* dwarf2out.c, fold-const.c, ipa-type-escape.c,
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob10ae9e3a6b91d06105ba67c7208ef7d2254ff5f8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Lib; use Lib;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Restrict; use Restrict;
38 with Rident; use Rident;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Eval; use Sem_Eval;
43 with Sem_Res; use Sem_Res;
44 with Sem_Type; use Sem_Type;
45 with Sem_Util; use Sem_Util;
46 with Snames; use Snames;
47 with Stand; use Stand;
48 with Sinfo; use Sinfo;
49 with Table;
50 with Targparm; use Targparm;
51 with Ttypes; use Ttypes;
52 with Tbuild; use Tbuild;
53 with Urealp; use Urealp;
55 with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
57 package body Sem_Ch13 is
59 SSU : constant Pos := System_Storage_Unit;
60 -- Convenient short hand for commonly used constant
62 -----------------------
63 -- Local Subprograms --
64 -----------------------
66 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
67 -- This routine is called after setting the Esize of type entity Typ.
68 -- The purpose is to deal with the situation where an aligment has been
69 -- inherited from a derived type that is no longer appropriate for the
70 -- new Esize value. In this case, we reset the Alignment to unknown.
72 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
73 -- Given two entities for record components or discriminants, checks
74 -- if they hav overlapping component clauses and issues errors if so.
76 function Get_Alignment_Value (Expr : Node_Id) return Uint;
77 -- Given the expression for an alignment value, returns the corresponding
78 -- Uint value. If the value is inappropriate, then error messages are
79 -- posted as required, and a value of No_Uint is returned.
81 function Is_Operational_Item (N : Node_Id) return Boolean;
82 -- A specification for a stream attribute is allowed before the full
83 -- type is declared, as explained in AI-00137 and the corrigendum.
84 -- Attributes that do not specify a representation characteristic are
85 -- operational attributes.
87 function Address_Aliased_Entity (N : Node_Id) return Entity_Id;
88 -- If expression N is of the form E'Address, return E
90 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id);
91 -- This is used for processing of an address representation clause. If
92 -- the expression N is of the form of K'Address, then the entity that
93 -- is associated with K is marked as volatile.
95 procedure New_Stream_Function
96 (N : Node_Id;
97 Ent : Entity_Id;
98 Subp : Entity_Id;
99 Nam : TSS_Name_Type);
100 -- Create a function renaming of a given stream attribute to the
101 -- designated subprogram and then in the tagged case, provide this as
102 -- a primitive operation, or in the non-tagged case make an appropriate
103 -- TSS entry. Used for Input. This is more properly an expansion activity
104 -- than just semantics, but the presence of user-defined stream functions
105 -- for limited types is a legality check, which is why this takes place
106 -- here rather than in exp_ch13, where it was previously. Nam indicates
107 -- the name of the TSS function to be generated.
109 -- To avoid elaboration anomalies with freeze nodes, for untagged types
110 -- we generate both a subprogram declaration and a subprogram renaming
111 -- declaration, so that the attribute specification is handled as a
112 -- renaming_as_body. For tagged types, the specification is one of the
113 -- primitive specs.
115 procedure New_Stream_Procedure
116 (N : Node_Id;
117 Ent : Entity_Id;
118 Subp : Entity_Id;
119 Nam : TSS_Name_Type;
120 Out_P : Boolean := False);
121 -- Create a procedure renaming of a given stream attribute to the
122 -- designated subprogram and then in the tagged case, provide this as
123 -- a primitive operation, or in the non-tagged case make an appropriate
124 -- TSS entry. Used for Read, Output, Write. Nam indicates the name of
125 -- the TSS procedure to be generated.
127 ----------------------------------------------
128 -- Table for Validate_Unchecked_Conversions --
129 ----------------------------------------------
131 -- The following table collects unchecked conversions for validation.
132 -- Entries are made by Validate_Unchecked_Conversion and then the
133 -- call to Validate_Unchecked_Conversions does the actual error
134 -- checking and posting of warnings. The reason for this delayed
135 -- processing is to take advantage of back-annotations of size and
136 -- alignment values peformed by the back end.
138 type UC_Entry is record
139 Enode : Node_Id; -- node used for posting warnings
140 Source : Entity_Id; -- source type for unchecked conversion
141 Target : Entity_Id; -- target type for unchecked conversion
142 end record;
144 package Unchecked_Conversions is new Table.Table (
145 Table_Component_Type => UC_Entry,
146 Table_Index_Type => Int,
147 Table_Low_Bound => 1,
148 Table_Initial => 50,
149 Table_Increment => 200,
150 Table_Name => "Unchecked_Conversions");
152 ----------------------------
153 -- Address_Aliased_Entity --
154 ----------------------------
156 function Address_Aliased_Entity (N : Node_Id) return Entity_Id is
157 begin
158 if Nkind (N) = N_Attribute_Reference
159 and then Attribute_Name (N) = Name_Address
160 then
161 declare
162 Nam : Node_Id := Prefix (N);
163 begin
164 while False
165 or else Nkind (Nam) = N_Selected_Component
166 or else Nkind (Nam) = N_Indexed_Component
167 loop
168 Nam := Prefix (Nam);
169 end loop;
171 if Is_Entity_Name (Nam) then
172 return Entity (Nam);
173 end if;
174 end;
175 end if;
177 return Empty;
178 end Address_Aliased_Entity;
180 --------------------------------------
181 -- Alignment_Check_For_Esize_Change --
182 --------------------------------------
184 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
185 begin
186 -- If the alignment is known, and not set by a rep clause, and is
187 -- inconsistent with the size being set, then reset it to unknown,
188 -- we assume in this case that the size overrides the inherited
189 -- alignment, and that the alignment must be recomputed.
191 if Known_Alignment (Typ)
192 and then not Has_Alignment_Clause (Typ)
193 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
194 then
195 Init_Alignment (Typ);
196 end if;
197 end Alignment_Check_For_Esize_Change;
199 -----------------------
200 -- Analyze_At_Clause --
201 -----------------------
203 -- An at clause is replaced by the corresponding Address attribute
204 -- definition clause that is the preferred approach in Ada 95.
206 procedure Analyze_At_Clause (N : Node_Id) is
207 begin
208 Check_Restriction (No_Obsolescent_Features, N);
210 if Warn_On_Obsolescent_Feature then
211 Error_Msg_N
212 ("at clause is an obsolescent feature ('R'M 'J.7(2))?", N);
213 Error_Msg_N
214 ("\use address attribute definition clause instead?", N);
215 end if;
217 Rewrite (N,
218 Make_Attribute_Definition_Clause (Sloc (N),
219 Name => Identifier (N),
220 Chars => Name_Address,
221 Expression => Expression (N)));
222 Analyze_Attribute_Definition_Clause (N);
223 end Analyze_At_Clause;
225 -----------------------------------------
226 -- Analyze_Attribute_Definition_Clause --
227 -----------------------------------------
229 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
230 Loc : constant Source_Ptr := Sloc (N);
231 Nam : constant Node_Id := Name (N);
232 Attr : constant Name_Id := Chars (N);
233 Expr : constant Node_Id := Expression (N);
234 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
235 Ent : Entity_Id;
236 U_Ent : Entity_Id;
238 FOnly : Boolean := False;
239 -- Reset to True for subtype specific attribute (Alignment, Size)
240 -- and for stream attributes, i.e. those cases where in the call
241 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
242 -- rules are checked. Note that the case of stream attributes is not
243 -- clear from the RM, but see AI95-00137. Also, the RM seems to
244 -- disallow Storage_Size for derived task types, but that is also
245 -- clearly unintentional.
247 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
248 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
249 -- definition clauses.
251 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
252 Subp : Entity_Id := Empty;
253 I : Interp_Index;
254 It : Interp;
255 Pnam : Entity_Id;
257 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
259 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
260 -- Return true if the entity is a subprogram with an appropriate
261 -- profile for the attribute being defined.
263 ----------------------
264 -- Has_Good_Profile --
265 ----------------------
267 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
268 F : Entity_Id;
269 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
270 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
271 (False => E_Procedure, True => E_Function);
272 Typ : Entity_Id;
274 begin
275 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
276 return False;
277 end if;
279 F := First_Formal (Subp);
281 if No (F)
282 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
283 or else Designated_Type (Etype (F)) /=
284 Class_Wide_Type (RTE (RE_Root_Stream_Type))
285 then
286 return False;
287 end if;
289 if not Is_Function then
290 Next_Formal (F);
292 declare
293 Expected_Mode : constant array (Boolean) of Entity_Kind :=
294 (False => E_In_Parameter,
295 True => E_Out_Parameter);
296 begin
297 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
298 return False;
299 end if;
300 end;
302 Typ := Etype (F);
304 else
305 Typ := Etype (Subp);
306 end if;
308 return Base_Type (Typ) = Base_Type (Ent)
309 and then No (Next_Formal (F));
311 end Has_Good_Profile;
313 -- Start of processing for Analyze_Stream_TSS_Definition
315 begin
316 FOnly := True;
318 if not Is_Type (U_Ent) then
319 Error_Msg_N ("local name must be a subtype", Nam);
320 return;
321 end if;
323 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
325 if Present (Pnam) and then Has_Good_Profile (Pnam) then
326 Error_Msg_Sloc := Sloc (Pnam);
327 Error_Msg_Name_1 := Attr;
328 Error_Msg_N ("% attribute already defined #", Nam);
329 return;
330 end if;
332 Analyze (Expr);
334 if Is_Entity_Name (Expr) then
335 if not Is_Overloaded (Expr) then
336 if Has_Good_Profile (Entity (Expr)) then
337 Subp := Entity (Expr);
338 end if;
340 else
341 Get_First_Interp (Expr, I, It);
343 while Present (It.Nam) loop
344 if Has_Good_Profile (It.Nam) then
345 Subp := It.Nam;
346 exit;
347 end if;
349 Get_Next_Interp (I, It);
350 end loop;
351 end if;
352 end if;
354 if Present (Subp) then
355 if Is_Abstract (Subp) then
356 Error_Msg_N ("stream subprogram must not be abstract", Expr);
357 return;
358 end if;
360 Set_Entity (Expr, Subp);
361 Set_Etype (Expr, Etype (Subp));
363 if TSS_Nam = TSS_Stream_Input then
364 New_Stream_Function (N, U_Ent, Subp, TSS_Nam);
365 else
366 New_Stream_Procedure (N, U_Ent, Subp, TSS_Nam,
367 Out_P => Is_Read);
368 end if;
370 else
371 Error_Msg_Name_1 := Attr;
372 Error_Msg_N ("incorrect expression for% attribute", Expr);
373 end if;
374 end Analyze_Stream_TSS_Definition;
376 -- Start of processing for Analyze_Attribute_Definition_Clause
378 begin
379 Analyze (Nam);
380 Ent := Entity (Nam);
382 if Rep_Item_Too_Early (Ent, N) then
383 return;
384 end if;
386 -- Rep clause applies to full view of incomplete type or private type if
387 -- we have one (if not, this is a premature use of the type). However,
388 -- certain semantic checks need to be done on the specified entity (i.e.
389 -- the private view), so we save it in Ent.
391 if Is_Private_Type (Ent)
392 and then Is_Derived_Type (Ent)
393 and then not Is_Tagged_Type (Ent)
394 and then No (Full_View (Ent))
395 then
396 -- If this is a private type whose completion is a derivation from
397 -- another private type, there is no full view, and the attribute
398 -- belongs to the type itself, not its underlying parent.
400 U_Ent := Ent;
402 elsif Ekind (Ent) = E_Incomplete_Type then
404 -- The attribute applies to the full view, set the entity of the
405 -- attribute definition accordingly.
407 Ent := Underlying_Type (Ent);
408 U_Ent := Ent;
409 Set_Entity (Nam, Ent);
411 else
412 U_Ent := Underlying_Type (Ent);
413 end if;
415 -- Complete other routine error checks
417 if Etype (Nam) = Any_Type then
418 return;
420 elsif Scope (Ent) /= Current_Scope then
421 Error_Msg_N ("entity must be declared in this scope", Nam);
422 return;
424 elsif No (U_Ent) then
425 U_Ent := Ent;
427 elsif Is_Type (U_Ent)
428 and then not Is_First_Subtype (U_Ent)
429 and then Id /= Attribute_Object_Size
430 and then Id /= Attribute_Value_Size
431 and then not From_At_Mod (N)
432 then
433 Error_Msg_N ("cannot specify attribute for subtype", Nam);
434 return;
435 end if;
437 -- Switch on particular attribute
439 case Id is
441 -------------
442 -- Address --
443 -------------
445 -- Address attribute definition clause
447 when Attribute_Address => Address : begin
448 Analyze_And_Resolve (Expr, RTE (RE_Address));
450 if Present (Address_Clause (U_Ent)) then
451 Error_Msg_N ("address already given for &", Nam);
453 -- Case of address clause for subprogram
455 elsif Is_Subprogram (U_Ent) then
456 if Has_Homonym (U_Ent) then
457 Error_Msg_N
458 ("address clause cannot be given " &
459 "for overloaded subprogram",
460 Nam);
461 end if;
463 -- For subprograms, all address clauses are permitted,
464 -- and we mark the subprogram as having a deferred freeze
465 -- so that Gigi will not elaborate it too soon.
467 -- Above needs more comments, what is too soon about???
469 Set_Has_Delayed_Freeze (U_Ent);
471 -- Case of address clause for entry
473 elsif Ekind (U_Ent) = E_Entry then
474 if Nkind (Parent (N)) = N_Task_Body then
475 Error_Msg_N
476 ("entry address must be specified in task spec", Nam);
477 end if;
479 -- For entries, we require a constant address
481 Check_Constant_Address_Clause (Expr, U_Ent);
483 if Is_Task_Type (Scope (U_Ent))
484 and then Comes_From_Source (Scope (U_Ent))
485 then
486 Error_Msg_N
487 ("?entry address declared for entry in task type", N);
488 Error_Msg_N
489 ("\?only one task can be declared of this type", N);
490 end if;
492 Check_Restriction (No_Obsolescent_Features, N);
494 if Warn_On_Obsolescent_Feature then
495 Error_Msg_N
496 ("attaching interrupt to task entry is an " &
497 "obsolescent feature ('R'M 'J.7.1)?", N);
498 Error_Msg_N
499 ("\use interrupt procedure instead?", N);
500 end if;
502 -- Case of an address clause for a controlled object:
503 -- erroneous execution.
