1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
39 #include "coretypes.h"
45 #include "hard-reg-set.h"
47 #include "insn-config.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
62 #include "diagnostic.h"
65 #include "langhooks.h"
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line
PARAMS ((unsigned int, const char *));
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
90 /* Decide whether we want to emit frame unwind information for the current
96 return (write_symbols
== DWARF2_DEBUG
97 || write_symbols
== VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions
&& ! USING_SJLJ_EXCEPTIONS
)
108 /* The size of the target's pointer type. */
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
118 default_eh_frame_section ()
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
128 || ((fde_encoding
& 0x70) != DW_EH_PE_absptr
129 && (fde_encoding
& 0x70) != DW_EH_PE_aligned
130 && (per_encoding
& 0x70) != DW_EH_PE_absptr
131 && (per_encoding
& 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding
& 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding
& 0x70) != DW_EH_PE_aligned
))
135 named_section_flags (EH_FRAME_SECTION_NAME
, flags
);
137 named_section_flags (EH_FRAME_SECTION_NAME
, SECTION_WRITE
);
140 tree label
= get_file_function_name ('F');
143 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
144 (*targetm
.asm_out
.globalize_label
) (asm_out_file
, IDENTIFIER_POINTER (label
));
145 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray
;
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types
;
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table
;
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
170 typedef struct dw_cfi_struct
*dw_cfi_ref
;
171 typedef struct dw_fde_struct
*dw_fde_ref
;
172 typedef union dw_cfi_oprnd_struct
*dw_cfi_oprnd_ref
;
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
179 enum dw_cfi_oprnd_type
{
181 dw_cfi_oprnd_reg_num
,
187 typedef union dw_cfi_oprnd_struct
GTY(())
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num
;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset
;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr
;
192 struct dw_loc_descr_struct
* GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc
;
196 typedef struct dw_cfi_struct
GTY(())
198 dw_cfi_ref dw_cfi_next
;
199 enum dwarf_call_frame_info dw_cfi_opc
;
200 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
202 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc
GTY(())
217 int indirect
; /* 1 if CFA is accessed via a dereference. */
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
226 typedef struct dw_fde_struct
GTY(())
228 const char *dw_fde_begin
;
229 const char *dw_fde_current_label
;
230 const char *dw_fde_end
;
231 dw_cfi_ref dw_fde_cfi
;
232 unsigned funcdef_number
;
233 unsigned all_throwers_are_sibcalls
: 1;
234 unsigned nothrow
: 1;
235 unsigned uses_eh_lsda
: 1;
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
272 #define DWARF_VERSION 2
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table
;
291 /* Number of elements currently allocated for fde_table. */
292 static unsigned fde_table_allocated
;
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use
;
297 /* Size (in elements) of increments by which we may expand the
299 #define FDE_TABLE_INCREMENT 256
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head
;
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde
;
312 struct indirect_string_node
GTY(())
315 unsigned int refcount
;
320 static GTY ((param_is (struct indirect_string_node
))) htab_t debug_str_hash
;
322 static GTY(()) int dw2_string_counter
;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
327 /* Forward declarations for functions defined in this file. */
329 static char *stripattributes
PARAMS ((const char *));
330 static const char *dwarf_cfi_name
PARAMS ((unsigned));
331 static dw_cfi_ref new_cfi
PARAMS ((void));
332 static void add_cfi
PARAMS ((dw_cfi_ref
*, dw_cfi_ref
));
333 static void add_fde_cfi
PARAMS ((const char *, dw_cfi_ref
));
334 static void lookup_cfa_1
PARAMS ((dw_cfi_ref
,
336 static void lookup_cfa
PARAMS ((dw_cfa_location
*));
337 static void reg_save
PARAMS ((const char *, unsigned,
339 static void initial_return_save
PARAMS ((rtx
));
340 static long stack_adjust_offset
PARAMS ((rtx
));
341 static void output_cfi
PARAMS ((dw_cfi_ref
, dw_fde_ref
, int));
342 static void output_call_frame_info
PARAMS ((int));
343 static void dwarf2out_stack_adjust
PARAMS ((rtx
));
344 static void queue_reg_save
PARAMS ((const char *, rtx
, long));
345 static void flush_queued_reg_saves
PARAMS ((void));
346 static bool clobbers_queued_reg_save
PARAMS ((rtx
));
347 static void dwarf2out_frame_debug_expr
PARAMS ((rtx
, const char *));
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc
PARAMS ((dw_cfi_ref
));
351 static void get_cfa_from_loc_descr
PARAMS ((dw_cfa_location
*,
352 struct dw_loc_descr_struct
*));
353 static struct dw_loc_descr_struct
*build_cfa_loc
354 PARAMS ((dw_cfa_location
*));
355 static void def_cfa_1
PARAMS ((const char *,
358 /* How to start an assembler comment. */
359 #ifndef ASM_COMMENT_START
360 #define ASM_COMMENT_START ";#"
363 /* Data and reference forms for relocatable data. */
364 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
365 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
367 #ifndef DEBUG_FRAME_SECTION
368 #define DEBUG_FRAME_SECTION ".debug_frame"
371 #ifndef FUNC_BEGIN_LABEL
372 #define FUNC_BEGIN_LABEL "LFB"
375 #ifndef FUNC_END_LABEL
376 #define FUNC_END_LABEL "LFE"
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #define CIE_AFTER_SIZE_LABEL "LSCIE"
381 #define CIE_END_LABEL "LECIE"
382 #define FDE_LABEL "LSFDE"
383 #define FDE_AFTER_SIZE_LABEL "LASFDE"
384 #define FDE_END_LABEL "LEFDE"
385 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
386 #define LINE_NUMBER_END_LABEL "LELT"
387 #define LN_PROLOG_AS_LABEL "LASLTP"
388 #define LN_PROLOG_END_LABEL "LELTP"
389 #define DIE_LABEL_PREFIX "DW"
391 /* The DWARF 2 CFA column which tracks the return address. Normally this
392 is the column for PC, or the first column after all of the hard
394 #ifndef DWARF_FRAME_RETURN_COLUMN
396 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
398 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
402 /* The mapping from gcc register number to DWARF 2 CFA column number. By
403 default, we just provide columns for all registers. */
404 #ifndef DWARF_FRAME_REGNUM
405 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
408 /* The offset from the incoming value of %sp to the top of the stack frame
409 for the current function. */
410 #ifndef INCOMING_FRAME_SP_OFFSET
411 #define INCOMING_FRAME_SP_OFFSET 0
414 /* Hook used by __throw. */
417 expand_builtin_dwarf_fp_regnum ()
419 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
));
422 /* Return a pointer to a copy of the section string name S with all
423 attributes stripped off, and an asterisk prepended (for assemble_name). */
429 char *stripped
= xmalloc (strlen (s
) + 2);
434 while (*s
&& *s
!= ',')
441 /* Generate code to initialize the register size table. */
444 expand_builtin_init_dwarf_reg_sizes (address
)
448 enum machine_mode mode
= TYPE_MODE (char_type_node
);
449 rtx addr
= expand_expr (address
, NULL_RTX
, VOIDmode
, 0);
450 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
452 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
453 if (DWARF_FRAME_REGNUM (i
) < DWARF_FRAME_REGISTERS
)
455 HOST_WIDE_INT offset
= DWARF_FRAME_REGNUM (i
) * GET_MODE_SIZE (mode
);
456 HOST_WIDE_INT size
= GET_MODE_SIZE (reg_raw_mode
[i
]);
461 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
465 /* Convert a DWARF call frame info. operation to its string name */
468 dwarf_cfi_name (cfi_opc
)
473 case DW_CFA_advance_loc
:
474 return "DW_CFA_advance_loc";
476 return "DW_CFA_offset";
478 return "DW_CFA_restore";
482 return "DW_CFA_set_loc";
483 case DW_CFA_advance_loc1
:
484 return "DW_CFA_advance_loc1";
485 case DW_CFA_advance_loc2
:
486 return "DW_CFA_advance_loc2";
487 case DW_CFA_advance_loc4
:
488 return "DW_CFA_advance_loc4";
489 case DW_CFA_offset_extended
:
490 return "DW_CFA_offset_extended";
491 case DW_CFA_restore_extended
:
492 return "DW_CFA_restore_extended";
493 case DW_CFA_undefined
:
494 return "DW_CFA_undefined";
495 case DW_CFA_same_value
:
496 return "DW_CFA_same_value";
497 case DW_CFA_register
:
498 return "DW_CFA_register";
499 case DW_CFA_remember_state
:
500 return "DW_CFA_remember_state";
501 case DW_CFA_restore_state
:
502 return "DW_CFA_restore_state";
504 return "DW_CFA_def_cfa";
505 case DW_CFA_def_cfa_register
:
506 return "DW_CFA_def_cfa_register";
507 case DW_CFA_def_cfa_offset
:
508 return "DW_CFA_def_cfa_offset";
511 case DW_CFA_def_cfa_expression
:
512 return "DW_CFA_def_cfa_expression";
513 case DW_CFA_expression
:
514 return "DW_CFA_expression";
515 case DW_CFA_offset_extended_sf
:
516 return "DW_CFA_offset_extended_sf";
517 case DW_CFA_def_cfa_sf
:
518 return "DW_CFA_def_cfa_sf";
519 case DW_CFA_def_cfa_offset_sf
:
520 return "DW_CFA_def_cfa_offset_sf";
522 /* SGI/MIPS specific */
523 case DW_CFA_MIPS_advance_loc8
:
524 return "DW_CFA_MIPS_advance_loc8";
527 case DW_CFA_GNU_window_save
:
528 return "DW_CFA_GNU_window_save";
529 case DW_CFA_GNU_args_size
:
530 return "DW_CFA_GNU_args_size";
531 case DW_CFA_GNU_negative_offset_extended
:
532 return "DW_CFA_GNU_negative_offset_extended";
535 return "DW_CFA_<unknown>";
539 /* Return a pointer to a newly allocated Call Frame Instruction. */
541 static inline dw_cfi_ref
544 dw_cfi_ref cfi
= (dw_cfi_ref
) ggc_alloc (sizeof (dw_cfi_node
));
546 cfi
->dw_cfi_next
= NULL
;
547 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
548 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
553 /* Add a Call Frame Instruction to list of instructions. */
556 add_cfi (list_head
, cfi
)
557 dw_cfi_ref
*list_head
;
562 /* Find the end of the chain. */
563 for (p
= list_head
; (*p
) != NULL
; p
= &(*p
)->dw_cfi_next
)
569 /* Generate a new label for the CFI info to refer to. */
572 dwarf2out_cfi_label ()
574 static char label
[20];
576 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", dwarf2out_cfi_label_num
++);
577 ASM_OUTPUT_LABEL (asm_out_file
, label
);
581 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
582 or to the CIE if LABEL is NULL. */
585 add_fde_cfi (label
, cfi
)
591 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
594 label
= dwarf2out_cfi_label ();
596 if (fde
->dw_fde_current_label
== NULL
597 || strcmp (label
, fde
->dw_fde_current_label
) != 0)
601 fde
->dw_fde_current_label
= label
= xstrdup (label
);
603 /* Set the location counter to the new label. */
605 xcfi
->dw_cfi_opc
= DW_CFA_advance_loc4
;
606 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
607 add_cfi (&fde
->dw_fde_cfi
, xcfi
);
610 add_cfi (&fde
->dw_fde_cfi
, cfi
);
614 add_cfi (&cie_cfi_head
, cfi
);
617 /* Subroutine of lookup_cfa. */
620 lookup_cfa_1 (cfi
, loc
)
622 dw_cfa_location
*loc
;
624 switch (cfi
->dw_cfi_opc
)
626 case DW_CFA_def_cfa_offset
:
627 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
629 case DW_CFA_def_cfa_register
:
630 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
633 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
634 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
636 case DW_CFA_def_cfa_expression
:
637 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
644 /* Find the previous value for the CFA. */
648 dw_cfa_location
*loc
;
652 loc
->reg
= (unsigned long) -1;
655 loc
->base_offset
= 0;
657 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
658 lookup_cfa_1 (cfi
, loc
);
660 if (fde_table_in_use
)
662 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
663 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
664 lookup_cfa_1 (cfi
, loc
);
668 /* The current rule for calculating the DWARF2 canonical frame address. */
669 static dw_cfa_location cfa
;
671 /* The register used for saving registers to the stack, and its offset
673 static dw_cfa_location cfa_store
;
675 /* The running total of the size of arguments pushed onto the stack. */
676 static long args_size
;
678 /* The last args_size we actually output. */
679 static long old_args_size
;
681 /* Entry point to update the canonical frame address (CFA).
682 LABEL is passed to add_fde_cfi. The value of CFA is now to be
683 calculated from REG+OFFSET. */
686 dwarf2out_def_cfa (label
, reg
, offset
)
696 def_cfa_1 (label
, &loc
);
699 /* This routine does the actual work. The CFA is now calculated from
700 the dw_cfa_location structure. */
703 def_cfa_1 (label
, loc_p
)
705 dw_cfa_location
*loc_p
;
708 dw_cfa_location old_cfa
, loc
;
713 if (cfa_store
.reg
== loc
.reg
&& loc
.indirect
== 0)
714 cfa_store
.offset
= loc
.offset
;
716 loc
.reg
= DWARF_FRAME_REGNUM (loc
.reg
);
717 lookup_cfa (&old_cfa
);
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc
.reg
== old_cfa
.reg
&& loc
.offset
== old_cfa
.offset
721 && loc
.indirect
== old_cfa
.indirect
722 && (loc
.indirect
== 0 || loc
.base_offset
== old_cfa
.base_offset
))
727 if (loc
.reg
== old_cfa
.reg
&& !loc
.indirect
)
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
732 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
733 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= loc
.offset
;
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc
.offset
== old_cfa
.offset
&& old_cfa
.reg
!= (unsigned long) -1
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
744 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
748 else if (loc
.indirect
== 0)
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
754 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
755 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= loc
.offset
;
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct
*loc_list
;
764 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
765 loc_list
= build_cfa_loc (&loc
);
766 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
769 add_fde_cfi (label
, cfi
);
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
778 reg_save (label
, reg
, sreg
, offset
)
784 dw_cfi_ref cfi
= new_cfi ();
786 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
788 /* The following comparison is correct. -1 is used to indicate that
789 the value isn't a register number. */
790 if (sreg
== (unsigned int) -1)
793 /* The register number won't fit in 6 bits, so we have to use
795 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
797 cfi
->dw_cfi_opc
= DW_CFA_offset
;
799 #ifdef ENABLE_CHECKING
801 /* If we get an offset that is not a multiple of
802 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
803 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
805 long check_offset
= offset
/ DWARF_CIE_DATA_ALIGNMENT
;
807 if (check_offset
* DWARF_CIE_DATA_ALIGNMENT
!= offset
)
811 offset
/= DWARF_CIE_DATA_ALIGNMENT
;
813 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
815 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
817 else if (sreg
== reg
)
818 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
822 cfi
->dw_cfi_opc
= DW_CFA_register
;
823 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
826 add_fde_cfi (label
, cfi
);
829 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
830 This CFI tells the unwinder that it needs to restore the window registers
831 from the previous frame's window save area.
833 ??? Perhaps we should note in the CIE where windows are saved (instead of
834 assuming 0(cfa)) and what registers are in the window. */
837 dwarf2out_window_save (label
)
840 dw_cfi_ref cfi
= new_cfi ();
842 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
843 add_fde_cfi (label
, cfi
);
846 /* Add a CFI to update the running total of the size of arguments
847 pushed onto the stack. */
850 dwarf2out_args_size (label
, size
)
856 if (size
== old_args_size
)
859 old_args_size
= size
;
862 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
863 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
864 add_fde_cfi (label
, cfi
);
867 /* Entry point for saving a register to the stack. REG is the GCC register
868 number. LABEL and OFFSET are passed to reg_save. */
871 dwarf2out_reg_save (label
, reg
, offset
)
876 reg_save (label
, DWARF_FRAME_REGNUM (reg
), -1, offset
);
879 /* Entry point for saving the return address in the stack.
880 LABEL and OFFSET are passed to reg_save. */
883 dwarf2out_return_save (label
, offset
)
887 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, -1, offset
);
890 /* Entry point for saving the return address in a register.
