* javaop.h (jfloat, jdouble): Make them structures mirroring
[official-gcc.git] / gcc / dwarf2out.c
bloba1e27cbf7f0dd01053113416bf842d09c61bcae5
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
93 int
94 dwarf2out_do_frame ()
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
117 void
118 default_eh_frame_section ()
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
187 typedef union dw_cfi_oprnd_struct GTY(())
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
194 dw_cfi_oprnd;
196 typedef struct dw_cfi_struct GTY(())
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
205 dw_cfi_node;
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
226 typedef struct dw_fde_struct GTY(())
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
237 dw_fde_node;
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
272 #define DWARF_VERSION 2
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
291 /* Number of elements currently allocated for fde_table. */
292 static unsigned fde_table_allocated;
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
312 struct indirect_string_node GTY(())
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
327 /* Forward declarations for functions defined in this file. */
329 static char *stripattributes PARAMS ((const char *));
330 static const char *dwarf_cfi_name PARAMS ((unsigned));
331 static dw_cfi_ref new_cfi PARAMS ((void));
332 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
333 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
334 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
335 dw_cfa_location *));
336 static void lookup_cfa PARAMS ((dw_cfa_location *));
337 static void reg_save PARAMS ((const char *, unsigned,
338 unsigned, long));
339 static void initial_return_save PARAMS ((rtx));
340 static long stack_adjust_offset PARAMS ((rtx));
341 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
342 static void output_call_frame_info PARAMS ((int));
343 static void dwarf2out_stack_adjust PARAMS ((rtx));
344 static void queue_reg_save PARAMS ((const char *, rtx, long));
345 static void flush_queued_reg_saves PARAMS ((void));
346 static bool clobbers_queued_reg_save PARAMS ((rtx));
347 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc PARAMS ((dw_cfi_ref));
351 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
352 struct dw_loc_descr_struct *));
353 static struct dw_loc_descr_struct *build_cfa_loc
354 PARAMS ((dw_cfa_location *));
355 static void def_cfa_1 PARAMS ((const char *,
356 dw_cfa_location *));
358 /* How to start an assembler comment. */
359 #ifndef ASM_COMMENT_START
360 #define ASM_COMMENT_START ";#"
361 #endif
363 /* Data and reference forms for relocatable data. */
364 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
365 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
367 #ifndef DEBUG_FRAME_SECTION
368 #define DEBUG_FRAME_SECTION ".debug_frame"
369 #endif
371 #ifndef FUNC_BEGIN_LABEL
372 #define FUNC_BEGIN_LABEL "LFB"
373 #endif
375 #ifndef FUNC_END_LABEL
376 #define FUNC_END_LABEL "LFE"
377 #endif
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #define CIE_AFTER_SIZE_LABEL "LSCIE"
381 #define CIE_END_LABEL "LECIE"
382 #define FDE_LABEL "LSFDE"
383 #define FDE_AFTER_SIZE_LABEL "LASFDE"
384 #define FDE_END_LABEL "LEFDE"
385 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
386 #define LINE_NUMBER_END_LABEL "LELT"
387 #define LN_PROLOG_AS_LABEL "LASLTP"
388 #define LN_PROLOG_END_LABEL "LELTP"
389 #define DIE_LABEL_PREFIX "DW"
391 /* The DWARF 2 CFA column which tracks the return address. Normally this
392 is the column for PC, or the first column after all of the hard
393 registers. */
394 #ifndef DWARF_FRAME_RETURN_COLUMN
395 #ifdef PC_REGNUM
396 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
397 #else
398 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
399 #endif
400 #endif
402 /* The mapping from gcc register number to DWARF 2 CFA column number. By
403 default, we just provide columns for all registers. */
404 #ifndef DWARF_FRAME_REGNUM
405 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
406 #endif
408 /* The offset from the incoming value of %sp to the top of the stack frame
409 for the current function. */
410 #ifndef INCOMING_FRAME_SP_OFFSET
411 #define INCOMING_FRAME_SP_OFFSET 0
412 #endif
414 /* Hook used by __throw. */
417 expand_builtin_dwarf_fp_regnum ()
419 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
422 /* Return a pointer to a copy of the section string name S with all
423 attributes stripped off, and an asterisk prepended (for assemble_name). */
425 static inline char *
426 stripattributes (s)
427 const char *s;
429 char *stripped = xmalloc (strlen (s) + 2);
430 char *p = stripped;
432 *p++ = '*';
434 while (*s && *s != ',')
435 *p++ = *s++;
437 *p = '\0';
438 return stripped;
441 /* Generate code to initialize the register size table. */
443 void
444 expand_builtin_init_dwarf_reg_sizes (address)
445 tree address;
447 int i;
448 enum machine_mode mode = TYPE_MODE (char_type_node);
449 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
450 rtx mem = gen_rtx_MEM (BLKmode, addr);
452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
453 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
455 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
456 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
458 if (offset < 0)
459 continue;
461 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
465 /* Convert a DWARF call frame info. operation to its string name */
467 static const char *
468 dwarf_cfi_name (cfi_opc)
469 unsigned cfi_opc;
471 switch (cfi_opc)
473 case DW_CFA_advance_loc:
474 return "DW_CFA_advance_loc";
475 case DW_CFA_offset:
476 return "DW_CFA_offset";
477 case DW_CFA_restore:
478 return "DW_CFA_restore";
479 case DW_CFA_nop:
480 return "DW_CFA_nop";
481 case DW_CFA_set_loc:
482 return "DW_CFA_set_loc";
483 case DW_CFA_advance_loc1:
484 return "DW_CFA_advance_loc1";
485 case DW_CFA_advance_loc2:
486 return "DW_CFA_advance_loc2";
487 case DW_CFA_advance_loc4:
488 return "DW_CFA_advance_loc4";
489 case DW_CFA_offset_extended:
490 return "DW_CFA_offset_extended";
491 case DW_CFA_restore_extended:
492 return "DW_CFA_restore_extended";
493 case DW_CFA_undefined:
494 return "DW_CFA_undefined";
495 case DW_CFA_same_value:
496 return "DW_CFA_same_value";
497 case DW_CFA_register:
498 return "DW_CFA_register";
499 case DW_CFA_remember_state:
500 return "DW_CFA_remember_state";
501 case DW_CFA_restore_state:
502 return "DW_CFA_restore_state";
503 case DW_CFA_def_cfa:
504 return "DW_CFA_def_cfa";
505 case DW_CFA_def_cfa_register:
506 return "DW_CFA_def_cfa_register";
507 case DW_CFA_def_cfa_offset:
508 return "DW_CFA_def_cfa_offset";
510 /* DWARF 3 */
511 case DW_CFA_def_cfa_expression:
512 return "DW_CFA_def_cfa_expression";
513 case DW_CFA_expression:
514 return "DW_CFA_expression";
515 case DW_CFA_offset_extended_sf:
516 return "DW_CFA_offset_extended_sf";
517 case DW_CFA_def_cfa_sf:
518 return "DW_CFA_def_cfa_sf";
519 case DW_CFA_def_cfa_offset_sf:
520 return "DW_CFA_def_cfa_offset_sf";
522 /* SGI/MIPS specific */
523 case DW_CFA_MIPS_advance_loc8:
524 return "DW_CFA_MIPS_advance_loc8";
526 /* GNU extensions */
527 case DW_CFA_GNU_window_save:
528 return "DW_CFA_GNU_window_save";
529 case DW_CFA_GNU_args_size:
530 return "DW_CFA_GNU_args_size";
531 case DW_CFA_GNU_negative_offset_extended:
532 return "DW_CFA_GNU_negative_offset_extended";
534 default:
535 return "DW_CFA_<unknown>";
539 /* Return a pointer to a newly allocated Call Frame Instruction. */
541 static inline dw_cfi_ref
542 new_cfi ()
544 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
546 cfi->dw_cfi_next = NULL;
547 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
548 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
550 return cfi;
553 /* Add a Call Frame Instruction to list of instructions. */
555 static inline void
556 add_cfi (list_head, cfi)
557 dw_cfi_ref *list_head;
558 dw_cfi_ref cfi;
560 dw_cfi_ref *p;
562 /* Find the end of the chain. */
563 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
566 *p = cfi;
569 /* Generate a new label for the CFI info to refer to. */
571 char *
572 dwarf2out_cfi_label ()
574 static char label[20];
576 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
577 ASM_OUTPUT_LABEL (asm_out_file, label);
578 return label;
581 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
582 or to the CIE if LABEL is NULL. */
584 static void
585 add_fde_cfi (label, cfi)
586 const char *label;
587 dw_cfi_ref cfi;
589 if (label)
591 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
593 if (*label == 0)
594 label = dwarf2out_cfi_label ();
596 if (fde->dw_fde_current_label == NULL
597 || strcmp (label, fde->dw_fde_current_label) != 0)
599 dw_cfi_ref xcfi;
601 fde->dw_fde_current_label = label = xstrdup (label);
603 /* Set the location counter to the new label. */
604 xcfi = new_cfi ();
605 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
606 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
607 add_cfi (&fde->dw_fde_cfi, xcfi);
610 add_cfi (&fde->dw_fde_cfi, cfi);
613 else
614 add_cfi (&cie_cfi_head, cfi);
617 /* Subroutine of lookup_cfa. */
619 static inline void
620 lookup_cfa_1 (cfi, loc)
621 dw_cfi_ref cfi;
622 dw_cfa_location *loc;
624 switch (cfi->dw_cfi_opc)
626 case DW_CFA_def_cfa_offset:
627 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
628 break;
629 case DW_CFA_def_cfa_register:
630 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
631 break;
632 case DW_CFA_def_cfa:
633 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
634 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
635 break;
636 case DW_CFA_def_cfa_expression:
637 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
638 break;
639 default:
640 break;
644 /* Find the previous value for the CFA. */
646 static void
647 lookup_cfa (loc)
648 dw_cfa_location *loc;
650 dw_cfi_ref cfi;
652 loc->reg = (unsigned long) -1;
653 loc->offset = 0;
654 loc->indirect = 0;
655 loc->base_offset = 0;
657 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
658 lookup_cfa_1 (cfi, loc);
660 if (fde_table_in_use)
662 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
663 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
664 lookup_cfa_1 (cfi, loc);
668 /* The current rule for calculating the DWARF2 canonical frame address. */
669 static dw_cfa_location cfa;
671 /* The register used for saving registers to the stack, and its offset
672 from the CFA. */
673 static dw_cfa_location cfa_store;
675 /* The running total of the size of arguments pushed onto the stack. */
676 static long args_size;
678 /* The last args_size we actually output. */
679 static long old_args_size;
681 /* Entry point to update the canonical frame address (CFA).
682 LABEL is passed to add_fde_cfi. The value of CFA is now to be
683 calculated from REG+OFFSET. */
685 void
686 dwarf2out_def_cfa (label, reg, offset)
687 const char *label;
688 unsigned reg;
689 long offset;
691 dw_cfa_location loc;
692 loc.indirect = 0;
693 loc.base_offset = 0;
694 loc.reg = reg;
695 loc.offset = offset;
696 def_cfa_1 (label, &loc);
699 /* This routine does the actual work. The CFA is now calculated from
700 the dw_cfa_location structure. */
702 static void
703 def_cfa_1 (label, loc_p)
704 const char *label;
705 dw_cfa_location *loc_p;
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
710 cfa = *loc_p;
711 loc = *loc_p;
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
725 cfi = new_cfi ();
727 if (loc.reg == old_cfa.reg && !loc.indirect)
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
746 #endif
748 else if (loc.indirect == 0)
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
757 else
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
769 add_fde_cfi (label, cfi);
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
777 static void
778 reg_save (label, reg, sreg, offset)
779 const char *label;
780 unsigned reg;
781 unsigned sreg;
782 long offset;
784 dw_cfi_ref cfi = new_cfi ();
786 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
788 /* The following comparison is correct. -1 is used to indicate that
789 the value isn't a register number. */
790 if (sreg == (unsigned int) -1)
792 if (reg & ~0x3f)
793 /* The register number won't fit in 6 bits, so we have to use
794 the long form. */
795 cfi->dw_cfi_opc = DW_CFA_offset_extended;
796 else
797 cfi->dw_cfi_opc = DW_CFA_offset;
799 #ifdef ENABLE_CHECKING
801 /* If we get an offset that is not a multiple of
802 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
803 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
804 description. */
805 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
807 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
808 abort ();
810 #endif
811 offset /= DWARF_CIE_DATA_ALIGNMENT;
812 if (offset < 0)
813 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
815 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
817 else if (sreg == reg)
818 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
819 return;
820 else
822 cfi->dw_cfi_opc = DW_CFA_register;
823 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
826 add_fde_cfi (label, cfi);
829 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
830 This CFI tells the unwinder that it needs to restore the window registers
831 from the previous frame's window save area.
833 ??? Perhaps we should note in the CIE where windows are saved (instead of
834 assuming 0(cfa)) and what registers are in the window. */
836 void
837 dwarf2out_window_save (label)
838 const char *label;
840 dw_cfi_ref cfi = new_cfi ();
842 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
843 add_fde_cfi (label, cfi);
846 /* Add a CFI to update the running total of the size of arguments
847 pushed onto the stack. */
849 void
850 dwarf2out_args_size (label, size)
851 const char *label;
852 long size;
854 dw_cfi_ref cfi;
856 if (size == old_args_size)
857 return;
859 old_args_size = size;
861 cfi = new_cfi ();
862 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
863 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
864 add_fde_cfi (label, cfi);
867 /* Entry point for saving a register to the stack. REG is the GCC register
868 number. LABEL and OFFSET are passed to reg_save. */
870 void
871 dwarf2out_reg_save (label, reg, offset)
872 const char *label;
873 unsigned reg;
874 long offset;
876 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
879 /* Entry point for saving the return address in the stack.
880 LABEL and OFFSET are passed to reg_save. */
882 void
883 dwarf2out_return_save (label, offset)
884 const char *label;
885 long offset;
887 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
890 /* Entry point for saving the return address in a register.
891 LABEL and SREG are passed to reg_save. */
893 void
894 dwarf2out_return_reg (label, sreg)
895 const char *label;
896 unsigned sreg;
898 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
901 /* Record the initial position of the return address. RTL is
902 INCOMING_RETURN_ADDR_RTX. */
904 static void
905 initial_return_save (rtl)
906 rtx rtl;
908 unsigned int reg = (unsigned int) -1;
909 HOST_WIDE_INT offset = 0;
911 switch (GET_CODE (rtl))
913 case REG:
914 /* RA is in a register. */
915 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
916 break;
918 case MEM:
919 /* RA is on the stack. */
920 rtl = XEXP (rtl, 0);
921 switch (GET_CODE (rtl))
923 case REG:
924 if (REGNO (rtl) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = 0;
927 break;
929 case PLUS:
930 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
931 abort ();
932 offset = INTVAL (XEXP (rtl, 1));
933 break;
935 case MINUS:
936 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = -INTVAL (XEXP (rtl, 1));
939 break;
941 default:
942 abort ();
945 break;
947 case PLUS:
948 /* The return address is at some offset from any value we can
949 actually load. For instance, on the SPARC it is in %i7+8. Just
950 ignore the offset for now; it doesn't matter for unwinding frames. */
951 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
952 abort ();
953 initial_return_save (XEXP (rtl, 0));
954 return;
956 default:
957 abort ();
960 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
963 /* Given a SET, calculate the amount of stack adjustment it
964 contains. */
966 static long
967 stack_adjust_offset (pattern)
968 rtx pattern;
970 rtx src = SET_SRC (pattern);
971 rtx dest = SET_DEST (pattern);
972 HOST_WIDE_INT offset = 0;
973 enum rtx_code code;
975 if (dest == stack_pointer_rtx)
977 /* (set (reg sp) (plus (reg sp) (const_int))) */
978 code = GET_CODE (src);
979 if (! (code == PLUS || code == MINUS)
980 || XEXP (src, 0) != stack_pointer_rtx
981 || GET_CODE (XEXP (src, 1)) != CONST_INT)
982 return 0;
984 offset = INTVAL (XEXP (src, 1));
985 if (code == PLUS)
986 offset = -offset;
988 else if (GET_CODE (dest) == MEM)
990 /* (set (mem (pre_dec (reg sp))) (foo)) */
991 src = XEXP (dest, 0);
992 code = GET_CODE (src);
994 switch (code)
996 case PRE_MODIFY:
997 case POST_MODIFY:
998 if (XEXP (src, 0) == stack_pointer_rtx)
1000 rtx val = XEXP (XEXP (src, 1), 1);
1001 /* We handle only adjustments by constant amount. */
1002 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1003 GET_CODE (val) != CONST_INT)
1004 abort ();
1005 offset = -INTVAL (val);
1006 break;
1008 return 0;
1010 case PRE_DEC:
1011 case POST_DEC:
1012 if (XEXP (src, 0) == stack_pointer_rtx)
1014 offset = GET_MODE_SIZE (GET_MODE (dest));
1015 break;
1017 return 0;
1019 case PRE_INC:
1020 case POST_INC:
1021 if (XEXP (src, 0) == stack_pointer_rtx)
1023 offset = -GET_MODE_SIZE (GET_MODE (dest));
1024 break;
1026 return 0;
1028 default:
1029 return 0;
1032 else
1033 return 0;
1035 return offset;
1038 /* Check INSN to see if it looks like a push or a stack adjustment, and
1039 make a note of it if it does. EH uses this information to find out how
1040 much extra space it needs to pop off the stack. */
1042 static void
1043 dwarf2out_stack_adjust (insn)
1044 rtx insn;
1046 HOST_WIDE_INT offset;
1047 const char *label;
1048 int i;
1050 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1052 /* Extract the size of the args from the CALL rtx itself. */
1053 insn = PATTERN (insn);
1054 if (GET_CODE (insn) == PARALLEL)
1055 insn = XVECEXP (insn, 0, 0);
1056 if (GET_CODE (insn) == SET)
1057 insn = SET_SRC (insn);
1058 if (GET_CODE (insn) != CALL)
1059 abort ();
1061 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1062 return;
1065 /* If only calls can throw, and we have a frame pointer,
1066 save up adjustments until we see the CALL_INSN. */
1067 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1068 return;
1070 if (GET_CODE (insn) == BARRIER)
1072 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1073 the compiler will have already emitted a stack adjustment, but
1074 doesn't bother for calls to noreturn functions. */
1075 #ifdef STACK_GROWS_DOWNWARD
1076 offset = -args_size;
1077 #else
1078 offset = args_size;
1079 #endif
1081 else if (GET_CODE (PATTERN (insn)) == SET)
1082 offset = stack_adjust_offset (PATTERN (insn));
1083 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1084 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1086 /* There may be stack adjustments inside compound insns. Search
1087 for them. */
1088 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1089 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1090 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1092 else
1093 return;
1095 if (offset == 0)
1096 return;
1098 if (cfa.reg == STACK_POINTER_REGNUM)
1099 cfa.offset += offset;
1101 #ifndef STACK_GROWS_DOWNWARD
1102 offset = -offset;
1103 #endif
1105 args_size += offset;
1106 if (args_size < 0)
1107 args_size = 0;
1109 label = dwarf2out_cfi_label ();
1110 def_cfa_1 (label, &cfa);
1111 dwarf2out_args_size (label, args_size);
1114 #endif
1116 /* We delay emitting a register save until either (a) we reach the end
1117 of the prologue or (b) the register is clobbered. This clusters
1118 register saves so that there are fewer pc advances. */
1120 struct queued_reg_save GTY(())
1122 struct queued_reg_save *next;
1123 rtx reg;
1124 long cfa_offset;
1127 static GTY(()) struct queued_reg_save *queued_reg_saves;
1129 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1130 static const char *last_reg_save_label;
1132 static void
1133 queue_reg_save (label, reg, offset)
1134 const char *label;
1135 rtx reg;
1136 long offset;
1138 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1140 q->next = queued_reg_saves;
1141 q->reg = reg;
1142 q->cfa_offset = offset;
1143 queued_reg_saves = q;
1145 last_reg_save_label = label;
1148 static void
1149 flush_queued_reg_saves ()
1151 struct queued_reg_save *q, *next;
1153 for (q = queued_reg_saves; q; q = next)
1155 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1156 next = q->next;
1159 queued_reg_saves = NULL;
1160 last_reg_save_label = NULL;
1163 static bool
1164 clobbers_queued_reg_save (insn)
1165 rtx insn;
1167 struct queued_reg_save *q;
1169 for (q = queued_reg_saves; q; q = q->next)
1170 if (modified_in_p (q->reg, insn))
1171 return true;
1173 return false;
1177 /* A temporary register holding an integral value used in adjusting SP
1178 or setting up the store_reg. The "offset" field holds the integer
1179 value, not an offset. */
1180 static dw_cfa_location cfa_temp;
1182 /* Record call frame debugging information for an expression EXPR,
1183 which either sets SP or FP (adjusting how we calculate the frame
1184 address) or saves a register to the stack. LABEL indicates the
1185 address of EXPR.
1187 This function encodes a state machine mapping rtxes to actions on
1188 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1189 users need not read the source code.
1191 The High-Level Picture
1193 Changes in the register we use to calculate the CFA: Currently we
1194 assume that if you copy the CFA register into another register, we
1195 should take the other one as the new CFA register; this seems to
1196 work pretty well. If it's wrong for some target, it's simple
1197 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1199 Changes in the register we use for saving registers to the stack:
1200 This is usually SP, but not always. Again, we deduce that if you
1201 copy SP into another register (and SP is not the CFA register),
1202 then the new register is the one we will be using for register
1203 saves. This also seems to work.
1205 Register saves: There's not much guesswork about this one; if
1206 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1207 register save, and the register used to calculate the destination
1208 had better be the one we think we're using for this purpose.
1210 Except: If the register being saved is the CFA register, and the
1211 offset is nonzero, we are saving the CFA, so we assume we have to
1212 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1213 the intent is to save the value of SP from the previous frame.
1215 Invariants / Summaries of Rules
1217 cfa current rule for calculating the CFA. It usually
1218 consists of a register and an offset.
1219 cfa_store register used by prologue code to save things to the stack
1220 cfa_store.offset is the offset from the value of
1221 cfa_store.reg to the actual CFA
1222 cfa_temp register holding an integral value. cfa_temp.offset
1223 stores the value, which will be used to adjust the
1224 stack pointer. cfa_temp is also used like cfa_store,
1225 to track stores to the stack via fp or a temp reg.
1227 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1228 with cfa.reg as the first operand changes the cfa.reg and its
1229 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1230 cfa_temp.offset.
1232 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1233 expression yielding a constant. This sets cfa_temp.reg
1234 and cfa_temp.offset.
1236 Rule 5: Create a new register cfa_store used to save items to the
1237 stack.
1239 Rules 10-14: Save a register to the stack. Define offset as the
1240 difference of the original location and cfa_store's
1241 location (or cfa_temp's location if cfa_temp is used).
1243 The Rules
1245 "{a,b}" indicates a choice of a xor b.
1246 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1248 Rule 1:
1249 (set <reg1> <reg2>:cfa.reg)
1250 effects: cfa.reg = <reg1>
1251 cfa.offset unchanged
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1255 Rule 2:
1256 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1257 {<const_int>,<reg>:cfa_temp.reg}))
1258 effects: cfa.reg = sp if fp used
1259 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1260 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1261 if cfa_store.reg==sp
1263 Rule 3:
1264 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1265 effects: cfa.reg = fp
1266 cfa_offset += +/- <const_int>
1268 Rule 4:
1269 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1270 constraints: <reg1> != fp
1271 <reg1> != sp
1272 effects: cfa.reg = <reg1>
1273 cfa_temp.reg = <reg1>
1274 cfa_temp.offset = cfa.offset
1276 Rule 5:
1277 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1278 constraints: <reg1> != fp
1279 <reg1> != sp
1280 effects: cfa_store.reg = <reg1>
1281 cfa_store.offset = cfa.offset - cfa_temp.offset
1283 Rule 6:
1284 (set <reg> <const_int>)
1285 effects: cfa_temp.reg = <reg>
1286 cfa_temp.offset = <const_int>
1288 Rule 7:
1289 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1290 effects: cfa_temp.reg = <reg1>
1291 cfa_temp.offset |= <const_int>
1293 Rule 8:
1294 (set <reg> (high <exp>))
1295 effects: none
1297 Rule 9:
1298 (set <reg> (lo_sum <exp> <const_int>))
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1302 Rule 10:
1303 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1304 effects: cfa_store.offset -= <const_int>
1305 cfa.offset = cfa_store.offset if cfa.reg == sp
1306 cfa.reg = sp
1307 cfa.base_offset = -cfa_store.offset
1309 Rule 11:
1310 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1311 effects: cfa_store.offset += -/+ mode_size(mem)
1312 cfa.offset = cfa_store.offset if cfa.reg == sp
1313 cfa.reg = sp
1314 cfa.base_offset = -cfa_store.offset
1316 Rule 12:
1317 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1319 <reg2>)
1320 effects: cfa.reg = <reg1>
1321 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1323 Rule 13:
1324 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1325 effects: cfa.reg = <reg1>
1326 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1328 Rule 14:
1329 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1330 effects: cfa.reg = <reg1>
1331 cfa.base_offset = -cfa_temp.offset
1332 cfa_temp.offset -= mode_size(mem) */
1334 static void
1335 dwarf2out_frame_debug_expr (expr, label)
1336 rtx expr;
1337 const char *label;
1339 rtx src, dest;
1340 HOST_WIDE_INT offset;
1342 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1343 the PARALLEL independently. The first element is always processed if
1344 it is a SET. This is for backward compatibility. Other elements
1345 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1346 flag is set in them. */
1347 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1349 int par_index;
1350 int limit = XVECLEN (expr, 0);
1352 for (par_index = 0; par_index < limit; par_index++)
1353 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1354 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1355 || par_index == 0))
1356 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1358 return;
1361 if (GET_CODE (expr) != SET)
1362 abort ();
1364 src = SET_SRC (expr);
1365 dest = SET_DEST (expr);
1367 switch (GET_CODE (dest))
1369 case REG:
1370 /* Rule 1 */
1371 /* Update the CFA rule wrt SP or FP. Make sure src is
1372 relative to the current CFA register. */
1373 switch (GET_CODE (src))
1375 /* Setting FP from SP. */
1376 case REG:
1377 if (cfa.reg == (unsigned) REGNO (src))
1378 /* OK. */
1380 else
1381 abort ();
1383 /* We used to require that dest be either SP or FP, but the
1384 ARM copies SP to a temporary register, and from there to
1385 FP. So we just rely on the backends to only set
1386 RTX_FRAME_RELATED_P on appropriate insns. */
1387 cfa.reg = REGNO (dest);
1388 cfa_temp.reg = cfa.reg;
1389 cfa_temp.offset = cfa.offset;
1390 break;
1392 case PLUS:
1393 case MINUS:
1394 case LO_SUM:
1395 if (dest == stack_pointer_rtx)
1397 /* Rule 2 */
1398 /* Adjusting SP. */
1399 switch (GET_CODE (XEXP (src, 1)))
1401 case CONST_INT:
1402 offset = INTVAL (XEXP (src, 1));
1403 break;
1404 case REG:
1405 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1406 abort ();
1407 offset = cfa_temp.offset;
1408 break;
1409 default:
1410 abort ();
1413 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1415 /* Restoring SP from FP in the epilogue. */
1416 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1417 abort ();
1418 cfa.reg = STACK_POINTER_REGNUM;
1420 else if (GET_CODE (src) == LO_SUM)
1421 /* Assume we've set the source reg of the LO_SUM from sp. */
1423 else if (XEXP (src, 0) != stack_pointer_rtx)
1424 abort ();
1426 if (GET_CODE (src) != MINUS)
1427 offset = -offset;
1428 if (cfa.reg == STACK_POINTER_REGNUM)
1429 cfa.offset += offset;
1430 if (cfa_store.reg == STACK_POINTER_REGNUM)
1431 cfa_store.offset += offset;
1433 else if (dest == hard_frame_pointer_rtx)
1435 /* Rule 3 */
1436 /* Either setting the FP from an offset of the SP,
1437 or adjusting the FP */
1438 if (! frame_pointer_needed)
1439 abort ();
1441 if (GET_CODE (XEXP (src, 0)) == REG
1442 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1443 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1445 offset = INTVAL (XEXP (src, 1));
1446 if (GET_CODE (src) != MINUS)
1447 offset = -offset;
1448 cfa.offset += offset;
1449 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1451 else
1452 abort ();
1454 else
1456 if (GET_CODE (src) == MINUS)
1457 abort ();
1459 /* Rule 4 */
1460 if (GET_CODE (XEXP (src, 0)) == REG
1461 && REGNO (XEXP (src, 0)) == cfa.reg
1462 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1464 /* Setting a temporary CFA register that will be copied
1465 into the FP later on. */
1466 offset = - INTVAL (XEXP (src, 1));
1467 cfa.offset += offset;
1468 cfa.reg = REGNO (dest);
1469 /* Or used to save regs to the stack. */
1470 cfa_temp.reg = cfa.reg;
1471 cfa_temp.offset = cfa.offset;
1474 /* Rule 5 */
1475 else if (GET_CODE (XEXP (src, 0)) == REG
1476 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1477 && XEXP (src, 1) == stack_pointer_rtx)
1479 /* Setting a scratch register that we will use instead
1480 of SP for saving registers to the stack. */
1481 if (cfa.reg != STACK_POINTER_REGNUM)
1482 abort ();
1483 cfa_store.reg = REGNO (dest);
1484 cfa_store.offset = cfa.offset - cfa_temp.offset;
1487 /* Rule 9 */
1488 else if (GET_CODE (src) == LO_SUM
1489 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1491 cfa_temp.reg = REGNO (dest);
1492 cfa_temp.offset = INTVAL (XEXP (src, 1));
1494 else
1495 abort ();
1497 break;
1499 /* Rule 6 */
1500 case CONST_INT:
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset = INTVAL (src);
1503 break;
1505 /* Rule 7 */
1506 case IOR:
1507 if (GET_CODE (XEXP (src, 0)) != REG
1508 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1509 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1510 abort ();
1512 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1515 break;
1517 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1518 which will fill in all of the bits. */
1519 /* Rule 8 */
1520 case HIGH:
1521 break;
1523 default:
1524 abort ();
1527 def_cfa_1 (label, &cfa);
1528 break;
1530 case MEM:
1531 if (GET_CODE (src) != REG)
1532 abort ();
1534 /* Saving a register to the stack. Make sure dest is relative to the
1535 CFA register. */
1536 switch (GET_CODE (XEXP (dest, 0)))
1538 /* Rule 10 */
1539 /* With a push. */
1540 case PRE_MODIFY:
1541 /* We can't handle variable size modifications. */
1542 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1543 abort ();
1544 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1546 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1547 || cfa_store.reg != STACK_POINTER_REGNUM)
1548 abort ();
1550 cfa_store.offset += offset;
1551 if (cfa.reg == STACK_POINTER_REGNUM)
1552 cfa.offset = cfa_store.offset;
1554 offset = -cfa_store.offset;
1555 break;
1557 /* Rule 11 */
1558 case PRE_INC:
1559 case PRE_DEC:
1560 offset = GET_MODE_SIZE (GET_MODE (dest));
1561 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1562 offset = -offset;
1564 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1565 || cfa_store.reg != STACK_POINTER_REGNUM)
1566 abort ();
1568 cfa_store.offset += offset;
1569 if (cfa.reg == STACK_POINTER_REGNUM)
1570 cfa.offset = cfa_store.offset;
1572 offset = -cfa_store.offset;
1573 break;
1575 /* Rule 12 */
1576 /* With an offset. */
1577 case PLUS:
1578 case MINUS:
1579 case LO_SUM:
1580 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1581 abort ();
1582 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1583 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1584 offset = -offset;
1586 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1587 offset -= cfa_store.offset;
1588 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1589 offset -= cfa_temp.offset;
1590 else
1591 abort ();
1592 break;
1594 /* Rule 13 */
1595 /* Without an offset. */
1596 case REG:
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1598 offset = -cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1600 offset = -cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1605 /* Rule 14 */
1606 case POST_INC:
1607 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1608 abort ();
1609 offset = -cfa_temp.offset;
1610 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1611 break;
1613 default:
1614 abort ();
1617 if (REGNO (src) != STACK_POINTER_REGNUM
1618 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1619 && (unsigned) REGNO (src) == cfa.reg)
1621 /* We're storing the current CFA reg into the stack. */
1623 if (cfa.offset == 0)
1625 /* If the source register is exactly the CFA, assume
1626 we're saving SP like any other register; this happens
1627 on the ARM. */
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, stack_pointer_rtx, offset);
1630 break;
1632 else
1634 /* Otherwise, we'll need to look in the stack to
1635 calculate the CFA. */
1636 rtx x = XEXP (dest, 0);
1638 if (GET_CODE (x) != REG)
1639 x = XEXP (x, 0);
1640 if (GET_CODE (x) != REG)
1641 abort ();
1643 cfa.reg = REGNO (x);
1644 cfa.base_offset = offset;
1645 cfa.indirect = 1;
1646 def_cfa_1 (label, &cfa);
1647 break;
1651 def_cfa_1 (label, &cfa);
1652 queue_reg_save (label, src, offset);
1653 break;
1655 default:
1656 abort ();
1660 /* Record call frame debugging information for INSN, which either
1661 sets SP or FP (adjusting how we calculate the frame address) or saves a
1662 register to the stack. If INSN is NULL_RTX, initialize our state. */
1664 void
1665 dwarf2out_frame_debug (insn)
1666 rtx insn;
1668 const char *label;
1669 rtx src;
1671 if (insn == NULL_RTX)
1673 /* Flush any queued register saves. */
1674 flush_queued_reg_saves ();
1676 /* Set up state for generating call frame debug info. */
1677 lookup_cfa (&cfa);
1678 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1679 abort ();
1681 cfa.reg = STACK_POINTER_REGNUM;
1682 cfa_store = cfa;
1683 cfa_temp.reg = -1;
1684 cfa_temp.offset = 0;
1685 return;
1688 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1689 flush_queued_reg_saves ();
1691 if (! RTX_FRAME_RELATED_P (insn))
1693 if (!ACCUMULATE_OUTGOING_ARGS)
1694 dwarf2out_stack_adjust (insn);
1696 return;
1699 label = dwarf2out_cfi_label ();
1700 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1701 if (src)
1702 insn = XEXP (src, 0);
1703 else
1704 insn = PATTERN (insn);
1706 dwarf2out_frame_debug_expr (insn, label);
1709 #endif
1711 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1712 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1713 PARAMS ((enum dwarf_call_frame_info cfi));
1715 static enum dw_cfi_oprnd_type
1716 dw_cfi_oprnd1_desc (cfi)
1717 enum dwarf_call_frame_info cfi;
1719 switch (cfi)
1721 case DW_CFA_nop:
1722 case DW_CFA_GNU_window_save:
1723 return dw_cfi_oprnd_unused;
1725 case DW_CFA_set_loc:
1726 case DW_CFA_advance_loc1:
1727 case DW_CFA_advance_loc2:
1728 case DW_CFA_advance_loc4:
1729 case DW_CFA_MIPS_advance_loc8:
1730 return dw_cfi_oprnd_addr;
1732 case DW_CFA_offset:
1733 case DW_CFA_offset_extended:
1734 case DW_CFA_def_cfa:
1735 case DW_CFA_offset_extended_sf:
1736 case DW_CFA_def_cfa_sf:
1737 case DW_CFA_restore_extended:
1738 case DW_CFA_undefined:
1739 case DW_CFA_same_value:
1740 case DW_CFA_def_cfa_register:
1741 case DW_CFA_register:
1742 return dw_cfi_oprnd_reg_num;
1744 case DW_CFA_def_cfa_offset:
1745 case DW_CFA_GNU_args_size:
1746 case DW_CFA_def_cfa_offset_sf:
1747 return dw_cfi_oprnd_offset;
1749 case DW_CFA_def_cfa_expression:
1750 case DW_CFA_expression:
1751 return dw_cfi_oprnd_loc;
1753 default:
1754 abort ();
1758 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1759 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1760 PARAMS ((enum dwarf_call_frame_info cfi));
1762 static enum dw_cfi_oprnd_type
1763 dw_cfi_oprnd2_desc (cfi)
1764 enum dwarf_call_frame_info cfi;
1766 switch (cfi)
1768 case DW_CFA_def_cfa:
1769 case DW_CFA_def_cfa_sf:
1770 case DW_CFA_offset:
1771 case DW_CFA_offset_extended_sf:
1772 case DW_CFA_offset_extended:
1773 return dw_cfi_oprnd_offset;
1775 case DW_CFA_register:
1776 return dw_cfi_oprnd_reg_num;
1778 default:
1779 return dw_cfi_oprnd_unused;
1783 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1785 /* Output a Call Frame Information opcode and its operand(s). */
1787 static void
1788 output_cfi (cfi, fde, for_eh)
1789 dw_cfi_ref cfi;
1790 dw_fde_ref fde;
1791 int for_eh;
1793 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1794 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1795 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1796 "DW_CFA_advance_loc 0x%lx",
1797 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1798 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1800 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1801 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1802 "DW_CFA_offset, column 0x%lx",
1803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1804 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1806 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1807 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1808 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1809 "DW_CFA_restore, column 0x%lx",
1810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1811 else
1813 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1814 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1816 switch (cfi->dw_cfi_opc)
1818 case DW_CFA_set_loc:
1819 if (for_eh)
1820 dw2_asm_output_encoded_addr_rtx (
1821 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1822 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1823 NULL);
1824 else
1825 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1826 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1827 break;
1829 case DW_CFA_advance_loc1:
1830 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1835 case DW_CFA_advance_loc2:
1836 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1841 case DW_CFA_advance_loc4:
1842 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1843 fde->dw_fde_current_label, NULL);
1844 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1845 break;
1847 case DW_CFA_MIPS_advance_loc8:
1848 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1849 fde->dw_fde_current_label, NULL);
1850 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1851 break;
1853 case DW_CFA_offset_extended:
1854 case DW_CFA_def_cfa:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1856 NULL);
1857 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1858 break;
1860 case DW_CFA_offset_extended_sf:
1861 case DW_CFA_def_cfa_sf:
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1863 NULL);
1864 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1865 break;
1867 case DW_CFA_restore_extended:
1868 case DW_CFA_undefined:
1869 case DW_CFA_same_value:
1870 case DW_CFA_def_cfa_register:
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1872 NULL);
1873 break;
1875 case DW_CFA_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1879 NULL);
1880 break;
1882 case DW_CFA_def_cfa_offset:
1883 case DW_CFA_GNU_args_size:
1884 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1885 break;
1887 case DW_CFA_def_cfa_offset_sf:
1888 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1889 break;
1891 case DW_CFA_GNU_window_save:
1892 break;
1894 case DW_CFA_def_cfa_expression:
1895 case DW_CFA_expression:
1896 output_cfa_loc (cfi);
1897 break;
1899 case DW_CFA_GNU_negative_offset_extended:
1900 /* Obsoleted by DW_CFA_offset_extended_sf. */
1901 abort ();
1903 default:
1904 break;
1909 /* Output the call frame information used to used to record information
1910 that relates to calculating the frame pointer, and records the
1911 location of saved registers. */
1913 static void
1914 output_call_frame_info (for_eh)
1915 int for_eh;
1917 unsigned int i;
1918 dw_fde_ref fde;
1919 dw_cfi_ref cfi;
1920 char l1[20], l2[20], section_start_label[20];
1921 int any_lsda_needed = 0;
1922 char augmentation[6];
1923 int augmentation_size;
1924 int fde_encoding = DW_EH_PE_absptr;
1925 int per_encoding = DW_EH_PE_absptr;
1926 int lsda_encoding = DW_EH_PE_absptr;
1928 /* Don't emit a CIE if there won't be any FDEs. */
1929 if (fde_table_in_use == 0)
1930 return;
1932 /* If we don't have any functions we'll want to unwind out of, don't emit any
1933 EH unwind information. */
1934 if (for_eh)
1936 int any_eh_needed = flag_asynchronous_unwind_tables;
1938 for (i = 0; i < fde_table_in_use; i++)
1939 if (fde_table[i].uses_eh_lsda)
1940 any_eh_needed = any_lsda_needed = 1;
1941 else if (! fde_table[i].nothrow)
1942 any_eh_needed = 1;
1944 if (! any_eh_needed)
1945 return;
1948 /* We're going to be generating comments, so turn on app. */
1949 if (flag_debug_asm)
1950 app_enable ();
1952 if (for_eh)
1953 (*targetm.asm_out.eh_frame_section) ();
1954 else
1955 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1957 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1958 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1960 /* Output the CIE. */
1961 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1962 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1963 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1964 "Length of Common Information Entry");
1965 ASM_OUTPUT_LABEL (asm_out_file, l1);
1967 /* Now that the CIE pointer is PC-relative for EH,
1968 use 0 to identify the CIE. */
1969 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1970 (for_eh ? 0 : DW_CIE_ID),
1971 "CIE Identifier Tag");
1973 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1975 augmentation[0] = 0;
1976 augmentation_size = 0;
1977 if (for_eh)
1979 char *p;
1981 /* Augmentation:
1982 z Indicates that a uleb128 is present to size the
1983 augmentation section.
1984 L Indicates the encoding (and thus presence) of
1985 an LSDA pointer in the FDE augmentation.