505 elsif Is_Controlled (Etype (U_Ent)) then
506 Error_Msg_NE
507 ("?controlled object& must not be overlaid", Nam, U_Ent);
508 Error_Msg_N
509 ("\?Program_Error will be raised at run time", Nam);
510 Insert_Action (Declaration_Node (U_Ent),
511 Make_Raise_Program_Error (Loc,
512 Reason => PE_Overlaid_Controlled_Object));
514 -- Case of address clause for a (non-controlled) object
516 elsif
517 Ekind (U_Ent) = E_Variable
518 or else
519 Ekind (U_Ent) = E_Constant
520 then
521 declare
522 Expr : constant Node_Id := Expression (N);
523 Aent : constant Entity_Id := Address_Aliased_Entity (Expr);
525 begin
526 -- Exported variables cannot have an address clause,
527 -- because this cancels the effect of the pragma Export
529 if Is_Exported (U_Ent) then
530 Error_Msg_N
531 ("cannot export object with address clause", Nam);
533 -- Overlaying controlled objects is erroneous
535 elsif Present (Aent)
536 and then Is_Controlled (Etype (Aent))
537 then
538 Error_Msg_N
539 ("?controlled object must not be overlaid", Expr);
540 Error_Msg_N
541 ("\?Program_Error will be raised at run time", Expr);
542 Insert_Action (Declaration_Node (U_Ent),
543 Make_Raise_Program_Error (Loc,
544 Reason => PE_Overlaid_Controlled_Object));
546 elsif Present (Aent)
547 and then Ekind (U_Ent) = E_Constant
548 and then Ekind (Aent) /= E_Constant
549 then
550 Error_Msg_N ("constant overlays a variable?", Expr);
552 elsif Present (Renamed_Object (U_Ent)) then
553 Error_Msg_N
554 ("address clause not allowed"
555 & " for a renaming declaration ('R'M 13.1(6))", Nam);
557 -- Imported variables can have an address clause, but then
558 -- the import is pretty meaningless except to suppress
559 -- initializations, so we do not need such variables to
560 -- be statically allocated (and in fact it causes trouble
561 -- if the address clause is a local value).
563 elsif Is_Imported (U_Ent) then
564 Set_Is_Statically_Allocated (U_Ent, False);
565 end if;
567 -- We mark a possible modification of a variable with an
568 -- address clause, since it is likely aliasing is occurring.
570 Note_Possible_Modification (Nam);
572 -- Here we are checking for explicit overlap of one
573 -- variable by another, and if we find this, then we
574 -- mark the overlapped variable as also being aliased.
576 -- First case is where we have an explicit
578 -- for J'Address use K'Address;
580 -- In this case, we mark K as volatile
582 Mark_Aliased_Address_As_Volatile (Expr);
584 -- Second case is where we have a constant whose
585 -- definition is of the form of an adress as in:
587 -- A : constant Address := K'Address;
588 -- ...
589 -- for B'Address use A;
591 -- In this case we also mark K as volatile
593 if Is_Entity_Name (Expr) then
594 declare
595 Ent : constant Entity_Id := Entity (Expr);
596 Decl : constant Node_Id := Declaration_Node (Ent);
598 begin
599 if Ekind (Ent) = E_Constant
600 and then Nkind (Decl) = N_Object_Declaration
601 and then Present (Expression (Decl))
602 then
603 Mark_Aliased_Address_As_Volatile
604 (Expression (Decl));
605 end if;
606 end;
607 end if;
609 -- Legality checks on the address clause for initialized
610 -- objects is deferred until the freeze point, because
611 -- a subsequent pragma might indicate that the object is
612 -- imported and thus not initialized.
614 Set_Has_Delayed_Freeze (U_Ent);
616 if Is_Exported (U_Ent) then
617 Error_Msg_N
618 ("& cannot be exported if an address clause is given",
619 Nam);
620 Error_Msg_N
621 ("\define and export a variable " &
622 "that holds its address instead",
623 Nam);
624 end if;
626 -- Entity has delayed freeze, so we will generate
627 -- an alignment check at the freeze point.
629 Set_Check_Address_Alignment
630 (N, not Range_Checks_Suppressed (U_Ent));
632 -- Kill the size check code, since we are not allocating
633 -- the variable, it is somewhere else.
635 Kill_Size_Check_Code (U_Ent);
636 end;
638 -- Not a valid entity for an address clause
640 else
641 Error_Msg_N ("address cannot be given for &", Nam);
642 end if;
643 end Address;
645 ---------------
646 -- Alignment --
647 ---------------
649 -- Alignment attribute definition clause
651 when Attribute_Alignment => Alignment_Block : declare
652 Align : constant Uint := Get_Alignment_Value (Expr);
654 begin
655 FOnly := True;
657 if not Is_Type (U_Ent)
658 and then Ekind (U_Ent) /= E_Variable
659 and then Ekind (U_Ent) /= E_Constant
660 then
661 Error_Msg_N ("alignment cannot be given for &", Nam);
663 elsif Has_Alignment_Clause (U_Ent) then
664 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
665 Error_Msg_N ("alignment clause previously given#", N);
667 elsif Align /= No_Uint then
668 Set_Has_Alignment_Clause (U_Ent);
669 Set_Alignment (U_Ent, Align);
670 end if;
671 end Alignment_Block;
673 ---------------
674 -- Bit_Order --
675 ---------------
677 -- Bit_Order attribute definition clause
679 when Attribute_Bit_Order => Bit_Order : declare
680 begin
681 if not Is_Record_Type (U_Ent) then
682 Error_Msg_N
683 ("Bit_Order can only be defined for record type", Nam);
685 else
686 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
688 if Etype (Expr) = Any_Type then
689 return;
691 elsif not Is_Static_Expression (Expr) then
692 Flag_Non_Static_Expr
693 ("Bit_Order requires static expression!", Expr);
695 else
696 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
697 Set_Reverse_Bit_Order (U_Ent, True);
698 end if;
699 end if;
700 end if;
701 end Bit_Order;
703 --------------------
704 -- Component_Size --
705 --------------------
707 -- Component_Size attribute definition clause
709 when Attribute_Component_Size => Component_Size_Case : declare
710 Csize : constant Uint := Static_Integer (Expr);
711 Btype : Entity_Id;
712 Biased : Boolean;
713 New_Ctyp : Entity_Id;
714 Decl : Node_Id;
716 begin
717 if not Is_Array_Type (U_Ent) then
718 Error_Msg_N ("component size requires array type", Nam);
719 return;
720 end if;
722 Btype := Base_Type (U_Ent);
724 if Has_Component_Size_Clause (Btype) then
725 Error_Msg_N
726 ("component size clase for& previously given", Nam);
728 elsif Csize /= No_Uint then
729 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
731 if Has_Aliased_Components (Btype)
732 and then Csize < 32
733 and then Csize /= 8
734 and then Csize /= 16
735 then
736 Error_Msg_N
737 ("component size incorrect for aliased components", N);
738 return;
739 end if;
741 -- For the biased case, build a declaration for a subtype
742 -- that will be used to represent the biased subtype that
743 -- reflects the biased representation of components. We need
744 -- this subtype to get proper conversions on referencing
745 -- elements of the array.
747 if Biased then
748 New_Ctyp :=
749 Make_Defining_Identifier (Loc,
750 Chars => New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
752 Decl :=
753 Make_Subtype_Declaration (Loc,
754 Defining_Identifier => New_Ctyp,
755 Subtype_Indication =>
756 New_Occurrence_Of (Component_Type (Btype), Loc));
758 Set_Parent (Decl, N);
759 Analyze (Decl, Suppress => All_Checks);
761 Set_Has_Delayed_Freeze (New_Ctyp, False);
762 Set_Esize (New_Ctyp, Csize);
763 Set_RM_Size (New_Ctyp, Csize);
764 Init_Alignment (New_Ctyp);
765 Set_Has_Biased_Representation (New_Ctyp, True);
766 Set_Is_Itype (New_Ctyp, True);
767 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
769 Set_Component_Type (Btype, New_Ctyp);
770 end if;
772 Set_Component_Size (Btype, Csize);
773 Set_Has_Component_Size_Clause (Btype, True);
774 Set_Has_Non_Standard_Rep (Btype, True);
775 end if;
776 end Component_Size_Case;
778 ------------------
779 -- External_Tag --
780 ------------------
782 when Attribute_External_Tag => External_Tag :
783 begin
784 if not Is_Tagged_Type (U_Ent) then
785 Error_Msg_N ("should be a tagged type", Nam);
786 end if;
788 Analyze_And_Resolve (Expr, Standard_String);
790 if not Is_Static_Expression (Expr) then
791 Flag_Non_Static_Expr
792 ("static string required for tag name!", Nam);
793 end if;
795 Set_Has_External_Tag_Rep_Clause (U_Ent);
796 end External_Tag;
798 -----------
799 -- Input --
800 -----------
802 when Attribute_Input =>
803 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
804 Set_Has_Specified_Stream_Input (Ent);
806 -------------------
807 -- Machine_Radix --
808 -------------------
810 -- Machine radix attribute definition clause
812 when Attribute_Machine_Radix => Machine_Radix : declare
813 Radix : constant Uint := Static_Integer (Expr);
815 begin
816 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
817 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
819 elsif Has_Machine_Radix_Clause (U_Ent) then
820 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
821 Error_Msg_N ("machine radix clause previously given#", N);
823 elsif Radix /= No_Uint then
824 Set_Has_Machine_Radix_Clause (U_Ent);
825 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
827 if Radix = 2 then
828 null;
829 elsif Radix = 10 then
830 Set_Machine_Radix_10 (U_Ent);
831 else
832 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
833 end if;
834 end if;
835 end Machine_Radix;
837 -----------------
838 -- Object_Size --
839 -----------------
841 -- Object_Size attribute definition clause
843 when Attribute_Object_Size => Object_Size : declare
844 Size : constant Uint := Static_Integer (Expr);
845 Biased : Boolean;
847 begin
848 if not Is_Type (U_Ent) then
849 Error_Msg_N ("Object_Size cannot be given for &", Nam);
851 elsif Has_Object_Size_Clause (U_Ent) then
852 Error_Msg_N ("Object_Size already given for &", Nam);
854 else
855 Check_Size (Expr, U_Ent, Size, Biased);
857 if Size /= 8
858 and then
859 Size /= 16
860 and then
861 Size /= 32
862 and then
863 UI_Mod (Size, 64) /= 0
864 then
865 Error_Msg_N
866 ("Object_Size must be 8, 16, 32, or multiple of 64",
867 Expr);
868 end if;
870 Set_Esize (U_Ent, Size);
871 Set_Has_Object_Size_Clause (U_Ent);
872 Alignment_Check_For_Esize_Change (U_Ent);
873 end if;
874 end Object_Size;
876 ------------
877 -- Output --
878 ------------
880 when Attribute_Output =>
881 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
882 Set_Has_Specified_Stream_Output (Ent);
884 ----------
885 -- Read --
886 ----------
888 when Attribute_Read =>
889 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
890 Set_Has_Specified_Stream_Read (Ent);
892 ----------
893 -- Size --
894 ----------
896 -- Size attribute definition clause
898 when Attribute_Size => Size : declare
899 Size : constant Uint := Static_Integer (Expr);
900 Etyp : Entity_Id;
901 Biased : Boolean;
903 begin
904 FOnly := True;
906 if Has_Size_Clause (U_Ent) then
907 Error_Msg_N ("size already given for &", Nam);
909 elsif not Is_Type (U_Ent)
910 and then Ekind (U_Ent) /= E_Variable
911 and then Ekind (U_Ent) /= E_Constant
912 then
913 Error_Msg_N ("size cannot be given for &", Nam);
915 elsif Is_Array_Type (U_Ent)
916 and then not Is_Constrained (U_Ent)
917 then
918 Error_Msg_N
919 ("size cannot be given for unconstrained array", Nam);
921 elsif Size /= No_Uint then
922 if Is_Type (U_Ent) then
923 Etyp := U_Ent;
924 else
925 Etyp := Etype (U_Ent);
926 end if;
928 -- Check size, note that Gigi is in charge of checking
929 -- that the size of an array or record type is OK. Also
930 -- we do not check the size in the ordinary fixed-point
931 -- case, since it is too early to do so (there may be a
932 -- subsequent small clause that affects the size). We can
933 -- check the size if a small clause has already been given.
935 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
936 or else Has_Small_Clause (U_Ent)
937 then
938 Check_Size (Expr, Etyp, Size, Biased);
939 Set_Has_Biased_Representation (U_Ent, Biased);
940 end if;
942 -- For types set RM_Size and Esize if possible
944 if Is_Type (U_Ent) then
945 Set_RM_Size (U_Ent, Size);
947 -- For scalar types, increase Object_Size to power of 2,
948 -- but not less than a storage unit in any case (i.e.,
949 -- normally this means it will be byte addressable).
951 if Is_Scalar_Type (U_Ent) then
952 if Size <= System_Storage_Unit then
953 Init_Esize (U_Ent, System_Storage_Unit);
954 elsif Size <= 16 then
955 Init_Esize (U_Ent, 16);
956 elsif Size <= 32 then
957 Init_Esize (U_Ent, 32);
958 else
959 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
960 end if;
962 -- For all other types, object size = value size. The
963 -- backend will adjust as needed.
