 || INSN_P (insn
))
2891 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2892 This routine does not look inside SEQUENCEs. */
2895 last_call_insn (void)
2899 for (insn
= get_last_insn ();
2900 insn
&& !CALL_P (insn
);
2901 insn
= PREV_INSN (insn
))
2907 /* Find the next insn after INSN that really does something. This routine
2908 does not look inside SEQUENCEs. Until reload has completed, this is the
2909 same as next_real_insn. */
2912 active_insn_p (rtx insn
)
2914 return (CALL_P (insn
) || JUMP_P (insn
)
2915 || (NONJUMP_INSN_P (insn
)
2916 && (! reload_completed
2917 || (GET_CODE (PATTERN (insn
)) != USE
2918 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2922 next_active_insn (rtx insn
)
2926 insn
= NEXT_INSN (insn
);
2927 if (insn
== 0 || active_insn_p (insn
))
2934 /* Find the last insn before INSN that really does something. This routine
2935 does not look inside SEQUENCEs. Until reload has completed, this is the
2936 same as prev_real_insn. */
2939 prev_active_insn (rtx insn
)
2943 insn
= PREV_INSN (insn
);
2944 if (insn
== 0 || active_insn_p (insn
))
2951 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2954 next_label (rtx insn
)
2958 insn
= NEXT_INSN (insn
);
2959 if (insn
== 0 || LABEL_P (insn
))
2966 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2969 prev_label (rtx insn
)
2973 insn
= PREV_INSN (insn
);
2974 if (insn
== 0 || LABEL_P (insn
))
2981 /* Return the last label to mark the same position as LABEL. Return null
2982 if LABEL itself is null. */
2985 skip_consecutive_labels (rtx label
)
2989 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
2997 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2998 and REG_CC_USER notes so we can find it. */
3001 link_cc0_insns (rtx insn
)
3003 rtx user
= next_nonnote_insn (insn
);
3005 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3006 user
= XVECEXP (PATTERN (user
), 0, 0);
3008 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
3010 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
3013 /* Return the next insn that uses CC0 after INSN, which is assumed to
3014 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3015 applied to the result of this function should yield INSN).
3017 Normally, this is simply the next insn. However, if a REG_CC_USER note
3018 is present, it contains the insn that uses CC0.
3020 Return 0 if we can't find the insn. */
3023 next_cc0_user (rtx insn
)
3025 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3028 return XEXP (note
, 0);
3030 insn
= next_nonnote_insn (insn
);
3031 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3032 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3034 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3040 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3041 note, it is the previous insn. */
3044 prev_cc0_setter (rtx insn
)
3046 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3049 return XEXP (note
, 0);
3051 insn
= prev_nonnote_insn (insn
);
3052 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3058 /* Increment the label uses for all labels present in rtx. */
3061 mark_label_nuses (rtx x
)
3067 code
= GET_CODE (x
);
3068 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3069 LABEL_NUSES (XEXP (x
, 0))++;
3071 fmt
= GET_RTX_FORMAT (code
);
3072 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3075 mark_label_nuses (XEXP (x
, i
));
3076 else if (fmt
[i
] == 'E')
3077 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3078 mark_label_nuses (XVECEXP (x
, i
, j
));
3083 /* Try splitting insns that can be split for better scheduling.
3084 PAT is the pattern which might split.
3085 TRIAL is the insn providing PAT.
3086 LAST is nonzero if we should return the last insn of the sequence produced.
3088 If this routine succeeds in splitting, it returns the first or last
3089 replacement insn depending on the value of LAST. Otherwise, it
3090 returns TRIAL. If the insn to be returned can be split, it will be. */
3093 try_split (rtx pat
, rtx trial
, int last
)
3095 rtx before
= PREV_INSN (trial
);
3096 rtx after
= NEXT_INSN (trial
);
3097 int has_barrier
= 0;
3101 rtx insn_last
, insn
;
3104 if (any_condjump_p (trial
)
3105 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3106 split_branch_probability
= INTVAL (XEXP (note
, 0));
3107 probability
= split_branch_probability
;
3109 seq
= split_insns (pat
, trial
);
3111 split_branch_probability
= -1;
3113 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3114 We may need to handle this specially. */
3115 if (after
&& BARRIER_P (after
))
3118 after
= NEXT_INSN (after
);
3124 /* Avoid infinite loop if any insn of the result matches
3125 the original pattern. */
3129 if (INSN_P (insn_last
)
3130 && rtx_equal_p (PATTERN (insn_last
), pat
))
3132 if (!NEXT_INSN (insn_last
))
3134 insn_last
= NEXT_INSN (insn_last
);
3138 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3142 mark_jump_label (PATTERN (insn
), insn
, 0);
3144 if (probability
!= -1
3145 && any_condjump_p (insn
)
3146 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3148 /* We can preserve the REG_BR_PROB notes only if exactly
3149 one jump is created, otherwise the machine description
3150 is responsible for this step using
3151 split_branch_probability variable. */
3152 gcc_assert (njumps
== 1);
3154 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
3155 GEN_INT (probability
),
3161 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3162 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3165 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3168 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3171 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3172 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3176 /* Copy notes, particularly those related to the CFG. */
3177 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3179 switch (REG_NOTE_KIND (note
))
3183 while (insn
!= NULL_RTX
)
3186 || (flag_non_call_exceptions
&& INSN_P (insn
)
3187 && may_trap_p (PATTERN (insn
))))
3189 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3192 insn
= PREV_INSN (insn
);
3199 while (insn
!= NULL_RTX
)
3203 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3206 insn
= PREV_INSN (insn
);
3210 case REG_NON_LOCAL_GOTO
:
3212 while (insn
!= NULL_RTX
)
3216 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3219 insn
= PREV_INSN (insn
);
3228 /* If there are LABELS inside the split insns increment the
3229 usage count so we don't delete the label. */
3230 if (NONJUMP_INSN_P (trial
))
3233 while (insn
!= NULL_RTX
)
3235 if (NONJUMP_INSN_P (insn
))
3236 mark_label_nuses (PATTERN (insn
));
3238 insn
= PREV_INSN (insn
);
3242 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3244 delete_insn (trial
);
3246 emit_barrier_after (tem
);
3248 /* Recursively call try_split for each new insn created; by the
3249 time control returns here that insn will be fully split, so
3250 set LAST and continue from the insn after the one returned.