891 LABEL and SREG are passed to reg_save. */
894 dwarf2out_return_reg (label
, sreg
)
898 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, sreg
, 0);
901 /* Record the initial position of the return address. RTL is
902 INCOMING_RETURN_ADDR_RTX. */
905 initial_return_save (rtl
)
908 unsigned int reg
= (unsigned int) -1;
909 HOST_WIDE_INT offset
= 0;
911 switch (GET_CODE (rtl
))
914 /* RA is in a register. */
915 reg
= DWARF_FRAME_REGNUM (REGNO (rtl
));
919 /* RA is on the stack. */
921 switch (GET_CODE (rtl
))
924 if (REGNO (rtl
) != STACK_POINTER_REGNUM
)
930 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
932 offset
= INTVAL (XEXP (rtl
, 1));
936 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
938 offset
= -INTVAL (XEXP (rtl
, 1));
948 /* The return address is at some offset from any value we can
949 actually load. For instance, on the SPARC it is in %i7+8. Just
950 ignore the offset for now; it doesn't matter for unwinding frames. */
951 if (GET_CODE (XEXP (rtl
, 1)) != CONST_INT
)
953 initial_return_save (XEXP (rtl
, 0));
960 reg_save (NULL
, DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cfa
.offset
);
963 /* Given a SET, calculate the amount of stack adjustment it
967 stack_adjust_offset (pattern
)
970 rtx src
= SET_SRC (pattern
);
971 rtx dest
= SET_DEST (pattern
);
972 HOST_WIDE_INT offset
= 0;
975 if (dest
== stack_pointer_rtx
)
977 /* (set (reg sp) (plus (reg sp) (const_int))) */
978 code
= GET_CODE (src
);
979 if (! (code
== PLUS
|| code
== MINUS
)
980 || XEXP (src
, 0) != stack_pointer_rtx
981 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
984 offset
= INTVAL (XEXP (src
, 1));
988 else if (GET_CODE (dest
) == MEM
)
990 /* (set (mem (pre_dec (reg sp))) (foo)) */
991 src
= XEXP (dest
, 0);
992 code
= GET_CODE (src
);
998 if (XEXP (src
, 0) == stack_pointer_rtx
)
1000 rtx val
= XEXP (XEXP (src
, 1), 1);
1001 /* We handle only adjustments by constant amount. */
1002 if (GET_CODE (XEXP (src
, 1)) != PLUS
||
1003 GET_CODE (val
) != CONST_INT
)
1005 offset
= -INTVAL (val
);
1012 if (XEXP (src
, 0) == stack_pointer_rtx
)
1014 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1021 if (XEXP (src
, 0) == stack_pointer_rtx
)
1023 offset
= -GET_MODE_SIZE (GET_MODE (dest
));
1038 /* Check INSN to see if it looks like a push or a stack adjustment, and
1039 make a note of it if it does. EH uses this information to find out how
1040 much extra space it needs to pop off the stack. */
1043 dwarf2out_stack_adjust (insn
)
1046 HOST_WIDE_INT offset
;
1050 if (!flag_asynchronous_unwind_tables
&& GET_CODE (insn
) == CALL_INSN
)
1052 /* Extract the size of the args from the CALL rtx itself. */
1053 insn
= PATTERN (insn
);
1054 if (GET_CODE (insn
) == PARALLEL
)
1055 insn
= XVECEXP (insn
, 0, 0);
1056 if (GET_CODE (insn
) == SET
)
1057 insn
= SET_SRC (insn
);
1058 if (GET_CODE (insn
) != CALL
)
1061 dwarf2out_args_size ("", INTVAL (XEXP (insn
, 1)));
1065 /* If only calls can throw, and we have a frame pointer,
1066 save up adjustments until we see the CALL_INSN. */
1067 else if (!flag_asynchronous_unwind_tables
&& cfa
.reg
!= STACK_POINTER_REGNUM
)
1070 if (GET_CODE (insn
) == BARRIER
)
1072 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1073 the compiler will have already emitted a stack adjustment, but
1074 doesn't bother for calls to noreturn functions. */
1075 #ifdef STACK_GROWS_DOWNWARD
1076 offset
= -args_size
;
1081 else if (GET_CODE (PATTERN (insn
)) == SET
)
1082 offset
= stack_adjust_offset (PATTERN (insn
));
1083 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1084 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1086 /* There may be stack adjustments inside compound insns. Search
1088 for (offset
= 0, i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1089 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1090 offset
+= stack_adjust_offset (XVECEXP (PATTERN (insn
), 0, i
));
1098 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1099 cfa
.offset
+= offset
;
1101 #ifndef STACK_GROWS_DOWNWARD
1105 args_size
+= offset
;
1109 label
= dwarf2out_cfi_label ();
1110 def_cfa_1 (label
, &cfa
);
1111 dwarf2out_args_size (label
, args_size
);
1116 /* We delay emitting a register save until either (a) we reach the end
1117 of the prologue or (b) the register is clobbered. This clusters
1118 register saves so that there are fewer pc advances. */
1120 struct queued_reg_save
GTY(())
1122 struct queued_reg_save
*next
;
1127 static GTY(()) struct queued_reg_save
*queued_reg_saves
;
1129 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1130 static const char *last_reg_save_label
;
1133 queue_reg_save (label
, reg
, offset
)
1138 struct queued_reg_save
*q
= ggc_alloc (sizeof (*q
));
1140 q
->next
= queued_reg_saves
;
1142 q
->cfa_offset
= offset
;
1143 queued_reg_saves
= q
;
1145 last_reg_save_label
= label
;
1149 flush_queued_reg_saves ()
1151 struct queued_reg_save
*q
, *next
;
1153 for (q
= queued_reg_saves
; q
; q
= next
)
1155 dwarf2out_reg_save (last_reg_save_label
, REGNO (q
->reg
), q
->cfa_offset
);
1159 queued_reg_saves
= NULL
;
1160 last_reg_save_label
= NULL
;
1164 clobbers_queued_reg_save (insn
)
1167 struct queued_reg_save
*q
;
1169 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1170 if (modified_in_p (q
->reg
, insn
))
1177 /* A temporary register holding an integral value used in adjusting SP
1178 or setting up the store_reg. The "offset" field holds the integer
1179 value, not an offset. */
1180 static dw_cfa_location cfa_temp
;
1182 /* Record call frame debugging information for an expression EXPR,
1183 which either sets SP or FP (adjusting how we calculate the frame
1184 address) or saves a register to the stack. LABEL indicates the
1187 This function encodes a state machine mapping rtxes to actions on
1188 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1189 users need not read the source code.
1191 The High-Level Picture
1193 Changes in the register we use to calculate the CFA: Currently we
1194 assume that if you copy the CFA register into another register, we
1195 should take the other one as the new CFA register; this seems to
1196 work pretty well. If it's wrong for some target, it's simple
1197 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1199 Changes in the register we use for saving registers to the stack:
1200 This is usually SP, but not always. Again, we deduce that if you
1201 copy SP into another register (and SP is not the CFA register),
1202 then the new register is the one we will be using for register
1203 saves. This also seems to work.
1205 Register saves: There's not much guesswork about this one; if
1206 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1207 register save, and the register used to calculate the destination
1208 had better be the one we think we're using for this purpose.
1210 Except: If the register being saved is the CFA register, and the
1211 offset is nonzero, we are saving the CFA, so we assume we have to
1212 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1213 the intent is to save the value of SP from the previous frame.
1215 Invariants / Summaries of Rules
1217 cfa current rule for calculating the CFA. It usually
1218 consists of a register and an offset.
1219 cfa_store register used by prologue code to save things to the stack
1220 cfa_store.offset is the offset from the value of
1221 cfa_store.reg to the actual CFA
1222 cfa_temp register holding an integral value. cfa_temp.offset
1223 stores the value, which will be used to adjust the
1224 stack pointer. cfa_temp is also used like cfa_store,
1225 to track stores to the stack via fp or a temp reg.
1227 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1228 with cfa.reg as the first operand changes the cfa.reg and its
1229 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1232 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1233 expression yielding a constant. This sets cfa_temp.reg
1234 and cfa_temp.offset.
1236 Rule 5: Create a new register cfa_store used to save items to the
1239 Rules 10-14: Save a register to the stack. Define offset as the
1240 difference of the original location and cfa_store's
1241 location (or cfa_temp's location if cfa_temp is used).
1245 "{a,b}" indicates a choice of a xor b.
1246 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1249 (set <reg1> <reg2>:cfa.reg)
1250 effects: cfa.reg = <reg1>
1251 cfa.offset unchanged
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1256 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1257 {<const_int>,<reg>:cfa_temp.reg}))
1258 effects: cfa.reg = sp if fp used
1259 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1260 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1261 if cfa_store.reg==sp
1264 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1265 effects: cfa.reg = fp
1266 cfa_offset += +/- <const_int>
1269 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1270 constraints: <reg1> != fp
1272 effects: cfa.reg = <reg1>
1273 cfa_temp.reg = <reg1>
1274 cfa_temp.offset = cfa.offset
1277 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1278 constraints: <reg1> != fp
1280 effects: cfa_store.reg = <reg1>
1281 cfa_store.offset = cfa.offset - cfa_temp.offset
1284 (set <reg> <const_int>)
1285 effects: cfa_temp.reg = <reg>
1286 cfa_temp.offset = <const_int>
1289 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1290 effects: cfa_temp.reg = <reg1>
1291 cfa_temp.offset |= <const_int>
1294 (set <reg> (high <exp>))
1298 (set <reg> (lo_sum <exp> <const_int>))
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1303 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1304 effects: cfa_store.offset -= <const_int>
1305 cfa.offset = cfa_store.offset if cfa.reg == sp
1307 cfa.base_offset = -cfa_store.offset
1310 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1311 effects: cfa_store.offset += -/+ mode_size(mem)
1312 cfa.offset = cfa_store.offset if cfa.reg == sp
1314 cfa.base_offset = -cfa_store.offset
1317 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1320 effects: cfa.reg = <reg1>
1321 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1324 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1325 effects: cfa.reg = <reg1>
1326 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1329 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1330 effects: cfa.reg = <reg1>
1331 cfa.base_offset = -cfa_temp.offset
1332 cfa_temp.offset -= mode_size(mem) */
1335 dwarf2out_frame_debug_expr (expr
, label
)
1340 HOST_WIDE_INT offset
;
1342 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1343 the PARALLEL independently. The first element is always processed if
1344 it is a SET. This is for backward compatibility. Other elements
1345 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1346 flag is set in them. */
1347 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1350 int limit
= XVECLEN (expr
, 0);
1352 for (par_index
= 0; par_index
< limit
; par_index
++)
1353 if (GET_CODE (XVECEXP (expr
, 0, par_index
)) == SET
1354 && (RTX_FRAME_RELATED_P (XVECEXP (expr
, 0, par_index
))
1356 dwarf2out_frame_debug_expr (XVECEXP (expr
, 0, par_index
), label
);
1361 if (GET_CODE (expr
) != SET
)
1364 src
= SET_SRC (expr
);
1365 dest
= SET_DEST (expr
);
1367 switch (GET_CODE (dest
))
1371 /* Update the CFA rule wrt SP or FP. Make sure src is
1372 relative to the current CFA register. */
1373 switch (GET_CODE (src
))
1375 /* Setting FP from SP. */
1377 if (cfa
.reg
== (unsigned) REGNO (src
))
1383 /* We used to require that dest be either SP or FP, but the
1384 ARM copies SP to a temporary register, and from there to
1385 FP. So we just rely on the backends to only set
1386 RTX_FRAME_RELATED_P on appropriate insns. */
1387 cfa
.reg
= REGNO (dest
);
1388 cfa_temp
.reg
= cfa
.reg
;
1389 cfa_temp
.offset
= cfa
.offset
;
1395 if (dest
== stack_pointer_rtx
)
1399 switch (GET_CODE (XEXP (src
, 1)))
1402 offset
= INTVAL (XEXP (src
, 1));
1405 if ((unsigned) REGNO (XEXP (src
, 1)) != cfa_temp
.reg
)
1407 offset
= cfa_temp
.offset
;
1413 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1415 /* Restoring SP from FP in the epilogue. */
1416 if (cfa
.reg
!= (unsigned) HARD_FRAME_POINTER_REGNUM
)
1418 cfa
.reg
= STACK_POINTER_REGNUM
;
1420 else if (GET_CODE (src
) == LO_SUM
)
1421 /* Assume we've set the source reg of the LO_SUM from sp. */
1423 else if (XEXP (src
, 0) != stack_pointer_rtx
)
1426 if (GET_CODE (src
) != MINUS
)
1428 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1429 cfa
.offset
+= offset
;
1430 if (cfa_store
.reg
== STACK_POINTER_REGNUM
)
1431 cfa_store
.offset
+= offset
;
1433 else if (dest
== hard_frame_pointer_rtx
)
1436 /* Either setting the FP from an offset of the SP,
1437 or adjusting the FP */
1438 if (! frame_pointer_needed
)
1441 if (GET_CODE (XEXP (src
, 0)) == REG
1442 && (unsigned) REGNO (XEXP (src
, 0)) == cfa
.reg
1443 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1445 offset
= INTVAL (XEXP (src
, 1));
1446 if (GET_CODE (src
) != MINUS
)
1448 cfa
.offset
+= offset
;
1449 cfa
.reg
= HARD_FRAME_POINTER_REGNUM
;
1456 if (GET_CODE (src
) == MINUS
)
1460 if (GET_CODE (XEXP (src
, 0)) == REG
1461 && REGNO (XEXP (src
, 0)) == cfa
.reg
1462 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1464 /* Setting a temporary CFA register that will be copied
1465 into the FP later on. */
1466 offset
= - INTVAL (XEXP (src
, 1));
1467 cfa
.offset
+= offset
;
1468 cfa
.reg
= REGNO (dest
);
1469 /* Or used to save regs to the stack. */
1470 cfa_temp
.reg
= cfa
.reg
;
1471 cfa_temp
.offset
= cfa
.offset
;
1475 else if (GET_CODE (XEXP (src
, 0)) == REG
1476 && REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1477 && XEXP (src
, 1) == stack_pointer_rtx
)
1479 /* Setting a scratch register that we will use instead
1480 of SP for saving registers to the stack. */
1481 if (cfa
.reg
!= STACK_POINTER_REGNUM
)
1483 cfa_store
.reg
= REGNO (dest
);
1484 cfa_store
.offset
= cfa
.offset
- cfa_temp
.offset
;
1488 else if (GET_CODE (src
) == LO_SUM
1489 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1491 cfa_temp
.reg
= REGNO (dest
);
1492 cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1501 cfa_temp
.reg
= REGNO (dest
);
1502 cfa_temp
.offset
= INTVAL (src
);
1507 if (GET_CODE (XEXP (src
, 0)) != REG
1508 || (unsigned) REGNO (XEXP (src
, 0)) != cfa_temp
.reg
1509 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1512 if ((unsigned) REGNO (dest
) != cfa_temp
.reg
)
1513 cfa_temp
.reg
= REGNO (dest
);
1514 cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1517 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1518 which will fill in all of the bits. */
1527 def_cfa_1 (label
, &cfa
);
1531 if (GET_CODE (src
) != REG
)
1534 /* Saving a register to the stack. Make sure dest is relative to the
1536 switch (GET_CODE (XEXP (dest
, 0)))
1541 /* We can't handle variable size modifications. */
1542 if (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1)) != CONST_INT
)
1544 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1546 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1547 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1550 cfa_store
.offset
+= offset
;
1551 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1552 cfa
.offset
= cfa_store
.offset
;
1554 offset
= -cfa_store
.offset
;
1560 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1561 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1564 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1565 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1568 cfa_store
.offset
+= offset
;
1569 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1570 cfa
.offset
= cfa_store
.offset
;
1572 offset
= -cfa_store
.offset
;
1576 /* With an offset. */
1580 if (GET_CODE (XEXP (XEXP (dest
, 0), 1)) != CONST_INT
)
1582 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1583 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1586 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1587 offset
-= cfa_store
.offset
;
1588 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1589 offset
-= cfa_temp
.offset
;
1595 /* Without an offset. */
1597 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1598 offset
= -cfa_store
.offset
;
1599 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1600 offset
= -cfa_temp
.offset
;
1607 if (cfa_temp
.reg
!= (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1609 offset
= -cfa_temp
.offset
;
1610 cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1617 if (REGNO (src
) != STACK_POINTER_REGNUM
1618 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1619 && (unsigned) REGNO (src
) == cfa
.reg
)
1621 /* We're storing the current CFA reg into the stack. */
1623 if (cfa
.offset
== 0)
1625 /* If the source register is exactly the CFA, assume
1626 we're saving SP like any other register; this happens
1628 def_cfa_1 (label
, &cfa
);
1629 queue_reg_save (label
, stack_pointer_rtx
, offset
);
1634 /* Otherwise, we'll need to look in the stack to
1635 calculate the CFA. */
1636 rtx x
= XEXP (dest
, 0);
1638 if (GET_CODE (x
) != REG
)
1640 if (GET_CODE (x
) != REG
)
1643 cfa
.reg
= REGNO (x
);
1644 cfa
.base_offset
= offset
;
1646 def_cfa_1 (label
, &cfa
);
1651 def_cfa_1 (label
, &cfa
);
1652 queue_reg_save (label
, src
, offset
);
1660 /* Record call frame debugging information for INSN, which either
1661 sets SP or FP (adjusting how we calculate the frame address) or saves a
1662 register to the stack. If INSN is NULL_RTX, initialize our state. */
1665 dwarf2out_frame_debug (insn
)
1671 if (insn
== NULL_RTX
)
1673 /* Flush any queued register saves. */
1674 flush_queued_reg_saves ();
1676 /* Set up state for generating call frame debug info. */
1678 if (cfa
.reg
!= (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
))
1681 cfa
.reg
= STACK_POINTER_REGNUM
;
1684 cfa_temp
.offset
= 0;
1688 if (GET_CODE (insn
) != INSN
|| clobbers_queued_reg_save (insn
))
1689 flush_queued_reg_saves ();
1691 if (! RTX_FRAME_RELATED_P (insn
))
1693 if (!ACCUMULATE_OUTGOING_ARGS
)
1694 dwarf2out_stack_adjust (insn
);
1699 label
= dwarf2out_cfi_label ();
1700 src
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
1702 insn
= XEXP (src
, 0);
1704 insn
= PATTERN (insn
);
1706 dwarf2out_frame_debug_expr (insn
, label
);
1711 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1712 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1713 PARAMS ((enum dwarf_call_frame_info cfi
));
1715 static enum dw_cfi_oprnd_type
1716 dw_cfi_oprnd1_desc (cfi
)
1717 enum dwarf_call_frame_info cfi
;
1722 case DW_CFA_GNU_window_save
:
1723 return dw_cfi_oprnd_unused
;
1725 case DW_CFA_set_loc
:
1726 case DW_CFA_advance_loc1
:
1727 case DW_CFA_advance_loc2
:
1728 case DW_CFA_advance_loc4
:
1729 case DW_CFA_MIPS_advance_loc8
:
1730 return dw_cfi_oprnd_addr
;
1733 case DW_CFA_offset_extended
:
1734 case DW_CFA_def_cfa
:
1735 case DW_CFA_offset_extended_sf
:
1736 case DW_CFA_def_cfa_sf
:
1737 case DW_CFA_restore_extended
:
1738 case DW_CFA_undefined
:
1739 case DW_CFA_same_value
:
1740 case DW_CFA_def_cfa_register
:
1741 case DW_CFA_register
:
1742 return dw_cfi_oprnd_reg_num
;
1744 case DW_CFA_def_cfa_offset
:
1745 case DW_CFA_GNU_args_size
:
1746 case DW_CFA_def_cfa_offset_sf
:
1747 return dw_cfi_oprnd_offset
;
1749 case DW_CFA_def_cfa_expression
:
1750 case DW_CFA_expression
:
1751 return dw_cfi_oprnd_loc
;
1758 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1759 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1760 PARAMS ((enum dwarf_call_frame_info cfi
));
1762 static enum dw_cfi_oprnd_type
1763 dw_cfi_oprnd2_desc (cfi
)
1764 enum dwarf_call_frame_info cfi
;
1768 case DW_CFA_def_cfa
:
1769 case DW_CFA_def_cfa_sf
:
1771 case DW_CFA_offset_extended_sf
:
1772 case DW_CFA_offset_extended
:
1773 return dw_cfi_oprnd_offset
;
1775 case DW_CFA_register
:
1776 return dw_cfi_oprnd_reg_num
;
1779 return dw_cfi_oprnd_unused
;
1783 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1785 /* Output a Call Frame Information opcode and its operand(s). */
1788 output_cfi (cfi
, fde
, for_eh
)
1793 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
1794 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1795 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
1796 "DW_CFA_advance_loc 0x%lx",
1797 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
1798 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
1800 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1801 | (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
& 0x3f)),
1802 "DW_CFA_offset, column 0x%lx",
1803 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
);
1804 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1806 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
1807 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1808 | (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
& 0x3f)),
1809 "DW_CFA_restore, column 0x%lx",
1810 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
);
1813 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
1814 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
1816 switch (cfi
->dw_cfi_opc
)
1818 case DW_CFA_set_loc
:
1820 dw2_asm_output_encoded_addr_rtx (
1821 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1822 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
1825 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
1826 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
1829 case DW_CFA_advance_loc1
:
1830 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1831 fde
->dw_fde_current_label
, NULL
);
1832 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1835 case DW_CFA_advance_loc2
:
1836 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1837 fde
->dw_fde_current_label
, NULL
);
1838 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1841 case DW_CFA_advance_loc4
:
1842 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1843 fde
->dw_fde_current_label
, NULL
);
1844 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1847 case DW_CFA_MIPS_advance_loc8
:
1848 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1849 fde
->dw_fde_current_label
, NULL
);
1850 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1853 case DW_CFA_offset_extended
:
1854 case DW_CFA_def_cfa
:
1855 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1857 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1860 case DW_CFA_offset_extended_sf
:
1861 case DW_CFA_def_cfa_sf
:
1862 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1864 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1867 case DW_CFA_restore_extended
:
1868 case DW_CFA_undefined
:
1869 case DW_CFA_same_value
:
1870 case DW_CFA_def_cfa_register
:
1871 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1875 case DW_CFA_register
:
1876 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1878 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
,
1882 case DW_CFA_def_cfa_offset
:
1883 case DW_CFA_GNU_args_size
:
1884 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
1887 case DW_CFA_def_cfa_offset_sf
:
1888 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
1891 case DW_CFA_GNU_window_save
:
1894 case DW_CFA_def_cfa_expression
:
1895 case DW_CFA_expression
:
1896 output_cfa_loc (cfi
);
1899 case DW_CFA_GNU_negative_offset_extended
:
1900 /* Obsoleted by DW_CFA_offset_extended_sf. */
1909 /* Output the call frame information used to used to record information
1910 that relates to calculating the frame pointer, and records the
1911 location of saved registers. */
1914 output_call_frame_info (for_eh
)
1920 char l1
[20], l2
[20], section_start_label
[20];
1921 int any_lsda_needed
= 0;
1922 char augmentation
[6];
1923 int augmentation_size
;
1924 int fde_encoding
= DW_EH_PE_absptr
;
1925 int per_encoding
= DW_EH_PE_absptr
;
1926 int lsda_encoding
= DW_EH_PE_absptr
;
1928 /* Don't emit a CIE if there won't be any FDEs. */
1929 if (fde_table_in_use
== 0)
1932 /* If we don't have any functions we'll want to unwind out of, don't emit any
1933 EH unwind information. */
1936 int any_eh_needed
= flag_asynchronous_unwind_tables
;
1938 for (i
= 0; i
< fde_table_in_use
; i
++)
1939 if (fde_table
[i
].uses_eh_lsda
)
1940 any_eh_needed
= any_lsda_needed
= 1;
1941 else if (! fde_table
[i
].nothrow
)
1944 if (! any_eh_needed
)
1948 /* We're going to be generating comments, so turn on app. */
1953 (*targetm
.asm_out
.eh_frame_section
) ();
1955 named_section_flags (DEBUG_FRAME_SECTION
, SECTION_DEBUG
);
1957 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
1958 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
1960 /* Output the CIE. */
1961 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
1962 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
1963 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
1964 "Length of Common Information Entry");
1965 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
1967 /* Now that the CIE pointer is PC-relative for EH,
1968 use 0 to identify the CIE. */
1969 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
1970 (for_eh
? 0 : DW_CIE_ID
),
1971 "CIE Identifier Tag");
1973 dw2_asm_output_data (1, DW_CIE_VERSION
, "CIE Version");
1975 augmentation
[0] = 0;
1976 augmentation_size
= 0;
1982 z Indicates that a uleb128 is present to size the
1983 augmentation section.