965 else
966 Set_Esize (U_Ent, Size);
967 end if;
969 Alignment_Check_For_Esize_Change (U_Ent);
971 -- For objects, set Esize only
973 else
974 if Is_Elementary_Type (Etyp) then
975 if Size /= System_Storage_Unit
976 and then
977 Size /= System_Storage_Unit * 2
978 and then
979 Size /= System_Storage_Unit * 4
980 and then
981 Size /= System_Storage_Unit * 8
982 then
983 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
984 Error_Msg_N
985 ("size for primitive object must be a power of 2"
986 & " and at least ^", N);
987 end if;
988 end if;
990 Set_Esize (U_Ent, Size);
991 end if;
993 Set_Has_Size_Clause (U_Ent);
994 end if;
995 end Size;
997 -----------
998 -- Small --
999 -----------
1001 -- Small attribute definition clause
1003 when Attribute_Small => Small : declare
1004 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1005 Small : Ureal;
1007 begin
1008 Analyze_And_Resolve (Expr, Any_Real);
1010 if Etype (Expr) = Any_Type then
1011 return;
1013 elsif not Is_Static_Expression (Expr) then
1014 Flag_Non_Static_Expr
1015 ("small requires static expression!", Expr);
1016 return;
1018 else
1019 Small := Expr_Value_R (Expr);
1021 if Small <= Ureal_0 then
1022 Error_Msg_N ("small value must be greater than zero", Expr);
1023 return;
1024 end if;
1026 end if;
1028 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1029 Error_Msg_N
1030 ("small requires an ordinary fixed point type", Nam);
1032 elsif Has_Small_Clause (U_Ent) then
1033 Error_Msg_N ("small already given for &", Nam);
1035 elsif Small > Delta_Value (U_Ent) then
1036 Error_Msg_N
1037 ("small value must not be greater then delta value", Nam);
1039 else
1040 Set_Small_Value (U_Ent, Small);
1041 Set_Small_Value (Implicit_Base, Small);
1042 Set_Has_Small_Clause (U_Ent);
1043 Set_Has_Small_Clause (Implicit_Base);
1044 Set_Has_Non_Standard_Rep (Implicit_Base);
1045 end if;
1046 end Small;
1048 ------------------
1049 -- Storage_Size --
1050 ------------------
1052 -- Storage_Size attribute definition clause
1054 when Attribute_Storage_Size => Storage_Size : declare
1055 Btype : constant Entity_Id := Base_Type (U_Ent);
1056 Sprag : Node_Id;
1058 begin
1059 if Is_Task_Type (U_Ent) then
1060 Check_Restriction (No_Obsolescent_Features, N);
1062 if Warn_On_Obsolescent_Feature then
1063 Error_Msg_N
1064 ("storage size clause for task is an " &
1065 "obsolescent feature ('R'M 'J.9)?", N);
1066 Error_Msg_N
1067 ("\use Storage_Size pragma instead?", N);
1068 end if;
1070 FOnly := True;
1071 end if;
1073 if not Is_Access_Type (U_Ent)
1074 and then Ekind (U_Ent) /= E_Task_Type
1075 then
1076 Error_Msg_N ("storage size cannot be given for &", Nam);
1078 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1079 Error_Msg_N
1080 ("storage size cannot be given for a derived access type",
1081 Nam);
1083 elsif Has_Storage_Size_Clause (Btype) then
1084 Error_Msg_N ("storage size already given for &", Nam);
1086 else
1087 Analyze_And_Resolve (Expr, Any_Integer);
1089 if Is_Access_Type (U_Ent) then
1091 if Present (Associated_Storage_Pool (U_Ent)) then
1092 Error_Msg_N ("storage pool already given for &", Nam);
1093 return;
1094 end if;
1096 if Compile_Time_Known_Value (Expr)
1097 and then Expr_Value (Expr) = 0
1098 then
1099 Set_No_Pool_Assigned (Btype);
1100 end if;
1102 else -- Is_Task_Type (U_Ent)
1103 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1105 if Present (Sprag) then
1106 Error_Msg_Sloc := Sloc (Sprag);
1107 Error_Msg_N
1108 ("Storage_Size already specified#", Nam);
1109 return;
1110 end if;
1111 end if;
1113 Set_Has_Storage_Size_Clause (Btype);
1114 end if;
1115 end Storage_Size;
1117 ------------------
1118 -- Storage_Pool --
1119 ------------------
1121 -- Storage_Pool attribute definition clause
1123 when Attribute_Storage_Pool => Storage_Pool : declare
1124 Pool : Entity_Id;
1125 T : Entity_Id;
1127 begin
1128 if Ekind (U_Ent) /= E_Access_Type
1129 and then Ekind (U_Ent) /= E_General_Access_Type
1130 then
1131 Error_Msg_N (
1132 "storage pool can only be given for access types", Nam);
1133 return;
1135 elsif Is_Derived_Type (U_Ent) then
1136 Error_Msg_N
1137 ("storage pool cannot be given for a derived access type",
1138 Nam);
1140 elsif Has_Storage_Size_Clause (U_Ent) then
1141 Error_Msg_N ("storage size already given for &", Nam);
1142 return;
1144 elsif Present (Associated_Storage_Pool (U_Ent)) then
1145 Error_Msg_N ("storage pool already given for &", Nam);
1146 return;
1147 end if;
1149 Analyze_And_Resolve
1150 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1152 if Nkind (Expr) = N_Type_Conversion then
1153 T := Etype (Expression (Expr));
1154 else
1155 T := Etype (Expr);
1156 end if;
1158 -- The Stack_Bounded_Pool is used internally for implementing
1159 -- access types with a Storage_Size. Since it only work
1160 -- properly when used on one specific type, we need to check
1161 -- that it is not highjacked improperly:
1162 -- type T is access Integer;
1163 -- for T'Storage_Size use n;
1164 -- type Q is access Float;
1165 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1167 if Base_Type (T) = RTE (RE_Stack_Bounded_Pool) then
1168 Error_Msg_N ("non-sharable internal Pool", Expr);
1169 return;
1170 end if;
1172 -- If the argument is a name that is not an entity name, then
1173 -- we construct a renaming operation to define an entity of
1174 -- type storage pool.
1176 if not Is_Entity_Name (Expr)
1177 and then Is_Object_Reference (Expr)
1178 then
1179 Pool :=
1180 Make_Defining_Identifier (Loc,
1181 Chars => New_Internal_Name ('P'));
1183 declare
1184 Rnode : constant Node_Id :=
1185 Make_Object_Renaming_Declaration (Loc,
1186 Defining_Identifier => Pool,
1187 Subtype_Mark =>
1188 New_Occurrence_Of (Etype (Expr), Loc),
1189 Name => Expr);
1191 begin
1192 Insert_Before (N, Rnode);
1193 Analyze (Rnode);
1194 Set_Associated_Storage_Pool (U_Ent, Pool);
1195 end;
1197 elsif Is_Entity_Name (Expr) then
1198 Pool := Entity (Expr);
1200 -- If pool is a renamed object, get original one. This can
1201 -- happen with an explicit renaming, and within instances.
1203 while Present (Renamed_Object (Pool))
1204 and then Is_Entity_Name (Renamed_Object (Pool))
1205 loop
1206 Pool := Entity (Renamed_Object (Pool));
1207 end loop;
1209 if Present (Renamed_Object (Pool))
1210 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1211 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1212 then
1213 Pool := Entity (Expression (Renamed_Object (Pool)));
1214 end if;
1216 Set_Associated_Storage_Pool (U_Ent, Pool);
1218 elsif Nkind (Expr) = N_Type_Conversion
1219 and then Is_Entity_Name (Expression (Expr))
1220 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1221 then
1222 Pool := Entity (Expression (Expr));
1223 Set_Associated_Storage_Pool (U_Ent, Pool);
1225 else
1226 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1227 return;
1228 end if;
1229 end Storage_Pool;
1231 -----------------
1232 -- Stream_Size --
1233 -----------------
1235 when Attribute_Stream_Size => Stream_Size : declare
1236 Size : constant Uint := Static_Integer (Expr);
1238 begin
1239 if Has_Stream_Size_Clause (U_Ent) then
1240 Error_Msg_N ("Stream_Size already given for &", Nam);
1242 elsif Is_Elementary_Type (U_Ent) then
1243 if Size /= System_Storage_Unit
1244 and then
1245 Size /= System_Storage_Unit * 2
1246 and then
1247 Size /= System_Storage_Unit * 4
1248 and then
1249 Size /= System_Storage_Unit * 8
1250 then
1251 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1252 Error_Msg_N
1253 ("stream size for elementary type must be a"
1254 & " power of 2 and at least ^", N);
1256 elsif RM_Size (U_Ent) > Size then
1257 Error_Msg_Uint_1 := RM_Size (U_Ent);
1258 Error_Msg_N
1259 ("stream size for elementary type must be a"
1260 & " power of 2 and at least ^", N);
1261 end if;
1263 Set_Has_Stream_Size_Clause (U_Ent);
1265 else
1266 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
1267 end if;
1268 end Stream_Size;
1270 ----------------
1271 -- Value_Size --
1272 ----------------
1274 -- Value_Size attribute definition clause
1276 when Attribute_Value_Size => Value_Size : declare
1277 Size : constant Uint := Static_Integer (Expr);
1278 Biased : Boolean;
1280 begin
1281 if not Is_Type (U_Ent) then
1282 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1284 elsif Present
1285 (Get_Attribute_Definition_Clause
1286 (U_Ent, Attribute_Value_Size))
1287 then
1288 Error_Msg_N ("Value_Size already given for &", Nam);
1290 else
1291 if Is_Elementary_Type (U_Ent) then
1292 Check_Size (Expr, U_Ent, Size, Biased);
1293 Set_Has_Biased_Representation (U_Ent, Biased);
1294 end if;
1296 Set_RM_Size (U_Ent, Size);
1297 end if;
1298 end Value_Size;
1300 -----------
1301 -- Write --
1302 -----------
1304 when Attribute_Write =>
1305 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
1306 Set_Has_Specified_Stream_Write (Ent);
1308 -- All other attributes cannot be set
1310 when others =>
1311 Error_Msg_N
1312 ("attribute& cannot be set with definition clause", N);
1313 end case;
1315 -- The test for the type being frozen must be performed after
1316 -- any expression the clause has been analyzed since the expression
1317 -- itself might cause freezing that makes the clause illegal.
1319 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1320 return;
1321 end if;
1322 end Analyze_Attribute_Definition_Clause;
1324 ----------------------------
1325 -- Analyze_Code_Statement --
1326 ----------------------------
1328 procedure Analyze_Code_Statement (N : Node_Id) is
1329 HSS : constant Node_Id := Parent (N);
1330 SBody : constant Node_Id := Parent (HSS);
1331 Subp : constant Entity_Id := Current_Scope;
1332 Stmt : Node_Id;
1333 Decl : Node_Id;
1334 StmtO : Node_Id;
1335 DeclO : Node_Id;
1337 begin
1338 -- Analyze and check we get right type, note that this implements the
1339 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1340 -- is the only way that Asm_Insn could possibly be visible.
1342 Analyze_And_Resolve (Expression (N));
1344 if Etype (Expression (N)) = Any_Type then
1345 return;
1346 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1347 Error_Msg_N ("incorrect type for code statement", N);
1348 return;
1349 end if;
1351 -- Make sure we appear in the handled statement sequence of a
1352 -- subprogram (RM 13.8(3)).
1354 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
1355 or else Nkind (SBody) /= N_Subprogram_Body
1356 then
1357 Error_Msg_N
1358 ("code statement can only appear in body of subprogram", N);
1359 return;
1360 end if;
1362 -- Do remaining checks (RM 13.8(3)) if not already done
1364 if not Is_Machine_Code_Subprogram (Subp) then
1365 Set_Is_Machine_Code_Subprogram (Subp);
1367 -- No exception handlers allowed
1369 if Present (Exception_Handlers (HSS)) then
1370 Error_Msg_N
1371 ("exception handlers not permitted in machine code subprogram",
1372 First (Exception_Handlers (HSS)));
1373 end if;
1375 -- No declarations other than use clauses and pragmas (we allow
1376 -- certain internally generated declarations as well).
1378 Decl := First (Declarations (SBody));
1379 while Present (Decl) loop
1380 DeclO := Original_Node (Decl);
1381 if Comes_From_Source (DeclO)
1382 and then Nkind (DeclO) /= N_Pragma
1383 and then Nkind (DeclO) /= N_Use_Package_Clause
1384 and then Nkind (DeclO) /= N_Use_Type_Clause
1385 and then Nkind (DeclO) /= N_Implicit_Label_Declaration
1386 then
1387 Error_Msg_N
1388 ("this declaration not allowed in machine code subprogram",
1389 DeclO);
1390 end if;
1392 Next (Decl);
1393 end loop;
1395 -- No statements other than code statements, pragmas, and labels.
1396 -- Again we allow certain internally generated statements.
1398 Stmt := First (Statements (HSS));
1399 while Present (Stmt) loop
1400 StmtO := Original_Node (Stmt);
1401 if Comes_From_Source (StmtO)
1402 and then Nkind (StmtO) /= N_Pragma
1403 and then Nkind (StmtO) /= N_Label
1404 and then Nkind (StmtO) /= N_Code_Statement
1405 then
1406 Error_Msg_N
1407 ("this statement is not allowed in machine code subprogram",
1408 StmtO);
1409 end if;
1411 Next (Stmt);
1412 end loop;
1413 end if;
1414 end Analyze_Code_Statement;
1416 -----------------------------------------------
1417 -- Analyze_Enumeration_Representation_Clause --
1418 -----------------------------------------------
1420 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
1421 Ident : constant Node_Id := Identifier (N);
1422 Aggr : constant Node_Id := Array_Aggregate (N);
1423 Enumtype : Entity_Id;
1424 Elit : Entity_Id;
1425 Expr : Node_Id;
1426 Assoc : Node_Id;
1427 Choice : Node_Id;
1428 Val : Uint;
1429 Err : Boolean := False;
1431 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
1432 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
1433 Min : Uint;
1434 Max : Uint;
1436 begin
1437 -- First some basic error checks
1439 Find_Type (Ident);
1440 Enumtype := Entity (Ident);
1442 if Enumtype = Any_Type
1443 or else Rep_Item_Too_Early (Enumtype, N)
1444 then
1445 return;
1446 else
1447 Enumtype := Underlying_Type (Enumtype);
1448 end if;
1450 if not Is_Enumeration_Type (Enumtype) then
1451 Error_Msg_NE
1452 ("enumeration type required, found}",
1453 Ident, First_Subtype (Enumtype));
1454 return;
1455 end if;
1457 -- Ignore rep clause on generic actual type. This will already have
1458 -- been flagged on the template as an error, and this is the safest
1459 -- way to ensure we don't get a junk cascaded message in the instance.
1461 if Is_Generic_Actual_Type (Enumtype) then
1462 return;
1464 -- Type must be in current scope
1466 elsif Scope (Enumtype) /= Current_Scope then
1467 Error_Msg_N ("type must be declared in this scope", Ident);
1468 return;
1470 -- Type must be a first subtype
1472 elsif not Is_First_Subtype (Enumtype) then
1473 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
1474 return;
1476 -- Ignore duplicate rep clause
1478 elsif Has_Enumeration_Rep_Clause (Enumtype) then
1479 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
1480 return;
1482 -- Don't allow rep clause for standard [wide_[wide_]]character
1484 elsif Root_Type (Enumtype) = Standard_Character
1485 or else Root_Type (Enumtype) = Standard_Wide_Character
1486 or else Root_Type (Enumtype) = Standard_Wide_Wide_Character
1487 then
1488 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
1489 return;
1491 -- All tests passed, so set rep clause in place
1493 else
1494 Set_Has_Enumeration_Rep_Clause (Enumtype);
1495 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
1496 end if;
1498 -- Now we process the aggregate. Note that we don't use the normal
1499 -- aggregate code for this purpose, because we don't want any of the
1500 -- normal expansion activities, and a number of special semantic
1501 -- rules apply (including the component type being any integer type)
1503 -- Badent signals that we found some incorrect entries processing
1504 -- the list. The final checks for completeness and ordering are
1505 -- skipped in this case.