3251 We can't use next_active_insn here since AFTER may be a note.
3252 Ignore deleted insns, which can be occur if not optimizing. */
3253 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3254 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3255 tem
= try_split (PATTERN (tem
), tem
, 1);
3257 /* Return either the first or the last insn, depending on which was
3260 ? (after
? PREV_INSN (after
) : last_insn
)
3261 : NEXT_INSN (before
);
3264 /* Make and return an INSN rtx, initializing all its slots.
3265 Store PATTERN in the pattern slots. */
3268 make_insn_raw (rtx pattern
)
3272 insn
= rtx_alloc (INSN
);
3274 INSN_UID (insn
) = cur_insn_uid
++;
3275 PATTERN (insn
) = pattern
;
3276 INSN_CODE (insn
) = -1;
3277 LOG_LINKS (insn
) = NULL
;
3278 REG_NOTES (insn
) = NULL
;
3279 INSN_LOCATOR (insn
) = 0;
3280 BLOCK_FOR_INSN (insn
) = NULL
;
3282 #ifdef ENABLE_RTL_CHECKING
3285 && (returnjump_p (insn
)
3286 || (GET_CODE (insn
) == SET
3287 && SET_DEST (insn
) == pc_rtx
)))
3289 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3297 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3300 make_jump_insn_raw (rtx pattern
)
3304 insn
= rtx_alloc (JUMP_INSN
);
3305 INSN_UID (insn
) = cur_insn_uid
++;
3307 PATTERN (insn
) = pattern
;
3308 INSN_CODE (insn
) = -1;
3309 LOG_LINKS (insn
) = NULL
;
3310 REG_NOTES (insn
) = NULL
;
3311 JUMP_LABEL (insn
) = NULL
;
3312 INSN_LOCATOR (insn
) = 0;
3313 BLOCK_FOR_INSN (insn
) = NULL
;
3318 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3321 make_call_insn_raw (rtx pattern
)
3325 insn
= rtx_alloc (CALL_INSN
);
3326 INSN_UID (insn
) = cur_insn_uid
++;
3328 PATTERN (insn
) = pattern
;
3329 INSN_CODE (insn
) = -1;
3330 LOG_LINKS (insn
) = NULL
;
3331 REG_NOTES (insn
) = NULL
;
3332 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3333 INSN_LOCATOR (insn
) = 0;
3334 BLOCK_FOR_INSN (insn
) = NULL
;
3339 /* Add INSN to the end of the doubly-linked list.
3340 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3345 PREV_INSN (insn
) = last_insn
;
3346 NEXT_INSN (insn
) = 0;
3348 if (NULL
!= last_insn
)
3349 NEXT_INSN (last_insn
) = insn
;
3351 if (NULL
== first_insn
)
3357 /* Add INSN into the doubly-linked list after insn AFTER. This and
3358 the next should be the only functions called to insert an insn once
3359 delay slots have been filled since only they know how to update a
3363 add_insn_after (rtx insn
, rtx after
)
3365 rtx next
= NEXT_INSN (after
);
3368 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3370 NEXT_INSN (insn
) = next
;
3371 PREV_INSN (insn
) = after
;
3375 PREV_INSN (next
) = insn
;
3376 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3377 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3379 else if (last_insn
== after
)
3383 struct sequence_stack
*stack
= seq_stack
;
3384 /* Scan all pending sequences too. */
3385 for (; stack
; stack
= stack
->next
)
3386 if (after
== stack
->last
)
3395 if (!BARRIER_P (after
)
3396 && !BARRIER_P (insn
)
3397 && (bb
= BLOCK_FOR_INSN (after
)))
3399 set_block_for_insn (insn
, bb
);
3401 bb
->flags
|= BB_DIRTY
;
3402 /* Should not happen as first in the BB is always
3403 either NOTE or LABEL. */
3404 if (BB_END (bb
) == after
3405 /* Avoid clobbering of structure when creating new BB. */
3406 && !BARRIER_P (insn
)
3408 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3412 NEXT_INSN (after
) = insn
;
3413 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3415 rtx sequence
= PATTERN (after
);
3416 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3420 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3421 the previous should be the only functions called to insert an insn once
3422 delay slots have been filled since only they know how to update a
3426 add_insn_before (rtx insn
, rtx before
)
3428 rtx prev
= PREV_INSN (before
);
3431 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3433 PREV_INSN (insn
) = prev
;
3434 NEXT_INSN (insn
) = before
;
3438 NEXT_INSN (prev
) = insn
;
3439 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3441 rtx sequence
= PATTERN (prev
);
3442 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3445 else if (first_insn
== before
)
3449 struct sequence_stack
*stack
= seq_stack
;
3450 /* Scan all pending sequences too. */
3451 for (; stack
; stack
= stack
->next
)
3452 if (before
== stack
->first
)
3454 stack
->first
= insn
;
3461 if (!BARRIER_P (before
)
3462 && !BARRIER_P (insn
)
3463 && (bb
= BLOCK_FOR_INSN (before
)))
3465 set_block_for_insn (insn
, bb
);
3467 bb
->flags
|= BB_DIRTY
;
3468 /* Should not happen as first in the BB is always either NOTE or
3470 gcc_assert (BB_HEAD (bb
) != insn
3471 /* Avoid clobbering of structure when creating new BB. */
3474 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BASIC_BLOCK
));
3477 PREV_INSN (before
) = insn
;
3478 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3479 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3482 /* Remove an insn from its doubly-linked list. This function knows how
3483 to handle sequences. */
3485 remove_insn (rtx insn
)
3487 rtx next
= NEXT_INSN (insn
);
3488 rtx prev
= PREV_INSN (insn
);
3493 NEXT_INSN (prev
) = next
;
3494 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3496 rtx sequence
= PATTERN (prev
);
3497 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3500 else if (first_insn
== insn
)
3504 struct sequence_stack
*stack
= seq_stack
;
3505 /* Scan all pending sequences too. */
3506 for (; stack
; stack
= stack
->next
)
3507 if (insn
== stack
->first
)
3509 stack
->first
= next
;
3518 PREV_INSN (next
) = prev
;
3519 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3520 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3522 else if (last_insn
== insn
)
3526 struct sequence_stack
*stack
= seq_stack
;
3527 /* Scan all pending sequences too. */
3528 for (; stack
; stack
= stack
->next
)
3529 if (insn
== stack
->last
)
3537 if (!BARRIER_P (insn
)
3538 && (bb
= BLOCK_FOR_INSN (insn
)))
3541 bb
->flags
|= BB_DIRTY
;
3542 if (BB_HEAD (bb
) == insn
)
3544 /* Never ever delete the basic block note without deleting whole
3546 gcc_assert (!NOTE_P (insn
));
3547 BB_HEAD (bb
) = next
;
3549 if (BB_END (bb
) == insn
)
3554 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3557 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3559 gcc_assert (call_insn
&& CALL_P (call_insn
));
3561 /* Put the register usage information on the CALL. If there is already
3562 some usage information, put ours at the end. */
3563 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3567 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3568 link
= XEXP (link
, 1))
3571 XEXP (link
, 1) = call_fusage
;
3574 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3577 /* Delete all insns made since FROM.