1986 R Indicates a non-default pointer encoding for
1987 FDE code pointers.
1988 P Indicates the presence of an encoding + language
1989 personality routine in the CIE augmentation. */
1991 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1992 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1993 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1995 p = augmentation + 1;
1996 if (eh_personality_libfunc)
1998 *p++ = 'P';
1999 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2001 if (any_lsda_needed)
2003 *p++ = 'L';
2004 augmentation_size += 1;
2006 if (fde_encoding != DW_EH_PE_absptr)
2008 *p++ = 'R';
2009 augmentation_size += 1;
2011 if (p > augmentation + 1)
2013 augmentation[0] = 'z';
2014 *p = '\0';
2017 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2018 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2020 int offset = ( 4 /* Length */
2021 + 4 /* CIE Id */
2022 + 1 /* CIE version */
2023 + strlen (augmentation) + 1 /* Augmentation */
2024 + size_of_uleb128 (1) /* Code alignment */
2025 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2026 + 1 /* RA column */
2027 + 1 /* Augmentation size */
2028 + 1 /* Personality encoding */ );
2029 int pad = -offset & (PTR_SIZE - 1);
2031 augmentation_size += pad;
2033 /* Augmentations should be small, so there's scarce need to
2034 iterate for a solution. Die if we exceed one uleb128 byte. */
2035 if (size_of_uleb128 (augmentation_size) != 1)
2036 abort ();
2040 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2041 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2042 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2043 "CIE Data Alignment Factor");
2044 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2046 if (augmentation[0])
2048 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2049 if (eh_personality_libfunc)
2051 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2052 eh_data_format_name (per_encoding));
2053 dw2_asm_output_encoded_addr_rtx (per_encoding,
2054 eh_personality_libfunc, NULL);
2057 if (any_lsda_needed)
2058 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2059 eh_data_format_name (lsda_encoding));
2061 if (fde_encoding != DW_EH_PE_absptr)
2062 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2063 eh_data_format_name (fde_encoding));
2066 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2067 output_cfi (cfi, NULL, for_eh);
2069 /* Pad the CIE out to an address sized boundary. */
2070 ASM_OUTPUT_ALIGN (asm_out_file,
2071 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2072 ASM_OUTPUT_LABEL (asm_out_file, l2);
2074 /* Loop through all of the FDE's. */
2075 for (i = 0; i < fde_table_in_use; i++)
2077 fde = &fde_table[i];
2079 /* Don't emit EH unwind info for leaf functions that don't need it. */
2080 if (!flag_asynchronous_unwind_tables && for_eh
2081 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2082 && !fde->uses_eh_lsda)
2083 continue;
2085 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2086 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2087 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2088 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2089 "FDE Length");
2090 ASM_OUTPUT_LABEL (asm_out_file, l1);
2092 if (for_eh)
2093 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2094 else
2095 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2096 "FDE CIE offset");
2098 if (for_eh)
2100 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2101 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2102 "FDE initial location");
2103 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2104 fde->dw_fde_end, fde->dw_fde_begin,
2105 "FDE address range");
2107 else
2109 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2110 "FDE initial location");
2111 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2112 fde->dw_fde_end, fde->dw_fde_begin,
2113 "FDE address range");
2116 if (augmentation[0])
2118 if (any_lsda_needed)
2120 int size = size_of_encoded_value (lsda_encoding);
2122 if (lsda_encoding == DW_EH_PE_aligned)
2124 int offset = ( 4 /* Length */
2125 + 4 /* CIE offset */
2126 + 2 * size_of_encoded_value (fde_encoding)
2127 + 1 /* Augmentation size */ );
2128 int pad = -offset & (PTR_SIZE - 1);
2130 size += pad;
2131 if (size_of_uleb128 (size) != 1)
2132 abort ();
2135 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2137 if (fde->uses_eh_lsda)
2139 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2140 fde->funcdef_number);
2141 dw2_asm_output_encoded_addr_rtx (
2142 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2143 "Language Specific Data Area");
2145 else
2147 if (lsda_encoding == DW_EH_PE_aligned)
2148 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2149 dw2_asm_output_data
2150 (size_of_encoded_value (lsda_encoding), 0,
2151 "Language Specific Data Area (none)");
2154 else
2155 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2158 /* Loop through the Call Frame Instructions associated with
2159 this FDE. */
2160 fde->dw_fde_current_label = fde->dw_fde_begin;
2161 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2162 output_cfi (cfi, fde, for_eh);
2164 /* Pad the FDE out to an address sized boundary. */
2165 ASM_OUTPUT_ALIGN (asm_out_file,
2166 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2167 ASM_OUTPUT_LABEL (asm_out_file, l2);
2170 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2171 dw2_asm_output_data (4, 0, "End of Table");
2172 #ifdef MIPS_DEBUGGING_INFO
2173 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2174 get a value of 0. Putting .align 0 after the label fixes it. */
2175 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2176 #endif
2178 /* Turn off app to make assembly quicker. */
2179 if (flag_debug_asm)
2180 app_disable ();
2183 /* Output a marker (i.e. a label) for the beginning of a function, before
2184 the prologue. */
2186 void
2187 dwarf2out_begin_prologue (line, file)
2188 unsigned int line ATTRIBUTE_UNUSED;
2189 const char *file ATTRIBUTE_UNUSED;
2191 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2192 dw_fde_ref fde;
2194 current_function_func_begin_label = 0;
2196 #ifdef IA64_UNWIND_INFO
2197 /* ??? current_function_func_begin_label is also used by except.c
2198 for call-site information. We must emit this label if it might
2199 be used. */
2200 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2201 && ! dwarf2out_do_frame ())
2202 return;
2203 #else
2204 if (! dwarf2out_do_frame ())
2205 return;
2206 #endif
2208 function_section (current_function_decl);
2209 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2210 current_function_funcdef_no);
2211 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2212 current_function_funcdef_no);
2213 current_function_func_begin_label = get_identifier (label);
2215 #ifdef IA64_UNWIND_INFO
2216 /* We can elide the fde allocation if we're not emitting debug info. */
2217 if (! dwarf2out_do_frame ())
2218 return;
2219 #endif
2221 /* Expand the fde table if necessary. */
2222 if (fde_table_in_use == fde_table_allocated)
2224 fde_table_allocated += FDE_TABLE_INCREMENT;
2225 fde_table = ggc_realloc (fde_table,
2226 fde_table_allocated * sizeof (dw_fde_node));
2227 memset (fde_table + fde_table_in_use, 0,
2228 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2231 /* Record the FDE associated with this function. */
2232 current_funcdef_fde = fde_table_in_use;
2234 /* Add the new FDE at the end of the fde_table. */
2235 fde = &fde_table[fde_table_in_use++];
2236 fde->dw_fde_begin = xstrdup (label);
2237 fde->dw_fde_current_label = NULL;
2238 fde->dw_fde_end = NULL;
2239 fde->dw_fde_cfi = NULL;
2240 fde->funcdef_number = current_function_funcdef_no;
2241 fde->nothrow = current_function_nothrow;
2242 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2243 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2245 args_size = old_args_size = 0;
2247 /* We only want to output line number information for the genuine dwarf2
2248 prologue case, not the eh frame case. */
2249 #ifdef DWARF2_DEBUGGING_INFO
2250 if (file)
2251 dwarf2out_source_line (line, file);
2252 #endif
2255 /* Output a marker (i.e. a label) for the absolute end of the generated code
2256 for a function definition. This gets called *after* the epilogue code has
2257 been generated. */
2259 void
2260 dwarf2out_end_epilogue (line, file)
2261 unsigned int line ATTRIBUTE_UNUSED;
2262 const char *file ATTRIBUTE_UNUSED;
2264 dw_fde_ref fde;
2265 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2267 /* Output a label to mark the endpoint of the code generated for this
2268 function. */
2269 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2270 current_function_funcdef_no);
2271 ASM_OUTPUT_LABEL (asm_out_file, label);
2272 fde = &fde_table[fde_table_in_use - 1];
2273 fde->dw_fde_end = xstrdup (label);
2276 void
2277 dwarf2out_frame_init ()
2279 /* Allocate the initial hunk of the fde_table. */
2280 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2281 * sizeof (dw_fde_node));
2282 fde_table_allocated = FDE_TABLE_INCREMENT;
2283 fde_table_in_use = 0;
2285 /* Generate the CFA instructions common to all FDE's. Do it now for the
2286 sake of lookup_cfa. */
2288 #ifdef DWARF2_UNWIND_INFO
2289 /* On entry, the Canonical Frame Address is at SP. */
2290 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2291 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2292 #endif
2295 void
2296 dwarf2out_frame_finish ()
2298 /* Output call frame information. */
2299 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2300 output_call_frame_info (0);
2302 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2303 output_call_frame_info (1);
2305 #endif
2307 /* And now, the subset of the debugging information support code necessary
2308 for emitting location expressions. */
2310 /* We need some way to distinguish DW_OP_addr with a direct symbol
2311 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2312 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2315 typedef struct dw_val_struct *dw_val_ref;
2316 typedef struct die_struct *dw_die_ref;
2317 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2318 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2320 /* Each DIE may have a series of attribute/value pairs. Values
2321 can take on several forms. The forms that are used in this
2322 implementation are listed below. */
2324 enum dw_val_class
2326 dw_val_class_addr,
2327 dw_val_class_offset,
2328 dw_val_class_loc,
2329 dw_val_class_loc_list,
2330 dw_val_class_range_list,
2331 dw_val_class_const,
2332 dw_val_class_unsigned_const,
2333 dw_val_class_long_long,
2334 dw_val_class_float,
2335 dw_val_class_flag,
2336 dw_val_class_die_ref,
2337 dw_val_class_fde_ref,
2338 dw_val_class_lbl_id,
2339 dw_val_class_lbl_offset,
2340 dw_val_class_str
2343 /* Describe a double word constant value. */
2344 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2346 typedef struct dw_long_long_struct GTY(())
2348 unsigned long hi;
2349 unsigned long low;
2351 dw_long_long_const;
2353 /* Describe a floating point constant value. */
2355 typedef struct dw_fp_struct GTY(())
2357 long * GTY((length ("%h.length"))) array;
2358 unsigned length;
2360 dw_float_const;
2362 /* The dw_val_node describes an attribute's value, as it is
2363 represented internally. */
2365 typedef struct dw_val_struct GTY(())
2367 enum dw_val_class val_class;
2368 union dw_val_struct_union
2370 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2371 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2372 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2373 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2374 long int GTY ((default (""))) val_int;
2375 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2376 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2377 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2378 struct dw_val_die_union
2380 dw_die_ref die;
2381 int external;
2382 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2383 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2384 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2385 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2386 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2388 GTY ((desc ("%1.val_class"))) v;
2390 dw_val_node;
2392 /* Locations in memory are described using a sequence of stack machine
2393 operations. */
2395 typedef struct dw_loc_descr_struct GTY(())
2397 dw_loc_descr_ref dw_loc_next;
2398 enum dwarf_location_atom dw_loc_opc;
2399 dw_val_node dw_loc_oprnd1;
2400 dw_val_node dw_loc_oprnd2;
2401 int dw_loc_addr;
2403 dw_loc_descr_node;
2405 /* Location lists are ranges + location descriptions for that range,
2406 so you can track variables that are in different places over
2407 their entire life. */
2408 typedef struct dw_loc_list_struct GTY(())
2410 dw_loc_list_ref dw_loc_next;
2411 const char *begin; /* Label for begin address of range */
2412 const char *end; /* Label for end address of range */
2413 char *ll_symbol; /* Label for beginning of location list.
2414 Only on head of list */
2415 const char *section; /* Section this loclist is relative to */
2416 dw_loc_descr_ref expr;
2417 } dw_loc_list_node;
2419 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2421 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2422 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2423 unsigned long,
2424 unsigned long));
2425 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2426 dw_loc_descr_ref));
2427 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2428 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2429 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2430 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2432 /* Convert a DWARF stack opcode into its string name. */
2434 static const char *
2435 dwarf_stack_op_name (op)
2436 unsigned op;
2438 switch (op)
2440 case DW_OP_addr:
2441 case INTERNAL_DW_OP_tls_addr:
2442 return "DW_OP_addr";
2443 case DW_OP_deref:
2444 return "DW_OP_deref";
2445 case DW_OP_const1u:
2446 return "DW_OP_const1u";
2447 case DW_OP_const1s:
2448 return "DW_OP_const1s";
2449 case DW_OP_const2u:
2450 return "DW_OP_const2u";
2451 case DW_OP_const2s:
2452 return "DW_OP_const2s";
2453 case DW_OP_const4u:
2454 return "DW_OP_const4u";
2455 case DW_OP_const4s:
2456 return "DW_OP_const4s";
2457 case DW_OP_const8u:
2458 return "DW_OP_const8u";
2459 case DW_OP_const8s:
2460 return "DW_OP_const8s";
2461 case DW_OP_constu:
2462 return "DW_OP_constu";
2463 case DW_OP_consts:
2464 return "DW_OP_consts";
2465 case DW_OP_dup:
2466 return "DW_OP_dup";
2467 case DW_OP_drop:
2468 return "DW_OP_drop";
2469 case DW_OP_over:
2470 return "DW_OP_over";
2471 case DW_OP_pick:
2472 return "DW_OP_pick";
2473 case DW_OP_swap:
2474 return "DW_OP_swap";
2475 case DW_OP_rot:
2476 return "DW_OP_rot";
2477 case DW_OP_xderef:
2478 return "DW_OP_xderef";
2479 case DW_OP_abs:
2480 return "DW_OP_abs";
2481 case DW_OP_and:
2482 return "DW_OP_and";
2483 case DW_OP_div:
2484 return "DW_OP_div";
2485 case DW_OP_minus:
2486 return "DW_OP_minus";
2487 case DW_OP_mod:
2488 return "DW_OP_mod";
2489 case DW_OP_mul:
2490 return "DW_OP_mul";
2491 case DW_OP_neg:
2492 return "DW_OP_neg";
2493 case DW_OP_not:
2494 return "DW_OP_not";
2495 case DW_OP_or:
2496 return "DW_OP_or";
2497 case DW_OP_plus:
2498 return "DW_OP_plus";
2499 case DW_OP_plus_uconst:
2500 return "DW_OP_plus_uconst";
2501 case DW_OP_shl:
2502 return "DW_OP_shl";
2503 case DW_OP_shr:
2504 return "DW_OP_shr";
2505 case DW_OP_shra:
2506 return "DW_OP_shra";
2507 case DW_OP_xor:
2508 return "DW_OP_xor";
2509 case DW_OP_bra:
2510 return "DW_OP_bra";
2511 case DW_OP_eq:
2512 return "DW_OP_eq";
2513 case DW_OP_ge:
2514 return "DW_OP_ge";
2515 case DW_OP_gt:
2516 return "DW_OP_gt";
2517 case DW_OP_le:
2518 return "DW_OP_le";
2519 case DW_OP_lt:
2520 return "DW_OP_lt";
2521 case DW_OP_ne:
2522 return "DW_OP_ne";
2523 case DW_OP_skip:
2524 return "DW_OP_skip";
2525 case DW_OP_lit0:
2526 return "DW_OP_lit0";
2527 case DW_OP_lit1:
2528 return "DW_OP_lit1";
2529 case DW_OP_lit2:
2530 return "DW_OP_lit2";
2531 case DW_OP_lit3:
2532 return "DW_OP_lit3";
2533 case DW_OP_lit4:
2534 return "DW_OP_lit4";
2535 case DW_OP_lit5:
2536 return "DW_OP_lit5";
2537 case DW_OP_lit6:
2538 return "DW_OP_lit6";
2539 case DW_OP_lit7:
2540 return "DW_OP_lit7";
2541 case DW_OP_lit8:
2542 return "DW_OP_lit8";
2543 case DW_OP_lit9:
2544 return "DW_OP_lit9";
2545 case DW_OP_lit10:
2546 return "DW_OP_lit10";
2547 case DW_OP_lit11:
2548 return "DW_OP_lit11";
2549 case DW_OP_lit12:
2550 return "DW_OP_lit12";
2551 case DW_OP_lit13:
2552 return "DW_OP_lit13";
2553 case DW_OP_lit14:
2554 return "DW_OP_lit14";
2555 case DW_OP_lit15:
2556 return "DW_OP_lit15";
2557 case DW_OP_lit16:
2558 return "DW_OP_lit16";
2559 case DW_OP_lit17:
2560 return "DW_OP_lit17";
2561 case DW_OP_lit18:
2562 return "DW_OP_lit18";
2563 case DW_OP_lit19:
2564 return "DW_OP_lit19";
2565 case DW_OP_lit20:
2566 return "DW_OP_lit20";
2567 case DW_OP_lit21:
2568 return "DW_OP_lit21";
2569 case DW_OP_lit22:
2570 return "DW_OP_lit22";
2571 case DW_OP_lit23:
2572 return "DW_OP_lit23";
2573 case DW_OP_lit24:
2574 return "DW_OP_lit24";
2575 case DW_OP_lit25:
2576 return "DW_OP_lit25";
2577 case DW_OP_lit26:
2578 return "DW_OP_lit26";
2579 case DW_OP_lit27:
2580 return "DW_OP_lit27";
2581 case DW_OP_lit28:
2582 return "DW_OP_lit28";
2583 case DW_OP_lit29:
2584 return "DW_OP_lit29";
2585 case DW_OP_lit30:
2586 return "DW_OP_lit30";
2587 case DW_OP_lit31:
2588 return "DW_OP_lit31";
2589 case DW_OP_reg0:
2590 return "DW_OP_reg0";
2591 case DW_OP_reg1:
2592 return "DW_OP_reg1";
2593 case DW_OP_reg2:
2594 return "DW_OP_reg2";
2595 case DW_OP_reg3:
2596 return "DW_OP_reg3";
2597 case DW_OP_reg4:
2598 return "DW_OP_reg4";
2599 case DW_OP_reg5:
2600 return "DW_OP_reg5";
2601 case DW_OP_reg6:
2602 return "DW_OP_reg6";
2603 case DW_OP_reg7:
2604 return "DW_OP_reg7";
2605 case DW_OP_reg8:
2606 return "DW_OP_reg8";
2607 case DW_OP_reg9:
2608 return "DW_OP_reg9";
2609 case DW_OP_reg10:
2610 return "DW_OP_reg10";
2611 case DW_OP_reg11:
2612 return "DW_OP_reg11";
2613 case DW_OP_reg12:
2614 return "DW_OP_reg12";
2615 case DW_OP_reg13:
2616 return "DW_OP_reg13";
2617 case DW_OP_reg14:
2618 return "DW_OP_reg14";
2619 case DW_OP_reg15:
2620 return "DW_OP_reg15";
2621 case DW_OP_reg16:
2622 return "DW_OP_reg16";
2623 case DW_OP_reg17:
2624 return "DW_OP_reg17";
2625 case DW_OP_reg18:
2626 return "DW_OP_reg18";
2627 case DW_OP_reg19:
2628 return "DW_OP_reg19";
2629 case DW_OP_reg20:
2630 return "DW_OP_reg20";
2631 case DW_OP_reg21:
2632 return "DW_OP_reg21";
2633 case DW_OP_reg22:
2634 return "DW_OP_reg22";
2635 case DW_OP_reg23:
2636 return "DW_OP_reg23";
2637 case DW_OP_reg24:
2638 return "DW_OP_reg24";
2639 case DW_OP_reg25:
2640 return "DW_OP_reg25";
2641 case DW_OP_reg26:
2642 return "DW_OP_reg26";
2643 case DW_OP_reg27:
2644 return "DW_OP_reg27";
2645 case DW_OP_reg28:
2646 return "DW_OP_reg28";
2647 case DW_OP_reg29:
2648 return "DW_OP_reg29";
2649 case DW_OP_reg30:
2650 return "DW_OP_reg30";
2651 case DW_OP_reg31:
2652 return "DW_OP_reg31";
2653 case DW_OP_breg0:
2654 return "DW_OP_breg0";
2655 case DW_OP_breg1:
2656 return "DW_OP_breg1";
2657 case DW_OP_breg2:
2658 return "DW_OP_breg2";
2659 case DW_OP_breg3:
2660 return "DW_OP_breg3";
2661 case DW_OP_breg4:
2662 return "DW_OP_breg4";
2663 case DW_OP_breg5:
2664 return "DW_OP_breg5";
2665 case DW_OP_breg6:
2666 return "DW_OP_breg6";
2667 case DW_OP_breg7:
2668 return "DW_OP_breg7";
2669 case DW_OP_breg8:
2670 return "DW_OP_breg8";
2671 case DW_OP_breg9:
2672 return "DW_OP_breg9";
2673 case DW_OP_breg10:
2674 return "DW_OP_breg10";
2675 case DW_OP_breg11:
2676 return "DW_OP_breg11";
2677 case DW_OP_breg12:
2678 return "DW_OP_breg12";
2679 case DW_OP_breg13:
2680 return "DW_OP_breg13";
2681 case DW_OP_breg14:
2682 return "DW_OP_breg14";
2683 case DW_OP_breg15:
2684 return "DW_OP_breg15";
2685 case DW_OP_breg16:
2686 return "DW_OP_breg16";
2687 case DW_OP_breg17:
2688 return "DW_OP_breg17";
2689 case DW_OP_breg18:
2690 return "DW_OP_breg18";
2691 case DW_OP_breg19:
2692 return "DW_OP_breg19";
2693 case DW_OP_breg20:
2694 return "DW_OP_breg20";
2695 case DW_OP_breg21:
2696 return "DW_OP_breg21";
2697 case DW_OP_breg22:
2698 return "DW_OP_breg22";
2699 case DW_OP_breg23:
2700 return "DW_OP_breg23";
2701 case DW_OP_breg24:
2702 return "DW_OP_breg24";
2703 case DW_OP_breg25:
2704 return "DW_OP_breg25";
2705 case DW_OP_breg26:
2706 return "DW_OP_breg26";
2707 case DW_OP_breg27:
2708 return "DW_OP_breg27";
2709 case DW_OP_breg28:
2710 return "DW_OP_breg28";
2711 case DW_OP_breg29:
2712 return "DW_OP_breg29";
2713 case DW_OP_breg30:
2714 return "DW_OP_breg30";
2715 case DW_OP_breg31:
2716 return "DW_OP_breg31";
2717 case DW_OP_regx:
2718 return "DW_OP_regx";
2719 case DW_OP_fbreg:
2720 return "DW_OP_fbreg";
2721 case DW_OP_bregx:
2722 return "DW_OP_bregx";
2723 case DW_OP_piece:
2724 return "DW_OP_piece";
2725 case DW_OP_deref_size:
2726 return "DW_OP_deref_size";
2727 case DW_OP_xderef_size:
2728 return "DW_OP_xderef_size";
2729 case DW_OP_nop:
2730 return "DW_OP_nop";
2731 case DW_OP_push_object_address:
2732 return "DW_OP_push_object_address";
2733 case DW_OP_call2:
2734 return "DW_OP_call2";
2735 case DW_OP_call4:
2736 return "DW_OP_call4";
2737 case DW_OP_call_ref:
2738 return "DW_OP_call_ref";
2739 case DW_OP_GNU_push_tls_address:
2740 return "DW_OP_GNU_push_tls_address";
2741 default:
2742 return "OP_<unknown>";
2746 /* Return a pointer to a newly allocated location description. Location
2747 descriptions are simple expression terms that can be strung
2748 together to form more complicated location (address) descriptions. */
2750 static inline dw_loc_descr_ref
2751 new_loc_descr (op, oprnd1, oprnd2)
2752 enum dwarf_location_atom op;
2753 unsigned long oprnd1;
2754 unsigned long oprnd2;
2756 dw_loc_descr_ref descr
2757 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2759 descr->dw_loc_opc = op;
2760 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2761 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2762 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2763 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2765 return descr;
2769 /* Add a location description term to a location description expression. */
2771 static inline void
2772 add_loc_descr (list_head, descr)
2773 dw_loc_descr_ref *list_head;
2774 dw_loc_descr_ref descr;
2776 dw_loc_descr_ref *d;
2778 /* Find the end of the chain. */
2779 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2782 *d = descr;
2785 /* Return the size of a location descriptor. */
2787 static unsigned long
2788 size_of_loc_descr (loc)
2789 dw_loc_descr_ref loc;
2791 unsigned long size = 1;
2793 switch (loc->dw_loc_opc)
2795 case DW_OP_addr:
2796 case INTERNAL_DW_OP_tls_addr:
2797 size += DWARF2_ADDR_SIZE;
2798 break;
2799 case DW_OP_const1u:
2800 case DW_OP_const1s:
2801 size += 1;
2802 break;
2803 case DW_OP_const2u:
2804 case DW_OP_const2s:
2805 size += 2;
2806 break;
2807 case DW_OP_const4u:
2808 case DW_OP_const4s:
2809 size += 4;
2810 break;
2811 case DW_OP_const8u:
2812 case DW_OP_const8s:
2813 size += 8;
2814 break;
2815 case DW_OP_constu:
2816 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2817 break;
2818 case DW_OP_consts:
2819 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2820 break;
2821 case DW_OP_pick:
2822 size += 1;
2823 break;
2824 case DW_OP_plus_uconst:
2825 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2826 break;
2827 case DW_OP_skip:
2828 case DW_OP_bra:
2829 size += 2;
2830 break;
2831 case DW_OP_breg0:
2832 case DW_OP_breg1:
2833 case DW_OP_breg2:
2834 case DW_OP_breg3:
2835 case DW_OP_breg4:
2836 case DW_OP_breg5:
2837 case DW_OP_breg6:
2838 case DW_OP_breg7:
2839 case DW_OP_breg8:
2840 case DW_OP_breg9:
2841 case DW_OP_breg10:
2842 case DW_OP_breg11:
2843 case DW_OP_breg12:
2844 case DW_OP_breg13:
2845 case DW_OP_breg14:
2846 case DW_OP_breg15:
2847 case DW_OP_breg16:
2848 case DW_OP_breg17:
2849 case DW_OP_breg18:
2850 case DW_OP_breg19:
2851 case DW_OP_breg20:
2852 case DW_OP_breg21:
2853 case DW_OP_breg22:
2854 case DW_OP_breg23:
2855 case DW_OP_breg24:
2856 case DW_OP_breg25:
2857 case DW_OP_breg26:
2858 case DW_OP_breg27:
2859 case DW_OP_breg28:
2860 case DW_OP_breg29:
2861 case DW_OP_breg30:
2862 case DW_OP_breg31:
2863 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2864 break;
2865 case DW_OP_regx:
2866 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2867 break;
2868 case DW_OP_fbreg:
2869 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2870 break;
2871 case DW_OP_bregx:
2872 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2873 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2874 break;
2875 case DW_OP_piece:
2876 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2877 break;
2878 case DW_OP_deref_size:
2879 case DW_OP_xderef_size:
2880 size += 1;
2881 break;
2882 case DW_OP_call2:
2883 size += 2;
2884 break;
2885 case DW_OP_call4:
2886 size += 4;
2887 break;
2888 case DW_OP_call_ref:
2889 size += DWARF2_ADDR_SIZE;
2890 break;
2891 default:
2892 break;
2895 return size;
2898 /* Return the size of a series of location descriptors. */
2900 static unsigned long
2901 size_of_locs (loc)
2902 dw_loc_descr_ref loc;
2904 unsigned long size;
2906 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2908 loc->dw_loc_addr = size;
2909 size += size_of_loc_descr (loc);
2912 return size;
2915 /* Output location description stack opcode's operands (if any). */
2917 static void
2918 output_loc_operands (loc)
2919 dw_loc_descr_ref loc;
2921 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2922 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2924 switch (loc->dw_loc_opc)
2926 #ifdef DWARF2_DEBUGGING_INFO
2927 case DW_OP_addr:
2928 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2929 break;
2930 case DW_OP_const2u:
2931 case DW_OP_const2s:
2932 dw2_asm_output_data (2, val1->v.val_int, NULL);
2933 break;
2934 case DW_OP_const4u:
2935 case DW_OP_const4s:
2936 dw2_asm_output_data (4, val1->v.val_int, NULL);
2937 break;
2938 case DW_OP_const8u:
2939 case DW_OP_const8s:
2940 if (HOST_BITS_PER_LONG < 64)
2941 abort ();
2942 dw2_asm_output_data (8, val1->v.val_int, NULL);
2943 break;
2944 case DW_OP_skip:
2945 case DW_OP_bra:
2947 int offset;
2949 if (val1->val_class == dw_val_class_loc)
2950 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2951 else
2952 abort ();
2954 dw2_asm_output_data (2, offset, NULL);
2956 break;
2957 #else
2958 case DW_OP_addr:
2959 case DW_OP_const2u:
2960 case DW_OP_const2s:
2961 case DW_OP_const4u:
2962 case DW_OP_const4s:
2963 case DW_OP_const8u:
2964 case DW_OP_const8s:
2965 case DW_OP_skip:
2966 case DW_OP_bra:
2967 /* We currently don't make any attempt to make sure these are
2968 aligned properly like we do for the main unwind info, so
2969 don't support emitting things larger than a byte if we're
2970 only doing unwinding. */
2971 abort ();
2972 #endif
2973 case DW_OP_const1u:
2974 case DW_OP_const1s:
2975 dw2_asm_output_data (1, val1->v.val_int, NULL);
2976 break;
2977 case DW_OP_constu:
2978 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2979 break;
2980 case DW_OP_consts:
2981 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2982 break;
2983 case DW_OP_pick:
2984 dw2_asm_output_data (1, val1->v.val_int, NULL);
2985 break;
2986 case DW_OP_plus_uconst:
2987 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2988 break;
2989 case DW_OP_breg0:
2990 case DW_OP_breg1:
2991 case DW_OP_breg2:
2992 case DW_OP_breg3:
2993 case DW_OP_breg4:
2994 case DW_OP_breg5:
2995 case DW_OP_breg6:
2996 case DW_OP_breg7:
2997 case DW_OP_breg8:
2998 case DW_OP_breg9:
2999 case DW_OP_breg10:
3000 case DW_OP_breg11:
3001 case DW_OP_breg12:
3002 case DW_OP_breg13:
3003 case DW_OP_breg14:
3004 case DW_OP_breg15:
3005 case DW_OP_breg16:
3006 case DW_OP_breg17:
3007 case DW_OP_breg18:
3008 case DW_OP_breg19:
3009 case DW_OP_breg20:
3010 case DW_OP_breg21:
3011 case DW_OP_breg22:
3012 case DW_OP_breg23:
3013 case DW_OP_breg24:
3014 case DW_OP_breg25:
3015 case DW_OP_breg26:
3016 case DW_OP_breg27:
3017 case DW_OP_breg28:
3018 case DW_OP_breg29:
3019 case DW_OP_breg30:
3020 case DW_OP_breg31:
3021 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3022 break;
3023 case DW_OP_regx:
3024 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3025 break;
3026 case DW_OP_fbreg:
3027 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3028 break;
3029 case DW_OP_bregx:
3030 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3031 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3032 break;
3033 case DW_OP_piece:
3034 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3035 break;
3036 case DW_OP_deref_size:
3037 case DW_OP_xderef_size:
3038 dw2_asm_output_data (1, val1->v.val_int, NULL);
3039 break;
3041 case INTERNAL_DW_OP_tls_addr:
3042 #ifdef ASM_OUTPUT_DWARF_DTPREL
3043 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3044 val1->v.val_addr);
3045 fputc ('\n', asm_out_file);
3046 #else
3047 abort ();
3048 #endif
3049 break;
3051 default:
3052 /* Other codes have no operands. */
3053 break;
3057 /* Output a sequence of location operations. */
3059 static void
3060 output_loc_sequence (loc)
3061 dw_loc_descr_ref loc;
3063 for (; loc != NULL; loc = loc->dw_loc_next)
3065 /* Output the opcode. */
3066 dw2_asm_output_data (1, loc->dw_loc_opc,
3067 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3069 /* Output the operand(s) (if any). */
3070 output_loc_operands (loc);
3074 /* This routine will generate the correct assembly data for a location
3075 description based on a cfi entry with a complex address. */
3077 static void
3078 output_cfa_loc (cfi)
3079 dw_cfi_ref cfi;
3081 dw_loc_descr_ref loc;
3082 unsigned long size;
3084 /* Output the size of the block. */
3085 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3086 size = size_of_locs (loc);
3087 dw2_asm_output_data_uleb128 (size, NULL);
3089 /* Now output the operations themselves. */
3090 output_loc_sequence (loc);
3093 /* This function builds a dwarf location descriptor sequence from
3094 a dw_cfa_location. */
3096 static struct dw_loc_descr_struct *
3097 build_cfa_loc (cfa)
3098 dw_cfa_location *cfa;
3100 struct dw_loc_descr_struct *head, *tmp;
3102 if (cfa->indirect == 0)
3103 abort ();
3105 if (cfa->base_offset)
3107 if (cfa->reg <= 31)
3108 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3109 else
3110 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3112 else if (cfa->reg <= 31)
3113 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3114 else
3115 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3117 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3118 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3119 add_loc_descr (&head, tmp);
3120 if (cfa->offset != 0)
3122 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3123 add_loc_descr (&head, tmp);
3126 return head;
3129 /* This function fills in aa dw_cfa_location structure from a dwarf location
3130 descriptor sequence. */
3132 static void
3133 get_cfa_from_loc_descr (cfa, loc)
3134 dw_cfa_location *cfa;
3135 struct dw_loc_descr_struct *loc;
3137 struct dw_loc_descr_struct *ptr;
3138 cfa->offset = 0;
3139 cfa->base_offset = 0;
3140 cfa->indirect = 0;
3141 cfa->reg = -1;
3143 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3145 enum dwarf_location_atom op = ptr->dw_loc_opc;
3147 switch (op)
3149 case DW_OP_reg0:
3150 case DW_OP_reg1:
3151 case DW_OP_reg2:
3152 case DW_OP_reg3:
3153 case DW_OP_reg4:
3154 case DW_OP_reg5:
3155 case DW_OP_reg6:
3156 case DW_OP_reg7:
3157 case DW_OP_reg8:
3158 case DW_OP_reg9:
3159 case DW_OP_reg10:
3160 case DW_OP_reg11:
3161 case DW_OP_reg12:
3162 case DW_OP_reg13:
3163 case DW_OP_reg14:
3164 case DW_OP_reg15:
3165 case DW_OP_reg16:
3166 case DW_OP_reg17:
3167 case DW_OP_reg18:
3168 case DW_OP_reg19:
3169 case DW_OP_reg20:
3170 case DW_OP_reg21:
3171 case DW_OP_reg22:
3172 case DW_OP_reg23:
3173 case DW_OP_reg24:
3174 case DW_OP_reg25:
3175 case DW_OP_reg26:
3176 case DW_OP_reg27:
3177 case DW_OP_reg28:
3178 case DW_OP_reg29:
3179 case DW_OP_reg30:
3180 case DW_OP_reg31:
3181 cfa->reg = op - DW_OP_reg0;
3182 break;
3183 case DW_OP_regx:
3184 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3185 break;
3186 case DW_OP_breg0:
3187 case DW_OP_breg1:
3188 case DW_OP_breg2:
3189 case DW_OP_breg3:
3190 case DW_OP_breg4:
3191 case DW_OP_breg5:
3192 case DW_OP_breg6:
3193 case DW_OP_breg7:
3194 case DW_OP_breg8:
3195 case DW_OP_breg9:
3196 case DW_OP_breg10:
3197 case DW_OP_breg11:
3198 case DW_OP_breg12:
3199 case DW_OP_breg13:
3200 case DW_OP_breg14:
3201 case DW_OP_breg15:
3202 case DW_OP_breg16:
3203 case DW_OP_breg17:
3204 case DW_OP_breg18:
3205 case DW_OP_breg19:
3206 case DW_OP_breg20:
3207 case DW_OP_breg21:
3208 case DW_OP_breg22:
3209 case DW_OP_breg23:
3210 case DW_OP_breg24:
3211 case DW_OP_breg25:
3212 case DW_OP_breg26:
3213 case DW_OP_breg27:
3214 case DW_OP_breg28:
3215 case DW_OP_breg29:
3216 case DW_OP_breg30:
3217 case DW_OP_breg31:
3218 cfa->reg = op - DW_OP_breg0;
3219 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3220 break;
3221 case DW_OP_bregx:
3222 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3223 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3224 break;
3225 case DW_OP_deref:
3226 cfa->indirect = 1;
3227 break;
3228 case DW_OP_plus_uconst:
3229 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3230 break;
3231 default:
3232 internal_error ("DW_LOC_OP %s not implemented\n",
3233 dwarf_stack_op_name (ptr->dw_loc_opc));
3237 #endif /* .debug_frame support */
3239 /* And now, the support for symbolic debugging information. */
3240 #ifdef DWARF2_DEBUGGING_INFO
3242 /* .debug_str support. */
3243 static int output_indirect_string PARAMS ((void **, void *));
3245 static void dwarf2out_init PARAMS ((const char *));
3246 static void dwarf2out_finish PARAMS ((const char *));
3247 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3248 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3249 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3250 static void dwarf2out_end_source_file PARAMS ((unsigned));
3251 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3252 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3253 static bool dwarf2out_ignore_block PARAMS ((tree));
3254 static void dwarf2out_global_decl PARAMS ((tree));
3255 static void dwarf2out_abstract_function PARAMS ((tree));
3257 /* The debug hooks structure. */
3259 const struct gcc_debug_hooks dwarf2_debug_hooks =
3261 dwarf2out_init,
3262 dwarf2out_finish,
3263 dwarf2out_define,
3264 dwarf2out_undef,
3265 dwarf2out_start_source_file,
3266 dwarf2out_end_source_file,
3267 dwarf2out_begin_block,
3268 dwarf2out_end_block,
3269 dwarf2out_ignore_block,
3270 dwarf2out_source_line,
3271 dwarf2out_begin_prologue,
3272 debug_nothing_int_charstar, /* end_prologue */
3273 dwarf2out_end_epilogue,
3274 debug_nothing_tree, /* begin_function */
3275 debug_nothing_int, /* end_function */
3276 dwarf2out_decl, /* function_decl */
3277 dwarf2out_global_decl,
3278 debug_nothing_tree, /* deferred_inline_function */
3279 /* The DWARF 2 backend tries to reduce debugging bloat by not
3280 emitting the abstract description of inline functions until
3281 something tries to reference them. */
3282 dwarf2out_abstract_function, /* outlining_inline_function */
3283 debug_nothing_rtx /* label */
3285 #endif
3287 /* NOTE: In the comments in this file, many references are made to
3288 "Debugging Information Entries". This term is abbreviated as `DIE'
3289 throughout the remainder of this file. */
3291 /* An internal representation of the DWARF output is built, and then
3292 walked to generate the DWARF debugging info. The walk of the internal
3293 representation is done after the entire program has been compiled.
3294 The types below are used to describe the internal representation. */
3296 /* Various DIE's use offsets relative to the beginning of the
3297 .debug_info section to refer to each other. */
3299 typedef long int dw_offset;
3301 /* Define typedefs here to avoid circular dependencies. */
3303 typedef struct dw_attr_struct *dw_attr_ref;
3304 typedef struct dw_line_info_struct *dw_line_info_ref;
3305 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3306 typedef struct pubname_struct *pubname_ref;
3307 typedef struct dw_ranges_struct *dw_ranges_ref;
3309 /* Each entry in the line_info_table maintains the file and
3310 line number associated with the label generated for that
3311 entry. The label gives the PC value associated with
3312 the line number entry. */
3314 typedef struct dw_line_info_struct GTY(())
3316 unsigned long dw_file_num;
3317 unsigned long dw_line_num;
3319 dw_line_info_entry;
3321 /* Line information for functions in separate sections; each one gets its
3322 own sequence. */
3323 typedef struct dw_separate_line_info_struct GTY(())
3325 unsigned long dw_file_num;
3326 unsigned long dw_line_num;
3327 unsigned long function;
3329 dw_separate_line_info_entry;
3331 /* Each DIE attribute has a field specifying the attribute kind,
3332 a link to the next attribute in the chain, and an attribute value.
3333 Attributes are typically linked below the DIE they modify. */
3335 typedef struct dw_attr_struct GTY(())
3337 enum dwarf_attribute dw_attr;
3338 dw_attr_ref dw_attr_next;
3339 dw_val_node dw_attr_val;
3341 dw_attr_node;
3343 /* The Debugging Information Entry (DIE) structure */
3345 typedef struct die_struct GTY(())
3347 enum dwarf_tag die_tag;
3348 char *die_symbol;
3349 dw_attr_ref die_attr;
3350 dw_die_ref die_parent;
3351 dw_die_ref die_child;
3352 dw_die_ref die_sib;
3353 dw_offset die_offset;
3354 unsigned long die_abbrev;
3355 int die_mark;
3357 die_node;
3359 /* The pubname structure */
3361 typedef struct pubname_struct GTY(())
3363 dw_die_ref die;
3364 char *name;
3366 pubname_entry;
3368 struct dw_ranges_struct GTY(())
3370 int block_num;
3373 /* The limbo die list structure. */
3374 typedef struct limbo_die_struct GTY(())
3376 dw_die_ref die;
3377 tree created_for;
3378 struct limbo_die_struct *next;
3380 limbo_die_node;
3382 /* How to start an assembler comment. */
3383 #ifndef ASM_COMMENT_START
3384 #define ASM_COMMENT_START ";#"
3385 #endif
3387 /* Define a macro which returns nonzero for a TYPE_DECL which was
3388 implicitly generated for a tagged type.
3390 Note that unlike the gcc front end (which generates a NULL named
3391 TYPE_DECL node for each complete tagged type, each array type, and
3392 each function type node created) the g++ front end generates a
3393 _named_ TYPE_DECL node for each tagged type node created.
3394 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3395 generate a DW_TAG_typedef DIE for them. */
3397 #define TYPE_DECL_IS_STUB(decl) \
3398 (DECL_NAME (decl) == NULL_TREE \
3399 || (DECL_ARTIFICIAL (decl) \
3400 && is_tagged_type (TREE_TYPE (decl)) \
3401 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3402 /* This is necessary for stub decls that \
3403 appear in nested inline functions. */ \
3404 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3405 && (decl_ultimate_origin (decl) \
3406 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3408 /* Information concerning the compilation unit's programming
3409 language, and compiler version. */
3411 /* Fixed size portion of the DWARF compilation unit header. */
3412 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3413 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3415 /* Fixed size portion of public names info. */
3416 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3418 /* Fixed size portion of the address range info. */
3419 #define DWARF_ARANGES_HEADER_SIZE \
3420 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3421 - DWARF_OFFSET_SIZE)
3423 /* Size of padding portion in the address range info. It must be
3424 aligned to twice the pointer size. */
3425 #define DWARF_ARANGES_PAD_SIZE \
3426 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3427 - (2 * DWARF_OFFSET_SIZE + 4))
3429 /* Use assembler line directives if available. */
3430 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3431 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3432 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3433 #else
3434 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3435 #endif
3436 #endif
3438 /* Minimum line offset in a special line info. opcode.
3439 This value was chosen to give a reasonable range of values. */
3440 #define DWARF_LINE_BASE -10
3442 /* First special line opcode - leave room for the standard opcodes. */
3443 #define DWARF_LINE_OPCODE_BASE 10
3445 /* Range of line offsets in a special line info. opcode. */
3446 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3448 /* Flag that indicates the initial value of the is_stmt_start flag.