1507 Elit := First_Literal (Enumtype);
1509 -- First the positional entries if any
1511 if Present (Expressions (Aggr)) then
1512 Expr := First (Expressions (Aggr));
1513 while Present (Expr) loop
1514 if No (Elit) then
1515 Error_Msg_N ("too many entries in aggregate", Expr);
1516 return;
1517 end if;
1519 Val := Static_Integer (Expr);
1521 if Val = No_Uint then
1522 Err := True;
1524 elsif Val < Lo or else Hi < Val then
1525 Error_Msg_N ("value outside permitted range", Expr);
1526 Err := True;
1527 end if;
1529 Set_Enumeration_Rep (Elit, Val);
1530 Set_Enumeration_Rep_Expr (Elit, Expr);
1531 Next (Expr);
1532 Next (Elit);
1533 end loop;
1534 end if;
1536 -- Now process the named entries if present
1538 if Present (Component_Associations (Aggr)) then
1539 Assoc := First (Component_Associations (Aggr));
1540 while Present (Assoc) loop
1541 Choice := First (Choices (Assoc));
1543 if Present (Next (Choice)) then
1544 Error_Msg_N
1545 ("multiple choice not allowed here", Next (Choice));
1546 Err := True;
1547 end if;
1549 if Nkind (Choice) = N_Others_Choice then
1550 Error_Msg_N ("others choice not allowed here", Choice);
1551 Err := True;
1553 elsif Nkind (Choice) = N_Range then
1554 -- ??? should allow zero/one element range here
1555 Error_Msg_N ("range not allowed here", Choice);
1556 Err := True;
1558 else
1559 Analyze_And_Resolve (Choice, Enumtype);
1561 if Is_Entity_Name (Choice)
1562 and then Is_Type (Entity (Choice))
1563 then
1564 Error_Msg_N ("subtype name not allowed here", Choice);
1565 Err := True;
1566 -- ??? should allow static subtype with zero/one entry
1568 elsif Etype (Choice) = Base_Type (Enumtype) then
1569 if not Is_Static_Expression (Choice) then
1570 Flag_Non_Static_Expr
1571 ("non-static expression used for choice!", Choice);
1572 Err := True;
1574 else
1575 Elit := Expr_Value_E (Choice);
1577 if Present (Enumeration_Rep_Expr (Elit)) then
1578 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
1579 Error_Msg_NE
1580 ("representation for& previously given#",
1581 Choice, Elit);
1582 Err := True;
1583 end if;
1585 Set_Enumeration_Rep_Expr (Elit, Choice);
1587 Expr := Expression (Assoc);
1588 Val := Static_Integer (Expr);
1590 if Val = No_Uint then
1591 Err := True;
1593 elsif Val < Lo or else Hi < Val then
1594 Error_Msg_N ("value outside permitted range", Expr);
1595 Err := True;
1596 end if;
1598 Set_Enumeration_Rep (Elit, Val);
1599 end if;
1600 end if;
1601 end if;
1603 Next (Assoc);
1604 end loop;
1605 end if;
1607 -- Aggregate is fully processed. Now we check that a full set of
1608 -- representations was given, and that they are in range and in order.
1609 -- These checks are only done if no other errors occurred.
1611 if not Err then
1612 Min := No_Uint;
1613 Max := No_Uint;
1615 Elit := First_Literal (Enumtype);
1616 while Present (Elit) loop
1617 if No (Enumeration_Rep_Expr (Elit)) then
1618 Error_Msg_NE ("missing representation for&!", N, Elit);
1620 else
1621 Val := Enumeration_Rep (Elit);
1623 if Min = No_Uint then
1624 Min := Val;
1625 end if;
1627 if Val /= No_Uint then
1628 if Max /= No_Uint and then Val <= Max then
1629 Error_Msg_NE
1630 ("enumeration value for& not ordered!",
1631 Enumeration_Rep_Expr (Elit), Elit);
1632 end if;
1634 Max := Val;
1635 end if;
1637 -- If there is at least one literal whose representation
1638 -- is not equal to the Pos value, then note that this
1639 -- enumeration type has a non-standard representation.
1641 if Val /= Enumeration_Pos (Elit) then
1642 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
1643 end if;
1644 end if;
1646 Next (Elit);
1647 end loop;
1649 -- Now set proper size information
1651 declare
1652 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
1654 begin
1655 if Has_Size_Clause (Enumtype) then
1656 if Esize (Enumtype) >= Minsize then
1657 null;
1659 else
1660 Minsize :=
1661 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
1663 if Esize (Enumtype) < Minsize then
1664 Error_Msg_N ("previously given size is too small", N);
1666 else
1667 Set_Has_Biased_Representation (Enumtype);
1668 end if;
1669 end if;
1671 else
1672 Set_RM_Size (Enumtype, Minsize);
1673 Set_Enum_Esize (Enumtype);
1674 end if;
1676 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
1677 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
1678 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
1679 end;
1680 end if;
1682 -- We repeat the too late test in case it froze itself!
1684 if Rep_Item_Too_Late (Enumtype, N) then
1685 null;
1686 end if;
1687 end Analyze_Enumeration_Representation_Clause;
1689 ----------------------------
1690 -- Analyze_Free_Statement --
1691 ----------------------------
1693 procedure Analyze_Free_Statement (N : Node_Id) is
1694 begin
1695 Analyze (Expression (N));
1696 end Analyze_Free_Statement;
1698 ------------------------------------------
1699 -- Analyze_Record_Representation_Clause --
1700 ------------------------------------------
1702 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
1703 Loc : constant Source_Ptr := Sloc (N);
1704 Ident : constant Node_Id := Identifier (N);
1705 Rectype : Entity_Id;
1706 Fent : Entity_Id;
1707 CC : Node_Id;
1708 Posit : Uint;
1709 Fbit : Uint;
1710 Lbit : Uint;
1711 Hbit : Uint := Uint_0;
1712 Comp : Entity_Id;
1713 Ocomp : Entity_Id;
1714 Biased : Boolean;
1716 Max_Bit_So_Far : Uint;
1717 -- Records the maximum bit position so far. If all field positions
1718 -- are monotonically increasing, then we can skip the circuit for
1719 -- checking for overlap, since no overlap is possible.
1721 Overlap_Check_Required : Boolean;
1722 -- Used to keep track of whether or not an overlap check is required
1724 Ccount : Natural := 0;
1725 -- Number of component clauses in record rep clause
1727 begin
1728 Find_Type (Ident);
1729 Rectype := Entity (Ident);
1731 if Rectype = Any_Type
1732 or else Rep_Item_Too_Early (Rectype, N)
1733 then
1734 return;
1735 else
1736 Rectype := Underlying_Type (Rectype);
1737 end if;
1739 -- First some basic error checks
1741 if not Is_Record_Type (Rectype) then
1742 Error_Msg_NE
1743 ("record type required, found}", Ident, First_Subtype (Rectype));
1744 return;
1746 elsif Is_Unchecked_Union (Rectype) then
1747 Error_Msg_N
1748 ("record rep clause not allowed for Unchecked_Union", N);
1750 elsif Scope (Rectype) /= Current_Scope then
1751 Error_Msg_N ("type must be declared in this scope", N);
1752 return;
1754 elsif not Is_First_Subtype (Rectype) then
1755 Error_Msg_N ("cannot give record rep clause for subtype", N);
1756 return;
1758 elsif Has_Record_Rep_Clause (Rectype) then
1759 Error_Msg_N ("duplicate record rep clause ignored", N);
1760 return;
1762 elsif Rep_Item_Too_Late (Rectype, N) then
1763 return;
1764 end if;
1766 if Present (Mod_Clause (N)) then
1767 declare
1768 Loc : constant Source_Ptr := Sloc (N);
1769 M : constant Node_Id := Mod_Clause (N);
1770 P : constant List_Id := Pragmas_Before (M);
1771 AtM_Nod : Node_Id;
1773 Mod_Val : Uint;
1774 pragma Warnings (Off, Mod_Val);
1776 begin
1777 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
1779 if Warn_On_Obsolescent_Feature then
1780 Error_Msg_N
1781 ("mod clause is an obsolescent feature ('R'M 'J.8)?", N);
1782 Error_Msg_N
1783 ("\use alignment attribute definition clause instead?", N);
1784 end if;
1786 if Present (P) then
1787 Analyze_List (P);
1788 end if;
1790 -- In ASIS_Mode mode, expansion is disabled, but we must
1791 -- convert the Mod clause into an alignment clause anyway, so
1792 -- that the back-end can compute and back-annotate properly the
1793 -- size and alignment of types that may include this record.
1795 if Operating_Mode = Check_Semantics
1796 and then ASIS_Mode
1797 then
1798 AtM_Nod :=
1799 Make_Attribute_Definition_Clause (Loc,
1800 Name => New_Reference_To (Base_Type (Rectype), Loc),
1801 Chars => Name_Alignment,
1802 Expression => Relocate_Node (Expression (M)));
1804 Set_From_At_Mod (AtM_Nod);
1805 Insert_After (N, AtM_Nod);
1806 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
1807 Set_Mod_Clause (N, Empty);
1809 else
1810 -- Get the alignment value to perform error checking
1812 Mod_Val := Get_Alignment_Value (Expression (M));
1814 end if;
1815 end;
1816 end if;
1818 -- Clear any existing component clauses for the type (this happens
1819 -- with derived types, where we are now overriding the original)
1821 Fent := First_Entity (Rectype);
1823 Comp := Fent;
1824 while Present (Comp) loop
1825 if Ekind (Comp) = E_Component
1826 or else Ekind (Comp) = E_Discriminant
1827 then
1828 Set_Component_Clause (Comp, Empty);
1829 end if;
1831 Next_Entity (Comp);
1832 end loop;
1834 -- All done if no component clauses
1836 CC := First (Component_Clauses (N));
1838 if No (CC) then
1839 return;
1840 end if;
1842 -- If a tag is present, then create a component clause that places
1843 -- it at the start of the record (otherwise gigi may place it after
1844 -- other fields that have rep clauses).
1846 if Nkind (Fent) = N_Defining_Identifier
1847 and then Chars (Fent) = Name_uTag
1848 then
1849 Set_Component_Bit_Offset (Fent, Uint_0);
1850 Set_Normalized_Position (Fent, Uint_0);
1851 Set_Normalized_First_Bit (Fent, Uint_0);
1852 Set_Normalized_Position_Max (Fent, Uint_0);
1853 Init_Esize (Fent, System_Address_Size);
1855 Set_Component_Clause (Fent,
1856 Make_Component_Clause (Loc,
1857 Component_Name =>
1858 Make_Identifier (Loc,
1859 Chars => Name_uTag),
1861 Position =>
1862 Make_Integer_Literal (Loc,
1863 Intval => Uint_0),
1865 First_Bit =>
1866 Make_Integer_Literal (Loc,
1867 Intval => Uint_0),
1869 Last_Bit =>
1870 Make_Integer_Literal (Loc,
1871 UI_From_Int (System_Address_Size))));
1873 Ccount := Ccount + 1;
1874 end if;
1876 -- A representation like this applies to the base type
1878 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
1879 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
1880 Set_Has_Specified_Layout (Base_Type (Rectype));
1882 Max_Bit_So_Far := Uint_Minus_1;
1883 Overlap_Check_Required := False;
1885 -- Process the component clauses
1887 while Present (CC) loop
1889 -- If pragma, just analyze it
1891 if Nkind (CC) = N_Pragma then
1892 Analyze (CC);
1894 -- Processing for real component clause
1896 else
1897 Ccount := Ccount + 1;
1898 Posit := Static_Integer (Position (CC));
1899 Fbit := Static_Integer (First_Bit (CC));
1900 Lbit := Static_Integer (Last_Bit (CC));
1902 if Posit /= No_Uint
1903 and then Fbit /= No_Uint
1904 and then Lbit /= No_Uint
1905 then
1906 if Posit < 0 then
1907 Error_Msg_N
1908 ("position cannot be negative", Position (CC));
1910 elsif Fbit < 0 then
1911 Error_Msg_N
1912 ("first bit cannot be negative", First_Bit (CC));
1914 -- Values look OK, so find the corresponding record component
1915 -- Even though the syntax allows an attribute reference for
1916 -- implementation-defined components, GNAT does not allow the
1917 -- tag to get an explicit position.
1919 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
1920 if Attribute_Name (Component_Name (CC)) = Name_Tag then
1921 Error_Msg_N ("position of tag cannot be specified", CC);
1922 else
1923 Error_Msg_N ("illegal component name", CC);
1924 end if;
1926 else
1927 Comp := First_Entity (Rectype);
1928 while Present (Comp) loop
1929 exit when Chars (Comp) = Chars (Component_Name (CC));
1930 Next_Entity (Comp);
1931 end loop;
1933 if No (Comp) then
1935 -- Maybe component of base type that is absent from
1936 -- statically constrained first subtype.
1938 Comp := First_Entity (Base_Type (Rectype));
1939 while Present (Comp) loop
1940 exit when Chars (Comp) = Chars (Component_Name (CC));
1941 Next_Entity (Comp);
1942 end loop;
1943 end if;
1945 if No (Comp) then
1946 Error_Msg_N
1947 ("component clause is for non-existent field", CC);
1949 elsif Present (Component_Clause (Comp)) then
1950 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
1951 Error_Msg_N
1952 ("component clause previously given#", CC);
1954 else
1955 -- Update Fbit and Lbit to the actual bit number
1957 Fbit := Fbit + UI_From_Int (SSU) * Posit;
1958 Lbit := Lbit + UI_From_Int (SSU) * Posit;
1960 if Fbit <= Max_Bit_So_Far then
1961 Overlap_Check_Required := True;
1962 else
1963 Max_Bit_So_Far := Lbit;
1964 end if;
1966 if Has_Size_Clause (Rectype)
1967 and then Esize (Rectype) <= Lbit
1968 then
1969 Error_Msg_N
1970 ("bit number out of range of specified size",
1971 Last_Bit (CC));
1972 else
1973 Set_Component_Clause (Comp, CC);
1974 Set_Component_Bit_Offset (Comp, Fbit);
1975 Set_Esize (Comp, 1 + (Lbit - Fbit));
1976 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
1977 Set_Normalized_Position (Comp, Fbit / SSU);
1979 Set_Normalized_Position_Max
1980 (Fent, Normalized_Position (Fent));
1982 if Is_Tagged_Type (Rectype)
1983 and then Fbit < System_Address_Size
1984 then
1985 Error_Msg_NE
1986 ("component overlaps tag field of&",
1987 CC, Rectype);
1988 end if;
1990 -- This information is also set in the corresponding
1991 -- component of the base type, found by accessing the
1992 -- Original_Record_Component link if it is present.