3578 FROM becomes the new last instruction. */
3581 delete_insns_since (rtx from
)
3586 NEXT_INSN (from
) = 0;
3590 /* This function is deprecated, please use sequences instead.
3592 Move a consecutive bunch of insns to a different place in the chain.
3593 The insns to be moved are those between FROM and TO.
3594 They are moved to a new position after the insn AFTER.
3595 AFTER must not be FROM or TO or any insn in between.
3597 This function does not know about SEQUENCEs and hence should not be
3598 called after delay-slot filling has been done. */
3601 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3603 /* Splice this bunch out of where it is now. */
3604 if (PREV_INSN (from
))
3605 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3607 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3608 if (last_insn
== to
)
3609 last_insn
= PREV_INSN (from
);
3610 if (first_insn
== from
)
3611 first_insn
= NEXT_INSN (to
);
3613 /* Make the new neighbors point to it and it to them. */
3614 if (NEXT_INSN (after
))
3615 PREV_INSN (NEXT_INSN (after
)) = to
;
3617 NEXT_INSN (to
) = NEXT_INSN (after
);
3618 PREV_INSN (from
) = after
;
3619 NEXT_INSN (after
) = from
;
3620 if (after
== last_insn
)
3624 /* Same as function above, but take care to update BB boundaries. */
3626 reorder_insns (rtx from
, rtx to
, rtx after
)
3628 rtx prev
= PREV_INSN (from
);
3629 basic_block bb
, bb2
;
3631 reorder_insns_nobb (from
, to
, after
);
3633 if (!BARRIER_P (after
)
3634 && (bb
= BLOCK_FOR_INSN (after
)))
3637 bb
->flags
|= BB_DIRTY
;
3639 if (!BARRIER_P (from
)
3640 && (bb2
= BLOCK_FOR_INSN (from
)))
3642 if (BB_END (bb2
) == to
)
3643 BB_END (bb2
) = prev
;
3644 bb2
->flags
|= BB_DIRTY
;
3647 if (BB_END (bb
) == after
)
3650 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3652 set_block_for_insn (x
, bb
);
3656 /* Return the line note insn preceding INSN. */
3659 find_line_note (rtx insn
)
3661 if (no_line_numbers
)
3664 for (; insn
; insn
= PREV_INSN (insn
))
3666 && NOTE_LINE_NUMBER (insn
) >= 0)
3672 /* Remove unnecessary notes from the instruction stream. */
3675 remove_unnecessary_notes (void)
3677 rtx eh_stack
= NULL_RTX
;
3682 /* We must not remove the first instruction in the function because
3683 the compiler depends on the first instruction being a note. */
3684 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
3686 /* Remember what's next. */
3687 next
= NEXT_INSN (insn
);
3689 /* We're only interested in notes. */
3693 switch (NOTE_LINE_NUMBER (insn
))
3695 case NOTE_INSN_DELETED
:
3699 case NOTE_INSN_EH_REGION_BEG
:
3700 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
3703 case NOTE_INSN_EH_REGION_END
:
3704 /* Too many end notes. */
3705 gcc_assert (eh_stack
);
3706 /* Mismatched nesting. */
3707 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack
, 0))
3708 == NOTE_EH_HANDLER (insn
));
3710 eh_stack
= XEXP (eh_stack
, 1);
3711 free_INSN_LIST_node (tmp
);
3714 case NOTE_INSN_BLOCK_BEG
:
3715 case NOTE_INSN_BLOCK_END
:
3716 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3724 /* Too many EH_REGION_BEG notes. */
3725 gcc_assert (!eh_stack
);
3728 struct tree_opt_pass pass_remove_unnecessary_notes
=
3732 remove_unnecessary_notes
, /* execute */
3735 0, /* static_pass_number */
3737 0, /* properties_required */
3738 0, /* properties_provided */
3739 0, /* properties_destroyed */
3740 0, /* todo_flags_start */
3741 0, /* todo_flags_finish */
3746 /* Emit insn(s) of given code and pattern
3747 at a specified place within the doubly-linked list.
3749 All of the emit_foo global entry points accept an object
3750 X which is either an insn list or a PATTERN of a single
3753 There are thus a few canonical ways to generate code and
3754 emit it at a specific place in the instruction stream. For
3755 example, consider the instruction named SPOT and the fact that
3756 we would like to emit some instructions before SPOT. We might
3760 ... emit the new instructions ...