3449 In the present implementation, we do not mark any lines as
3450 the beginning of a source statement, because that information
3451 is not made available by the GCC front-end. */
3452 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3454 #ifdef DWARF2_DEBUGGING_INFO
3455 /* This location is used by calc_die_sizes() to keep track
3456 the offset of each DIE within the .debug_info section. */
3457 static unsigned long next_die_offset;
3458 #endif
3460 /* Record the root of the DIE's built for the current compilation unit. */
3461 static GTY(()) dw_die_ref comp_unit_die;
3463 #ifdef DWARF2_DEBUGGING_INFO
3464 /* We need special handling in dwarf2out_start_source_file if it is
3465 first one. */
3466 static int is_main_source;
3467 #endif
3469 /* A list of DIEs with a NULL parent waiting to be relocated. */
3470 static GTY(()) limbo_die_node *limbo_die_list;
3472 /* Filenames referenced by this compilation unit. */
3473 static GTY(()) varray_type file_table;
3474 static GTY(()) varray_type file_table_emitted;
3475 static GTY(()) size_t file_table_last_lookup_index;
3477 /* A pointer to the base of a table of references to DIE's that describe
3478 declarations. The table is indexed by DECL_UID() which is a unique
3479 number identifying each decl. */
3480 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3482 /* Number of elements currently allocated for the decl_die_table. */
3483 static unsigned decl_die_table_allocated;
3485 #ifdef DWARF2_DEBUGGING_INFO
3486 /* Number of elements in decl_die_table currently in use. */
3487 static unsigned decl_die_table_in_use;
3488 #endif
3490 /* Size (in elements) of increments by which we may expand the
3491 decl_die_table. */
3492 #define DECL_DIE_TABLE_INCREMENT 256
3494 /* A pointer to the base of a list of references to DIE's that
3495 are uniquely identified by their tag, presence/absence of
3496 children DIE's, and list of attribute/value pairs. */
3497 static GTY((length ("abbrev_die_table_allocated")))
3498 dw_die_ref *abbrev_die_table;
3500 /* Number of elements currently allocated for abbrev_die_table. */
3501 static unsigned abbrev_die_table_allocated;
3503 #ifdef DWARF2_DEBUGGING_INFO
3504 /* Number of elements in type_die_table currently in use. */
3505 static unsigned abbrev_die_table_in_use;
3506 #endif
3508 /* Size (in elements) of increments by which we may expand the
3509 abbrev_die_table. */
3510 #define ABBREV_DIE_TABLE_INCREMENT 256
3512 /* A pointer to the base of a table that contains line information
3513 for each source code line in .text in the compilation unit. */
3514 static GTY((length ("line_info_table_allocated")))
3515 dw_line_info_ref line_info_table;
3517 /* Number of elements currently allocated for line_info_table. */
3518 static unsigned line_info_table_allocated;
3520 #ifdef DWARF2_DEBUGGING_INFO
3521 /* Number of elements in line_info_table currently in use. */
3522 static unsigned line_info_table_in_use;
3523 #endif
3525 /* A pointer to the base of a table that contains line information
3526 for each source code line outside of .text in the compilation unit. */
3527 static GTY ((length ("separate_line_info_table_allocated")))
3528 dw_separate_line_info_ref separate_line_info_table;
3530 /* Number of elements currently allocated for separate_line_info_table. */
3531 static unsigned separate_line_info_table_allocated;
3533 #ifdef DWARF2_DEBUGGING_INFO
3534 /* Number of elements in separate_line_info_table currently in use. */
3535 static unsigned separate_line_info_table_in_use;
3536 #endif
3538 /* Size (in elements) of increments by which we may expand the
3539 line_info_table. */
3540 #define LINE_INFO_TABLE_INCREMENT 1024
3542 /* A pointer to the base of a table that contains a list of publicly
3543 accessible names. */
3544 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3546 /* Number of elements currently allocated for pubname_table. */
3547 static unsigned pubname_table_allocated;
3549 #ifdef DWARF2_DEBUGGING_INFO
3550 /* Number of elements in pubname_table currently in use. */
3551 static unsigned pubname_table_in_use;
3552 #endif
3554 /* Size (in elements) of increments by which we may expand the
3555 pubname_table. */
3556 #define PUBNAME_TABLE_INCREMENT 64
3558 /* Array of dies for which we should generate .debug_arange info. */
3559 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3561 /* Number of elements currently allocated for arange_table. */
3562 static unsigned arange_table_allocated;
3564 #ifdef DWARF2_DEBUGGING_INFO
3565 /* Number of elements in arange_table currently in use. */
3566 static unsigned arange_table_in_use;
3567 #endif
3569 /* Size (in elements) of increments by which we may expand the
3570 arange_table. */
3571 #define ARANGE_TABLE_INCREMENT 64
3573 /* Array of dies for which we should generate .debug_ranges info. */
3574 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3576 /* Number of elements currently allocated for ranges_table. */
3577 static unsigned ranges_table_allocated;
3579 #ifdef DWARF2_DEBUGGING_INFO
3580 /* Number of elements in ranges_table currently in use. */
3581 static unsigned ranges_table_in_use;
3583 /* Size (in elements) of increments by which we may expand the
3584 ranges_table. */
3585 #define RANGES_TABLE_INCREMENT 64
3587 /* Whether we have location lists that need outputting */
3588 static unsigned have_location_lists;
3590 /* Record whether the function being analyzed contains inlined functions. */
3591 static int current_function_has_inlines;
3592 #endif
3593 #if 0 && defined (MIPS_DEBUGGING_INFO)
3594 static int comp_unit_has_inlines;
3595 #endif
3597 #ifdef DWARF2_DEBUGGING_INFO
3599 /* Forward declarations for functions defined in this file. */
3601 static int is_pseudo_reg PARAMS ((rtx));
3602 static tree type_main_variant PARAMS ((tree));
3603 static int is_tagged_type PARAMS ((tree));
3604 static const char *dwarf_tag_name PARAMS ((unsigned));
3605 static const char *dwarf_attr_name PARAMS ((unsigned));
3606 static const char *dwarf_form_name PARAMS ((unsigned));
3607 #if 0
3608 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3609 #endif
3610 static tree decl_ultimate_origin PARAMS ((tree));
3611 static tree block_ultimate_origin PARAMS ((tree));
3612 static tree decl_class_context PARAMS ((tree));
3613 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3614 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3615 static void add_AT_flag PARAMS ((dw_die_ref,
3616 enum dwarf_attribute,
3617 unsigned));
3618 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3619 static void add_AT_int PARAMS ((dw_die_ref,
3620 enum dwarf_attribute, long));
3621 static inline long int AT_int PARAMS ((dw_attr_ref));
3622 static void add_AT_unsigned PARAMS ((dw_die_ref,
3623 enum dwarf_attribute,
3624 unsigned long));
3625 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3626 static void add_AT_long_long PARAMS ((dw_die_ref,
3627 enum dwarf_attribute,
3628 unsigned long,
3629 unsigned long));
3630 static void add_AT_float PARAMS ((dw_die_ref,
3631 enum dwarf_attribute,
3632 unsigned, long *));
3633 static hashval_t debug_str_do_hash PARAMS ((const void *));
3634 static int debug_str_eq PARAMS ((const void *, const void *));
3635 static void add_AT_string PARAMS ((dw_die_ref,
3636 enum dwarf_attribute,
3637 const char *));
3638 static inline const char *AT_string PARAMS ((dw_attr_ref));
3639 static int AT_string_form PARAMS ((dw_attr_ref));
3640 static void add_AT_die_ref PARAMS ((dw_die_ref,
3641 enum dwarf_attribute,
3642 dw_die_ref));
3643 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3644 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3645 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3646 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3647 enum dwarf_attribute,
3648 unsigned));
3649 static void add_AT_loc PARAMS ((dw_die_ref,
3650 enum dwarf_attribute,
3651 dw_loc_descr_ref));
3652 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3653 static void add_AT_loc_list PARAMS ((dw_die_ref,
3654 enum dwarf_attribute,
3655 dw_loc_list_ref));
3656 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3657 static void add_AT_addr PARAMS ((dw_die_ref,
3658 enum dwarf_attribute,
3659 rtx));
3660 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3661 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3662 enum dwarf_attribute,
3663 const char *));
3664 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3665 enum dwarf_attribute,
3666 const char *));
3667 static void add_AT_offset PARAMS ((dw_die_ref,
3668 enum dwarf_attribute,
3669 unsigned long));
3670 static void add_AT_range_list PARAMS ((dw_die_ref,
3671 enum dwarf_attribute,
3672 unsigned long));
3673 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3674 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3675 enum dwarf_attribute));
3676 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3677 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3678 static const char *get_AT_string PARAMS ((dw_die_ref,
3679 enum dwarf_attribute));
3680 static int get_AT_flag PARAMS ((dw_die_ref,
3681 enum dwarf_attribute));
3682 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3683 enum dwarf_attribute));
3684 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3685 enum dwarf_attribute));
3686 static int is_c_family PARAMS ((void));
3687 static int is_cxx PARAMS ((void));
3688 static int is_java PARAMS ((void));
3689 static int is_fortran PARAMS ((void));
3690 static void remove_AT PARAMS ((dw_die_ref,
3691 enum dwarf_attribute));
3692 static inline void free_die PARAMS ((dw_die_ref));
3693 static void remove_children PARAMS ((dw_die_ref));
3694 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3695 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3696 tree));
3697 static dw_die_ref lookup_type_die PARAMS ((tree));
3698 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3699 static dw_die_ref lookup_decl_die PARAMS ((tree));
3700 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3701 static void print_spaces PARAMS ((FILE *));
3702 static void print_die PARAMS ((dw_die_ref, FILE *));
3703 static void print_dwarf_line_table PARAMS ((FILE *));
3704 static void reverse_die_lists PARAMS ((dw_die_ref));
3705 static void reverse_all_dies PARAMS ((dw_die_ref));
3706 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3707 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3708 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3709 struct md5_ctx *));
3710 static void attr_checksum PARAMS ((dw_attr_ref,
3711 struct md5_ctx *,
3712 int *));
3713 static void die_checksum PARAMS ((dw_die_ref,
3714 struct md5_ctx *,
3715 int *));
3716 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3717 dw_loc_descr_ref, int *));
3718 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3719 int *));
3720 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3721 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3722 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3723 static void compute_section_prefix PARAMS ((dw_die_ref));
3724 static int is_type_die PARAMS ((dw_die_ref));
3725 static int is_comdat_die PARAMS ((dw_die_ref));
3726 static int is_symbol_die PARAMS ((dw_die_ref));
3727 static void assign_symbol_names PARAMS ((dw_die_ref));
3728 static void break_out_includes PARAMS ((dw_die_ref));
3729 static hashval_t htab_cu_hash PARAMS ((const void *));
3730 static int htab_cu_eq PARAMS ((const void *, const void *));
3731 static void htab_cu_del PARAMS ((void *));
3732 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3733 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3734 static void add_sibling_attributes PARAMS ((dw_die_ref));
3735 static void build_abbrev_table PARAMS ((dw_die_ref));
3736 static void output_location_lists PARAMS ((dw_die_ref));
3737 static int constant_size PARAMS ((long unsigned));
3738 static unsigned long size_of_die PARAMS ((dw_die_ref));
3739 static void calc_die_sizes PARAMS ((dw_die_ref));
3740 static void mark_dies PARAMS ((dw_die_ref));
3741 static void unmark_dies PARAMS ((dw_die_ref));
3742 static void unmark_all_dies PARAMS ((dw_die_ref));
3743 static unsigned long size_of_pubnames PARAMS ((void));
3744 static unsigned long size_of_aranges PARAMS ((void));
3745 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3746 static void output_value_format PARAMS ((dw_attr_ref));
3747 static void output_abbrev_section PARAMS ((void));
3748 static void output_die_symbol PARAMS ((dw_die_ref));
3749 static void output_die PARAMS ((dw_die_ref));
3750 static void output_compilation_unit_header PARAMS ((void));
3751 static void output_comp_unit PARAMS ((dw_die_ref, int));
3752 static const char *dwarf2_name PARAMS ((tree, int));
3753 static void add_pubname PARAMS ((tree, dw_die_ref));
3754 static void output_pubnames PARAMS ((void));
3755 static void add_arange PARAMS ((tree, dw_die_ref));
3756 static void output_aranges PARAMS ((void));
3757 static unsigned int add_ranges PARAMS ((tree));
3758 static void output_ranges PARAMS ((void));
3759 static void output_line_info PARAMS ((void));
3760 static void output_file_names PARAMS ((void));
3761 static dw_die_ref base_type_die PARAMS ((tree));
3762 static tree root_type PARAMS ((tree));
3763 static int is_base_type PARAMS ((tree));
3764 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3765 static int type_is_enum PARAMS ((tree));
3766 static unsigned int reg_number PARAMS ((rtx));
3767 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3768 static dw_loc_descr_ref one_reg_loc_descriptor PARAMS ((unsigned int));
3769 static dw_loc_descr_ref multiple_reg_loc_descriptor PARAMS ((rtx, rtx));
3770 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3771 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3772 static int is_based_loc PARAMS ((rtx));
3773 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3774 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3775 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3776 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3777 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3778 static tree field_type PARAMS ((tree));
3779 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3780 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3781 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3782 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3783 static void add_AT_location_description PARAMS ((dw_die_ref,
3784 enum dwarf_attribute,
3785 dw_loc_descr_ref));
3786 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3787 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3788 static rtx rtl_for_decl_location PARAMS ((tree));
3789 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3790 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3791 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3792 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3793 static void add_bound_info PARAMS ((dw_die_ref,
3794 enum dwarf_attribute, tree));
3795 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3796 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3797 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3798 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3799 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3800 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3801 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3802 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3803 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3804 static void push_decl_scope PARAMS ((tree));
3805 static void pop_decl_scope PARAMS ((void));
3806 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3807 static inline int local_scope_p PARAMS ((dw_die_ref));
3808 static inline int class_scope_p PARAMS ((dw_die_ref));
3809 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3810 dw_die_ref));
3811 static const char *type_tag PARAMS ((tree));
3812 static tree member_declared_type PARAMS ((tree));
3813 #if 0
3814 static const char *decl_start_label PARAMS ((tree));
3815 #endif
3816 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3817 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3818 #if 0
3819 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3820 #endif
3821 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3822 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3823 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3824 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3825 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3826 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3827 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3828 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3829 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3830 static void gen_label_die PARAMS ((tree, dw_die_ref));
3831 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3832 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3833 static void gen_field_die PARAMS ((tree, dw_die_ref));
3834 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3835 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3836 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3837 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3838 static void gen_member_die PARAMS ((tree, dw_die_ref));
3839 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3840 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3841 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3842 static void gen_type_die PARAMS ((tree, dw_die_ref));
3843 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3844 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3845 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3846 static int is_redundant_typedef PARAMS ((tree));
3847 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3848 static unsigned lookup_filename PARAMS ((const char *));
3849 static void init_file_table PARAMS ((void));
3850 static void retry_incomplete_types PARAMS ((void));
3851 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3852 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3853 static int file_info_cmp PARAMS ((const void *, const void *));
3854 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3855 const char *, const char *,
3856 const char *, unsigned));
3857 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3858 dw_loc_descr_ref,
3859 const char *, const char *, const char *));
3860 static void output_loc_list PARAMS ((dw_loc_list_ref));
3861 static char *gen_internal_sym PARAMS ((const char *));
3863 static void prune_unmark_dies PARAMS ((dw_die_ref));
3864 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3865 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3866 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3867 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3868 static void prune_unused_types PARAMS ((void));
3869 static int maybe_emit_file PARAMS ((int));
3871 /* Section names used to hold DWARF debugging information. */
3872 #ifndef DEBUG_INFO_SECTION
3873 #define DEBUG_INFO_SECTION ".debug_info"
3874 #endif
3875 #ifndef DEBUG_ABBREV_SECTION
3876 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3877 #endif
3878 #ifndef DEBUG_ARANGES_SECTION
3879 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3880 #endif
3881 #ifndef DEBUG_MACINFO_SECTION
3882 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3883 #endif
3884 #ifndef DEBUG_LINE_SECTION
3885 #define DEBUG_LINE_SECTION ".debug_line"
3886 #endif
3887 #ifndef DEBUG_LOC_SECTION
3888 #define DEBUG_LOC_SECTION ".debug_loc"
3889 #endif
3890 #ifndef DEBUG_PUBNAMES_SECTION
3891 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3892 #endif
3893 #ifndef DEBUG_STR_SECTION
3894 #define DEBUG_STR_SECTION ".debug_str"
3895 #endif
3896 #ifndef DEBUG_RANGES_SECTION
3897 #define DEBUG_RANGES_SECTION ".debug_ranges"
3898 #endif
3900 /* Standard ELF section names for compiled code and data. */
3901 #ifndef TEXT_SECTION_NAME
3902 #define TEXT_SECTION_NAME ".text"
3903 #endif
3905 /* Section flags for .debug_str section. */
3906 #ifdef HAVE_GAS_SHF_MERGE
3907 #define DEBUG_STR_SECTION_FLAGS \
3908 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3909 #else
3910 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3911 #endif
3913 /* Labels we insert at beginning sections we can reference instead of
3914 the section names themselves. */
3916 #ifndef TEXT_SECTION_LABEL
3917 #define TEXT_SECTION_LABEL "Ltext"
3918 #endif
3919 #ifndef DEBUG_LINE_SECTION_LABEL
3920 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3921 #endif
3922 #ifndef DEBUG_INFO_SECTION_LABEL
3923 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3924 #endif
3925 #ifndef DEBUG_ABBREV_SECTION_LABEL
3926 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3927 #endif
3928 #ifndef DEBUG_LOC_SECTION_LABEL
3929 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3930 #endif
3931 #ifndef DEBUG_RANGES_SECTION_LABEL
3932 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3933 #endif
3934 #ifndef DEBUG_MACINFO_SECTION_LABEL
3935 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3936 #endif
3938 /* Definitions of defaults for formats and names of various special
3939 (artificial) labels which may be generated within this file (when the -g
3940 options is used and DWARF_DEBUGGING_INFO is in effect.
3941 If necessary, these may be overridden from within the tm.h file, but
3942 typically, overriding these defaults is unnecessary. */
3944 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3945 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3946 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3947 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3948 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3949 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3950 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3951 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3953 #ifndef TEXT_END_LABEL
3954 #define TEXT_END_LABEL "Letext"
3955 #endif
3956 #ifndef BLOCK_BEGIN_LABEL
3957 #define BLOCK_BEGIN_LABEL "LBB"
3958 #endif
3959 #ifndef BLOCK_END_LABEL
3960 #define BLOCK_END_LABEL "LBE"
3961 #endif
3962 #ifndef LINE_CODE_LABEL
3963 #define LINE_CODE_LABEL "LM"
3964 #endif
3965 #ifndef SEPARATE_LINE_CODE_LABEL
3966 #define SEPARATE_LINE_CODE_LABEL "LSM"
3967 #endif
3969 /* We allow a language front-end to designate a function that is to be
3970 called to "demangle" any name before it it put into a DIE. */
3972 static const char *(*demangle_name_func) PARAMS ((const char *));
3974 void
3975 dwarf2out_set_demangle_name_func (func)
3976 const char *(*func) PARAMS ((const char *));
3978 demangle_name_func = func;
3981 /* Test if rtl node points to a pseudo register. */
3983 static inline int
3984 is_pseudo_reg (rtl)
3985 rtx rtl;
3987 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3988 || (GET_CODE (rtl) == SUBREG
3989 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3992 /* Return a reference to a type, with its const and volatile qualifiers
3993 removed. */
3995 static inline tree
3996 type_main_variant (type)
3997 tree type;
3999 type = TYPE_MAIN_VARIANT (type);
4001 /* ??? There really should be only one main variant among any group of
4002 variants of a given type (and all of the MAIN_VARIANT values for all
4003 members of the group should point to that one type) but sometimes the C
4004 front-end messes this up for array types, so we work around that bug
4005 here. */
4006 if (TREE_CODE (type) == ARRAY_TYPE)
4007 while (type != TYPE_MAIN_VARIANT (type))
4008 type = TYPE_MAIN_VARIANT (type);
4010 return type;
4013 /* Return nonzero if the given type node represents a tagged type. */
4015 static inline int
4016 is_tagged_type (type)
4017 tree type;
4019 enum tree_code code = TREE_CODE (type);
4021 return (code == RECORD_TYPE || code == UNION_TYPE
4022 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4025 /* Convert a DIE tag into its string name. */
4027 static const char *
4028 dwarf_tag_name (tag)
4029 unsigned tag;
4031 switch (tag)
4033 case DW_TAG_padding:
4034 return "DW_TAG_padding";
4035 case DW_TAG_array_type:
4036 return "DW_TAG_array_type";
4037 case DW_TAG_class_type:
4038 return "DW_TAG_class_type";
4039 case DW_TAG_entry_point:
4040 return "DW_TAG_entry_point";
4041 case DW_TAG_enumeration_type:
4042 return "DW_TAG_enumeration_type";
4043 case DW_TAG_formal_parameter:
4044 return "DW_TAG_formal_parameter";
4045 case DW_TAG_imported_declaration:
4046 return "DW_TAG_imported_declaration";
4047 case DW_TAG_label:
4048 return "DW_TAG_label";
4049 case DW_TAG_lexical_block:
4050 return "DW_TAG_lexical_block";
4051 case DW_TAG_member:
4052 return "DW_TAG_member";
4053 case DW_TAG_pointer_type:
4054 return "DW_TAG_pointer_type";
4055 case DW_TAG_reference_type:
4056 return "DW_TAG_reference_type";
4057 case DW_TAG_compile_unit:
4058 return "DW_TAG_compile_unit";
4059 case DW_TAG_string_type:
4060 return "DW_TAG_string_type";
4061 case DW_TAG_structure_type:
4062 return "DW_TAG_structure_type";
4063 case DW_TAG_subroutine_type:
4064 return "DW_TAG_subroutine_type";
4065 case DW_TAG_typedef:
4066 return "DW_TAG_typedef";
4067 case DW_TAG_union_type:
4068 return "DW_TAG_union_type";
4069 case DW_TAG_unspecified_parameters:
4070 return "DW_TAG_unspecified_parameters";
4071 case DW_TAG_variant:
4072 return "DW_TAG_variant";
4073 case DW_TAG_common_block:
4074 return "DW_TAG_common_block";
4075 case DW_TAG_common_inclusion:
4076 return "DW_TAG_common_inclusion";
4077 case DW_TAG_inheritance:
4078 return "DW_TAG_inheritance";
4079 case DW_TAG_inlined_subroutine:
4080 return "DW_TAG_inlined_subroutine";
4081 case DW_TAG_module:
4082 return "DW_TAG_module";
4083 case DW_TAG_ptr_to_member_type:
4084 return "DW_TAG_ptr_to_member_type";
4085 case DW_TAG_set_type:
4086 return "DW_TAG_set_type";
4087 case DW_TAG_subrange_type:
4088 return "DW_TAG_subrange_type";
4089 case DW_TAG_with_stmt:
4090 return "DW_TAG_with_stmt";
4091 case DW_TAG_access_declaration:
4092 return "DW_TAG_access_declaration";
4093 case DW_TAG_base_type:
4094 return "DW_TAG_base_type";
4095 case DW_TAG_catch_block:
4096 return "DW_TAG_catch_block";
4097 case DW_TAG_const_type:
4098 return "DW_TAG_const_type";
4099 case DW_TAG_constant:
4100 return "DW_TAG_constant";
4101 case DW_TAG_enumerator:
4102 return "DW_TAG_enumerator";
4103 case DW_TAG_file_type:
4104 return "DW_TAG_file_type";
4105 case DW_TAG_friend:
4106 return "DW_TAG_friend";
4107 case DW_TAG_namelist:
4108 return "DW_TAG_namelist";
4109 case DW_TAG_namelist_item:
4110 return "DW_TAG_namelist_item";
4111 case DW_TAG_packed_type:
4112 return "DW_TAG_packed_type";
4113 case DW_TAG_subprogram:
4114 return "DW_TAG_subprogram";
4115 case DW_TAG_template_type_param:
4116 return "DW_TAG_template_type_param";
4117 case DW_TAG_template_value_param:
4118 return "DW_TAG_template_value_param";
4119 case DW_TAG_thrown_type:
4120 return "DW_TAG_thrown_type";
4121 case DW_TAG_try_block:
4122 return "DW_TAG_try_block";
4123 case DW_TAG_variant_part:
4124 return "DW_TAG_variant_part";
4125 case DW_TAG_variable:
4126 return "DW_TAG_variable";
4127 case DW_TAG_volatile_type:
4128 return "DW_TAG_volatile_type";
4129 case DW_TAG_MIPS_loop:
4130 return "DW_TAG_MIPS_loop";
4131 case DW_TAG_format_label:
4132 return "DW_TAG_format_label";
4133 case DW_TAG_function_template:
4134 return "DW_TAG_function_template";
4135 case DW_TAG_class_template:
4136 return "DW_TAG_class_template";
4137 case DW_TAG_GNU_BINCL:
4138 return "DW_TAG_GNU_BINCL";
4139 case DW_TAG_GNU_EINCL:
4140 return "DW_TAG_GNU_EINCL";
4141 default:
4142 return "DW_TAG_<unknown>";
4146 /* Convert a DWARF attribute code into its string name. */
4148 static const char *
4149 dwarf_attr_name (attr)
4150 unsigned attr;
4152 switch (attr)
4154 case DW_AT_sibling:
4155 return "DW_AT_sibling";
4156 case DW_AT_location:
4157 return "DW_AT_location";
4158 case DW_AT_name:
4159 return "DW_AT_name";
4160 case DW_AT_ordering:
4161 return "DW_AT_ordering";
4162 case DW_AT_subscr_data:
4163 return "DW_AT_subscr_data";
4164 case DW_AT_byte_size:
4165 return "DW_AT_byte_size";
4166 case DW_AT_bit_offset:
4167 return "DW_AT_bit_offset";
4168 case DW_AT_bit_size:
4169 return "DW_AT_bit_size";
4170 case DW_AT_element_list:
4171 return "DW_AT_element_list";
4172 case DW_AT_stmt_list:
4173 return "DW_AT_stmt_list";
4174 case DW_AT_low_pc:
4175 return "DW_AT_low_pc";
4176 case DW_AT_high_pc:
4177 return "DW_AT_high_pc";
4178 case DW_AT_language:
4179 return "DW_AT_language";
4180 case DW_AT_member:
4181 return "DW_AT_member";
4182 case DW_AT_discr:
4183 return "DW_AT_discr";
4184 case DW_AT_discr_value:
4185 return "DW_AT_discr_value";
4186 case DW_AT_visibility:
4187 return "DW_AT_visibility";
4188 case DW_AT_import:
4189 return "DW_AT_import";
4190 case DW_AT_string_length:
4191 return "DW_AT_string_length";
4192 case DW_AT_common_reference:
4193 return "DW_AT_common_reference";
4194 case DW_AT_comp_dir:
4195 return "DW_AT_comp_dir";
4196 case DW_AT_const_value:
4197 return "DW_AT_const_value";
4198 case DW_AT_containing_type:
4199 return "DW_AT_containing_type";
4200 case DW_AT_default_value:
4201 return "DW_AT_default_value";
4202 case DW_AT_inline:
4203 return "DW_AT_inline";
4204 case DW_AT_is_optional:
4205 return "DW_AT_is_optional";
4206 case DW_AT_lower_bound:
4207 return "DW_AT_lower_bound";
4208 case DW_AT_producer:
4209 return "DW_AT_producer";
4210 case DW_AT_prototyped:
4211 return "DW_AT_prototyped";
4212 case DW_AT_return_addr:
4213 return "DW_AT_return_addr";
4214 case DW_AT_start_scope:
4215 return "DW_AT_start_scope";
4216 case DW_AT_stride_size:
4217 return "DW_AT_stride_size";
4218 case DW_AT_upper_bound:
4219 return "DW_AT_upper_bound";
4220 case DW_AT_abstract_origin:
4221 return "DW_AT_abstract_origin";
4222 case DW_AT_accessibility:
4223 return "DW_AT_accessibility";
4224 case DW_AT_address_class:
4225 return "DW_AT_address_class";
4226 case DW_AT_artificial:
4227 return "DW_AT_artificial";
4228 case DW_AT_base_types:
4229 return "DW_AT_base_types";
4230 case DW_AT_calling_convention:
4231 return "DW_AT_calling_convention";
4232 case DW_AT_count:
4233 return "DW_AT_count";
4234 case DW_AT_data_member_location:
4235 return "DW_AT_data_member_location";
4236 case DW_AT_decl_column:
4237 return "DW_AT_decl_column";
4238 case DW_AT_decl_file:
4239 return "DW_AT_decl_file";
4240 case DW_AT_decl_line:
4241 return "DW_AT_decl_line";
4242 case DW_AT_declaration:
4243 return "DW_AT_declaration";
4244 case DW_AT_discr_list:
4245 return "DW_AT_discr_list";
4246 case DW_AT_encoding:
4247 return "DW_AT_encoding";
4248 case DW_AT_external:
4249 return "DW_AT_external";
4250 case DW_AT_frame_base:
4251 return "DW_AT_frame_base";
4252 case DW_AT_friend:
4253 return "DW_AT_friend";
4254 case DW_AT_identifier_case:
4255 return "DW_AT_identifier_case";
4256 case DW_AT_macro_info:
4257 return "DW_AT_macro_info";
4258 case DW_AT_namelist_items:
4259 return "DW_AT_namelist_items";
4260 case DW_AT_priority:
4261 return "DW_AT_priority";
4262 case DW_AT_segment:
4263 return "DW_AT_segment";
4264 case DW_AT_specification:
4265 return "DW_AT_specification";
4266 case DW_AT_static_link:
4267 return "DW_AT_static_link";
4268 case DW_AT_type:
4269 return "DW_AT_type";
4270 case DW_AT_use_location:
4271 return "DW_AT_use_location";
4272 case DW_AT_variable_parameter:
4273 return "DW_AT_variable_parameter";
4274 case DW_AT_virtuality:
4275 return "DW_AT_virtuality";
4276 case DW_AT_vtable_elem_location:
4277 return "DW_AT_vtable_elem_location";
4279 case DW_AT_allocated:
4280 return "DW_AT_allocated";
4281 case DW_AT_associated:
4282 return "DW_AT_associated";
4283 case DW_AT_data_location:
4284 return "DW_AT_data_location";
4285 case DW_AT_stride:
4286 return "DW_AT_stride";
4287 case DW_AT_entry_pc:
4288 return "DW_AT_entry_pc";
4289 case DW_AT_use_UTF8:
4290 return "DW_AT_use_UTF8";
4291 case DW_AT_extension:
4292 return "DW_AT_extension";
4293 case DW_AT_ranges:
4294 return "DW_AT_ranges";
4295 case DW_AT_trampoline:
4296 return "DW_AT_trampoline";
4297 case DW_AT_call_column:
4298 return "DW_AT_call_column";
4299 case DW_AT_call_file:
4300 return "DW_AT_call_file";
4301 case DW_AT_call_line:
4302 return "DW_AT_call_line";
4304 case DW_AT_MIPS_fde:
4305 return "DW_AT_MIPS_fde";
4306 case DW_AT_MIPS_loop_begin:
4307 return "DW_AT_MIPS_loop_begin";
4308 case DW_AT_MIPS_tail_loop_begin:
4309 return "DW_AT_MIPS_tail_loop_begin";
4310 case DW_AT_MIPS_epilog_begin:
4311 return "DW_AT_MIPS_epilog_begin";
4312 case DW_AT_MIPS_loop_unroll_factor:
4313 return "DW_AT_MIPS_loop_unroll_factor";
4314 case DW_AT_MIPS_software_pipeline_depth:
4315 return "DW_AT_MIPS_software_pipeline_depth";
4316 case DW_AT_MIPS_linkage_name:
4317 return "DW_AT_MIPS_linkage_name";
4318 case DW_AT_MIPS_stride:
4319 return "DW_AT_MIPS_stride";
4320 case DW_AT_MIPS_abstract_name:
4321 return "DW_AT_MIPS_abstract_name";
4322 case DW_AT_MIPS_clone_origin:
4323 return "DW_AT_MIPS_clone_origin";
4324 case DW_AT_MIPS_has_inlines:
4325 return "DW_AT_MIPS_has_inlines";
4327 case DW_AT_sf_names:
4328 return "DW_AT_sf_names";
4329 case DW_AT_src_info:
4330 return "DW_AT_src_info";
4331 case DW_AT_mac_info:
4332 return "DW_AT_mac_info";
4333 case DW_AT_src_coords:
4334 return "DW_AT_src_coords";
4335 case DW_AT_body_begin:
4336 return "DW_AT_body_begin";
4337 case DW_AT_body_end:
4338 return "DW_AT_body_end";
4339 case DW_AT_GNU_vector:
4340 return "DW_AT_GNU_vector";
4342 case DW_AT_VMS_rtnbeg_pd_address:
4343 return "DW_AT_VMS_rtnbeg_pd_address";
4345 default:
4346 return "DW_AT_<unknown>";
4350 /* Convert a DWARF value form code into its string name. */
4352 static const char *
4353 dwarf_form_name (form)
4354 unsigned form;
4356 switch (form)
4358 case DW_FORM_addr:
4359 return "DW_FORM_addr";
4360 case DW_FORM_block2:
4361 return "DW_FORM_block2";
4362 case DW_FORM_block4:
4363 return "DW_FORM_block4";
4364 case DW_FORM_data2:
4365 return "DW_FORM_data2";
4366 case DW_FORM_data4:
4367 return "DW_FORM_data4";
4368 case DW_FORM_data8:
4369 return "DW_FORM_data8";
4370 case DW_FORM_string:
4371 return "DW_FORM_string";
4372 case DW_FORM_block:
4373 return "DW_FORM_block";
4374 case DW_FORM_block1:
4375 return "DW_FORM_block1";
4376 case DW_FORM_data1:
4377 return "DW_FORM_data1";
4378 case DW_FORM_flag:
4379 return "DW_FORM_flag";
4380 case DW_FORM_sdata:
4381 return "DW_FORM_sdata";
4382 case DW_FORM_strp:
4383 return "DW_FORM_strp";
4384 case DW_FORM_udata:
4385 return "DW_FORM_udata";
4386 case DW_FORM_ref_addr:
4387 return "DW_FORM_ref_addr";
4388 case DW_FORM_ref1:
4389 return "DW_FORM_ref1";
4390 case DW_FORM_ref2:
4391 return "DW_FORM_ref2";
4392 case DW_FORM_ref4:
4393 return "DW_FORM_ref4";
4394 case DW_FORM_ref8:
4395 return "DW_FORM_ref8";
4396 case DW_FORM_ref_udata:
4397 return "DW_FORM_ref_udata";
4398 case DW_FORM_indirect:
4399 return "DW_FORM_indirect";
4400 default:
4401 return "DW_FORM_<unknown>";
4405 /* Convert a DWARF type code into its string name. */
4407 #if 0
4408 static const char *
4409 dwarf_type_encoding_name (enc)
4410 unsigned enc;
4412 switch (enc)
4414 case DW_ATE_address:
4415 return "DW_ATE_address";
4416 case DW_ATE_boolean:
4417 return "DW_ATE_boolean";
4418 case DW_ATE_complex_float:
4419 return "DW_ATE_complex_float";
4420 case DW_ATE_float:
4421 return "DW_ATE_float";
4422 case DW_ATE_signed:
4423 return "DW_ATE_signed";
4424 case DW_ATE_signed_char:
4425 return "DW_ATE_signed_char";
4426 case DW_ATE_unsigned:
4427 return "DW_ATE_unsigned";
4428 case DW_ATE_unsigned_char:
4429 return "DW_ATE_unsigned_char";
4430 default:
4431 return "DW_ATE_<unknown>";
4434 #endif
4436 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4437 instance of an inlined instance of a decl which is local to an inline
4438 function, so we have to trace all of the way back through the origin chain
4439 to find out what sort of node actually served as the original seed for the
4440 given block. */
4442 static tree
4443 decl_ultimate_origin (decl)
4444 tree decl;
4446 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4447 nodes in the function to point to themselves; ignore that if
4448 we're trying to output the abstract instance of this function. */
4449 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4450 return NULL_TREE;
4452 #ifdef ENABLE_CHECKING
4453 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4454 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4455 most distant ancestor, this should never happen. */
4456 abort ();
4457 #endif
4459 return DECL_ABSTRACT_ORIGIN (decl);
4462 /* Determine the "ultimate origin" of a block. The block may be an inlined
4463 instance of an inlined instance of a block which is local to an inline
4464 function, so we have to trace all of the way back through the origin chain
4465 to find out what sort of node actually served as the original seed for the
4466 given block. */
4468 static tree
4469 block_ultimate_origin (block)
4470 tree block;
4472 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4474 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4475 nodes in the function to point to themselves; ignore that if
4476 we're trying to output the abstract instance of this function. */
4477 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4478 return NULL_TREE;
4480 if (immediate_origin == NULL_TREE)
4481 return NULL_TREE;
4482 else
4484 tree ret_val;
4485 tree lookahead = immediate_origin;
4489 ret_val = lookahead;
4490 lookahead = (TREE_CODE (ret_val) == BLOCK
4491 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4493 while (lookahead != NULL && lookahead != ret_val);
4495 return ret_val;
4499 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4500 of a virtual function may refer to a base class, so we check the 'this'
4501 parameter. */
4503 static tree
4504 decl_class_context (decl)
4505 tree decl;
4507 tree context = NULL_TREE;
4509 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4510 context = DECL_CONTEXT (decl);
4511 else
4512 context = TYPE_MAIN_VARIANT
4513 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4515 if (context && !TYPE_P (context))
4516 context = NULL_TREE;
4518 return context;
4521 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4522 addition order, and correct that in reverse_all_dies. */
4524 static inline void
4525 add_dwarf_attr (die, attr)
4526 dw_die_ref die;
4527 dw_attr_ref attr;
4529 if (die != NULL && attr != NULL)
4531 attr->dw_attr_next = die->die_attr;
4532 die->die_attr = attr;
4536 static inline enum dw_val_class
4537 AT_class (a)
4538 dw_attr_ref a;
4540 return a->dw_attr_val.val_class;
4543 /* Add a flag value attribute to a DIE. */
4545 static inline void
4546 add_AT_flag (die, attr_kind, flag)
4547 dw_die_ref die;
4548 enum dwarf_attribute attr_kind;
4549 unsigned flag;
4551 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4553 attr->dw_attr_next = NULL;
4554 attr->dw_attr = attr_kind;
4555 attr->dw_attr_val.val_class = dw_val_class_flag;
4556 attr->dw_attr_val.v.val_flag = flag;
4557 add_dwarf_attr (die, attr);
4560 static inline unsigned
4561 AT_flag (a)
4562 dw_attr_ref a;
4564 if (a && AT_class (a) == dw_val_class_flag)
4565 return a->dw_attr_val.v.val_flag;
4567 abort ();
4570 /* Add a signed integer attribute value to a DIE. */
4572 static inline void
4573 add_AT_int (die, attr_kind, int_val)
4574 dw_die_ref die;
4575 enum dwarf_attribute attr_kind;
4576 long int int_val;
4578 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4580 attr->dw_attr_next = NULL;
4581 attr->dw_attr = attr_kind;
4582 attr->dw_attr_val.val_class = dw_val_class_const;
4583 attr->dw_attr_val.v.val_int = int_val;
4584 add_dwarf_attr (die, attr);
4587 static inline long int
4588 AT_int (a)
4589 dw_attr_ref a;
4591 if (a && AT_class (a) == dw_val_class_const)
4592 return a->dw_attr_val.v.val_int;
4594 abort ();
4597 /* Add an unsigned integer attribute value to a DIE. */
4599 static inline void
4600 add_AT_unsigned (die, attr_kind, unsigned_val)
4601 dw_die_ref die;
4602 enum dwarf_attribute attr_kind;
4603 unsigned long unsigned_val;
4605 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4607 attr->dw_attr_next = NULL;
4608 attr->dw_attr = attr_kind;
4609 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4610 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4611 add_dwarf_attr (die, attr);
4614 static inline unsigned long
4615 AT_unsigned (a)
4616 dw_attr_ref a;
4618 if (a && AT_class (a) == dw_val_class_unsigned_const)
4619 return a->dw_attr_val.v.val_unsigned;
4621 abort ();
4624 /* Add an unsigned double integer attribute value to a DIE. */
4626 static inline void
4627 add_AT_long_long (die, attr_kind, val_hi, val_low)
4628 dw_die_ref die;
4629 enum dwarf_attribute attr_kind;
4630 unsigned long val_hi;
4631 unsigned long val_low;
4633 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4635 attr->dw_attr_next = NULL;
4636 attr->dw_attr = attr_kind;
4637 attr->dw_attr_val.val_class = dw_val_class_long_long;
4638 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4639 attr->dw_attr_val.v.val_long_long.low = val_low;
4640 add_dwarf_attr (die, attr);
4643 /* Add a floating point attribute value to a DIE and return it. */
4645 static inline void
4646 add_AT_float (die, attr_kind, length, array)
4647 dw_die_ref die;
4648 enum dwarf_attribute attr_kind;
4649 unsigned length;
4650 long *array;
4652 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4654 attr->dw_attr_next = NULL;
4655 attr->dw_attr = attr_kind;
4656 attr->dw_attr_val.val_class = dw_val_class_float;
4657 attr->dw_attr_val.v.val_float.length = length;
4658 attr->dw_attr_val.v.val_float.array = array;
4659 add_dwarf_attr (die, attr);
4662 /* Hash and equality functions for debug_str_hash. */
4664 static hashval_t
4665 debug_str_do_hash (x)
4666 const void * x;
4668 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4671 static int
4672 debug_str_eq (x1, x2)
4673 const void * x1;
4674 const void * x2;
4676 return strcmp ((((const struct indirect_string_node *)x1)->str),
4677 (const char *)x2) == 0;
4680 /* Add a string attribute value to a DIE. */
4682 static inline void
4683 add_AT_string (die, attr_kind, str)
4684 dw_die_ref die;
4685 enum dwarf_attribute attr_kind;
4686 const char *str;
4688 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4689 struct indirect_string_node *node;
4690 PTR *slot;
4692 if (! debug_str_hash)
4693 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4694 debug_str_eq, NULL);
4696 slot = htab_find_slot_with_hash (debug_str_hash, str,
4697 htab_hash_string (str), INSERT);
4698 if (*slot == NULL)
4699 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4700 node = (struct indirect_string_node *) *slot;
4701 node->str = ggc_alloc_string (str, -1);
4702 node->refcount++;
4704 attr->dw_attr_next = NULL;
4705 attr->dw_attr = attr_kind;
4706 attr->dw_attr_val.val_class = dw_val_class_str;
4707 attr->dw_attr_val.v.val_str = node;
4708 add_dwarf_attr (die, attr);
4711 static inline const char *
4712 AT_string (a)
4713 dw_attr_ref a;
4715 if (a && AT_class (a) == dw_val_class_str)
4716 return a->dw_attr_val.v.val_str->str;
4718 abort ();
4721 /* Find out whether a string should be output inline in DIE
4722 or out-of-line in .debug_str section. */
4724 static int
4725 AT_string_form (a)
4726 dw_attr_ref a;
4728 if (a && AT_class (a) == dw_val_class_str)
4730 struct indirect_string_node *node;
4731 unsigned int len;
4732 char label[32];
4734 node = a->dw_attr_val.v.val_str;
4735 if (node->form)
4736 return node->form;
4738 len = strlen (node->str) + 1;
4740 /* If the string is shorter or equal to the size of the reference, it is
4741 always better to put it inline. */
4742 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4743 return node->form = DW_FORM_string;
4745 /* If we cannot expect the linker to merge strings in .debug_str
4746 section, only put it into .debug_str if it is worth even in this
4747 single module. */
4748 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4749 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4750 return node->form = DW_FORM_string;
4752 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4753 ++dw2_string_counter;
4754 node->label = xstrdup (label);
4756 return node->form = DW_FORM_strp;
4759 abort ();
4762 /* Add a DIE reference attribute value to a DIE. */
4764 static inline void
4765 add_AT_die_ref (die, attr_kind, targ_die)
4766 dw_die_ref die;
4767 enum dwarf_attribute attr_kind;
4768 dw_die_ref targ_die;
4770 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4772 attr->dw_attr_next = NULL;
4773 attr->dw_attr = attr_kind;
4774 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4775 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4776 attr->dw_attr_val.v.val_die_ref.external = 0;
4777 add_dwarf_attr (die, attr);
4780 static inline dw_die_ref
4781 AT_ref (a)
4782 dw_attr_ref a;
4784 if (a && AT_class (a) == dw_val_class_die_ref)
4785 return a->dw_attr_val.v.val_die_ref.die;
4787 abort ();
4790 static inline int
4791 AT_ref_external (a)
4792 dw_attr_ref a;
4794 if (a && AT_class (a) == dw_val_class_die_ref)
4795 return a->dw_attr_val.v.val_die_ref.external;
4797 return 0;
4800 static inline void
4801 set_AT_ref_external (a, i)
4802 dw_attr_ref a;
4803 int i;
4805 if (a && AT_class (a) == dw_val_class_die_ref)
4806 a->dw_attr_val.v.val_die_ref.external = i;
4807 else
4808 abort ();
4811 /* Add an FDE reference attribute value to a DIE. */
4813 static inline void
4814 add_AT_fde_ref (die, attr_kind, targ_fde)
4815 dw_die_ref die;
4816 enum dwarf_attribute attr_kind;
4817 unsigned targ_fde;
4819 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4821 attr->dw_attr_next = NULL;
4822 attr->dw_attr = attr_kind;
4823 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4824 attr->dw_attr_val.v.val_fde_index = targ_fde;
4825 add_dwarf_attr (die, attr);
4828 /* Add a location description attribute value to a DIE. */
4830 static inline void
4831 add_AT_loc (die, attr_kind, loc)
4832 dw_die_ref die;
4833 enum dwarf_attribute attr_kind;
4834 dw_loc_descr_ref loc;
4836 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4838 attr->dw_attr_next = NULL;
4839 attr->dw_attr = attr_kind;
4840 attr->dw_attr_val.val_class = dw_val_class_loc;
4841 attr->dw_attr_val.v.val_loc = loc;
4842 add_dwarf_attr (die, attr);
4845 static inline dw_loc_descr_ref
4846 AT_loc (a)
4847 dw_attr_ref a;
4849 if (a && AT_class (a) == dw_val_class_loc)
4850 return a->dw_attr_val.v.val_loc;
4852 abort ();
4855 static inline void
4856 add_AT_loc_list (die, attr_kind, loc_list)
4857 dw_die_ref die;
4858 enum dwarf_attribute attr_kind;
4859 dw_loc_list_ref loc_list;
4861 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4863 attr->dw_attr_next = NULL;
4864 attr->dw_attr = attr_kind;
4865 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4866 attr->dw_attr_val.v.val_loc_list = loc_list;
4867 add_dwarf_attr (die, attr);
4868 have_location_lists = 1;
4871 static inline dw_loc_list_ref
4872 AT_loc_list (a)
4873 dw_attr_ref a;
4875 if (a && AT_class (a) == dw_val_class_loc_list)
4876 return a->dw_attr_val.v.val_loc_list;
4878 abort ();
4881 /* Add an address constant attribute value to a DIE. */
4883 static inline void
4884 add_AT_addr (die, attr_kind, addr)
4885 dw_die_ref die;
4886 enum dwarf_attribute attr_kind;
4887 rtx addr;
4889 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4891 attr->dw_attr_next = NULL;
4892 attr->dw_attr = attr_kind;
4893 attr->dw_attr_val.val_class = dw_val_class_addr;
4894 attr->dw_attr_val.v.val_addr = addr;
4895 add_dwarf_attr (die, attr);
4898 static inline rtx
4899 AT_addr (a)
4900 dw_attr_ref a;
4902 if (a && AT_class (a) == dw_val_class_addr)
4903 return a->dw_attr_val.v.val_addr;
4905 abort ();
4908 /* Add a label identifier attribute value to a DIE. */
4910 static inline void
4911 add_AT_lbl_id (die, attr_kind, lbl_id)
4912 dw_die_ref die;
4913 enum dwarf_attribute attr_kind;
4914 const char *lbl_id;
4916 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4918 attr->dw_attr_next = NULL;
4919 attr->dw_attr = attr_kind;
4920 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4921 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4922 add_dwarf_attr (die, attr);
4925 /* Add a section offset attribute value to a DIE. */
4927 static inline void
4928 add_AT_lbl_offset (die, attr_kind, label)
4929 dw_die_ref die;
4930 enum dwarf_attribute attr_kind;
4931 const char *label;
4933 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4935 attr->dw_attr_next = NULL;
4936 attr->dw_attr = attr_kind;
4937 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4938 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4939 add_dwarf_attr (die, attr);
4942 /* Add an offset attribute value to a DIE. */
4944 static inline void
4945 add_AT_offset (die, attr_kind, offset)
4946 dw_die_ref die;
4947 enum dwarf_attribute attr_kind;
4948 unsigned long offset;
4950 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4952 attr->dw_attr_next = NULL;
4953 attr->dw_attr = attr_kind;
4954 attr->dw_attr_val.val_class = dw_val_class_offset;
4955 attr->dw_attr_val.v.val_offset = offset;
4956 add_dwarf_attr (die, attr);
4959 /* Add an range_list attribute value to a DIE. */
4961 static void
4962 add_AT_range_list (die, attr_kind, offset)
4963 dw_die_ref die;
4964 enum dwarf_attribute attr_kind;
4965 unsigned long offset;
4967 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4969 attr->dw_attr_next = NULL;
4970 attr->dw_attr = attr_kind;
4971 attr->dw_attr_val.val_class = dw_val_class_range_list;
4972 attr->dw_attr_val.v.val_offset = offset;
4973 add_dwarf_attr (die, attr);
4976 static inline const char *
4977 AT_lbl (a)
4978 dw_attr_ref a;
4980 if (a && (AT_class (a) == dw_val_class_lbl_id
4981 || AT_class (a) == dw_val_class_lbl_offset))
4982 return a->dw_attr_val.v.val_lbl_id;
4984 abort ();
4987 /* Get the attribute of type attr_kind. */
4989 static inline dw_attr_ref
4990 get_AT (die, attr_kind)
4991 dw_die_ref die;
4992 enum dwarf_attribute attr_kind;
4994 dw_attr_ref a;
4995 dw_die_ref spec = NULL;
4997 if (die != NULL)
4999 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5000 if (a->dw_attr == attr_kind)
5001 return a;
5002 else if (a->dw_attr == DW_AT_specification
5003 || a->dw_attr == DW_AT_abstract_origin)
5004 spec = AT_ref (a);
5006 if (spec)
5007 return get_AT (spec, attr_kind);
5010 return NULL;
5013 /* Return the "low pc" attribute value, typically associated with a subprogram
5014 DIE. Return null if the "low pc" attribute is either not present, or if it
5015 cannot be represented as an assembler label identifier. */
5017 static inline const char *
5018 get_AT_low_pc (die)
5019 dw_die_ref die;
5021 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5023 return a ? AT_lbl (a) : NULL;
5026 /* Return the "high pc" attribute value, typically associated with a subprogram
5027 DIE. Return null if the "high pc" attribute is either not present, or if it
5028 cannot be represented as an assembler label identifier. */
5030 static inline const char *
5031 get_AT_hi_pc (die)
5032 dw_die_ref die;
5034 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5036 return a ? AT_lbl (a) : NULL;
5039 /* Return the value of the string attribute designated by ATTR_KIND, or
5040 NULL if it is not present. */
5042 static inline const char *
5043 get_AT_string (die, attr_kind)
5044 dw_die_ref die;
5045 enum dwarf_attribute attr_kind;
5047 dw_attr_ref a = get_AT (die, attr_kind);
5049 return a ? AT_string (a) : NULL;
5052 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5053 if it is not present. */
5055 static inline int
5056 get_AT_flag (die, attr_kind)
5057 dw_die_ref die;
5058 enum dwarf_attribute attr_kind;
5060 dw_attr_ref a = get_AT (die, attr_kind);
5062 return a ? AT_flag (a) : 0;
5065 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5066 if it is not present. */
5068 static inline unsigned
5069 get_AT_unsigned (die, attr_kind)
5070 dw_die_ref die;
5071 enum dwarf_attribute attr_kind;
5073 dw_attr_ref a = get_AT (die, attr_kind);
5075 return a ? AT_unsigned (a) : 0;
5078 static inline dw_die_ref
5079 get_AT_ref (die, attr_kind)
5080 dw_die_ref die;
5081 enum dwarf_attribute attr_kind;
5083 dw_attr_ref a = get_AT (die, attr_kind);
5085 return a ? AT_ref (a) : NULL;
5088 static inline int
5089 is_c_family ()
5091 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5093 return (lang == DW_LANG_C || lang == DW_LANG_C89
5094 || lang == DW_LANG_C_plus_plus);
5097 static inline int
5098 is_cxx ()
5100 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5101 == DW_LANG_C_plus_plus);
5104 static inline int
5105 is_fortran ()
5107 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5109 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
5112 static inline int
5113 is_java ()
5115 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5117 return (lang == DW_LANG_Java);
5120 /* Free up the memory used by A. */
5122 static inline void free_AT PARAMS ((dw_attr_ref));
5123 static inline void
5124 free_AT (a)
5125 dw_attr_ref a;
5127 if (AT_class (a) == dw_val_class_str)
5128 if (a->dw_attr_val.v.val_str->refcount)
5129 a->dw_attr_val.v.val_str->refcount--;
5132 /* Remove the specified attribute if present. */
5134 static void
5135 remove_AT (die, attr_kind)
5136 dw_die_ref die;
5137 enum dwarf_attribute attr_kind;
5139 dw_attr_ref *p;
5140 dw_attr_ref removed = NULL;
5142 if (die != NULL)
5144 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5145 if ((*p)->dw_attr == attr_kind)
5147 removed = *p;
5148 *p = (*p)->dw_attr_next;
5149 break;
5152 if (removed != 0)
5153 free_AT (removed);
5157 /* Free up the memory used by DIE. */
5159 static inline void
5160 free_die (die)
5161 dw_die_ref die;
5163 remove_children (die);
5166 /* Discard the children of this DIE. */
5168 static void
5169 remove_children (die)
5170 dw_die_ref die;
5172 dw_die_ref child_die = die->die_child;
5174 die->die_child = NULL;
5176 while (child_die != NULL)
5178 dw_die_ref tmp_die = child_die;
5179 dw_attr_ref a;
5181 child_die = child_die->die_sib;
5183 for (a = tmp_die->die_attr; a != NULL;)
5185 dw_attr_ref tmp_a = a;
5187 a = a->dw_attr_next;
5188 free_AT (tmp_a);
5191 free_die (tmp_die);
5195 /* Add a child DIE below its parent. We build the lists up in reverse
5196 addition order, and correct that in reverse_all_dies. */
5198 static inline void
5199 add_child_die (die, child_die)
5200 dw_die_ref die;
5201 dw_die_ref child_die;
5203 if (die != NULL && child_die != NULL)
5205 if (die == child_die)
5206 abort ();
5208 child_die->die_parent = die;
5209 child_die->die_sib = die->die_child;
5210 die->die_child = child_die;
5214 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5215 is the specification, to the front of PARENT's list of children. */
5217 static void
5218 splice_child_die (parent, child)
5219 dw_die_ref parent, child;
5221 dw_die_ref *p;
5223 /* We want the declaration DIE from inside the class, not the
5224 specification DIE at toplevel. */
5225 if (child->die_parent != parent)
5227 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5229 if (tmp)
5230 child = tmp;
5233 if (child->die_parent != parent
5234 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5235 abort ();
5237 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5238 if (*p == child)
5240 *p = child->die_sib;
5241 break;
5244 child->die_parent = parent;
5245 child->die_sib = parent->die_child;
5246 parent->die_child = child;
5249 /* Return a pointer to a newly created DIE node. */
5251 static inline dw_die_ref
5252 new_die (tag_value, parent_die, t)
5253 enum dwarf_tag tag_value;
5254 dw_die_ref parent_die;
5255 tree t;
5257 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5259 die->die_tag = tag_value;
5261 if (parent_die != NULL)
5262 add_child_die (parent_die, die);
5263 else
5265 limbo_die_node *limbo_node;
5267 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5268 limbo_node->die = die;
5269 limbo_node->created_for = t;
5270 limbo_node->next = limbo_die_list;
5271 limbo_die_list = limbo_node;
5274 return die;
5277 /* Return the DIE associated with the given type specifier. */
5279 static inline dw_die_ref
5280 lookup_type_die (type)
5281 tree type;
5283 return TYPE_SYMTAB_DIE (type);
5286 /* Equate a DIE to a given type specifier. */
5288 static inline void
5289 equate_type_number_to_die (type, type_die)
5290 tree type;
5291 dw_die_ref type_die;
5293 TYPE_SYMTAB_DIE (type) = type_die;
5296 /* Return the DIE associated with a given declaration. */
5298 static inline dw_die_ref
5299 lookup_decl_die (decl)
5300 tree decl;
5302 unsigned decl_id = DECL_UID (decl);
5304 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5307 /* Equate a DIE to a particular declaration. */
5309 static void
5310 equate_decl_number_to_die (decl, decl_die)
5311 tree decl;
5312 dw_die_ref decl_die;
5314 unsigned int decl_id = DECL_UID (decl);
5315 unsigned int num_allocated;
5317 if (decl_id >= decl_die_table_allocated)
5319 num_allocated
5320 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5321 / DECL_DIE_TABLE_INCREMENT)
5322 * DECL_DIE_TABLE_INCREMENT;
5324 decl_die_table = ggc_realloc (decl_die_table,
5325 sizeof (dw_die_ref) * num_allocated);
5327 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5328 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5329 decl_die_table_allocated = num_allocated;
5332 if (decl_id >= decl_die_table_in_use)
5333 decl_die_table_in_use = (decl_id + 1);
5335 decl_die_table[decl_id] = decl_die;
5338 /* Keep track of the number of spaces used to indent the
5339 output of the debugging routines that print the structure of
5340 the DIE internal representation. */
5341 static int print_indent;
5343 /* Indent the line the number of spaces given by print_indent. */
5345 static inline void
5346 print_spaces (outfile)
5347 FILE *outfile;
5349 fprintf (outfile, "%*s", print_indent, "");
5352 /* Print the information associated with a given DIE, and its children.