1994 Ocomp := Original_Record_Component (Comp);
1996 if Hbit < Lbit then
1997 Hbit := Lbit;
1998 end if;
2000 Check_Size
2001 (Component_Name (CC),
2002 Etype (Comp),
2003 Esize (Comp),
2004 Biased);
2006 Set_Has_Biased_Representation (Comp, Biased);
2008 if Present (Ocomp) then
2009 Set_Component_Clause (Ocomp, CC);
2010 Set_Component_Bit_Offset (Ocomp, Fbit);
2011 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2012 Set_Normalized_Position (Ocomp, Fbit / SSU);
2013 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2015 Set_Normalized_Position_Max
2016 (Ocomp, Normalized_Position (Ocomp));
2018 Set_Has_Biased_Representation
2019 (Ocomp, Has_Biased_Representation (Comp));
2020 end if;
2022 if Esize (Comp) < 0 then
2023 Error_Msg_N ("component size is negative", CC);
2024 end if;
2025 end if;
2026 end if;
2027 end if;
2028 end if;
2029 end if;
2031 Next (CC);
2032 end loop;
2034 -- Now that we have processed all the component clauses, check for
2035 -- overlap. We have to leave this till last, since the components
2036 -- can appear in any arbitrary order in the representation clause.
2038 -- We do not need this check if all specified ranges were monotonic,
2039 -- as recorded by Overlap_Check_Required being False at this stage.
2041 -- This first section checks if there are any overlapping entries
2042 -- at all. It does this by sorting all entries and then seeing if
2043 -- there are any overlaps. If there are none, then that is decisive,
2044 -- but if there are overlaps, they may still be OK (they may result
2045 -- from fields in different variants).
2047 if Overlap_Check_Required then
2048 Overlap_Check1 : declare
2050 OC_Fbit : array (0 .. Ccount) of Uint;
2051 -- First-bit values for component clauses, the value is the
2052 -- offset of the first bit of the field from start of record.
2053 -- The zero entry is for use in sorting.
2055 OC_Lbit : array (0 .. Ccount) of Uint;
2056 -- Last-bit values for component clauses, the value is the
2057 -- offset of the last bit of the field from start of record.
2058 -- The zero entry is for use in sorting.
2060 OC_Count : Natural := 0;
2061 -- Count of entries in OC_Fbit and OC_Lbit
2063 function OC_Lt (Op1, Op2 : Natural) return Boolean;
2064 -- Compare routine for Sort (See GNAT.Heap_Sort_A)
2066 procedure OC_Move (From : Natural; To : Natural);
2067 -- Move routine for Sort (see GNAT.Heap_Sort_A)
2069 function OC_Lt (Op1, Op2 : Natural) return Boolean is
2070 begin
2071 return OC_Fbit (Op1) < OC_Fbit (Op2);
2072 end OC_Lt;
2074 procedure OC_Move (From : Natural; To : Natural) is
2075 begin
2076 OC_Fbit (To) := OC_Fbit (From);
2077 OC_Lbit (To) := OC_Lbit (From);
2078 end OC_Move;
2080 begin
2081 CC := First (Component_Clauses (N));
2082 while Present (CC) loop
2083 if Nkind (CC) /= N_Pragma then
2084 Posit := Static_Integer (Position (CC));
2085 Fbit := Static_Integer (First_Bit (CC));
2086 Lbit := Static_Integer (Last_Bit (CC));
2088 if Posit /= No_Uint
2089 and then Fbit /= No_Uint
2090 and then Lbit /= No_Uint
2091 then
2092 OC_Count := OC_Count + 1;
2093 Posit := Posit * SSU;
2094 OC_Fbit (OC_Count) := Fbit + Posit;
2095 OC_Lbit (OC_Count) := Lbit + Posit;
2096 end if;
2097 end if;
2099 Next (CC);
2100 end loop;
2102 Sort
2103 (OC_Count,
2104 OC_Move'Unrestricted_Access,
2105 OC_Lt'Unrestricted_Access);
2107 Overlap_Check_Required := False;
2108 for J in 1 .. OC_Count - 1 loop
2109 if OC_Lbit (J) >= OC_Fbit (J + 1) then
2110 Overlap_Check_Required := True;
2111 exit;
2112 end if;
2113 end loop;
2114 end Overlap_Check1;
2115 end if;
2117 -- If Overlap_Check_Required is still True, then we have to do
2118 -- the full scale overlap check, since we have at least two fields
2119 -- that do overlap, and we need to know if that is OK since they
2120 -- are in the same variant, or whether we have a definite problem
2122 if Overlap_Check_Required then
2123 Overlap_Check2 : declare
2124 C1_Ent, C2_Ent : Entity_Id;
2125 -- Entities of components being checked for overlap
2127 Clist : Node_Id;
2128 -- Component_List node whose Component_Items are being checked
2130 Citem : Node_Id;
2131 -- Component declaration for component being checked
2133 begin
2134 C1_Ent := First_Entity (Base_Type (Rectype));
2136 -- Loop through all components in record. For each component check
2137 -- for overlap with any of the preceding elements on the component
2138 -- list containing the component, and also, if the component is in
2139 -- a variant, check against components outside the case structure.
2140 -- This latter test is repeated recursively up the variant tree.
2142 Main_Component_Loop : while Present (C1_Ent) loop
2143 if Ekind (C1_Ent) /= E_Component
2144 and then Ekind (C1_Ent) /= E_Discriminant
2145 then
2146 goto Continue_Main_Component_Loop;
2147 end if;
2149 -- Skip overlap check if entity has no declaration node. This
2150 -- happens with discriminants in constrained derived types.
2151 -- Probably we are missing some checks as a result, but that
2152 -- does not seem terribly serious ???
2154 if No (Declaration_Node (C1_Ent)) then
2155 goto Continue_Main_Component_Loop;
2156 end if;
2158 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
2160 -- Loop through component lists that need checking. Check the
2161 -- current component list and all lists in variants above us.
2163 Component_List_Loop : loop
2165 -- If derived type definition, go to full declaration
2166 -- If at outer level, check discriminants if there are any
2168 if Nkind (Clist) = N_Derived_Type_Definition then
2169 Clist := Parent (Clist);
2170 end if;
2172 -- Outer level of record definition, check discriminants
2174 if Nkind (Clist) = N_Full_Type_Declaration
2175 or else Nkind (Clist) = N_Private_Type_Declaration
2176 then
2177 if Has_Discriminants (Defining_Identifier (Clist)) then
2178 C2_Ent :=
2179 First_Discriminant (Defining_Identifier (Clist));
2181 while Present (C2_Ent) loop
2182 exit when C1_Ent = C2_Ent;
2183 Check_Component_Overlap (C1_Ent, C2_Ent);
2184 Next_Discriminant (C2_Ent);
2185 end loop;
2186 end if;
2188 -- Record extension case
2190 elsif Nkind (Clist) = N_Derived_Type_Definition then
2191 Clist := Empty;
2193 -- Otherwise check one component list
2195 else
2196 Citem := First (Component_Items (Clist));
2198 while Present (Citem) loop
2199 if Nkind (Citem) = N_Component_Declaration then
2200 C2_Ent := Defining_Identifier (Citem);
2201 exit when C1_Ent = C2_Ent;
2202 Check_Component_Overlap (C1_Ent, C2_Ent);
2203 end if;
2205 Next (Citem);
2206 end loop;
2207 end if;
2209 -- Check for variants above us (the parent of the Clist can
2210 -- be a variant, in which case its parent is a variant part,
2211 -- and the parent of the variant part is a component list
2212 -- whose components must all be checked against the current
2213 -- component for overlap.
2215 if Nkind (Parent (Clist)) = N_Variant then
2216 Clist := Parent (Parent (Parent (Clist)));
2218 -- Check for possible discriminant part in record, this is
2219 -- treated essentially as another level in the recursion.
2220 -- For this case we have the parent of the component list
2221 -- is the record definition, and its parent is the full
2222 -- type declaration which contains the discriminant
2223 -- specifications.
2225 elsif Nkind (Parent (Clist)) = N_Record_Definition then
2226 Clist := Parent (Parent ((Clist)));
2228 -- If neither of these two cases, we are at the top of
2229 -- the tree
2231 else
2232 exit Component_List_Loop;
2233 end if;
2234 end loop Component_List_Loop;
2236 <<Continue_Main_Component_Loop>>
2237 Next_Entity (C1_Ent);
2239 end loop Main_Component_Loop;
2240 end Overlap_Check2;
2241 end if;
2243 -- For records that have component clauses for all components, and
2244 -- whose size is less than or equal to 32, we need to know the size
2245 -- in the front end to activate possible packed array processing
2246 -- where the component type is a record.
2248 -- At this stage Hbit + 1 represents the first unused bit from all
2249 -- the component clauses processed, so if the component clauses are
2250 -- complete, then this is the length of the record.
2252 -- For records longer than System.Storage_Unit, and for those where
2253 -- not all components have component clauses, the back end determines
2254 -- the length (it may for example be appopriate to round up the size
2255 -- to some convenient boundary, based on alignment considerations etc).
2257 if Unknown_RM_Size (Rectype)
2258 and then Hbit + 1 <= 32
2259 then
2260 -- Nothing to do if at least one component with no component clause
2262 Comp := First_Entity (Rectype);
2263 while Present (Comp) loop
2264 if Ekind (Comp) = E_Component
2265 or else Ekind (Comp) = E_Discriminant
2266 then
2267 if No (Component_Clause (Comp)) then
2268 return;
2269 end if;
2270 end if;
2272 Next_Entity (Comp);
2273 end loop;
2275 -- If we fall out of loop, all components have component clauses
2276 -- and so we can set the size to the maximum value.
2278 Set_RM_Size (Rectype, Hbit + 1);
2279 end if;
2280 end Analyze_Record_Representation_Clause;
2282 -----------------------------
2283 -- Check_Component_Overlap --
2284 -----------------------------
2286 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
2287 begin
2288 if Present (Component_Clause (C1_Ent))
2289 and then Present (Component_Clause (C2_Ent))
2290 then
2291 -- Exclude odd case where we have two tag fields in the same
2292 -- record, both at location zero. This seems a bit strange,
2293 -- but it seems to happen in some circumstances ???
2295 if Chars (C1_Ent) = Name_uTag
2296 and then Chars (C2_Ent) = Name_uTag
2297 then
2298 return;
2299 end if;
2301 -- Here we check if the two fields overlap
2303 declare
2304 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
2305 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
2306 E1 : constant Uint := S1 + Esize (C1_Ent);
2307 E2 : constant Uint := S2 + Esize (C2_Ent);
2309 begin
2310 if E2 <= S1 or else E1 <= S2 then
2311 null;
2312 else
2313 Error_Msg_Node_2 :=
2314 Component_Name (Component_Clause (C2_Ent));
2315 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
2316 Error_Msg_Node_1 :=
2317 Component_Name (Component_Clause (C1_Ent));
2318 Error_Msg_N
2319 ("component& overlaps & #",
2320 Component_Name (Component_Clause (C1_Ent)));
2321 end if;
2322 end;
2323 end if;
2324 end Check_Component_Overlap;
2326 -----------------------------------
2327 -- Check_Constant_Address_Clause --
2328 -----------------------------------
2330 procedure Check_Constant_Address_Clause
2331 (Expr : Node_Id;
2332 U_Ent : Entity_Id)
2334 procedure Check_At_Constant_Address (Nod : Node_Id);
2335 -- Checks that the given node N represents a name whose 'Address
2336 -- is constant (in the same sense as OK_Constant_Address_Clause,
2337 -- i.e. the address value is the same at the point of declaration
2338 -- of U_Ent and at the time of elaboration of the address clause.
2340 procedure Check_Expr_Constants (Nod : Node_Id);
2341 -- Checks that Nod meets the requirements for a constant address
2342 -- clause in the sense of the enclosing procedure.
2344 procedure Check_List_Constants (Lst : List_Id);
2345 -- Check that all elements of list Lst meet the requirements for a
2346 -- constant address clause in the sense of the enclosing procedure.
2348 -------------------------------
2349 -- Check_At_Constant_Address --
2350 -------------------------------
2352 procedure Check_At_Constant_Address (Nod : Node_Id) is
2353 begin
2354 if Is_Entity_Name (Nod) then
2355 if Present (Address_Clause (Entity ((Nod)))) then
2356 Error_Msg_NE
2357 ("invalid address clause for initialized object &!",
2358 Nod, U_Ent);
2359 Error_Msg_NE
2360 ("address for& cannot" &
2361 " depend on another address clause! ('R'M 13.1(22))!",
2362 Nod, U_Ent);
2364 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2365 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2366 then
2367 Error_Msg_NE
2368 ("invalid address clause for initialized object &!",
2369 Nod, U_Ent);
2370 Error_Msg_Name_1 := Chars (Entity (Nod));
2371 Error_Msg_Name_2 := Chars (U_Ent);
2372 Error_Msg_N
2373 ("\% must be defined before % ('R'M 13.1(22))!",
2374 Nod);
2375 end if;
2377 elsif Nkind (Nod) = N_Selected_Component then
2378 declare
2379 T : constant Entity_Id := Etype (Prefix (Nod));
2381 begin
2382 if (Is_Record_Type (T)
2383 and then Has_Discriminants (T))
2384 or else
2385 (Is_Access_Type (T)
2386 and then Is_Record_Type (Designated_Type (T))
2387 and then Has_Discriminants (Designated_Type (T)))
2388 then
2389 Error_Msg_NE
2390 ("invalid address clause for initialized object &!",
2391 Nod, U_Ent);
2392 Error_Msg_N
2393 ("\address cannot depend on component" &
2394 " of discriminated record ('R'M 13.1(22))!",
2395 Nod);
2396 else
2397 Check_At_Constant_Address (Prefix (Nod));
2398 end if;
2399 end;
2401 elsif Nkind (Nod) = N_Indexed_Component then
2402 Check_At_Constant_Address (Prefix (Nod));
2403 Check_List_Constants (Expressions (Nod));
2405 else
2406 Check_Expr_Constants (Nod);
2407 end if;
2408 end Check_At_Constant_Address;
2410 --------------------------
2411 -- Check_Expr_Constants --
2412 --------------------------
2414 procedure Check_Expr_Constants (Nod : Node_Id) is
2415 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2416 Ent : Entity_Id := Empty;
2418 begin
2419 if Nkind (Nod) in N_Has_Etype
2420 and then Etype (Nod) = Any_Type
2421 then
2422 return;
2423 end if;
2425 case Nkind (Nod) is
2426 when N_Empty | N_Error =>
2427 return;
2429 when N_Identifier | N_Expanded_Name =>
2430 Ent := Entity (Nod);
2432 -- We need to look at the original node if it is different
2433 -- from the node, since we may have rewritten things and
2434 -- substituted an identifier representing the rewrite.