3761 insns_head = get_insns ();
3764 emit_insn_before (insns_head, SPOT);
3766 It used to be common to generate SEQUENCE rtl instead, but that
3767 is a relic of the past which no longer occurs. The reason is that
3768 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3769 generated would almost certainly die right after it was created. */
3771 /* Make X be output before the instruction BEFORE. */
3774 emit_insn_before_noloc (rtx x
, rtx before
)
3779 gcc_assert (before
);
3784 switch (GET_CODE (x
))
3795 rtx next
= NEXT_INSN (insn
);
3796 add_insn_before (insn
, before
);
3802 #ifdef ENABLE_RTL_CHECKING
3809 last
= make_insn_raw (x
);
3810 add_insn_before (last
, before
);
3817 /* Make an instruction with body X and code JUMP_INSN
3818 and output it before the instruction BEFORE. */
3821 emit_jump_insn_before_noloc (rtx x
, rtx before
)
3823 rtx insn
, last
= NULL_RTX
;
3825 gcc_assert (before
);
3827 switch (GET_CODE (x
))
3838 rtx next
= NEXT_INSN (insn
);
3839 add_insn_before (insn
, before
);
3845 #ifdef ENABLE_RTL_CHECKING
3852 last
= make_jump_insn_raw (x
);
3853 add_insn_before (last
, before
);
3860 /* Make an instruction with body X and code CALL_INSN
3861 and output it before the instruction BEFORE. */
3864 emit_call_insn_before_noloc (rtx x
, rtx before
)
3866 rtx last
= NULL_RTX
, insn
;
3868 gcc_assert (before
);
3870 switch (GET_CODE (x
))
3881 rtx next
= NEXT_INSN (insn
);
3882 add_insn_before (insn
, before
);
3888 #ifdef ENABLE_RTL_CHECKING
3895 last
= make_call_insn_raw (x
);
3896 add_insn_before (last
, before
);
3903 /* Make an insn of code BARRIER
3904 and output it before the insn BEFORE. */
3907 emit_barrier_before (rtx before
)
3909 rtx insn
= rtx_alloc (BARRIER
);
3911 INSN_UID (insn
) = cur_insn_uid
++;
3913 add_insn_before (insn
, before
);
3917 /* Emit the label LABEL before the insn BEFORE. */
3920 emit_label_before (rtx label
, rtx before
)
3922 /* This can be called twice for the same label as a result of the
3923 confusion that follows a syntax error! So make it harmless. */
3924 if (INSN_UID (label
) == 0)
3926 INSN_UID (label
) = cur_insn_uid
++;
3927 add_insn_before (label
, before
);
3933 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3936 emit_note_before (int subtype
, rtx before
)
3938 rtx note
= rtx_alloc (NOTE
);
3939 INSN_UID (note
) = cur_insn_uid
++;
3940 #ifndef USE_MAPPED_LOCATION
3941 NOTE_SOURCE_FILE (note
) = 0;
3943 NOTE_LINE_NUMBER (note
) = subtype
;
3944 BLOCK_FOR_INSN (note
) = NULL
;
3946 add_insn_before (note
, before
);
3950 /* Helper for emit_insn_after, handles lists of instructions
3953 static rtx
emit_insn_after_1 (rtx
, rtx
);
3956 emit_insn_after_1 (rtx first
, rtx after
)
3962 if (!BARRIER_P (after
)
3963 && (bb
= BLOCK_FOR_INSN (after
)))
3965 bb
->flags
|= BB_DIRTY
;
3966 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3967 if (!BARRIER_P (last
))
3968 set_block_for_insn (last
, bb
);
3969 if (!BARRIER_P (last
))
3970 set_block_for_insn (last
, bb
);
3971 if (BB_END (bb
) == after
)
3975 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3978 after_after
= NEXT_INSN (after
);
3980 NEXT_INSN (after
) = first
;
3981 PREV_INSN (first
) = after
;
3982 NEXT_INSN (last
) = after_after
;
3984 PREV_INSN (after_after
) = last
;
3986 if (after
== last_insn
)
3991 /* Make X be output after the insn AFTER. */
3994 emit_insn_after_noloc (rtx x
, rtx after
)
4003 switch (GET_CODE (x
))
4011 last
= emit_insn_after_1 (x
, after
);
4014 #ifdef ENABLE_RTL_CHECKING
4021 last
= make_insn_raw (x
);
4022 add_insn_after (last
, after
);
4029 /* Similar to emit_insn_after, except that line notes are to be inserted so
4030 as to act as if this insn were at FROM. */
4033 emit_insn_after_with_line_notes (rtx x
, rtx after
, rtx from
)
4035 rtx from_line
= find_line_note (from
);
4036 rtx after_line
= find_line_note (after
);
4037 rtx insn
= emit_insn_after (x
, after
);
4040 emit_note_copy_after (from_line
, after
);
4043 emit_note_copy_after (after_line
, insn
);
4046 /* Make an insn of code JUMP_INSN with body X
4047 and output it after the insn AFTER. */
4050 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4056 switch (GET_CODE (x
))
4064 last
= emit_insn_after_1 (x
, after
);
4067 #ifdef ENABLE_RTL_CHECKING
4074 last
= make_jump_insn_raw (x
);
4075 add_insn_after (last
, after
);
4082 /* Make an instruction with body X and code CALL_INSN
4083 and output it after the instruction AFTER. */
4086 emit_call_insn_after_noloc (rtx x
, rtx after
)
4092 switch (GET_CODE (x
))
4100 last
= emit_insn_after_1 (x
, after
);
4103 #ifdef ENABLE_RTL_CHECKING
4110 last
= make_call_insn_raw (x
);
4111 add_insn_after (last
, after
);
4118 /* Make an insn of code BARRIER
4119 and output it after the insn AFTER. */
4122 emit_barrier_after (rtx after
)
4124 rtx insn
= rtx_alloc (BARRIER
);
4126 INSN_UID (insn
) = cur_insn_uid
++;
4128 add_insn_after (insn
, after
);
4132 /* Emit the label LABEL after the insn AFTER. */
4135 emit_label_after (rtx label
, rtx after
)
4137 /* This can be called twice for the same label
4138 as a result of the confusion that follows a syntax error!