1984 L Indicates the encoding (and thus presence) of
1985 an LSDA pointer in the FDE augmentation.
1986 R Indicates a non-default pointer encoding for
1988 P Indicates the presence of an encoding + language
1989 personality routine in the CIE augmentation. */
1991 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1992 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1993 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1995 p
= augmentation
+ 1;
1996 if (eh_personality_libfunc
)
1999 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
2001 if (any_lsda_needed
)
2004 augmentation_size
+= 1;
2006 if (fde_encoding
!= DW_EH_PE_absptr
)
2009 augmentation_size
+= 1;
2011 if (p
> augmentation
+ 1)
2013 augmentation
[0] = 'z';
2017 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2018 if (eh_personality_libfunc
&& per_encoding
== DW_EH_PE_aligned
)
2020 int offset
= ( 4 /* Length */
2022 + 1 /* CIE version */
2023 + strlen (augmentation
) + 1 /* Augmentation */
2024 + size_of_uleb128 (1) /* Code alignment */
2025 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
2027 + 1 /* Augmentation size */
2028 + 1 /* Personality encoding */ );
2029 int pad
= -offset
& (PTR_SIZE
- 1);
2031 augmentation_size
+= pad
;
2033 /* Augmentations should be small, so there's scarce need to
2034 iterate for a solution. Die if we exceed one uleb128 byte. */
2035 if (size_of_uleb128 (augmentation_size
) != 1)
2040 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
2041 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2042 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
2043 "CIE Data Alignment Factor");
2044 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN
, "CIE RA Column");
2046 if (augmentation
[0])
2048 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
2049 if (eh_personality_libfunc
)
2051 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
2052 eh_data_format_name (per_encoding
));
2053 dw2_asm_output_encoded_addr_rtx (per_encoding
,
2054 eh_personality_libfunc
, NULL
);
2057 if (any_lsda_needed
)
2058 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
2059 eh_data_format_name (lsda_encoding
));
2061 if (fde_encoding
!= DW_EH_PE_absptr
)
2062 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
2063 eh_data_format_name (fde_encoding
));
2066 for (cfi
= cie_cfi_head
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2067 output_cfi (cfi
, NULL
, for_eh
);
2069 /* Pad the CIE out to an address sized boundary. */
2070 ASM_OUTPUT_ALIGN (asm_out_file
,
2071 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
2072 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2074 /* Loop through all of the FDE's. */
2075 for (i
= 0; i
< fde_table_in_use
; i
++)
2077 fde
= &fde_table
[i
];
2079 /* Don't emit EH unwind info for leaf functions that don't need it. */
2080 if (!flag_asynchronous_unwind_tables
&& for_eh
2081 && (fde
->nothrow
|| fde
->all_throwers_are_sibcalls
)
2082 && !fde
->uses_eh_lsda
)
2085 (*targetm
.asm_out
.internal_label
) (asm_out_file
, FDE_LABEL
, for_eh
+ i
* 2);
2086 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ i
* 2);
2087 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ i
* 2);
2088 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2090 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2093 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
2095 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
2100 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
2101 gen_rtx_SYMBOL_REF (Pmode
, fde
->dw_fde_begin
),
2102 "FDE initial location");
2103 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2104 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2105 "FDE address range");
2109 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
2110 "FDE initial location");
2111 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2112 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2113 "FDE address range");
2116 if (augmentation
[0])
2118 if (any_lsda_needed
)
2120 int size
= size_of_encoded_value (lsda_encoding
);
2122 if (lsda_encoding
== DW_EH_PE_aligned
)
2124 int offset
= ( 4 /* Length */
2125 + 4 /* CIE offset */
2126 + 2 * size_of_encoded_value (fde_encoding
)
2127 + 1 /* Augmentation size */ );
2128 int pad
= -offset
& (PTR_SIZE
- 1);
2131 if (size_of_uleb128 (size
) != 1)
2135 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
2137 if (fde
->uses_eh_lsda
)
2139 ASM_GENERATE_INTERNAL_LABEL (l1
, "LLSDA",
2140 fde
->funcdef_number
);
2141 dw2_asm_output_encoded_addr_rtx (
2142 lsda_encoding
, gen_rtx_SYMBOL_REF (Pmode
, l1
),
2143 "Language Specific Data Area");
2147 if (lsda_encoding
== DW_EH_PE_aligned
)
2148 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2150 (size_of_encoded_value (lsda_encoding
), 0,
2151 "Language Specific Data Area (none)");
2155 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2158 /* Loop through the Call Frame Instructions associated with
2160 fde
->dw_fde_current_label
= fde
->dw_fde_begin
;
2161 for (cfi
= fde
->dw_fde_cfi
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2162 output_cfi (cfi
, fde
, for_eh
);
2164 /* Pad the FDE out to an address sized boundary. */
2165 ASM_OUTPUT_ALIGN (asm_out_file
,
2166 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
2167 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2170 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
2171 dw2_asm_output_data (4, 0, "End of Table");
2172 #ifdef MIPS_DEBUGGING_INFO
2173 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2174 get a value of 0. Putting .align 0 after the label fixes it. */
2175 ASM_OUTPUT_ALIGN (asm_out_file
, 0);
2178 /* Turn off app to make assembly quicker. */
2183 /* Output a marker (i.e. a label) for the beginning of a function, before
2187 dwarf2out_begin_prologue (line
, file
)
2188 unsigned int line ATTRIBUTE_UNUSED
;
2189 const char *file ATTRIBUTE_UNUSED
;
2191 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2194 current_function_func_begin_label
= 0;
2196 #ifdef IA64_UNWIND_INFO
2197 /* ??? current_function_func_begin_label is also used by except.c
2198 for call-site information. We must emit this label if it might
2200 if ((! flag_exceptions
|| USING_SJLJ_EXCEPTIONS
)
2201 && ! dwarf2out_do_frame ())
2204 if (! dwarf2out_do_frame ())
2208 function_section (current_function_decl
);
2209 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
2210 current_function_funcdef_no
);
2211 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
2212 current_function_funcdef_no
);
2213 current_function_func_begin_label
= get_identifier (label
);
2215 #ifdef IA64_UNWIND_INFO
2216 /* We can elide the fde allocation if we're not emitting debug info. */
2217 if (! dwarf2out_do_frame ())
2221 /* Expand the fde table if necessary. */
2222 if (fde_table_in_use
== fde_table_allocated
)
2224 fde_table_allocated
+= FDE_TABLE_INCREMENT
;
2225 fde_table
= ggc_realloc (fde_table
,
2226 fde_table_allocated
* sizeof (dw_fde_node
));
2227 memset (fde_table
+ fde_table_in_use
, 0,
2228 FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2231 /* Record the FDE associated with this function. */
2232 current_funcdef_fde
= fde_table_in_use
;
2234 /* Add the new FDE at the end of the fde_table. */
2235 fde
= &fde_table
[fde_table_in_use
++];
2236 fde
->dw_fde_begin
= xstrdup (label
);
2237 fde
->dw_fde_current_label
= NULL
;
2238 fde
->dw_fde_end
= NULL
;
2239 fde
->dw_fde_cfi
= NULL
;
2240 fde
->funcdef_number
= current_function_funcdef_no
;
2241 fde
->nothrow
= current_function_nothrow
;
2242 fde
->uses_eh_lsda
= cfun
->uses_eh_lsda
;
2243 fde
->all_throwers_are_sibcalls
= cfun
->all_throwers_are_sibcalls
;
2245 args_size
= old_args_size
= 0;
2247 /* We only want to output line number information for the genuine dwarf2
2248 prologue case, not the eh frame case. */
2249 #ifdef DWARF2_DEBUGGING_INFO
2251 dwarf2out_source_line (line
, file
);
2255 /* Output a marker (i.e. a label) for the absolute end of the generated code
2256 for a function definition. This gets called *after* the epilogue code has
2260 dwarf2out_end_epilogue (line
, file
)
2261 unsigned int line ATTRIBUTE_UNUSED
;
2262 const char *file ATTRIBUTE_UNUSED
;
2265 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2267 /* Output a label to mark the endpoint of the code generated for this
2269 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
2270 current_function_funcdef_no
);
2271 ASM_OUTPUT_LABEL (asm_out_file
, label
);
2272 fde
= &fde_table
[fde_table_in_use
- 1];
2273 fde
->dw_fde_end
= xstrdup (label
);
2277 dwarf2out_frame_init ()
2279 /* Allocate the initial hunk of the fde_table. */
2280 fde_table
= (dw_fde_ref
) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2281 * sizeof (dw_fde_node
));
2282 fde_table_allocated
= FDE_TABLE_INCREMENT
;
2283 fde_table_in_use
= 0;
2285 /* Generate the CFA instructions common to all FDE's. Do it now for the
2286 sake of lookup_cfa. */
2288 #ifdef DWARF2_UNWIND_INFO
2289 /* On entry, the Canonical Frame Address is at SP. */
2290 dwarf2out_def_cfa (NULL
, STACK_POINTER_REGNUM
, INCOMING_FRAME_SP_OFFSET
);
2291 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2296 dwarf2out_frame_finish ()
2298 /* Output call frame information. */
2299 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
2300 output_call_frame_info (0);
2302 if (! USING_SJLJ_EXCEPTIONS
&& (flag_unwind_tables
|| flag_exceptions
))
2303 output_call_frame_info (1);
2307 /* And now, the subset of the debugging information support code necessary
2308 for emitting location expressions. */
2310 /* We need some way to distinguish DW_OP_addr with a direct symbol
2311 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2312 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2315 typedef struct dw_val_struct
*dw_val_ref
;
2316 typedef struct die_struct
*dw_die_ref
;
2317 typedef struct dw_loc_descr_struct
*dw_loc_descr_ref
;
2318 typedef struct dw_loc_list_struct
*dw_loc_list_ref
;
2320 /* Each DIE may have a series of attribute/value pairs. Values
2321 can take on several forms. The forms that are used in this
2322 implementation are listed below. */
2327 dw_val_class_offset
,
2329 dw_val_class_loc_list
,
2330 dw_val_class_range_list
,
2332 dw_val_class_unsigned_const
,
2333 dw_val_class_long_long
,
2336 dw_val_class_die_ref
,
2337 dw_val_class_fde_ref
,
2338 dw_val_class_lbl_id
,
2339 dw_val_class_lbl_offset
,
2343 /* Describe a double word constant value. */
2344 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2346 typedef struct dw_long_long_struct
GTY(())
2353 /* Describe a floating point constant value. */
2355 typedef struct dw_fp_struct
GTY(())
2357 long * GTY((length ("%h.length"))) array
;
2362 /* The dw_val_node describes an attribute's value, as it is
2363 represented internally. */
2365 typedef struct dw_val_struct
GTY(())
2367 enum dw_val_class val_class
;
2368 union dw_val_struct_union
2370 rtx
GTY ((tag ("dw_val_class_addr"))) val_addr
;
2371 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset
;
2372 dw_loc_list_ref
GTY ((tag ("dw_val_class_loc_list"))) val_loc_list
;
2373 dw_loc_descr_ref
GTY ((tag ("dw_val_class_loc"))) val_loc
;
2374 long int GTY ((default (""))) val_int
;
2375 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned
;
2376 dw_long_long_const
GTY ((tag ("dw_val_class_long_long"))) val_long_long
;
2377 dw_float_const
GTY ((tag ("dw_val_class_float"))) val_float
;
2378 struct dw_val_die_union
2382 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref
;
2383 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index
;
2384 struct indirect_string_node
* GTY ((tag ("dw_val_class_str"))) val_str
;
2385 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id
;
2386 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag
;
2388 GTY ((desc ("%1.val_class"))) v
;
2392 /* Locations in memory are described using a sequence of stack machine
2395 typedef struct dw_loc_descr_struct
GTY(())
2397 dw_loc_descr_ref dw_loc_next
;
2398 enum dwarf_location_atom dw_loc_opc
;
2399 dw_val_node dw_loc_oprnd1
;
2400 dw_val_node dw_loc_oprnd2
;
2405 /* Location lists are ranges + location descriptions for that range,
2406 so you can track variables that are in different places over
2407 their entire life. */
2408 typedef struct dw_loc_list_struct
GTY(())
2410 dw_loc_list_ref dw_loc_next
;
2411 const char *begin
; /* Label for begin address of range */
2412 const char *end
; /* Label for end address of range */
2413 char *ll_symbol
; /* Label for beginning of location list.