2436 if Original_Node (Nod) /= Nod then
2437 Check_Expr_Constants (Original_Node (Nod));
2439 -- If the node is an object declaration without initial
2440 -- value, some code has been expanded, and the expression
2441 -- is not constant, even if the constituents might be
2442 -- acceptable, as in A'Address + offset.
2444 if Ekind (Ent) = E_Variable
2445 and then Nkind (Declaration_Node (Ent))
2446 = N_Object_Declaration
2447 and then
2448 No (Expression (Declaration_Node (Ent)))
2449 then
2450 Error_Msg_NE
2451 ("invalid address clause for initialized object &!",
2452 Nod, U_Ent);
2454 -- If entity is constant, it may be the result of expanding
2455 -- a check. We must verify that its declaration appears
2456 -- before the object in question, else we also reject the
2457 -- address clause.
2459 elsif Ekind (Ent) = E_Constant
2460 and then In_Same_Source_Unit (Ent, U_Ent)
2461 and then Sloc (Ent) > Loc_U_Ent
2462 then
2463 Error_Msg_NE
2464 ("invalid address clause for initialized object &!",
2465 Nod, U_Ent);
2466 end if;
2468 return;
2469 end if;
2471 -- Otherwise look at the identifier and see if it is OK
2473 if Ekind (Ent) = E_Named_Integer
2474 or else
2475 Ekind (Ent) = E_Named_Real
2476 or else
2477 Is_Type (Ent)
2478 then
2479 return;
2481 elsif
2482 Ekind (Ent) = E_Constant
2483 or else
2484 Ekind (Ent) = E_In_Parameter
2485 then
2486 -- This is the case where we must have Ent defined
2487 -- before U_Ent. Clearly if they are in different
2488 -- units this requirement is met since the unit
2489 -- containing Ent is already processed.
2491 if not In_Same_Source_Unit (Ent, U_Ent) then
2492 return;
2494 -- Otherwise location of Ent must be before the
2495 -- location of U_Ent, that's what prior defined means.
2497 elsif Sloc (Ent) < Loc_U_Ent then
2498 return;
2500 else
2501 Error_Msg_NE
2502 ("invalid address clause for initialized object &!",
2503 Nod, U_Ent);
2504 Error_Msg_Name_1 := Chars (Ent);
2505 Error_Msg_Name_2 := Chars (U_Ent);
2506 Error_Msg_N
2507 ("\% must be defined before % ('R'M 13.1(22))!",
2508 Nod);
2509 end if;
2511 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
2512 Check_Expr_Constants (Original_Node (Nod));
2514 else
2515 Error_Msg_NE
2516 ("invalid address clause for initialized object &!",
2517 Nod, U_Ent);
2519 if Comes_From_Source (Ent) then
2520 Error_Msg_Name_1 := Chars (Ent);
2521 Error_Msg_N
2522 ("\reference to variable% not allowed"
2523 & " ('R'M 13.1(22))!", Nod);
2524 else
2525 Error_Msg_N
2526 ("non-static expression not allowed"
2527 & " ('R'M 13.1(22))!", Nod);
2528 end if;
2529 end if;
2531 when N_Integer_Literal =>
2533 -- If this is a rewritten unchecked conversion, in a system
2534 -- where Address is an integer type, always use the base type
2535 -- for a literal value. This is user-friendly and prevents
2536 -- order-of-elaboration issues with instances of unchecked
2537 -- conversion.
2539 if Nkind (Original_Node (Nod)) = N_Function_Call then
2540 Set_Etype (Nod, Base_Type (Etype (Nod)));
2541 end if;
2543 when N_Real_Literal |
2544 N_String_Literal |
2545 N_Character_Literal =>
2546 return;
2548 when N_Range =>
2549 Check_Expr_Constants (Low_Bound (Nod));
2550 Check_Expr_Constants (High_Bound (Nod));
2552 when N_Explicit_Dereference =>
2553 Check_Expr_Constants (Prefix (Nod));
2555 when N_Indexed_Component =>
2556 Check_Expr_Constants (Prefix (Nod));
2557 Check_List_Constants (Expressions (Nod));
2559 when N_Slice =>
2560 Check_Expr_Constants (Prefix (Nod));
2561 Check_Expr_Constants (Discrete_Range (Nod));
2563 when N_Selected_Component =>
2564 Check_Expr_Constants (Prefix (Nod));
2566 when N_Attribute_Reference =>
2568 if Attribute_Name (Nod) = Name_Address
2569 or else
2570 Attribute_Name (Nod) = Name_Access
2571 or else
2572 Attribute_Name (Nod) = Name_Unchecked_Access
2573 or else
2574 Attribute_Name (Nod) = Name_Unrestricted_Access
2575 then
2576 Check_At_Constant_Address (Prefix (Nod));
2578 else
2579 Check_Expr_Constants (Prefix (Nod));
2580 Check_List_Constants (Expressions (Nod));
2581 end if;
2583 when N_Aggregate =>
2584 Check_List_Constants (Component_Associations (Nod));
2585 Check_List_Constants (Expressions (Nod));
2587 when N_Component_Association =>
2588 Check_Expr_Constants (Expression (Nod));
2590 when N_Extension_Aggregate =>
2591 Check_Expr_Constants (Ancestor_Part (Nod));
2592 Check_List_Constants (Component_Associations (Nod));
2593 Check_List_Constants (Expressions (Nod));
2595 when N_Null =>
2596 return;
2598 when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In =>
2599 Check_Expr_Constants (Left_Opnd (Nod));
2600 Check_Expr_Constants (Right_Opnd (Nod));
2602 when N_Unary_Op =>
2603 Check_Expr_Constants (Right_Opnd (Nod));
2605 when N_Type_Conversion |
2606 N_Qualified_Expression |
2607 N_Allocator =>
2608 Check_Expr_Constants (Expression (Nod));
2610 when N_Unchecked_Type_Conversion =>
2611 Check_Expr_Constants (Expression (Nod));
2613 -- If this is a rewritten unchecked conversion, subtypes
2614 -- in this node are those created within the instance.
2615 -- To avoid order of elaboration issues, replace them
2616 -- with their base types. Note that address clauses can
2617 -- cause order of elaboration problems because they are
2618 -- elaborated by the back-end at the point of definition,
2619 -- and may mention entities declared in between (as long
2620 -- as everything is static). It is user-friendly to allow
2621 -- unchecked conversions in this context.
2623 if Nkind (Original_Node (Nod)) = N_Function_Call then
2624 Set_Etype (Expression (Nod),
2625 Base_Type (Etype (Expression (Nod))));
2626 Set_Etype (Nod, Base_Type (Etype (Nod)));
2627 end if;
2629 when N_Function_Call =>
2630 if not Is_Pure (Entity (Name (Nod))) then
2631 Error_Msg_NE
2632 ("invalid address clause for initialized object &!",
2633 Nod, U_Ent);
2635 Error_Msg_NE
2636 ("\function & is not pure ('R'M 13.1(22))!",
2637 Nod, Entity (Name (Nod)));
2639 else
2640 Check_List_Constants (Parameter_Associations (Nod));
2641 end if;
2643 when N_Parameter_Association =>
2644 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
2646 when others =>
2647 Error_Msg_NE
2648 ("invalid address clause for initialized object &!",
2649 Nod, U_Ent);
2650 Error_Msg_NE
2651 ("\must be constant defined before& ('R'M 13.1(22))!",
2652 Nod, U_Ent);
2653 end case;
2654 end Check_Expr_Constants;
2656 --------------------------
2657 -- Check_List_Constants --
2658 --------------------------
2660 procedure Check_List_Constants (Lst : List_Id) is
2661 Nod1 : Node_Id;
2663 begin
2664 if Present (Lst) then
2665 Nod1 := First (Lst);
2666 while Present (Nod1) loop
2667 Check_Expr_Constants (Nod1);
2668 Next (Nod1);
2669 end loop;
2670 end if;
2671 end Check_List_Constants;
2673 -- Start of processing for Check_Constant_Address_Clause
2675 begin
2676 Check_Expr_Constants (Expr);
2677 end Check_Constant_Address_Clause;
2679 ----------------
2680 -- Check_Size --
2681 ----------------
2683 procedure Check_Size
2684 (N : Node_Id;
2685 T : Entity_Id;
2686 Siz : Uint;
2687 Biased : out Boolean)
2689 UT : constant Entity_Id := Underlying_Type (T);
2690 M : Uint;
2692 begin
2693 Biased := False;
2695 -- Dismiss cases for generic types or types with previous errors
2697 if No (UT)
2698 or else UT = Any_Type
2699 or else Is_Generic_Type (UT)
2700 or else Is_Generic_Type (Root_Type (UT))
2701 then
2702 return;
2704 -- Check case of bit packed array
2706 elsif Is_Array_Type (UT)
2707 and then Known_Static_Component_Size (UT)
2708 and then Is_Bit_Packed_Array (UT)
2709 then
2710 declare
2711 Asiz : Uint;
2712 Indx : Node_Id;
2713 Ityp : Entity_Id;
2715 begin
2716 Asiz := Component_Size (UT);
2717 Indx := First_Index (UT);
2718 loop
2719 Ityp := Etype (Indx);
2721 -- If non-static bound, then we are not in the business of
2722 -- trying to check the length, and indeed an error will be
2723 -- issued elsewhere, since sizes of non-static array types
2724 -- cannot be set implicitly or explicitly.
2726 if not Is_Static_Subtype (Ityp) then
2727 return;
2728 end if;
2730 -- Otherwise accumulate next dimension
2732 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
2733 Expr_Value (Type_Low_Bound (Ityp)) +
2734 Uint_1);
2736 Next_Index (Indx);
2737 exit when No (Indx);
2738 end loop;
2740 if Asiz <= Siz then
2741 return;
2742 else
2743 Error_Msg_Uint_1 := Asiz;
2744 Error_Msg_NE
2745 ("size for& too small, minimum allowed is ^", N, T);
2746 Set_Esize (T, Asiz);
2747 Set_RM_Size (T, Asiz);
2748 end if;
2749 end;
2751 -- All other composite types are ignored
2753 elsif Is_Composite_Type (UT) then
2754 return;
2756 -- For fixed-point types, don't check minimum if type is not frozen,
2757 -- since we don't know all the characteristics of the type that can
2758 -- affect the size (e.g. a specified small) till freeze time.
2760 elsif Is_Fixed_Point_Type (UT)
2761 and then not Is_Frozen (UT)
2762 then
2763 null;
2765 -- Cases for which a minimum check is required
2767 else
2768 -- Ignore if specified size is correct for the type
2770 if Known_Esize (UT) and then Siz = Esize (UT) then
2771 return;
2772 end if;
2774 -- Otherwise get minimum size
2776 M := UI_From_Int (Minimum_Size (UT));
2778 if Siz < M then
2780 -- Size is less than minimum size, but one possibility remains
2781 -- that we can manage with the new size if we bias the type
2783 M := UI_From_Int (Minimum_Size (UT, Biased => True));
2785 if Siz < M then
2786 Error_Msg_Uint_1 := M;
2787 Error_Msg_NE
2788 ("size for& too small, minimum allowed is ^", N, T);
2789 Set_Esize (T, M);
2790 Set_RM_Size (T, M);
2791 else
2792 Biased := True;
2793 end if;
2794 end if;
2795 end if;
2796 end Check_Size;
2798 -------------------------
2799 -- Get_Alignment_Value --
2800 -------------------------
2802 function Get_Alignment_Value (Expr : Node_Id) return Uint is
2803 Align : constant Uint := Static_Integer (Expr);
2805 begin
2806 if Align = No_Uint then
2807 return No_Uint;
2809 elsif Align <= 0 then
2810 Error_Msg_N ("alignment value must be positive", Expr);
2811 return No_Uint;
2813 else
2814 for J in Int range 0 .. 64 loop
2815 declare
2816 M : constant Uint := Uint_2 ** J;
2818 begin
2819 exit when M = Align;
2821 if M > Align then
2822 Error_Msg_N
2823 ("alignment value must be power of 2", Expr);
2824 return No_Uint;
2825 end if;
2826 end;
2827 end loop;
2829 return Align;
2830 end if;
2831 end Get_Alignment_Value;
2833 ----------------
2834 -- Initialize --
2835 ----------------
2837 procedure Initialize is
2838 begin
2839 Unchecked_Conversions.Init;
2840 end Initialize;
2842 -------------------------
2843 -- Is_Operational_Item --
2844 -------------------------
2846 function Is_Operational_Item (N : Node_Id) return Boolean is
2847 begin
2848 if Nkind (N) /= N_Attribute_Definition_Clause then
2849 return False;
2850 else
2851 declare
2852 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
2854 begin
2855 return Id = Attribute_Input
2856 or else Id = Attribute_Output
2857 or else Id = Attribute_Read
2858 or else Id = Attribute_Write
2859 or else Id = Attribute_External_Tag;
2860 end;
2861 end if;
2862 end Is_Operational_Item;
2864 --------------------------------------
2865 -- Mark_Aliased_Address_As_Volatile --
2866 --------------------------------------
2868 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id) is
2869 Ent : constant Entity_Id := Address_Aliased_Entity (N);
2871 begin
2872 if Present (Ent) then
2873 Set_Treat_As_Volatile (Ent);
2874 end if;
2875 end Mark_Aliased_Address_As_Volatile;
2877 ------------------
2878 -- Minimum_Size --
2879 ------------------
2881 function Minimum_Size
2882 (T : Entity_Id;
2883 Biased : Boolean := False) return Nat
2885 Lo : Uint := No_Uint;
2886 Hi : Uint := No_Uint;
2887 LoR : Ureal := No_Ureal;
2888 HiR : Ureal := No_Ureal;
2889 LoSet : Boolean := False;
2890 HiSet : Boolean := False;
2891 B : Uint;
2892 S : Nat;
2893 Ancest : Entity_Id;
2894 R_Typ : constant Entity_Id := Root_Type (T);
2896 begin
2897 -- If bad type, return 0
2899 if T = Any_Type then
2900 return 0;
2902 -- For generic types, just return zero. There cannot be any legitimate
2903 -- need to know such a size, but this routine may be called with a
2904 -- generic type as part of normal processing.
