1 // defineclass.cc - defining a class from .class format.
3 /* Copyright (C) 2001, 2002, 2003 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
11 // Written by Tom Tromey <tromey@redhat.com>
13 // Define VERIFY_DEBUG to enable debugging output.
19 #include <java-insns.h>
20 #include <java-interp.h>
24 #include <java/lang/Class.h>
25 #include <java/lang/VerifyError.h>
26 #include <java/lang/Throwable.h>
27 #include <java/lang/reflect/Modifier.h>
28 #include <java/lang/StringBuffer.h>
32 #endif /* VERIFY_DEBUG */
35 static void debug_print (const char *fmt
, ...)
36 __attribute__ ((format (printf
, 1, 2)));
39 debug_print (const char *fmt
, ...)
44 vfprintf (stderr
, fmt
, ap
);
46 #endif /* VERIFY_DEBUG */
49 class _Jv_BytecodeVerifier
53 static const int FLAG_INSN_START
= 1;
54 static const int FLAG_BRANCH_TARGET
= 2;
59 struct subr_entry_info
;
64 // The PC corresponding to the start of the current instruction.
67 // The current state of the stack, locals, etc.
70 // We store the state at branch targets, for merging. This holds
74 // We keep a linked list of all the PCs which we must reverify.
75 // The link is done using the PC values. This is the head of the
79 // We keep some flags for each instruction. The values are the
80 // FLAG_* constants defined above.
83 // We need to keep track of which instructions can call a given
84 // subroutine. FIXME: this is inefficient. We keep a linked list
85 // of all calling `jsr's at at each jsr target.
88 // We keep a linked list of entries which map each `ret' instruction
89 // to its unique subroutine entry point. We expect that there won't
90 // be many `ret' instructions, so a linked list is ok.
91 subr_entry_info
*entry_points
;
93 // The bytecode itself.
94 unsigned char *bytecode
;
96 _Jv_InterpException
*exception
;
101 _Jv_InterpMethod
*current_method
;
103 // A linked list of utf8 objects we allocate. This is really ugly,
104 // but without this our utf8 objects would be collected.
105 linked_utf8
*utf8_list
;
113 _Jv_Utf8Const
*make_utf8_const (char *s
, int len
)
115 _Jv_Utf8Const
*val
= _Jv_makeUtf8Const (s
, len
);
116 _Jv_Utf8Const
*r
= (_Jv_Utf8Const
*) _Jv_Malloc (sizeof (_Jv_Utf8Const
)
119 r
->length
= val
->length
;
121 memcpy (r
->data
, val
->data
, val
->length
+ 1);
123 linked_utf8
*lu
= (linked_utf8
*) _Jv_Malloc (sizeof (linked_utf8
));
125 lu
->next
= utf8_list
;
131 __attribute__ ((__noreturn__
)) void verify_fail (char *s
, jint pc
= -1)
133 using namespace java::lang
;
134 StringBuffer
*buf
= new StringBuffer ();
136 buf
->append (JvNewStringLatin1 ("verification failed"));
141 buf
->append (JvNewStringLatin1 (" at PC "));
145 _Jv_InterpMethod
*method
= current_method
;
146 buf
->append (JvNewStringLatin1 (" in "));
147 buf
->append (current_class
->getName());
148 buf
->append ((jchar
) ':');
149 buf
->append (JvNewStringUTF (method
->get_method()->name
->data
));
150 buf
->append ((jchar
) '(');
151 buf
->append (JvNewStringUTF (method
->get_method()->signature
->data
));
152 buf
->append ((jchar
) ')');
154 buf
->append (JvNewStringLatin1 (": "));
155 buf
->append (JvNewStringLatin1 (s
));
156 throw new java::lang::VerifyError (buf
->toString ());
159 // This enum holds a list of tags for all the different types we
160 // need to handle. Reference types are treated specially by the
166 // The values for primitive types are chosen to correspond to values
167 // specified to newarray.
177 // Used when overwriting second word of a double or long in the
178 // local variables. Also used after merging local variable states
179 // to indicate an unusable value.
184 // There is an obscure special case which requires us to note when
185 // a local variable has not been used by a subroutine. See
186 // push_jump_merge for more information.
187 unused_by_subroutine_type
,
189 // Everything after `reference_type' must be a reference type.
192 unresolved_reference_type
,
193 uninitialized_reference_type
,
194 uninitialized_unresolved_reference_type
197 // Return the type_val corresponding to a primitive signature
198 // character. For instance `I' returns `int.class'.
199 type_val
get_type_val_for_signature (jchar sig
)
232 verify_fail ("invalid signature");
237 // Return the type_val corresponding to a primitive class.
238 type_val
get_type_val_for_signature (jclass k
)
240 return get_type_val_for_signature ((jchar
) k
->method_count
);
243 // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
244 // TARGET haven't been prepared.
245 static bool is_assignable_from_slow (jclass target
, jclass source
)
247 // This will terminate when SOURCE==Object.
250 if (source
== target
)
253 if (target
->isPrimitive () || source
->isPrimitive ())
256 if (target
->isArray ())
258 if (! source
->isArray ())
260 target
= target
->getComponentType ();
261 source
= source
->getComponentType ();
263 else if (target
->isInterface ())
265 for (int i
= 0; i
< source
->interface_count
; ++i
)
267 // We use a recursive call because we also need to
268 // check superinterfaces.
269 if (is_assignable_from_slow (target
, source
->interfaces
[i
]))
272 source
= source
->getSuperclass ();
276 // We must do this check before we check to see if SOURCE is
277 // an interface. This way we know that any interface is
278 // assignable to an Object.
279 else if (target
== &java::lang::Object::class$
)
281 else if (source
->isInterface ())
283 for (int i
= 0; i
< target
->interface_count
; ++i
)
285 // We use a recursive call because we also need to
286 // check superinterfaces.
287 if (is_assignable_from_slow (target
->interfaces
[i
], source
))
290 target
= target
->getSuperclass ();
294 else if (source
== &java::lang::Object::class$
)
297 source
= source
->getSuperclass ();
301 // This is used to keep track of which `jsr's correspond to a given
305 // PC of the instruction just after the jsr.
311 // This is used to keep track of which subroutine entry point
312 // corresponds to which `ret' instruction.
313 struct subr_entry_info
315 // PC of the subroutine entry point.
317 // PC of the `ret' instruction.
320 subr_entry_info
*next
;
323 // The `type' class is used to represent a single type in the
329 // Some associated data.
332 // For a resolved reference type, this is a pointer to the class.
334 // For other reference types, this it the name of the class.
337 // This is used when constructing a new object. It is the PC of the
338 // `new' instruction which created the object. We use the special
339 // value -2 to mean that this is uninitialized, and the special
340 // value -1 for the case where the current method is itself the
344 static const int UNINIT
= -2;
345 static const int SELF
= -1;
347 // Basic constructor.
350 key
= unsuitable_type
;
355 // Make a new instance given the type tag. We assume a generic
356 // `reference_type' means Object.
361 if (key
== reference_type
)
362 data
.klass
= &java::lang::Object::class$
;
366 // Make a new instance given a class.
369 key
= reference_type
;
374 // Make a new instance given the name of a class.
375 type (_Jv_Utf8Const
*n
)
377 key
= unresolved_reference_type
;
390 // These operators are required because libgcj can't link in
392 void *operator new[] (size_t bytes
)
394 return _Jv_Malloc (bytes
);
397 void operator delete[] (void *mem
)
402 type
& operator= (type_val k
)
410 type
& operator= (const type
& t
)
418 // Promote a numeric type.
421 if (key
== boolean_type
|| key
== char_type
422 || key
== byte_type
|| key
== short_type
)
427 // If *THIS is an unresolved reference type, resolve it.
428 void resolve (_Jv_BytecodeVerifier
*verifier
)
430 if (key
!= unresolved_reference_type
431 && key
!= uninitialized_unresolved_reference_type
)
434 using namespace java::lang
;
435 java::lang::ClassLoader
*loader
436 = verifier
->current_class
->getClassLoaderInternal();
437 // We might see either kind of name. Sigh.
438 if (data
.name
->data
[0] == 'L'
439 && data
.name
->data
[data
.name
->length
- 1] == ';')
440 data
.klass
= _Jv_FindClassFromSignature (data
.name
->data
, loader
);
442 data
.klass
= Class::forName (_Jv_NewStringUtf8Const (data
.name
),
444 key
= (key
== unresolved_reference_type
446 : uninitialized_reference_type
);
449 // Mark this type as the uninitialized result of `new'.