2414 Only on head of list */
2415 const char *section
; /* Section this loclist is relative to */
2416 dw_loc_descr_ref expr
;
2419 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2421 static const char *dwarf_stack_op_name
PARAMS ((unsigned));
2422 static dw_loc_descr_ref new_loc_descr
PARAMS ((enum dwarf_location_atom
,
2425 static void add_loc_descr
PARAMS ((dw_loc_descr_ref
*,
2427 static unsigned long size_of_loc_descr
PARAMS ((dw_loc_descr_ref
));
2428 static unsigned long size_of_locs
PARAMS ((dw_loc_descr_ref
));
2429 static void output_loc_operands
PARAMS ((dw_loc_descr_ref
));
2430 static void output_loc_sequence
PARAMS ((dw_loc_descr_ref
));
2432 /* Convert a DWARF stack opcode into its string name. */
2435 dwarf_stack_op_name (op
)
2441 case INTERNAL_DW_OP_tls_addr
:
2442 return "DW_OP_addr";
2444 return "DW_OP_deref";
2446 return "DW_OP_const1u";
2448 return "DW_OP_const1s";
2450 return "DW_OP_const2u";
2452 return "DW_OP_const2s";
2454 return "DW_OP_const4u";
2456 return "DW_OP_const4s";
2458 return "DW_OP_const8u";
2460 return "DW_OP_const8s";
2462 return "DW_OP_constu";
2464 return "DW_OP_consts";
2468 return "DW_OP_drop";
2470 return "DW_OP_over";
2472 return "DW_OP_pick";
2474 return "DW_OP_swap";
2478 return "DW_OP_xderef";
2486 return "DW_OP_minus";
2498 return "DW_OP_plus";
2499 case DW_OP_plus_uconst
:
2500 return "DW_OP_plus_uconst";
2506 return "DW_OP_shra";
2524 return "DW_OP_skip";
2526 return "DW_OP_lit0";
2528 return "DW_OP_lit1";
2530 return "DW_OP_lit2";
2532 return "DW_OP_lit3";
2534 return "DW_OP_lit4";
2536 return "DW_OP_lit5";
2538 return "DW_OP_lit6";
2540 return "DW_OP_lit7";
2542 return "DW_OP_lit8";
2544 return "DW_OP_lit9";
2546 return "DW_OP_lit10";
2548 return "DW_OP_lit11";
2550 return "DW_OP_lit12";
2552 return "DW_OP_lit13";
2554 return "DW_OP_lit14";
2556 return "DW_OP_lit15";
2558 return "DW_OP_lit16";
2560 return "DW_OP_lit17";
2562 return "DW_OP_lit18";
2564 return "DW_OP_lit19";
2566 return "DW_OP_lit20";
2568 return "DW_OP_lit21";
2570 return "DW_OP_lit22";
2572 return "DW_OP_lit23";
2574 return "DW_OP_lit24";
2576 return "DW_OP_lit25";
2578 return "DW_OP_lit26";
2580 return "DW_OP_lit27";
2582 return "DW_OP_lit28";
2584 return "DW_OP_lit29";
2586 return "DW_OP_lit30";
2588 return "DW_OP_lit31";
2590 return "DW_OP_reg0";
2592 return "DW_OP_reg1";
2594 return "DW_OP_reg2";
2596 return "DW_OP_reg3";
2598 return "DW_OP_reg4";
2600 return "DW_OP_reg5";
2602 return "DW_OP_reg6";
2604 return "DW_OP_reg7";
2606 return "DW_OP_reg8";
2608 return "DW_OP_reg9";
2610 return "DW_OP_reg10";
2612 return "DW_OP_reg11";
2614 return "DW_OP_reg12";
2616 return "DW_OP_reg13";
2618 return "DW_OP_reg14";
2620 return "DW_OP_reg15";
2622 return "DW_OP_reg16";
2624 return "DW_OP_reg17";
2626 return "DW_OP_reg18";
2628 return "DW_OP_reg19";
2630 return "DW_OP_reg20";
2632 return "DW_OP_reg21";
2634 return "DW_OP_reg22";
2636 return "DW_OP_reg23";
2638 return "DW_OP_reg24";
2640 return "DW_OP_reg25";
2642 return "DW_OP_reg26";
2644 return "DW_OP_reg27";
2646 return "DW_OP_reg28";
2648 return "DW_OP_reg29";
2650 return "DW_OP_reg30";
2652 return "DW_OP_reg31";
2654 return "DW_OP_breg0";
2656 return "DW_OP_breg1";
2658 return "DW_OP_breg2";
2660 return "DW_OP_breg3";
2662 return "DW_OP_breg4";
2664 return "DW_OP_breg5";
2666 return "DW_OP_breg6";
2668 return "DW_OP_breg7";
2670 return "DW_OP_breg8";
2672 return "DW_OP_breg9";
2674 return "DW_OP_breg10";
2676 return "DW_OP_breg11";
2678 return "DW_OP_breg12";
2680 return "DW_OP_breg13";
2682 return "DW_OP_breg14";
2684 return "DW_OP_breg15";
2686 return "DW_OP_breg16";
2688 return "DW_OP_breg17";
2690 return "DW_OP_breg18";
2692 return "DW_OP_breg19";
2694 return "DW_OP_breg20";
2696 return "DW_OP_breg21";
2698 return "DW_OP_breg22";
2700 return "DW_OP_breg23";
2702 return "DW_OP_breg24";
2704 return "DW_OP_breg25";
2706 return "DW_OP_breg26";
2708 return "DW_OP_breg27";
2710 return "DW_OP_breg28";
2712 return "DW_OP_breg29";
2714 return "DW_OP_breg30";
2716 return "DW_OP_breg31";
2718 return "DW_OP_regx";
2720 return "DW_OP_fbreg";
2722 return "DW_OP_bregx";
2724 return "DW_OP_piece";
2725 case DW_OP_deref_size
:
2726 return "DW_OP_deref_size";
2727 case DW_OP_xderef_size
:
2728 return "DW_OP_xderef_size";
2731 case DW_OP_push_object_address
:
2732 return "DW_OP_push_object_address";
2734 return "DW_OP_call2";
2736 return "DW_OP_call4";
2737 case DW_OP_call_ref
:
2738 return "DW_OP_call_ref";
2739 case DW_OP_GNU_push_tls_address
:
2740 return "DW_OP_GNU_push_tls_address";
2742 return "OP_<unknown>";
2746 /* Return a pointer to a newly allocated location description. Location
2747 descriptions are simple expression terms that can be strung
2748 together to form more complicated location (address) descriptions. */
2750 static inline dw_loc_descr_ref
2751 new_loc_descr (op
, oprnd1
, oprnd2
)
2752 enum dwarf_location_atom op
;
2753 unsigned long oprnd1
;
2754 unsigned long oprnd2
;
2756 dw_loc_descr_ref descr
2757 = (dw_loc_descr_ref
) ggc_alloc_cleared (sizeof (dw_loc_descr_node
));
2759 descr
->dw_loc_opc
= op
;
2760 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
2761 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
2762 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
2763 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
2769 /* Add a location description term to a location description expression. */
2772 add_loc_descr (list_head
, descr
)
2773 dw_loc_descr_ref
*list_head
;
2774 dw_loc_descr_ref descr
;
2776 dw_loc_descr_ref
*d
;
2778 /* Find the end of the chain. */
2779 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
2785 /* Return the size of a location descriptor. */
2787 static unsigned long
2788 size_of_loc_descr (loc
)
2789 dw_loc_descr_ref loc
;
2791 unsigned long size
= 1;
2793 switch (loc
->dw_loc_opc
)
2796 case INTERNAL_DW_OP_tls_addr
:
2797 size
+= DWARF2_ADDR_SIZE
;
2816 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2819 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2824 case DW_OP_plus_uconst
:
2825 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2863 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2866 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2869 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2872 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2873 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
2876 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2878 case DW_OP_deref_size
:
2879 case DW_OP_xderef_size
:
2888 case DW_OP_call_ref
:
2889 size
+= DWARF2_ADDR_SIZE
;
2898 /* Return the size of a series of location descriptors. */
2900 static unsigned long
2902 dw_loc_descr_ref loc
;
2906 for (size
= 0; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2908 loc
->dw_loc_addr
= size
;
2909 size
+= size_of_loc_descr (loc
);
2915 /* Output location description stack opcode's operands (if any). */
2918 output_loc_operands (loc
)
2919 dw_loc_descr_ref loc
;
2921 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
2922 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
2924 switch (loc
->dw_loc_opc
)
2926 #ifdef DWARF2_DEBUGGING_INFO
2928 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
2932 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
2936 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
2940 if (HOST_BITS_PER_LONG
< 64)
2942 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
2949 if (val1
->val_class
== dw_val_class_loc
)
2950 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2954 dw2_asm_output_data (2, offset
, NULL
);
2967 /* We currently don't make any attempt to make sure these are
2968 aligned properly like we do for the main unwind info, so
2969 don't support emitting things larger than a byte if we're
2970 only doing unwinding. */
2975 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2978 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2981 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2984 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2986 case DW_OP_plus_uconst
:
2987 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3021 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3024 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3027 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3030 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3031 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
3034 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3036 case DW_OP_deref_size
:
3037 case DW_OP_xderef_size
:
3038 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3041 case INTERNAL_DW_OP_tls_addr
:
3042 #ifdef ASM_OUTPUT_DWARF_DTPREL
3043 ASM_OUTPUT_DWARF_DTPREL (asm_out_file
, DWARF2_ADDR_SIZE
,
3045 fputc ('\n', asm_out_file
);
3052 /* Other codes have no operands. */
3057 /* Output a sequence of location operations. */
3060 output_loc_sequence (loc
)
3061 dw_loc_descr_ref loc
;
3063 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
3065 /* Output the opcode. */
3066 dw2_asm_output_data (1, loc
->dw_loc_opc
,
3067 "%s", dwarf_stack_op_name (loc
->dw_loc_opc
));
3069 /* Output the operand(s) (if any). */
3070 output_loc_operands (loc
);
3074 /* This routine will generate the correct assembly data for a location
3075 description based on a cfi entry with a complex address. */
3078 output_cfa_loc (cfi
)
3081 dw_loc_descr_ref loc
;
3084 /* Output the size of the block. */
3085 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3086 size
= size_of_locs (loc
);
3087 dw2_asm_output_data_uleb128 (size
, NULL
);
3089 /* Now output the operations themselves. */
3090 output_loc_sequence (loc
);
3093 /* This function builds a dwarf location descriptor sequence from
3094 a dw_cfa_location. */
3096 static struct dw_loc_descr_struct
*
3098 dw_cfa_location
*cfa
;
3100 struct dw_loc_descr_struct
*head
, *tmp
;
3102 if (cfa
->indirect
== 0)
3105 if (cfa
->base_offset
)
3108 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, cfa
->base_offset
, 0);
3110 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, cfa
->base_offset
);
3112 else if (cfa
->reg
<= 31)
3113 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
3115 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
3117 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
3118 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
3119 add_loc_descr (&head
, tmp
);
3120 if (cfa
->offset
!= 0)
3122 tmp
= new_loc_descr (DW_OP_plus_uconst
, cfa
->offset
, 0);
3123 add_loc_descr (&head
, tmp
);
3129 /* This function fills in aa dw_cfa_location structure from a dwarf location
3130 descriptor sequence. */
3133 get_cfa_from_loc_descr (cfa
, loc
)
3134 dw_cfa_location
*cfa
;
3135 struct dw_loc_descr_struct
*loc
;
3137 struct dw_loc_descr_struct
*ptr
;
3139 cfa
->base_offset
= 0;
3143 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
3145 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
3181 cfa
->reg
= op
- DW_OP_reg0
;
3184 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3218 cfa
->reg
= op
- DW_OP_breg0
;
3219 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3222 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3223 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
3228 case DW_OP_plus_uconst
:
3229 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
3232 internal_error ("DW_LOC_OP %s not implemented\n",
3233 dwarf_stack_op_name (ptr
->dw_loc_opc
));
3237 #endif /* .debug_frame support */
3239 /* And now, the support for symbolic debugging information. */
3240 #ifdef DWARF2_DEBUGGING_INFO
3242 /* .debug_str support. */
3243 static int output_indirect_string
PARAMS ((void **, void *));
3245 static void dwarf2out_init
PARAMS ((const char *));
3246 static void dwarf2out_finish
PARAMS ((const char *));
3247 static void dwarf2out_define
PARAMS ((unsigned int, const char *));
3248 static void dwarf2out_undef
PARAMS ((unsigned int, const char *));
3249 static void dwarf2out_start_source_file
PARAMS ((unsigned, const char *));
3250 static void dwarf2out_end_source_file
PARAMS ((unsigned));
3251 static void dwarf2out_begin_block
PARAMS ((unsigned, unsigned));
3252 static void dwarf2out_end_block
PARAMS ((unsigned, unsigned));
3253 static bool dwarf2out_ignore_block
PARAMS ((tree
));
3254 static void dwarf2out_global_decl
PARAMS ((tree
));
3255 static void dwarf2out_abstract_function
PARAMS ((tree
));
3257 /* The debug hooks structure. */
3259 const struct gcc_debug_hooks dwarf2_debug_hooks
=
3265 dwarf2out_start_source_file
,
3266 dwarf2out_end_source_file
,
3267 dwarf2out_begin_block
,
3268 dwarf2out_end_block
,
3269 dwarf2out_ignore_block
,
3270 dwarf2out_source_line
,
3271 dwarf2out_begin_prologue
,
3272 debug_nothing_int_charstar
, /* end_prologue */
3273 dwarf2out_end_epilogue
,
3274 debug_nothing_tree
, /* begin_function */
3275 debug_nothing_int
, /* end_function */
3276 dwarf2out_decl
, /* function_decl */
3277 dwarf2out_global_decl
,
3278 debug_nothing_tree
, /* deferred_inline_function */
3279 /* The DWARF 2 backend tries to reduce debugging bloat by not
3280 emitting the abstract description of inline functions until
3281 something tries to reference them. */
3282 dwarf2out_abstract_function
, /* outlining_inline_function */
3283 debug_nothing_rtx
/* label */
3287 /* NOTE: In the comments in this file, many references are made to
3288 "Debugging Information Entries". This term is abbreviated as `DIE'
3289 throughout the remainder of this file. */
3291 /* An internal representation of the DWARF output is built, and then
3292 walked to generate the DWARF debugging info. The walk of the internal
3293 representation is done after the entire program has been compiled.
3294 The types below are used to describe the internal representation. */
3296 /* Various DIE's use offsets relative to the beginning of the
3297 .debug_info section to refer to each other. */
3299 typedef long int dw_offset
;
3301 /* Define typedefs here to avoid circular dependencies. */
3303 typedef struct dw_attr_struct
*dw_attr_ref
;
3304 typedef struct dw_line_info_struct
*dw_line_info_ref
;
3305 typedef struct dw_separate_line_info_struct
*dw_separate_line_info_ref
;
3306 typedef struct pubname_struct
*pubname_ref
;
3307 typedef struct dw_ranges_struct
*dw_ranges_ref
;
3309 /* Each entry in the line_info_table maintains the file and
3310 line number associated with the label generated for that
3311 entry. The label gives the PC value associated with
3312 the line number entry. */
3314 typedef struct dw_line_info_struct
GTY(())
3316 unsigned long dw_file_num
;
3317 unsigned long dw_line_num
;
3321 /* Line information for functions in separate sections; each one gets its
3323 typedef struct dw_separate_line_info_struct
GTY(())
3325 unsigned long dw_file_num
;
3326 unsigned long dw_line_num
;
3327 unsigned long function
;
3329 dw_separate_line_info_entry
;
3331 /* Each DIE attribute has a field specifying the attribute kind,
3332 a link to the next attribute in the chain, and an attribute value.
3333 Attributes are typically linked below the DIE they modify. */
3335 typedef struct dw_attr_struct
GTY(())
3337 enum dwarf_attribute dw_attr
;
3338 dw_attr_ref dw_attr_next
;
3339 dw_val_node dw_attr_val
;
3343 /* The Debugging Information Entry (DIE) structure */
3345 typedef struct die_struct
GTY(())
3347 enum dwarf_tag die_tag
;
3349 dw_attr_ref die_attr
;
3350 dw_die_ref die_parent
;
3351 dw_die_ref die_child
;
3353 dw_offset die_offset
;
3354 unsigned long die_abbrev
;
3359 /* The pubname structure */
3361 typedef struct pubname_struct
GTY(())
3368 struct dw_ranges_struct
GTY(())
3373 /* The limbo die list structure. */
3374 typedef struct limbo_die_struct
GTY(())
3378 struct limbo_die_struct
*next
;
3382 /* How to start an assembler comment. */
3383 #ifndef ASM_COMMENT_START
3384 #define ASM_COMMENT_START ";#"
3387 /* Define a macro which returns nonzero for a TYPE_DECL which was
3388 implicitly generated for a tagged type.
3390 Note that unlike the gcc front end (which generates a NULL named
3391 TYPE_DECL node for each complete tagged type, each array type, and
3392 each function type node created) the g++ front end generates a
3393 _named_ TYPE_DECL node for each tagged type node created.
3394 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3395 generate a DW_TAG_typedef DIE for them. */
3397 #define TYPE_DECL_IS_STUB(decl) \
3398 (DECL_NAME (decl) == NULL_TREE \
3399 || (DECL_ARTIFICIAL (decl) \
3400 && is_tagged_type (TREE_TYPE (decl)) \
3401 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3402 /* This is necessary for stub decls that \
3403 appear in nested inline functions. */ \
3404 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3405 && (decl_ultimate_origin (decl) \
3406 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3408 /* Information concerning the compilation unit's programming
3409 language, and compiler version. */
3411 /* Fixed size portion of the DWARF compilation unit header. */
3412 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3413 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3415 /* Fixed size portion of public names info. */
3416 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3418 /* Fixed size portion of the address range info. */
3419 #define DWARF_ARANGES_HEADER_SIZE \
3420 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3421 - DWARF_OFFSET_SIZE)
3423 /* Size of padding portion in the address range info. It must be
3424 aligned to twice the pointer size. */
3425 #define DWARF_ARANGES_PAD_SIZE \
3426 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3427 - (2 * DWARF_OFFSET_SIZE + 4))
3429 /* Use assembler line directives if available. */
3430 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3431 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3432 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3434 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3438 /* Minimum line offset in a special line info. opcode.
3439 This value was chosen to give a reasonable range of values. */
3440 #define DWARF_LINE_BASE -10
3442 /* First special line opcode - leave room for the standard opcodes. */
3443 #define DWARF_LINE_OPCODE_BASE 10
3445 /* Range of line offsets in a special line info. opcode. */
3446 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3448 /* Flag that indicates the initial value of the is_stmt_start flag.