2906 elsif Is_Generic_Type (R_Typ)
2907 or else R_Typ = Any_Type
2908 then
2909 return 0;
2911 -- Access types. Normally an access type cannot have a size smaller
2912 -- than the size of System.Address. The exception is on VMS, where
2913 -- we have short and long addresses, and it is possible for an access
2914 -- type to have a short address size (and thus be less than the size
2915 -- of System.Address itself). We simply skip the check for VMS, and
2916 -- leave the back end to do the check.
2918 elsif Is_Access_Type (T) then
2919 if OpenVMS_On_Target then
2920 return 0;
2921 else
2922 return System_Address_Size;
2923 end if;
2925 -- Floating-point types
2927 elsif Is_Floating_Point_Type (T) then
2928 return UI_To_Int (Esize (R_Typ));
2930 -- Discrete types
2932 elsif Is_Discrete_Type (T) then
2934 -- The following loop is looking for the nearest compile time
2935 -- known bounds following the ancestor subtype chain. The idea
2936 -- is to find the most restrictive known bounds information.
2938 Ancest := T;
2939 loop
2940 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
2941 return 0;
2942 end if;
2944 if not LoSet then
2945 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
2946 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
2947 LoSet := True;
2948 exit when HiSet;
2949 end if;
2950 end if;
2952 if not HiSet then
2953 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
2954 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
2955 HiSet := True;
2956 exit when LoSet;
2957 end if;
2958 end if;
2960 Ancest := Ancestor_Subtype (Ancest);
2962 if No (Ancest) then
2963 Ancest := Base_Type (T);
2965 if Is_Generic_Type (Ancest) then
2966 return 0;
2967 end if;
2968 end if;
2969 end loop;
2971 -- Fixed-point types. We can't simply use Expr_Value to get the
2972 -- Corresponding_Integer_Value values of the bounds, since these
2973 -- do not get set till the type is frozen, and this routine can
2974 -- be called before the type is frozen. Similarly the test for
2975 -- bounds being static needs to include the case where we have
2976 -- unanalyzed real literals for the same reason.
2978 elsif Is_Fixed_Point_Type (T) then
2980 -- The following loop is looking for the nearest compile time
2981 -- known bounds following the ancestor subtype chain. The idea
2982 -- is to find the most restrictive known bounds information.
2984 Ancest := T;
2985 loop
2986 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
2987 return 0;
2988 end if;
2990 if not LoSet then
2991 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
2992 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
2993 then
2994 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
2995 LoSet := True;
2996 exit when HiSet;
2997 end if;
2998 end if;
3000 if not HiSet then
3001 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
3002 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
3003 then
3004 HiR := Expr_Value_R (Type_High_Bound (Ancest));
3005 HiSet := True;
3006 exit when LoSet;
3007 end if;
3008 end if;
3010 Ancest := Ancestor_Subtype (Ancest);
3012 if No (Ancest) then
3013 Ancest := Base_Type (T);
3015 if Is_Generic_Type (Ancest) then
3016 return 0;
3017 end if;
3018 end if;
3019 end loop;
3021 Lo := UR_To_Uint (LoR / Small_Value (T));
3022 Hi := UR_To_Uint (HiR / Small_Value (T));
3024 -- No other types allowed
3026 else
3027 raise Program_Error;
3028 end if;
3030 -- Fall through with Hi and Lo set. Deal with biased case
3032 if (Biased and then not Is_Fixed_Point_Type (T))
3033 or else Has_Biased_Representation (T)
3034 then
3035 Hi := Hi - Lo;
3036 Lo := Uint_0;
3037 end if;
3039 -- Signed case. Note that we consider types like range 1 .. -1 to be
3040 -- signed for the purpose of computing the size, since the bounds
3041 -- have to be accomodated in the base type.
3043 if Lo < 0 or else Hi < 0 then
3044 S := 1;
3045 B := Uint_1;
3047 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
3048 -- Note that we accommodate the case where the bounds cross. This
3049 -- can happen either because of the way the bounds are declared
3050 -- or because of the algorithm in Freeze_Fixed_Point_Type.
3052 while Lo < -B
3053 or else Hi < -B
3054 or else Lo >= B
3055 or else Hi >= B
3056 loop
3057 B := Uint_2 ** S;
3058 S := S + 1;
3059 end loop;
3061 -- Unsigned case
3063 else
3064 -- If both bounds are positive, make sure that both are represen-
3065 -- table in the case where the bounds are crossed. This can happen
3066 -- either because of the way the bounds are declared, or because of
3067 -- the algorithm in Freeze_Fixed_Point_Type.
3069 if Lo > Hi then
3070 Hi := Lo;
3071 end if;
3073 -- S = size, (can accommodate 0 .. (2**size - 1))
3075 S := 0;
3076 while Hi >= Uint_2 ** S loop
3077 S := S + 1;
3078 end loop;
3079 end if;
3081 return S;
3082 end Minimum_Size;
3084 -------------------------
3085 -- New_Stream_Function --
3086 -------------------------
3088 procedure New_Stream_Function
3089 (N : Node_Id;
3090 Ent : Entity_Id;
3091 Subp : Entity_Id;
3092 Nam : TSS_Name_Type)
3094 Loc : constant Source_Ptr := Sloc (N);
3095 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3096 Subp_Id : Entity_Id;
3097 Subp_Decl : Node_Id;
3098 F : Entity_Id;
3099 Etyp : Entity_Id;
3101 function Build_Spec return Node_Id;
3102 -- Used for declaration and renaming declaration, so that this is
3103 -- treated as a renaming_as_body.
3105 ----------------
3106 -- Build_Spec --
3107 ----------------
3109 function Build_Spec return Node_Id is
3110 begin
3111 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3113 return
3114 Make_Function_Specification (Loc,
3115 Defining_Unit_Name => Subp_Id,
3116 Parameter_Specifications =>
3117 New_List (
3118 Make_Parameter_Specification (Loc,
3119 Defining_Identifier =>
3120 Make_Defining_Identifier (Loc, Name_S),
3121 Parameter_Type =>
3122 Make_Access_Definition (Loc,
3123 Subtype_Mark =>
3124 New_Reference_To (
3125 Designated_Type (Etype (F)), Loc)))),
3127 Subtype_Mark =>
3128 New_Reference_To (Etyp, Loc));
3129 end Build_Spec;
3131 -- Start of processing for New_Stream_Function
3133 begin
3134 F := First_Formal (Subp);
3135 Etyp := Etype (Subp);
3137 if not Is_Tagged_Type (Ent) then
3138 Subp_Decl :=
3139 Make_Subprogram_Declaration (Loc,
3140 Specification => Build_Spec);
3141 Insert_Action (N, Subp_Decl);
3142 end if;
3144 Subp_Decl :=
3145 Make_Subprogram_Renaming_Declaration (Loc,
3146 Specification => Build_Spec,
3147 Name => New_Reference_To (Subp, Loc));
3149 if Is_Tagged_Type (Ent) then
3150 Set_TSS (Base_Type (Ent), Subp_Id);
3151 else
3152 Insert_Action (N, Subp_Decl);
3153 Copy_TSS (Subp_Id, Base_Type (Ent));
3154 end if;
3155 end New_Stream_Function;
3157 --------------------------
3158 -- New_Stream_Procedure --
3159 --------------------------
3161 procedure New_Stream_Procedure
3162 (N : Node_Id;
3163 Ent : Entity_Id;
3164 Subp : Entity_Id;
3165 Nam : TSS_Name_Type;
3166 Out_P : Boolean := False)
3168 Loc : constant Source_Ptr := Sloc (N);
3169 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3170 Subp_Id : Entity_Id;
3171 Subp_Decl : Node_Id;
3172 F : Entity_Id;
3173 Etyp : Entity_Id;
3175 function Build_Spec return Node_Id;
3176 -- Used for declaration and renaming declaration, so that this is
3177 -- treated as a renaming_as_body.
3179 ----------------
3180 -- Build_Spec --
3181 ----------------
3183 function Build_Spec return Node_Id is
3184 begin
3185 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3187 return
3188 Make_Procedure_Specification (Loc,
3189 Defining_Unit_Name => Subp_Id,
3190 Parameter_Specifications =>
3191 New_List (
3192 Make_Parameter_Specification (Loc,
3193 Defining_Identifier =>
3194 Make_Defining_Identifier (Loc, Name_S),
3195 Parameter_Type =>
3196 Make_Access_Definition (Loc,
3197 Subtype_Mark =>
3198 New_Reference_To (
3199 Designated_Type (Etype (F)), Loc))),
3201 Make_Parameter_Specification (Loc,
3202 Defining_Identifier =>
3203 Make_Defining_Identifier (Loc, Name_V),
3204 Out_Present => Out_P,
3205 Parameter_Type =>
3206 New_Reference_To (Etyp, Loc))));
3207 end Build_Spec;
3209 -- Start of processing for New_Stream_Procedure
3211 begin
3212 F := First_Formal (Subp);
3213 Etyp := Etype (Next_Formal (F));
3215 if not Is_Tagged_Type (Ent) then
3216 Subp_Decl :=
3217 Make_Subprogram_Declaration (Loc,
3218 Specification => Build_Spec);
3219 Insert_Action (N, Subp_Decl);
3220 end if;
3222 Subp_Decl :=
3223 Make_Subprogram_Renaming_Declaration (Loc,
3224 Specification => Build_Spec,
3225 Name => New_Reference_To (Subp, Loc));
3227 if Is_Tagged_Type (Ent) then
3228 Set_TSS (Base_Type (Ent), Subp_Id);
3229 else
3230 Insert_Action (N, Subp_Decl);
3231 Copy_TSS (Subp_Id, Base_Type (Ent));
3232 end if;
3233 end New_Stream_Procedure;
3235 ------------------------
3236 -- Rep_Item_Too_Early --
3237 ------------------------
3239 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
3240 begin
3241 -- Cannot apply rep items that are not operational items
3242 -- to generic types
3244 if Is_Operational_Item (N) then
3245 return False;
3247 elsif Is_Type (T)
3248 and then Is_Generic_Type (Root_Type (T))
3249 then
3250 Error_Msg_N
3251 ("representation item not allowed for generic type", N);
3252 return True;
3253 end if;
3255 -- Otherwise check for incompleted type
3257 if Is_Incomplete_Or_Private_Type (T)
3258 and then No (Underlying_Type (T))
3259 then
3260 Error_Msg_N
3261 ("representation item must be after full type declaration", N);
3262 return True;
3264 -- If the type has incompleted components, a representation clause is
3265 -- illegal but stream attributes and Convention pragmas are correct.
3267 elsif Has_Private_Component (T) then
3268 if Nkind (N) = N_Pragma then
3269 return False;
3270 else
3271 Error_Msg_N
3272 ("representation item must appear after type is fully defined",
3274 return True;
3275 end if;
3276 else
3277 return False;
3278 end if;
3279 end Rep_Item_Too_Early;
3281 -----------------------
3282 -- Rep_Item_Too_Late --
3283 -----------------------
3285 function Rep_Item_Too_Late
3286 (T : Entity_Id;
3287 N : Node_Id;
3288 FOnly : Boolean := False) return Boolean
3290 S : Entity_Id;
3291 Parent_Type : Entity_Id;
3293 procedure Too_Late;
3294 -- Output the too late message. Note that this is not considered a
3295 -- serious error, since the effect is simply that we ignore the
3296 -- representation clause in this case.
3298 --------------
3299 -- Too_Late --
3300 --------------
3302 procedure Too_Late is
3303 begin
3304 Error_Msg_N ("|representation item appears too late!", N);
3305 end Too_Late;
3307 -- Start of processing for Rep_Item_Too_Late
3309 begin
3310 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
3311 -- types, which may be frozen if they appear in a representation clause
3312 -- for a local type.
3314 if Is_Frozen (T)
3315 and then not From_With_Type (T)
3316 then
3317 Too_Late;
3318 S := First_Subtype (T);
3320 if Present (Freeze_Node (S)) then
3321 Error_Msg_NE
3322 ("?no more representation items for }!", Freeze_Node (S), S);
3323 end if;
3325 return True;
3327 -- Check for case of non-tagged derived type whose parent either has
3328 -- primitive operations, or is a by reference type (RM 13.1(10)).
3330 elsif Is_Type (T)
3331 and then not FOnly
3332 and then Is_Derived_Type (T)
3333 and then not Is_Tagged_Type (T)
3334 then
3335 Parent_Type := Etype (Base_Type (T));
3337 if Has_Primitive_Operations (Parent_Type) then
3338 Too_Late;
3339 Error_Msg_NE
3340 ("primitive operations already defined for&!", N, Parent_Type);
3341 return True;
3343 elsif Is_By_Reference_Type (Parent_Type) then
3344 Too_Late;
3345 Error_Msg_NE
3346 ("parent type & is a by reference type!", N, Parent_Type);
3347 return True;
3348 end if;
3349 end if;
3351 -- No error, link item into head of chain of rep items for the entity
3353 Record_Rep_Item (T, N);
3354 return False;
3355 end Rep_Item_Too_Late;
3357 -------------------------
3358 -- Same_Representation --
3359 -------------------------
3361 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
3362 T1 : constant Entity_Id := Underlying_Type (Typ1);
3363 T2 : constant Entity_Id := Underlying_Type (Typ2);
3365 begin
3366 -- A quick check, if base types are the same, then we definitely have
3367 -- the same representation, because the subtype specific representation
3368 -- attributes (Size and Alignment) do not affect representation from
3369 -- the point of view of this test.