450 void set_uninitialized (int npc
, _Jv_BytecodeVerifier
*verifier
)
452 if (key
== reference_type
)
453 key
= uninitialized_reference_type
;
454 else if (key
== unresolved_reference_type
)
455 key
= uninitialized_unresolved_reference_type
;
457 verifier
->verify_fail ("internal error in type::uninitialized");
461 // Mark this type as now initialized.
462 void set_initialized (int npc
)
464 if (npc
!= UNINIT
&& pc
== npc
465 && (key
== uninitialized_reference_type
466 || key
== uninitialized_unresolved_reference_type
))
468 key
= (key
== uninitialized_reference_type
470 : unresolved_reference_type
);
476 // Return true if an object of type K can be assigned to a variable
477 // of type *THIS. Handle various special cases too. Might modify
478 // *THIS or K. Note however that this does not perform numeric
480 bool compatible (type
&k
, _Jv_BytecodeVerifier
*verifier
)
482 // Any type is compatible with the unsuitable type.
483 if (key
== unsuitable_type
)
486 if (key
< reference_type
|| k
.key
< reference_type
)
489 // The `null' type is convertible to any initialized reference
491 if (key
== null_type
|| k
.key
== null_type
)
494 // Any reference type is convertible to Object. This is a special
495 // case so we don't need to unnecessarily resolve a class.
496 if (key
== reference_type
497 && data
.klass
== &java::lang::Object::class$
)
500 // An initialized type and an uninitialized type are not
502 if (isinitialized () != k
.isinitialized ())
505 // Two uninitialized objects are compatible if either:
506 // * The PCs are identical, or
507 // * One PC is UNINIT.
508 if (! isinitialized ())
510 if (pc
!= k
.pc
&& pc
!= UNINIT
&& k
.pc
!= UNINIT
)
514 // Two unresolved types are equal if their names are the same.
517 && _Jv_equalUtf8Consts (data
.name
, k
.data
.name
))
520 // We must resolve both types and check assignability.
522 k
.resolve (verifier
);
523 return is_assignable_from_slow (data
.klass
, k
.data
.klass
);
528 return key
== void_type
;
533 return key
== long_type
|| key
== double_type
;
536 // Return number of stack or local variable slots taken by this
540 return iswide () ? 2 : 1;
543 bool isarray () const
545 // We treat null_type as not an array. This is ok based on the
546 // current uses of this method.
547 if (key
== reference_type
)
548 return data
.klass
->isArray ();
549 else if (key
== unresolved_reference_type
)
550 return data
.name
->data
[0] == '[';
556 return key
== null_type
;
559 bool isinterface (_Jv_BytecodeVerifier
*verifier
)
562 if (key
!= reference_type
)
564 return data
.klass
->isInterface ();
567 bool isabstract (_Jv_BytecodeVerifier
*verifier
)
570 if (key
!= reference_type
)
572 using namespace java::lang::reflect
;
573 return Modifier::isAbstract (data
.klass
->getModifiers ());
576 // Return the element type of an array.
577 type
element_type (_Jv_BytecodeVerifier
*verifier
)
579 // FIXME: maybe should do string manipulation here.
581 if (key
!= reference_type
)
582 verifier
->verify_fail ("programmer error in type::element_type()", -1);
584 jclass k
= data
.klass
->getComponentType ();
585 if (k
->isPrimitive ())
586 return type (verifier
->get_type_val_for_signature (k
));
590 // Return the array type corresponding to an initialized
591 // reference. We could expand this to work for other kinds of
592 // types, but currently we don't need to.
593 type
to_array (_Jv_BytecodeVerifier
*verifier
)
595 // Resolving isn't ideal, because it might force us to load
596 // another class, but it's easy. FIXME?
597 if (key
== unresolved_reference_type
)
600 if (key
== reference_type
)
601 return type (_Jv_GetArrayClass (data
.klass
,
602 data
.klass
->getClassLoaderInternal()));
604 verifier
->verify_fail ("internal error in type::to_array()");
607 bool isreference () const
609 return key
>= reference_type
;
617 bool isinitialized () const
619 return (key
== reference_type
621 || key
== unresolved_reference_type
);
624 bool isresolved () const
626 return (key
== reference_type
628 || key
== uninitialized_reference_type
);
631 void verify_dimensions (int ndims
, _Jv_BytecodeVerifier
*verifier
)
633 // The way this is written, we don't need to check isarray().
634 if (key
== reference_type
)
636 jclass k
= data
.klass
;
637 while (k
->isArray () && ndims
> 0)
639 k
= k
->getComponentType ();
645 // We know KEY == unresolved_reference_type.
646 char *p
= data
.name
->data
;
647 while (*p
++ == '[' && ndims
-- > 0)
652 verifier
->verify_fail ("array type has fewer dimensions than required");
655 // Merge OLD_TYPE into this. On error throw exception.
656 bool merge (type
& old_type
, bool local_semantics
,
657 _Jv_BytecodeVerifier
*verifier
)
659 bool changed
= false;
660 bool refo
= old_type
.isreference ();
661 bool refn
= isreference ();
664 if (old_type
.key
== null_type
)
666 else if (key
== null_type
)
671 else if (isinitialized () != old_type
.isinitialized ())
672 verifier
->verify_fail ("merging initialized and uninitialized types");
675 if (! isinitialized ())
679 else if (old_type
.pc
== UNINIT
)
681 else if (pc
!= old_type
.pc
)
682 verifier
->verify_fail ("merging different uninitialized types");
686 && ! old_type
.isresolved ()
687 && _Jv_equalUtf8Consts (data
.name
, old_type
.data
.name
))
689 // Types are identical.
694 old_type
.resolve (verifier
);
696 jclass k
= data
.klass
;
697 jclass oldk
= old_type
.data
.klass
;
700 while (k
->isArray () && oldk
->isArray ())
703 k
= k
->getComponentType ();
704 oldk
= oldk
->getComponentType ();
707 // Ordinarily this terminates when we hit Object...
710 if (is_assignable_from_slow (k
, oldk
))
712 k
= k
->getSuperclass ();
715 // ... but K could have been an interface, in which
716 // case we'll end up here. We just convert this
719 k
= &java::lang::Object::class$
;
723 while (arraycount
> 0)
725 java::lang::ClassLoader
*loader
726 = verifier
->current_class
->getClassLoaderInternal();
727 k
= _Jv_GetArrayClass (k
, loader
);
735 else if (refo
|| refn
|| key
!= old_type
.key
)
739 // If we're merging into an "unused" slot, then we
740 // simply accept whatever we're merging from.
741 if (key
== unused_by_subroutine_type
)
746 else if (old_type
.key
== unused_by_subroutine_type
)
750 // If we already have an `unsuitable' type, then we
751 // don't need to change again.
752 else if (key
!= unsuitable_type
)
754 key
= unsuitable_type
;
759 verifier
->verify_fail ("unmergeable type");
765 void print (void) const
770 case boolean_type
: c
= 'Z'; break;
771 case byte_type
: c
= 'B'; break;
772 case char_type
: c
= 'C'; break;
773 case short_type
: c
= 'S'; break;
774 case int_type
: c
= 'I'; break;
775 case long_type
: c
= 'J'; break;
776 case float_type
: c
= 'F'; break;
777 case double_type
: c
= 'D'; break;
778 case void_type
: c
= 'V'; break;
779 case unsuitable_type
: c
= '-'; break;
780 case return_address_type
: c
= 'r'; break;
781 case continuation_type
: c
= '+'; break;
782 case unused_by_subroutine_type
: c
= '_'; break;
783 case reference_type
: c
= 'L'; break;
784 case null_type
: c
= '@'; break;
785 case unresolved_reference_type
: c
= 'l'; break;
786 case uninitialized_reference_type
: c
= 'U'; break;
787 case uninitialized_unresolved_reference_type
: c
= 'u'; break;
789 debug_print ("%c", c
);
791 #endif /* VERIFY_DEBUG */
794 // This class holds all the state information we need for a given
798 // The current top of the stack, in terms of slots.
800 // The current depth of the stack. This will be larger than
801 // STACKTOP when wide types are on the stack.
805 // The local variables.
807 // This is used in subroutines to keep track of which local
808 // variables have been accessed.
810 // If not 0, then we are in a subroutine. The value is the PC of
811 // the subroutine's entry point. We can use 0 as an exceptional
812 // value because PC=0 can never be a subroutine.
814 // This is used to keep a linked list of all the states which
815 // require re-verification. We use the PC to keep track.
817 // We keep track of the type of `this' specially. This is used to
818 // ensure that an instance initializer invokes another initializer
819 // on `this' before returning. We must keep track of this
820 // specially because otherwise we might be confused by code which
821 // assigns to locals[0] (overwriting `this') and then returns
822 // without really initializing.