4139 So make it harmless. */
4140 if (INSN_UID (label
) == 0)
4142 INSN_UID (label
) = cur_insn_uid
++;
4143 add_insn_after (label
, after
);
4149 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4152 emit_note_after (int subtype
, rtx after
)
4154 rtx note
= rtx_alloc (NOTE
);
4155 INSN_UID (note
) = cur_insn_uid
++;
4156 #ifndef USE_MAPPED_LOCATION
4157 NOTE_SOURCE_FILE (note
) = 0;
4159 NOTE_LINE_NUMBER (note
) = subtype
;
4160 BLOCK_FOR_INSN (note
) = NULL
;
4161 add_insn_after (note
, after
);
4165 /* Emit a copy of note ORIG after the insn AFTER. */
4168 emit_note_copy_after (rtx orig
, rtx after
)
4172 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4178 note
= rtx_alloc (NOTE
);
4179 INSN_UID (note
) = cur_insn_uid
++;
4180 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4181 NOTE_DATA (note
) = NOTE_DATA (orig
);
4182 BLOCK_FOR_INSN (note
) = NULL
;
4183 add_insn_after (note
, after
);
4187 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4189 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4191 rtx last
= emit_insn_after_noloc (pattern
, after
);
4193 if (pattern
== NULL_RTX
|| !loc
)
4196 after
= NEXT_INSN (after
);
4199 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4200 INSN_LOCATOR (after
) = loc
;
4203 after
= NEXT_INSN (after
);
4208 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4210 emit_insn_after (rtx pattern
, rtx after
)
4213 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4215 return emit_insn_after_noloc (pattern
, after
);
4218 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4220 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4222 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4224 if (pattern
== NULL_RTX
|| !loc
)
4227 after
= NEXT_INSN (after
);
4230 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4231 INSN_LOCATOR (after
) = loc
;
4234 after
= NEXT_INSN (after
);
4239 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4241 emit_jump_insn_after (rtx pattern
, rtx after
)
4244 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4246 return emit_jump_insn_after_noloc (pattern
, after
);
4249 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4251 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4253 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4255 if (pattern
== NULL_RTX
|| !loc
)
4258 after
= NEXT_INSN (after
);
4261 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4262 INSN_LOCATOR (after
) = loc
;
4265 after
= NEXT_INSN (after
);
4270 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4272 emit_call_insn_after (rtx pattern
, rtx after
)
4275 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4277 return emit_call_insn_after_noloc (pattern
, after
);
4280 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4282 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4284 rtx first
= PREV_INSN (before
);
4285 rtx last
= emit_insn_before_noloc (pattern
, before
);
4287 if (pattern
== NULL_RTX
|| !loc
)
4290 first
= NEXT_INSN (first
);
4293 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4294 INSN_LOCATOR (first
) = loc
;
4297 first
= NEXT_INSN (first
);
4302 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4304 emit_insn_before (rtx pattern
, rtx before
)
4306 if (INSN_P (before
))
4307 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4309 return emit_insn_before_noloc (pattern
, before
);
4312 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4314 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4316 rtx first
= PREV_INSN (before
);
4317 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4319 if (pattern
== NULL_RTX
)
4322 first
= NEXT_INSN (first
);
4325 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4326 INSN_LOCATOR (first
) = loc
;
4329 first
= NEXT_INSN (first
);
4334 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4336 emit_jump_insn_before (rtx pattern
, rtx before
)
4338 if (INSN_P (before
))
4339 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4341 return emit_jump_insn_before_noloc (pattern
, before
);
4344 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4346 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4348 rtx first
= PREV_INSN (before
);
4349 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4351 if (pattern
== NULL_RTX
)
4354 first
= NEXT_INSN (first
);
4357 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4358 INSN_LOCATOR (first
) = loc
;
4361 first
= NEXT_INSN (first
);
4366 /* like emit_call_insn_before_noloc,
4367 but set insn_locator according to before. */
4369 emit_call_insn_before (rtx pattern
, rtx before
)
4371 if (INSN_P (before
))
4372 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4374 return emit_call_insn_before_noloc (pattern
, before
);
4377 /* Take X and emit it at the end of the doubly-linked
4380 Returns the last insn emitted. */
4385 rtx last
= last_insn
;
4391 switch (GET_CODE (x
))
4402 rtx next
= NEXT_INSN (insn
);
4409 #ifdef ENABLE_RTL_CHECKING
4416 last
= make_insn_raw (x
);
4424 /* Make an insn of code JUMP_INSN with pattern X
4425 and add it to the end of the doubly-linked list. */
4428 emit_jump_insn (rtx x
)
4430 rtx last
= NULL_RTX
, insn
;
4432 switch (GET_CODE (x
))
4443 rtx next
= NEXT_INSN (insn
);
4450 #ifdef ENABLE_RTL_CHECKING
4457 last
= make_jump_insn_raw (x
);
4465 /* Make an insn of code CALL_INSN with pattern X
4466 and add it to the end of the doubly-linked list. */
4469 emit_call_insn (rtx x
)
4473 switch (GET_CODE (x
))
4481 insn
= emit_insn (x
);
4484 #ifdef ENABLE_RTL_CHECKING
4491 insn
= make_call_insn_raw (x
);
4499 /* Add the label LABEL to the end of the doubly-linked list. */
4502 emit_label (rtx label
)
4504 /* This can be called twice for the same label
4505 as a result of the confusion that follows a syntax error!