3371 if Base_Type (T1) = Base_Type (T2) then
3372 return True;
3374 elsif Is_Private_Type (Base_Type (T2))
3375 and then Base_Type (T1) = Full_View (Base_Type (T2))
3376 then
3377 return True;
3378 end if;
3380 -- Tagged types never have differing representations
3382 if Is_Tagged_Type (T1) then
3383 return True;
3384 end if;
3386 -- Representations are definitely different if conventions differ
3388 if Convention (T1) /= Convention (T2) then
3389 return False;
3390 end if;
3392 -- Representations are different if component alignments differ
3394 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
3395 and then
3396 (Is_Record_Type (T2) or else Is_Array_Type (T2))
3397 and then Component_Alignment (T1) /= Component_Alignment (T2)
3398 then
3399 return False;
3400 end if;
3402 -- For arrays, the only real issue is component size. If we know the
3403 -- component size for both arrays, and it is the same, then that's
3404 -- good enough to know we don't have a change of representation.
3406 if Is_Array_Type (T1) then
3407 if Known_Component_Size (T1)
3408 and then Known_Component_Size (T2)
3409 and then Component_Size (T1) = Component_Size (T2)
3410 then
3411 return True;
3412 end if;
3413 end if;
3415 -- Types definitely have same representation if neither has non-standard
3416 -- representation since default representations are always consistent.
3417 -- If only one has non-standard representation, and the other does not,
3418 -- then we consider that they do not have the same representation. They
3419 -- might, but there is no way of telling early enough.
3421 if Has_Non_Standard_Rep (T1) then
3422 if not Has_Non_Standard_Rep (T2) then
3423 return False;
3424 end if;
3425 else
3426 return not Has_Non_Standard_Rep (T2);
3427 end if;
3429 -- Here the two types both have non-standard representation, and we
3430 -- need to determine if they have the same non-standard representation
3432 -- For arrays, we simply need to test if the component sizes are the
3433 -- same. Pragma Pack is reflected in modified component sizes, so this
3434 -- check also deals with pragma Pack.
3436 if Is_Array_Type (T1) then
3437 return Component_Size (T1) = Component_Size (T2);
3439 -- Tagged types always have the same representation, because it is not
3440 -- possible to specify different representations for common fields.
3442 elsif Is_Tagged_Type (T1) then
3443 return True;
3445 -- Case of record types
3447 elsif Is_Record_Type (T1) then
3449 -- Packed status must conform
3451 if Is_Packed (T1) /= Is_Packed (T2) then
3452 return False;
3454 -- Otherwise we must check components. Typ2 maybe a constrained
3455 -- subtype with fewer components, so we compare the components
3456 -- of the base types.
3458 else
3459 Record_Case : declare
3460 CD1, CD2 : Entity_Id;
3462 function Same_Rep return Boolean;
3463 -- CD1 and CD2 are either components or discriminants. This
3464 -- function tests whether the two have the same representation
3466 --------------
3467 -- Same_Rep --
3468 --------------
3470 function Same_Rep return Boolean is
3471 begin
3472 if No (Component_Clause (CD1)) then
3473 return No (Component_Clause (CD2));
3475 else
3476 return
3477 Present (Component_Clause (CD2))
3478 and then
3479 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
3480 and then
3481 Esize (CD1) = Esize (CD2);
3482 end if;
3483 end Same_Rep;
3485 -- Start processing for Record_Case
3487 begin
3488 if Has_Discriminants (T1) then
3489 CD1 := First_Discriminant (T1);
3490 CD2 := First_Discriminant (T2);
3492 -- The number of discriminants may be different if the
3493 -- derived type has fewer (constrained by values). The
3494 -- invisible discriminants retain the representation of
3495 -- the original, so the discrepancy does not per se
3496 -- indicate a different representation.
3498 while Present (CD1)
3499 and then Present (CD2)
3500 loop
3501 if not Same_Rep then
3502 return False;
3503 else
3504 Next_Discriminant (CD1);
3505 Next_Discriminant (CD2);
3506 end if;
3507 end loop;
3508 end if;
3510 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
3511 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
3513 while Present (CD1) loop
3514 if not Same_Rep then
3515 return False;
3516 else
3517 Next_Component (CD1);
3518 Next_Component (CD2);
3519 end if;
3520 end loop;
3522 return True;
3523 end Record_Case;
3524 end if;
3526 -- For enumeration types, we must check each literal to see if the
3527 -- representation is the same. Note that we do not permit enumeration
3528 -- reprsentation clauses for Character and Wide_Character, so these
3529 -- cases were already dealt with.
3531 elsif Is_Enumeration_Type (T1) then
3533 Enumeration_Case : declare
3534 L1, L2 : Entity_Id;
3536 begin
3537 L1 := First_Literal (T1);
3538 L2 := First_Literal (T2);
3540 while Present (L1) loop
3541 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
3542 return False;
3543 else
3544 Next_Literal (L1);
3545 Next_Literal (L2);
3546 end if;
3547 end loop;
3549 return True;
3551 end Enumeration_Case;
3553 -- Any other types have the same representation for these purposes
3555 else
3556 return True;
3557 end if;
3558 end Same_Representation;
3560 --------------------
3561 -- Set_Enum_Esize --
3562 --------------------
3564 procedure Set_Enum_Esize (T : Entity_Id) is
3565 Lo : Uint;
3566 Hi : Uint;
3567 Sz : Nat;
3569 begin
3570 Init_Alignment (T);
3572 -- Find the minimum standard size (8,16,32,64) that fits
3574 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
3575 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
3577 if Lo < 0 then
3578 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
3579 Sz := Standard_Character_Size; -- May be > 8 on some targets
3581 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
3582 Sz := 16;
3584 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
3585 Sz := 32;
3587 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
3588 Sz := 64;
3589 end if;
3591 else
3592 if Hi < Uint_2**08 then
3593 Sz := Standard_Character_Size; -- May be > 8 on some targets
3595 elsif Hi < Uint_2**16 then
3596 Sz := 16;
3598 elsif Hi < Uint_2**32 then
3599 Sz := 32;
3601 else pragma Assert (Hi < Uint_2**63);
3602 Sz := 64;
3603 end if;
3604 end if;
3606 -- That minimum is the proper size unless we have a foreign convention
3607 -- and the size required is 32 or less, in which case we bump the size
3608 -- up to 32. This is required for C and C++ and seems reasonable for
3609 -- all other foreign conventions.
3611 if Has_Foreign_Convention (T)
3612 and then Esize (T) < Standard_Integer_Size
3613 then
3614 Init_Esize (T, Standard_Integer_Size);
3616 else
3617 Init_Esize (T, Sz);
3618 end if;
3619 end Set_Enum_Esize;
3621 -----------------------------------
3622 -- Validate_Unchecked_Conversion --
3623 -----------------------------------
3625 procedure Validate_Unchecked_Conversion
3626 (N : Node_Id;
3627 Act_Unit : Entity_Id)
3629 Source : Entity_Id;
3630 Target : Entity_Id;
3631 Vnode : Node_Id;
3633 begin
3634 -- Obtain source and target types. Note that we call Ancestor_Subtype
3635 -- here because the processing for generic instantiation always makes
3636 -- subtypes, and we want the original frozen actual types.
3638 -- If we are dealing with private types, then do the check on their
3639 -- fully declared counterparts if the full declarations have been
3640 -- encountered (they don't have to be visible, but they must exist!)
3642 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
3644 if Is_Private_Type (Source)
3645 and then Present (Underlying_Type (Source))
3646 then
3647 Source := Underlying_Type (Source);
3648 end if;
3650 Target := Ancestor_Subtype (Etype (Act_Unit));
3652 -- If either type is generic, the instantiation happens within a
3653 -- generic unit, and there is nothing to check. The proper check
3654 -- will happen when the enclosing generic is instantiated.
3656 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
3657 return;
3658 end if;
3660 if Is_Private_Type (Target)
3661 and then Present (Underlying_Type (Target))
3662 then
3663 Target := Underlying_Type (Target);
3664 end if;
3666 -- Source may be unconstrained array, but not target
3668 if Is_Array_Type (Target)
3669 and then not Is_Constrained (Target)
3670 then
3671 Error_Msg_N
3672 ("unchecked conversion to unconstrained array not allowed", N);
3673 return;
3674 end if;
3676 -- Make entry in unchecked conversion table for later processing
3677 -- by Validate_Unchecked_Conversions, which will check sizes and
3678 -- alignments (using values set by the back-end where possible).
3679 -- This is only done if the appropriate warning is active
3681 if Warn_On_Unchecked_Conversion then
3682 Unchecked_Conversions.Append
3683 (New_Val => UC_Entry'
3684 (Enode => N,
3685 Source => Source,
3686 Target => Target));
3688 -- If both sizes are known statically now, then back end annotation
3689 -- is not required to do a proper check but if either size is not
3690 -- known statically, then we need the annotation.
3692 if Known_Static_RM_Size (Source)
3693 and then Known_Static_RM_Size (Target)
3694 then
3695 null;
3696 else
3697 Back_Annotate_Rep_Info := True;
3698 end if;
3699 end if;
3701 -- If unchecked conversion to access type, and access type is
3702 -- declared in the same unit as the unchecked conversion, then
3703 -- set the No_Strict_Aliasing flag (no strict aliasing is
3704 -- implicit in this situation).
3706 if Is_Access_Type (Target) and then
3707 In_Same_Source_Unit (Target, N)
3708 then
3709 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
3710 end if;
3712 -- Generate N_Validate_Unchecked_Conversion node for back end in
3713 -- case the back end needs to perform special validation checks.
3715 -- Shouldn't this be in exp_ch13, since the check only gets done
3716 -- if we have full expansion and the back end is called ???
3718 Vnode :=
3719 Make_Validate_Unchecked_Conversion (Sloc (N));
3720 Set_Source_Type (Vnode, Source);
3721 Set_Target_Type (Vnode, Target);
3723 -- If the unchecked conversion node is in a list, just insert before
3724 -- it. If not we have some strange case, not worth bothering about.
3726 if Is_List_Member (N) then
3727 Insert_After (N, Vnode);
3728 end if;
3729 end Validate_Unchecked_Conversion;
3731 ------------------------------------
3732 -- Validate_Unchecked_Conversions --
3733 ------------------------------------
3735 procedure Validate_Unchecked_Conversions is
3736 begin
3737 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
3738 declare
3739 T : UC_Entry renames Unchecked_Conversions.Table (N);
3741 Enode : constant Node_Id := T.Enode;
3742 Source : constant Entity_Id := T.Source;
3743 Target : constant Entity_Id := T.Target;
3745 Source_Siz : Uint;
3746 Target_Siz : Uint;
3748 begin
3749 -- This validation check, which warns if we have unequal sizes
3750 -- for unchecked conversion, and thus potentially implementation
3751 -- dependent semantics, is one of the few occasions on which we
3752 -- use the official RM size instead of Esize. See description
3753 -- in Einfo "Handling of Type'Size Values" for details.
3755 if Serious_Errors_Detected = 0
3756 and then Known_Static_RM_Size (Source)
3757 and then Known_Static_RM_Size (Target)
3758 then
3759 Source_Siz := RM_Size (Source);
3760 Target_Siz := RM_Size (Target);
3762 if Source_Siz /= Target_Siz then
3763 Error_Msg_N
3764 ("types for unchecked conversion have different sizes?",
3765 Enode);
3767 if All_Errors_Mode then
3768 Error_Msg_Name_1 := Chars (Source);
3769 Error_Msg_Uint_1 := Source_Siz;
3770 Error_Msg_Name_2 := Chars (Target);
3771 Error_Msg_Uint_2 := Target_Siz;
3772 Error_Msg_N
3773 ("\size of % is ^, size of % is ^?", Enode);
3775 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
3777 if Is_Discrete_Type (Source)
3778 and then Is_Discrete_Type (Target)
3779 then
3780 if Source_Siz > Target_Siz then
3781 Error_Msg_N
3782 ("\^ high order bits of source will be ignored?",
3783 Enode);
3785 elsif Is_Unsigned_Type (Source) then
3786 Error_Msg_N
3787 ("\source will be extended with ^ high order " &
3788 "zero bits?", Enode);
3790 else
3791 Error_Msg_N
3792 ("\source will be extended with ^ high order " &
3793 "sign bits?",
3794 Enode);
3795 end if;
3797 elsif Source_Siz < Target_Siz then
3798 if Is_Discrete_Type (Target) then
3799 if Bytes_Big_Endian then
3800 Error_Msg_N
3801 ("\target value will include ^ undefined " &
3802 "low order bits?",
3803 Enode);
3804 else
3805 Error_Msg_N
3806 ("\target value will include ^ undefined " &
3807 "high order bits?",
3808 Enode);
3809 end if;
3811 else
3812 Error_Msg_N
3813 ("\^ trailing bits of target value will be " &
3814 "undefined?", Enode);
3815 end if;
3817 else pragma Assert (Source_Siz > Target_Siz);
3818 Error_Msg_N
3819 ("\^ trailing bits of source will be ignored?",
3820 Enode);
3821 end if;
3822 end if;
3823 end if;
3824 end if;
3826 -- If both types are access types, we need to check the alignment.
3827 -- If the alignment of both is specified, we can do it here.
3829 if Serious_Errors_Detected = 0
3830 and then Ekind (Source) in Access_Kind
3831 and then Ekind (Target) in Access_Kind
3832 and then Target_Strict_Alignment
3833 and then Present (Designated_Type (Source))
3834 and then Present (Designated_Type (Target))
3835 then
3836 declare
3837 D_Source : constant Entity_Id := Designated_Type (Source);
3838 D_Target : constant Entity_Id := Designated_Type (Target);
3840 begin
3841 if Known_Alignment (D_Source)
3842 and then Known_Alignment (D_Target)
3843 then
3844 declare
3845 Source_Align : constant Uint := Alignment (D_Source);
3846 Target_Align : constant Uint := Alignment (D_Target);
3848 begin
3849 if Source_Align < Target_Align
3850 and then not Is_Tagged_Type (D_Source)
3851 then
3852 Error_Msg_Uint_1 := Target_Align;
3853 Error_Msg_Uint_2 := Source_Align;
3854 Error_Msg_Node_2 := D_Source;
3855 Error_Msg_NE
3856 ("alignment of & (^) is stricter than " &
3857 "alignment of & (^)?", Enode, D_Target);
3859 if All_Errors_Mode then
3860 Error_Msg_N
3861 ("\resulting access value may have invalid " &
3862 "alignment?", Enode);
3863 end if;
3864 end if;
3865 end;
3866 end if;
3867 end;
3868 end if;
3869 end;
3870 end loop;
3871 end Validate_Unchecked_Conversions;
3873 end Sem_Ch13;