824 // This is a list of all subroutines that have been seen at this
825 // point. Ordinarily this is NULL; it is only allocated and used
826 // in relatively weird situations involving non-ret exit from a
827 // subroutine. We have to keep track of this in this way to avoid
828 // endless recursion in these cases.
829 subr_info
*seen_subrs
;
831 // INVALID marks a state which is not on the linked list of states
832 // requiring reverification.
833 static const int INVALID
= -1;
834 // NO_NEXT marks the state at the end of the reverification list.
835 static const int NO_NEXT
= -2;
837 // This is used to mark the stack depth at the instruction just
838 // after a `jsr' when we haven't yet processed the corresponding
839 // `ret'. See handle_jsr_insn for more information.
840 static const int NO_STACK
= -1;
847 local_changed
= NULL
;
851 state (int max_stack
, int max_locals
)
856 stack
= new type
[max_stack
];
857 for (int i
= 0; i
< max_stack
; ++i
)
858 stack
[i
] = unsuitable_type
;
859 locals
= new type
[max_locals
];
860 local_changed
= (bool *) _Jv_Malloc (sizeof (bool) * max_locals
);
862 for (int i
= 0; i
< max_locals
; ++i
)
864 locals
[i
] = unsuitable_type
;
865 local_changed
[i
] = false;
871 state (const state
*orig
, int max_stack
, int max_locals
,
872 bool ret_semantics
= false)
874 stack
= new type
[max_stack
];
875 locals
= new type
[max_locals
];
876 local_changed
= (bool *) _Jv_Malloc (sizeof (bool) * max_locals
);
878 copy (orig
, max_stack
, max_locals
, ret_semantics
);
889 _Jv_Free (local_changed
);
893 void *operator new[] (size_t bytes
)
895 return _Jv_Malloc (bytes
);
898 void operator delete[] (void *mem
)
903 void *operator new (size_t bytes
)
905 return _Jv_Malloc (bytes
);
908 void operator delete (void *mem
)
915 subr_info
*info
= seen_subrs
;
918 subr_info
*next
= info
->next
;
924 void copy (const state
*copy
, int max_stack
, int max_locals
,
925 bool ret_semantics
= false)
927 stacktop
= copy
->stacktop
;
928 stackdepth
= copy
->stackdepth
;
929 subroutine
= copy
->subroutine
;
930 for (int i
= 0; i
< max_stack
; ++i
)
931 stack
[i
] = copy
->stack
[i
];
932 for (int i
= 0; i
< max_locals
; ++i
)
934 // See push_jump_merge to understand this case.
936 locals
[i
] = type (copy
->local_changed
[i
]
938 : unused_by_subroutine_type
);
940 locals
[i
] = copy
->locals
[i
];
941 local_changed
[i
] = copy
->local_changed
[i
];
945 if (copy
->seen_subrs
)
947 for (subr_info
*info
= seen_subrs
; info
!= NULL
; info
= info
->next
)
953 this_type
= copy
->this_type
;
954 // Don't modify `next'.
957 // Modify this state to reflect entry to an exception handler.
958 void set_exception (type t
, int max_stack
)
963 for (int i
= stacktop
; i
< max_stack
; ++i
)
964 stack
[i
] = unsuitable_type
;
967 // Modify this state to reflect entry into a subroutine.
968 void enter_subroutine (int npc
, int max_locals
)
971 // Mark all items as unchanged. Each subroutine needs to keep
972 // track of its `changed' state independently. In the case of
973 // nested subroutines, this information will be merged back into
974 // parent by the `ret'.
975 for (int i
= 0; i
< max_locals
; ++i
)
976 local_changed
[i
] = false;
979 // Indicate that we've been in this this subroutine.
980 void add_subr (int pc
)
982 subr_info
*n
= (subr_info
*) _Jv_Malloc (sizeof (subr_info
));
984 n
->next
= seen_subrs
;
988 // Merge STATE_OLD into this state. Destructively modifies this
989 // state. Returns true if the new state was in fact changed.
990 // Will throw an exception if the states are not mergeable.
991 bool merge (state
*state_old
, bool ret_semantics
,
992 int max_locals
, _Jv_BytecodeVerifier
*verifier
)
994 bool changed
= false;
996 // Special handling for `this'. If one or the other is
997 // uninitialized, then the merge is uninitialized.
998 if (this_type
.isinitialized ())
999 this_type
= state_old
->this_type
;
1001 // Merge subroutine states. Here we just keep track of what
1002 // subroutine we think we're in. We only check for a merge
1003 // (which is invalid) when we see a `ret'.
1004 if (subroutine
== state_old
->subroutine
)
1008 else if (subroutine
== 0)
1010 subroutine
= state_old
->subroutine
;
1015 // If the subroutines differ, and we haven't seen this
1016 // subroutine before, indicate that the state changed. This
1017 // is needed to detect when subroutines have merged.
1019 for (subr_info
*info
= seen_subrs
; info
!= NULL
; info
= info
->next
)
1021 if (info
->pc
== state_old
->subroutine
)
1029 add_subr (state_old
->subroutine
);
1034 // Merge stacks. Special handling for NO_STACK case.
1035 if (state_old
->stacktop
== NO_STACK
)
1037 // Nothing to do in this case; we don't care about modifying
1040 else if (stacktop
== NO_STACK
)
1042 stacktop
= state_old
->stacktop
;
1043 stackdepth
= state_old
->stackdepth
;
1044 for (int i
= 0; i
< stacktop
; ++i
)
1045 stack
[i
] = state_old
->stack
[i
];
1048 else if (state_old
->stacktop
!= stacktop
)
1049 verifier
->verify_fail ("stack sizes differ");
1052 for (int i
= 0; i
< state_old
->stacktop
; ++i
)
1054 if (stack
[i
].merge (state_old
->stack
[i
], false, verifier
))
1059 // Merge local variables.
1060 for (int i
= 0; i
< max_locals
; ++i
)
1062 // If we're not processing a `ret', then we merge every
1063 // local variable. If we are processing a `ret', then we
1064 // only merge locals which changed in the subroutine. When
1065 // processing a `ret', STATE_OLD is the state at the point
1066 // of the `ret', and THIS is the state just after the `jsr'.
1067 if (! ret_semantics
|| state_old
->local_changed
[i
])
1069 if (locals
[i
].merge (state_old
->locals
[i
], true, verifier
))
1071 // Note that we don't call `note_variable' here.
1072 // This change doesn't represent a real change to a
1073 // local, but rather a merge artifact. If we're in
1074 // a subroutine which is called with two
1075 // incompatible types in a slot that is unused by
1076 // the subroutine, then we don't want to mark that
1077 // variable as having been modified.
1082 // If we're in a subroutine, we must compute the union of
1083 // all the changed local variables.
1084 if (state_old
->local_changed
[i
])
1091 // Throw an exception if there is an uninitialized object on the
1092 // stack or in a local variable. EXCEPTION_SEMANTICS controls
1093 // whether we're using backwards-branch or exception-handing
1095 void check_no_uninitialized_objects (int max_locals
,
1096 _Jv_BytecodeVerifier
*verifier
,
1097 bool exception_semantics
= false)
1099 if (! exception_semantics
)
1101 for (int i
= 0; i
< stacktop
; ++i
)
1102 if (stack
[i
].isreference () && ! stack
[i
].isinitialized ())
1103 verifier
->verify_fail ("uninitialized object on stack");
1106 for (int i
= 0; i
< max_locals
; ++i
)
1107 if (locals
[i
].isreference () && ! locals
[i
].isinitialized ())
1108 verifier
->verify_fail ("uninitialized object in local variable");
1110 check_this_initialized (verifier
);
1113 // Ensure that `this' has been initialized.
1114 void check_this_initialized (_Jv_BytecodeVerifier
*verifier
)
1116 if (this_type
.isreference () && ! this_type
.isinitialized ())
1117 verifier
->verify_fail ("`this' is uninitialized");
1120 // Set type of `this'.
1121 void set_this_type (const type
&k
)
1126 // Note that a local variable was modified.
1127 void note_variable (int index
)
1130 local_changed
[index
] = true;
1133 // Mark each `new'd object we know of that was allocated at PC as
1135 void set_initialized (int pc
, int max_locals
)
1137 for (int i
= 0; i
< stacktop
; ++i
)
1138 stack
[i
].set_initialized (pc
);
1139 for (int i
= 0; i
< max_locals
; ++i
)
1140 locals
[i
].set_initialized (pc
);
1141 this_type
.set_initialized (pc
);
1144 // Return true if this state is the unmerged result of a `ret'.