4506 So make it harmless. */
4507 if (INSN_UID (label
) == 0)
4509 INSN_UID (label
) = cur_insn_uid
++;
4515 /* Make an insn of code BARRIER
4516 and add it to the end of the doubly-linked list. */
4521 rtx barrier
= rtx_alloc (BARRIER
);
4522 INSN_UID (barrier
) = cur_insn_uid
++;
4527 /* Make line numbering NOTE insn for LOCATION add it to the end
4528 of the doubly-linked list, but only if line-numbers are desired for
4529 debugging info and it doesn't match the previous one. */
4532 emit_line_note (location_t location
)
4536 #ifdef USE_MAPPED_LOCATION
4537 if (location
== last_location
)
4540 if (location
.file
&& last_location
.file
4541 && !strcmp (location
.file
, last_location
.file
)
4542 && location
.line
== last_location
.line
)
4545 last_location
= location
;
4547 if (no_line_numbers
)
4553 #ifdef USE_MAPPED_LOCATION
4554 note
= emit_note ((int) location
);
4556 note
= emit_note (location
.line
);
4557 NOTE_SOURCE_FILE (note
) = location
.file
;
4563 /* Emit a copy of note ORIG. */
4566 emit_note_copy (rtx orig
)
4570 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4576 note
= rtx_alloc (NOTE
);
4578 INSN_UID (note
) = cur_insn_uid
++;
4579 NOTE_DATA (note
) = NOTE_DATA (orig
);
4580 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4581 BLOCK_FOR_INSN (note
) = NULL
;
4587 /* Make an insn of code NOTE or type NOTE_NO
4588 and add it to the end of the doubly-linked list. */
4591 emit_note (int note_no
)
4595 note
= rtx_alloc (NOTE
);
4596 INSN_UID (note
) = cur_insn_uid
++;
4597 NOTE_LINE_NUMBER (note
) = note_no
;
4598 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4599 BLOCK_FOR_INSN (note
) = NULL
;
4604 /* Cause next statement to emit a line note even if the line number
4608 force_next_line_note (void)
4610 #ifdef USE_MAPPED_LOCATION
4613 last_location
.line
= -1;
4617 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4618 note of this type already exists, remove it first. */
4621 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4623 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4629 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4630 has multiple sets (some callers assume single_set
4631 means the insn only has one set, when in fact it
4632 means the insn only has one * useful * set). */
4633 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4639 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4640 It serves no useful purpose and breaks eliminate_regs. */
4641 if (GET_CODE (datum
) == ASM_OPERANDS
)
4651 XEXP (note
, 0) = datum
;
4655 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4656 return REG_NOTES (insn
);
4659 /* Return an indication of which type of insn should have X as a body.
4660 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4662 static enum rtx_code
4663 classify_insn (rtx x
)
4667 if (GET_CODE (x
) == CALL
)
4669 if (GET_CODE (x
) == RETURN
)
4671 if (GET_CODE (x
) == SET
)
4673 if (SET_DEST (x
) == pc_rtx
)
4675 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4680 if (GET_CODE (x
) == PARALLEL
)
4683 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4684 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4686 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4687 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4689 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4690 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4696 /* Emit the rtl pattern X as an appropriate kind of insn.
4697 If X is a label, it is simply added into the insn chain. */
4702 enum rtx_code code
= classify_insn (x
);
4707 return emit_label (x
);
4709 return emit_insn (x
);
4712 rtx insn
= emit_jump_insn (x
);
4713 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4714 return emit_barrier ();
4718 return emit_call_insn (x
);
4724 /* Space for free sequence stack entries. */
4725 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4727 /* Begin emitting insns to a sequence. If this sequence will contain
4728 something that might cause the compiler to pop arguments to function
4729 calls (because those pops have previously been deferred; see
4730 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4731 before calling this function. That will ensure that the deferred
4732 pops are not accidentally emitted in the middle of this sequence. */
4735 start_sequence (void)
4737 struct sequence_stack
*tem
;
4739 if (free_sequence_stack
!= NULL
)
4741 tem
= free_sequence_stack
;
4742 free_sequence_stack
= tem
->next
;
4745 tem
= ggc_alloc (sizeof (struct sequence_stack
));
4747 tem
->next
= seq_stack
;
4748 tem
->first
= first_insn
;
4749 tem
->last
= last_insn
;
4757 /* Set up the insn chain starting with FIRST as the current sequence,
4758 saving the previously current one. See the documentation for
4759 start_sequence for more information about how to use this function. */
4762 push_to_sequence (rtx first
)
4768 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4774 /* Set up the outer-level insn chain
4775 as the current sequence, saving the previously current one. */
4778 push_topmost_sequence (void)
4780 struct sequence_stack
*stack
, *top
= NULL
;
4784 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4787 first_insn
= top
->first
;
4788 last_insn
= top
->last
;
4791 /* After emitting to the outer-level insn chain, update the outer-level
4792 insn chain, and restore the previous saved state. */
4795 pop_topmost_sequence (void)
4797 struct sequence_stack
*stack
, *top
= NULL
;
4799 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4802 top
->first
= first_insn
;
4803 top
->last
= last_insn
;
4808 /* After emitting to a sequence, restore previous saved state.
4810 To get the contents of the sequence just made, you must call
4811 `get_insns' *before* calling here.
4813 If the compiler might have deferred popping arguments while
4814 generating this sequence, and this sequence will not be immediately
4815 inserted into the instruction stream, use do_pending_stack_adjust
4816 before calling get_insns. That will ensure that the deferred
4817 pops are inserted into this sequence, and not into some random
4818 location in the instruction stream. See INHIBIT_DEFER_POP for more
4819 information about deferred popping of arguments. */
4824 struct sequence_stack
*tem
= seq_stack
;
4826 first_insn
= tem
->first
;
4827 last_insn
= tem
->last
;
4828 seq_stack
= tem
->next
;
4830 memset (tem
, 0, sizeof (*tem
));
4831 tem
->next
= free_sequence_stack
;
4832 free_sequence_stack
= tem
;
4835 /* Return 1 if currently emitting into a sequence. */
4838 in_sequence_p (void)
4840 return seq_stack
!= 0;
4843 /* Put the various virtual registers into REGNO_REG_RTX. */
4846 init_virtual_regs (struct emit_status
*es
)
4848 rtx
*ptr
= es
->x_regno_reg_rtx
;
4849 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4850 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4851 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4852 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4853 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4857 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4858 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4859 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4860 static int copy_insn_n_scratches
;
4862 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4863 copied an ASM_OPERANDS.
4864 In that case, it is the original input-operand vector. */
4865 static rtvec orig_asm_operands_vector
;
4867 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4868 copied an ASM_OPERANDS.
4869 In that case, it is the copied input-operand vector. */
4870 static rtvec copy_asm_operands_vector
;
4872 /* Likewise for the constraints vector. */
4873 static rtvec orig_asm_constraints_vector
;
4874 static rtvec copy_asm_constraints_vector
;
4876 /* Recursively create a new copy of an rtx for copy_insn.