3449 In the present implementation, we do not mark any lines as
3450 the beginning of a source statement, because that information
3451 is not made available by the GCC front-end. */
3452 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3454 #ifdef DWARF2_DEBUGGING_INFO
3455 /* This location is used by calc_die_sizes() to keep track
3456 the offset of each DIE within the .debug_info section. */
3457 static unsigned long next_die_offset
;
3460 /* Record the root of the DIE's built for the current compilation unit. */
3461 static GTY(()) dw_die_ref comp_unit_die
;
3463 #ifdef DWARF2_DEBUGGING_INFO
3464 /* We need special handling in dwarf2out_start_source_file if it is
3466 static int is_main_source
;
3469 /* A list of DIEs with a NULL parent waiting to be relocated. */
3470 static GTY(()) limbo_die_node
*limbo_die_list
;
3472 /* Filenames referenced by this compilation unit. */
3473 static GTY(()) varray_type file_table
;
3474 static GTY(()) varray_type file_table_emitted
;
3475 static GTY(()) size_t file_table_last_lookup_index
;
3477 /* A pointer to the base of a table of references to DIE's that describe
3478 declarations. The table is indexed by DECL_UID() which is a unique
3479 number identifying each decl. */
3480 static GTY((length ("decl_die_table_allocated"))) dw_die_ref
*decl_die_table
;
3482 /* Number of elements currently allocated for the decl_die_table. */
3483 static unsigned decl_die_table_allocated
;
3485 #ifdef DWARF2_DEBUGGING_INFO
3486 /* Number of elements in decl_die_table currently in use. */
3487 static unsigned decl_die_table_in_use
;
3490 /* Size (in elements) of increments by which we may expand the
3492 #define DECL_DIE_TABLE_INCREMENT 256
3494 /* A pointer to the base of a list of references to DIE's that
3495 are uniquely identified by their tag, presence/absence of
3496 children DIE's, and list of attribute/value pairs. */
3497 static GTY((length ("abbrev_die_table_allocated")))
3498 dw_die_ref
*abbrev_die_table
;
3500 /* Number of elements currently allocated for abbrev_die_table. */
3501 static unsigned abbrev_die_table_allocated
;
3503 #ifdef DWARF2_DEBUGGING_INFO
3504 /* Number of elements in type_die_table currently in use. */
3505 static unsigned abbrev_die_table_in_use
;
3508 /* Size (in elements) of increments by which we may expand the
3509 abbrev_die_table. */
3510 #define ABBREV_DIE_TABLE_INCREMENT 256
3512 /* A pointer to the base of a table that contains line information
3513 for each source code line in .text in the compilation unit. */
3514 static GTY((length ("line_info_table_allocated")))
3515 dw_line_info_ref line_info_table
;
3517 /* Number of elements currently allocated for line_info_table. */
3518 static unsigned line_info_table_allocated
;
3520 #ifdef DWARF2_DEBUGGING_INFO
3521 /* Number of elements in line_info_table currently in use. */
3522 static unsigned line_info_table_in_use
;
3525 /* A pointer to the base of a table that contains line information
3526 for each source code line outside of .text in the compilation unit. */
3527 static GTY ((length ("separate_line_info_table_allocated")))
3528 dw_separate_line_info_ref separate_line_info_table
;
3530 /* Number of elements currently allocated for separate_line_info_table. */
3531 static unsigned separate_line_info_table_allocated
;
3533 #ifdef DWARF2_DEBUGGING_INFO
3534 /* Number of elements in separate_line_info_table currently in use. */
3535 static unsigned separate_line_info_table_in_use
;
3538 /* Size (in elements) of increments by which we may expand the
3540 #define LINE_INFO_TABLE_INCREMENT 1024
3542 /* A pointer to the base of a table that contains a list of publicly
3543 accessible names. */
3544 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table
;
3546 /* Number of elements currently allocated for pubname_table. */
3547 static unsigned pubname_table_allocated
;
3549 #ifdef DWARF2_DEBUGGING_INFO
3550 /* Number of elements in pubname_table currently in use. */
3551 static unsigned pubname_table_in_use
;
3554 /* Size (in elements) of increments by which we may expand the
3556 #define PUBNAME_TABLE_INCREMENT 64
3558 /* Array of dies for which we should generate .debug_arange info. */
3559 static GTY((length ("arange_table_allocated"))) dw_die_ref
*arange_table
;
3561 /* Number of elements currently allocated for arange_table. */
3562 static unsigned arange_table_allocated
;
3564 #ifdef DWARF2_DEBUGGING_INFO
3565 /* Number of elements in arange_table currently in use. */
3566 static unsigned arange_table_in_use
;
3569 /* Size (in elements) of increments by which we may expand the
3571 #define ARANGE_TABLE_INCREMENT 64
3573 /* Array of dies for which we should generate .debug_ranges info. */
3574 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table
;
3576 /* Number of elements currently allocated for ranges_table. */
3577 static unsigned ranges_table_allocated
;
3579 #ifdef DWARF2_DEBUGGING_INFO
3580 /* Number of elements in ranges_table currently in use. */
3581 static unsigned ranges_table_in_use
;
3583 /* Size (in elements) of increments by which we may expand the
3585 #define RANGES_TABLE_INCREMENT 64
3587 /* Whether we have location lists that need outputting */
3588 static unsigned have_location_lists
;
3590 /* Record whether the function being analyzed contains inlined functions. */
3591 static int current_function_has_inlines
;
3593 #if 0 && defined (MIPS_DEBUGGING_INFO)
3594 static int comp_unit_has_inlines
;
3597 #ifdef DWARF2_DEBUGGING_INFO
3599 /* Forward declarations for functions defined in this file. */
3601 static int is_pseudo_reg
PARAMS ((rtx
));
3602 static tree type_main_variant
PARAMS ((tree
));
3603 static int is_tagged_type
PARAMS ((tree
));
3604 static const char *dwarf_tag_name
PARAMS ((unsigned));
3605 static const char *dwarf_attr_name
PARAMS ((unsigned));
3606 static const char *dwarf_form_name
PARAMS ((unsigned));
3608 static const char *dwarf_type_encoding_name
PARAMS ((unsigned));
3610 static tree decl_ultimate_origin
PARAMS ((tree
));
3611 static tree block_ultimate_origin
PARAMS ((tree
));
3612 static tree decl_class_context
PARAMS ((tree
));
3613 static void add_dwarf_attr
PARAMS ((dw_die_ref
, dw_attr_ref
));
3614 static inline enum dw_val_class AT_class
PARAMS ((dw_attr_ref
));
3615 static void add_AT_flag
PARAMS ((dw_die_ref
,
3616 enum dwarf_attribute
,
3618 static inline unsigned AT_flag
PARAMS ((dw_attr_ref
));
3619 static void add_AT_int
PARAMS ((dw_die_ref
,
3620 enum dwarf_attribute
, long));
3621 static inline long int AT_int
PARAMS ((dw_attr_ref
));
3622 static void add_AT_unsigned
PARAMS ((dw_die_ref
,
3623 enum dwarf_attribute
,
3625 static inline unsigned long AT_unsigned
PARAMS ((dw_attr_ref
));
3626 static void add_AT_long_long
PARAMS ((dw_die_ref
,
3627 enum dwarf_attribute
,
3630 static void add_AT_float
PARAMS ((dw_die_ref
,
3631 enum dwarf_attribute
,
3633 static hashval_t debug_str_do_hash
PARAMS ((const void *));
3634 static int debug_str_eq
PARAMS ((const void *, const void *));
3635 static void add_AT_string
PARAMS ((dw_die_ref
,
3636 enum dwarf_attribute
,
3638 static inline const char *AT_string
PARAMS ((dw_attr_ref
));
3639 static int AT_string_form
PARAMS ((dw_attr_ref
));
3640 static void add_AT_die_ref
PARAMS ((dw_die_ref
,
3641 enum dwarf_attribute
,
3643 static inline dw_die_ref AT_ref
PARAMS ((dw_attr_ref
));
3644 static inline int AT_ref_external
PARAMS ((dw_attr_ref
));
3645 static inline void set_AT_ref_external
PARAMS ((dw_attr_ref
, int));
3646 static void add_AT_fde_ref
PARAMS ((dw_die_ref
,
3647 enum dwarf_attribute
,
3649 static void add_AT_loc
PARAMS ((dw_die_ref
,
3650 enum dwarf_attribute
,
3652 static inline dw_loc_descr_ref AT_loc
PARAMS ((dw_attr_ref
));
3653 static void add_AT_loc_list
PARAMS ((dw_die_ref
,
3654 enum dwarf_attribute
,
3656 static inline dw_loc_list_ref AT_loc_list
PARAMS ((dw_attr_ref
));
3657 static void add_AT_addr
PARAMS ((dw_die_ref
,
3658 enum dwarf_attribute
,
3660 static inline rtx AT_addr
PARAMS ((dw_attr_ref
));
3661 static void add_AT_lbl_id
PARAMS ((dw_die_ref
,
3662 enum dwarf_attribute
,
3664 static void add_AT_lbl_offset
PARAMS ((dw_die_ref
,
3665 enum dwarf_attribute
,
3667 static void add_AT_offset
PARAMS ((dw_die_ref
,
3668 enum dwarf_attribute
,
3670 static void add_AT_range_list
PARAMS ((dw_die_ref
,
3671 enum dwarf_attribute
,
3673 static inline const char *AT_lbl
PARAMS ((dw_attr_ref
));
3674 static dw_attr_ref get_AT
PARAMS ((dw_die_ref
,
3675 enum dwarf_attribute
));
3676 static const char *get_AT_low_pc
PARAMS ((dw_die_ref
));
3677 static const char *get_AT_hi_pc
PARAMS ((dw_die_ref
));
3678 static const char *get_AT_string
PARAMS ((dw_die_ref
,
3679 enum dwarf_attribute
));
3680 static int get_AT_flag
PARAMS ((dw_die_ref
,
3681 enum dwarf_attribute
));
3682 static unsigned get_AT_unsigned
PARAMS ((dw_die_ref
,
3683 enum dwarf_attribute
));
3684 static inline dw_die_ref get_AT_ref
PARAMS ((dw_die_ref
,
3685 enum dwarf_attribute
));
3686 static int is_c_family
PARAMS ((void));
3687 static int is_cxx
PARAMS ((void));
3688 static int is_java
PARAMS ((void));
3689 static int is_fortran
PARAMS ((void));
3690 static void remove_AT
PARAMS ((dw_die_ref
,
3691 enum dwarf_attribute
));
3692 static inline void free_die
PARAMS ((dw_die_ref
));
3693 static void remove_children
PARAMS ((dw_die_ref
));
3694 static void add_child_die
PARAMS ((dw_die_ref
, dw_die_ref
));
3695 static dw_die_ref new_die
PARAMS ((enum dwarf_tag
, dw_die_ref
,
3697 static dw_die_ref lookup_type_die
PARAMS ((tree
));
3698 static void equate_type_number_to_die
PARAMS ((tree
, dw_die_ref
));
3699 static dw_die_ref lookup_decl_die
PARAMS ((tree
));
3700 static void equate_decl_number_to_die
PARAMS ((tree
, dw_die_ref
));
3701 static void print_spaces
PARAMS ((FILE *));
3702 static void print_die
PARAMS ((dw_die_ref
, FILE *));
3703 static void print_dwarf_line_table
PARAMS ((FILE *));
3704 static void reverse_die_lists
PARAMS ((dw_die_ref
));
3705 static void reverse_all_dies
PARAMS ((dw_die_ref
));
3706 static dw_die_ref push_new_compile_unit
PARAMS ((dw_die_ref
, dw_die_ref
));
3707 static dw_die_ref pop_compile_unit
PARAMS ((dw_die_ref
));
3708 static void loc_checksum
PARAMS ((dw_loc_descr_ref
,
3710 static void attr_checksum
PARAMS ((dw_attr_ref
,
3713 static void die_checksum
PARAMS ((dw_die_ref
,
3716 static int same_loc_p
PARAMS ((dw_loc_descr_ref
,
3717 dw_loc_descr_ref
, int *));
3718 static int same_dw_val_p
PARAMS ((dw_val_node
*, dw_val_node
*,
3720 static int same_attr_p
PARAMS ((dw_attr_ref
, dw_attr_ref
, int *));
3721 static int same_die_p
PARAMS ((dw_die_ref
, dw_die_ref
, int *));
3722 static int same_die_p_wrap
PARAMS ((dw_die_ref
, dw_die_ref
));
3723 static void compute_section_prefix
PARAMS ((dw_die_ref
));
3724 static int is_type_die
PARAMS ((dw_die_ref
));
3725 static int is_comdat_die
PARAMS ((dw_die_ref
));
3726 static int is_symbol_die
PARAMS ((dw_die_ref
));
3727 static void assign_symbol_names
PARAMS ((dw_die_ref
));
3728 static void break_out_includes
PARAMS ((dw_die_ref
));
3729 static hashval_t htab_cu_hash
PARAMS ((const void *));
3730 static int htab_cu_eq
PARAMS ((const void *, const void *));
3731 static void htab_cu_del
PARAMS ((void *));
3732 static int check_duplicate_cu
PARAMS ((dw_die_ref
, htab_t
, unsigned *));
3733 static void record_comdat_symbol_number
PARAMS ((dw_die_ref
, htab_t
, unsigned));
3734 static void add_sibling_attributes
PARAMS ((dw_die_ref
));
3735 static void build_abbrev_table
PARAMS ((dw_die_ref
));
3736 static void output_location_lists
PARAMS ((dw_die_ref
));
3737 static int constant_size
PARAMS ((long unsigned));
3738 static unsigned long size_of_die
PARAMS ((dw_die_ref
));
3739 static void calc_die_sizes
PARAMS ((dw_die_ref
));
3740 static void mark_dies
PARAMS ((dw_die_ref
));
3741 static void unmark_dies
PARAMS ((dw_die_ref
));
3742 static void unmark_all_dies
PARAMS ((dw_die_ref
));
3743 static unsigned long size_of_pubnames
PARAMS ((void));
3744 static unsigned long size_of_aranges
PARAMS ((void));
3745 static enum dwarf_form value_format
PARAMS ((dw_attr_ref
));
3746 static void output_value_format
PARAMS ((dw_attr_ref
));
3747 static void output_abbrev_section
PARAMS ((void));
3748 static void output_die_symbol
PARAMS ((dw_die_ref
));
3749 static void output_die
PARAMS ((dw_die_ref
));
3750 static void output_compilation_unit_header
PARAMS ((void));
3751 static void output_comp_unit
PARAMS ((dw_die_ref
, int));
3752 static const char *dwarf2_name
PARAMS ((tree
, int));
3753 static void add_pubname
PARAMS ((tree
, dw_die_ref
));
3754 static void output_pubnames
PARAMS ((void));
3755 static void add_arange
PARAMS ((tree
, dw_die_ref
));
3756 static void output_aranges
PARAMS ((void));
3757 static unsigned int add_ranges
PARAMS ((tree
));
3758 static void output_ranges
PARAMS ((void));
3759 static void output_line_info
PARAMS ((void));
3760 static void output_file_names
PARAMS ((void));
3761 static dw_die_ref base_type_die
PARAMS ((tree
));
3762 static tree root_type
PARAMS ((tree
));
3763 static int is_base_type
PARAMS ((tree
));
3764 static dw_die_ref modified_type_die
PARAMS ((tree
, int, int, dw_die_ref
));
3765 static int type_is_enum
PARAMS ((tree
));
3766 static unsigned int reg_number
PARAMS ((rtx
));
3767 static dw_loc_descr_ref reg_loc_descriptor
PARAMS ((rtx
));
3768 static dw_loc_descr_ref one_reg_loc_descriptor
PARAMS ((unsigned int));
3769 static dw_loc_descr_ref multiple_reg_loc_descriptor
PARAMS ((rtx
, rtx
));
3770 static dw_loc_descr_ref int_loc_descriptor
PARAMS ((HOST_WIDE_INT
));
3771 static dw_loc_descr_ref based_loc_descr
PARAMS ((unsigned, long));
3772 static int is_based_loc
PARAMS ((rtx
));
3773 static dw_loc_descr_ref mem_loc_descriptor
PARAMS ((rtx
, enum machine_mode mode
));
3774 static dw_loc_descr_ref concat_loc_descriptor
PARAMS ((rtx
, rtx
));
3775 static dw_loc_descr_ref loc_descriptor
PARAMS ((rtx
));
3776 static dw_loc_descr_ref loc_descriptor_from_tree
PARAMS ((tree
, int));
3777 static HOST_WIDE_INT ceiling
PARAMS ((HOST_WIDE_INT
, unsigned int));
3778 static tree field_type
PARAMS ((tree
));
3779 static unsigned int simple_type_align_in_bits
PARAMS ((tree
));
3780 static unsigned int simple_decl_align_in_bits
PARAMS ((tree
));
3781 static unsigned HOST_WIDE_INT simple_type_size_in_bits
PARAMS ((tree
));
3782 static HOST_WIDE_INT field_byte_offset
PARAMS ((tree
));
3783 static void add_AT_location_description
PARAMS ((dw_die_ref
,
3784 enum dwarf_attribute
,
3786 static void add_data_member_location_attribute
PARAMS ((dw_die_ref
, tree
));
3787 static void add_const_value_attribute
PARAMS ((dw_die_ref
, rtx
));
3788 static rtx rtl_for_decl_location
PARAMS ((tree
));
3789 static void add_location_or_const_value_attribute
PARAMS ((dw_die_ref
, tree
));
3790 static void tree_add_const_value_attribute
PARAMS ((dw_die_ref
, tree
));
3791 static void add_name_attribute
PARAMS ((dw_die_ref
, const char *));
3792 static void add_comp_dir_attribute
PARAMS ((dw_die_ref
));
3793 static void add_bound_info
PARAMS ((dw_die_ref
,
3794 enum dwarf_attribute
, tree
));
3795 static void add_subscript_info
PARAMS ((dw_die_ref
, tree
));
3796 static void add_byte_size_attribute
PARAMS ((dw_die_ref
, tree
));
3797 static void add_bit_offset_attribute
PARAMS ((dw_die_ref
, tree
));
3798 static void add_bit_size_attribute
PARAMS ((dw_die_ref
, tree
));
3799 static void add_prototyped_attribute
PARAMS ((dw_die_ref
, tree
));
3800 static void add_abstract_origin_attribute
PARAMS ((dw_die_ref
, tree
));
3801 static void add_pure_or_virtual_attribute
PARAMS ((dw_die_ref
, tree
));
3802 static void add_src_coords_attributes
PARAMS ((dw_die_ref
, tree
));
3803 static void add_name_and_src_coords_attributes
PARAMS ((dw_die_ref
, tree
));
3804 static void push_decl_scope
PARAMS ((tree
));
3805 static void pop_decl_scope
PARAMS ((void));
3806 static dw_die_ref scope_die_for
PARAMS ((tree
, dw_die_ref
));
3807 static inline int local_scope_p
PARAMS ((dw_die_ref
));
3808 static inline int class_scope_p
PARAMS ((dw_die_ref
));
3809 static void add_type_attribute
PARAMS ((dw_die_ref
, tree
, int, int,
3811 static const char *type_tag
PARAMS ((tree
));
3812 static tree member_declared_type
PARAMS ((tree
));
3814 static const char *decl_start_label
PARAMS ((tree
));
3816 static void gen_array_type_die
PARAMS ((tree
, dw_die_ref
));
3817 static void gen_set_type_die
PARAMS ((tree
, dw_die_ref
));
3819 static void gen_entry_point_die
PARAMS ((tree
, dw_die_ref
));
3821 static void gen_inlined_enumeration_type_die
PARAMS ((tree
, dw_die_ref
));
3822 static void gen_inlined_structure_type_die
PARAMS ((tree
, dw_die_ref
));
3823 static void gen_inlined_union_type_die
PARAMS ((tree
, dw_die_ref
));
3824 static void gen_enumeration_type_die
PARAMS ((tree
, dw_die_ref
));
3825 static dw_die_ref gen_formal_parameter_die
PARAMS ((tree
, dw_die_ref
));
3826 static void gen_unspecified_parameters_die
PARAMS ((tree
, dw_die_ref
));
3827 static void gen_formal_types_die
PARAMS ((tree
, dw_die_ref
));
3828 static void gen_subprogram_die
PARAMS ((tree
, dw_die_ref
));
3829 static void gen_variable_die
PARAMS ((tree
, dw_die_ref
));
3830 static void gen_label_die
PARAMS ((tree
, dw_die_ref
));
3831 static void gen_lexical_block_die
PARAMS ((tree
, dw_die_ref
, int));
3832 static void gen_inlined_subroutine_die
PARAMS ((tree
, dw_die_ref
, int));
3833 static void gen_field_die
PARAMS ((tree
, dw_die_ref
));
3834 static void gen_ptr_to_mbr_type_die
PARAMS ((tree
, dw_die_ref
));
3835 static dw_die_ref gen_compile_unit_die
PARAMS ((const char *));
3836 static void gen_string_type_die
PARAMS ((tree
, dw_die_ref
));
3837 static void gen_inheritance_die
PARAMS ((tree
, tree
, dw_die_ref
));
3838 static void gen_member_die
PARAMS ((tree
, dw_die_ref
));
3839 static void gen_struct_or_union_type_die
PARAMS ((tree
, dw_die_ref
));
3840 static void gen_subroutine_type_die
PARAMS ((tree
, dw_die_ref
));
3841 static void gen_typedef_die
PARAMS ((tree
, dw_die_ref
));
3842 static void gen_type_die
PARAMS ((tree
, dw_die_ref
));
3843 static void gen_tagged_type_instantiation_die
PARAMS ((tree
, dw_die_ref
));
3844 static void gen_block_die
PARAMS ((tree
, dw_die_ref
, int));
3845 static void decls_for_scope
PARAMS ((tree
, dw_die_ref
, int));
3846 static int is_redundant_typedef
PARAMS ((tree
));
3847 static void gen_decl_die
PARAMS ((tree
, dw_die_ref
));
3848 static unsigned lookup_filename
PARAMS ((const char *));
3849 static void init_file_table
PARAMS ((void));
3850 static void retry_incomplete_types
PARAMS ((void));
3851 static void gen_type_die_for_member
PARAMS ((tree
, tree
, dw_die_ref
));
3852 static void splice_child_die
PARAMS ((dw_die_ref
, dw_die_ref
));
3853 static int file_info_cmp
PARAMS ((const void *, const void *));
3854 static dw_loc_list_ref new_loc_list
PARAMS ((dw_loc_descr_ref
,
3855 const char *, const char *,
3856 const char *, unsigned));
3857 static void add_loc_descr_to_loc_list
PARAMS ((dw_loc_list_ref
*,
3859 const char *, const char *, const char *));
3860 static void output_loc_list
PARAMS ((dw_loc_list_ref
));
3861 static char *gen_internal_sym
PARAMS ((const char *));
3863 static void prune_unmark_dies
PARAMS ((dw_die_ref
));
3864 static void prune_unused_types_mark
PARAMS ((dw_die_ref
, int));
3865 static void prune_unused_types_walk
PARAMS ((dw_die_ref
));
3866 static void prune_unused_types_walk_attribs
PARAMS ((dw_die_ref
));
3867 static void prune_unused_types_prune
PARAMS ((dw_die_ref
));
3868 static void prune_unused_types
PARAMS ((void));
3869 static int maybe_emit_file
PARAMS ((int));
3871 /* Section names used to hold DWARF debugging information. */
3872 #ifndef DEBUG_INFO_SECTION
3873 #define DEBUG_INFO_SECTION ".debug_info"
3875 #ifndef DEBUG_ABBREV_SECTION
3876 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3878 #ifndef DEBUG_ARANGES_SECTION
3879 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3881 #ifndef DEBUG_MACINFO_SECTION
3882 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3884 #ifndef DEBUG_LINE_SECTION
3885 #define DEBUG_LINE_SECTION ".debug_line"
3887 #ifndef DEBUG_LOC_SECTION
3888 #define DEBUG_LOC_SECTION ".debug_loc"
3890 #ifndef DEBUG_PUBNAMES_SECTION
3891 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3893 #ifndef DEBUG_STR_SECTION
3894 #define DEBUG_STR_SECTION ".debug_str"
3896 #ifndef DEBUG_RANGES_SECTION
3897 #define DEBUG_RANGES_SECTION ".debug_ranges"
3900 /* Standard ELF section names for compiled code and data. */
3901 #ifndef TEXT_SECTION_NAME
3902 #define TEXT_SECTION_NAME ".text"
3905 /* Section flags for .debug_str section. */
3906 #ifdef HAVE_GAS_SHF_MERGE
3907 #define DEBUG_STR_SECTION_FLAGS \
3908 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3910 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3913 /* Labels we insert at beginning sections we can reference instead of
3914 the section names themselves. */
3916 #ifndef TEXT_SECTION_LABEL
3917 #define TEXT_SECTION_LABEL "Ltext"
3919 #ifndef DEBUG_LINE_SECTION_LABEL
3920 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3922 #ifndef DEBUG_INFO_SECTION_LABEL
3923 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3925 #ifndef DEBUG_ABBREV_SECTION_LABEL
3926 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3928 #ifndef DEBUG_LOC_SECTION_LABEL
3929 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3931 #ifndef DEBUG_RANGES_SECTION_LABEL
3932 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3934 #ifndef DEBUG_MACINFO_SECTION_LABEL
3935 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3938 /* Definitions of defaults for formats and names of various special
3939 (artificial) labels which may be generated within this file (when the -g
3940 options is used and DWARF_DEBUGGING_INFO is in effect.