1145 bool is_unmerged_ret_state (int max_locals
) const
1147 if (stacktop
== NO_STACK
)
1149 for (int i
= 0; i
< max_locals
; ++i
)
1151 if (locals
[i
].key
== unused_by_subroutine_type
)
1158 void print (const char *leader
, int pc
,
1159 int max_stack
, int max_locals
) const
1161 debug_print ("%s [%4d]: [stack] ", leader
, pc
);
1163 for (i
= 0; i
< stacktop
; ++i
)
1165 for (; i
< max_stack
; ++i
)
1167 debug_print (" [local] ");
1168 for (i
= 0; i
< max_locals
; ++i
)
1171 debug_print (local_changed
[i
] ? "+" : " ");
1173 if (subroutine
== 0)
1174 debug_print (" | None");
1176 debug_print (" | %4d", subroutine
);
1177 debug_print (" | %p\n", this);
1180 inline void print (const char *, int, int, int) const
1183 #endif /* VERIFY_DEBUG */
1188 if (current_state
->stacktop
<= 0)
1189 verify_fail ("stack empty");
1190 type r
= current_state
->stack
[--current_state
->stacktop
];
1191 current_state
->stackdepth
-= r
.depth ();
1192 if (current_state
->stackdepth
< 0)
1193 verify_fail ("stack empty", start_PC
);
1199 type r
= pop_raw ();
1201 verify_fail ("narrow pop of wide type");
1207 type r
= pop_raw ();
1209 verify_fail ("wide pop of narrow type");
1213 type
pop_type (type match
)
1216 type t
= pop_raw ();
1217 if (! match
.compatible (t
, this))
1218 verify_fail ("incompatible type on stack");
1222 // Pop a reference which is guaranteed to be initialized. MATCH
1223 // doesn't have to be a reference type; in this case this acts like
1225 type
pop_init_ref (type match
)
1227 type t
= pop_raw ();
1228 if (t
.isreference () && ! t
.isinitialized ())
1229 verify_fail ("initialized reference required");
1230 else if (! match
.compatible (t
, this))
1231 verify_fail ("incompatible type on stack");
1235 // Pop a reference type or a return address.
1236 type
pop_ref_or_return ()
1238 type t
= pop_raw ();
1239 if (! t
.isreference () && t
.key
!= return_address_type
)
1240 verify_fail ("expected reference or return address on stack");
1244 void push_type (type t
)
1246 // If T is a numeric type like short, promote it to int.
1249 int depth
= t
.depth ();
1250 if (current_state
->stackdepth
+ depth
> current_method
->max_stack
)
1251 verify_fail ("stack overflow");
1252 current_state
->stack
[current_state
->stacktop
++] = t
;
1253 current_state
->stackdepth
+= depth
;
1256 void set_variable (int index
, type t
)
1258 // If T is a numeric type like short, promote it to int.
1261 int depth
= t
.depth ();
1262 if (index
> current_method
->max_locals
- depth
)
1263 verify_fail ("invalid local variable");
1264 current_state
->locals
[index
] = t
;
1265 current_state
->note_variable (index
);
1269 current_state
->locals
[index
+ 1] = continuation_type
;
1270 current_state
->note_variable (index
+ 1);
1272 if (index
> 0 && current_state
->locals
[index
- 1].iswide ())
1274 current_state
->locals
[index
- 1] = unsuitable_type
;
1275 // There's no need to call note_variable here.
1279 type
get_variable (int index
, type t
)
1281 int depth
= t
.depth ();
1282 if (index
> current_method
->max_locals
- depth
)
1283 verify_fail ("invalid local variable");
1284 if (! t
.compatible (current_state
->locals
[index
], this))
1285 verify_fail ("incompatible type in local variable");
1288 type
t (continuation_type
);
1289 if (! current_state
->locals
[index
+ 1].compatible (t
, this))
1290 verify_fail ("invalid local variable");
1292 return current_state
->locals
[index
];
1295 // Make sure ARRAY is an array type and that its elements are
1296 // compatible with type ELEMENT. Returns the actual element type.
1297 type
require_array_type (type array
, type element
)
1299 // An odd case. Here we just pretend that everything went ok. If
1300 // the requested element type is some kind of reference, return
1301 // the null type instead.
1302 if (array
.isnull ())
1303 return element
.isreference () ? type (null_type
) : element
;
1305 if (! array
.isarray ())
1306 verify_fail ("array required");
1308 type t
= array
.element_type (this);
1309 if (! element
.compatible (t
, this))
1311 // Special case for byte arrays, which must also be boolean
1314 if (element
.key
== byte_type
)
1316 type
e2 (boolean_type
);
1317 ok
= e2
.compatible (t
, this);
1320 verify_fail ("incompatible array element type");
1323 // Return T and not ELEMENT, because T might be specialized.
1329 if (PC
>= current_method
->code_length
)
1330 verify_fail ("premature end of bytecode");
1331 return (jint
) bytecode
[PC
++] & 0xff;
1336 jint b1
= get_byte ();
1337 jint b2
= get_byte ();
1338 return (jint
) ((b1
<< 8) | b2
) & 0xffff;
1343 jint b1
= get_byte ();
1344 jint b2
= get_byte ();
1345 jshort s
= (b1
<< 8) | b2
;
1351 jint b1
= get_byte ();
1352 jint b2
= get_byte ();
1353 jint b3
= get_byte ();
1354 jint b4
= get_byte ();
1355 return (b1
<< 24) | (b2
<< 16) | (b3
<< 8) | b4
;
1358 int compute_jump (int offset
)
1360 int npc
= start_PC
+ offset
;
1361 if (npc
< 0 || npc
>= current_method
->code_length
)
1362 verify_fail ("branch out of range", start_PC
);
1366 // Merge the indicated state into the state at the branch target and
1367 // schedule a new PC if there is a change. If RET_SEMANTICS is
1368 // true, then we are merging from a `ret' instruction into the
1369 // instruction after a `jsr'. This is a special case with its own
1370 // modified semantics.
1371 void push_jump_merge (int npc
, state
*nstate
, bool ret_semantics
= false)
1373 bool changed
= true;
1374 if (states
[npc
] == NULL
)
1376 // There's a weird situation here. If are examining the
1377 // branch that results from a `ret', and there is not yet a
1378 // state available at the branch target (the instruction just
1379 // after the `jsr'), then we have to construct a special kind
1380 // of state at that point for future merging. This special
1381 // state has the type `unused_by_subroutine_type' in each slot
1382 // which was not modified by the subroutine.
1383 states
[npc
] = new state (nstate
, current_method
->max_stack
,
1384 current_method
->max_locals
, ret_semantics
);
1385 debug_print ("== New state in push_jump_merge\n");
1386 states
[npc
]->print ("New", npc
, current_method
->max_stack
,
1387 current_method
->max_locals
);
1391 debug_print ("== Merge states in push_jump_merge\n");
1392 nstate
->print ("Frm", start_PC
, current_method
->max_stack
,
1393 current_method
->max_locals
);
1394 states
[npc
]->print (" To", npc
, current_method
->max_stack
,
1395 current_method
->max_locals
);
1396 changed
= states
[npc
]->merge (nstate
, ret_semantics
,
1397 current_method
->max_locals
, this);
1398 states
[npc
]->print ("New", npc
, current_method
->max_stack
,
1399 current_method
->max_locals
);
1402 if (changed
&& states
[npc
]->next
== state::INVALID
)
1404 // The merge changed the state, and the new PC isn't yet on our
1405 // list of PCs to re-verify.
1406 states
[npc
]->next
= next_verify_pc
;
1407 next_verify_pc
= npc
;
1411 void push_jump (int offset
)
1413 int npc
= compute_jump (offset
);
1415 current_state
->check_no_uninitialized_objects (current_method
->max_locals
, this);
1416 push_jump_merge (npc
, current_state
);
1419 void push_exception_jump (type t
, int pc
)
1421 current_state
->check_no_uninitialized_objects (current_method
->max_locals
,
1423 state
s (current_state
, current_method
->max_stack
,
1424 current_method
->max_locals
);
1425 if (current_method
->max_stack
< 1)
1426 verify_fail ("stack overflow at exception handler");
1427 s
.set_exception (t
, current_method
->max_stack
);
1428 push_jump_merge (pc
, &s
);
1433 int *prev_loc
= &next_verify_pc
;
1434 int npc
= next_verify_pc
;
1436 while (npc
!= state::NO_NEXT
)
1438 // If the next available PC is an unmerged `ret' state, then
1439 // we aren't yet ready to handle it. That's because we would
1440 // need all kind of special cases to do so. So instead we
1441 // defer this jump until after we've processed it via a
1442 // fall-through. This has to happen because the instruction
1443 // before this one must be a `jsr'.
1444 if (! states
[npc
]->is_unmerged_ret_state (current_method
->max_locals
))
1446 *prev_loc
= states
[npc
]->next
;
1447 states
[npc
]->next
= state::INVALID
;
1451 prev_loc
= &states
[npc
]->next
;
1452 npc
= states
[npc
]->next
;
1455 // Note that we might have gotten here even when there are
1456 // remaining states to process. That can happen if we find a
1457 // `jsr' without a `ret'.