4877 This function differs from copy_rtx in that it handles SCRATCHes and
4878 ASM_OPERANDs properly.
4879 Normally, this function is not used directly; use copy_insn as front end.
4880 However, you could first copy an insn pattern with copy_insn and then use
4881 this function afterwards to properly copy any REG_NOTEs containing
4885 copy_insn_1 (rtx orig
)
4890 const char *format_ptr
;
4892 code
= GET_CODE (orig
);
4906 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
4911 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4912 if (copy_insn_scratch_in
[i
] == orig
)
4913 return copy_insn_scratch_out
[i
];
4917 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4918 a LABEL_REF, it isn't sharable. */
4919 if (GET_CODE (XEXP (orig
, 0)) == PLUS
4920 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
4921 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
4925 /* A MEM with a constant address is not sharable. The problem is that
4926 the constant address may need to be reloaded. If the mem is shared,
4927 then reloading one copy of this mem will cause all copies to appear
4928 to have been reloaded. */
4934 copy
= rtx_alloc (code
);
4936 /* Copy the various flags, and other information. We assume that
4937 all fields need copying, and then clear the fields that should
4938 not be copied. That is the sensible default behavior, and forces
4939 us to explicitly document why we are *not* copying a flag. */
4940 memcpy (copy
, orig
, RTX_HDR_SIZE
);
4942 /* We do not copy the USED flag, which is used as a mark bit during
4943 walks over the RTL. */
4944 RTX_FLAG (copy
, used
) = 0;
4946 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4949 RTX_FLAG (copy
, jump
) = 0;
4950 RTX_FLAG (copy
, call
) = 0;
4951 RTX_FLAG (copy
, frame_related
) = 0;
4954 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
4956 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
4958 copy
->u
.fld
[i
] = orig
->u
.fld
[i
];
4959 switch (*format_ptr
++)
4962 if (XEXP (orig
, i
) != NULL
)
4963 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
4968 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
4969 XVEC (copy
, i
) = copy_asm_constraints_vector
;
4970 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
4971 XVEC (copy
, i
) = copy_asm_operands_vector
;
4972 else if (XVEC (orig
, i
) != NULL
)
4974 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
4975 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
4976 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
4987 /* These are left unchanged. */
4995 if (code
== SCRATCH
)
4997 i
= copy_insn_n_scratches
++;
4998 gcc_assert (i
< MAX_RECOG_OPERANDS
);
4999 copy_insn_scratch_in
[i
] = orig
;
5000 copy_insn_scratch_out
[i
] = copy
;
5002 else if (code
== ASM_OPERANDS
)
5004 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5005 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5006 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5007 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5013 /* Create a new copy of an rtx.
5014 This function differs from copy_rtx in that it handles SCRATCHes and
5015 ASM_OPERANDs properly.
5016 INSN doesn't really have to be a full INSN; it could be just the
5019 copy_insn (rtx insn
)
5021 copy_insn_n_scratches
= 0;
5022 orig_asm_operands_vector
= 0;
5023 orig_asm_constraints_vector
= 0;
5024 copy_asm_operands_vector
= 0;
5025 copy_asm_constraints_vector
= 0;
5026 return copy_insn_1 (insn
);
5029 /* Initialize data structures and variables in this file
5030 before generating rtl for each function. */
5035 struct function
*f
= cfun
;
5037 f
->emit
= ggc_alloc (sizeof (struct emit_status
));
5041 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5042 last_location
= UNKNOWN_LOCATION
;
5043 first_label_num
= label_num
;
5046 /* Init the tables that describe all the pseudo regs. */
5048 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5050 f
->emit
->regno_pointer_align
5051 = ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5052 * sizeof (unsigned char));
5055 = ggc_alloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
));
5057 /* Put copies of all the hard registers into regno_reg_rtx. */
5058 memcpy (regno_reg_rtx
,
5059 static_regno_reg_rtx
,
5060 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5062 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5063 init_virtual_regs (f
->emit
);
5065 /* Indicate that the virtual registers and stack locations are
5067 REG_POINTER (stack_pointer_rtx
) = 1;
5068 REG_POINTER (frame_pointer_rtx
) = 1;
5069 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5070 REG_POINTER (arg_pointer_rtx
) = 1;
5072 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5073 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5074 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5075 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5076 REG_POINTER (virtual_cfa_rtx
) = 1;
5078 #ifdef STACK_BOUNDARY
5079 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5080 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5081 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5082 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5084 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5085 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5086 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5087 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5088 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5091 #ifdef INIT_EXPANDERS
5096 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5099 gen_const_vector (enum machine_mode mode
, int constant
)
5104 enum machine_mode inner
;
5106 units
= GET_MODE_NUNITS (mode
);
5107 inner
= GET_MODE_INNER (mode
);
5109 v
= rtvec_alloc (units
);
5111 /* We need to call this function after we set the scalar const_tiny_rtx
5113 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5115 for (i
= 0; i
< units
; ++i
)
5116 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5118 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5122 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5123 all elements are zero, and the one vector when all elements are one. */
5125 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5127 enum machine_mode inner
= GET_MODE_INNER (mode
);
5128 int nunits
= GET_MODE_NUNITS (mode
);
5132 /* Check to see if all of the elements have the same value. */
5133 x
= RTVEC_ELT (v
, nunits
- 1);
5134 for (i
= nunits
- 2; i
>= 0; i
--)
5135 if (RTVEC_ELT (v
, i
) != x
)
5138 /* If the values are all the same, check to see if we can use one of the
5139 standard constant vectors. */
5142 if (x
== CONST0_RTX (inner
))
5143 return CONST0_RTX (mode
);
5144 else if (x
== CONST1_RTX (inner
))
5145 return CONST1_RTX (mode
);
5148 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5151 /* Create some permanent unique rtl objects shared between all functions.