3941 If necessary, these may be overridden from within the tm.h file, but
3942 typically, overriding these defaults is unnecessary. */
3944 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3945 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3946 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3947 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3948 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3949 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3950 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3951 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
3953 #ifndef TEXT_END_LABEL
3954 #define TEXT_END_LABEL "Letext"
3956 #ifndef BLOCK_BEGIN_LABEL
3957 #define BLOCK_BEGIN_LABEL "LBB"
3959 #ifndef BLOCK_END_LABEL
3960 #define BLOCK_END_LABEL "LBE"
3962 #ifndef LINE_CODE_LABEL
3963 #define LINE_CODE_LABEL "LM"
3965 #ifndef SEPARATE_LINE_CODE_LABEL
3966 #define SEPARATE_LINE_CODE_LABEL "LSM"
3969 /* We allow a language front-end to designate a function that is to be
3970 called to "demangle" any name before it it put into a DIE. */
3972 static const char *(*demangle_name_func
) PARAMS ((const char *));
3975 dwarf2out_set_demangle_name_func (func
)
3976 const char *(*func
) PARAMS ((const char *));
3978 demangle_name_func
= func
;
3981 /* Test if rtl node points to a pseudo register. */
3987 return ((GET_CODE (rtl
) == REG
&& REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
3988 || (GET_CODE (rtl
) == SUBREG
3989 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
3992 /* Return a reference to a type, with its const and volatile qualifiers
3996 type_main_variant (type
)
3999 type
= TYPE_MAIN_VARIANT (type
);
4001 /* ??? There really should be only one main variant among any group of
4002 variants of a given type (and all of the MAIN_VARIANT values for all
4003 members of the group should point to that one type) but sometimes the C
4004 front-end messes this up for array types, so we work around that bug
4006 if (TREE_CODE (type
) == ARRAY_TYPE
)
4007 while (type
!= TYPE_MAIN_VARIANT (type
))
4008 type
= TYPE_MAIN_VARIANT (type
);
4013 /* Return nonzero if the given type node represents a tagged type. */
4016 is_tagged_type (type
)
4019 enum tree_code code
= TREE_CODE (type
);
4021 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
4022 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
4025 /* Convert a DIE tag into its string name. */
4028 dwarf_tag_name (tag
)
4033 case DW_TAG_padding
:
4034 return "DW_TAG_padding";
4035 case DW_TAG_array_type
:
4036 return "DW_TAG_array_type";
4037 case DW_TAG_class_type
:
4038 return "DW_TAG_class_type";
4039 case DW_TAG_entry_point
:
4040 return "DW_TAG_entry_point";
4041 case DW_TAG_enumeration_type
:
4042 return "DW_TAG_enumeration_type";
4043 case DW_TAG_formal_parameter
:
4044 return "DW_TAG_formal_parameter";
4045 case DW_TAG_imported_declaration
:
4046 return "DW_TAG_imported_declaration";
4048 return "DW_TAG_label";
4049 case DW_TAG_lexical_block
:
4050 return "DW_TAG_lexical_block";
4052 return "DW_TAG_member";
4053 case DW_TAG_pointer_type
:
4054 return "DW_TAG_pointer_type";
4055 case DW_TAG_reference_type
:
4056 return "DW_TAG_reference_type";
4057 case DW_TAG_compile_unit
:
4058 return "DW_TAG_compile_unit";
4059 case DW_TAG_string_type
:
4060 return "DW_TAG_string_type";
4061 case DW_TAG_structure_type
:
4062 return "DW_TAG_structure_type";
4063 case DW_TAG_subroutine_type
:
4064 return "DW_TAG_subroutine_type";
4065 case DW_TAG_typedef
:
4066 return "DW_TAG_typedef";
4067 case DW_TAG_union_type
:
4068 return "DW_TAG_union_type";
4069 case DW_TAG_unspecified_parameters
:
4070 return "DW_TAG_unspecified_parameters";
4071 case DW_TAG_variant
:
4072 return "DW_TAG_variant";
4073 case DW_TAG_common_block
:
4074 return "DW_TAG_common_block";
4075 case DW_TAG_common_inclusion
:
4076 return "DW_TAG_common_inclusion";
4077 case DW_TAG_inheritance
:
4078 return "DW_TAG_inheritance";
4079 case DW_TAG_inlined_subroutine
:
4080 return "DW_TAG_inlined_subroutine";
4082 return "DW_TAG_module";
4083 case DW_TAG_ptr_to_member_type
:
4084 return "DW_TAG_ptr_to_member_type";
4085 case DW_TAG_set_type
:
4086 return "DW_TAG_set_type";
4087 case DW_TAG_subrange_type
:
4088 return "DW_TAG_subrange_type";
4089 case DW_TAG_with_stmt
:
4090 return "DW_TAG_with_stmt";
4091 case DW_TAG_access_declaration
:
4092 return "DW_TAG_access_declaration";
4093 case DW_TAG_base_type
:
4094 return "DW_TAG_base_type";
4095 case DW_TAG_catch_block
:
4096 return "DW_TAG_catch_block";
4097 case DW_TAG_const_type
:
4098 return "DW_TAG_const_type";
4099 case DW_TAG_constant
:
4100 return "DW_TAG_constant";
4101 case DW_TAG_enumerator
:
4102 return "DW_TAG_enumerator";
4103 case DW_TAG_file_type
:
4104 return "DW_TAG_file_type";
4106 return "DW_TAG_friend";
4107 case DW_TAG_namelist
:
4108 return "DW_TAG_namelist";
4109 case DW_TAG_namelist_item
:
4110 return "DW_TAG_namelist_item";
4111 case DW_TAG_packed_type
:
4112 return "DW_TAG_packed_type";
4113 case DW_TAG_subprogram
:
4114 return "DW_TAG_subprogram";
4115 case DW_TAG_template_type_param
:
4116 return "DW_TAG_template_type_param";
4117 case DW_TAG_template_value_param
:
4118 return "DW_TAG_template_value_param";
4119 case DW_TAG_thrown_type
:
4120 return "DW_TAG_thrown_type";
4121 case DW_TAG_try_block
:
4122 return "DW_TAG_try_block";
4123 case DW_TAG_variant_part
:
4124 return "DW_TAG_variant_part";
4125 case DW_TAG_variable
:
4126 return "DW_TAG_variable";
4127 case DW_TAG_volatile_type
:
4128 return "DW_TAG_volatile_type";
4129 case DW_TAG_MIPS_loop
:
4130 return "DW_TAG_MIPS_loop";
4131 case DW_TAG_format_label
:
4132 return "DW_TAG_format_label";
4133 case DW_TAG_function_template
:
4134 return "DW_TAG_function_template";
4135 case DW_TAG_class_template
:
4136 return "DW_TAG_class_template";
4137 case DW_TAG_GNU_BINCL
:
4138 return "DW_TAG_GNU_BINCL";
4139 case DW_TAG_GNU_EINCL
:
4140 return "DW_TAG_GNU_EINCL";
4142 return "DW_TAG_<unknown>";
4146 /* Convert a DWARF attribute code into its string name. */
4149 dwarf_attr_name (attr
)
4155 return "DW_AT_sibling";
4156 case DW_AT_location
:
4157 return "DW_AT_location";
4159 return "DW_AT_name";
4160 case DW_AT_ordering
:
4161 return "DW_AT_ordering";
4162 case DW_AT_subscr_data
:
4163 return "DW_AT_subscr_data";
4164 case DW_AT_byte_size
:
4165 return "DW_AT_byte_size";
4166 case DW_AT_bit_offset
:
4167 return "DW_AT_bit_offset";
4168 case DW_AT_bit_size
:
4169 return "DW_AT_bit_size";
4170 case DW_AT_element_list
:
4171 return "DW_AT_element_list";
4172 case DW_AT_stmt_list
:
4173 return "DW_AT_stmt_list";
4175 return "DW_AT_low_pc";
4177 return "DW_AT_high_pc";
4178 case DW_AT_language
:
4179 return "DW_AT_language";
4181 return "DW_AT_member";
4183 return "DW_AT_discr";
4184 case DW_AT_discr_value
:
4185 return "DW_AT_discr_value";
4186 case DW_AT_visibility
:
4187 return "DW_AT_visibility";
4189 return "DW_AT_import";
4190 case DW_AT_string_length
:
4191 return "DW_AT_string_length";
4192 case DW_AT_common_reference
:
4193 return "DW_AT_common_reference";
4194 case DW_AT_comp_dir
:
4195 return "DW_AT_comp_dir";
4196 case DW_AT_const_value
:
4197 return "DW_AT_const_value";
4198 case DW_AT_containing_type
:
4199 return "DW_AT_containing_type";
4200 case DW_AT_default_value
:
4201 return "DW_AT_default_value";
4203 return "DW_AT_inline";
4204 case DW_AT_is_optional
:
4205 return "DW_AT_is_optional";
4206 case DW_AT_lower_bound
:
4207 return "DW_AT_lower_bound";
4208 case DW_AT_producer
:
4209 return "DW_AT_producer";
4210 case DW_AT_prototyped
:
4211 return "DW_AT_prototyped";
4212 case DW_AT_return_addr
:
4213 return "DW_AT_return_addr";
4214 case DW_AT_start_scope
:
4215 return "DW_AT_start_scope";
4216 case DW_AT_stride_size
:
4217 return "DW_AT_stride_size";
4218 case DW_AT_upper_bound
:
4219 return "DW_AT_upper_bound";
4220 case DW_AT_abstract_origin
:
4221 return "DW_AT_abstract_origin";
4222 case DW_AT_accessibility
:
4223 return "DW_AT_accessibility";
4224 case DW_AT_address_class
:
4225 return "DW_AT_address_class";
4226 case DW_AT_artificial
:
4227 return "DW_AT_artificial";
4228 case DW_AT_base_types
:
4229 return "DW_AT_base_types";
4230 case DW_AT_calling_convention
:
4231 return "DW_AT_calling_convention";
4233 return "DW_AT_count";
4234 case DW_AT_data_member_location
:
4235 return "DW_AT_data_member_location";
4236 case DW_AT_decl_column
:
4237 return "DW_AT_decl_column";
4238 case DW_AT_decl_file
:
4239 return "DW_AT_decl_file";
4240 case DW_AT_decl_line
:
4241 return "DW_AT_decl_line";
4242 case DW_AT_declaration
:
4243 return "DW_AT_declaration";
4244 case DW_AT_discr_list
:
4245 return "DW_AT_discr_list";
4246 case DW_AT_encoding
:
4247 return "DW_AT_encoding";
4248 case DW_AT_external
:
4249 return "DW_AT_external";
4250 case DW_AT_frame_base
:
4251 return "DW_AT_frame_base";
4253 return "DW_AT_friend";
4254 case DW_AT_identifier_case
:
4255 return "DW_AT_identifier_case";
4256 case DW_AT_macro_info
:
4257 return "DW_AT_macro_info";
4258 case DW_AT_namelist_items
:
4259 return "DW_AT_namelist_items";
4260 case DW_AT_priority
:
4261 return "DW_AT_priority";
4263 return "DW_AT_segment";
4264 case DW_AT_specification
:
4265 return "DW_AT_specification";
4266 case DW_AT_static_link
:
4267 return "DW_AT_static_link";
4269 return "DW_AT_type";
4270 case DW_AT_use_location
:
4271 return "DW_AT_use_location";
4272 case DW_AT_variable_parameter
:
4273 return "DW_AT_variable_parameter";
4274 case DW_AT_virtuality
:
4275 return "DW_AT_virtuality";
4276 case DW_AT_vtable_elem_location
:
4277 return "DW_AT_vtable_elem_location";
4279 case DW_AT_allocated
:
4280 return "DW_AT_allocated";
4281 case DW_AT_associated
:
4282 return "DW_AT_associated";
4283 case DW_AT_data_location
:
4284 return "DW_AT_data_location";
4286 return "DW_AT_stride";
4287 case DW_AT_entry_pc
:
4288 return "DW_AT_entry_pc";
4289 case DW_AT_use_UTF8
:
4290 return "DW_AT_use_UTF8";
4291 case DW_AT_extension
:
4292 return "DW_AT_extension";
4294 return "DW_AT_ranges";
4295 case DW_AT_trampoline
:
4296 return "DW_AT_trampoline";
4297 case DW_AT_call_column
:
4298 return "DW_AT_call_column";
4299 case DW_AT_call_file
:
4300 return "DW_AT_call_file";
4301 case DW_AT_call_line
:
4302 return "DW_AT_call_line";
4304 case DW_AT_MIPS_fde
:
4305 return "DW_AT_MIPS_fde";
4306 case DW_AT_MIPS_loop_begin
:
4307 return "DW_AT_MIPS_loop_begin";
4308 case DW_AT_MIPS_tail_loop_begin
:
4309 return "DW_AT_MIPS_tail_loop_begin";
4310 case DW_AT_MIPS_epilog_begin
:
4311 return "DW_AT_MIPS_epilog_begin";
4312 case DW_AT_MIPS_loop_unroll_factor
:
4313 return "DW_AT_MIPS_loop_unroll_factor";
4314 case DW_AT_MIPS_software_pipeline_depth
:
4315 return "DW_AT_MIPS_software_pipeline_depth";
4316 case DW_AT_MIPS_linkage_name
:
4317 return "DW_AT_MIPS_linkage_name";
4318 case DW_AT_MIPS_stride
:
4319 return "DW_AT_MIPS_stride";
4320 case DW_AT_MIPS_abstract_name
:
4321 return "DW_AT_MIPS_abstract_name";
4322 case DW_AT_MIPS_clone_origin
:
4323 return "DW_AT_MIPS_clone_origin";
4324 case DW_AT_MIPS_has_inlines
:
4325 return "DW_AT_MIPS_has_inlines";
4327 case DW_AT_sf_names
:
4328 return "DW_AT_sf_names";
4329 case DW_AT_src_info
:
4330 return "DW_AT_src_info";
4331 case DW_AT_mac_info
:
4332 return "DW_AT_mac_info";
4333 case DW_AT_src_coords
:
4334 return "DW_AT_src_coords";
4335 case DW_AT_body_begin
:
4336 return "DW_AT_body_begin";
4337 case DW_AT_body_end
:
4338 return "DW_AT_body_end";
4339 case DW_AT_GNU_vector
:
4340 return "DW_AT_GNU_vector";
4342 case DW_AT_VMS_rtnbeg_pd_address
:
4343 return "DW_AT_VMS_rtnbeg_pd_address";
4346 return "DW_AT_<unknown>";
4350 /* Convert a DWARF value form code into its string name. */
4353 dwarf_form_name (form
)
4359 return "DW_FORM_addr";
4360 case DW_FORM_block2
:
4361 return "DW_FORM_block2";
4362 case DW_FORM_block4
:
4363 return "DW_FORM_block4";
4365 return "DW_FORM_data2";
4367 return "DW_FORM_data4";
4369 return "DW_FORM_data8";
4370 case DW_FORM_string
:
4371 return "DW_FORM_string";
4373 return "DW_FORM_block";
4374 case DW_FORM_block1
:
4375 return "DW_FORM_block1";
4377 return "DW_FORM_data1";
4379 return "DW_FORM_flag";
4381 return "DW_FORM_sdata";
4383 return "DW_FORM_strp";
4385 return "DW_FORM_udata";
4386 case DW_FORM_ref_addr
:
4387 return "DW_FORM_ref_addr";
4389 return "DW_FORM_ref1";
4391 return "DW_FORM_ref2";
4393 return "DW_FORM_ref4";
4395 return "DW_FORM_ref8";
4396 case DW_FORM_ref_udata
:
4397 return "DW_FORM_ref_udata";
4398 case DW_FORM_indirect
:
4399 return "DW_FORM_indirect";
4401 return "DW_FORM_<unknown>";
4405 /* Convert a DWARF type code into its string name. */
4409 dwarf_type_encoding_name (enc
)
4414 case DW_ATE_address
:
4415 return "DW_ATE_address";
4416 case DW_ATE_boolean
:
4417 return "DW_ATE_boolean";
4418 case DW_ATE_complex_float
:
4419 return "DW_ATE_complex_float";
4421 return "DW_ATE_float";
4423 return "DW_ATE_signed";
4424 case DW_ATE_signed_char
:
4425 return "DW_ATE_signed_char";
4426 case DW_ATE_unsigned
:
4427 return "DW_ATE_unsigned";
4428 case DW_ATE_unsigned_char
:
4429 return "DW_ATE_unsigned_char";
4431 return "DW_ATE_<unknown>";
4436 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4437 instance of an inlined instance of a decl which is local to an inline
4438 function, so we have to trace all of the way back through the origin chain
4439 to find out what sort of node actually served as the original seed for the
4443 decl_ultimate_origin (decl
)
4446 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4447 nodes in the function to point to themselves; ignore that if
4448 we're trying to output the abstract instance of this function. */
4449 if (DECL_ABSTRACT (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4452 #ifdef ENABLE_CHECKING
4453 if (DECL_FROM_INLINE (DECL_ORIGIN (decl
)))
4454 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4455 most distant ancestor, this should never happen. */
4459 return DECL_ABSTRACT_ORIGIN (decl
);
4462 /* Determine the "ultimate origin" of a block. The block may be an inlined
4463 instance of an inlined instance of a block which is local to an inline
4464 function, so we have to trace all of the way back through the origin chain
4465 to find out what sort of node actually served as the original seed for the
4469 block_ultimate_origin (block
)
4472 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
4474 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4475 nodes in the function to point to themselves; ignore that if
4476 we're trying to output the abstract instance of this function. */
4477 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
4480 if (immediate_origin
== NULL_TREE
)
4485 tree lookahead
= immediate_origin
;
4489 ret_val
= lookahead
;
4490 lookahead
= (TREE_CODE (ret_val
) == BLOCK
4491 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
4493 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
4499 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4500 of a virtual function may refer to a base class, so we check the 'this'
4504 decl_class_context (decl
)
4507 tree context
= NULL_TREE
;
4509 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4510 context
= DECL_CONTEXT (decl
);
4512 context
= TYPE_MAIN_VARIANT
4513 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4515 if (context
&& !TYPE_P (context
))
4516 context
= NULL_TREE
;
4521 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4522 addition order, and correct that in reverse_all_dies. */
4525 add_dwarf_attr (die
, attr
)
4529 if (die
!= NULL
&& attr
!= NULL
)
4531 attr
->dw_attr_next
= die
->die_attr
;
4532 die
->die_attr
= attr
;
4536 static inline enum dw_val_class
4540 return a
->dw_attr_val
.val_class
;
4543 /* Add a flag value attribute to a DIE. */
4546 add_AT_flag (die
, attr_kind
, flag
)
4548 enum dwarf_attribute attr_kind
;
4551 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4553 attr
->dw_attr_next
= NULL
;
4554 attr
->dw_attr
= attr_kind
;
4555 attr
->dw_attr_val
.val_class
= dw_val_class_flag
;
4556 attr
->dw_attr_val
.v
.val_flag
= flag
;
4557 add_dwarf_attr (die
, attr
);
4560 static inline unsigned
4564 if (a
&& AT_class (a
) == dw_val_class_flag
)
4565 return a
->dw_attr_val
.v
.val_flag
;
4570 /* Add a signed integer attribute value to a DIE. */
4573 add_AT_int (die
, attr_kind
, int_val
)
4575 enum dwarf_attribute attr_kind
;