1458 return state::NO_NEXT
;
1461 void invalidate_pc ()
1463 PC
= state::NO_NEXT
;
1466 void note_branch_target (int pc
, bool is_jsr_target
= false)
1468 // Don't check `pc <= PC', because we've advanced PC after
1469 // fetching the target and we haven't yet checked the next
1471 if (pc
< PC
&& ! (flags
[pc
] & FLAG_INSN_START
))
1472 verify_fail ("branch not to instruction start", start_PC
);
1473 flags
[pc
] |= FLAG_BRANCH_TARGET
;
1476 // Record the jsr which called this instruction.
1477 subr_info
*info
= (subr_info
*) _Jv_Malloc (sizeof (subr_info
));
1479 info
->next
= jsr_ptrs
[pc
];
1480 jsr_ptrs
[pc
] = info
;
1484 void skip_padding ()
1486 while ((PC
% 4) > 0)
1487 if (get_byte () != 0)
1488 verify_fail ("found nonzero padding byte");
1491 // Return the subroutine to which the instruction at PC belongs.
1492 int get_subroutine (int pc
)
1494 if (states
[pc
] == NULL
)
1496 return states
[pc
]->subroutine
;
1499 // Do the work for a `ret' instruction. INDEX is the index into the
1501 void handle_ret_insn (int index
)
1503 get_variable (index
, return_address_type
);
1505 int csub
= current_state
->subroutine
;
1507 verify_fail ("no subroutine");
1509 // Check to see if we've merged subroutines.
1510 subr_entry_info
*entry
;
1511 for (entry
= entry_points
; entry
!= NULL
; entry
= entry
->next
)
1513 if (entry
->ret_pc
== start_PC
)
1518 entry
= (subr_entry_info
*) _Jv_Malloc (sizeof (subr_entry_info
));
1520 entry
->ret_pc
= start_PC
;
1521 entry
->next
= entry_points
;
1522 entry_points
= entry
;
1524 else if (entry
->pc
!= csub
)
1525 verify_fail ("subroutines merged");
1527 for (subr_info
*subr
= jsr_ptrs
[csub
]; subr
!= NULL
; subr
= subr
->next
)
1529 // We might be returning to a `jsr' that is at the end of the
1530 // bytecode. This is ok if we never return from the called
1531 // subroutine, but if we see this here it is an error.
1532 if (subr
->pc
>= current_method
->code_length
)
1533 verify_fail ("fell off end");
1535 // Temporarily modify the current state so it looks like we're
1536 // in the enclosing context.
1537 current_state
->subroutine
= get_subroutine (subr
->pc
);
1539 current_state
->check_no_uninitialized_objects (current_method
->max_locals
, this);
1540 push_jump_merge (subr
->pc
, current_state
, true);
1543 current_state
->subroutine
= csub
;
1547 // We're in the subroutine SUB, calling a subroutine at DEST. Make
1548 // sure this subroutine isn't already on the stack.
1549 void check_nonrecursive_call (int sub
, int dest
)
1554 verify_fail ("recursive subroutine call");
1555 for (subr_info
*info
= jsr_ptrs
[sub
]; info
!= NULL
; info
= info
->next
)
1556 check_nonrecursive_call (get_subroutine (info
->pc
), dest
);
1559 void handle_jsr_insn (int offset
)
1561 int npc
= compute_jump (offset
);
1564 current_state
->check_no_uninitialized_objects (current_method
->max_locals
, this);
1565 check_nonrecursive_call (current_state
->subroutine
, npc
);
1567 // Modify our state as appropriate for entry into a subroutine.
1568 push_type (return_address_type
);
1569 push_jump_merge (npc
, current_state
);
1571 pop_type (return_address_type
);
1573 // On entry to the subroutine, the subroutine number must be set
1574 // and the locals must be marked as cleared. We do this after
1575 // merging state so that we don't erroneously "notice" a variable
1576 // change merely on entry.
1577 states
[npc
]->enter_subroutine (npc
, current_method
->max_locals
);
1579 // Indicate that we don't know the stack depth of the instruction
1580 // following the `jsr'. The idea here is that we need to merge
1581 // the local variable state across the jsr, but the subroutine
1582 // might change the stack depth, so we can't make any assumptions
1583 // about it. So we have yet another special case. We know that
1584 // at this point PC points to the instruction after the jsr. Note
1585 // that it is ok to have a `jsr' at the end of the bytecode,
1586 // provided that the called subroutine never returns. So, we have
1587 // a special case here and another one when we handle the ret.
1588 if (PC
< current_method
->code_length
)
1590 current_state
->stacktop
= state::NO_STACK
;
1591 push_jump_merge (PC
, current_state
);
1596 jclass
construct_primitive_array_type (type_val prim
)
1602 k
= JvPrimClass (boolean
);
1605 k
= JvPrimClass (char);
1608 k
= JvPrimClass (float);
1611 k
= JvPrimClass (double);
1614 k
= JvPrimClass (byte
);
1617 k
= JvPrimClass (short);
1620 k
= JvPrimClass (int);
1623 k
= JvPrimClass (long);
1626 // These aren't used here but we call them out to avoid
1629 case unsuitable_type
:
1630 case return_address_type
:
1631 case continuation_type
:
1632 case unused_by_subroutine_type
:
1633 case reference_type
:
1635 case unresolved_reference_type
:
1636 case uninitialized_reference_type
:
1637 case uninitialized_unresolved_reference_type
:
1639 verify_fail ("unknown type in construct_primitive_array_type");
1641 k
= _Jv_GetArrayClass (k
, NULL
);
1645 // This pass computes the location of branch targets and also
1646 // instruction starts.
1647 void branch_prepass ()
1649 flags
= (char *) _Jv_Malloc (current_method
->code_length
);
1650 jsr_ptrs
= (subr_info
**) _Jv_Malloc (sizeof (subr_info
*)
1651 * current_method
->code_length
);
1653 for (int i
= 0; i
< current_method
->code_length
; ++i
)
1659 bool last_was_jsr
= false;
1662 while (PC
< current_method
->code_length
)
1664 // Set `start_PC' early so that error checking can have the
1667 flags
[PC
] |= FLAG_INSN_START
;
1669 // If the previous instruction was a jsr, then the next
1670 // instruction is a branch target -- the branch being the
1671 // corresponding `ret'.
1673 note_branch_target (PC
);
1674 last_was_jsr
= false;
1676 java_opcode opcode
= (java_opcode
) bytecode
[PC
++];
1680 case op_aconst_null
:
1816 case op_monitorenter
:
1817 case op_monitorexit
:
1825 case op_arraylength
:
1857 case op_invokespecial
:
1858 case op_invokestatic
:
1859 case op_invokevirtual
:
1863 case op_multianewarray
:
1869 last_was_jsr
= true;
1888 note_branch_target (compute_jump (get_short ()), last_was_jsr
);
1891 case op_tableswitch
:
1894 note_branch_target (compute_jump (get_int ()));
1895 jint low
= get_int ();
1896 jint hi
= get_int ();
1898 verify_fail ("invalid tableswitch", start_PC
);
1899 for (int i
= low
; i
<= hi
; ++i
)
1900 note_branch_target (compute_jump (get_int ()));
1904 case op_lookupswitch
:
1907 note_branch_target (compute_jump (get_int ()));
1908 int npairs
= get_int ();
1910 verify_fail ("too few pairs in lookupswitch", start_PC
);
1911 while (npairs
-- > 0)
1914 note_branch_target (compute_jump (get_int ()));
1919 case op_invokeinterface
:
1927 opcode
= (java_opcode
) get_byte ();
1929 if (opcode
== op_iinc
)
1935 last_was_jsr
= true;
1938 note_branch_target (compute_jump (get_int ()), last_was_jsr
);
1941 // These are unused here, but we call them out explicitly
1942 // so that -Wswitch-enum doesn't complain.
1948 case op_putstatic_1
:
1949 case op_putstatic_2
:
1950 case op_putstatic_4
:
1951 case op_putstatic_8
:
1952 case op_putstatic_a
:
1954 case op_getfield_2s
:
1955 case op_getfield_2u
:
1959 case op_getstatic_1
:
1960 case op_getstatic_2s
:
1961 case op_getstatic_2u
:
1962 case op_getstatic_4
:
1963 case op_getstatic_8
:
1964 case op_getstatic_a
:
1966 verify_fail ("unrecognized instruction in branch_prepass",
1970 // See if any previous branch tried to branch to the middle of
1971 // this instruction.