5152 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5155 init_emit_once (int line_numbers
)
5158 enum machine_mode mode
;
5159 enum machine_mode double_mode
;
5161 /* We need reg_raw_mode, so initialize the modes now. */
5162 init_reg_modes_once ();
5164 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5166 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5167 const_int_htab_eq
, NULL
);
5169 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5170 const_double_htab_eq
, NULL
);
5172 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5173 mem_attrs_htab_eq
, NULL
);
5174 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5175 reg_attrs_htab_eq
, NULL
);
5177 no_line_numbers
= ! line_numbers
;
5179 /* Compute the word and byte modes. */
5181 byte_mode
= VOIDmode
;
5182 word_mode
= VOIDmode
;
5183 double_mode
= VOIDmode
;
5185 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5186 mode
= GET_MODE_WIDER_MODE (mode
))
5188 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5189 && byte_mode
== VOIDmode
)
5192 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5193 && word_mode
== VOIDmode
)
5197 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5198 mode
= GET_MODE_WIDER_MODE (mode
))
5200 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5201 && double_mode
== VOIDmode
)
5205 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5207 /* Assign register numbers to the globally defined register rtx.
5208 This must be done at runtime because the register number field
5209 is in a union and some compilers can't initialize unions. */
5211 pc_rtx
= gen_rtx_PC (VOIDmode
);
5212 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5213 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5214 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5215 if (hard_frame_pointer_rtx
== 0)
5216 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
5217 HARD_FRAME_POINTER_REGNUM
);
5218 if (arg_pointer_rtx
== 0)
5219 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5220 virtual_incoming_args_rtx
=
5221 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5222 virtual_stack_vars_rtx
=
5223 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5224 virtual_stack_dynamic_rtx
=
5225 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5226 virtual_outgoing_args_rtx
=
5227 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5228 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5230 /* Initialize RTL for commonly used hard registers. These are
5231 copied into regno_reg_rtx as we begin to compile each function. */
5232 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5233 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5235 #ifdef INIT_EXPANDERS
5236 /* This is to initialize {init|mark|free}_machine_status before the first
5237 call to push_function_context_to. This is needed by the Chill front
5238 end which calls push_function_context_to before the first call to
5239 init_function_start. */
5243 /* Create the unique rtx's for certain rtx codes and operand values. */
5245 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5246 tries to use these variables. */
5247 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5248 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5249 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5251 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5252 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5253 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5255 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5257 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5258 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5259 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5260 REAL_VALUE_FROM_INT (dconst3
, 3, 0, double_mode
);
5261 REAL_VALUE_FROM_INT (dconst10
, 10, 0, double_mode
);
5262 REAL_VALUE_FROM_INT (dconstm1
, -1, -1, double_mode
);
5263 REAL_VALUE_FROM_INT (dconstm2
, -2, -1, double_mode
);
5265 dconsthalf
= dconst1
;
5266 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5268 real_arithmetic (&dconstthird
, RDIV_EXPR
, &dconst1
, &dconst3
);
5270 /* Initialize mathematical constants for constant folding builtins.
5271 These constants need to be given to at least 160 bits precision. */
5272 real_from_string (&dconstpi
,
5273 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5274 real_from_string (&dconste
,
5275 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5277 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5279 REAL_VALUE_TYPE
*r
=
5280 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5282 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5283 mode
= GET_MODE_WIDER_MODE (mode
))
5284 const_tiny_rtx
[i
][(int) mode
] =
5285 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5287 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5289 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5290 mode
= GET_MODE_WIDER_MODE (mode
))
5291 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5293 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5295 mode
= GET_MODE_WIDER_MODE (mode
))
5296 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5299 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5301 mode
= GET_MODE_WIDER_MODE (mode
))
5303 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5304 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5307 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5309 mode
= GET_MODE_WIDER_MODE (mode
))
5311 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5312 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5315 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5316 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5317 const_tiny_rtx
[0][i
] = const0_rtx
;
5319 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5320 if (STORE_FLAG_VALUE
== 1)
5321 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5323 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5324 return_address_pointer_rtx
5325 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5328 #ifdef STATIC_CHAIN_REGNUM
5329 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5331 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5332 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5333 static_chain_incoming_rtx
5334 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5337 static_chain_incoming_rtx
= static_chain_rtx
;
5341 static_chain_rtx
= STATIC_CHAIN
;
5343 #ifdef STATIC_CHAIN_INCOMING
5344 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5346 static_chain_incoming_rtx
= static_chain_rtx
;
5350 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5351 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5354 /* Produce exact duplicate of insn INSN after AFTER.
5355 Care updating of libcall regions if present. */
5358 emit_copy_of_insn_after (rtx insn
, rtx after
)
5361 rtx note1
, note2
, link
;
5363 switch (GET_CODE (insn
))
5366 new = emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5370 new = emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5374 new = emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5375 if (CALL_INSN_FUNCTION_USAGE (insn
))
5376 CALL_INSN_FUNCTION_USAGE (new)
5377 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5378 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn
);
5379 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn
);
5386 /* Update LABEL_NUSES. */
5387 mark_jump_label (PATTERN (new), new, 0);
5389 INSN_LOCATOR (new) = INSN_LOCATOR (insn
);
5391 /* If the old insn is frame related, then so is the new one. This is
5392 primarily needed for IA-64 unwind info which marks epilogue insns,
5393 which may be duplicated by the basic block reordering code. */
5394 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn
);
5396 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5398 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5399 if (REG_NOTE_KIND (link
) != REG_LABEL
)
5401 if (GET_CODE (link
) == EXPR_LIST
)
5403 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
5408 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
5413 /* Fix the libcall sequences. */
5414 if ((note1
= find_reg_note (new, REG_RETVAL
, NULL_RTX
)) != NULL
)
5417 while ((note2
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)) == NULL
)
5419 XEXP (note1
, 0) = p
;
5420 XEXP (note2
, 0) = new;
5422 INSN_CODE (new) = INSN_CODE (insn
);
5426 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5428 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5430 if (hard_reg_clobbers
[mode
][regno
])
5431 return hard_reg_clobbers
[mode
][regno
];
5433 return (hard_reg_clobbers
[mode
][regno
] =
5434 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5437 #include "gt-emit-rtl.h"