4578 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4580 attr
->dw_attr_next
= NULL
;
4581 attr
->dw_attr
= attr_kind
;
4582 attr
->dw_attr_val
.val_class
= dw_val_class_const
;
4583 attr
->dw_attr_val
.v
.val_int
= int_val
;
4584 add_dwarf_attr (die
, attr
);
4587 static inline long int
4591 if (a
&& AT_class (a
) == dw_val_class_const
)
4592 return a
->dw_attr_val
.v
.val_int
;
4597 /* Add an unsigned integer attribute value to a DIE. */
4600 add_AT_unsigned (die
, attr_kind
, unsigned_val
)
4602 enum dwarf_attribute attr_kind
;
4603 unsigned long unsigned_val
;
4605 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4607 attr
->dw_attr_next
= NULL
;
4608 attr
->dw_attr
= attr_kind
;
4609 attr
->dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4610 attr
->dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4611 add_dwarf_attr (die
, attr
);
4614 static inline unsigned long
4618 if (a
&& AT_class (a
) == dw_val_class_unsigned_const
)
4619 return a
->dw_attr_val
.v
.val_unsigned
;
4624 /* Add an unsigned double integer attribute value to a DIE. */
4627 add_AT_long_long (die
, attr_kind
, val_hi
, val_low
)
4629 enum dwarf_attribute attr_kind
;
4630 unsigned long val_hi
;
4631 unsigned long val_low
;
4633 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4635 attr
->dw_attr_next
= NULL
;
4636 attr
->dw_attr
= attr_kind
;
4637 attr
->dw_attr_val
.val_class
= dw_val_class_long_long
;
4638 attr
->dw_attr_val
.v
.val_long_long
.hi
= val_hi
;
4639 attr
->dw_attr_val
.v
.val_long_long
.low
= val_low
;
4640 add_dwarf_attr (die
, attr
);
4643 /* Add a floating point attribute value to a DIE and return it. */
4646 add_AT_float (die
, attr_kind
, length
, array
)
4648 enum dwarf_attribute attr_kind
;
4652 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4654 attr
->dw_attr_next
= NULL
;
4655 attr
->dw_attr
= attr_kind
;
4656 attr
->dw_attr_val
.val_class
= dw_val_class_float
;
4657 attr
->dw_attr_val
.v
.val_float
.length
= length
;
4658 attr
->dw_attr_val
.v
.val_float
.array
= array
;
4659 add_dwarf_attr (die
, attr
);
4662 /* Hash and equality functions for debug_str_hash. */
4665 debug_str_do_hash (x
)
4668 return htab_hash_string (((const struct indirect_string_node
*)x
)->str
);
4672 debug_str_eq (x1
, x2
)
4676 return strcmp ((((const struct indirect_string_node
*)x1
)->str
),
4677 (const char *)x2
) == 0;
4680 /* Add a string attribute value to a DIE. */
4683 add_AT_string (die
, attr_kind
, str
)
4685 enum dwarf_attribute attr_kind
;
4688 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4689 struct indirect_string_node
*node
;
4692 if (! debug_str_hash
)
4693 debug_str_hash
= htab_create_ggc (10, debug_str_do_hash
,
4694 debug_str_eq
, NULL
);
4696 slot
= htab_find_slot_with_hash (debug_str_hash
, str
,
4697 htab_hash_string (str
), INSERT
);
4699 *slot
= ggc_alloc_cleared (sizeof (struct indirect_string_node
));
4700 node
= (struct indirect_string_node
*) *slot
;
4701 node
->str
= ggc_alloc_string (str
, -1);
4704 attr
->dw_attr_next
= NULL
;
4705 attr
->dw_attr
= attr_kind
;
4706 attr
->dw_attr_val
.val_class
= dw_val_class_str
;
4707 attr
->dw_attr_val
.v
.val_str
= node
;
4708 add_dwarf_attr (die
, attr
);
4711 static inline const char *
4715 if (a
&& AT_class (a
) == dw_val_class_str
)
4716 return a
->dw_attr_val
.v
.val_str
->str
;
4721 /* Find out whether a string should be output inline in DIE
4722 or out-of-line in .debug_str section. */
4728 if (a
&& AT_class (a
) == dw_val_class_str
)
4730 struct indirect_string_node
*node
;
4734 node
= a
->dw_attr_val
.v
.val_str
;
4738 len
= strlen (node
->str
) + 1;
4740 /* If the string is shorter or equal to the size of the reference, it is
4741 always better to put it inline. */
4742 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
4743 return node
->form
= DW_FORM_string
;
4745 /* If we cannot expect the linker to merge strings in .debug_str
4746 section, only put it into .debug_str if it is worth even in this
4748 if ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) == 0
4749 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
)
4750 return node
->form
= DW_FORM_string
;
4752 ASM_GENERATE_INTERNAL_LABEL (label
, "LASF", dw2_string_counter
);
4753 ++dw2_string_counter
;
4754 node
->label
= xstrdup (label
);
4756 return node
->form
= DW_FORM_strp
;
4762 /* Add a DIE reference attribute value to a DIE. */
4765 add_AT_die_ref (die
, attr_kind
, targ_die
)
4767 enum dwarf_attribute attr_kind
;
4768 dw_die_ref targ_die
;
4770 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4772 attr
->dw_attr_next
= NULL
;
4773 attr
->dw_attr
= attr_kind
;
4774 attr
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
4775 attr
->dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
4776 attr
->dw_attr_val
.v
.val_die_ref
.external
= 0;
4777 add_dwarf_attr (die
, attr
);
4780 static inline dw_die_ref
4784 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4785 return a
->dw_attr_val
.v
.val_die_ref
.die
;
4794 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4795 return a
->dw_attr_val
.v
.val_die_ref
.external
;
4801 set_AT_ref_external (a
, i
)
4805 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4806 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
4811 /* Add an FDE reference attribute value to a DIE. */
4814 add_AT_fde_ref (die
, attr_kind
, targ_fde
)
4816 enum dwarf_attribute attr_kind
;
4819 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4821 attr
->dw_attr_next
= NULL
;
4822 attr
->dw_attr
= attr_kind
;
4823 attr
->dw_attr_val
.val_class
= dw_val_class_fde_ref
;
4824 attr
->dw_attr_val
.v
.val_fde_index
= targ_fde
;
4825 add_dwarf_attr (die
, attr
);
4828 /* Add a location description attribute value to a DIE. */
4831 add_AT_loc (die
, attr_kind
, loc
)
4833 enum dwarf_attribute attr_kind
;
4834 dw_loc_descr_ref loc
;
4836 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4838 attr
->dw_attr_next
= NULL
;
4839 attr
->dw_attr
= attr_kind
;
4840 attr
->dw_attr_val
.val_class
= dw_val_class_loc
;
4841 attr
->dw_attr_val
.v
.val_loc
= loc
;
4842 add_dwarf_attr (die
, attr
);
4845 static inline dw_loc_descr_ref
4849 if (a
&& AT_class (a
) == dw_val_class_loc
)
4850 return a
->dw_attr_val
.v
.val_loc
;
4856 add_AT_loc_list (die
, attr_kind
, loc_list
)
4858 enum dwarf_attribute attr_kind
;
4859 dw_loc_list_ref loc_list
;
4861 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4863 attr
->dw_attr_next
= NULL
;
4864 attr
->dw_attr
= attr_kind
;
4865 attr
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
4866 attr
->dw_attr_val
.v
.val_loc_list
= loc_list
;
4867 add_dwarf_attr (die
, attr
);
4868 have_location_lists
= 1;
4871 static inline dw_loc_list_ref
4875 if (a
&& AT_class (a
) == dw_val_class_loc_list
)
4876 return a
->dw_attr_val
.v
.val_loc_list
;
4881 /* Add an address constant attribute value to a DIE. */
4884 add_AT_addr (die
, attr_kind
, addr
)
4886 enum dwarf_attribute attr_kind
;
4889 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4891 attr
->dw_attr_next
= NULL
;
4892 attr
->dw_attr
= attr_kind
;
4893 attr
->dw_attr_val
.val_class
= dw_val_class_addr
;
4894 attr
->dw_attr_val
.v
.val_addr
= addr
;
4895 add_dwarf_attr (die
, attr
);
4902 if (a
&& AT_class (a
) == dw_val_class_addr
)
4903 return a
->dw_attr_val
.v
.val_addr
;
4908 /* Add a label identifier attribute value to a DIE. */
4911 add_AT_lbl_id (die
, attr_kind
, lbl_id
)
4913 enum dwarf_attribute attr_kind
;
4916 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4918 attr
->dw_attr_next
= NULL
;
4919 attr
->dw_attr
= attr_kind
;
4920 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4921 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
4922 add_dwarf_attr (die
, attr
);
4925 /* Add a section offset attribute value to a DIE. */
4928 add_AT_lbl_offset (die
, attr_kind
, label
)
4930 enum dwarf_attribute attr_kind
;
4933 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4935 attr
->dw_attr_next
= NULL
;
4936 attr
->dw_attr
= attr_kind
;
4937 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_offset
;
4938 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4939 add_dwarf_attr (die
, attr
);
4942 /* Add an offset attribute value to a DIE. */
4945 add_AT_offset (die
, attr_kind
, offset
)
4947 enum dwarf_attribute attr_kind
;
4948 unsigned long offset
;
4950 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4952 attr
->dw_attr_next
= NULL
;
4953 attr
->dw_attr
= attr_kind
;
4954 attr
->dw_attr_val
.val_class
= dw_val_class_offset
;
4955 attr
->dw_attr_val
.v
.val_offset
= offset
;
4956 add_dwarf_attr (die
, attr
);
4959 /* Add an range_list attribute value to a DIE. */
4962 add_AT_range_list (die
, attr_kind
, offset
)
4964 enum dwarf_attribute attr_kind
;
4965 unsigned long offset
;
4967 dw_attr_ref attr
= (dw_attr_ref
) ggc_alloc (sizeof (dw_attr_node
));
4969 attr
->dw_attr_next
= NULL
;
4970 attr
->dw_attr
= attr_kind
;
4971 attr
->dw_attr_val
.val_class
= dw_val_class_range_list
;
4972 attr
->dw_attr_val
.v
.val_offset
= offset
;
4973 add_dwarf_attr (die
, attr
);
4976 static inline const char *
4980 if (a
&& (AT_class (a
) == dw_val_class_lbl_id
4981 || AT_class (a
) == dw_val_class_lbl_offset
))
4982 return a
->dw_attr_val
.v
.val_lbl_id
;
4987 /* Get the attribute of type attr_kind. */
4989 static inline dw_attr_ref
4990 get_AT (die
, attr_kind
)
4992 enum dwarf_attribute attr_kind
;
4995 dw_die_ref spec
= NULL
;
4999 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5000 if (a
->dw_attr
== attr_kind
)
5002 else if (a
->dw_attr
== DW_AT_specification
5003 || a
->dw_attr
== DW_AT_abstract_origin
)
5007 return get_AT (spec
, attr_kind
);
5013 /* Return the "low pc" attribute value, typically associated with a subprogram
5014 DIE. Return null if the "low pc" attribute is either not present, or if it
5015 cannot be represented as an assembler label identifier. */
5017 static inline const char *
5021 dw_attr_ref a
= get_AT (die
, DW_AT_low_pc
);
5023 return a
? AT_lbl (a
) : NULL
;
5026 /* Return the "high pc" attribute value, typically associated with a subprogram
5027 DIE. Return null if the "high pc" attribute is either not present, or if it
5028 cannot be represented as an assembler label identifier. */
5030 static inline const char *
5034 dw_attr_ref a
= get_AT (die
, DW_AT_high_pc
);
5036 return a
? AT_lbl (a
) : NULL
;
5039 /* Return the value of the string attribute designated by ATTR_KIND, or
5040 NULL if it is not present. */
5042 static inline const char *
5043 get_AT_string (die
, attr_kind
)
5045 enum dwarf_attribute attr_kind
;
5047 dw_attr_ref a
= get_AT (die
, attr_kind
);
5049 return a
? AT_string (a
) : NULL
;
5052 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5053 if it is not present. */
5056 get_AT_flag (die
, attr_kind
)
5058 enum dwarf_attribute attr_kind
;
5060 dw_attr_ref a
= get_AT (die
, attr_kind
);
5062 return a
? AT_flag (a
) : 0;
5065 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5066 if it is not present. */
5068 static inline unsigned
5069 get_AT_unsigned (die
, attr_kind
)
5071 enum dwarf_attribute attr_kind
;
5073 dw_attr_ref a
= get_AT (die
, attr_kind
);
5075 return a
? AT_unsigned (a
) : 0;
5078 static inline dw_die_ref
5079 get_AT_ref (die
, attr_kind
)
5081 enum dwarf_attribute attr_kind
;
5083 dw_attr_ref a
= get_AT (die
, attr_kind
);
5085 return a
? AT_ref (a
) : NULL
;
5091 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5093 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
5094 || lang
== DW_LANG_C_plus_plus
);
5100 return (get_AT_unsigned (comp_unit_die
, DW_AT_language
)
5101 == DW_LANG_C_plus_plus
);
5107 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5109 return (lang
== DW_LANG_Fortran77
|| lang
== DW_LANG_Fortran90
);
5115 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5117 return (lang
== DW_LANG_Java
);
5120 /* Free up the memory used by A. */
5122 static inline void free_AT
PARAMS ((dw_attr_ref
));
5127 if (AT_class (a
) == dw_val_class_str
)
5128 if (a
->dw_attr_val
.v
.val_str
->refcount
)
5129 a
->dw_attr_val
.v
.val_str
->refcount
--;
5132 /* Remove the specified attribute if present. */
5135 remove_AT (die
, attr_kind
)
5137 enum dwarf_attribute attr_kind
;
5140 dw_attr_ref removed
= NULL
;
5144 for (p
= &(die
->die_attr
); *p
; p
= &((*p
)->dw_attr_next
))
5145 if ((*p
)->dw_attr
== attr_kind
)
5148 *p
= (*p
)->dw_attr_next
;
5157 /* Free up the memory used by DIE. */
5163 remove_children (die
);
5166 /* Discard the children of this DIE. */
5169 remove_children (die
)
5172 dw_die_ref child_die
= die
->die_child
;
5174 die
->die_child
= NULL
;
5176 while (child_die
!= NULL
)
5178 dw_die_ref tmp_die
= child_die
;
5181 child_die
= child_die
->die_sib
;
5183 for (a
= tmp_die
->die_attr
; a
!= NULL
;)
5185 dw_attr_ref tmp_a
= a
;
5187 a
= a
->dw_attr_next
;
5195 /* Add a child DIE below its parent. We build the lists up in reverse
5196 addition order, and correct that in reverse_all_dies. */
5199 add_child_die (die
, child_die
)
5201 dw_die_ref child_die
;
5203 if (die
!= NULL
&& child_die
!= NULL
)
5205 if (die
== child_die
)
5208 child_die
->die_parent
= die
;
5209 child_die
->die_sib
= die
->die_child
;
5210 die
->die_child
= child_die
;
5214 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5215 is the specification, to the front of PARENT's list of children. */
5218 splice_child_die (parent
, child
)
5219 dw_die_ref parent
, child
;
5223 /* We want the declaration DIE from inside the class, not the
5224 specification DIE at toplevel. */
5225 if (child
->die_parent
!= parent
)
5227 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5233 if (child
->die_parent
!= parent
5234 && child
->die_parent
!= get_AT_ref (parent
, DW_AT_specification
))
5237 for (p
= &(child
->die_parent
->die_child
); *p
; p
= &((*p
)->die_sib
))
5240 *p
= child
->die_sib
;
5244 child
->die_parent
= parent
;
5245 child
->die_sib
= parent
->die_child
;
5246 parent
->die_child
= child
;
5249 /* Return a pointer to a newly created DIE node. */
5251 static inline dw_die_ref
5252 new_die (tag_value
, parent_die
, t
)
5253 enum dwarf_tag tag_value
;
5254 dw_die_ref parent_die
;
5257 dw_die_ref die
= (dw_die_ref
) ggc_alloc_cleared (sizeof (die_node
));
5259 die
->die_tag
= tag_value
;
5261 if (parent_die
!= NULL
)
5262 add_child_die (parent_die
, die
);
5265 limbo_die_node
*limbo_node
;
5267 limbo_node
= ggc_alloc_cleared (sizeof (limbo_die_node
));
5268 limbo_node
->die
= die
;
5269 limbo_node
->created_for
= t
;
5270 limbo_node
->next
= limbo_die_list
;
5271 limbo_die_list
= limbo_node
;
5277 /* Return the DIE associated with the given type specifier. */
5279 static inline dw_die_ref
5280 lookup_type_die (type
)
5283 return TYPE_SYMTAB_DIE (type
);
5286 /* Equate a DIE to a given type specifier. */
5289 equate_type_number_to_die (type
, type_die
)
5291 dw_die_ref type_die
;
5293 TYPE_SYMTAB_DIE (type
) = type_die
;
5296 /* Return the DIE associated with a given declaration. */
5298 static inline dw_die_ref
5299 lookup_decl_die (decl
)
5302 unsigned decl_id
= DECL_UID (decl
);
5304 return (decl_id
< decl_die_table_in_use
? decl_die_table
[decl_id
] : NULL
);
5307 /* Equate a DIE to a particular declaration. */
5310 equate_decl_number_to_die (decl
, decl_die
)
5312 dw_die_ref decl_die
;
5314 unsigned int decl_id
= DECL_UID (decl
);
5315 unsigned int num_allocated
;
5317 if (decl_id
>= decl_die_table_allocated
)
5320 = ((decl_id
+ 1 + DECL_DIE_TABLE_INCREMENT
- 1)
5321 / DECL_DIE_TABLE_INCREMENT
)
5322 * DECL_DIE_TABLE_INCREMENT
;
5324 decl_die_table
= ggc_realloc (decl_die_table
,
5325 sizeof (dw_die_ref
) * num_allocated
);
5327 memset ((char *) &decl_die_table
[decl_die_table_allocated
], 0,
5328 (num_allocated
- decl_die_table_allocated
) * sizeof (dw_die_ref
));
5329 decl_die_table_allocated
= num_allocated
;
5332 if (decl_id
>= decl_die_table_in_use
)
5333 decl_die_table_in_use
= (decl_id
+ 1);
5335 decl_die_table
[decl_id
] = decl_die
;
5338 /* Keep track of the number of spaces used to indent the
5339 output of the debugging routines that print the structure of
5340 the DIE internal representation. */
5341 static int print_indent
;
5343 /* Indent the line the number of spaces given by print_indent. */
5346 print_spaces (outfile
)
5349 fprintf (outfile
, "%*s", print_indent
, "");
5352 /* Print the information associated with a given DIE, and its children.