1972 for (int pc
= start_PC
+ 1; pc
< PC
; ++pc
)
1974 if ((flags
[pc
] & FLAG_BRANCH_TARGET
))
1975 verify_fail ("branch to middle of instruction", pc
);
1979 // Verify exception handlers.
1980 for (int i
= 0; i
< current_method
->exc_count
; ++i
)
1982 if (! (flags
[exception
[i
].handler_pc
.i
] & FLAG_INSN_START
))
1983 verify_fail ("exception handler not at instruction start",
1984 exception
[i
].handler_pc
.i
);
1985 if (! (flags
[exception
[i
].start_pc
.i
] & FLAG_INSN_START
))
1986 verify_fail ("exception start not at instruction start",
1987 exception
[i
].start_pc
.i
);
1988 if (exception
[i
].end_pc
.i
!= current_method
->code_length
1989 && ! (flags
[exception
[i
].end_pc
.i
] & FLAG_INSN_START
))
1990 verify_fail ("exception end not at instruction start",
1991 exception
[i
].end_pc
.i
);
1993 flags
[exception
[i
].handler_pc
.i
] |= FLAG_BRANCH_TARGET
;
1997 void check_pool_index (int index
)
1999 if (index
< 0 || index
>= current_class
->constants
.size
)
2000 verify_fail ("constant pool index out of range", start_PC
);
2003 type
check_class_constant (int index
)
2005 check_pool_index (index
);
2006 _Jv_Constants
*pool
= ¤t_class
->constants
;
2007 if (pool
->tags
[index
] == JV_CONSTANT_ResolvedClass
)
2008 return type (pool
->data
[index
].clazz
);
2009 else if (pool
->tags
[index
] == JV_CONSTANT_Class
)
2010 return type (pool
->data
[index
].utf8
);
2011 verify_fail ("expected class constant", start_PC
);
2014 type
check_constant (int index
)
2016 check_pool_index (index
);
2017 _Jv_Constants
*pool
= ¤t_class
->constants
;
2018 if (pool
->tags
[index
] == JV_CONSTANT_ResolvedString
2019 || pool
->tags
[index
] == JV_CONSTANT_String
)
2020 return type (&java::lang::String::class$
);
2021 else if (pool
->tags
[index
] == JV_CONSTANT_Integer
)
2022 return type (int_type
);
2023 else if (pool
->tags
[index
] == JV_CONSTANT_Float
)
2024 return type (float_type
);
2025 verify_fail ("String, int, or float constant expected", start_PC
);
2028 type
check_wide_constant (int index
)
2030 check_pool_index (index
);
2031 _Jv_Constants
*pool
= ¤t_class
->constants
;
2032 if (pool
->tags
[index
] == JV_CONSTANT_Long
)
2033 return type (long_type
);
2034 else if (pool
->tags
[index
] == JV_CONSTANT_Double
)
2035 return type (double_type
);
2036 verify_fail ("long or double constant expected", start_PC
);
2039 // Helper for both field and method. These are laid out the same in
2040 // the constant pool.
2041 type
handle_field_or_method (int index
, int expected
,
2042 _Jv_Utf8Const
**name
,
2043 _Jv_Utf8Const
**fmtype
)
2045 check_pool_index (index
);
2046 _Jv_Constants
*pool
= ¤t_class
->constants
;
2047 if (pool
->tags
[index
] != expected
)
2048 verify_fail ("didn't see expected constant", start_PC
);
2049 // Once we know we have a Fieldref or Methodref we assume that it
2050 // is correctly laid out in the constant pool. I think the code
2051 // in defineclass.cc guarantees this.
2052 _Jv_ushort class_index
, name_and_type_index
;
2053 _Jv_loadIndexes (&pool
->data
[index
],
2055 name_and_type_index
);
2056 _Jv_ushort name_index
, desc_index
;
2057 _Jv_loadIndexes (&pool
->data
[name_and_type_index
],
2058 name_index
, desc_index
);
2060 *name
= pool
->data
[name_index
].utf8
;
2061 *fmtype
= pool
->data
[desc_index
].utf8
;
2063 return check_class_constant (class_index
);
2066 // Return field's type, compute class' type if requested.
2067 type
check_field_constant (int index
, type
*class_type
= NULL
)
2069 _Jv_Utf8Const
*name
, *field_type
;
2070 type ct
= handle_field_or_method (index
,
2071 JV_CONSTANT_Fieldref
,
2072 &name
, &field_type
);
2075 if (field_type
->data
[0] == '[' || field_type
->data
[0] == 'L')
2076 return type (field_type
);
2077 return get_type_val_for_signature (field_type
->data
[0]);
2080 type
check_method_constant (int index
, bool is_interface
,
2081 _Jv_Utf8Const
**method_name
,
2082 _Jv_Utf8Const
**method_signature
)
2084 return handle_field_or_method (index
,
2086 ? JV_CONSTANT_InterfaceMethodref
2087 : JV_CONSTANT_Methodref
),
2088 method_name
, method_signature
);
2091 type
get_one_type (char *&p
)
2109 _Jv_Utf8Const
*name
= make_utf8_const (start
, p
- start
);
2113 // Casting to jchar here is ok since we are looking at an ASCII
2115 type_val rt
= get_type_val_for_signature (jchar (v
));
2117 if (arraycount
== 0)
2119 // Callers of this function eventually push their arguments on
2120 // the stack. So, promote them here.
2121 return type (rt
).promote ();
2124 jclass k
= construct_primitive_array_type (rt
);
2125 while (--arraycount
> 0)
2126 k
= _Jv_GetArrayClass (k
, NULL
);
2130 void compute_argument_types (_Jv_Utf8Const
*signature
,
2133 char *p
= signature
->data
;
2139 types
[i
++] = get_one_type (p
);
2142 type
compute_return_type (_Jv_Utf8Const
*signature
)
2144 char *p
= signature
->data
;
2148 return get_one_type (p
);
2151 void check_return_type (type onstack
)
2153 type rt
= compute_return_type (current_method
->self
->signature
);
2154 if (! rt
.compatible (onstack
, this))
2155 verify_fail ("incompatible return type");
2158 // Initialize the stack for the new method. Returns true if this
2159 // method is an instance initializer.
2160 bool initialize_stack ()
2163 bool is_init
= false;
2165 using namespace java::lang::reflect
;
2166 if (! Modifier::isStatic (current_method
->self
->accflags
))
2168 type
kurr (current_class
);
2169 if (_Jv_equalUtf8Consts (current_method
->self
->name
, gcj::init_name
))
2171 kurr
.set_uninitialized (type::SELF
, this);
2174 set_variable (0, kurr
);
2175 current_state
->set_this_type (kurr
);
2179 // We have to handle wide arguments specially here.
2180 int arg_count
= _Jv_count_arguments (current_method
->self
->signature
);
2181 type arg_types
[arg_count
];
2182 compute_argument_types (current_method
->self
->signature
, arg_types
);
2183 for (int i
= 0; i
< arg_count
; ++i
)
2185 set_variable (var
, arg_types
[i
]);
2187 if (arg_types
[i
].iswide ())
2194 void verify_instructions_0 ()
2196 current_state
= new state (current_method
->max_stack
,
2197 current_method
->max_locals
);
2202 // True if we are verifying an instance initializer.
2203 bool this_is_init
= initialize_stack ();
2205 states
= (state
**) _Jv_Malloc (sizeof (state
*)
2206 * current_method
->code_length
);
2207 for (int i
= 0; i
< current_method
->code_length
; ++i
)
2210 next_verify_pc
= state::NO_NEXT
;
2214 // If the PC was invalidated, get a new one from the work list.
2215 if (PC
== state::NO_NEXT
)
2218 if (PC
== state::INVALID
)
2219 verify_fail ("can't happen: saw state::INVALID");
2220 if (PC
== state::NO_NEXT
)
2222 debug_print ("== State pop from pending list\n");
2223 // Set up the current state.
2224 current_state
->copy (states
[PC
], current_method
->max_stack
,
2225 current_method
->max_locals
);
2229 // Control can't fall off the end of the bytecode. We
2230 // only need to check this in the fall-through case,
2231 // because branch bounds are checked when they are
2233 if (PC
>= current_method
->code_length
)
2234 verify_fail ("fell off end");
2236 // We only have to do this checking in the situation where
2237 // control flow falls through from the previous
2238 // instruction. Otherwise merging is done at the time we
2240 if (states
[PC
] != NULL
)
2242 // We've already visited this instruction. So merge
2243 // the states together. If this yields no change then
2244 // we don't have to re-verify. However, if the new
2245 // state is an the result of an unmerged `ret', we
2246 // must continue through it.