5353 This routine is a debugging aid only. */
5355 static void
5356 print_die (die, outfile)
5357 dw_die_ref die;
5358 FILE *outfile;
5360 dw_attr_ref a;
5361 dw_die_ref c;
5363 print_spaces (outfile);
5364 fprintf (outfile, "DIE %4lu: %s\n",
5365 die->die_offset, dwarf_tag_name (die->die_tag));
5366 print_spaces (outfile);
5367 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5368 fprintf (outfile, " offset: %lu\n", die->die_offset);
5370 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5372 print_spaces (outfile);
5373 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5375 switch (AT_class (a))
5377 case dw_val_class_addr:
5378 fprintf (outfile, "address");
5379 break;
5380 case dw_val_class_offset:
5381 fprintf (outfile, "offset");
5382 break;
5383 case dw_val_class_loc:
5384 fprintf (outfile, "location descriptor");
5385 break;
5386 case dw_val_class_loc_list:
5387 fprintf (outfile, "location list -> label:%s",
5388 AT_loc_list (a)->ll_symbol);
5389 break;
5390 case dw_val_class_range_list:
5391 fprintf (outfile, "range list");
5392 break;
5393 case dw_val_class_const:
5394 fprintf (outfile, "%ld", AT_int (a));
5395 break;
5396 case dw_val_class_unsigned_const:
5397 fprintf (outfile, "%lu", AT_unsigned (a));
5398 break;
5399 case dw_val_class_long_long:
5400 fprintf (outfile, "constant (%lu,%lu)",
5401 a->dw_attr_val.v.val_long_long.hi,
5402 a->dw_attr_val.v.val_long_long.low);
5403 break;
5404 case dw_val_class_float:
5405 fprintf (outfile, "floating-point constant");
5406 break;
5407 case dw_val_class_flag:
5408 fprintf (outfile, "%u", AT_flag (a));
5409 break;
5410 case dw_val_class_die_ref:
5411 if (AT_ref (a) != NULL)
5413 if (AT_ref (a)->die_symbol)
5414 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5415 else
5416 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5418 else
5419 fprintf (outfile, "die -> <null>");
5420 break;
5421 case dw_val_class_lbl_id:
5422 case dw_val_class_lbl_offset:
5423 fprintf (outfile, "label: %s", AT_lbl (a));
5424 break;
5425 case dw_val_class_str:
5426 if (AT_string (a) != NULL)
5427 fprintf (outfile, "\"%s\"", AT_string (a));
5428 else
5429 fprintf (outfile, "<null>");
5430 break;
5431 default:
5432 break;
5435 fprintf (outfile, "\n");
5438 if (die->die_child != NULL)
5440 print_indent += 4;
5441 for (c = die->die_child; c != NULL; c = c->die_sib)
5442 print_die (c, outfile);
5444 print_indent -= 4;
5446 if (print_indent == 0)
5447 fprintf (outfile, "\n");
5450 /* Print the contents of the source code line number correspondence table.
5451 This routine is a debugging aid only. */
5453 static void
5454 print_dwarf_line_table (outfile)
5455 FILE *outfile;
5457 unsigned i;
5458 dw_line_info_ref line_info;
5460 fprintf (outfile, "\n\nDWARF source line information\n");
5461 for (i = 1; i < line_info_table_in_use; i++)
5463 line_info = &line_info_table[i];
5464 fprintf (outfile, "%5d: ", i);
5465 fprintf (outfile, "%-20s",
5466 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5467 fprintf (outfile, "%6ld", line_info->dw_line_num);
5468 fprintf (outfile, "\n");
5471 fprintf (outfile, "\n\n");
5474 /* Print the information collected for a given DIE. */
5476 void
5477 debug_dwarf_die (die)
5478 dw_die_ref die;
5480 print_die (die, stderr);
5483 /* Print all DWARF information collected for the compilation unit.
5484 This routine is a debugging aid only. */
5486 void
5487 debug_dwarf ()
5489 print_indent = 0;
5490 print_die (comp_unit_die, stderr);
5491 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5492 print_dwarf_line_table (stderr);
5495 /* We build up the lists of children and attributes by pushing new ones
5496 onto the beginning of the list. Reverse the lists for DIE so that
5497 they are in order of addition. */
5499 static void
5500 reverse_die_lists (die)
5501 dw_die_ref die;
5503 dw_die_ref c, cp, cn;
5504 dw_attr_ref a, ap, an;
5506 for (a = die->die_attr, ap = 0; a; a = an)
5508 an = a->dw_attr_next;
5509 a->dw_attr_next = ap;
5510 ap = a;
5513 die->die_attr = ap;
5515 for (c = die->die_child, cp = 0; c; c = cn)
5517 cn = c->die_sib;
5518 c->die_sib = cp;
5519 cp = c;
5522 die->die_child = cp;
5525 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5526 reverse all dies in add_sibling_attributes, which runs through all the dies,
5527 it would reverse all the dies. Now, however, since we don't call
5528 reverse_die_lists in add_sibling_attributes, we need a routine to
5529 recursively reverse all the dies. This is that routine. */
5531 static void
5532 reverse_all_dies (die)
5533 dw_die_ref die;
5535 dw_die_ref c;
5537 reverse_die_lists (die);
5539 for (c = die->die_child; c; c = c->die_sib)
5540 reverse_all_dies (c);
5543 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5544 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5545 DIE that marks the start of the DIEs for this include file. */
5547 static dw_die_ref
5548 push_new_compile_unit (old_unit, bincl_die)
5549 dw_die_ref old_unit, bincl_die;
5551 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5552 dw_die_ref new_unit = gen_compile_unit_die (filename);
5554 new_unit->die_sib = old_unit;
5555 return new_unit;
5558 /* Close an include-file CU and reopen the enclosing one. */
5560 static dw_die_ref
5561 pop_compile_unit (old_unit)
5562 dw_die_ref old_unit;
5564 dw_die_ref new_unit = old_unit->die_sib;
5566 old_unit->die_sib = NULL;
5567 return new_unit;
5570 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5571 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5573 /* Calculate the checksum of a location expression. */
5575 static inline void
5576 loc_checksum (loc, ctx)
5577 dw_loc_descr_ref loc;
5578 struct md5_ctx *ctx;
5580 CHECKSUM (loc->dw_loc_opc);
5581 CHECKSUM (loc->dw_loc_oprnd1);
5582 CHECKSUM (loc->dw_loc_oprnd2);
5585 /* Calculate the checksum of an attribute. */
5587 static void
5588 attr_checksum (at, ctx, mark)
5589 dw_attr_ref at;
5590 struct md5_ctx *ctx;
5591 int *mark;
5593 dw_loc_descr_ref loc;
5594 rtx r;
5596 CHECKSUM (at->dw_attr);
5598 /* We don't care about differences in file numbering. */
5599 if (at->dw_attr == DW_AT_decl_file
5600 /* Or that this was compiled with a different compiler snapshot; if
5601 the output is the same, that's what matters. */
5602 || at->dw_attr == DW_AT_producer)
5603 return;
5605 switch (AT_class (at))
5607 case dw_val_class_const:
5608 CHECKSUM (at->dw_attr_val.v.val_int);
5609 break;
5610 case dw_val_class_unsigned_const:
5611 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5612 break;
5613 case dw_val_class_long_long:
5614 CHECKSUM (at->dw_attr_val.v.val_long_long);
5615 break;
5616 case dw_val_class_float:
5617 CHECKSUM (at->dw_attr_val.v.val_float);
5618 break;
5619 case dw_val_class_flag:
5620 CHECKSUM (at->dw_attr_val.v.val_flag);
5621 break;
5622 case dw_val_class_str:
5623 CHECKSUM_STRING (AT_string (at));
5624 break;
5626 case dw_val_class_addr:
5627 r = AT_addr (at);
5628 switch (GET_CODE (r))
5630 case SYMBOL_REF:
5631 CHECKSUM_STRING (XSTR (r, 0));
5632 break;
5634 default:
5635 abort ();
5637 break;
5639 case dw_val_class_offset:
5640 CHECKSUM (at->dw_attr_val.v.val_offset);
5641 break;
5643 case dw_val_class_loc:
5644 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5645 loc_checksum (loc, ctx);
5646 break;
5648 case dw_val_class_die_ref:
5649 die_checksum (AT_ref (at), ctx, mark);
5650 break;
5652 case dw_val_class_fde_ref:
5653 case dw_val_class_lbl_id:
5654 case dw_val_class_lbl_offset:
5655 break;
5657 default:
5658 break;
5662 /* Calculate the checksum of a DIE. */
5664 static void
5665 die_checksum (die, ctx, mark)
5666 dw_die_ref die;
5667 struct md5_ctx *ctx;
5668 int *mark;
5670 dw_die_ref c;
5671 dw_attr_ref a;
5673 /* To avoid infinite recursion. */
5674 if (die->die_mark)
5676 CHECKSUM (die->die_mark);
5677 return;
5679 die->die_mark = ++(*mark);
5681 CHECKSUM (die->die_tag);
5683 for (a = die->die_attr; a; a = a->dw_attr_next)
5684 attr_checksum (a, ctx, mark);
5686 for (c = die->die_child; c; c = c->die_sib)
5687 die_checksum (c, ctx, mark);
5690 #undef CHECKSUM
5691 #undef CHECKSUM_STRING
5693 /* Do the location expressions look same? */
5694 static inline int
5695 same_loc_p (loc1, loc2, mark)
5696 dw_loc_descr_ref loc1;
5697 dw_loc_descr_ref loc2;
5698 int *mark;
5700 return loc1->dw_loc_opc == loc2->dw_loc_opc
5701 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5702 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5705 /* Do the values look the same? */
5706 static int
5707 same_dw_val_p (v1, v2, mark)
5708 dw_val_node *v1;
5709 dw_val_node *v2;
5710 int *mark;
5712 dw_loc_descr_ref loc1, loc2;
5713 rtx r1, r2;
5714 unsigned i;
5716 if (v1->val_class != v2->val_class)
5717 return 0;
5719 switch (v1->val_class)
5721 case dw_val_class_const:
5722 return v1->v.val_int == v2->v.val_int;
5723 case dw_val_class_unsigned_const:
5724 return v1->v.val_unsigned == v2->v.val_unsigned;
5725 case dw_val_class_long_long:
5726 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5727 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5728 case dw_val_class_float:
5729 if (v1->v.val_float.length != v2->v.val_float.length)
5730 return 0;
5731 for (i = 0; i < v1->v.val_float.length; i++)
5732 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5733 return 0;
5734 return 1;
5735 case dw_val_class_flag:
5736 return v1->v.val_flag == v2->v.val_flag;
5737 case dw_val_class_str:
5738 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5740 case dw_val_class_addr:
5741 r1 = v1->v.val_addr;
5742 r2 = v2->v.val_addr;
5743 if (GET_CODE (r1) != GET_CODE (r2))
5744 return 0;
5745 switch (GET_CODE (r1))
5747 case SYMBOL_REF:
5748 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5750 default:
5751 abort ();
5754 case dw_val_class_offset:
5755 return v1->v.val_offset == v2->v.val_offset;
5757 case dw_val_class_loc:
5758 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5759 loc1 && loc2;
5760 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5761 if (!same_loc_p (loc1, loc2, mark))
5762 return 0;
5763 return !loc1 && !loc2;
5765 case dw_val_class_die_ref:
5766 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5768 case dw_val_class_fde_ref:
5769 case dw_val_class_lbl_id:
5770 case dw_val_class_lbl_offset:
5771 return 1;
5773 default:
5774 return 1;
5778 /* Do the attributes look the same? */
5780 static int
5781 same_attr_p (at1, at2, mark)
5782 dw_attr_ref at1;
5783 dw_attr_ref at2;
5784 int *mark;
5786 if (at1->dw_attr != at2->dw_attr)
5787 return 0;
5789 /* We don't care about differences in file numbering. */
5790 if (at1->dw_attr == DW_AT_decl_file
5791 /* Or that this was compiled with a different compiler snapshot; if
5792 the output is the same, that's what matters. */
5793 || at1->dw_attr == DW_AT_producer)
5794 return 1;
5796 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5799 /* Do the dies look the same? */
5801 static int
5802 same_die_p (die1, die2, mark)
5803 dw_die_ref die1;
5804 dw_die_ref die2;
5805 int *mark;
5807 dw_die_ref c1, c2;
5808 dw_attr_ref a1, a2;
5810 /* To avoid infinite recursion. */
5811 if (die1->die_mark)
5812 return die1->die_mark == die2->die_mark;
5813 die1->die_mark = die2->die_mark = ++(*mark);
5815 if (die1->die_tag != die2->die_tag)
5816 return 0;
5818 for (a1 = die1->die_attr, a2 = die2->die_attr;
5819 a1 && a2;
5820 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5821 if (!same_attr_p (a1, a2, mark))
5822 return 0;
5823 if (a1 || a2)
5824 return 0;
5826 for (c1 = die1->die_child, c2 = die2->die_child;
5827 c1 && c2;
5828 c1 = c1->die_sib, c2 = c2->die_sib)
5829 if (!same_die_p (c1, c2, mark))
5830 return 0;
5831 if (c1 || c2)
5832 return 0;
5834 return 1;
5837 /* Do the dies look the same? Wrapper around same_die_p. */
5839 static int
5840 same_die_p_wrap (die1, die2)
5841 dw_die_ref die1;
5842 dw_die_ref die2;
5844 int mark = 0;
5845 int ret = same_die_p (die1, die2, &mark);
5847 unmark_all_dies (die1);
5848 unmark_all_dies (die2);
5850 return ret;
5853 /* The prefix to attach to symbols on DIEs in the current comdat debug
5854 info section. */
5855 static char *comdat_symbol_id;
5857 /* The index of the current symbol within the current comdat CU. */
5858 static unsigned int comdat_symbol_number;
5860 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5861 children, and set comdat_symbol_id accordingly. */
5863 static void
5864 compute_section_prefix (unit_die)
5865 dw_die_ref unit_die;
5867 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5868 const char *base = die_name ? lbasename (die_name) : "anonymous";
5869 char *name = (char *) alloca (strlen (base) + 64);
5870 char *p;
5871 int i, mark;
5872 unsigned char checksum[16];
5873 struct md5_ctx ctx;
5875 /* Compute the checksum of the DIE, then append part of it as hex digits to
5876 the name filename of the unit. */
5878 md5_init_ctx (&ctx);
5879 mark = 0;
5880 die_checksum (unit_die, &ctx, &mark);
5881 unmark_all_dies (unit_die);
5882 md5_finish_ctx (&ctx, checksum);
5884 sprintf (name, "%s.", base);
5885 clean_symbol_name (name);
5887 p = name + strlen (name);
5888 for (i = 0; i < 4; i++)
5890 sprintf (p, "%.2x", checksum[i]);
5891 p += 2;
5894 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5895 comdat_symbol_number = 0;
5898 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5900 static int
5901 is_type_die (die)
5902 dw_die_ref die;
5904 switch (die->die_tag)
5906 case DW_TAG_array_type:
5907 case DW_TAG_class_type:
5908 case DW_TAG_enumeration_type:
5909 case DW_TAG_pointer_type:
5910 case DW_TAG_reference_type:
5911 case DW_TAG_string_type:
5912 case DW_TAG_structure_type:
5913 case DW_TAG_subroutine_type:
5914 case DW_TAG_union_type:
5915 case DW_TAG_ptr_to_member_type:
5916 case DW_TAG_set_type:
5917 case DW_TAG_subrange_type:
5918 case DW_TAG_base_type:
5919 case DW_TAG_const_type:
5920 case DW_TAG_file_type:
5921 case DW_TAG_packed_type:
5922 case DW_TAG_volatile_type:
5923 case DW_TAG_typedef:
5924 return 1;
5925 default:
5926 return 0;
5930 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5931 Basically, we want to choose the bits that are likely to be shared between
5932 compilations (types) and leave out the bits that are specific to individual
5933 compilations (functions). */
5935 static int
5936 is_comdat_die (c)
5937 dw_die_ref c;
5939 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5940 we do for stabs. The advantage is a greater likelihood of sharing between
5941 objects that don't include headers in the same order (and therefore would
5942 put the base types in a different comdat). jason 8/28/00 */
5944 if (c->die_tag == DW_TAG_base_type)
5945 return 0;
5947 if (c->die_tag == DW_TAG_pointer_type
5948 || c->die_tag == DW_TAG_reference_type
5949 || c->die_tag == DW_TAG_const_type
5950 || c->die_tag == DW_TAG_volatile_type)
5952 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5954 return t ? is_comdat_die (t) : 0;
5957 return is_type_die (c);
5960 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5961 compilation unit. */
5963 static int
5964 is_symbol_die (c)
5965 dw_die_ref c;
5967 return (is_type_die (c)
5968 || (get_AT (c, DW_AT_declaration)
5969 && !get_AT (c, DW_AT_specification)));
5972 static char *
5973 gen_internal_sym (prefix)
5974 const char *prefix;
5976 char buf[256];
5977 static int label_num;
5979 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5980 return xstrdup (buf);
5983 /* Assign symbols to all worthy DIEs under DIE. */
5985 static void
5986 assign_symbol_names (die)
5987 dw_die_ref die;
5989 dw_die_ref c;
5991 if (is_symbol_die (die))
5993 if (comdat_symbol_id)
5995 char *p = alloca (strlen (comdat_symbol_id) + 64);
5997 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5998 comdat_symbol_id, comdat_symbol_number++);
5999 die->die_symbol = xstrdup (p);
6001 else
6002 die->die_symbol = gen_internal_sym ("LDIE");
6005 for (c = die->die_child; c != NULL; c = c->die_sib)
6006 assign_symbol_names (c);
6009 struct cu_hash_table_entry
6011 dw_die_ref cu;
6012 unsigned min_comdat_num, max_comdat_num;
6013 struct cu_hash_table_entry *next;
6016 /* Routines to manipulate hash table of CUs. */
6017 static hashval_t
6018 htab_cu_hash (of)
6019 const void *of;
6021 const struct cu_hash_table_entry *entry = of;
6023 return htab_hash_string (entry->cu->die_symbol);
6026 static int
6027 htab_cu_eq (of1, of2)
6028 const void *of1;
6029 const void *of2;
6031 const struct cu_hash_table_entry *entry1 = of1;
6032 const struct die_struct *entry2 = of2;
6034 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6037 static void
6038 htab_cu_del (what)
6039 void *what;
6041 struct cu_hash_table_entry *next, *entry = what;
6043 while (entry)
6045 next = entry->next;
6046 free (entry);
6047 entry = next;
6051 /* Check whether we have already seen this CU and set up SYM_NUM
6052 accordingly. */
6053 static int
6054 check_duplicate_cu (cu, htable, sym_num)
6055 dw_die_ref cu;
6056 htab_t htable;
6057 unsigned *sym_num;
6059 struct cu_hash_table_entry dummy;
6060 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6062 dummy.max_comdat_num = 0;
6064 slot = (struct cu_hash_table_entry **)
6065 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6066 INSERT);
6067 entry = *slot;
6069 for (; entry; last = entry, entry = entry->next)
6071 if (same_die_p_wrap (cu, entry->cu))
6072 break;
6075 if (entry)
6077 *sym_num = entry->min_comdat_num;
6078 return 1;
6081 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6082 entry->cu = cu;
6083 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6084 entry->next = *slot;
6085 *slot = entry;
6087 return 0;
6090 /* Record SYM_NUM to record of CU in HTABLE. */
6091 static void
6092 record_comdat_symbol_number (cu, htable, sym_num)
6093 dw_die_ref cu;
6094 htab_t htable;
6095 unsigned sym_num;
6097 struct cu_hash_table_entry **slot, *entry;
6099 slot = (struct cu_hash_table_entry **)
6100 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6101 NO_INSERT);
6102 entry = *slot;
6104 entry->max_comdat_num = sym_num;
6107 /* Traverse the DIE (which is always comp_unit_die), and set up
6108 additional compilation units for each of the include files we see
6109 bracketed by BINCL/EINCL. */
6111 static void
6112 break_out_includes (die)
6113 dw_die_ref die;
6115 dw_die_ref *ptr;
6116 dw_die_ref unit = NULL;
6117 limbo_die_node *node, **pnode;
6118 htab_t cu_hash_table;
6120 for (ptr = &(die->die_child); *ptr;)
6122 dw_die_ref c = *ptr;
6124 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6125 || (unit && is_comdat_die (c)))
6127 /* This DIE is for a secondary CU; remove it from the main one. */
6128 *ptr = c->die_sib;
6130 if (c->die_tag == DW_TAG_GNU_BINCL)
6132 unit = push_new_compile_unit (unit, c);
6133 free_die (c);
6135 else if (c->die_tag == DW_TAG_GNU_EINCL)
6137 unit = pop_compile_unit (unit);
6138 free_die (c);
6140 else
6141 add_child_die (unit, c);
6143 else
6145 /* Leave this DIE in the main CU. */
6146 ptr = &(c->die_sib);
6147 continue;
6151 #if 0
6152 /* We can only use this in debugging, since the frontend doesn't check
6153 to make sure that we leave every include file we enter. */
6154 if (unit != NULL)
6155 abort ();
6156 #endif
6158 assign_symbol_names (die);
6159 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6160 for (node = limbo_die_list, pnode = &limbo_die_list;
6161 node;
6162 node = node->next)
6164 int is_dupl;
6166 compute_section_prefix (node->die);
6167 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6168 &comdat_symbol_number);
6169 assign_symbol_names (node->die);
6170 if (is_dupl)
6171 *pnode = node->next;
6172 else
6174 pnode = &node->next;
6175 record_comdat_symbol_number (node->die, cu_hash_table,
6176 comdat_symbol_number);
6179 htab_delete (cu_hash_table);
6182 /* Traverse the DIE and add a sibling attribute if it may have the
6183 effect of speeding up access to siblings. To save some space,
6184 avoid generating sibling attributes for DIE's without children. */
6186 static void
6187 add_sibling_attributes (die)
6188 dw_die_ref die;
6190 dw_die_ref c;
6192 if (die->die_tag != DW_TAG_compile_unit
6193 && die->die_sib && die->die_child != NULL)
6194 /* Add the sibling link to the front of the attribute list. */
6195 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6197 for (c = die->die_child; c != NULL; c = c->die_sib)
6198 add_sibling_attributes (c);
6201 /* Output all location lists for the DIE and its children. */
6203 static void
6204 output_location_lists (die)
6205 dw_die_ref die;
6207 dw_die_ref c;
6208 dw_attr_ref d_attr;
6210 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6211 if (AT_class (d_attr) == dw_val_class_loc_list)
6212 output_loc_list (AT_loc_list (d_attr));
6214 for (c = die->die_child; c != NULL; c = c->die_sib)
6215 output_location_lists (c);
6219 /* The format of each DIE (and its attribute value pairs) is encoded in an
6220 abbreviation table. This routine builds the abbreviation table and assigns
6221 a unique abbreviation id for each abbreviation entry. The children of each
6222 die are visited recursively. */
6224 static void
6225 build_abbrev_table (die)
6226 dw_die_ref die;
6228 unsigned long abbrev_id;
6229 unsigned int n_alloc;
6230 dw_die_ref c;
6231 dw_attr_ref d_attr, a_attr;
6233 /* Scan the DIE references, and mark as external any that refer to
6234 DIEs from other CUs (i.e. those which are not marked). */
6235 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6236 if (AT_class (d_attr) == dw_val_class_die_ref
6237 && AT_ref (d_attr)->die_mark == 0)
6239 if (AT_ref (d_attr)->die_symbol == 0)
6240 abort ();
6242 set_AT_ref_external (d_attr, 1);
6245 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6247 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6249 if (abbrev->die_tag == die->die_tag)
6251 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6253 a_attr = abbrev->die_attr;
6254 d_attr = die->die_attr;
6256 while (a_attr != NULL && d_attr != NULL)
6258 if ((a_attr->dw_attr != d_attr->dw_attr)
6259 || (value_format (a_attr) != value_format (d_attr)))
6260 break;
6262 a_attr = a_attr->dw_attr_next;
6263 d_attr = d_attr->dw_attr_next;
6266 if (a_attr == NULL && d_attr == NULL)
6267 break;
6272 if (abbrev_id >= abbrev_die_table_in_use)
6274 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6276 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6277 abbrev_die_table = ggc_realloc (abbrev_die_table,
6278 sizeof (dw_die_ref) * n_alloc);
6280 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6281 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6282 abbrev_die_table_allocated = n_alloc;
6285 ++abbrev_die_table_in_use;
6286 abbrev_die_table[abbrev_id] = die;
6289 die->die_abbrev = abbrev_id;
6290 for (c = die->die_child; c != NULL; c = c->die_sib)
6291 build_abbrev_table (c);
6294 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6296 static int
6297 constant_size (value)
6298 long unsigned value;
6300 int log;
6302 if (value == 0)
6303 log = 0;
6304 else
6305 log = floor_log2 (value);
6307 log = log / 8;
6308 log = 1 << (floor_log2 (log) + 1);
6310 return log;
6313 /* Return the size of a DIE as it is represented in the
6314 .debug_info section. */
6316 static unsigned long
6317 size_of_die (die)
6318 dw_die_ref die;
6320 unsigned long size = 0;
6321 dw_attr_ref a;
6323 size += size_of_uleb128 (die->die_abbrev);
6324 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6326 switch (AT_class (a))
6328 case dw_val_class_addr:
6329 size += DWARF2_ADDR_SIZE;
6330 break;
6331 case dw_val_class_offset:
6332 size += DWARF_OFFSET_SIZE;
6333 break;
6334 case dw_val_class_loc:
6336 unsigned long lsize = size_of_locs (AT_loc (a));
6338 /* Block length. */
6339 size += constant_size (lsize);
6340 size += lsize;
6342 break;
6343 case dw_val_class_loc_list:
6344 size += DWARF_OFFSET_SIZE;
6345 break;
6346 case dw_val_class_range_list:
6347 size += DWARF_OFFSET_SIZE;
6348 break;
6349 case dw_val_class_const:
6350 size += size_of_sleb128 (AT_int (a));
6351 break;
6352 case dw_val_class_unsigned_const:
6353 size += constant_size (AT_unsigned (a));
6354 break;
6355 case dw_val_class_long_long:
6356 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6357 break;
6358 case dw_val_class_float:
6359 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6360 break;
6361 case dw_val_class_flag:
6362 size += 1;
6363 break;
6364 case dw_val_class_die_ref:
6365 if (AT_ref_external (a))
6366 size += DWARF2_ADDR_SIZE;
6367 else
6368 size += DWARF_OFFSET_SIZE;
6369 break;
6370 case dw_val_class_fde_ref:
6371 size += DWARF_OFFSET_SIZE;
6372 break;
6373 case dw_val_class_lbl_id:
6374 size += DWARF2_ADDR_SIZE;
6375 break;
6376 case dw_val_class_lbl_offset:
6377 size += DWARF_OFFSET_SIZE;
6378 break;
6379 case dw_val_class_str:
6380 if (AT_string_form (a) == DW_FORM_strp)
6381 size += DWARF_OFFSET_SIZE;
6382 else
6383 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6384 break;
6385 default:
6386 abort ();
6390 return size;
6393 /* Size the debugging information associated with a given DIE. Visits the
6394 DIE's children recursively. Updates the global variable next_die_offset, on
6395 each time through. Uses the current value of next_die_offset to update the
6396 die_offset field in each DIE. */
6398 static void
6399 calc_die_sizes (die)
6400 dw_die_ref die;
6402 dw_die_ref c;
6404 die->die_offset = next_die_offset;
6405 next_die_offset += size_of_die (die);
6407 for (c = die->die_child; c != NULL; c = c->die_sib)
6408 calc_die_sizes (c);
6410 if (die->die_child != NULL)
6411 /* Count the null byte used to terminate sibling lists. */
6412 next_die_offset += 1;
6415 /* Set the marks for a die and its children. We do this so
6416 that we know whether or not a reference needs to use FORM_ref_addr; only
6417 DIEs in the same CU will be marked. We used to clear out the offset
6418 and use that as the flag, but ran into ordering problems. */
6420 static void
6421 mark_dies (die)
6422 dw_die_ref die;
6424 dw_die_ref c;
6426 if (die->die_mark)
6427 abort ();
6429 die->die_mark = 1;
6430 for (c = die->die_child; c; c = c->die_sib)
6431 mark_dies (c);
6434 /* Clear the marks for a die and its children. */
6436 static void
6437 unmark_dies (die)
6438 dw_die_ref die;
6440 dw_die_ref c;
6442 if (!die->die_mark)
6443 abort ();
6445 die->die_mark = 0;
6446 for (c = die->die_child; c; c = c->die_sib)
6447 unmark_dies (c);
6450 /* Clear the marks for a die, its children and referred dies. */
6452 static void
6453 unmark_all_dies (die)
6454 dw_die_ref die;
6456 dw_die_ref c;
6457 dw_attr_ref a;
6459 if (!die->die_mark)
6460 return;
6461 die->die_mark = 0;
6463 for (c = die->die_child; c; c = c->die_sib)
6464 unmark_all_dies (c);
6466 for (a = die->die_attr; a; a = a->dw_attr_next)
6467 if (AT_class (a) == dw_val_class_die_ref)
6468 unmark_all_dies (AT_ref (a));
6471 /* Return the size of the .debug_pubnames table generated for the
6472 compilation unit. */
6474 static unsigned long
6475 size_of_pubnames ()
6477 unsigned long size;
6478 unsigned i;
6480 size = DWARF_PUBNAMES_HEADER_SIZE;
6481 for (i = 0; i < pubname_table_in_use; i++)
6483 pubname_ref p = &pubname_table[i];
6484 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6487 size += DWARF_OFFSET_SIZE;
6488 return size;
6491 /* Return the size of the information in the .debug_aranges section. */
6493 static unsigned long
6494 size_of_aranges ()
6496 unsigned long size;
6498 size = DWARF_ARANGES_HEADER_SIZE;
6500 /* Count the address/length pair for this compilation unit. */
6501 size += 2 * DWARF2_ADDR_SIZE;
6502 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6504 /* Count the two zero words used to terminated the address range table. */
6505 size += 2 * DWARF2_ADDR_SIZE;
6506 return size;
6509 /* Select the encoding of an attribute value. */
6511 static enum dwarf_form
6512 value_format (a)
6513 dw_attr_ref a;
6515 switch (a->dw_attr_val.val_class)
6517 case dw_val_class_addr:
6518 return DW_FORM_addr;
6519 case dw_val_class_range_list:
6520 case dw_val_class_offset:
6521 if (DWARF_OFFSET_SIZE == 4)
6522 return DW_FORM_data4;
6523 if (DWARF_OFFSET_SIZE == 8)
6524 return DW_FORM_data8;
6525 abort ();
6526 case dw_val_class_loc_list:
6527 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6528 .debug_loc section */
6529 return DW_FORM_data4;
6530 case dw_val_class_loc:
6531 switch (constant_size (size_of_locs (AT_loc (a))))
6533 case 1:
6534 return DW_FORM_block1;
6535 case 2:
6536 return DW_FORM_block2;
6537 default:
6538 abort ();
6540 case dw_val_class_const:
6541 return DW_FORM_sdata;
6542 case dw_val_class_unsigned_const:
6543 switch (constant_size (AT_unsigned (a)))
6545 case 1:
6546 return DW_FORM_data1;
6547 case 2:
6548 return DW_FORM_data2;
6549 case 4:
6550 return DW_FORM_data4;
6551 case 8:
6552 return DW_FORM_data8;
6553 default:
6554 abort ();
6556 case dw_val_class_long_long:
6557 return DW_FORM_block1;
6558 case dw_val_class_float:
6559 return DW_FORM_block1;
6560 case dw_val_class_flag:
6561 return DW_FORM_flag;
6562 case dw_val_class_die_ref:
6563 if (AT_ref_external (a))
6564 return DW_FORM_ref_addr;
6565 else
6566 return DW_FORM_ref;
6567 case dw_val_class_fde_ref:
6568 return DW_FORM_data;
6569 case dw_val_class_lbl_id:
6570 return DW_FORM_addr;
6571 case dw_val_class_lbl_offset:
6572 return DW_FORM_data;
6573 case dw_val_class_str:
6574 return AT_string_form (a);
6576 default:
6577 abort ();
6581 /* Output the encoding of an attribute value. */
6583 static void
6584 output_value_format (a)
6585 dw_attr_ref a;
6587 enum dwarf_form form = value_format (a);
6589 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6592 /* Output the .debug_abbrev section which defines the DIE abbreviation
6593 table. */
6595 static void
6596 output_abbrev_section ()
6598 unsigned long abbrev_id;
6600 dw_attr_ref a_attr;
6602 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6604 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6606 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6607 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6608 dwarf_tag_name (abbrev->die_tag));
6610 if (abbrev->die_child != NULL)
6611 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6612 else
6613 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6615 for (a_attr = abbrev->die_attr; a_attr != NULL;
6616 a_attr = a_attr->dw_attr_next)
6618 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6619 dwarf_attr_name (a_attr->dw_attr));
6620 output_value_format (a_attr);
6623 dw2_asm_output_data (1, 0, NULL);
6624 dw2_asm_output_data (1, 0, NULL);
6627 /* Terminate the table. */
6628 dw2_asm_output_data (1, 0, NULL);
6631 /* Output a symbol we can use to refer to this DIE from another CU. */
6633 static inline void
6634 output_die_symbol (die)
6635 dw_die_ref die;
6637 char *sym = die->die_symbol;
6639 if (sym == 0)
6640 return;
6642 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6643 /* We make these global, not weak; if the target doesn't support
6644 .linkonce, it doesn't support combining the sections, so debugging
6645 will break. */
6646 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6648 ASM_OUTPUT_LABEL (asm_out_file, sym);
6651 /* Return a new location list, given the begin and end range, and the
6652 expression. gensym tells us whether to generate a new internal symbol for
6653 this location list node, which is done for the head of the list only. */
6655 static inline dw_loc_list_ref
6656 new_loc_list (expr, begin, end, section, gensym)
6657 dw_loc_descr_ref expr;
6658 const char *begin;
6659 const char *end;
6660 const char *section;
6661 unsigned gensym;
6663 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6665 retlist->begin = begin;
6666 retlist->end = end;
6667 retlist->expr = expr;
6668 retlist->section = section;
6669 if (gensym)
6670 retlist->ll_symbol = gen_internal_sym ("LLST");
6672 return retlist;
6675 /* Add a location description expression to a location list */
6677 static inline void
6678 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6679 dw_loc_list_ref *list_head;
6680 dw_loc_descr_ref descr;
6681 const char *begin;
6682 const char *end;
6683 const char *section;
6685 dw_loc_list_ref *d;
6687 /* Find the end of the chain. */
6688 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6691 /* Add a new location list node to the list */
6692 *d = new_loc_list (descr, begin, end, section, 0);
6695 /* Output the location list given to us */
6697 static void
6698 output_loc_list (list_head)
6699 dw_loc_list_ref list_head;
6701 dw_loc_list_ref curr = list_head;
6703 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6705 /* ??? This shouldn't be needed now that we've forced the
6706 compilation unit base address to zero when there is code
6707 in more than one section. */
6708 if (strcmp (curr->section, ".text") == 0)
6710 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6711 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6712 "Location list base address specifier fake entry");
6713 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6714 "Location list base address specifier base");
6717 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6719 unsigned long size;
6721 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6722 "Location list begin address (%s)",
6723 list_head->ll_symbol);
6724 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6725 "Location list end address (%s)",
6726 list_head->ll_symbol);
6727 size = size_of_locs (curr->expr);
6729 /* Output the block length for this list of location operations. */
6730 if (size > 0xffff)
6731 abort ();
6732 dw2_asm_output_data (2, size, "%s", "Location expression size");
6734 output_loc_sequence (curr->expr);
6737 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6738 "Location list terminator begin (%s)",
6739 list_head->ll_symbol);
6740 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6741 "Location list terminator end (%s)",
6742 list_head->ll_symbol);
6745 /* Output the DIE and its attributes. Called recursively to generate
6746 the definitions of each child DIE. */
6748 static void
6749 output_die (die)
6750 dw_die_ref die;
6752 dw_attr_ref a;
6753 dw_die_ref c;
6754 unsigned long size;
6756 /* If someone in another CU might refer to us, set up a symbol for
6757 them to point to. */
6758 if (die->die_symbol)
6759 output_die_symbol (die);
6761 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6762 die->die_offset, dwarf_tag_name (die->die_tag));
6764 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6766 const char *name = dwarf_attr_name (a->dw_attr);
6768 switch (AT_class (a))
6770 case dw_val_class_addr:
6771 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6772 break;
6774 case dw_val_class_offset:
6775 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6776 "%s", name);
6777 break;
6779 case dw_val_class_range_list:
6781 char *p = strchr (ranges_section_label, '\0');
6783 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6784 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6785 "%s", name);
6786 *p = '\0';
6788 break;
6790 case dw_val_class_loc:
6791 size = size_of_locs (AT_loc (a));
6793 /* Output the block length for this list of location operations. */
6794 dw2_asm_output_data (constant_size (size), size, "%s", name);
6796 output_loc_sequence (AT_loc (a));
6797 break;
6799 case dw_val_class_const:
6800 /* ??? It would be slightly more efficient to use a scheme like is
6801 used for unsigned constants below, but gdb 4.x does not sign
6802 extend. Gdb 5.x does sign extend. */
6803 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6804 break;
6806 case dw_val_class_unsigned_const:
6807 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6808 AT_unsigned (a), "%s", name);
6809 break;
6811 case dw_val_class_long_long:
6813 unsigned HOST_WIDE_INT first, second;
6815 dw2_asm_output_data (1,
6816 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6817 "%s", name);
6819 if (WORDS_BIG_ENDIAN)
6821 first = a->dw_attr_val.v.val_long_long.hi;
6822 second = a->dw_attr_val.v.val_long_long.low;
6824 else
6826 first = a->dw_attr_val.v.val_long_long.low;
6827 second = a->dw_attr_val.v.val_long_long.hi;
6830 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6831 first, "long long constant");
6832 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6833 second, NULL);
6835 break;
6837 case dw_val_class_float:
6839 unsigned int i;
6841 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6842 "%s", name);
6844 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6845 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6846 "fp constant word %u", i);
6847 break;
6850 case dw_val_class_flag:
6851 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6852 break;
6854 case dw_val_class_loc_list:
6856 char *sym = AT_loc_list (a)->ll_symbol;
6858 if (sym == 0)
6859 abort ();
6860 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6861 loc_section_label, "%s", name);
6863 break;
6865 case dw_val_class_die_ref:
6866 if (AT_ref_external (a))
6868 char *sym = AT_ref (a)->die_symbol;
6870 if (sym == 0)
6871 abort ();
6872 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6874 else if (AT_ref (a)->die_offset == 0)
6875 abort ();
6876 else
6877 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6878 "%s", name);
6879 break;
6881 case dw_val_class_fde_ref:
6883 char l1[20];
6885 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6886 a->dw_attr_val.v.val_fde_index * 2);
6887 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6889 break;
6891 case dw_val_class_lbl_id:
6892 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6893 break;
6895 case dw_val_class_lbl_offset:
6896 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6897 break;
6899 case dw_val_class_str:
6900 if (AT_string_form (a) == DW_FORM_strp)
6901 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6902 a->dw_attr_val.v.val_str->label,
6903 "%s: \"%s\"", name, AT_string (a));
6904 else
6905 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6906 break;
6908 default:
6909 abort ();
6913 for (c = die->die_child; c != NULL; c = c->die_sib)
6914 output_die (c);
6916 /* Add null byte to terminate sibling list. */
6917 if (die->die_child != NULL)
6918 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6919 die->die_offset);
6922 /* Output the compilation unit that appears at the beginning of the
6923 .debug_info section, and precedes the DIE descriptions. */
6925 static void
6926 output_compilation_unit_header ()
6928 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6929 dw2_asm_output_data (4, 0xffffffff,
6930 "Initial length escape value indicating 64-bit DWARF extension");
6931 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6932 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6933 "Length of Compilation Unit Info");
6934 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6935 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6936 "Offset Into Abbrev. Section");
6937 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6940 /* Output the compilation unit DIE and its children. */
6942 static void
6943 output_comp_unit (die, output_if_empty)
6944 dw_die_ref die;
6945 int output_if_empty;
6947 const char *secname;
6948 char *oldsym, *tmp;
6950 /* Unless we are outputting main CU, we may throw away empty ones. */
6951 if (!output_if_empty && die->die_child == NULL)
6952 return;
6954 /* Even if there are no children of this DIE, we must output the information
6955 about the compilation unit. Otherwise, on an empty translation unit, we
6956 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6957 will then complain when examining the file. First mark all the DIEs in
6958 this CU so we know which get local refs. */
6959 mark_dies (die);
6961 build_abbrev_table (die);
6963 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6964 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6965 calc_die_sizes (die);
6967 oldsym = die->die_symbol;
6968 if (oldsym)
6970 tmp = (char *) alloca (strlen (oldsym) + 24);
6972 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6973 secname = tmp;
6974 die->die_symbol = NULL;
6976 else
6977 secname = (const char *) DEBUG_INFO_SECTION;
6979 /* Output debugging information. */
6980 named_section_flags (secname, SECTION_DEBUG);
6981 output_compilation_unit_header ();
6982 output_die (die);
6984 /* Leave the marks on the main CU, so we can check them in
6985 output_pubnames. */
6986 if (oldsym)
6988 unmark_dies (die);
6989 die->die_symbol = oldsym;
6993 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6994 output of lang_hooks.decl_printable_name for C++ looks like
6995 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6997 static const char *
6998 dwarf2_name (decl, scope)
6999 tree decl;
7000 int scope;
7002 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
7005 /* Add a new entry to .debug_pubnames if appropriate. */
7007 static void
7008 add_pubname (decl, die)
7009 tree decl;
7010 dw_die_ref die;
7012 pubname_ref p;
7014 if (! TREE_PUBLIC (decl))
7015 return;
7017 if (pubname_table_in_use == pubname_table_allocated)
7019 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7020 pubname_table
7021 = (pubname_ref) ggc_realloc (pubname_table,
7022 (pubname_table_allocated
7023 * sizeof (pubname_entry)));
7024 memset (pubname_table + pubname_table_in_use, 0,
7025 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7028 p = &pubname_table[pubname_table_in_use++];
7029 p->die = die;
7030 p->name = xstrdup (dwarf2_name (decl, 1));
7033 /* Output the public names table used to speed up access to externally
7034 visible names. For now, only generate entries for externally
7035 visible procedures. */
7037 static void
7038 output_pubnames ()
7040 unsigned i;
7041 unsigned long pubnames_length = size_of_pubnames ();
7043 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7044 dw2_asm_output_data (4, 0xffffffff,
7045 "Initial length escape value indicating 64-bit DWARF extension");
7046 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7047 "Length of Public Names Info");
7048 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7049 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7050 "Offset of Compilation Unit Info");
7051 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7052 "Compilation Unit Length");
7054 for (i = 0; i < pubname_table_in_use; i++)
7056 pubname_ref pub = &pubname_table[i];
7058 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7059 if (pub->die->die_mark == 0)
7060 abort ();
7062 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7063 "DIE offset");
7065 dw2_asm_output_nstring (pub->name, -1, "external name");
7068 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7071 /* Add a new entry to .debug_aranges if appropriate. */
7073 static void
7074 add_arange (decl, die)
7075 tree decl;
7076 dw_die_ref die;
7078 if (! DECL_SECTION_NAME (decl))
7079 return;
7081 if (arange_table_in_use == arange_table_allocated)
7083 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7084 arange_table = ggc_realloc (arange_table,
7085 (arange_table_allocated
7086 * sizeof (dw_die_ref)));
7087 memset (arange_table + arange_table_in_use, 0,
7088 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7091 arange_table[arange_table_in_use++] = die;
7094 /* Output the information that goes into the .debug_aranges table.