2247 debug_print ("== Fall through merge\n");
2248 states
[PC
]->print ("Old", PC
, current_method
->max_stack
,
2249 current_method
->max_locals
);
2250 current_state
->print ("Cur", PC
, current_method
->max_stack
,
2251 current_method
->max_locals
);
2252 if (! current_state
->merge (states
[PC
], false,
2253 current_method
->max_locals
, this)
2254 && ! states
[PC
]->is_unmerged_ret_state (current_method
->max_locals
))
2256 debug_print ("== Fall through optimization\n");
2260 // Save a copy of it for later.
2261 states
[PC
]->copy (current_state
, current_method
->max_stack
,
2262 current_method
->max_locals
);
2263 current_state
->print ("New", PC
, current_method
->max_stack
,
2264 current_method
->max_locals
);
2268 // We only have to keep saved state at branch targets. If
2269 // we're at a branch target and the state here hasn't been set
2270 // yet, we set it now.
2271 if (states
[PC
] == NULL
&& (flags
[PC
] & FLAG_BRANCH_TARGET
))
2273 states
[PC
] = new state (current_state
, current_method
->max_stack
,
2274 current_method
->max_locals
);
2277 // Set this before handling exceptions so that debug output is
2281 // Update states for all active exception handlers. Ordinarily
2282 // there are not many exception handlers. So we simply run
2283 // through them all.
2284 for (int i
= 0; i
< current_method
->exc_count
; ++i
)
2286 if (PC
>= exception
[i
].start_pc
.i
&& PC
< exception
[i
].end_pc
.i
)
2288 type
handler (&java::lang::Throwable::class$
);
2289 if (exception
[i
].handler_type
.i
!= 0)
2290 handler
= check_class_constant (exception
[i
].handler_type
.i
);
2291 push_exception_jump (handler
, exception
[i
].handler_pc
.i
);
2295 current_state
->print (" ", PC
, current_method
->max_stack
,
2296 current_method
->max_locals
);
2297 java_opcode opcode
= (java_opcode
) bytecode
[PC
++];
2303 case op_aconst_null
:
2304 push_type (null_type
);
2314 push_type (int_type
);
2319 push_type (long_type
);
2325 push_type (float_type
);
2330 push_type (double_type
);
2335 push_type (int_type
);
2340 push_type (int_type
);
2344 push_type (check_constant (get_byte ()));
2347 push_type (check_constant (get_ushort ()));
2350 push_type (check_wide_constant (get_ushort ()));
2354 push_type (get_variable (get_byte (), int_type
));
2357 push_type (get_variable (get_byte (), long_type
));
2360 push_type (get_variable (get_byte (), float_type
));
2363 push_type (get_variable (get_byte (), double_type
));
2366 push_type (get_variable (get_byte (), reference_type
));
2373 push_type (get_variable (opcode
- op_iload_0
, int_type
));
2379 push_type (get_variable (opcode
- op_lload_0
, long_type
));
2385 push_type (get_variable (opcode
- op_fload_0
, float_type
));
2391 push_type (get_variable (opcode
- op_dload_0
, double_type
));
2397 push_type (get_variable (opcode
- op_aload_0
, reference_type
));
2400 pop_type (int_type
);
2401 push_type (require_array_type (pop_init_ref (reference_type
),
2405 pop_type (int_type
);
2406 push_type (require_array_type (pop_init_ref (reference_type
),
2410 pop_type (int_type
);
2411 push_type (require_array_type (pop_init_ref (reference_type
),
2415 pop_type (int_type
);
2416 push_type (require_array_type (pop_init_ref (reference_type
),
2420 pop_type (int_type
);
2421 push_type (require_array_type (pop_init_ref (reference_type
),
2425 pop_type (int_type
);
2426 require_array_type (pop_init_ref (reference_type
), byte_type
);
2427 push_type (int_type
);
2430 pop_type (int_type
);
2431 require_array_type (pop_init_ref (reference_type
), char_type
);
2432 push_type (int_type
);
2435 pop_type (int_type
);
2436 require_array_type (pop_init_ref (reference_type
), short_type
);
2437 push_type (int_type
);
2440 set_variable (get_byte (), pop_type (int_type
));
2443 set_variable (get_byte (), pop_type (long_type
));
2446 set_variable (get_byte (), pop_type (float_type
));
2449 set_variable (get_byte (), pop_type (double_type
));
2452 set_variable (get_byte (), pop_ref_or_return ());
2458 set_variable (opcode
- op_istore_0
, pop_type (int_type
));
2464 set_variable (opcode
- op_lstore_0
, pop_type (long_type
));
2470 set_variable (opcode
- op_fstore_0
, pop_type (float_type
));
2476 set_variable (opcode
- op_dstore_0
, pop_type (double_type
));
2482 set_variable (opcode
- op_astore_0
, pop_ref_or_return ());
2485 pop_type (int_type
);
2486 pop_type (int_type
);
2487 require_array_type (pop_init_ref (reference_type
), int_type
);
2490 pop_type (long_type
);
2491 pop_type (int_type
);
2492 require_array_type (pop_init_ref (reference_type
), long_type
);
2495 pop_type (float_type
);
2496 pop_type (int_type
);
2497 require_array_type (pop_init_ref (reference_type
), float_type
);
2500 pop_type (double_type
);
2501 pop_type (int_type
);
2502 require_array_type (pop_init_ref (reference_type
), double_type
);
2505 pop_type (reference_type
);
2506 pop_type (int_type
);
2507 require_array_type (pop_init_ref (reference_type
), reference_type
);
2510 pop_type (int_type
);
2511 pop_type (int_type
);
2512 require_array_type (pop_init_ref (reference_type
), byte_type
);
2515 pop_type (int_type
);
2516 pop_type (int_type
);
2517 require_array_type (pop_init_ref (reference_type
), char_type
);
2520 pop_type (int_type
);
2521 pop_type (int_type
);
2522 require_array_type (pop_init_ref (reference_type
), short_type
);
2549 type t2
= pop_raw ();
2564 type t
= pop_raw ();
2579 type t1
= pop_raw ();
2596 type t1
= pop_raw ();
2599 type t2
= pop_raw ();
2617 type t3
= pop_raw ();
2655 pop_type (int_type
);
2656 push_type (pop_type (int_type
));
2666 pop_type (long_type
);
2667 push_type (pop_type (long_type
));
2672 pop_type (int_type
);
2673 push_type (pop_type (long_type
));
2680 pop_type (float_type
);
2681 push_type (pop_type (float_type
));
2688 pop_type (double_type
);
2689 push_type (pop_type (double_type
));
2695 push_type (pop_type (int_type
));
2698 push_type (pop_type (long_type
));
2701 push_type (pop_type (float_type
));
2704 push_type (pop_type (double_type
));
2707 get_variable (get_byte (), int_type
);
2711 pop_type (int_type
);
2712 push_type (long_type
);
2715 pop_type (int_type
);
2716 push_type (float_type
);
2719 pop_type (int_type
);
2720 push_type (double_type
);
2723 pop_type (long_type
);
2724 push_type (int_type
);
2727 pop_type (long_type
);
2728 push_type (float_type
);
2731 pop_type (long_type
);
2732 push_type (double_type
);
2735 pop_type (float_type
);
2736 push_type (int_type
);
2739 pop_type (float_type
);
2740 push_type (long_type
);
2743 pop_type (float_type
);
2744 push_type (double_type
);
2747 pop_type (double_type
);
2748 push_type (int_type
);
2751 pop_type (double_type
);
2752 push_type (long_type
);
2755 pop_type (double_type
);
2756 push_type (float_type
);
2759 pop_type (long_type
);
2760 pop_type (long_type
);
2761 push_type (int_type
);
2765 pop_type (float_type
);
2766 pop_type (float_type
);
2767 push_type (int_type
);
2771 pop_type (double_type
);
2772 pop_type (double_type
);
2773 push_type (int_type
);
2781 pop_type (int_type
);
2782 push_jump (get_short ());
2790 pop_type (int_type
);
2791 pop_type (int_type
);
2792 push_jump (get_short ());
2796 pop_type (reference_type
);
2797 pop_type (reference_type
);
2798 push_jump (get_short ());
2801 push_jump (get_short ());
2805 handle_jsr_insn (get_short ());
2808 handle_ret_insn (get_byte ());
2810 case op_tableswitch
:
2812 pop_type (int_type
);
2814 push_jump (get_int ());
2815 jint low
= get_int ();
2816 jint high
= get_int ();
2817 // Already checked LOW -vs- HIGH.
2818 for (int i
= low
; i
<= high
; ++i
)
2819 push_jump (get_int ());
2824 case op_lookupswitch
:
2826 pop_type (int_type
);
2828 push_jump (get_int ());
2829 jint npairs
= get_int ();
2830 // Already checked NPAIRS >= 0.