7095 Namely, define the beginning and ending address range of the
7096 text section generated for this compilation unit. */
7098 static void
7099 output_aranges ()
7101 unsigned i;
7102 unsigned long aranges_length = size_of_aranges ();
7104 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7105 dw2_asm_output_data (4, 0xffffffff,
7106 "Initial length escape value indicating 64-bit DWARF extension");
7107 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7108 "Length of Address Ranges Info");
7109 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7110 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7111 "Offset of Compilation Unit Info");
7112 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7113 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7115 /* We need to align to twice the pointer size here. */
7116 if (DWARF_ARANGES_PAD_SIZE)
7118 /* Pad using a 2 byte words so that padding is correct for any
7119 pointer size. */
7120 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7121 2 * DWARF2_ADDR_SIZE);
7122 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7123 dw2_asm_output_data (2, 0, NULL);
7126 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7127 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7128 text_section_label, "Length");
7130 for (i = 0; i < arange_table_in_use; i++)
7132 dw_die_ref die = arange_table[i];
7134 /* We shouldn't see aranges for DIEs outside of the main CU. */
7135 if (die->die_mark == 0)
7136 abort ();
7138 if (die->die_tag == DW_TAG_subprogram)
7140 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7141 "Address");
7142 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7143 get_AT_low_pc (die), "Length");
7145 else
7147 /* A static variable; extract the symbol from DW_AT_location.
7148 Note that this code isn't currently hit, as we only emit
7149 aranges for functions (jason 9/23/99). */
7150 dw_attr_ref a = get_AT (die, DW_AT_location);
7151 dw_loc_descr_ref loc;
7153 if (! a || AT_class (a) != dw_val_class_loc)
7154 abort ();
7156 loc = AT_loc (a);
7157 if (loc->dw_loc_opc != DW_OP_addr)
7158 abort ();
7160 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7161 loc->dw_loc_oprnd1.v.val_addr, "Address");
7162 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7163 get_AT_unsigned (die, DW_AT_byte_size),
7164 "Length");
7168 /* Output the terminator words. */
7169 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7170 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7173 /* Add a new entry to .debug_ranges. Return the offset at which it
7174 was placed. */
7176 static unsigned int
7177 add_ranges (block)
7178 tree block;
7180 unsigned int in_use = ranges_table_in_use;
7182 if (in_use == ranges_table_allocated)
7184 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7185 ranges_table = (dw_ranges_ref)
7186 ggc_realloc (ranges_table, (ranges_table_allocated
7187 * sizeof (struct dw_ranges_struct)));
7188 memset (ranges_table + ranges_table_in_use, 0,
7189 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7192 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7193 ranges_table_in_use = in_use + 1;
7195 return in_use * 2 * DWARF2_ADDR_SIZE;
7198 static void
7199 output_ranges ()
7201 unsigned i;
7202 static const char *const start_fmt = "Offset 0x%x";
7203 const char *fmt = start_fmt;
7205 for (i = 0; i < ranges_table_in_use; i++)
7207 int block_num = ranges_table[i].block_num;
7209 if (block_num)
7211 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7212 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7214 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7215 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7217 /* If all code is in the text section, then the compilation
7218 unit base address defaults to DW_AT_low_pc, which is the
7219 base of the text section. */
7220 if (separate_line_info_table_in_use == 0)
7222 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7223 text_section_label,
7224 fmt, i * 2 * DWARF2_ADDR_SIZE);
7225 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7226 text_section_label, NULL);
7229 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7230 compilation unit base address to zero, which allows us to
7231 use absolute addresses, and not worry about whether the
7232 target supports cross-section arithmetic. */
7233 else
7235 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7236 fmt, i * 2 * DWARF2_ADDR_SIZE);
7237 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7240 fmt = NULL;
7242 else
7244 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7245 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7246 fmt = start_fmt;
7251 /* Data structure containing information about input files. */
7252 struct file_info
7254 char *path; /* Complete file name. */
7255 char *fname; /* File name part. */
7256 int length; /* Length of entire string. */
7257 int file_idx; /* Index in input file table. */
7258 int dir_idx; /* Index in directory table. */
7261 /* Data structure containing information about directories with source
7262 files. */
7263 struct dir_info
7265 char *path; /* Path including directory name. */
7266 int length; /* Path length. */
7267 int prefix; /* Index of directory entry which is a prefix. */
7268 int count; /* Number of files in this directory. */
7269 int dir_idx; /* Index of directory used as base. */
7270 int used; /* Used in the end? */
7273 /* Callback function for file_info comparison. We sort by looking at
7274 the directories in the path. */
7276 static int
7277 file_info_cmp (p1, p2)
7278 const void *p1;
7279 const void *p2;
7281 const struct file_info *s1 = p1;
7282 const struct file_info *s2 = p2;
7283 unsigned char *cp1;
7284 unsigned char *cp2;
7286 /* Take care of file names without directories. We need to make sure that
7287 we return consistent values to qsort since some will get confused if
7288 we return the same value when identical operands are passed in opposite
7289 orders. So if neither has a directory, return 0 and otherwise return
7290 1 or -1 depending on which one has the directory. */
7291 if ((s1->path == s1->fname || s2->path == s2->fname))
7292 return (s2->path == s2->fname) - (s1->path == s1->fname);
7294 cp1 = (unsigned char *) s1->path;
7295 cp2 = (unsigned char *) s2->path;
7297 while (1)
7299 ++cp1;
7300 ++cp2;
7301 /* Reached the end of the first path? If so, handle like above. */
7302 if ((cp1 == (unsigned char *) s1->fname)
7303 || (cp2 == (unsigned char *) s2->fname))
7304 return ((cp2 == (unsigned char *) s2->fname)
7305 - (cp1 == (unsigned char *) s1->fname));
7307 /* Character of current path component the same? */
7308 else if (*cp1 != *cp2)
7309 return *cp1 - *cp2;
7313 /* Output the directory table and the file name table. We try to minimize
7314 the total amount of memory needed. A heuristic is used to avoid large
7315 slowdowns with many input files. */
7317 static void
7318 output_file_names ()
7320 struct file_info *files;
7321 struct dir_info *dirs;
7322 int *saved;
7323 int *savehere;
7324 int *backmap;
7325 size_t ndirs;
7326 int idx_offset;
7327 size_t i;
7328 int idx;
7330 /* Handle the case where file_table is empty. */
7331 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7333 dw2_asm_output_data (1, 0, "End directory table");
7334 dw2_asm_output_data (1, 0, "End file name table");
7335 return;
7338 /* Allocate the various arrays we need. */
7339 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7340 * sizeof (struct file_info));
7341 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7342 * sizeof (struct dir_info));
7344 /* Sort the file names. */
7345 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7347 char *f;
7349 /* Skip all leading "./". */
7350 f = VARRAY_CHAR_PTR (file_table, i);
7351 while (f[0] == '.' && f[1] == '/')
7352 f += 2;
7354 /* Create a new array entry. */
7355 files[i].path = f;
7356 files[i].length = strlen (f);
7357 files[i].file_idx = i;
7359 /* Search for the file name part. */
7360 f = strrchr (f, '/');
7361 files[i].fname = f == NULL ? files[i].path : f + 1;
7364 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7365 sizeof (files[0]), file_info_cmp);
7367 /* Find all the different directories used. */
7368 dirs[0].path = files[1].path;
7369 dirs[0].length = files[1].fname - files[1].path;
7370 dirs[0].prefix = -1;
7371 dirs[0].count = 1;
7372 dirs[0].dir_idx = 0;
7373 dirs[0].used = 0;
7374 files[1].dir_idx = 0;
7375 ndirs = 1;
7377 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7378 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7379 && memcmp (dirs[ndirs - 1].path, files[i].path,
7380 dirs[ndirs - 1].length) == 0)
7382 /* Same directory as last entry. */
7383 files[i].dir_idx = ndirs - 1;
7384 ++dirs[ndirs - 1].count;
7386 else
7388 size_t j;
7390 /* This is a new directory. */
7391 dirs[ndirs].path = files[i].path;
7392 dirs[ndirs].length = files[i].fname - files[i].path;
7393 dirs[ndirs].count = 1;
7394 dirs[ndirs].dir_idx = ndirs;
7395 dirs[ndirs].used = 0;
7396 files[i].dir_idx = ndirs;
7398 /* Search for a prefix. */
7399 dirs[ndirs].prefix = -1;
7400 for (j = 0; j < ndirs; j++)
7401 if (dirs[j].length < dirs[ndirs].length
7402 && dirs[j].length > 1
7403 && (dirs[ndirs].prefix == -1
7404 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7405 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7406 dirs[ndirs].prefix = j;
7408 ++ndirs;
7411 /* Now to the actual work. We have to find a subset of the directories which
7412 allow expressing the file name using references to the directory table
7413 with the least amount of characters. We do not do an exhaustive search
7414 where we would have to check out every combination of every single
7415 possible prefix. Instead we use a heuristic which provides nearly optimal
7416 results in most cases and never is much off. */
7417 saved = (int *) alloca (ndirs * sizeof (int));
7418 savehere = (int *) alloca (ndirs * sizeof (int));
7420 memset (saved, '\0', ndirs * sizeof (saved[0]));
7421 for (i = 0; i < ndirs; i++)
7423 size_t j;
7424 int total;
7426 /* We can always save some space for the current directory. But this
7427 does not mean it will be enough to justify adding the directory. */
7428 savehere[i] = dirs[i].length;
7429 total = (savehere[i] - saved[i]) * dirs[i].count;
7431 for (j = i + 1; j < ndirs; j++)
7433 savehere[j] = 0;
7434 if (saved[j] < dirs[i].length)
7436 /* Determine whether the dirs[i] path is a prefix of the
7437 dirs[j] path. */
7438 int k;
7440 k = dirs[j].prefix;
7441 while (k != -1 && k != (int) i)
7442 k = dirs[k].prefix;
7444 if (k == (int) i)
7446 /* Yes it is. We can possibly safe some memory but
7447 writing the filenames in dirs[j] relative to
7448 dirs[i]. */
7449 savehere[j] = dirs[i].length;
7450 total += (savehere[j] - saved[j]) * dirs[j].count;
7455 /* Check whether we can safe enough to justify adding the dirs[i]
7456 directory. */
7457 if (total > dirs[i].length + 1)
7459 /* It's worthwhile adding. */
7460 for (j = i; j < ndirs; j++)
7461 if (savehere[j] > 0)
7463 /* Remember how much we saved for this directory so far. */
7464 saved[j] = savehere[j];
7466 /* Remember the prefix directory. */
7467 dirs[j].dir_idx = i;
7472 /* We have to emit them in the order they appear in the file_table array
7473 since the index is used in the debug info generation. To do this
7474 efficiently we generate a back-mapping of the indices first. */
7475 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7476 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7478 backmap[files[i].file_idx] = i;
7480 /* Mark this directory as used. */
7481 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7484 /* That was it. We are ready to emit the information. First emit the
7485 directory name table. We have to make sure the first actually emitted
7486 directory name has index one; zero is reserved for the current working
7487 directory. Make sure we do not confuse these indices with the one for the
7488 constructed table (even though most of the time they are identical). */
7489 idx = 1;
7490 idx_offset = dirs[0].length > 0 ? 1 : 0;
7491 for (i = 1 - idx_offset; i < ndirs; i++)
7492 if (dirs[i].used != 0)
7494 dirs[i].used = idx++;
7495 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7496 "Directory Entry: 0x%x", dirs[i].used);
7499 dw2_asm_output_data (1, 0, "End directory table");
7501 /* Correct the index for the current working directory entry if it
7502 exists. */
7503 if (idx_offset == 0)
7504 dirs[0].used = 0;
7506 /* Now write all the file names. */
7507 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7509 int file_idx = backmap[i];
7510 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7512 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7513 "File Entry: 0x%lx", (unsigned long) i);
7515 /* Include directory index. */
7516 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7518 /* Modification time. */
7519 dw2_asm_output_data_uleb128 (0, NULL);
7521 /* File length in bytes. */
7522 dw2_asm_output_data_uleb128 (0, NULL);
7525 dw2_asm_output_data (1, 0, "End file name table");
7529 /* Output the source line number correspondence information. This
7530 information goes into the .debug_line section. */
7532 static void
7533 output_line_info ()
7535 char l1[20], l2[20], p1[20], p2[20];
7536 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7537 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7538 unsigned opc;
7539 unsigned n_op_args;
7540 unsigned long lt_index;
7541 unsigned long current_line;
7542 long line_offset;
7543 long line_delta;
7544 unsigned long current_file;
7545 unsigned long function;
7547 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7548 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7549 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7550 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7552 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7553 dw2_asm_output_data (4, 0xffffffff,
7554 "Initial length escape value indicating 64-bit DWARF extension");
7555 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7556 "Length of Source Line Info");
7557 ASM_OUTPUT_LABEL (asm_out_file, l1);
7559 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7560 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7561 ASM_OUTPUT_LABEL (asm_out_file, p1);
7563 /* Define the architecture-dependent minimum instruction length (in
7564 bytes). In this implementation of DWARF, this field is used for
7565 information purposes only. Since GCC generates assembly language,
7566 we have no a priori knowledge of how many instruction bytes are
7567 generated for each source line, and therefore can use only the
7568 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7569 commands. Accordingly, we fix this as `1', which is "correct
7570 enough" for all architectures, and don't let the target override. */
7571 dw2_asm_output_data (1, 1,
7572 "Minimum Instruction Length");
7574 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7575 "Default is_stmt_start flag");
7576 dw2_asm_output_data (1, DWARF_LINE_BASE,
7577 "Line Base Value (Special Opcodes)");
7578 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7579 "Line Range Value (Special Opcodes)");
7580 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7581 "Special Opcode Base");
7583 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7585 switch (opc)
7587 case DW_LNS_advance_pc:
7588 case DW_LNS_advance_line:
7589 case DW_LNS_set_file:
7590 case DW_LNS_set_column:
7591 case DW_LNS_fixed_advance_pc:
7592 n_op_args = 1;
7593 break;
7594 default:
7595 n_op_args = 0;
7596 break;
7599 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7600 opc, n_op_args);
7603 /* Write out the information about the files we use. */
7604 output_file_names ();
7605 ASM_OUTPUT_LABEL (asm_out_file, p2);
7607 /* We used to set the address register to the first location in the text
7608 section here, but that didn't accomplish anything since we already
7609 have a line note for the opening brace of the first function. */
7611 /* Generate the line number to PC correspondence table, encoded as
7612 a series of state machine operations. */
7613 current_file = 1;
7614 current_line = 1;
7615 strcpy (prev_line_label, text_section_label);
7616 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7618 dw_line_info_ref line_info = &line_info_table[lt_index];
7620 #if 0
7621 /* Disable this optimization for now; GDB wants to see two line notes
7622 at the beginning of a function so it can find the end of the
7623 prologue. */
7625 /* Don't emit anything for redundant notes. Just updating the
7626 address doesn't accomplish anything, because we already assume
7627 that anything after the last address is this line. */
7628 if (line_info->dw_line_num == current_line
7629 && line_info->dw_file_num == current_file)
7630 continue;
7631 #endif
7633 /* Emit debug info for the address of the current line.
7635 Unfortunately, we have little choice here currently, and must always
7636 use the most general form. GCC does not know the address delta
7637 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7638 attributes which will give an upper bound on the address range. We
7639 could perhaps use length attributes to determine when it is safe to
7640 use DW_LNS_fixed_advance_pc. */
7642 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7643 if (0)
7645 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7646 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7647 "DW_LNS_fixed_advance_pc");
7648 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7650 else
7652 /* This can handle any delta. This takes
7653 4+DWARF2_ADDR_SIZE bytes. */
7654 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7655 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7656 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7657 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7660 strcpy (prev_line_label, line_label);
7662 /* Emit debug info for the source file of the current line, if
7663 different from the previous line. */
7664 if (line_info->dw_file_num != current_file)
7666 current_file = line_info->dw_file_num;
7667 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7668 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7669 VARRAY_CHAR_PTR (file_table,
7670 current_file));
7673 /* Emit debug info for the current line number, choosing the encoding
7674 that uses the least amount of space. */
7675 if (line_info->dw_line_num != current_line)
7677 line_offset = line_info->dw_line_num - current_line;
7678 line_delta = line_offset - DWARF_LINE_BASE;
7679 current_line = line_info->dw_line_num;
7680 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7681 /* This can handle deltas from -10 to 234, using the current
7682 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7683 takes 1 byte. */
7684 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7685 "line %lu", current_line);
7686 else
7688 /* This can handle any delta. This takes at least 4 bytes,
7689 depending on the value being encoded. */
7690 dw2_asm_output_data (1, DW_LNS_advance_line,
7691 "advance to line %lu", current_line);
7692 dw2_asm_output_data_sleb128 (line_offset, NULL);
7693 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7696 else
7697 /* We still need to start a new row, so output a copy insn. */
7698 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7701 /* Emit debug info for the address of the end of the function. */
7702 if (0)
7704 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7705 "DW_LNS_fixed_advance_pc");
7706 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7708 else
7710 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7711 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7712 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7713 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7716 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7717 dw2_asm_output_data_uleb128 (1, NULL);
7718 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7720 function = 0;
7721 current_file = 1;
7722 current_line = 1;
7723 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7725 dw_separate_line_info_ref line_info
7726 = &separate_line_info_table[lt_index];
7728 #if 0
7729 /* Don't emit anything for redundant notes. */
7730 if (line_info->dw_line_num == current_line
7731 && line_info->dw_file_num == current_file
7732 && line_info->function == function)
7733 goto cont;
7734 #endif
7736 /* Emit debug info for the address of the current line. If this is
7737 a new function, or the first line of a function, then we need
7738 to handle it differently. */
7739 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7740 lt_index);
7741 if (function != line_info->function)
7743 function = line_info->function;
7745 /* Set the address register to the first line in the function */
7746 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7747 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7748 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7749 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7751 else
7753 /* ??? See the DW_LNS_advance_pc comment above. */
7754 if (0)
7756 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7757 "DW_LNS_fixed_advance_pc");
7758 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7760 else
7762 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7763 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7764 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7765 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7769 strcpy (prev_line_label, line_label);
7771 /* Emit debug info for the source file of the current line, if
7772 different from the previous line. */
7773 if (line_info->dw_file_num != current_file)
7775 current_file = line_info->dw_file_num;
7776 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7777 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7778 VARRAY_CHAR_PTR (file_table,
7779 current_file));
7782 /* Emit debug info for the current line number, choosing the encoding
7783 that uses the least amount of space. */
7784 if (line_info->dw_line_num != current_line)
7786 line_offset = line_info->dw_line_num - current_line;
7787 line_delta = line_offset - DWARF_LINE_BASE;
7788 current_line = line_info->dw_line_num;
7789 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7790 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7791 "line %lu", current_line);
7792 else
7794 dw2_asm_output_data (1, DW_LNS_advance_line,
7795 "advance to line %lu", current_line);
7796 dw2_asm_output_data_sleb128 (line_offset, NULL);
7797 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7800 else
7801 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7803 #if 0
7804 cont:
7805 #endif
7807 lt_index++;
7809 /* If we're done with a function, end its sequence. */
7810 if (lt_index == separate_line_info_table_in_use
7811 || separate_line_info_table[lt_index].function != function)
7813 current_file = 1;
7814 current_line = 1;
7816 /* Emit debug info for the address of the end of the function. */
7817 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7818 if (0)
7820 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7821 "DW_LNS_fixed_advance_pc");
7822 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7824 else
7826 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7827 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7828 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7829 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7832 /* Output the marker for the end of this sequence. */
7833 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7834 dw2_asm_output_data_uleb128 (1, NULL);
7835 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7839 /* Output the marker for the end of the line number info. */
7840 ASM_OUTPUT_LABEL (asm_out_file, l2);
7843 /* Given a pointer to a tree node for some base type, return a pointer to
7844 a DIE that describes the given type.
7846 This routine must only be called for GCC type nodes that correspond to
7847 Dwarf base (fundamental) types. */
7849 static dw_die_ref
7850 base_type_die (type)
7851 tree type;
7853 dw_die_ref base_type_result;
7854 const char *type_name;
7855 enum dwarf_type encoding;
7856 tree name = TYPE_NAME (type);
7858 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7859 return 0;
7861 if (name)
7863 if (TREE_CODE (name) == TYPE_DECL)
7864 name = DECL_NAME (name);
7866 type_name = IDENTIFIER_POINTER (name);
7868 else
7869 type_name = "__unknown__";
7871 switch (TREE_CODE (type))
7873 case INTEGER_TYPE:
7874 /* Carefully distinguish the C character types, without messing
7875 up if the language is not C. Note that we check only for the names
7876 that contain spaces; other names might occur by coincidence in other
7877 languages. */
7878 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7879 && (type == char_type_node
7880 || ! strcmp (type_name, "signed char")
7881 || ! strcmp (type_name, "unsigned char"))))
7883 if (TREE_UNSIGNED (type))
7884 encoding = DW_ATE_unsigned;
7885 else
7886 encoding = DW_ATE_signed;
7887 break;
7889 /* else fall through. */
7891 case CHAR_TYPE:
7892 /* GNU Pascal/Ada CHAR type. Not used in C. */
7893 if (TREE_UNSIGNED (type))
7894 encoding = DW_ATE_unsigned_char;
7895 else
7896 encoding = DW_ATE_signed_char;
7897 break;
7899 case REAL_TYPE:
7900 encoding = DW_ATE_float;
7901 break;
7903 /* Dwarf2 doesn't know anything about complex ints, so use
7904 a user defined type for it. */
7905 case COMPLEX_TYPE:
7906 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7907 encoding = DW_ATE_complex_float;
7908 else
7909 encoding = DW_ATE_lo_user;
7910 break;
7912 case BOOLEAN_TYPE:
7913 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7914 encoding = DW_ATE_boolean;
7915 break;
7917 default:
7918 /* No other TREE_CODEs are Dwarf fundamental types. */
7919 abort ();
7922 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7923 if (demangle_name_func)
7924 type_name = (*demangle_name_func) (type_name);
7926 add_AT_string (base_type_result, DW_AT_name, type_name);
7927 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7928 int_size_in_bytes (type));
7929 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7931 return base_type_result;
7934 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7935 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7936 a given type is generally the same as the given type, except that if the
7937 given type is a pointer or reference type, then the root type of the given
7938 type is the root type of the "basis" type for the pointer or reference
7939 type. (This definition of the "root" type is recursive.) Also, the root
7940 type of a `const' qualified type or a `volatile' qualified type is the
7941 root type of the given type without the qualifiers. */
7943 static tree
7944 root_type (type)
7945 tree type;
7947 if (TREE_CODE (type) == ERROR_MARK)
7948 return error_mark_node;
7950 switch (TREE_CODE (type))
7952 case ERROR_MARK:
7953 return error_mark_node;
7955 case POINTER_TYPE:
7956 case REFERENCE_TYPE:
7957 return type_main_variant (root_type (TREE_TYPE (type)));
7959 default:
7960 return type_main_variant (type);
7964 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7965 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7967 static inline int
7968 is_base_type (type)
7969 tree type;
7971 switch (TREE_CODE (type))
7973 case ERROR_MARK:
7974 case VOID_TYPE:
7975 case INTEGER_TYPE:
7976 case REAL_TYPE:
7977 case COMPLEX_TYPE:
7978 case BOOLEAN_TYPE:
7979 case CHAR_TYPE:
7980 return 1;
7982 case SET_TYPE:
7983 case ARRAY_TYPE:
7984 case RECORD_TYPE:
7985 case UNION_TYPE:
7986 case QUAL_UNION_TYPE:
7987 case ENUMERAL_TYPE:
7988 case FUNCTION_TYPE:
7989 case METHOD_TYPE:
7990 case POINTER_TYPE:
7991 case REFERENCE_TYPE:
7992 case FILE_TYPE:
7993 case OFFSET_TYPE:
7994 case LANG_TYPE:
7995 case VECTOR_TYPE:
7996 return 0;
7998 default:
7999 abort ();
8002 return 0;
8005 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8006 node, return the size in bits for the type if it is a constant, or else
8007 return the alignment for the type if the type's size is not constant, or
8008 else return BITS_PER_WORD if the type actually turns out to be an
8009 ERROR_MARK node. */
8011 static inline unsigned HOST_WIDE_INT
8012 simple_type_size_in_bits (type)
8013 tree type;
8016 if (TREE_CODE (type) == ERROR_MARK)
8017 return BITS_PER_WORD;
8018 else if (TYPE_SIZE (type) == NULL_TREE)
8019 return 0;
8020 else if (host_integerp (TYPE_SIZE (type), 1))
8021 return tree_low_cst (TYPE_SIZE (type), 1);
8022 else
8023 return TYPE_ALIGN (type);
8026 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8027 entry that chains various modifiers in front of the given type. */
8029 static dw_die_ref
8030 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8031 tree type;
8032 int is_const_type;
8033 int is_volatile_type;
8034 dw_die_ref context_die;
8036 enum tree_code code = TREE_CODE (type);
8037 dw_die_ref mod_type_die = NULL;
8038 dw_die_ref sub_die = NULL;
8039 tree item_type = NULL;
8041 if (code != ERROR_MARK)
8043 tree qualified_type;
8045 /* See if we already have the appropriately qualified variant of
8046 this type. */
8047 qualified_type
8048 = get_qualified_type (type,
8049 ((is_const_type ? TYPE_QUAL_CONST : 0)
8050 | (is_volatile_type
8051 ? TYPE_QUAL_VOLATILE : 0)));
8053 /* If we do, then we can just use its DIE, if it exists. */
8054 if (qualified_type)
8056 mod_type_die = lookup_type_die (qualified_type);
8057 if (mod_type_die)
8058 return mod_type_die;
8061 /* Handle C typedef types. */
8062 if (qualified_type && TYPE_NAME (qualified_type)
8063 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8064 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8066 tree type_name = TYPE_NAME (qualified_type);
8067 tree dtype = TREE_TYPE (type_name);
8069 if (qualified_type == dtype)
8071 /* For a named type, use the typedef. */
8072 gen_type_die (qualified_type, context_die);
8073 mod_type_die = lookup_type_die (qualified_type);
8075 else if (is_const_type < TYPE_READONLY (dtype)
8076 || is_volatile_type < TYPE_VOLATILE (dtype))
8077 /* cv-unqualified version of named type. Just use the unnamed
8078 type to which it refers. */
8079 mod_type_die
8080 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8081 is_const_type, is_volatile_type,
8082 context_die);
8084 /* Else cv-qualified version of named type; fall through. */
8087 if (mod_type_die)
8088 /* OK. */
8090 else if (is_const_type)
8092 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8093 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8095 else if (is_volatile_type)
8097 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8098 sub_die = modified_type_die (type, 0, 0, context_die);
8100 else if (code == POINTER_TYPE)
8102 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8103 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8104 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8105 #if 0
8106 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8107 #endif
8108 item_type = TREE_TYPE (type);
8110 else if (code == REFERENCE_TYPE)
8112 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8113 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8114 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8115 #if 0
8116 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8117 #endif
8118 item_type = TREE_TYPE (type);
8120 else if (is_base_type (type))
8121 mod_type_die = base_type_die (type);
8122 else
8124 gen_type_die (type, context_die);
8126 /* We have to get the type_main_variant here (and pass that to the
8127 `lookup_type_die' routine) because the ..._TYPE node we have
8128 might simply be a *copy* of some original type node (where the
8129 copy was created to help us keep track of typedef names) and
8130 that copy might have a different TYPE_UID from the original
8131 ..._TYPE node. */
8132 if (TREE_CODE (type) != VECTOR_TYPE)
8133 mod_type_die = lookup_type_die (type_main_variant (type));
8134 else
8135 /* Vectors have the debugging information in the type,
8136 not the main variant. */
8137 mod_type_die = lookup_type_die (type);
8138 if (mod_type_die == NULL)
8139 abort ();
8142 /* We want to equate the qualified type to the die below. */
8143 type = qualified_type;
8146 if (type)
8147 equate_type_number_to_die (type, mod_type_die);
8148 if (item_type)
8149 /* We must do this after the equate_type_number_to_die call, in case
8150 this is a recursive type. This ensures that the modified_type_die
8151 recursion will terminate even if the type is recursive. Recursive
8152 types are possible in Ada. */
8153 sub_die = modified_type_die (item_type,
8154 TYPE_READONLY (item_type),
8155 TYPE_VOLATILE (item_type),
8156 context_die);
8158 if (sub_die != NULL)
8159 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8161 return mod_type_die;
8164 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8165 an enumerated type. */
8167 static inline int
8168 type_is_enum (type)
8169 tree type;
8171 return TREE_CODE (type) == ENUMERAL_TYPE;
8174 /* Return the register number described by a given RTL node. */
8176 static unsigned int
8177 reg_number (rtl)
8178 rtx rtl;
8180 unsigned regno = REGNO (rtl);
8182 if (regno >= FIRST_PSEUDO_REGISTER)
8183 abort ();
8185 return DBX_REGISTER_NUMBER (regno);
8188 /* Return a location descriptor that designates a machine register or
8189 zero if there is none. */
8191 static dw_loc_descr_ref
8192 reg_loc_descriptor (rtl)
8193 rtx rtl;
8195 unsigned reg;
8196 rtx regs;
8198 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8199 return 0;
8201 reg = reg_number (rtl);
8202 regs = (*targetm.dwarf_register_span) (rtl);
8204 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8205 || regs)
8206 return multiple_reg_loc_descriptor (rtl, regs);
8207 else
8208 return one_reg_loc_descriptor (reg);
8211 /* Return a location descriptor that designates a machine register for
8212 a given hard register number. */
8214 static dw_loc_descr_ref
8215 one_reg_loc_descriptor (regno)
8216 unsigned int regno;
8218 if (regno <= 31)
8219 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8220 else
8221 return new_loc_descr (DW_OP_regx, regno, 0);
8224 /* Given an RTL of a register, return a location descriptor that
8225 designates a value that spans more than one register. */
8227 static dw_loc_descr_ref
8228 multiple_reg_loc_descriptor (rtl, regs)
8229 rtx rtl, regs;
8231 int nregs, size, i;
8232 unsigned reg;
8233 dw_loc_descr_ref loc_result = NULL;
8235 reg = reg_number (rtl);
8236 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8238 /* Simple, contiguous registers. */
8239 if (regs == NULL_RTX)
8241 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8243 loc_result = NULL;
8244 while (nregs--)
8246 dw_loc_descr_ref t;
8248 t = one_reg_loc_descriptor (reg);
8249 add_loc_descr (&loc_result, t);
8250 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8251 ++reg;
8253 return loc_result;
8256 /* Now onto stupid register sets in non contiguous locations. */
8258 if (GET_CODE (regs) != PARALLEL)
8259 abort ();
8261 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8262 loc_result = NULL;
8264 for (i = 0; i < XVECLEN (regs, 0); ++i)
8266 dw_loc_descr_ref t;
8268 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8269 add_loc_descr (&loc_result, t);
8270 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8271 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8273 return loc_result;
8276 /* Return a location descriptor that designates a constant. */
8278 static dw_loc_descr_ref
8279 int_loc_descriptor (i)
8280 HOST_WIDE_INT i;
8282 enum dwarf_location_atom op;
8284 /* Pick the smallest representation of a constant, rather than just
8285 defaulting to the LEB encoding. */
8286 if (i >= 0)
8288 if (i <= 31)
8289 op = DW_OP_lit0 + i;
8290 else if (i <= 0xff)
8291 op = DW_OP_const1u;
8292 else if (i <= 0xffff)
8293 op = DW_OP_const2u;
8294 else if (HOST_BITS_PER_WIDE_INT == 32
8295 || i <= 0xffffffff)
8296 op = DW_OP_const4u;
8297 else
8298 op = DW_OP_constu;
8300 else
8302 if (i >= -0x80)
8303 op = DW_OP_const1s;
8304 else if (i >= -0x8000)
8305 op = DW_OP_const2s;
8306 else if (HOST_BITS_PER_WIDE_INT == 32
8307 || i >= -0x80000000)
8308 op = DW_OP_const4s;
8309 else
8310 op = DW_OP_consts;
8313 return new_loc_descr (op, i, 0);
8316 /* Return a location descriptor that designates a base+offset location. */
8318 static dw_loc_descr_ref
8319 based_loc_descr (reg, offset)
8320 unsigned reg;
8321 long int offset;
8323 dw_loc_descr_ref loc_result;
8324 /* For the "frame base", we use the frame pointer or stack pointer
8325 registers, since the RTL for local variables is relative to one of
8326 them. */
8327 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8328 ? HARD_FRAME_POINTER_REGNUM
8329 : STACK_POINTER_REGNUM);
8331 if (reg == fp_reg)
8332 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8333 else if (reg <= 31)
8334 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8335 else
8336 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8338 return loc_result;
8341 /* Return true if this RTL expression describes a base+offset calculation. */
8343 static inline int
8344 is_based_loc (rtl)
8345 rtx rtl;
8347 return (GET_CODE (rtl) == PLUS
8348 && ((GET_CODE (XEXP (rtl, 0)) == REG
8349 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8350 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8353 /* The following routine converts the RTL for a variable or parameter
8354 (resident in memory) into an equivalent Dwarf representation of a
8355 mechanism for getting the address of that same variable onto the top of a
8356 hypothetical "address evaluation" stack.
8358 When creating memory location descriptors, we are effectively transforming
8359 the RTL for a memory-resident object into its Dwarf postfix expression
8360 equivalent. This routine recursively descends an RTL tree, turning
8361 it into Dwarf postfix code as it goes.
8363 MODE is the mode of the memory reference, needed to handle some
8364 autoincrement addressing modes.
8366 Return 0 if we can't represent the location. */
8368 static dw_loc_descr_ref
8369 mem_loc_descriptor (rtl, mode)
8370 rtx rtl;
8371 enum machine_mode mode;
8373 dw_loc_descr_ref mem_loc_result = NULL;
8375 /* Note that for a dynamically sized array, the location we will generate a
8376 description of here will be the lowest numbered location which is
8377 actually within the array. That's *not* necessarily the same as the
8378 zeroth element of the array. */
8380 rtl = (*targetm.delegitimize_address) (rtl);
8382 switch (GET_CODE (rtl))
8384 case POST_INC:
8385 case POST_DEC:
8386 case POST_MODIFY:
8387 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8388 just fall into the SUBREG code. */
8390 /* ... fall through ... */
8392 case SUBREG:
8393 /* The case of a subreg may arise when we have a local (register)
8394 variable or a formal (register) parameter which doesn't quite fill
8395 up an entire register. For now, just assume that it is
8396 legitimate to make the Dwarf info refer to the whole register which
8397 contains the given subreg. */
8398 rtl = SUBREG_REG (rtl);
8400 /* ... fall through ... */
8402 case REG:
8403 /* Whenever a register number forms a part of the description of the
8404 method for calculating the (dynamic) address of a memory resident
8405 object, DWARF rules require the register number be referred to as
8406 a "base register". This distinction is not based in any way upon
8407 what category of register the hardware believes the given register
8408 belongs to. This is strictly DWARF terminology we're dealing with
8409 here. Note that in cases where the location of a memory-resident
8410 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8411 OP_CONST (0)) the actual DWARF location descriptor that we generate
8412 may just be OP_BASEREG (basereg). This may look deceptively like
8413 the object in question was allocated to a register (rather than in
8414 memory) so DWARF consumers need to be aware of the subtle
8415 distinction between OP_REG and OP_BASEREG. */
8416 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8417 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8418 break;
8420 case MEM:
8421 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8422 if (mem_loc_result != 0)
8423 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8424 break;
8426 case LABEL_REF:
8427 /* Some ports can transform a symbol ref into a label ref, because
8428 the symbol ref is too far away and has to be dumped into a constant
8429 pool. */
8430 case CONST:
8431 case SYMBOL_REF:
8432 /* Alternatively, the symbol in the constant pool might be referenced
8433 by a different symbol. */
8434 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8436 bool marked;
8437 rtx tmp = get_pool_constant_mark (rtl, &marked);
8439 if (GET_CODE (tmp) == SYMBOL_REF)
8441 rtl = tmp;
8442 if (CONSTANT_POOL_ADDRESS_P (tmp))
8443 get_pool_constant_mark (tmp, &marked);
8444 else
8445 marked = true;
8448 /* If all references to this pool constant were optimized away,
8449 it was not output and thus we can't represent it.
8450 FIXME: might try to use DW_OP_const_value here, though
8451 DW_OP_piece complicates it. */
8452 if (!marked)
8453 return 0;
8456 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8457 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8458 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8459 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8460 break;
8462 case PRE_MODIFY:
8463 /* Extract the PLUS expression nested inside and fall into
8464 PLUS code below. */
8465 rtl = XEXP (rtl, 1);
8466 goto plus;
8468 case PRE_INC:
8469 case PRE_DEC:
8470 /* Turn these into a PLUS expression and fall into the PLUS code
8471 below. */
8472 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8473 GEN_INT (GET_CODE (rtl) == PRE_INC
8474 ? GET_MODE_UNIT_SIZE (mode)
8475 : -GET_MODE_UNIT_SIZE (mode)));
8477 /* ... fall through ... */
8479 case PLUS:
8480 plus:
8481 if (is_based_loc (rtl))
8482 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8483 INTVAL (XEXP (rtl, 1)));
8484 else
8486 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8487 if (mem_loc_result == 0)
8488 break;
8490 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8491 && INTVAL (XEXP (rtl, 1)) >= 0)
8492 add_loc_descr (&mem_loc_result,
8493 new_loc_descr (DW_OP_plus_uconst,
8494 INTVAL (XEXP (rtl, 1)), 0));
8495 else
8497 add_loc_descr (&mem_loc_result,
8498 mem_loc_descriptor (XEXP (rtl, 1), mode));
8499 add_loc_descr (&mem_loc_result,
8500 new_loc_descr (DW_OP_plus, 0, 0));
8503 break;
8505 case MULT:
8507 /* If a pseudo-reg is optimized away, it is possible for it to
8508 be replaced with a MEM containing a multiply. */
8509 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8510 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8512 if (op0 == 0 || op1 == 0)
8513 break;
8515 mem_loc_result = op0;
8516 add_loc_descr (&mem_loc_result, op1);
8517 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8518 break;
8521 case CONST_INT:
8522 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8523 break;
8525 case ADDRESSOF:
8526 /* If this is a MEM, return its address. Otherwise, we can't
8527 represent this. */
8528 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8529 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8530 else
8531 return 0;
8533 default:
8534 abort ();
8537 return mem_loc_result;
8540 /* Return a descriptor that describes the concatenation of two locations.
8541 This is typically a complex variable. */
8543 static dw_loc_descr_ref
8544 concat_loc_descriptor (x0, x1)
8545 rtx x0, x1;
8547 dw_loc_descr_ref cc_loc_result = NULL;
8548 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8549 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8551 if (x0_ref == 0 || x1_ref == 0)
8552 return 0;
8554 cc_loc_result = x0_ref;
8555 add_loc_descr (&cc_loc_result,
8556 new_loc_descr (DW_OP_piece,
8557 GET_MODE_SIZE (GET_MODE (x0)), 0));
8559 add_loc_descr (&cc_loc_result, x1_ref);
8560 add_loc_descr (&cc_loc_result,
8561 new_loc_descr (DW_OP_piece,
8562 GET_MODE_SIZE (GET_MODE (x1)), 0));
8564 return cc_loc_result;
8567 /* Output a proper Dwarf location descriptor for a variable or parameter
8568 which is either allocated in a register or in a memory location. For a
8569 register, we just generate an OP_REG and the register number. For a
8570 memory location we provide a Dwarf postfix expression describing how to
8571 generate the (dynamic) address of the object onto the address stack.
8573 If we don't know how to describe it, return 0. */
8575 static dw_loc_descr_ref
8576 loc_descriptor (rtl)
8577 rtx rtl;
8579 dw_loc_descr_ref loc_result = NULL;
8581 switch (GET_CODE (rtl))
8583 case SUBREG:
8584 /* The case of a subreg may arise when we have a local (register)
8585 variable or a formal (register) parameter which doesn't quite fill
8586 up an entire register. For now, just assume that it is
8587 legitimate to make the Dwarf info refer to the whole register which
8588 contains the given subreg. */
8589 rtl = SUBREG_REG (rtl);
8591 /* ... fall through ... */
8593 case REG:
8594 loc_result = reg_loc_descriptor (rtl);
8595 break;
8597 case MEM:
8598 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8599 break;
8601 case CONCAT:
8602 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8603 break;
8605 default:
8606 abort ();
8609 return loc_result;
8612 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8613 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8614 looking for an address. Otherwise, we return a value. If we can't make a
8615 descriptor, return 0. */
8617 static dw_loc_descr_ref
8618 loc_descriptor_from_tree (loc, addressp)
8619 tree loc;
8620 int addressp;
8622 dw_loc_descr_ref ret, ret1;
8623 int indirect_p = 0;
8624 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8625 enum dwarf_location_atom op;
8627 /* ??? Most of the time we do not take proper care for sign/zero
8628 extending the values properly. Hopefully this won't be a real
8629 problem... */
8631 switch (TREE_CODE (loc))
8633 case ERROR_MARK:
8634 return 0;
8636 case WITH_RECORD_EXPR:
8637 case PLACEHOLDER_EXPR:
8638 /* This case involves extracting fields from an object to determine the
8639 position of other fields. We don't try to encode this here. The
8640 only user of this is Ada, which encodes the needed information using
8641 the names of types. */
8642 return 0;
8644 case CALL_EXPR:
8645 return 0;
8647 case ADDR_EXPR:
8648 /* We can support this only if we can look through conversions and
8649 find an INDIRECT_EXPR. */
8650 for (loc = TREE_OPERAND (loc, 0);
8651 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8652 || TREE_CODE (loc) == NON_LVALUE_EXPR
8653 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8654 || TREE_CODE (loc) == SAVE_EXPR;
8655 loc = TREE_OPERAND (loc, 0))
8658 return (TREE_CODE (loc) == INDIRECT_REF
8659 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8660 : 0);
8662 case VAR_DECL:
8663 if (DECL_THREAD_LOCAL (loc))
8665 rtx rtl;
8667 #ifndef ASM_OUTPUT_DWARF_DTPREL
8668 /* If this is not defined, we have no way to emit the data. */
8669 return 0;
8670 #endif
8672 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8673 look up addresses of objects in the current module. */
8674 if (DECL_EXTERNAL (loc))
8675 return 0;
8677 rtl = rtl_for_decl_location (loc);
8678 if (rtl == NULL_RTX)
8679 return 0;
8681 if (GET_CODE (rtl) != MEM)
8682 return 0;
8683 rtl = XEXP (rtl, 0);
8684 if (! CONSTANT_P (rtl))
8685 return 0;
8687 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8688 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8689 ret->dw_loc_oprnd1.v.val_addr = rtl;
8691 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8692 add_loc_descr (&ret, ret1);
8694 indirect_p = 1;
8695 break;
8697 /* FALLTHRU */
8699 case PARM_DECL:
8701 rtx rtl = rtl_for_decl_location (loc);
8703 if (rtl == NULL_RTX)
8704 return 0;
8705 else if (CONSTANT_P (rtl))
8707 ret = new_loc_descr (DW_OP_addr, 0, 0);
8708 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8709 ret->dw_loc_oprnd1.v.val_addr = rtl;
8710 indirect_p = 1;
8712 else
8714 enum machine_mode mode = GET_MODE (rtl);
8716 if (GET_CODE (rtl) == MEM)
8718 indirect_p = 1;
8719 rtl = XEXP (rtl, 0);
8722 ret = mem_loc_descriptor (rtl, mode);
8725 break;
8727 case INDIRECT_REF:
8728 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8729 indirect_p = 1;
8730 break;
8732 case COMPOUND_EXPR:
8733 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8735 case NOP_EXPR:
8736 case CONVERT_EXPR:
8737 case NON_LVALUE_EXPR:
8738 case VIEW_CONVERT_EXPR:
8739 case SAVE_EXPR:
8740 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8742 case COMPONENT_REF:
8743 case BIT_FIELD_REF:
8744 case ARRAY_REF:
8745 case ARRAY_RANGE_REF:
8747 tree obj, offset;
8748 HOST_WIDE_INT bitsize, bitpos, bytepos;
8749 enum machine_mode mode;
8750 int volatilep;
8752 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8753 &unsignedp, &volatilep);
8755 if (obj == loc)
8756 return 0;
8758 ret = loc_descriptor_from_tree (obj, 1);
8759 if (ret == 0
8760 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8761 return 0;
8763 if (offset != NULL_TREE)
8765 /* Variable offset. */
8766 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8767 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8770 if (!addressp)
8771 indirect_p = 1;
8773 bytepos = bitpos / BITS_PER_UNIT;
8774 if (bytepos > 0)
8775 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8776 else if (bytepos < 0)
8778 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8779 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8781 break;
8784 case INTEGER_CST:
8785 if (host_integerp (loc, 0))
8786 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8787 else
8788 return 0;
8789 break;
8791 case TRUTH_AND_EXPR:
8792 case TRUTH_ANDIF_EXPR:
8793 case BIT_AND_EXPR:
8794 op = DW_OP_and;
8795 goto do_binop;
8797 case TRUTH_XOR_EXPR:
8798 case BIT_XOR_EXPR:
8799 op = DW_OP_xor;
8800 goto do_binop;
8802 case TRUTH_OR_EXPR:
8803 case TRUTH_ORIF_EXPR:
8804 case BIT_IOR_EXPR:
8805 op = DW_OP_or;
8806 goto do_binop;
8808 case TRUNC_DIV_EXPR:
8809 op = DW_OP_div;
8810 goto do_binop;
8812 case MINUS_EXPR:
8813 op = DW_OP_minus;
8814 goto do_binop;
8816 case TRUNC_MOD_EXPR:
8817 op = DW_OP_mod;
8818 goto do_binop;
8820 case MULT_EXPR:
8821 op = DW_OP_mul;
8822 goto do_binop;
8824 case LSHIFT_EXPR:
8825 op = DW_OP_shl;
8826 goto do_binop;
8828 case RSHIFT_EXPR:
8829 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8830 goto do_binop;
8832 case PLUS_EXPR:
8833 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8834 && host_integerp (TREE_OPERAND (loc, 1), 0))
8836 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8837 if (ret == 0)
8838 return 0;
8840 add_loc_descr (&ret,
8841 new_loc_descr (DW_OP_plus_uconst,
8842 tree_low_cst (TREE_OPERAND (loc, 1),
8844 0));
8845 break;
8848 op = DW_OP_plus;
8849 goto do_binop;
8851 case LE_EXPR:
8852 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8853 return 0;
8855 op = DW_OP_le;
8856 goto do_binop;
8858 case GE_EXPR:
8859 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8860 return 0;
8862 op = DW_OP_ge;
8863 goto do_binop;
8865 case LT_EXPR:
8866 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8867 return 0;
8869 op = DW_OP_lt;
8870 goto do_binop;
8872 case GT_EXPR:
8873 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8874 return 0;
8876 op = DW_OP_gt;
8877 goto do_binop;
8879 case EQ_EXPR:
8880 op = DW_OP_eq;
8881 goto do_binop;
8883 case NE_EXPR:
8884 op = DW_OP_ne;
8885 goto do_binop;
8887 do_binop:
8888 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8889 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8890 if (ret == 0 || ret1 == 0)
8891 return 0;
8893 add_loc_descr (&ret, ret1);
8894 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8895 break;
8897 case TRUTH_NOT_EXPR:
8898 case BIT_NOT_EXPR:
8899 op = DW_OP_not;
8900 goto do_unop;
8902 case ABS_EXPR:
8903 op = DW_OP_abs;
8904 goto do_unop;
8906 case NEGATE_EXPR:
8907 op = DW_OP_neg;
8908 goto do_unop;
8910 do_unop:
8911 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8912 if (ret == 0)
8913 return 0;
8915 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8916 break;
8918 case MAX_EXPR:
8919 loc = build (COND_EXPR, TREE_TYPE (loc),
8920 build (LT_EXPR, integer_type_node,
8921 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8922 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8924 /* ... fall through ... */
8926 case COND_EXPR:
8928 dw_loc_descr_ref lhs
8929 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8930 dw_loc_descr_ref rhs
8931 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8932 dw_loc_descr_ref bra_node, jump_node, tmp;
8934 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8935 if (ret == 0 || lhs == 0 || rhs == 0)
8936 return 0;
8938 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8939 add_loc_descr (&ret, bra_node);
8941 add_loc_descr (&ret, rhs);
8942 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8943 add_loc_descr (&ret, jump_node);
8945 add_loc_descr (&ret, lhs);
8946 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8947 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8949 /* ??? Need a node to point the skip at. Use a nop. */
8950 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8951 add_loc_descr (&ret, tmp);
8952 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8953 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8955 break;
8957 default:
8958 abort ();
8961 /* Show if we can't fill the request for an address. */
8962 if (addressp && indirect_p == 0)
8963 return 0;
8965 /* If we've got an address and don't want one, dereference. */
8966 if (!addressp && indirect_p > 0)
8968 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8970 if (size > DWARF2_ADDR_SIZE || size == -1)
8971 return 0;
8972 else if (size == DWARF2_ADDR_SIZE)
8973 op = DW_OP_deref;
8974 else
8975 op = DW_OP_deref_size;
8977 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8980 return ret;
8983 /* Given a value, round it up to the lowest multiple of `boundary'
8984 which is not less than the value itself. */
8986 static inline HOST_WIDE_INT
8987 ceiling (value, boundary)
8988 HOST_WIDE_INT value;
8989 unsigned int boundary;
8991 return (((value + boundary - 1) / boundary) * boundary);
8994 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8995 pointer to the declared type for the relevant field variable, or return
8996 `integer_type_node' if the given node turns out to be an
8997 ERROR_MARK node. */
8999 static inline tree
9000 field_type (decl)
9001 tree decl;
9003 tree type;
9005 if (TREE_CODE (decl) == ERROR_MARK)
9006 return integer_type_node;
9008 type = DECL_BIT_FIELD_TYPE (decl);
9009 if (type == NULL_TREE)
9010 type = TREE_TYPE (decl);
9012 return type;
9015 /* Given a pointer to a tree node, return the alignment in bits for
9016 it, or else return BITS_PER_WORD if the node actually turns out to
9017 be an ERROR_MARK node. */
9019 static inline unsigned
9020 simple_type_align_in_bits (type)
9021 tree type;
9023 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9026 static inline unsigned
9027 simple_decl_align_in_bits (decl)
9028 tree decl;
9030 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9033 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9034 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9035 or return 0 if we are unable to determine what that offset is, either
9036 because the argument turns out to be a pointer to an ERROR_MARK node, or
9037 because the offset is actually variable. (We can't handle the latter case
9038 just yet). */
9040 static HOST_WIDE_INT
9041 field_byte_offset (decl)
9042 tree decl;
9044 unsigned int type_align_in_bits;
9045 unsigned int decl_align_in_bits;
9046 unsigned HOST_WIDE_INT type_size_in_bits;
9047 HOST_WIDE_INT object_offset_in_bits;
9048 tree type;
9049 tree field_size_tree;
9050 HOST_WIDE_INT bitpos_int;
9051 HOST_WIDE_INT deepest_bitpos;
9052 unsigned HOST_WIDE_INT field_size_in_bits;
9054 if (TREE_CODE (decl) == ERROR_MARK)
9055 return 0;
9056 else if (TREE_CODE (decl) != FIELD_DECL)
9057 abort ();
9059 type = field_type (decl);
9060 field_size_tree = DECL_SIZE (decl);
9062 /* The size could be unspecified if there was an error, or for
9063 a flexible array member. */
9064 if (! field_size_tree)
9065 field_size_tree = bitsize_zero_node;
9067 /* We cannot yet cope with fields whose positions are variable, so
9068 for now, when we see such things, we simply return 0. Someday, we may
9069 be able to handle such cases, but it will be damn difficult. */
9070 if (! host_integerp (bit_position (decl), 0))
9071 return 0;
9073 bitpos_int = int_bit_position (decl);
9075 /* If we don't know the size of the field, pretend it's a full word. */
9076 if (host_integerp (field_size_tree, 1))
9077 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9078 else
9079 field_size_in_bits = BITS_PER_WORD;
9081 type_size_in_bits = simple_type_size_in_bits (type);
9082 type_align_in_bits = simple_type_align_in_bits (type);
9083 decl_align_in_bits = simple_decl_align_in_bits (decl);
9085 /* The GCC front-end doesn't make any attempt to keep track of the starting
9086 bit offset (relative to the start of the containing structure type) of the
9087 hypothetical "containing object" for a bit-field. Thus, when computing
9088 the byte offset value for the start of the "containing object" of a
9089 bit-field, we must deduce this information on our own. This can be rather
9090 tricky to do in some cases. For example, handling the following structure
9091 type definition when compiling for an i386/i486 target (which only aligns
9092 long long's to 32-bit boundaries) can be very tricky:
9094 struct S { int field1; long long field2:31; };
9096 Fortunately, there is a simple rule-of-thumb which can be used in such
9097 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9098 structure shown above. It decides to do this based upon one simple rule
9099 for bit-field allocation. GCC allocates each "containing object" for each
9100 bit-field at the first (i.e. lowest addressed) legitimate alignment
9101 boundary (based upon the required minimum alignment for the declared type
9102 of the field) which it can possibly use, subject to the condition that
9103 there is still enough available space remaining in the containing object
9104 (when allocated at the selected point) to fully accommodate all of the
9105 bits of the bit-field itself.
9107 This simple rule makes it obvious why GCC allocates 8 bytes for each
9108 object of the structure type shown above. When looking for a place to
9109 allocate the "containing object" for `field2', the compiler simply tries
9110 to allocate a 64-bit "containing object" at each successive 32-bit
9111 boundary (starting at zero) until it finds a place to allocate that 64-
9112 bit field such that at least 31 contiguous (and previously unallocated)
9113 bits remain within that selected 64 bit field. (As it turns out, for the
9114 example above, the compiler finds it is OK to allocate the "containing
9115 object" 64-bit field at bit-offset zero within the structure type.)
9117 Here we attempt to work backwards from the limited set of facts we're
9118 given, and we try to deduce from those facts, where GCC must have believed
9119 that the containing object started (within the structure type). The value
9120 we deduce is then used (by the callers of this routine) to generate
9121 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9122 and, in the case of DW_AT_location, regular fields as well). */
9124 /* Figure out the bit-distance from the start of the structure to the
9125 "deepest" bit of the bit-field. */
9126 deepest_bitpos = bitpos_int + field_size_in_bits;
9128 /* This is the tricky part. Use some fancy footwork to deduce where the
9129 lowest addressed bit of the containing object must be. */
9130 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9132 /* Round up to type_align by default. This works best for bitfields. */
9133 object_offset_in_bits += type_align_in_bits - 1;
9134 object_offset_in_bits /= type_align_in_bits;
9135 object_offset_in_bits *= type_align_in_bits;
9137 if (object_offset_in_bits > bitpos_int)
9139 /* Sigh, the decl must be packed. */
9140 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9142 /* Round up to decl_align instead. */
9143 object_offset_in_bits += decl_align_in_bits - 1;
9144 object_offset_in_bits /= decl_align_in_bits;
9145 object_offset_in_bits *= decl_align_in_bits;
9148 return object_offset_in_bits / BITS_PER_UNIT;
9151 /* The following routines define various Dwarf attributes and any data
9152 associated with them. */
9154 /* Add a location description attribute value to a DIE.
9156 This emits location attributes suitable for whole variables and
9157 whole parameters. Note that the location attributes for struct fields are
9158 generated by the routine `data_member_location_attribute' below. */
9160 static inline void
9161 add_AT_location_description (die, attr_kind, descr)
9162 dw_die_ref die;
9163 enum dwarf_attribute attr_kind;
9164 dw_loc_descr_ref descr;
9166 if (descr != 0)
9167 add_AT_loc (die, attr_kind, descr);
9170 /* Attach the specialized form of location attribute used for data members of
9171 struct and union types. In the special case of a FIELD_DECL node which
9172 represents a bit-field, the "offset" part of this special location
9173 descriptor must indicate the distance in bytes from the lowest-addressed
9174 byte of the containing struct or union type to the lowest-addressed byte of
9175 the "containing object" for the bit-field. (See the `field_byte_offset'
9176 function above).
9178 For any given bit-field, the "containing object" is a hypothetical object
9179 (of some integral or enum type) within which the given bit-field lives. The
9180 type of this hypothetical "containing object" is always the same as the
9181 declared type of the individual bit-field itself (for GCC anyway... the
9182 DWARF spec doesn't actually mandate this). Note that it is the size (in
9183 bytes) of the hypothetical "containing object" which will be given in the
9184 DW_AT_byte_size attribute for this bit-field. (See the
9185 `byte_size_attribute' function below.) It is also used when calculating the
9186 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9187 function below.) */
9189 static void
9190 add_data_member_location_attribute (die, decl)
9191 dw_die_ref die;
9192 tree decl;
9194 long offset;
9195 dw_loc_descr_ref loc_descr = 0;
9197 if (TREE_CODE (decl) == TREE_VEC)
9199 /* We're working on the TAG_inheritance for a base class. */
9200 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9202 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9203 aren't at a fixed offset from all (sub)objects of the same
9204 type. We need to extract the appropriate offset from our
9205 vtable. The following dwarf expression means
9207 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9209 This is specific to the V3 ABI, of course. */
9211 dw_loc_descr_ref tmp;
9213 /* Make a copy of the object address. */
9214 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9215 add_loc_descr (&loc_descr, tmp);
9217 /* Extract the vtable address. */
9218 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9219 add_loc_descr (&loc_descr, tmp);
9221 /* Calculate the address of the offset. */
9222 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9223 if (offset >= 0)
9224 abort ();
9226 tmp = int_loc_descriptor (-offset);
9227 add_loc_descr (&loc_descr, tmp);
9228 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9229 add_loc_descr (&loc_descr, tmp);
9231 /* Extract the offset. */
9232 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9233 add_loc_descr (&loc_descr, tmp);
9235 /* Add it to the object address. */
9236 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9237 add_loc_descr (&loc_descr, tmp);
9239 else
9240 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9242 else
9243 offset = field_byte_offset (decl);
9245 if (! loc_descr)
9247 enum dwarf_location_atom op;
9249 /* The DWARF2 standard says that we should assume that the structure
9250 address is already on the stack, so we can specify a structure field
9251 address by using DW_OP_plus_uconst. */
9253 #ifdef MIPS_DEBUGGING_INFO
9254 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9255 operator correctly. It works only if we leave the offset on the
9256 stack. */
9257 op = DW_OP_constu;
9258 #else
9259 op = DW_OP_plus_uconst;
9260 #endif
9262 loc_descr = new_loc_descr (op, offset, 0);
9265 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9268 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9269 does not have a "location" either in memory or in a register. These
9270 things can arise in GNU C when a constant is passed as an actual parameter
9271 to an inlined function. They can also arise in C++ where declared
9272 constants do not necessarily get memory "homes". */
9274 static void
9275 add_const_value_attribute (die, rtl)
9276 dw_die_ref die;
9277 rtx rtl;
9279 switch (GET_CODE (rtl))
9281 case CONST_INT:
9282 /* Note that a CONST_INT rtx could represent either an integer
9283 or a floating-point constant. A CONST_INT is used whenever
9284 the constant will fit into a single word. In all such
9285 cases, the original mode of the constant value is wiped
9286 out, and the CONST_INT rtx is assigned VOIDmode. */
9288 HOST_WIDE_INT val = INTVAL (rtl);
9290 /* ??? We really should be using HOST_WIDE_INT throughout. */
9291 if (val < 0 && (long) val == val)
9292 add_AT_int (die, DW_AT_const_value, (long) val);
9293 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9294 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9295 else
9297 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9298 add_AT_long_long (die, DW_AT_const_value,
9299 val >> HOST_BITS_PER_LONG, val);
9300 #else
9301 abort ();
9302 #endif
9305 break;
9307 case CONST_DOUBLE:
9308 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9309 floating-point constant. A CONST_DOUBLE is used whenever the
9310 constant requires more than one word in order to be adequately
9311 represented. We output CONST_DOUBLEs as blocks. */
9313 enum machine_mode mode = GET_MODE (rtl);
9315 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9317 unsigned length = GET_MODE_SIZE (mode) / 4;
9318 long *array = (long *) ggc_alloc (sizeof (long) * length);
9319 REAL_VALUE_TYPE rv;
9321 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9322 switch (mode)
9324 case SFmode:
9325 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9326 break;
9328 case DFmode:
9329 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9330 break;
9332 case XFmode:
9333 case TFmode:
9334 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9335 break;
9337 default:
9338 abort ();
9341 add_AT_float (die, DW_AT_const_value, length, array);
9343 else
9345 /* ??? We really should be using HOST_WIDE_INT throughout. */
9346 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9347 abort ();
9349 add_AT_long_long (die, DW_AT_const_value,
9350 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9353 break;
9355 case CONST_STRING:
9356 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9357 break;
9359 case SYMBOL_REF:
9360 case LABEL_REF:
9361 case CONST:
9362 add_AT_addr (die, DW_AT_const_value, rtl);
9363 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9364 break;
9366 case PLUS:
9367 /* In cases where an inlined instance of an inline function is passed
9368 the address of an `auto' variable (which is local to the caller) we
9369 can get a situation where the DECL_RTL of the artificial local
9370 variable (for the inlining) which acts as a stand-in for the
9371 corresponding formal parameter (of the inline function) will look
9372 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9373 exactly a compile-time constant expression, but it isn't the address
9374 of the (artificial) local variable either. Rather, it represents the
9375 *value* which the artificial local variable always has during its
9376 lifetime. We currently have no way to represent such quasi-constant
9377 values in Dwarf, so for now we just punt and generate nothing. */
9378 break;
9380 default:
9381 /* No other kinds of rtx should be possible here. */
9382 abort ();
9387 static rtx
9388 rtl_for_decl_location (decl)
9389 tree decl;
9391 rtx rtl;
9393 /* Here we have to decide where we are going to say the parameter "lives"
9394 (as far as the debugger is concerned). We only have a couple of
9395 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9397 DECL_RTL normally indicates where the parameter lives during most of the
9398 activation of the function. If optimization is enabled however, this
9399 could be either NULL or else a pseudo-reg. Both of those cases indicate
9400 that the parameter doesn't really live anywhere (as far as the code
9401 generation parts of GCC are concerned) during most of the function's
9402 activation. That will happen (for example) if the parameter is never
9403 referenced within the function.
9405 We could just generate a location descriptor here for all non-NULL
9406 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9407 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9408 where DECL_RTL is NULL or is a pseudo-reg.
9410 Note however that we can only get away with using DECL_INCOMING_RTL as
9411 a backup substitute for DECL_RTL in certain limited cases. In cases
9412 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9413 we can be sure that the parameter was passed using the same type as it is
9414 declared to have within the function, and that its DECL_INCOMING_RTL
9415 points us to a place where a value of that type is passed.
9417 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9418 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9419 because in these cases DECL_INCOMING_RTL points us to a value of some
9420 type which is *different* from the type of the parameter itself. Thus,
9421 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9422 such cases, the debugger would end up (for example) trying to fetch a
9423 `float' from a place which actually contains the first part of a
9424 `double'. That would lead to really incorrect and confusing
9425 output at debug-time.
9427 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9428 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9429 are a couple of exceptions however. On little-endian machines we can
9430 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9431 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9432 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9433 when (on a little-endian machine) a non-prototyped function has a
9434 parameter declared to be of type `short' or `char'. In such cases,
9435 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9436 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9437 passed `int' value. If the debugger then uses that address to fetch
9438 a `short' or a `char' (on a little-endian machine) the result will be
9439 the correct data, so we allow for such exceptional cases below.
9441 Note that our goal here is to describe the place where the given formal
9442 parameter lives during most of the function's activation (i.e. between the
9443 end of the prologue and the start of the epilogue). We'll do that as best
9444 as we can. Note however that if the given formal parameter is modified
9445 sometime during the execution of the function, then a stack backtrace (at
9446 debug-time) will show the function as having been called with the *new*
9447 value rather than the value which was originally passed in. This happens
9448 rarely enough that it is not a major problem, but it *is* a problem, and
9449 I'd like to fix it.
9451 A future version of dwarf2out.c may generate two additional attributes for
9452 any given DW_TAG_formal_parameter DIE which will describe the "passed
9453 type" and the "passed location" for the given formal parameter in addition
9454 to the attributes we now generate to indicate the "declared type" and the
9455 "active location" for each parameter. This additional set of attributes
9456 could be used by debuggers for stack backtraces. Separately, note that
9457 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9458 This happens (for example) for inlined-instances of inline function formal
9459 parameters which are never referenced. This really shouldn't be
9460 happening. All PARM_DECL nodes should get valid non-NULL
9461 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9462 values for inlined instances of inline function parameters, so when we see
9463 such cases, we are just out-of-luck for the time being (until integrate.c
9464 gets fixed). */
9466 /* Use DECL_RTL as the "location" unless we find something better. */
9467 rtl = DECL_RTL_IF_SET (decl);
9469 /* When generating abstract instances, ignore everything except
9470 constants, symbols living in memory, and symbols living in
9471 fixed registers. */
9472 if (! reload_completed)
9474 if (rtl
9475 && (CONSTANT_P (rtl)
9476 || (GET_CODE (rtl) == MEM
9477 && CONSTANT_P (XEXP (rtl, 0)))
9478 || (GET_CODE (rtl) == REG
9479 && TREE_CODE (decl) == VAR_DECL
9480 && TREE_STATIC (decl))))
9482 rtl = (*targetm.delegitimize_address) (rtl);
9483 return rtl;
9485 rtl = NULL_RTX;
9487 else if (TREE_CODE (decl) == PARM_DECL)
9489 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9491 tree declared_type = type_main_variant (TREE_TYPE (decl));
9492 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9494 /* This decl represents a formal parameter which was optimized out.
9495 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9496 all cases where (rtl == NULL_RTX) just below. */
9497 if (declared_type == passed_type)
9498 rtl = DECL_INCOMING_RTL (decl);
9499 else if (! BYTES_BIG_ENDIAN
9500 && TREE_CODE (declared_type) == INTEGER_TYPE
9501 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9502 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9503 rtl = DECL_INCOMING_RTL (decl);
9506 /* If the parm was passed in registers, but lives on the stack, then
9507 make a big endian correction if the mode of the type of the
9508 parameter is not the same as the mode of the rtl. */
9509 /* ??? This is the same series of checks that are made in dbxout.c before
9510 we reach the big endian correction code there. It isn't clear if all
9511 of these checks are necessary here, but keeping them all is the safe
9512 thing to do. */
9513 else if (GET_CODE (rtl) == MEM
9514 && XEXP (rtl, 0) != const0_rtx
9515 && ! CONSTANT_P (XEXP (rtl, 0))
9516 /* Not passed in memory. */
9517 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9518 /* Not passed by invisible reference. */
9519 && (GET_CODE (XEXP (rtl, 0)) != REG
9520 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9521 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9522 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9523 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9524 #endif
9526 /* Big endian correction check. */
9527 && BYTES_BIG_ENDIAN
9528 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9529 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9530 < UNITS_PER_WORD))
9532 int offset = (UNITS_PER_WORD
9533 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9535 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9536 plus_constant (XEXP (rtl, 0), offset));
9540 if (rtl != NULL_RTX)
9542 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9543 #ifdef LEAF_REG_REMAP
9544 if (current_function_uses_only_leaf_regs)
9545 leaf_renumber_regs_insn (rtl);
9546 #endif
9549 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9550 and will have been substituted directly into all expressions that use it.
9551 C does not have such a concept, but C++ and other languages do. */
9552 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9554 /* If a variable is initialized with a string constant without embedded
9555 zeros, build CONST_STRING. */
9556 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9557 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9559 tree arrtype = TREE_TYPE (decl);
9560 tree enttype = TREE_TYPE (arrtype);
9561 tree domain = TYPE_DOMAIN (arrtype);
9562 tree init = DECL_INITIAL (decl);
9563 enum machine_mode mode = TYPE_MODE (enttype);
9565 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9566 && domain
9567 && integer_zerop (TYPE_MIN_VALUE (domain))
9568 && compare_tree_int (TYPE_MAX_VALUE (domain),
9569 TREE_STRING_LENGTH (init) - 1) == 0
9570 && ((size_t) TREE_STRING_LENGTH (init)
9571 == strlen (TREE_STRING_POINTER (init)) + 1))
9572 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9574 /* If the initializer is something that we know will expand into an
9575 immediate RTL constant, expand it now. Expanding anything else
9576 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9577 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9578 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9580 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9581 EXPAND_INITIALIZER);
9582 /* If expand_expr returns a MEM, it wasn't immediate. */
9583 if (rtl && GET_CODE (rtl) == MEM)
9584 abort ();
9588 if (rtl)
9589 rtl = (*targetm.delegitimize_address) (rtl);
9591 /* If we don't look past the constant pool, we risk emitting a
9592 reference to a constant pool entry that isn't referenced from
9593 code, and thus is not emitted. */
9594 if (rtl)
9595 rtl = avoid_constant_pool_reference (rtl);
9597 return rtl;
9600 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9601 data attribute for a variable or a parameter. We generate the
9602 DW_AT_const_value attribute only in those cases where the given variable
9603 or parameter does not have a true "location" either in memory or in a
9604 register. This can happen (for example) when a constant is passed as an
9605 actual argument in a call to an inline function. (It's possible that
9606 these things can crop up in other ways also.) Note that one type of
9607 constant value which can be passed into an inlined function is a constant
9608 pointer. This can happen for example if an actual argument in an inlined
9609 function call evaluates to a compile-time constant address. */
9611 static void
9612 add_location_or_const_value_attribute (die, decl)
9613 dw_die_ref die;
9614 tree decl;
9616 rtx rtl;
9617 dw_loc_descr_ref descr;
9619 if (TREE_CODE (decl) == ERROR_MARK)
9620 return;
9621 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9622 abort ();
9624 rtl = rtl_for_decl_location (decl);
9625 if (rtl == NULL_RTX)
9626 return;
9628 switch (GET_CODE (rtl))
9630 case ADDRESSOF:
9631 /* The address of a variable that was optimized away;
9632 don't emit anything. */
9633 break;
9635 case CONST_INT:
9636 case CONST_DOUBLE:
9637 case CONST_STRING:
9638 case SYMBOL_REF:
9639 case LABEL_REF:
9640 case CONST:
9641 case PLUS:
9642 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9643 add_const_value_attribute (die, rtl);
9644 break;
9646 case MEM:
9647 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9649 /* Need loc_descriptor_from_tree since that's where we know
9650 how to handle TLS variables. Want the object's address
9651 since the top-level DW_AT_location assumes such. See
9652 the confusion in loc_descriptor for reference. */
9653 descr = loc_descriptor_from_tree (decl, 1);
9655 else
9657 case REG:
9658 case SUBREG:
9659 case CONCAT:
9660 descr = loc_descriptor (rtl);
9662 add_AT_location_description (die, DW_AT_location, descr);
9663 break;
9665 default:
9666 abort ();
9670 /* If we don't have a copy of this variable in memory for some reason (such
9671 as a C++ member constant that doesn't have an out-of-line definition),
9672 we should tell the debugger about the constant value. */
9674 static void
9675 tree_add_const_value_attribute (var_die, decl)
9676 dw_die_ref var_die;
9677 tree decl;
9679 tree init = DECL_INITIAL (decl);
9680 tree type = TREE_TYPE (decl);
9682 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9683 && initializer_constant_valid_p (init, type) == null_pointer_node)
9684 /* OK */;
9685 else
9686 return;
9688 switch (TREE_CODE (type))
9690 case INTEGER_TYPE:
9691 if (host_integerp (init, 0))
9692 add_AT_unsigned (var_die, DW_AT_const_value,
9693 tree_low_cst (init, 0));
9694 else
9695 add_AT_long_long (var_die, DW_AT_const_value,
9696 TREE_INT_CST_HIGH (init),
9697 TREE_INT_CST_LOW (init));
9698 break;
9700 default:;
9704 /* Generate an DW_AT_name attribute given some string value to be included as
9705 the value of the attribute. */
9707 static void
9708 add_name_attribute (die, name_string)
9709 dw_die_ref die;
9710 const char *name_string;
9712 if (name_string != NULL && *name_string != 0)
9714 if (demangle_name_func)
9715 name_string = (*demangle_name_func) (name_string);
9717 add_AT_string (die, DW_AT_name, name_string);
9721 /* Generate an DW_AT_comp_dir attribute for DIE. */
9723 static void
9724 add_comp_dir_attribute (die)
9725 dw_die_ref die;
9727 const char *wd = getpwd ();
9728 if (wd != NULL)
9729 add_AT_string (die, DW_AT_comp_dir, wd);
9732 /* Given a tree node describing an array bound (either lower or upper) output
9733 a representation for that bound. */
9735 static void
9736 add_bound_info (subrange_die, bound_attr, bound)
9737 dw_die_ref subrange_die;
9738 enum dwarf_attribute bound_attr;
9739 tree bound;
9741 switch (TREE_CODE (bound))
9743 case ERROR_MARK:
9744 return;
9746 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9747 case INTEGER_CST:
9748 if (! host_integerp (bound, 0)
9749 || (bound_attr == DW_AT_lower_bound
9750 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9751 || (is_fortran () && integer_onep (bound)))))
9752 /* use the default */
9754 else
9755 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9756 break;
9758 case CONVERT_EXPR:
9759 case NOP_EXPR:
9760 case NON_LVALUE_EXPR:
9761 case VIEW_CONVERT_EXPR:
9762 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9763 break;
9765 case SAVE_EXPR:
9766 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9767 access the upper bound values may be bogus. If they refer to a
9768 register, they may only describe how to get at these values at the
9769 points in the generated code right after they have just been
9770 computed. Worse yet, in the typical case, the upper bound values
9771 will not even *be* computed in the optimized code (though the
9772 number of elements will), so these SAVE_EXPRs are entirely
9773 bogus. In order to compensate for this fact, we check here to see
9774 if optimization is enabled, and if so, we don't add an attribute
9775 for the (unknown and unknowable) upper bound. This should not
9776 cause too much trouble for existing (stupid?) debuggers because
9777 they have to deal with empty upper bounds location descriptions
9778 anyway in order to be able to deal with incomplete array types.
9779 Of course an intelligent debugger (GDB?) should be able to
9780 comprehend that a missing upper bound specification in an array
9781 type used for a storage class `auto' local array variable
9782 indicates that the upper bound is both unknown (at compile- time)
9783 and unknowable (at run-time) due to optimization.
9785 We assume that a MEM rtx is safe because gcc wouldn't put the
9786 value there unless it was going to be used repeatedly in the
9787 function, i.e. for cleanups. */
9788 if (SAVE_EXPR_RTL (bound)
9789 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9791 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9792 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9793 rtx loc = SAVE_EXPR_RTL (bound);
9795 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9796 it references an outer function's frame. */
9797 if (GET_CODE (loc) == MEM)
9799 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9801 if (XEXP (loc, 0) != new_addr)
9802 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9805 add_AT_flag (decl_die, DW_AT_artificial, 1);
9806 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9807 add_AT_location_description (decl_die, DW_AT_location,
9808 loc_descriptor (loc));
9809 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9812 /* Else leave out the attribute. */
9813 break;
9815 case VAR_DECL:
9816 case PARM_DECL:
9818 dw_die_ref decl_die = lookup_decl_die (bound);
9820 /* ??? Can this happen, or should the variable have been bound
9821 first? Probably it can, since I imagine that we try to create
9822 the types of parameters in the order in which they exist in
9823 the list, and won't have created a forward reference to a
9824 later parameter. */
9825 if (decl_die != NULL)
9826 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9827 break;
9830 default:
9832 /* Otherwise try to create a stack operation procedure to
9833 evaluate the value of the array bound. */
9835 dw_die_ref ctx, decl_die;
9836 dw_loc_descr_ref loc;
9838 loc = loc_descriptor_from_tree (bound, 0);
9839 if (loc == NULL)
9840 break;
9842 if (current_function_decl == 0)
9843 ctx = comp_unit_die;
9844 else
9845 ctx = lookup_decl_die (current_function_decl);
9847 /* If we weren't able to find a context, it's most likely the case
9848 that we are processing the return type of the function. So
9849 make a SAVE_EXPR to point to it and have the limbo DIE code
9850 find the proper die. The save_expr function doesn't always
9851 make a SAVE_EXPR, so do it ourselves. */
9852 if (ctx == 0)
9853 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9854 current_function_decl, NULL_TREE);
9856 decl_die = new_die (DW_TAG_variable, ctx, bound);
9857 add_AT_flag (decl_die, DW_AT_artificial, 1);
9858 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9859 add_AT_loc (decl_die, DW_AT_location, loc);
9861 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9862 break;
9867 /* Note that the block of subscript information for an array type also
9868 includes information about the element type of type given array type. */
9870 static void
9871 add_subscript_info (type_die, type)
9872 dw_die_ref type_die;
9873 tree type;
9875 #ifndef MIPS_DEBUGGING_INFO
9876 unsigned dimension_number;
9877 #endif
9878 tree lower, upper;
9879 dw_die_ref subrange_die;
9881 /* The GNU compilers represent multidimensional array types as sequences of
9882 one dimensional array types whose element types are themselves array
9883 types. Here we squish that down, so that each multidimensional array
9884 type gets only one array_type DIE in the Dwarf debugging info. The draft
9885 Dwarf specification say that we are allowed to do this kind of
9886 compression in C (because there is no difference between an array or
9887 arrays and a multidimensional array in C) but for other source languages
9888 (e.g. Ada) we probably shouldn't do this. */
9890 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9891 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9892 We work around this by disabling this feature. See also
9893 gen_array_type_die. */
9894 #ifndef MIPS_DEBUGGING_INFO
9895 for (dimension_number = 0;
9896 TREE_CODE (type) == ARRAY_TYPE;
9897 type = TREE_TYPE (type), dimension_number++)
9898 #endif
9900 tree domain = TYPE_DOMAIN (type);
9902 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9903 and (in GNU C only) variable bounds. Handle all three forms
9904 here. */
9905 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9906 if (domain)
9908 /* We have an array type with specified bounds. */
9909 lower = TYPE_MIN_VALUE (domain);
9910 upper = TYPE_MAX_VALUE (domain);
9912 /* define the index type. */
9913 if (TREE_TYPE (domain))
9915 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9916 TREE_TYPE field. We can't emit debug info for this
9917 because it is an unnamed integral type. */
9918 if (TREE_CODE (domain) == INTEGER_TYPE
9919 && TYPE_NAME (domain) == NULL_TREE
9920 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9921 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9923 else
9924 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9925 type_die);
9928 /* ??? If upper is NULL, the array has unspecified length,
9929 but it does have a lower bound. This happens with Fortran
9930 dimension arr(N:*)
9931 Since the debugger is definitely going to need to know N
9932 to produce useful results, go ahead and output the lower
9933 bound solo, and hope the debugger can cope. */
9935 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9936 if (upper)
9937 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9940 /* Otherwise we have an array type with an unspecified length. The
9941 DWARF-2 spec does not say how to handle this; let's just leave out the
9942 bounds. */
9946 static void
9947 add_byte_size_attribute (die, tree_node)
9948 dw_die_ref die;
9949 tree tree_node;
9951 unsigned size;
9953 switch (TREE_CODE (tree_node))
9955 case ERROR_MARK:
9956 size = 0;
9957 break;
9958 case ENUMERAL_TYPE:
9959 case RECORD_TYPE:
9960 case UNION_TYPE:
9961 case QUAL_UNION_TYPE:
9962 size = int_size_in_bytes (tree_node);
9963 break;
9964 case FIELD_DECL:
9965 /* For a data member of a struct or union, the DW_AT_byte_size is
9966 generally given as the number of bytes normally allocated for an
9967 object of the *declared* type of the member itself. This is true
9968 even for bit-fields. */
9969 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9970 break;
9971 default:
9972 abort ();
9975 /* Note that `size' might be -1 when we get to this point. If it is, that
9976 indicates that the byte size of the entity in question is variable. We
9977 have no good way of expressing this fact in Dwarf at the present time,
9978 so just let the -1 pass on through. */
9979 add_AT_unsigned (die, DW_AT_byte_size, size);
9982 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9983 which specifies the distance in bits from the highest order bit of the
9984 "containing object" for the bit-field to the highest order bit of the
9985 bit-field itself.
9987 For any given bit-field, the "containing object" is a hypothetical object
9988 (of some integral or enum type) within which the given bit-field lives. The
9989 type of this hypothetical "containing object" is always the same as the
9990 declared type of the individual bit-field itself. The determination of the
9991 exact location of the "containing object" for a bit-field is rather
9992 complicated. It's handled by the `field_byte_offset' function (above).
9994 Note that it is the size (in bytes) of the hypothetical "containing object"
9995 which will be given in the DW_AT_byte_size attribute for this bit-field.