2832 for (int i
= 0; i
< npairs
; ++i
)
2834 jint key
= get_int ();
2835 if (i
> 0 && key
<= lastkey
)
2836 verify_fail ("lookupswitch pairs unsorted", start_PC
);
2838 push_jump (get_int ());
2844 check_return_type (pop_type (int_type
));
2848 check_return_type (pop_type (long_type
));
2852 check_return_type (pop_type (float_type
));
2856 check_return_type (pop_type (double_type
));
2860 check_return_type (pop_init_ref (reference_type
));
2864 // We only need to check this when the return type is
2865 // void, because all instance initializers return void.
2867 current_state
->check_this_initialized (this);
2868 check_return_type (void_type
);
2872 push_type (check_field_constant (get_ushort ()));
2875 pop_type (check_field_constant (get_ushort ()));
2880 type field
= check_field_constant (get_ushort (), &klass
);
2888 type field
= check_field_constant (get_ushort (), &klass
);
2891 // We have an obscure special case here: we can use
2892 // `putfield' on a field declared in this class, even if
2893 // `this' has not yet been initialized.
2894 if (! current_state
->this_type
.isinitialized ()
2895 && current_state
->this_type
.pc
== type::SELF
)
2896 klass
.set_uninitialized (type::SELF
, this);
2901 case op_invokevirtual
:
2902 case op_invokespecial
:
2903 case op_invokestatic
:
2904 case op_invokeinterface
:
2906 _Jv_Utf8Const
*method_name
, *method_signature
;
2908 = check_method_constant (get_ushort (),
2909 opcode
== op_invokeinterface
,
2912 // NARGS is only used when we're processing
2913 // invokeinterface. It is simplest for us to compute it
2914 // here and then verify it later.
2916 if (opcode
== op_invokeinterface
)
2918 nargs
= get_byte ();
2919 if (get_byte () != 0)
2920 verify_fail ("invokeinterface dummy byte is wrong");
2923 bool is_init
= false;
2924 if (_Jv_equalUtf8Consts (method_name
, gcj::init_name
))
2927 if (opcode
!= op_invokespecial
)
2928 verify_fail ("can't invoke <init>");
2930 else if (method_name
->data
[0] == '<')
2931 verify_fail ("can't invoke method starting with `<'");
2933 // Pop arguments and check types.
2934 int arg_count
= _Jv_count_arguments (method_signature
);
2935 type arg_types
[arg_count
];
2936 compute_argument_types (method_signature
, arg_types
);
2937 for (int i
= arg_count
- 1; i
>= 0; --i
)
2939 // This is only used for verifying the byte for
2941 nargs
-= arg_types
[i
].depth ();
2942 pop_init_ref (arg_types
[i
]);
2945 if (opcode
== op_invokeinterface
2947 verify_fail ("wrong argument count for invokeinterface");
2949 if (opcode
!= op_invokestatic
)
2951 type t
= class_type
;
2954 // In this case the PC doesn't matter.
2955 t
.set_uninitialized (type::UNINIT
, this);
2957 type raw
= pop_raw ();
2959 if (! is_init
&& ! raw
.isinitialized ())
2961 // This is a failure.
2963 else if (is_init
&& raw
.isnull ())
2967 else if (t
.compatible (raw
, this))
2971 else if (opcode
== op_invokeinterface
)
2973 // This is a hack. We might have merged two
2974 // items and gotten `Object'. This can happen
2975 // because we don't keep track of where merges
2976 // come from. This is safe as long as the
2977 // interpreter checks interfaces at runtime.
2978 type
obj (&java::lang::Object::class$
);
2979 ok
= raw
.compatible (obj
, this);
2983 verify_fail ("incompatible type on stack");
2986 current_state
->set_initialized (raw
.get_pc (),
2987 current_method
->max_locals
);
2990 type rt
= compute_return_type (method_signature
);
2998 type t
= check_class_constant (get_ushort ());
2999 if (t
.isarray () || t
.isinterface (this) || t
.isabstract (this))
3000 verify_fail ("type is array, interface, or abstract");
3001 t
.set_uninitialized (start_PC
, this);
3008 int atype
= get_byte ();
3009 // We intentionally have chosen constants to make this
3011 if (atype
< boolean_type
|| atype
> long_type
)
3012 verify_fail ("type not primitive", start_PC
);
3013 pop_type (int_type
);
3014 push_type (construct_primitive_array_type (type_val (atype
)));
3018 pop_type (int_type
);
3019 push_type (check_class_constant (get_ushort ()).to_array (this));
3021 case op_arraylength
:
3023 type t
= pop_init_ref (reference_type
);
3024 if (! t
.isarray () && ! t
.isnull ())
3025 verify_fail ("array type expected");
3026 push_type (int_type
);
3030 pop_type (type (&java::lang::Throwable::class$
));
3034 pop_init_ref (reference_type
);
3035 push_type (check_class_constant (get_ushort ()));
3038 pop_init_ref (reference_type
);
3039 check_class_constant (get_ushort ());
3040 push_type (int_type
);
3042 case op_monitorenter
:
3043 pop_init_ref (reference_type
);
3045 case op_monitorexit
:
3046 pop_init_ref (reference_type
);
3050 switch (get_byte ())
3053 push_type (get_variable (get_ushort (), int_type
));
3056 push_type (get_variable (get_ushort (), long_type
));
3059 push_type (get_variable (get_ushort (), float_type
));
3062 push_type (get_variable (get_ushort (), double_type
));
3065 push_type (get_variable (get_ushort (), reference_type
));
3068 set_variable (get_ushort (), pop_type (int_type
));
3071 set_variable (get_ushort (), pop_type (long_type
));
3074 set_variable (get_ushort (), pop_type (float_type
));
3077 set_variable (get_ushort (), pop_type (double_type
));
3080 set_variable (get_ushort (), pop_init_ref (reference_type
));
3083 handle_ret_insn (get_short ());
3086 get_variable (get_ushort (), int_type
);
3090 verify_fail ("unrecognized wide instruction", start_PC
);
3094 case op_multianewarray
:
3096 type atype
= check_class_constant (get_ushort ());
3097 int dim
= get_byte ();
3099 verify_fail ("too few dimensions to multianewarray", start_PC
);
3100 atype
.verify_dimensions (dim
, this);
3101 for (int i
= 0; i
< dim
; ++i
)
3102 pop_type (int_type
);
3108 pop_type (reference_type
);
3109 push_jump (get_short ());
3112 push_jump (get_int ());
3116 handle_jsr_insn (get_int ());
3119 // These are unused here, but we call them out explicitly
3120 // so that -Wswitch-enum doesn't complain.
3126 case op_putstatic_1
:
3127 case op_putstatic_2
:
3128 case op_putstatic_4
:
3129 case op_putstatic_8
:
3130 case op_putstatic_a
:
3132 case op_getfield_2s
:
3133 case op_getfield_2u
:
3137 case op_getstatic_1
:
3138 case op_getstatic_2s
:
3139 case op_getstatic_2u
:
3140 case op_getstatic_4
:
3141 case op_getstatic_8
:
3142 case op_getstatic_a
:
3144 // Unrecognized opcode.
3145 verify_fail ("unrecognized instruction in verify_instructions_0",
3153 void verify_instructions ()
3156 verify_instructions_0 ();
3159 _Jv_BytecodeVerifier (_Jv_InterpMethod
*m
)
3161 // We just print the text as utf-8. This is just for debugging
3163 debug_print ("--------------------------------\n");
3164 debug_print ("-- Verifying method `%s'\n", m
->self
->name
->data
);
3167 bytecode
= m
->bytecode ();
3168 exception
= m
->exceptions ();
3169 current_class
= m
->defining_class
;
3175 entry_points
= NULL
;
3178 ~_Jv_BytecodeVerifier ()
3187 for (int i
= 0; i
< current_method
->code_length
; ++i
)
3189 if (jsr_ptrs
[i
] != NULL
)
3191 subr_info
*info
= jsr_ptrs
[i
];
3192 while (info
!= NULL
)
3194 subr_info
*next
= info
->next
;
3200 _Jv_Free (jsr_ptrs
);
3203 while (utf8_list
!= NULL
)
3205 linked_utf8
*n
= utf8_list
->next
;
3206 _Jv_Free (utf8_list
->val
);
3207 _Jv_Free (utf8_list
);
3211 while (entry_points
!= NULL
)
3213 subr_entry_info
*next
= entry_points
->next
;
3214 _Jv_Free (entry_points
);
3215 entry_points
= next
;
3221 _Jv_VerifyMethod (_Jv_InterpMethod
*meth
)
3223 _Jv_BytecodeVerifier
v (meth
);
3224 v
.verify_instructions ();
3226 #endif /* INTERPRETER */