9996 (See `byte_size_attribute' above). */
9998 static inline void
9999 add_bit_offset_attribute (die, decl)
10000 dw_die_ref die;
10001 tree decl;
10003 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10004 tree type = DECL_BIT_FIELD_TYPE (decl);
10005 HOST_WIDE_INT bitpos_int;
10006 HOST_WIDE_INT highest_order_object_bit_offset;
10007 HOST_WIDE_INT highest_order_field_bit_offset;
10008 HOST_WIDE_INT unsigned bit_offset;
10010 /* Must be a field and a bit field. */
10011 if (!type
10012 || TREE_CODE (decl) != FIELD_DECL)
10013 abort ();
10015 /* We can't yet handle bit-fields whose offsets are variable, so if we
10016 encounter such things, just return without generating any attribute
10017 whatsoever. Likewise for variable or too large size. */
10018 if (! host_integerp (bit_position (decl), 0)
10019 || ! host_integerp (DECL_SIZE (decl), 1))
10020 return;
10022 bitpos_int = int_bit_position (decl);
10024 /* Note that the bit offset is always the distance (in bits) from the
10025 highest-order bit of the "containing object" to the highest-order bit of
10026 the bit-field itself. Since the "high-order end" of any object or field
10027 is different on big-endian and little-endian machines, the computation
10028 below must take account of these differences. */
10029 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10030 highest_order_field_bit_offset = bitpos_int;
10032 if (! BYTES_BIG_ENDIAN)
10034 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10035 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10038 bit_offset
10039 = (! BYTES_BIG_ENDIAN
10040 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10041 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10043 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10046 /* For a FIELD_DECL node which represents a bit field, output an attribute
10047 which specifies the length in bits of the given field. */
10049 static inline void
10050 add_bit_size_attribute (die, decl)
10051 dw_die_ref die;
10052 tree decl;
10054 /* Must be a field and a bit field. */
10055 if (TREE_CODE (decl) != FIELD_DECL
10056 || ! DECL_BIT_FIELD_TYPE (decl))
10057 abort ();
10059 if (host_integerp (DECL_SIZE (decl), 1))
10060 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10063 /* If the compiled language is ANSI C, then add a 'prototyped'
10064 attribute, if arg types are given for the parameters of a function. */
10066 static inline void
10067 add_prototyped_attribute (die, func_type)
10068 dw_die_ref die;
10069 tree func_type;
10071 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10072 && TYPE_ARG_TYPES (func_type) != NULL)
10073 add_AT_flag (die, DW_AT_prototyped, 1);
10076 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10077 by looking in either the type declaration or object declaration
10078 equate table. */
10080 static inline void
10081 add_abstract_origin_attribute (die, origin)
10082 dw_die_ref die;
10083 tree origin;
10085 dw_die_ref origin_die = NULL;
10087 if (TREE_CODE (origin) != FUNCTION_DECL)
10089 /* We may have gotten separated from the block for the inlined
10090 function, if we're in an exception handler or some such; make
10091 sure that the abstract function has been written out.
10093 Doing this for nested functions is wrong, however; functions are
10094 distinct units, and our context might not even be inline. */
10095 tree fn = origin;
10097 if (TYPE_P (fn))
10098 fn = TYPE_STUB_DECL (fn);
10100 fn = decl_function_context (fn);
10101 if (fn)
10102 dwarf2out_abstract_function (fn);
10105 if (DECL_P (origin))
10106 origin_die = lookup_decl_die (origin);
10107 else if (TYPE_P (origin))
10108 origin_die = lookup_type_die (origin);
10110 if (origin_die == NULL)
10111 abort ();
10113 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10116 /* We do not currently support the pure_virtual attribute. */
10118 static inline void
10119 add_pure_or_virtual_attribute (die, func_decl)
10120 dw_die_ref die;
10121 tree func_decl;
10123 if (DECL_VINDEX (func_decl))
10125 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10127 if (host_integerp (DECL_VINDEX (func_decl), 0))
10128 add_AT_loc (die, DW_AT_vtable_elem_location,
10129 new_loc_descr (DW_OP_constu,
10130 tree_low_cst (DECL_VINDEX (func_decl), 0),
10131 0));
10133 /* GNU extension: Record what type this method came from originally. */
10134 if (debug_info_level > DINFO_LEVEL_TERSE)
10135 add_AT_die_ref (die, DW_AT_containing_type,
10136 lookup_type_die (DECL_CONTEXT (func_decl)));
10140 /* Add source coordinate attributes for the given decl. */
10142 static void
10143 add_src_coords_attributes (die, decl)
10144 dw_die_ref die;
10145 tree decl;
10147 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10149 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10150 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10153 /* Add an DW_AT_name attribute and source coordinate attribute for the
10154 given decl, but only if it actually has a name. */
10156 static void
10157 add_name_and_src_coords_attributes (die, decl)
10158 dw_die_ref die;
10159 tree decl;
10161 tree decl_name;
10163 decl_name = DECL_NAME (decl);
10164 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10166 add_name_attribute (die, dwarf2_name (decl, 0));
10167 if (! DECL_ARTIFICIAL (decl))
10168 add_src_coords_attributes (die, decl);
10170 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10171 && TREE_PUBLIC (decl)
10172 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10173 && !DECL_ABSTRACT (decl))
10174 add_AT_string (die, DW_AT_MIPS_linkage_name,
10175 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10178 #ifdef VMS_DEBUGGING_INFO
10179 /* Get the function's name, as described by its RTL. This may be different
10180 from the DECL_NAME name used in the source file. */
10181 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10183 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10184 XEXP (DECL_RTL (decl), 0));
10185 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10187 #endif
10190 /* Push a new declaration scope. */
10192 static void
10193 push_decl_scope (scope)
10194 tree scope;
10196 VARRAY_PUSH_TREE (decl_scope_table, scope);
10199 /* Pop a declaration scope. */
10201 static inline void
10202 pop_decl_scope ()
10204 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10205 abort ();
10207 VARRAY_POP (decl_scope_table);
10210 /* Return the DIE for the scope that immediately contains this type.
10211 Non-named types get global scope. Named types nested in other
10212 types get their containing scope if it's open, or global scope
10213 otherwise. All other types (i.e. function-local named types) get
10214 the current active scope. */
10216 static dw_die_ref
10217 scope_die_for (t, context_die)
10218 tree t;
10219 dw_die_ref context_die;
10221 dw_die_ref scope_die = NULL;
10222 tree containing_scope;
10223 int i;
10225 /* Non-types always go in the current scope. */
10226 if (! TYPE_P (t))
10227 abort ();
10229 containing_scope = TYPE_CONTEXT (t);
10231 /* Ignore namespaces for the moment. */
10232 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10233 containing_scope = NULL_TREE;
10235 /* Ignore function type "scopes" from the C frontend. They mean that
10236 a tagged type is local to a parmlist of a function declarator, but
10237 that isn't useful to DWARF. */
10238 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10239 containing_scope = NULL_TREE;
10241 if (containing_scope == NULL_TREE)
10242 scope_die = comp_unit_die;
10243 else if (TYPE_P (containing_scope))
10245 /* For types, we can just look up the appropriate DIE. But
10246 first we check to see if we're in the middle of emitting it
10247 so we know where the new DIE should go. */
10248 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10249 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10250 break;
10252 if (i < 0)
10254 if (debug_info_level > DINFO_LEVEL_TERSE
10255 && !TREE_ASM_WRITTEN (containing_scope))
10256 abort ();
10258 /* If none of the current dies are suitable, we get file scope. */
10259 scope_die = comp_unit_die;
10261 else
10262 scope_die = lookup_type_die (containing_scope);
10264 else
10265 scope_die = context_die;
10267 return scope_die;
10270 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10272 static inline int
10273 local_scope_p (context_die)
10274 dw_die_ref context_die;
10276 for (; context_die; context_die = context_die->die_parent)
10277 if (context_die->die_tag == DW_TAG_inlined_subroutine
10278 || context_die->die_tag == DW_TAG_subprogram)
10279 return 1;
10281 return 0;
10284 /* Returns nonzero if CONTEXT_DIE is a class. */
10286 static inline int
10287 class_scope_p (context_die)
10288 dw_die_ref context_die;
10290 return (context_die
10291 && (context_die->die_tag == DW_TAG_structure_type
10292 || context_die->die_tag == DW_TAG_union_type));
10295 /* Many forms of DIEs require a "type description" attribute. This
10296 routine locates the proper "type descriptor" die for the type given
10297 by 'type', and adds an DW_AT_type attribute below the given die. */
10299 static void
10300 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10301 dw_die_ref object_die;
10302 tree type;
10303 int decl_const;
10304 int decl_volatile;
10305 dw_die_ref context_die;
10307 enum tree_code code = TREE_CODE (type);
10308 dw_die_ref type_die = NULL;
10310 /* ??? If this type is an unnamed subrange type of an integral or
10311 floating-point type, use the inner type. This is because we have no
10312 support for unnamed types in base_type_die. This can happen if this is
10313 an Ada subrange type. Correct solution is emit a subrange type die. */
10314 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10315 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10316 type = TREE_TYPE (type), code = TREE_CODE (type);
10318 if (code == ERROR_MARK
10319 /* Handle a special case. For functions whose return type is void, we
10320 generate *no* type attribute. (Note that no object may have type
10321 `void', so this only applies to function return types). */
10322 || code == VOID_TYPE)
10323 return;
10325 type_die = modified_type_die (type,
10326 decl_const || TYPE_READONLY (type),
10327 decl_volatile || TYPE_VOLATILE (type),
10328 context_die);
10330 if (type_die != NULL)
10331 add_AT_die_ref (object_die, DW_AT_type, type_die);
10334 /* Given a tree pointer to a struct, class, union, or enum type node, return
10335 a pointer to the (string) tag name for the given type, or zero if the type
10336 was declared without a tag. */
10338 static const char *
10339 type_tag (type)
10340 tree type;
10342 const char *name = 0;
10344 if (TYPE_NAME (type) != 0)
10346 tree t = 0;
10348 /* Find the IDENTIFIER_NODE for the type name. */
10349 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10350 t = TYPE_NAME (type);
10352 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10353 a TYPE_DECL node, regardless of whether or not a `typedef' was
10354 involved. */
10355 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10356 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10357 t = DECL_NAME (TYPE_NAME (type));
10359 /* Now get the name as a string, or invent one. */
10360 if (t != 0)
10361 name = IDENTIFIER_POINTER (t);
10364 return (name == 0 || *name == '\0') ? 0 : name;
10367 /* Return the type associated with a data member, make a special check
10368 for bit field types. */
10370 static inline tree
10371 member_declared_type (member)
10372 tree member;
10374 return (DECL_BIT_FIELD_TYPE (member)
10375 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10378 /* Get the decl's label, as described by its RTL. This may be different
10379 from the DECL_NAME name used in the source file. */
10381 #if 0
10382 static const char *
10383 decl_start_label (decl)
10384 tree decl;
10386 rtx x;
10387 const char *fnname;
10389 x = DECL_RTL (decl);
10390 if (GET_CODE (x) != MEM)
10391 abort ();
10393 x = XEXP (x, 0);
10394 if (GET_CODE (x) != SYMBOL_REF)
10395 abort ();
10397 fnname = XSTR (x, 0);
10398 return fnname;
10400 #endif
10402 /* These routines generate the internal representation of the DIE's for
10403 the compilation unit. Debugging information is collected by walking
10404 the declaration trees passed in from dwarf2out_decl(). */
10406 static void
10407 gen_array_type_die (type, context_die)
10408 tree type;
10409 dw_die_ref context_die;
10411 dw_die_ref scope_die = scope_die_for (type, context_die);
10412 dw_die_ref array_die;
10413 tree element_type;
10415 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10416 the inner array type comes before the outer array type. Thus we must
10417 call gen_type_die before we call new_die. See below also. */
10418 #ifdef MIPS_DEBUGGING_INFO
10419 gen_type_die (TREE_TYPE (type), context_die);
10420 #endif
10422 array_die = new_die (DW_TAG_array_type, scope_die, type);
10423 add_name_attribute (array_die, type_tag (type));
10424 equate_type_number_to_die (type, array_die);
10426 if (TREE_CODE (type) == VECTOR_TYPE)
10428 /* The frontend feeds us a representation for the vector as a struct
10429 containing an array. Pull out the array type. */
10430 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10431 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10434 #if 0
10435 /* We default the array ordering. SDB will probably do
10436 the right things even if DW_AT_ordering is not present. It's not even
10437 an issue until we start to get into multidimensional arrays anyway. If
10438 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10439 then we'll have to put the DW_AT_ordering attribute back in. (But if
10440 and when we find out that we need to put these in, we will only do so
10441 for multidimensional arrays. */
10442 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10443 #endif
10445 #ifdef MIPS_DEBUGGING_INFO
10446 /* The SGI compilers handle arrays of unknown bound by setting
10447 AT_declaration and not emitting any subrange DIEs. */
10448 if (! TYPE_DOMAIN (type))
10449 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10450 else
10451 #endif
10452 add_subscript_info (array_die, type);
10454 /* Add representation of the type of the elements of this array type. */
10455 element_type = TREE_TYPE (type);
10457 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10458 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10459 We work around this by disabling this feature. See also
10460 add_subscript_info. */
10461 #ifndef MIPS_DEBUGGING_INFO
10462 while (TREE_CODE (element_type) == ARRAY_TYPE)
10463 element_type = TREE_TYPE (element_type);
10465 gen_type_die (element_type, context_die);
10466 #endif
10468 add_type_attribute (array_die, element_type, 0, 0, context_die);
10471 static void
10472 gen_set_type_die (type, context_die)
10473 tree type;
10474 dw_die_ref context_die;
10476 dw_die_ref type_die
10477 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10479 equate_type_number_to_die (type, type_die);
10480 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10483 #if 0
10484 static void
10485 gen_entry_point_die (decl, context_die)
10486 tree decl;
10487 dw_die_ref context_die;
10489 tree origin = decl_ultimate_origin (decl);
10490 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10492 if (origin != NULL)
10493 add_abstract_origin_attribute (decl_die, origin);
10494 else
10496 add_name_and_src_coords_attributes (decl_die, decl);
10497 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10498 0, 0, context_die);
10501 if (DECL_ABSTRACT (decl))
10502 equate_decl_number_to_die (decl, decl_die);
10503 else
10504 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10506 #endif
10508 /* Walk through the list of incomplete types again, trying once more to
10509 emit full debugging info for them. */
10511 static void
10512 retry_incomplete_types ()
10514 int i;
10516 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10517 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10520 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10522 static void
10523 gen_inlined_enumeration_type_die (type, context_die)
10524 tree type;
10525 dw_die_ref context_die;
10527 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10529 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10530 be incomplete and such types are not marked. */
10531 add_abstract_origin_attribute (type_die, type);
10534 /* Generate a DIE to represent an inlined instance of a structure type. */
10536 static void
10537 gen_inlined_structure_type_die (type, context_die)
10538 tree type;
10539 dw_die_ref context_die;
10541 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10543 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10544 be incomplete and such types are not marked. */
10545 add_abstract_origin_attribute (type_die, type);
10548 /* Generate a DIE to represent an inlined instance of a union type. */
10550 static void
10551 gen_inlined_union_type_die (type, context_die)
10552 tree type;
10553 dw_die_ref context_die;
10555 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10557 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10558 be incomplete and such types are not marked. */
10559 add_abstract_origin_attribute (type_die, type);
10562 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10563 include all of the information about the enumeration values also. Each
10564 enumerated type name/value is listed as a child of the enumerated type
10565 DIE. */
10567 static void
10568 gen_enumeration_type_die (type, context_die)
10569 tree type;
10570 dw_die_ref context_die;
10572 dw_die_ref type_die = lookup_type_die (type);
10574 if (type_die == NULL)
10576 type_die = new_die (DW_TAG_enumeration_type,
10577 scope_die_for (type, context_die), type);
10578 equate_type_number_to_die (type, type_die);
10579 add_name_attribute (type_die, type_tag (type));
10581 else if (! TYPE_SIZE (type))
10582 return;
10583 else
10584 remove_AT (type_die, DW_AT_declaration);
10586 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10587 given enum type is incomplete, do not generate the DW_AT_byte_size
10588 attribute or the DW_AT_element_list attribute. */
10589 if (TYPE_SIZE (type))
10591 tree link;
10593 TREE_ASM_WRITTEN (type) = 1;
10594 add_byte_size_attribute (type_die, type);
10595 if (TYPE_STUB_DECL (type) != NULL_TREE)
10596 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10598 /* If the first reference to this type was as the return type of an
10599 inline function, then it may not have a parent. Fix this now. */
10600 if (type_die->die_parent == NULL)
10601 add_child_die (scope_die_for (type, context_die), type_die);
10603 for (link = TYPE_FIELDS (type);
10604 link != NULL; link = TREE_CHAIN (link))
10606 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10608 add_name_attribute (enum_die,
10609 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10611 if (host_integerp (TREE_VALUE (link), 0))
10613 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10614 add_AT_int (enum_die, DW_AT_const_value,
10615 tree_low_cst (TREE_VALUE (link), 0));
10616 else
10617 add_AT_unsigned (enum_die, DW_AT_const_value,
10618 tree_low_cst (TREE_VALUE (link), 0));
10622 else
10623 add_AT_flag (type_die, DW_AT_declaration, 1);
10626 /* Generate a DIE to represent either a real live formal parameter decl or to
10627 represent just the type of some formal parameter position in some function
10628 type.
10630 Note that this routine is a bit unusual because its argument may be a
10631 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10632 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10633 node. If it's the former then this function is being called to output a
10634 DIE to represent a formal parameter object (or some inlining thereof). If
10635 it's the latter, then this function is only being called to output a
10636 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10637 argument type of some subprogram type. */
10639 static dw_die_ref
10640 gen_formal_parameter_die (node, context_die)
10641 tree node;
10642 dw_die_ref context_die;
10644 dw_die_ref parm_die
10645 = new_die (DW_TAG_formal_parameter, context_die, node);
10646 tree origin;
10648 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10650 case 'd':
10651 origin = decl_ultimate_origin (node);
10652 if (origin != NULL)
10653 add_abstract_origin_attribute (parm_die, origin);
10654 else
10656 add_name_and_src_coords_attributes (parm_die, node);
10657 add_type_attribute (parm_die, TREE_TYPE (node),
10658 TREE_READONLY (node),
10659 TREE_THIS_VOLATILE (node),
10660 context_die);
10661 if (DECL_ARTIFICIAL (node))
10662 add_AT_flag (parm_die, DW_AT_artificial, 1);
10665 equate_decl_number_to_die (node, parm_die);
10666 if (! DECL_ABSTRACT (node))
10667 add_location_or_const_value_attribute (parm_die, node);
10669 break;
10671 case 't':
10672 /* We were called with some kind of a ..._TYPE node. */
10673 add_type_attribute (parm_die, node, 0, 0, context_die);
10674 break;
10676 default:
10677 abort ();
10680 return parm_die;
10683 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10684 at the end of an (ANSI prototyped) formal parameters list. */
10686 static void
10687 gen_unspecified_parameters_die (decl_or_type, context_die)
10688 tree decl_or_type;
10689 dw_die_ref context_die;
10691 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10694 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10695 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10696 parameters as specified in some function type specification (except for
10697 those which appear as part of a function *definition*). */
10699 static void
10700 gen_formal_types_die (function_or_method_type, context_die)
10701 tree function_or_method_type;
10702 dw_die_ref context_die;
10704 tree link;
10705 tree formal_type = NULL;
10706 tree first_parm_type;
10707 tree arg;
10709 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10711 arg = DECL_ARGUMENTS (function_or_method_type);
10712 function_or_method_type = TREE_TYPE (function_or_method_type);
10714 else
10715 arg = NULL_TREE;
10717 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10719 /* Make our first pass over the list of formal parameter types and output a
10720 DW_TAG_formal_parameter DIE for each one. */
10721 for (link = first_parm_type; link; )
10723 dw_die_ref parm_die;
10725 formal_type = TREE_VALUE (link);
10726 if (formal_type == void_type_node)
10727 break;
10729 /* Output a (nameless) DIE to represent the formal parameter itself. */
10730 parm_die = gen_formal_parameter_die (formal_type, context_die);
10731 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10732 && link == first_parm_type)
10733 || (arg && DECL_ARTIFICIAL (arg)))
10734 add_AT_flag (parm_die, DW_AT_artificial, 1);
10736 link = TREE_CHAIN (link);
10737 if (arg)
10738 arg = TREE_CHAIN (arg);
10741 /* If this function type has an ellipsis, add a
10742 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10743 if (formal_type != void_type_node)
10744 gen_unspecified_parameters_die (function_or_method_type, context_die);
10746 /* Make our second (and final) pass over the list of formal parameter types
10747 and output DIEs to represent those types (as necessary). */
10748 for (link = TYPE_ARG_TYPES (function_or_method_type);
10749 link && TREE_VALUE (link);
10750 link = TREE_CHAIN (link))
10751 gen_type_die (TREE_VALUE (link), context_die);
10754 /* We want to generate the DIE for TYPE so that we can generate the
10755 die for MEMBER, which has been defined; we will need to refer back
10756 to the member declaration nested within TYPE. If we're trying to
10757 generate minimal debug info for TYPE, processing TYPE won't do the
10758 trick; we need to attach the member declaration by hand. */
10760 static void
10761 gen_type_die_for_member (type, member, context_die)
10762 tree type, member;
10763 dw_die_ref context_die;
10765 gen_type_die (type, context_die);
10767 /* If we're trying to avoid duplicate debug info, we may not have
10768 emitted the member decl for this function. Emit it now. */
10769 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10770 && ! lookup_decl_die (member))
10772 if (decl_ultimate_origin (member))
10773 abort ();
10775 push_decl_scope (type);
10776 if (TREE_CODE (member) == FUNCTION_DECL)
10777 gen_subprogram_die (member, lookup_type_die (type));
10778 else
10779 gen_variable_die (member, lookup_type_die (type));
10781 pop_decl_scope ();
10785 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10786 may later generate inlined and/or out-of-line instances of. */
10788 static void
10789 dwarf2out_abstract_function (decl)
10790 tree decl;
10792 dw_die_ref old_die;
10793 tree save_fn;
10794 tree context;
10795 int was_abstract = DECL_ABSTRACT (decl);
10797 /* Make sure we have the actual abstract inline, not a clone. */
10798 decl = DECL_ORIGIN (decl);
10800 old_die = lookup_decl_die (decl);
10801 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10802 /* We've already generated the abstract instance. */
10803 return;
10805 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10806 we don't get confused by DECL_ABSTRACT. */
10807 if (debug_info_level > DINFO_LEVEL_TERSE)
10809 context = decl_class_context (decl);
10810 if (context)
10811 gen_type_die_for_member
10812 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10815 /* Pretend we've just finished compiling this function. */
10816 save_fn = current_function_decl;
10817 current_function_decl = decl;
10819 set_decl_abstract_flags (decl, 1);
10820 dwarf2out_decl (decl);
10821 if (! was_abstract)
10822 set_decl_abstract_flags (decl, 0);
10824 current_function_decl = save_fn;
10827 /* Generate a DIE to represent a declared function (either file-scope or
10828 block-local). */
10830 static void
10831 gen_subprogram_die (decl, context_die)
10832 tree decl;
10833 dw_die_ref context_die;
10835 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10836 tree origin = decl_ultimate_origin (decl);
10837 dw_die_ref subr_die;
10838 rtx fp_reg;
10839 tree fn_arg_types;
10840 tree outer_scope;
10841 dw_die_ref old_die = lookup_decl_die (decl);
10842 int declaration = (current_function_decl != decl
10843 || class_scope_p (context_die));
10845 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10846 started to generate the abstract instance of an inline, decided to output
10847 its containing class, and proceeded to emit the declaration of the inline
10848 from the member list for the class. If so, DECLARATION takes priority;
10849 we'll get back to the abstract instance when done with the class. */
10851 /* The class-scope declaration DIE must be the primary DIE. */
10852 if (origin && declaration && class_scope_p (context_die))
10854 origin = NULL;
10855 if (old_die)
10856 abort ();
10859 if (origin != NULL)
10861 if (declaration && ! local_scope_p (context_die))
10862 abort ();
10864 /* Fixup die_parent for the abstract instance of a nested
10865 inline function. */
10866 if (old_die && old_die->die_parent == NULL)
10867 add_child_die (context_die, old_die);
10869 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10870 add_abstract_origin_attribute (subr_die, origin);
10872 else if (old_die)
10874 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10876 if (!get_AT_flag (old_die, DW_AT_declaration)
10877 /* We can have a normal definition following an inline one in the
10878 case of redefinition of GNU C extern inlines.
10879 It seems reasonable to use AT_specification in this case. */
10880 && !get_AT_unsigned (old_die, DW_AT_inline))
10882 /* ??? This can happen if there is a bug in the program, for
10883 instance, if it has duplicate function definitions. Ideally,
10884 we should detect this case and ignore it. For now, if we have
10885 already reported an error, any error at all, then assume that
10886 we got here because of an input error, not a dwarf2 bug. */
10887 if (errorcount)
10888 return;
10889 abort ();
10892 /* If the definition comes from the same place as the declaration,
10893 maybe use the old DIE. We always want the DIE for this function
10894 that has the *_pc attributes to be under comp_unit_die so the
10895 debugger can find it. We also need to do this for abstract
10896 instances of inlines, since the spec requires the out-of-line copy
10897 to have the same parent. For local class methods, this doesn't
10898 apply; we just use the old DIE. */
10899 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10900 && (DECL_ARTIFICIAL (decl)
10901 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10902 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10903 == (unsigned) DECL_SOURCE_LINE (decl)))))
10905 subr_die = old_die;
10907 /* Clear out the declaration attribute and the parm types. */
10908 remove_AT (subr_die, DW_AT_declaration);
10909 remove_children (subr_die);
10911 else
10913 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10914 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10915 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10916 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10917 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10918 != (unsigned) DECL_SOURCE_LINE (decl))
10919 add_AT_unsigned
10920 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10923 else
10925 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10927 if (TREE_PUBLIC (decl))
10928 add_AT_flag (subr_die, DW_AT_external, 1);
10930 add_name_and_src_coords_attributes (subr_die, decl);
10931 if (debug_info_level > DINFO_LEVEL_TERSE)
10933 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10934 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10935 0, 0, context_die);
10938 add_pure_or_virtual_attribute (subr_die, decl);
10939 if (DECL_ARTIFICIAL (decl))
10940 add_AT_flag (subr_die, DW_AT_artificial, 1);
10942 if (TREE_PROTECTED (decl))
10943 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10944 else if (TREE_PRIVATE (decl))
10945 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10948 if (declaration)
10950 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10952 add_AT_flag (subr_die, DW_AT_declaration, 1);
10954 /* The first time we see a member function, it is in the context of
10955 the class to which it belongs. We make sure of this by emitting
10956 the class first. The next time is the definition, which is
10957 handled above. The two may come from the same source text. */
10958 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10959 equate_decl_number_to_die (decl, subr_die);
10962 else if (DECL_ABSTRACT (decl))
10964 if (DECL_INLINE (decl) && !flag_no_inline)
10966 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10967 inline functions, but not for extern inline functions.
10968 We can't get this completely correct because information
10969 about whether the function was declared inline is not
10970 saved anywhere. */
10971 if (DECL_DEFER_OUTPUT (decl))
10972 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10973 else
10974 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10976 else
10977 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10979 equate_decl_number_to_die (decl, subr_die);
10981 else if (!DECL_EXTERNAL (decl))
10983 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10984 equate_decl_number_to_die (decl, subr_die);
10986 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10987 current_function_funcdef_no);
10988 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10989 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10990 current_function_funcdef_no);
10991 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10993 add_pubname (decl, subr_die);
10994 add_arange (decl, subr_die);
10996 #ifdef MIPS_DEBUGGING_INFO
10997 /* Add a reference to the FDE for this routine. */
10998 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10999 #endif
11001 /* Define the "frame base" location for this routine. We use the
11002 frame pointer or stack pointer registers, since the RTL for local
11003 variables is relative to one of them. */
11004 fp_reg
11005 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11006 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11008 #if 0
11009 /* ??? This fails for nested inline functions, because context_display
11010 is not part of the state saved/restored for inline functions. */
11011 if (current_function_needs_context)
11012 add_AT_location_description (subr_die, DW_AT_static_link,
11013 loc_descriptor (lookup_static_chain (decl)));
11014 #endif
11017 /* Now output descriptions of the arguments for this function. This gets
11018 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11019 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11020 `...' at the end of the formal parameter list. In order to find out if
11021 there was a trailing ellipsis or not, we must instead look at the type
11022 associated with the FUNCTION_DECL. This will be a node of type
11023 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11024 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11025 an ellipsis at the end. */
11027 /* In the case where we are describing a mere function declaration, all we
11028 need to do here (and all we *can* do here) is to describe the *types* of
11029 its formal parameters. */
11030 if (debug_info_level <= DINFO_LEVEL_TERSE)
11032 else if (declaration)
11033 gen_formal_types_die (decl, subr_die);
11034 else
11036 /* Generate DIEs to represent all known formal parameters */
11037 tree arg_decls = DECL_ARGUMENTS (decl);
11038 tree parm;
11040 /* When generating DIEs, generate the unspecified_parameters DIE
11041 instead if we come across the arg "__builtin_va_alist" */
11042 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11043 if (TREE_CODE (parm) == PARM_DECL)
11045 if (DECL_NAME (parm)
11046 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11047 "__builtin_va_alist"))
11048 gen_unspecified_parameters_die (parm, subr_die);
11049 else
11050 gen_decl_die (parm, subr_die);
11053 /* Decide whether we need an unspecified_parameters DIE at the end.
11054 There are 2 more cases to do this for: 1) the ansi ... declaration -
11055 this is detectable when the end of the arg list is not a
11056 void_type_node 2) an unprototyped function declaration (not a
11057 definition). This just means that we have no info about the
11058 parameters at all. */
11059 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11060 if (fn_arg_types != NULL)
11062 /* this is the prototyped case, check for ... */
11063 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11064 gen_unspecified_parameters_die (decl, subr_die);
11066 else if (DECL_INITIAL (decl) == NULL_TREE)
11067 gen_unspecified_parameters_die (decl, subr_die);
11070 /* Output Dwarf info for all of the stuff within the body of the function
11071 (if it has one - it may be just a declaration). */
11072 outer_scope = DECL_INITIAL (decl);
11074 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11075 a function. This BLOCK actually represents the outermost binding contour
11076 for the function, i.e. the contour in which the function's formal
11077 parameters and labels get declared. Curiously, it appears that the front
11078 end doesn't actually put the PARM_DECL nodes for the current function onto
11079 the BLOCK_VARS list for this outer scope, but are strung off of the
11080 DECL_ARGUMENTS list for the function instead.
11082 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11083 the LABEL_DECL nodes for the function however, and we output DWARF info
11084 for those in decls_for_scope. Just within the `outer_scope' there will be
11085 a BLOCK node representing the function's outermost pair of curly braces,
11086 and any blocks used for the base and member initializers of a C++
11087 constructor function. */
11088 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11090 current_function_has_inlines = 0;
11091 decls_for_scope (outer_scope, subr_die, 0);
11093 #if 0 && defined (MIPS_DEBUGGING_INFO)
11094 if (current_function_has_inlines)
11096 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11097 if (! comp_unit_has_inlines)
11099 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11100 comp_unit_has_inlines = 1;
11103 #endif
11107 /* Generate a DIE to represent a declared data object. */
11109 static void
11110 gen_variable_die (decl, context_die)
11111 tree decl;
11112 dw_die_ref context_die;
11114 tree origin = decl_ultimate_origin (decl);
11115 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11117 dw_die_ref old_die = lookup_decl_die (decl);
11118 int declaration = (DECL_EXTERNAL (decl)
11119 || class_scope_p (context_die));
11121 if (origin != NULL)
11122 add_abstract_origin_attribute (var_die, origin);
11124 /* Loop unrolling can create multiple blocks that refer to the same
11125 static variable, so we must test for the DW_AT_declaration flag.
11127 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11128 copy decls and set the DECL_ABSTRACT flag on them instead of
11129 sharing them.
11131 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11132 else if (old_die && TREE_STATIC (decl)
11133 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11135 /* This is a definition of a C++ class level static. */
11136 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11137 if (DECL_NAME (decl))
11139 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11141 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11142 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11144 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11145 != (unsigned) DECL_SOURCE_LINE (decl))
11147 add_AT_unsigned (var_die, DW_AT_decl_line,
11148 DECL_SOURCE_LINE (decl));
11151 else
11153 add_name_and_src_coords_attributes (var_die, decl);
11154 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11155 TREE_THIS_VOLATILE (decl), context_die);
11157 if (TREE_PUBLIC (decl))
11158 add_AT_flag (var_die, DW_AT_external, 1);
11160 if (DECL_ARTIFICIAL (decl))
11161 add_AT_flag (var_die, DW_AT_artificial, 1);
11163 if (TREE_PROTECTED (decl))
11164 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11165 else if (TREE_PRIVATE (decl))
11166 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11169 if (declaration)
11170 add_AT_flag (var_die, DW_AT_declaration, 1);
11172 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11173 equate_decl_number_to_die (decl, var_die);
11175 if (! declaration && ! DECL_ABSTRACT (decl))
11177 add_location_or_const_value_attribute (var_die, decl);
11178 add_pubname (decl, var_die);
11180 else
11181 tree_add_const_value_attribute (var_die, decl);
11184 /* Generate a DIE to represent a label identifier. */
11186 static void
11187 gen_label_die (decl, context_die)
11188 tree decl;
11189 dw_die_ref context_die;
11191 tree origin = decl_ultimate_origin (decl);
11192 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11193 rtx insn;
11194 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11196 if (origin != NULL)
11197 add_abstract_origin_attribute (lbl_die, origin);
11198 else
11199 add_name_and_src_coords_attributes (lbl_die, decl);
11201 if (DECL_ABSTRACT (decl))
11202 equate_decl_number_to_die (decl, lbl_die);
11203 else
11205 insn = DECL_RTL (decl);
11207 /* Deleted labels are programmer specified labels which have been
11208 eliminated because of various optimisations. We still emit them
11209 here so that it is possible to put breakpoints on them. */
11210 if (GET_CODE (insn) == CODE_LABEL
11211 || ((GET_CODE (insn) == NOTE
11212 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11214 /* When optimization is enabled (via -O) some parts of the compiler
11215 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11216 represent source-level labels which were explicitly declared by
11217 the user. This really shouldn't be happening though, so catch
11218 it if it ever does happen. */
11219 if (INSN_DELETED_P (insn))
11220 abort ();
11222 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11223 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11228 /* Generate a DIE for a lexical block. */
11230 static void
11231 gen_lexical_block_die (stmt, context_die, depth)
11232 tree stmt;
11233 dw_die_ref context_die;
11234 int depth;
11236 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11237 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11239 if (! BLOCK_ABSTRACT (stmt))
11241 if (BLOCK_FRAGMENT_CHAIN (stmt))
11243 tree chain;
11245 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11247 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11250 add_ranges (chain);
11251 chain = BLOCK_FRAGMENT_CHAIN (chain);
11253 while (chain);
11254 add_ranges (NULL);
11256 else
11258 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11259 BLOCK_NUMBER (stmt));
11260 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11261 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11262 BLOCK_NUMBER (stmt));
11263 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11267 decls_for_scope (stmt, stmt_die, depth);
11270 /* Generate a DIE for an inlined subprogram. */
11272 static void
11273 gen_inlined_subroutine_die (stmt, context_die, depth)
11274 tree stmt;
11275 dw_die_ref context_die;
11276 int depth;
11278 if (! BLOCK_ABSTRACT (stmt))
11280 dw_die_ref subr_die
11281 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11282 tree decl = block_ultimate_origin (stmt);
11283 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11285 /* Emit info for the abstract instance first, if we haven't yet. */
11286 dwarf2out_abstract_function (decl);
11288 add_abstract_origin_attribute (subr_die, decl);
11289 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11290 BLOCK_NUMBER (stmt));
11291 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11292 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11293 BLOCK_NUMBER (stmt));
11294 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11295 decls_for_scope (stmt, subr_die, depth);
11296 current_function_has_inlines = 1;
11298 else
11299 /* We may get here if we're the outer block of function A that was
11300 inlined into function B that was inlined into function C. When
11301 generating debugging info for C, dwarf2out_abstract_function(B)
11302 would mark all inlined blocks as abstract, including this one.
11303 So, we wouldn't (and shouldn't) expect labels to be generated
11304 for this one. Instead, just emit debugging info for
11305 declarations within the block. This is particularly important
11306 in the case of initializers of arguments passed from B to us:
11307 if they're statement expressions containing declarations, we
11308 wouldn't generate dies for their abstract variables, and then,
11309 when generating dies for the real variables, we'd die (pun
11310 intended :-) */
11311 gen_lexical_block_die (stmt, context_die, depth);
11314 /* Generate a DIE for a field in a record, or structure. */
11316 static void
11317 gen_field_die (decl, context_die)
11318 tree decl;
11319 dw_die_ref context_die;
11321 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11323 add_name_and_src_coords_attributes (decl_die, decl);
11324 add_type_attribute (decl_die, member_declared_type (decl),
11325 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11326 context_die);
11328 if (DECL_BIT_FIELD_TYPE (decl))
11330 add_byte_size_attribute (decl_die, decl);
11331 add_bit_size_attribute (decl_die, decl);
11332 add_bit_offset_attribute (decl_die, decl);
11335 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11336 add_data_member_location_attribute (decl_die, decl);
11338 if (DECL_ARTIFICIAL (decl))
11339 add_AT_flag (decl_die, DW_AT_artificial, 1);
11341 if (TREE_PROTECTED (decl))
11342 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11343 else if (TREE_PRIVATE (decl))
11344 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11347 #if 0
11348 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11349 Use modified_type_die instead.
11350 We keep this code here just in case these types of DIEs may be needed to
11351 represent certain things in other languages (e.g. Pascal) someday. */
11353 static void
11354 gen_pointer_type_die (type, context_die)
11355 tree type;
11356 dw_die_ref context_die;
11358 dw_die_ref ptr_die
11359 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11361 equate_type_number_to_die (type, ptr_die);
11362 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11363 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11366 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11367 Use modified_type_die instead.
11368 We keep this code here just in case these types of DIEs may be needed to
11369 represent certain things in other languages (e.g. Pascal) someday. */
11371 static void
11372 gen_reference_type_die (type, context_die)
11373 tree type;
11374 dw_die_ref context_die;
11376 dw_die_ref ref_die
11377 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11379 equate_type_number_to_die (type, ref_die);
11380 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11381 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11383 #endif
11385 /* Generate a DIE for a pointer to a member type. */
11387 static void
11388 gen_ptr_to_mbr_type_die (type, context_die)
11389 tree type;
11390 dw_die_ref context_die;
11392 dw_die_ref ptr_die
11393 = new_die (DW_TAG_ptr_to_member_type,
11394 scope_die_for (type, context_die), type);
11396 equate_type_number_to_die (type, ptr_die);
11397 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11398 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11399 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11402 /* Generate the DIE for the compilation unit. */
11404 static dw_die_ref
11405 gen_compile_unit_die (filename)
11406 const char *filename;
11408 dw_die_ref die;
11409 char producer[250];
11410 const char *language_string = lang_hooks.name;
11411 int language;
11413 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11415 if (filename)
11417 add_name_attribute (die, filename);
11418 if (filename[0] != DIR_SEPARATOR)
11419 add_comp_dir_attribute (die);
11422 sprintf (producer, "%s %s", language_string, version_string);
11424 #ifdef MIPS_DEBUGGING_INFO
11425 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11426 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11427 not appear in the producer string, the debugger reaches the conclusion
11428 that the object file is stripped and has no debugging information.
11429 To get the MIPS/SGI debugger to believe that there is debugging
11430 information in the object file, we add a -g to the producer string. */
11431 if (debug_info_level > DINFO_LEVEL_TERSE)
11432 strcat (producer, " -g");
11433 #endif
11435 add_AT_string (die, DW_AT_producer, producer);
11437 if (strcmp (language_string, "GNU C++") == 0)
11438 language = DW_LANG_C_plus_plus;
11439 else if (strcmp (language_string, "GNU Ada") == 0)
11440 language = DW_LANG_Ada83;
11441 else if (strcmp (language_string, "GNU F77") == 0)
11442 language = DW_LANG_Fortran77;
11443 else if (strcmp (language_string, "GNU Pascal") == 0)
11444 language = DW_LANG_Pascal83;
11445 else if (strcmp (language_string, "GNU Java") == 0)
11446 language = DW_LANG_Java;
11447 else
11448 language = DW_LANG_C89;
11450 add_AT_unsigned (die, DW_AT_language, language);
11451 return die;
11454 /* Generate a DIE for a string type. */
11456 static void
11457 gen_string_type_die (type, context_die)
11458 tree type;
11459 dw_die_ref context_die;
11461 dw_die_ref type_die
11462 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11464 equate_type_number_to_die (type, type_die);
11466 /* ??? Fudge the string length attribute for now.
11467 TODO: add string length info. */
11468 #if 0
11469 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11470 bound_representation (upper_bound, 0, 'u');
11471 #endif
11474 /* Generate the DIE for a base class. */
11476 static void
11477 gen_inheritance_die (binfo, access, context_die)
11478 tree binfo, access;
11479 dw_die_ref context_die;
11481 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11483 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11484 add_data_member_location_attribute (die, binfo);
11486 if (TREE_VIA_VIRTUAL (binfo))
11487 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11489 if (access == access_public_node)
11490 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11491 else if (access == access_protected_node)
11492 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11495 /* Generate a DIE for a class member. */
11497 static void
11498 gen_member_die (type, context_die)
11499 tree type;
11500 dw_die_ref context_die;
11502 tree member;
11503 tree binfo = TYPE_BINFO (type);
11504 dw_die_ref child;
11506 /* If this is not an incomplete type, output descriptions of each of its
11507 members. Note that as we output the DIEs necessary to represent the
11508 members of this record or union type, we will also be trying to output
11509 DIEs to represent the *types* of those members. However the `type'
11510 function (above) will specifically avoid generating type DIEs for member
11511 types *within* the list of member DIEs for this (containing) type except
11512 for those types (of members) which are explicitly marked as also being
11513 members of this (containing) type themselves. The g++ front- end can
11514 force any given type to be treated as a member of some other (containing)
11515 type by setting the TYPE_CONTEXT of the given (member) type to point to
11516 the TREE node representing the appropriate (containing) type. */
11518 /* First output info about the base classes. */
11519 if (binfo && BINFO_BASETYPES (binfo))
11521 tree bases = BINFO_BASETYPES (binfo);
11522 tree accesses = BINFO_BASEACCESSES (binfo);
11523 int n_bases = TREE_VEC_LENGTH (bases);
11524 int i;
11526 for (i = 0; i < n_bases; i++)
11527 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11528 (accesses ? TREE_VEC_ELT (accesses, i)
11529 : access_public_node), context_die);
11532 /* Now output info about the data members and type members. */
11533 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11535 /* If we thought we were generating minimal debug info for TYPE
11536 and then changed our minds, some of the member declarations
11537 may have already been defined. Don't define them again, but
11538 do put them in the right order. */
11540 child = lookup_decl_die (member);
11541 if (child)
11542 splice_child_die (context_die, child);
11543 else
11544 gen_decl_die (member, context_die);
11547 /* Now output info about the function members (if any). */
11548 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11550 /* Don't include clones in the member list. */
11551 if (DECL_ABSTRACT_ORIGIN (member))
11552 continue;
11554 child = lookup_decl_die (member);
11555 if (child)
11556 splice_child_die (context_die, child);
11557 else
11558 gen_decl_die (member, context_die);
11562 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11563 is set, we pretend that the type was never defined, so we only get the
11564 member DIEs needed by later specification DIEs. */
11566 static void
11567 gen_struct_or_union_type_die (type, context_die)
11568 tree type;
11569 dw_die_ref context_die;
11571 dw_die_ref type_die = lookup_type_die (type);
11572 dw_die_ref scope_die = 0;
11573 int nested = 0;
11574 int complete = (TYPE_SIZE (type)
11575 && (! TYPE_STUB_DECL (type)
11576 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11578 if (type_die && ! complete)
11579 return;
11581 if (TYPE_CONTEXT (type) != NULL_TREE
11582 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11583 nested = 1;
11585 scope_die = scope_die_for (type, context_die);
11587 if (! type_die || (nested && scope_die == comp_unit_die))
11588 /* First occurrence of type or toplevel definition of nested class. */
11590 dw_die_ref old_die = type_die;
11592 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11593 ? DW_TAG_structure_type : DW_TAG_union_type,
11594 scope_die, type);
11595 equate_type_number_to_die (type, type_die);
11596 if (old_die)
11597 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11598 else
11599 add_name_attribute (type_die, type_tag (type));
11601 else
11602 remove_AT (type_die, DW_AT_declaration);
11604 /* If this type has been completed, then give it a byte_size attribute and
11605 then give a list of members. */
11606 if (complete)
11608 /* Prevent infinite recursion in cases where the type of some member of
11609 this type is expressed in terms of this type itself. */
11610 TREE_ASM_WRITTEN (type) = 1;
11611 add_byte_size_attribute (type_die, type);
11612 if (TYPE_STUB_DECL (type) != NULL_TREE)
11613 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11615 /* If the first reference to this type was as the return type of an
11616 inline function, then it may not have a parent. Fix this now. */
11617 if (type_die->die_parent == NULL)
11618 add_child_die (scope_die, type_die);
11620 push_decl_scope (type);
11621 gen_member_die (type, type_die);
11622 pop_decl_scope ();
11624 /* GNU extension: Record what type our vtable lives in. */
11625 if (TYPE_VFIELD (type))
11627 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11629 gen_type_die (vtype, context_die);
11630 add_AT_die_ref (type_die, DW_AT_containing_type,
11631 lookup_type_die (vtype));
11634 else
11636 add_AT_flag (type_die, DW_AT_declaration, 1);
11638 /* We don't need to do this for function-local types. */
11639 if (TYPE_STUB_DECL (type)
11640 && ! decl_function_context (TYPE_STUB_DECL (type)))
11641 VARRAY_PUSH_TREE (incomplete_types, type);
11645 /* Generate a DIE for a subroutine _type_. */
11647 static void
11648 gen_subroutine_type_die (type, context_die)
11649 tree type;
11650 dw_die_ref context_die;
11652 tree return_type = TREE_TYPE (type);
11653 dw_die_ref subr_die
11654 = new_die (DW_TAG_subroutine_type,
11655 scope_die_for (type, context_die), type);
11657 equate_type_number_to_die (type, subr_die);
11658 add_prototyped_attribute (subr_die, type);
11659 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11660 gen_formal_types_die (type, subr_die);
11663 /* Generate a DIE for a type definition */
11665 static void
11666 gen_typedef_die (decl, context_die)
11667 tree decl;
11668 dw_die_ref context_die;
11670 dw_die_ref type_die;
11671 tree origin;
11673 if (TREE_ASM_WRITTEN (decl))
11674 return;
11676 TREE_ASM_WRITTEN (decl) = 1;
11677 type_die = new_die (DW_TAG_typedef, context_die, decl);
11678 origin = decl_ultimate_origin (decl);
11679 if (origin != NULL)
11680 add_abstract_origin_attribute (type_die, origin);
11681 else
11683 tree type;
11685 add_name_and_src_coords_attributes (type_die, decl);
11686 if (DECL_ORIGINAL_TYPE (decl))
11688 type = DECL_ORIGINAL_TYPE (decl);
11690 if (type == TREE_TYPE (decl))
11691 abort ();
11692 else
11693 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11695 else
11696 type = TREE_TYPE (decl);
11698 add_type_attribute (type_die, type, TREE_READONLY (decl),
11699 TREE_THIS_VOLATILE (decl), context_die);
11702 if (DECL_ABSTRACT (decl))
11703 equate_decl_number_to_die (decl, type_die);
11706 /* Generate a type description DIE. */
11708 static void
11709 gen_type_die (type, context_die)
11710 tree type;
11711 dw_die_ref context_die;
11713 int need_pop;
11715 if (type == NULL_TREE || type == error_mark_node)
11716 return;
11718 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11719 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11721 if (TREE_ASM_WRITTEN (type))
11722 return;
11724 /* Prevent broken recursion; we can't hand off to the same type. */
11725 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11726 abort ();
11728 TREE_ASM_WRITTEN (type) = 1;
11729 gen_decl_die (TYPE_NAME (type), context_die);
11730 return;
11733 /* We are going to output a DIE to represent the unqualified version
11734 of this type (i.e. without any const or volatile qualifiers) so
11735 get the main variant (i.e. the unqualified version) of this type
11736 now. (Vectors are special because the debugging info is in the
11737 cloned type itself). */
11738 if (TREE_CODE (type) != VECTOR_TYPE)
11739 type = type_main_variant (type);
11741 if (TREE_ASM_WRITTEN (type))
11742 return;
11744 switch (TREE_CODE (type))
11746 case ERROR_MARK:
11747 break;
11749 case POINTER_TYPE:
11750 case REFERENCE_TYPE:
11751 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11752 ensures that the gen_type_die recursion will terminate even if the
11753 type is recursive. Recursive types are possible in Ada. */
11754 /* ??? We could perhaps do this for all types before the switch
11755 statement. */
11756 TREE_ASM_WRITTEN (type) = 1;
11758 /* For these types, all that is required is that we output a DIE (or a
11759 set of DIEs) to represent the "basis" type. */
11760 gen_type_die (TREE_TYPE (type), context_die);
11761 break;
11763 case OFFSET_TYPE:
11764 /* This code is used for C++ pointer-to-data-member types.
11765 Output a description of the relevant class type. */
11766 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11768 /* Output a description of the type of the object pointed to. */
11769 gen_type_die (TREE_TYPE (type), context_die);
11771 /* Now output a DIE to represent this pointer-to-data-member type
11772 itself. */
11773 gen_ptr_to_mbr_type_die (type, context_die);
11774 break;
11776 case SET_TYPE:
11777 gen_type_die (TYPE_DOMAIN (type), context_die);
11778 gen_set_type_die (type, context_die);
11779 break;
11781 case FILE_TYPE:
11782 gen_type_die (TREE_TYPE (type), context_die);
11783 abort (); /* No way to represent these in Dwarf yet! */
11784 break;
11786 case FUNCTION_TYPE:
11787 /* Force out return type (in case it wasn't forced out already). */
11788 gen_type_die (TREE_TYPE (type), context_die);
11789 gen_subroutine_type_die (type, context_die);
11790 break;
11792 case METHOD_TYPE:
11793 /* Force out return type (in case it wasn't forced out already). */
11794 gen_type_die (TREE_TYPE (type), context_die);
11795 gen_subroutine_type_die (type, context_die);
11796 break;
11798 case ARRAY_TYPE:
11799 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11801 gen_type_die (TREE_TYPE (type), context_die);
11802 gen_string_type_die (type, context_die);
11804 else
11805 gen_array_type_die (type, context_die);
11806 break;
11808 case VECTOR_TYPE:
11809 gen_array_type_die (type, context_die);
11810 break;
11812 case ENUMERAL_TYPE:
11813 case RECORD_TYPE:
11814 case UNION_TYPE:
11815 case QUAL_UNION_TYPE:
11816 /* If this is a nested type whose containing class hasn't been written
11817 out yet, writing it out will cover this one, too. This does not apply
11818 to instantiations of member class templates; they need to be added to
11819 the containing class as they are generated. FIXME: This hurts the
11820 idea of combining type decls from multiple TUs, since we can't predict
11821 what set of template instantiations we'll get. */
11822 if (TYPE_CONTEXT (type)
11823 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11824 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11826 gen_type_die (TYPE_CONTEXT (type), context_die);
11828 if (TREE_ASM_WRITTEN (type))
11829 return;
11831 /* If that failed, attach ourselves to the stub. */
11832 push_decl_scope (TYPE_CONTEXT (type));
11833 context_die = lookup_type_die (TYPE_CONTEXT (type));
11834 need_pop = 1;
11836 else
11837 need_pop = 0;
11839 if (TREE_CODE (type) == ENUMERAL_TYPE)
11840 gen_enumeration_type_die (type, context_die);
11841 else
11842 gen_struct_or_union_type_die (type, context_die);
11844 if (need_pop)
11845 pop_decl_scope ();
11847 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11848 it up if it is ever completed. gen_*_type_die will set it for us
11849 when appropriate. */
11850 return;
11852 case VOID_TYPE:
11853 case INTEGER_TYPE:
11854 case REAL_TYPE:
11855 case COMPLEX_TYPE:
11856 case BOOLEAN_TYPE:
11857 case CHAR_TYPE:
11858 /* No DIEs needed for fundamental types. */
11859 break;
11861 case LANG_TYPE:
11862 /* No Dwarf representation currently defined. */
11863 break;
11865 default:
11866 abort ();
11869 TREE_ASM_WRITTEN (type) = 1;
11872 /* Generate a DIE for a tagged type instantiation. */
11874 static void
11875 gen_tagged_type_instantiation_die (type, context_die)
11876 tree type;
11877 dw_die_ref context_die;
11879 if (type == NULL_TREE || type == error_mark_node)
11880 return;
11882 /* We are going to output a DIE to represent the unqualified version of
11883 this type (i.e. without any const or volatile qualifiers) so make sure
11884 that we have the main variant (i.e. the unqualified version) of this
11885 type now. */
11886 if (type != type_main_variant (type))
11887 abort ();
11889 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11890 an instance of an unresolved type. */
11892 switch (TREE_CODE (type))
11894 case ERROR_MARK:
11895 break;
11897 case ENUMERAL_TYPE:
11898 gen_inlined_enumeration_type_die (type, context_die);
11899 break;
11901 case RECORD_TYPE:
11902 gen_inlined_structure_type_die (type, context_die);
11903 break;
11905 case UNION_TYPE:
11906 case QUAL_UNION_TYPE:
11907 gen_inlined_union_type_die (type, context_die);
11908 break;
11910 default:
11911 abort ();
11915 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11916 things which are local to the given block. */
11918 static void
11919 gen_block_die (stmt, context_die, depth)
11920 tree stmt;
11921 dw_die_ref context_die;
11922 int depth;
11924 int must_output_die = 0;
11925 tree origin;
11926 tree decl;
11927 enum tree_code origin_code;
11929 /* Ignore blocks never really used to make RTL. */
11930 if (stmt == NULL_TREE || !TREE_USED (stmt)
11931 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11932 return;
11934 /* If the block is one fragment of a non-contiguous block, do not
11935 process the variables, since they will have been done by the
11936 origin block. Do process subblocks. */
11937 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11939 tree sub;
11941 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11942 gen_block_die (sub, context_die, depth + 1);
11944 return;
11947 /* Determine the "ultimate origin" of this block. This block may be an
11948 inlined instance of an inlined instance of inline function, so we have
11949 to trace all of the way back through the origin chain to find out what
11950 sort of node actually served as the original seed for the creation of
11951 the current block. */
11952 origin = block_ultimate_origin (stmt);
11953 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11955 /* Determine if we need to output any Dwarf DIEs at all to represent this
11956 block. */
11957 if (origin_code == FUNCTION_DECL)
11958 /* The outer scopes for inlinings *must* always be represented. We
11959 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11960 must_output_die = 1;
11961 else
11963 /* In the case where the current block represents an inlining of the
11964 "body block" of an inline function, we must *NOT* output any DIE for
11965 this block because we have already output a DIE to represent the whole
11966 inlined function scope and the "body block" of any function doesn't
11967 really represent a different scope according to ANSI C rules. So we
11968 check here to make sure that this block does not represent a "body
11969 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11970 if (! is_body_block (origin ? origin : stmt))
11972 /* Determine if this block directly contains any "significant"
11973 local declarations which we will need to output DIEs for. */
11974 if (debug_info_level > DINFO_LEVEL_TERSE)
11975 /* We are not in terse mode so *any* local declaration counts
11976 as being a "significant" one. */
11977 must_output_die = (BLOCK_VARS (stmt) != NULL);
11978 else
11979 /* We are in terse mode, so only local (nested) function
11980 definitions count as "significant" local declarations. */
11981 for (decl = BLOCK_VARS (stmt);
11982 decl != NULL; decl = TREE_CHAIN (decl))
11983 if (TREE_CODE (decl) == FUNCTION_DECL
11984 && DECL_INITIAL (decl))
11986 must_output_die = 1;
11987 break;
11992 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11993 DIE for any block which contains no significant local declarations at
11994 all. Rather, in such cases we just call `decls_for_scope' so that any
11995 needed Dwarf info for any sub-blocks will get properly generated. Note
11996 that in terse mode, our definition of what constitutes a "significant"
11997 local declaration gets restricted to include only inlined function
11998 instances and local (nested) function definitions. */
11999 if (must_output_die)
12001 if (origin_code == FUNCTION_DECL)
12002 gen_inlined_subroutine_die (stmt, context_die, depth);
12003 else
12004 gen_lexical_block_die (stmt, context_die, depth);
12006 else
12007 decls_for_scope (stmt, context_die, depth);
12010 /* Generate all of the decls declared within a given scope and (recursively)
12011 all of its sub-blocks. */
12013 static void
12014 decls_for_scope (stmt, context_die, depth)
12015 tree stmt;
12016 dw_die_ref context_die;
12017 int depth;
12019 tree decl;
12020 tree subblocks;
12022 /* Ignore blocks never really used to make RTL. */
12023 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12024 return;
12026 /* Output the DIEs to represent all of the data objects and typedefs
12027 declared directly within this block but not within any nested
12028 sub-blocks. Also, nested function and tag DIEs have been
12029 generated with a parent of NULL; fix that up now. */
12030 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12032 dw_die_ref die;
12034 if (TREE_CODE (decl) == FUNCTION_DECL)
12035 die = lookup_decl_die (decl);
12036 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12037 die = lookup_type_die (TREE_TYPE (decl));
12038 else
12039 die = NULL;
12041 if (die != NULL && die->die_parent == NULL)
12042 add_child_die (context_die, die);
12043 else
12044 gen_decl_die (decl, context_die);
12047 /* If we're at -g1, we're not interested in subblocks. */
12048 if (debug_info_level <= DINFO_LEVEL_TERSE)
12049 return;
12051 /* Output the DIEs to represent all sub-blocks (and the items declared
12052 therein) of this block. */
12053 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12054 subblocks != NULL;
12055 subblocks = BLOCK_CHAIN (subblocks))
12056 gen_block_die (subblocks, context_die, depth + 1);
12059 /* Is this a typedef we can avoid emitting? */
12061 static inline int
12062 is_redundant_typedef (decl)
12063 tree decl;
12065 if (TYPE_DECL_IS_STUB (decl))
12066 return 1;
12068 if (DECL_ARTIFICIAL (decl)
12069 && DECL_CONTEXT (decl)
12070 && is_tagged_type (DECL_CONTEXT (decl))
12071 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12072 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12073 /* Also ignore the artificial member typedef for the class name. */
12074 return 1;
12076 return 0;
12079 /* Generate Dwarf debug information for a decl described by DECL. */
12081 static void
12082 gen_decl_die (decl, context_die)
12083 tree decl;
12084 dw_die_ref context_die;
12086 tree origin;
12088 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12089 return;
12091 switch (TREE_CODE (decl))
12093 case ERROR_MARK:
12094 break;
12096 case CONST_DECL:
12097 /* The individual enumerators of an enum type get output when we output
12098 the Dwarf representation of the relevant enum type itself. */
12099 break;
12101 case FUNCTION_DECL:
12102 /* Don't output any DIEs to represent mere function declarations,
12103 unless they are class members or explicit block externs. */
12104 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12105 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12106 break;
12108 /* If we're emitting a clone, emit info for the abstract instance. */
12109 if (DECL_ORIGIN (decl) != decl)
12110 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12112 /* If we're emitting an out-of-line copy of an inline function,
12113 emit info for the abstract instance and set up to refer to it. */
12114 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12115 && ! class_scope_p (context_die)
12116 /* dwarf2out_abstract_function won't emit a die if this is just
12117 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12118 that case, because that works only if we have a die. */
12119 && DECL_INITIAL (decl) != NULL_TREE)
12121 dwarf2out_abstract_function (decl);
12122 set_decl_origin_self (decl);
12125 /* Otherwise we're emitting the primary DIE for this decl. */
12126 else if (debug_info_level > DINFO_LEVEL_TERSE)
12128 /* Before we describe the FUNCTION_DECL itself, make sure that we
12129 have described its return type. */
12130 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12132 /* And its virtual context. */
12133 if (DECL_VINDEX (decl) != NULL_TREE)
12134 gen_type_die (DECL_CONTEXT (decl), context_die);
12136 /* And its containing type. */
12137 origin = decl_class_context (decl);
12138 if (origin != NULL_TREE)
12139 gen_type_die_for_member (origin, decl, context_die);
12142 /* Now output a DIE to represent the function itself. */
12143 gen_subprogram_die (decl, context_die);
12144 break;
12146 case TYPE_DECL:
12147 /* If we are in terse mode, don't generate any DIEs to represent any
12148 actual typedefs. */
12149 if (debug_info_level <= DINFO_LEVEL_TERSE)
12150 break;
12152 /* In the special case of a TYPE_DECL node representing the declaration
12153 of some type tag, if the given TYPE_DECL is marked as having been
12154 instantiated from some other (original) TYPE_DECL node (e.g. one which
12155 was generated within the original definition of an inline function) we
12156 have to generate a special (abbreviated) DW_TAG_structure_type,
12157 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12158 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12160 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12161 break;
12164 if (is_redundant_typedef (decl))
12165 gen_type_die (TREE_TYPE (decl), context_die);
12166 else
12167 /* Output a DIE to represent the typedef itself. */
12168 gen_typedef_die (decl, context_die);
12169 break;
12171 case LABEL_DECL:
12172 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12173 gen_label_die (decl, context_die);
12174 break;
12176 case VAR_DECL:
12177 /* If we are in terse mode, don't generate any DIEs to represent any
12178 variable declarations or definitions. */
12179 if (debug_info_level <= DINFO_LEVEL_TERSE)
12180 break;
12182 /* Output any DIEs that are needed to specify the type of this data
12183 object. */
12184 gen_type_die (TREE_TYPE (decl), context_die);
12186 /* And its containing type. */
12187 origin = decl_class_context (decl);
12188 if (origin != NULL_TREE)
12189 gen_type_die_for_member (origin, decl, context_die);
12191 /* Now output the DIE to represent the data object itself. This gets
12192 complicated because of the possibility that the VAR_DECL really
12193 represents an inlined instance of a formal parameter for an inline
12194 function. */
12195 origin = decl_ultimate_origin (decl);
12196 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12197 gen_formal_parameter_die (decl, context_die);
12198 else
12199 gen_variable_die (decl, context_die);
12200 break;
12202 case FIELD_DECL:
12203 /* Ignore the nameless fields that are used to skip bits but handle C++
12204 anonymous unions. */
12205 if (DECL_NAME (decl) != NULL_TREE
12206 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12208 gen_type_die (member_declared_type (decl), context_die);
12209 gen_field_die (decl, context_die);
12211 break;
12213 case PARM_DECL:
12214 gen_type_die (TREE_TYPE (decl), context_die);
12215 gen_formal_parameter_die (decl, context_die);
12216 break;
12218 case NAMESPACE_DECL:
12219 /* Ignore for now. */
12220 break;
12222 default:
12223 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12224 /* Probably some frontend-internal decl. Assume we don't care. */
12225 break;
12226 abort ();
12230 /* Add Ada "use" clause information for SGI Workshop debugger. */
12232 void
12233 dwarf2out_add_library_unit_info (filename, context_list)
12234 const char *filename;
12235 const char *context_list;
12237 unsigned int file_index;
12239 if (filename != NULL)
12241 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12242 tree context_list_decl
12243 = build_decl (LABEL_DECL, get_identifier (context_list),
12244 void_type_node);
12246 TREE_PUBLIC (context_list_decl) = TRUE;
12247 add_name_attribute (unit_die, context_list);
12248 file_index = lookup_filename (filename);
12249 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12250 add_pubname (context_list_decl, unit_die);
12254 /* Output debug information for global decl DECL. Called from toplev.c after
12255 compilation proper has finished. */
12257 static void
12258 dwarf2out_global_decl (decl)
12259 tree decl;
12261 /* Output DWARF2 information for file-scope tentative data object
12262 declarations, file-scope (extern) function declarations (which had no
12263 corresponding body) and file-scope tagged type declarations and
12264 definitions which have not yet been forced out. */
12265 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12266 dwarf2out_decl (decl);
12269 /* Write the debugging output for DECL. */
12271 void
12272 dwarf2out_decl (decl)
12273 tree decl;
12275 dw_die_ref context_die = comp_unit_die;
12277 switch (TREE_CODE (decl))
12279 case ERROR_MARK:
12280 return;
12282 case FUNCTION_DECL:
12283 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12284 builtin function. Explicit programmer-supplied declarations of
12285 these same functions should NOT be ignored however. */
12286 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12287 return;
12289 /* What we would really like to do here is to filter out all mere
12290 file-scope declarations of file-scope functions which are never
12291 referenced later within this translation unit (and keep all of ones
12292 that *are* referenced later on) but we aren't clairvoyant, so we have
12293 no idea which functions will be referenced in the future (i.e. later
12294 on within the current translation unit). So here we just ignore all
12295 file-scope function declarations which are not also definitions. If
12296 and when the debugger needs to know something about these functions,
12297 it will have to hunt around and find the DWARF information associated
12298 with the definition of the function.
12300 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12301 nodes represent definitions and which ones represent mere
12302 declarations. We have to check DECL_INITIAL instead. That's because
12303 the C front-end supports some weird semantics for "extern inline"
12304 function definitions. These can get inlined within the current
12305 translation unit (an thus, we need to generate Dwarf info for their
12306 abstract instances so that the Dwarf info for the concrete inlined
12307 instances can have something to refer to) but the compiler never
12308 generates any out-of-lines instances of such things (despite the fact
12309 that they *are* definitions).
12311 The important point is that the C front-end marks these "extern
12312 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12313 them anyway. Note that the C++ front-end also plays some similar games
12314 for inline function definitions appearing within include files which
12315 also contain `#pragma interface' pragmas. */
12316 if (DECL_INITIAL (decl) == NULL_TREE)
12317 return;
12319 /* If we're a nested function, initially use a parent of NULL; if we're
12320 a plain function, this will be fixed up in decls_for_scope. If
12321 we're a method, it will be ignored, since we already have a DIE. */
12322 if (decl_function_context (decl)
12323 /* But if we're in terse mode, we don't care about scope. */
12324 && debug_info_level > DINFO_LEVEL_TERSE)
12325 context_die = NULL;
12326 break;
12328 case VAR_DECL:
12329 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12330 declaration and if the declaration was never even referenced from
12331 within this entire compilation unit. We suppress these DIEs in
12332 order to save space in the .debug section (by eliminating entries
12333 which are probably useless). Note that we must not suppress
12334 block-local extern declarations (whether used or not) because that
12335 would screw-up the debugger's name lookup mechanism and cause it to
12336 miss things which really ought to be in scope at a given point. */
12337 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12338 return;
12340 /* If we are in terse mode, don't generate any DIEs to represent any
12341 variable declarations or definitions. */
12342 if (debug_info_level <= DINFO_LEVEL_TERSE)
12343 return;
12344 break;
12346 case TYPE_DECL:
12347 /* Don't emit stubs for types unless they are needed by other DIEs. */
12348 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12349 return;
12351 /* Don't bother trying to generate any DIEs to represent any of the
12352 normal built-in types for the language we are compiling. */
12353 if (DECL_SOURCE_LINE (decl) == 0)
12355 /* OK, we need to generate one for `bool' so GDB knows what type
12356 comparisons have. */
12357 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12358 == DW_LANG_C_plus_plus)
12359 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12360 && ! DECL_IGNORED_P (decl))
12361 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12363 return;
12366 /* If we are in terse mode, don't generate any DIEs for types. */
12367 if (debug_info_level <= DINFO_LEVEL_TERSE)
12368 return;
12370 /* If we're a function-scope tag, initially use a parent of NULL;
12371 this will be fixed up in decls_for_scope. */
12372 if (decl_function_context (decl))
12373 context_die = NULL;
12375 break;
12377 default:
12378 return;
12381 gen_decl_die (decl, context_die);
12384 /* Output a marker (i.e. a label) for the beginning of the generated code for
12385 a lexical block. */
12387 static void
12388 dwarf2out_begin_block (line, blocknum)
12389 unsigned int line ATTRIBUTE_UNUSED;
12390 unsigned int blocknum;
12392 function_section (current_function_decl);
12393 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12396 /* Output a marker (i.e. a label) for the end of the generated code for a
12397 lexical block. */
12399 static void
12400 dwarf2out_end_block (line, blocknum)
12401 unsigned int line ATTRIBUTE_UNUSED;
12402 unsigned int blocknum;
12404 function_section (current_function_decl);
12405 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12408 /* Returns nonzero if it is appropriate not to emit any debugging
12409 information for BLOCK, because it doesn't contain any instructions.
12411 Don't allow this for blocks with nested functions or local classes
12412 as we would end up with orphans, and in the presence of scheduling
12413 we may end up calling them anyway. */
12415 static bool
12416 dwarf2out_ignore_block (block)
12417 tree block;
12419 tree decl;
12421 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12422 if (TREE_CODE (decl) == FUNCTION_DECL
12423 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12424 return 0;
12426 return 1;
12429 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12430 dwarf2out.c) and return its "index". The index of each (known) filename is
12431 just a unique number which is associated with only that one filename. We
12432 need such numbers for the sake of generating labels (in the .debug_sfnames
12433 section) and references to those files numbers (in the .debug_srcinfo
12434 and.debug_macinfo sections). If the filename given as an argument is not
12435 found in our current list, add it to the list and assign it the next
12436 available unique index number. In order to speed up searches, we remember
12437 the index of the filename was looked up last. This handles the majority of
12438 all searches. */
12440 static unsigned
12441 lookup_filename (file_name)
12442 const char *file_name;
12444 size_t i, n;
12445 char *save_file_name;
12447 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
12448 if (strcmp (file_name, "<internal>") == 0
12449 || strcmp (file_name, "<built-in>") == 0)
12450 return 0;
12452 /* Check to see if the file name that was searched on the previous
12453 call matches this file name. If so, return the index. */
12454 if (file_table_last_lookup_index != 0)
12456 const char *last
12457 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12458 if (strcmp (file_name, last) == 0)
12459 return file_table_last_lookup_index;
12462 /* Didn't match the previous lookup, search the table */
12463 n = VARRAY_ACTIVE_SIZE (file_table);
12464 for (i = 1; i < n; i++)
12465 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12467 file_table_last_lookup_index = i;
12468 return i;
12471 /* Add the new entry to the end of the filename table. */
12472 file_table_last_lookup_index = n;
12473 save_file_name = (char *) ggc_strdup (file_name);
12474 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12475 VARRAY_PUSH_UINT (file_table_emitted, 0);
12477 return i;
12480 static int
12481 maybe_emit_file (fileno)
12482 int fileno;
12484 static int emitcount = 0;
12485 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12487 if (!VARRAY_UINT (file_table_emitted, fileno))
12489 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12490 fprintf (asm_out_file, "\t.file %u ",
12491 VARRAY_UINT (file_table_emitted, fileno));
12492 output_quoted_string (asm_out_file,
12493 VARRAY_CHAR_PTR (file_table, fileno));
12494 fputc ('\n', asm_out_file);
12496 return VARRAY_UINT (file_table_emitted, fileno);
12498 else
12499 return fileno;
12502 static void
12503 init_file_table ()
12505 /* Allocate the initial hunk of the file_table. */
12506 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12507 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12509 /* Skip the first entry - file numbers begin at 1. */
12510 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12511 VARRAY_PUSH_UINT (file_table_emitted, 0);
12512 file_table_last_lookup_index = 0;
12515 /* Output a label to mark the beginning of a source code line entry
12516 and record information relating to this source line, in
12517 'line_info_table' for later output of the .debug_line section. */
12519 static void
12520 dwarf2out_source_line (line, filename)
12521 unsigned int line;
12522 const char *filename;
12524 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12526 function_section (current_function_decl);
12528 /* If requested, emit something human-readable. */
12529 if (flag_debug_asm)
12530 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12531 filename, line);
12533 if (DWARF2_ASM_LINE_DEBUG_INFO)
12535 unsigned file_num = lookup_filename (filename);
12537 file_num = maybe_emit_file (file_num);
12539 /* Emit the .loc directive understood by GNU as. */
12540 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12542 /* Indicate that line number info exists. */
12543 line_info_table_in_use++;
12545 /* Indicate that multiple line number tables exist. */
12546 if (DECL_SECTION_NAME (current_function_decl))
12547 separate_line_info_table_in_use++;
12549 else if (DECL_SECTION_NAME (current_function_decl))
12551 dw_separate_line_info_ref line_info;
12552 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12553 separate_line_info_table_in_use);
12555 /* expand the line info table if necessary */
12556 if (separate_line_info_table_in_use
12557 == separate_line_info_table_allocated)
12559 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12560 separate_line_info_table
12561 = (dw_separate_line_info_ref)
12562 ggc_realloc (separate_line_info_table,
12563 separate_line_info_table_allocated
12564 * sizeof (dw_separate_line_info_entry));
12565 memset ((separate_line_info_table
12566 + separate_line_info_table_in_use),
12568 (LINE_INFO_TABLE_INCREMENT
12569 * sizeof (dw_separate_line_info_entry)));
12572 /* Add the new entry at the end of the line_info_table. */
12573 line_info
12574 = &separate_line_info_table[separate_line_info_table_in_use++];
12575 line_info->dw_file_num = lookup_filename (filename);
12576 line_info->dw_line_num = line;
12577 line_info->function = current_function_funcdef_no;
12579 else
12581 dw_line_info_ref line_info;
12583 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12584 line_info_table_in_use);
12586 /* Expand the line info table if necessary. */
12587 if (line_info_table_in_use == line_info_table_allocated)
12589 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12590 line_info_table
12591 = ggc_realloc (line_info_table,
12592 (line_info_table_allocated
12593 * sizeof (dw_line_info_entry)));
12594 memset (line_info_table + line_info_table_in_use, 0,
12595 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12598 /* Add the new entry at the end of the line_info_table. */
12599 line_info = &line_info_table[line_info_table_in_use++];
12600 line_info->dw_file_num = lookup_filename (filename);
12601 line_info->dw_line_num = line;
12606 /* Record the beginning of a new source file. */
12608 static void
12609 dwarf2out_start_source_file (lineno, filename)
12610 unsigned int lineno;
12611 const char *filename;
12613 if (flag_eliminate_dwarf2_dups && !is_main_source)
12615 /* Record the beginning of the file for break_out_includes. */
12616 dw_die_ref bincl_die;
12618 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12619 add_AT_string (bincl_die, DW_AT_name, filename);
12622 is_main_source = 0;
12624 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12626 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12627 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12628 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12629 lineno);
12630 maybe_emit_file (lookup_filename (filename));
12631 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12632 "Filename we just started");
12636 /* Record the end of a source file. */
12638 static void
12639 dwarf2out_end_source_file (lineno)
12640 unsigned int lineno ATTRIBUTE_UNUSED;
12642 if (flag_eliminate_dwarf2_dups)
12643 /* Record the end of the file for break_out_includes. */
12644 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12646 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12648 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12649 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12653 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12654 the tail part of the directive line, i.e. the part which is past the
12655 initial whitespace, #, whitespace, directive-name, whitespace part. */
12657 static void
12658 dwarf2out_define (lineno, buffer)
12659 unsigned lineno ATTRIBUTE_UNUSED;
12660 const char *buffer ATTRIBUTE_UNUSED;
12662 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12664 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12665 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12666 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12667 dw2_asm_output_nstring (buffer, -1, "The macro");
12671 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12672 the tail part of the directive line, i.e. the part which is past the
12673 initial whitespace, #, whitespace, directive-name, whitespace part. */
12675 static void
12676 dwarf2out_undef (lineno, buffer)
12677 unsigned lineno ATTRIBUTE_UNUSED;
12678 const char *buffer ATTRIBUTE_UNUSED;
12680 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12682 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12683 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12684 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12685 dw2_asm_output_nstring (buffer, -1, "The macro");
12689 /* Set up for Dwarf output at the start of compilation. */
12691 static void
12692 dwarf2out_init (input_filename)
12693 const char *input_filename ATTRIBUTE_UNUSED;
12695 init_file_table ();
12697 /* Allocate the initial hunk of the decl_die_table. */
12698 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12699 * sizeof (dw_die_ref));
12700 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12701 decl_die_table_in_use = 0;
12703 /* Allocate the initial hunk of the decl_scope_table. */
12704 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12706 /* Allocate the initial hunk of the abbrev_die_table. */
12707 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12708 * sizeof (dw_die_ref));
12709 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12710 /* Zero-th entry is allocated, but unused */
12711 abbrev_die_table_in_use = 1;
12713 /* Allocate the initial hunk of the line_info_table. */
12714 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12715 * sizeof (dw_line_info_entry));
12716 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12718 /* Zero-th entry is allocated, but unused */
12719 line_info_table_in_use = 1;
12721 /* Generate the initial DIE for the .debug section. Note that the (string)
12722 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12723 will (typically) be a relative pathname and that this pathname should be
12724 taken as being relative to the directory from which the compiler was
12725 invoked when the given (base) source file was compiled. We will fill
12726 in this value in dwarf2out_finish. */
12727 comp_unit_die = gen_compile_unit_die (NULL);
12728 is_main_source = 1;
12730 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12732 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12734 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12735 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12736 DEBUG_ABBREV_SECTION_LABEL, 0);
12737 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12738 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12739 else
12740 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12742 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12743 DEBUG_INFO_SECTION_LABEL, 0);
12744 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12745 DEBUG_LINE_SECTION_LABEL, 0);
12746 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12747 DEBUG_RANGES_SECTION_LABEL, 0);
12748 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12749 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12750 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12751 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12752 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12753 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12755 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12757 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12758 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12759 DEBUG_MACINFO_SECTION_LABEL, 0);
12760 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12763 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12765 text_section ();
12766 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12770 /* A helper function for dwarf2out_finish called through
12771 ht_forall. Emit one queued .debug_str string. */
12773 static int
12774 output_indirect_string (h, v)
12775 void **h;
12776 void *v ATTRIBUTE_UNUSED;
12778 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12780 if (node->form == DW_FORM_strp)
12782 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12783 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12784 assemble_string (node->str, strlen (node->str) + 1);
12787 return 1;
12792 /* Clear the marks for a die and its children.
12793 Be cool if the mark isn't set. */
12795 static void
12796 prune_unmark_dies (die)
12797 dw_die_ref die;
12799 dw_die_ref c;
12800 die->die_mark = 0;
12801 for (c = die->die_child; c; c = c->die_sib)
12802 prune_unmark_dies (c);
12806 /* Given DIE that we're marking as used, find any other dies
12807 it references as attributes and mark them as used. */
12809 static void
12810 prune_unused_types_walk_attribs (die)
12811 dw_die_ref die;
12813 dw_attr_ref a;
12815 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12817 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12819 /* A reference to another DIE.
12820 Make sure that it will get emitted. */
12821 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12823 else if (a->dw_attr == DW_AT_decl_file)
12825 /* A reference to a file. Make sure the file name is emitted. */
12826 a->dw_attr_val.v.val_unsigned =
12827 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12833 /* Mark DIE as being used. If DOKIDS is true, then walk down
12834 to DIE's children. */
12836 static void
12837 prune_unused_types_mark (die, dokids)
12838 dw_die_ref die;
12839 int dokids;
12841 dw_die_ref c;
12843 if (die->die_mark == 0)
12845 /* We haven't done this node yet. Mark it as used. */
12846 die->die_mark = 1;
12848 /* We also have to mark its parents as used.
12849 (But we don't want to mark our parents' kids due to this.) */
12850 if (die->die_parent)
12851 prune_unused_types_mark (die->die_parent, 0);
12853 /* Mark any referenced nodes. */
12854 prune_unused_types_walk_attribs (die);
12857 if (dokids && die->die_mark != 2)
12859 /* We need to walk the children, but haven't done so yet.
12860 Remember that we've walked the kids. */
12861 die->die_mark = 2;
12863 /* Walk them. */
12864 for (c = die->die_child; c; c = c->die_sib)
12866 /* If this is an array type, we need to make sure our
12867 kids get marked, even if they're types. */
12868 if (die->die_tag == DW_TAG_array_type)
12869 prune_unused_types_mark (c, 1);
12870 else
12871 prune_unused_types_walk (c);
12877 /* Walk the tree DIE and mark types that we actually use. */
12879 static void
12880 prune_unused_types_walk (die)
12881 dw_die_ref die;
12883 dw_die_ref c;
12885 /* Don't do anything if this node is already marked. */
12886 if (die->die_mark)
12887 return;
12889 switch (die->die_tag) {
12890 case DW_TAG_const_type:
12891 case DW_TAG_packed_type:
12892 case DW_TAG_pointer_type:
12893 case DW_TAG_reference_type:
12894 case DW_TAG_volatile_type:
12895 case DW_TAG_typedef:
12896 case DW_TAG_array_type:
12897 case DW_TAG_structure_type:
12898 case DW_TAG_union_type:
12899 case DW_TAG_class_type:
12900 case DW_TAG_friend:
12901 case DW_TAG_variant_part:
12902 case DW_TAG_enumeration_type:
12903 case DW_TAG_subroutine_type:
12904 case DW_TAG_string_type:
12905 case DW_TAG_set_type:
12906 case DW_TAG_subrange_type:
12907 case DW_TAG_ptr_to_member_type:
12908 case DW_TAG_file_type:
12909 /* It's a type node --- don't mark it. */
12910 return;
12912 default:
12913 /* Mark everything else. */
12914 break;
12917 die->die_mark = 1;
12919 /* Now, mark any dies referenced from here. */
12920 prune_unused_types_walk_attribs (die);
12922 /* Mark children. */
12923 for (c = die->die_child; c; c = c->die_sib)
12924 prune_unused_types_walk (c);
12928 /* Remove from the tree DIE any dies that aren't marked. */
12930 static void
12931 prune_unused_types_prune (die)
12932 dw_die_ref die;
12934 dw_die_ref c, p, n;
12935 if (!die->die_mark)
12936 abort();
12938 p = NULL;
12939 for (c = die->die_child; c; c = n)
12941 n = c->die_sib;
12942 if (c->die_mark)
12944 prune_unused_types_prune (c);
12945 p = c;
12947 else
12949 if (p)
12950 p->die_sib = n;
12951 else
12952 die->die_child = n;
12953 free_die (c);
12959 /* Remove dies representing declarations that we never use. */
12961 static void
12962 prune_unused_types ()
12964 unsigned int i;
12965 limbo_die_node *node;
12967 /* Clear all the marks. */
12968 prune_unmark_dies (comp_unit_die);
12969 for (node = limbo_die_list; node; node = node->next)
12970 prune_unmark_dies (node->die);
12972 /* Set the mark on nodes that are actually used. */
12973 prune_unused_types_walk (comp_unit_die);
12974 for (node = limbo_die_list; node; node = node->next)
12975 prune_unused_types_walk (node->die);
12977 /* Also set the mark on nodes referenced from the
12978 pubname_table or arange_table. */
12979 for (i = 0; i < pubname_table_in_use; i++)
12980 prune_unused_types_mark (pubname_table[i].die, 1);
12981 for (i = 0; i < arange_table_in_use; i++)
12982 prune_unused_types_mark (arange_table[i], 1);
12984 /* Get rid of nodes that aren't marked. */
12985 prune_unused_types_prune (comp_unit_die);
12986 for (node = limbo_die_list; node; node = node->next)
12987 prune_unused_types_prune (node->die);
12989 /* Leave the marks clear. */
12990 prune_unmark_dies (comp_unit_die);
12991 for (node = limbo_die_list; node; node = node->next)
12992 prune_unmark_dies (node->die);
12995 /* Output stuff that dwarf requires at the end of every file,
12996 and generate the DWARF-2 debugging info. */
12998 static void
12999 dwarf2out_finish (input_filename)
13000 const char *input_filename;
13002 limbo_die_node *node, *next_node;
13003 dw_die_ref die = 0;
13005 /* Add the name for the main input file now. We delayed this from
13006 dwarf2out_init to avoid complications with PCH. */
13007 add_name_attribute (comp_unit_die, input_filename);
13008 if (input_filename[0] != DIR_SEPARATOR)
13009 add_comp_dir_attribute (comp_unit_die);
13010 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13012 size_t i;
13013 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13014 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
13016 add_comp_dir_attribute (comp_unit_die);
13017 break;
13021 /* Traverse the limbo die list, and add parent/child links. The only
13022 dies without parents that should be here are concrete instances of
13023 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13024 For concrete instances, we can get the parent die from the abstract
13025 instance. */
13026 for (node = limbo_die_list; node; node = next_node)
13028 next_node = node->next;
13029 die = node->die;
13031 if (die->die_parent == NULL)
13033 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13034 tree context;
13036 if (origin)
13037 add_child_die (origin->die_parent, die);
13038 else if (die == comp_unit_die)
13040 /* If this was an expression for a bound involved in a function
13041 return type, it may be a SAVE_EXPR for which we weren't able
13042 to find a DIE previously. So try now. */
13043 else if (node->created_for
13044 && TREE_CODE (node->created_for) == SAVE_EXPR
13045 && 0 != (origin = (lookup_decl_die
13046 (SAVE_EXPR_CONTEXT
13047 (node->created_for)))))
13048 add_child_die (origin, die);
13049 else if (errorcount > 0 || sorrycount > 0)
13050 /* It's OK to be confused by errors in the input. */
13051 add_child_die (comp_unit_die, die);
13052 else if (node->created_for
13053 && ((DECL_P (node->created_for)
13054 && (context = DECL_CONTEXT (node->created_for)))
13055 || (TYPE_P (node->created_for)
13056 && (context = TYPE_CONTEXT (node->created_for))))
13057 && TREE_CODE (context) == FUNCTION_DECL)
13059 /* In certain situations, the lexical block containing a
13060 nested function can be optimized away, which results
13061 in the nested function die being orphaned. Likewise
13062 with the return type of that nested function. Force
13063 this to be a child of the containing function. */
13064 origin = lookup_decl_die (context);
13065 if (! origin)
13066 abort ();
13067 add_child_die (origin, die);
13069 else
13070 abort ();
13074 limbo_die_list = NULL;
13076 /* Walk through the list of incomplete types again, trying once more to
13077 emit full debugging info for them. */
13078 retry_incomplete_types ();
13080 /* We need to reverse all the dies before break_out_includes, or
13081 we'll see the end of an include file before the beginning. */
13082 reverse_all_dies (comp_unit_die);
13084 if (flag_eliminate_unused_debug_types)
13085 prune_unused_types ();
13087 /* Generate separate CUs for each of the include files we've seen.
13088 They will go into limbo_die_list. */
13089 if (flag_eliminate_dwarf2_dups)
13090 break_out_includes (comp_unit_die);
13092 /* Traverse the DIE's and add add sibling attributes to those DIE's
13093 that have children. */
13094 add_sibling_attributes (comp_unit_die);
13095 for (node = limbo_die_list; node; node = node->next)
13096 add_sibling_attributes (node->die);
13098 /* Output a terminator label for the .text section. */
13099 text_section ();
13100 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13102 /* Output the source line correspondence table. We must do this
13103 even if there is no line information. Otherwise, on an empty
13104 translation unit, we will generate a present, but empty,
13105 .debug_info section. IRIX 6.5 `nm' will then complain when
13106 examining the file. */
13107 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13109 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13110 output_line_info ();
13113 /* Output location list section if necessary. */
13114 if (have_location_lists)
13116 /* Output the location lists info. */
13117 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13118 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13119 DEBUG_LOC_SECTION_LABEL, 0);
13120 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13121 output_location_lists (die);
13122 have_location_lists = 0;
13125 /* We can only use the low/high_pc attributes if all of the code was
13126 in .text. */
13127 if (separate_line_info_table_in_use == 0)
13129 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13130 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13133 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13134 "base address". Use zero so that these addresses become absolute. */
13135 else if (have_location_lists || ranges_table_in_use)
13136 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13138 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13139 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13140 debug_line_section_label);
13142 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13143 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13145 /* Output all of the compilation units. We put the main one last so that
13146 the offsets are available to output_pubnames. */
13147 for (node = limbo_die_list; node; node = node->next)
13148 output_comp_unit (node->die, 0);
13150 output_comp_unit (comp_unit_die, 0);
13152 /* Output the abbreviation table. */
13153 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13154 output_abbrev_section ();
13156 /* Output public names table if necessary. */
13157 if (pubname_table_in_use)
13159 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13160 output_pubnames ();
13163 /* Output the address range information. We only put functions in the arange
13164 table, so don't write it out if we don't have any. */
13165 if (fde_table_in_use)
13167 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13168 output_aranges ();
13171 /* Output ranges section if necessary. */
13172 if (ranges_table_in_use)
13174 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13175 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13176 output_ranges ();
13179 /* Have to end the primary source file. */
13180 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13182 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13183 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13184 dw2_asm_output_data (1, 0, "End compilation unit");
13187 /* If we emitted any DW_FORM_strp form attribute, output the string
13188 table too. */
13189 if (debug_str_hash)
13190 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13192 #else
13194 /* This should never be used, but its address is needed for comparisons. */
13195 const struct gcc_debug_hooks dwarf2_debug_hooks;
13197 #endif /* DWARF2_DEBUGGING_INFO */
13199 #include "gt-dwarf2out.h"