5353 This routine is a debugging aid only. */
5356 print_die (die
, outfile
)
5363 print_spaces (outfile
);
5364 fprintf (outfile
, "DIE %4lu: %s\n",
5365 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
5366 print_spaces (outfile
);
5367 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
5368 fprintf (outfile
, " offset: %lu\n", die
->die_offset
);
5370 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5372 print_spaces (outfile
);
5373 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
5375 switch (AT_class (a
))
5377 case dw_val_class_addr
:
5378 fprintf (outfile
, "address");
5380 case dw_val_class_offset
:
5381 fprintf (outfile
, "offset");
5383 case dw_val_class_loc
:
5384 fprintf (outfile
, "location descriptor");
5386 case dw_val_class_loc_list
:
5387 fprintf (outfile
, "location list -> label:%s",
5388 AT_loc_list (a
)->ll_symbol
);
5390 case dw_val_class_range_list
:
5391 fprintf (outfile
, "range list");
5393 case dw_val_class_const
:
5394 fprintf (outfile
, "%ld", AT_int (a
));
5396 case dw_val_class_unsigned_const
:
5397 fprintf (outfile
, "%lu", AT_unsigned (a
));
5399 case dw_val_class_long_long
:
5400 fprintf (outfile
, "constant (%lu,%lu)",
5401 a
->dw_attr_val
.v
.val_long_long
.hi
,
5402 a
->dw_attr_val
.v
.val_long_long
.low
);
5404 case dw_val_class_float
:
5405 fprintf (outfile
, "floating-point constant");
5407 case dw_val_class_flag
:
5408 fprintf (outfile
, "%u", AT_flag (a
));
5410 case dw_val_class_die_ref
:
5411 if (AT_ref (a
) != NULL
)
5413 if (AT_ref (a
)->die_symbol
)
5414 fprintf (outfile
, "die -> label: %s", AT_ref (a
)->die_symbol
);
5416 fprintf (outfile
, "die -> %lu", AT_ref (a
)->die_offset
);
5419 fprintf (outfile
, "die -> <null>");
5421 case dw_val_class_lbl_id
:
5422 case dw_val_class_lbl_offset
:
5423 fprintf (outfile
, "label: %s", AT_lbl (a
));
5425 case dw_val_class_str
:
5426 if (AT_string (a
) != NULL
)
5427 fprintf (outfile
, "\"%s\"", AT_string (a
));
5429 fprintf (outfile
, "<null>");
5435 fprintf (outfile
, "\n");
5438 if (die
->die_child
!= NULL
)
5441 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5442 print_die (c
, outfile
);
5446 if (print_indent
== 0)
5447 fprintf (outfile
, "\n");
5450 /* Print the contents of the source code line number correspondence table.
5451 This routine is a debugging aid only. */
5454 print_dwarf_line_table (outfile
)
5458 dw_line_info_ref line_info
;
5460 fprintf (outfile
, "\n\nDWARF source line information\n");
5461 for (i
= 1; i
< line_info_table_in_use
; i
++)
5463 line_info
= &line_info_table
[i
];
5464 fprintf (outfile
, "%5d: ", i
);
5465 fprintf (outfile
, "%-20s",
5466 VARRAY_CHAR_PTR (file_table
, line_info
->dw_file_num
));
5467 fprintf (outfile
, "%6ld", line_info
->dw_line_num
);
5468 fprintf (outfile
, "\n");
5471 fprintf (outfile
, "\n\n");
5474 /* Print the information collected for a given DIE. */
5477 debug_dwarf_die (die
)
5480 print_die (die
, stderr
);
5483 /* Print all DWARF information collected for the compilation unit.
5484 This routine is a debugging aid only. */
5490 print_die (comp_unit_die
, stderr
);
5491 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
5492 print_dwarf_line_table (stderr
);
5495 /* We build up the lists of children and attributes by pushing new ones
5496 onto the beginning of the list. Reverse the lists for DIE so that
5497 they are in order of addition. */
5500 reverse_die_lists (die
)
5503 dw_die_ref c
, cp
, cn
;
5504 dw_attr_ref a
, ap
, an
;
5506 for (a
= die
->die_attr
, ap
= 0; a
; a
= an
)
5508 an
= a
->dw_attr_next
;
5509 a
->dw_attr_next
= ap
;
5515 for (c
= die
->die_child
, cp
= 0; c
; c
= cn
)
5522 die
->die_child
= cp
;
5525 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5526 reverse all dies in add_sibling_attributes, which runs through all the dies,
5527 it would reverse all the dies. Now, however, since we don't call
5528 reverse_die_lists in add_sibling_attributes, we need a routine to
5529 recursively reverse all the dies. This is that routine. */
5532 reverse_all_dies (die
)
5537 reverse_die_lists (die
);
5539 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5540 reverse_all_dies (c
);
5543 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5544 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5545 DIE that marks the start of the DIEs for this include file. */
5548 push_new_compile_unit (old_unit
, bincl_die
)
5549 dw_die_ref old_unit
, bincl_die
;
5551 const char *filename
= get_AT_string (bincl_die
, DW_AT_name
);
5552 dw_die_ref new_unit
= gen_compile_unit_die (filename
);
5554 new_unit
->die_sib
= old_unit
;
5558 /* Close an include-file CU and reopen the enclosing one. */
5561 pop_compile_unit (old_unit
)
5562 dw_die_ref old_unit
;
5564 dw_die_ref new_unit
= old_unit
->die_sib
;
5566 old_unit
->die_sib
= NULL
;
5570 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5571 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5573 /* Calculate the checksum of a location expression. */
5576 loc_checksum (loc
, ctx
)
5577 dw_loc_descr_ref loc
;
5578 struct md5_ctx
*ctx
;
5580 CHECKSUM (loc
->dw_loc_opc
);
5581 CHECKSUM (loc
->dw_loc_oprnd1
);
5582 CHECKSUM (loc
->dw_loc_oprnd2
);
5585 /* Calculate the checksum of an attribute. */
5588 attr_checksum (at
, ctx
, mark
)
5590 struct md5_ctx
*ctx
;
5593 dw_loc_descr_ref loc
;
5596 CHECKSUM (at
->dw_attr
);
5598 /* We don't care about differences in file numbering. */
5599 if (at
->dw_attr
== DW_AT_decl_file
5600 /* Or that this was compiled with a different compiler snapshot; if
5601 the output is the same, that's what matters. */
5602 || at
->dw_attr
== DW_AT_producer
)
5605 switch (AT_class (at
))
5607 case dw_val_class_const
:
5608 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
5610 case dw_val_class_unsigned_const
:
5611 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
5613 case dw_val_class_long_long
:
5614 CHECKSUM (at
->dw_attr_val
.v
.val_long_long
);
5616 case dw_val_class_float
:
5617 CHECKSUM (at
->dw_attr_val
.v
.val_float
);
5619 case dw_val_class_flag
:
5620 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
5622 case dw_val_class_str
:
5623 CHECKSUM_STRING (AT_string (at
));
5626 case dw_val_class_addr
:
5628 switch (GET_CODE (r
))
5631 CHECKSUM_STRING (XSTR (r
, 0));
5639 case dw_val_class_offset
:
5640 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
5643 case dw_val_class_loc
:
5644 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
5645 loc_checksum (loc
, ctx
);
5648 case dw_val_class_die_ref
:
5649 die_checksum (AT_ref (at
), ctx
, mark
);
5652 case dw_val_class_fde_ref
:
5653 case dw_val_class_lbl_id
:
5654 case dw_val_class_lbl_offset
:
5662 /* Calculate the checksum of a DIE. */
5665 die_checksum (die
, ctx
, mark
)
5667 struct md5_ctx
*ctx
;
5673 /* To avoid infinite recursion. */
5676 CHECKSUM (die
->die_mark
);
5679 die
->die_mark
= ++(*mark
);
5681 CHECKSUM (die
->die_tag
);
5683 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
5684 attr_checksum (a
, ctx
, mark
);
5686 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5687 die_checksum (c
, ctx
, mark
);
5691 #undef CHECKSUM_STRING
5693 /* Do the location expressions look same? */
5695 same_loc_p (loc1
, loc2
, mark
)
5696 dw_loc_descr_ref loc1
;
5697 dw_loc_descr_ref loc2
;
5700 return loc1
->dw_loc_opc
== loc2
->dw_loc_opc
5701 && same_dw_val_p (&loc1
->dw_loc_oprnd1
, &loc2
->dw_loc_oprnd1
, mark
)
5702 && same_dw_val_p (&loc1
->dw_loc_oprnd2
, &loc2
->dw_loc_oprnd2
, mark
);
5705 /* Do the values look the same? */
5707 same_dw_val_p (v1
, v2
, mark
)
5712 dw_loc_descr_ref loc1
, loc2
;
5716 if (v1
->val_class
!= v2
->val_class
)
5719 switch (v1
->val_class
)
5721 case dw_val_class_const
:
5722 return v1
->v
.val_int
== v2
->v
.val_int
;
5723 case dw_val_class_unsigned_const
:
5724 return v1
->v
.val_unsigned
== v2
->v
.val_unsigned
;
5725 case dw_val_class_long_long
:
5726 return v1
->v
.val_long_long
.hi
== v2
->v
.val_long_long
.hi
5727 && v1
->v
.val_long_long
.low
== v2
->v
.val_long_long
.low
;
5728 case dw_val_class_float
:
5729 if (v1
->v
.val_float
.length
!= v2
->v
.val_float
.length
)
5731 for (i
= 0; i
< v1
->v
.val_float
.length
; i
++)
5732 if (v1
->v
.val_float
.array
[i
] != v2
->v
.val_float
.array
[i
])
5735 case dw_val_class_flag
:
5736 return v1
->v
.val_flag
== v2
->v
.val_flag
;
5737 case dw_val_class_str
:
5738 return !strcmp(v1
->v
.val_str
->str
, v2
->v
.val_str
->str
);
5740 case dw_val_class_addr
:
5741 r1
= v1
->v
.val_addr
;
5742 r2
= v2
->v
.val_addr
;
5743 if (GET_CODE (r1
) != GET_CODE (r2
))
5745 switch (GET_CODE (r1
))
5748 return !strcmp (XSTR (r1
, 0), XSTR (r2
, 0));
5754 case dw_val_class_offset
:
5755 return v1
->v
.val_offset
== v2
->v
.val_offset
;
5757 case dw_val_class_loc
:
5758 for (loc1
= v1
->v
.val_loc
, loc2
= v2
->v
.val_loc
;
5760 loc1
= loc1
->dw_loc_next
, loc2
= loc2
->dw_loc_next
)
5761 if (!same_loc_p (loc1
, loc2
, mark
))
5763 return !loc1
&& !loc2
;
5765 case dw_val_class_die_ref
:
5766 return same_die_p (v1
->v
.val_die_ref
.die
, v2
->v
.val_die_ref
.die
, mark
);
5768 case dw_val_class_fde_ref
:
5769 case dw_val_class_lbl_id
:
5770 case dw_val_class_lbl_offset
:
5778 /* Do the attributes look the same? */
5781 same_attr_p (at1
, at2
, mark
)
5786 if (at1
->dw_attr
!= at2
->dw_attr
)
5789 /* We don't care about differences in file numbering. */
5790 if (at1
->dw_attr
== DW_AT_decl_file
5791 /* Or that this was compiled with a different compiler snapshot; if
5792 the output is the same, that's what matters. */
5793 || at1
->dw_attr
== DW_AT_producer
)
5796 return same_dw_val_p (&at1
->dw_attr_val
, &at2
->dw_attr_val
, mark
);
5799 /* Do the dies look the same? */
5802 same_die_p (die1
, die2
, mark
)
5810 /* To avoid infinite recursion. */
5812 return die1
->die_mark
== die2
->die_mark
;
5813 die1
->die_mark
= die2
->die_mark
= ++(*mark
);
5815 if (die1
->die_tag
!= die2
->die_tag
)
5818 for (a1
= die1
->die_attr
, a2
= die2
->die_attr
;
5820 a1
= a1
->dw_attr_next
, a2
= a2
->dw_attr_next
)
5821 if (!same_attr_p (a1
, a2
, mark
))
5826 for (c1
= die1
->die_child
, c2
= die2
->die_child
;
5828 c1
= c1
->die_sib
, c2
= c2
->die_sib
)
5829 if (!same_die_p (c1
, c2
, mark
))
5837 /* Do the dies look the same? Wrapper around same_die_p. */
5840 same_die_p_wrap (die1
, die2
)
5845 int ret
= same_die_p (die1
, die2
, &mark
);
5847 unmark_all_dies (die1
);
5848 unmark_all_dies (die2
);
5853 /* The prefix to attach to symbols on DIEs in the current comdat debug
5855 static char *comdat_symbol_id
;
5857 /* The index of the current symbol within the current comdat CU. */
5858 static unsigned int comdat_symbol_number
;
5860 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5861 children, and set comdat_symbol_id accordingly. */
5864 compute_section_prefix (unit_die
)
5865 dw_die_ref unit_die
;
5867 const char *die_name
= get_AT_string (unit_die
, DW_AT_name
);
5868 const char *base
= die_name
? lbasename (die_name
) : "anonymous";
5869 char *name
= (char *) alloca (strlen (base
) + 64);
5872 unsigned char checksum
[16];
5875 /* Compute the checksum of the DIE, then append part of it as hex digits to
5876 the name filename of the unit. */
5878 md5_init_ctx (&ctx
);
5880 die_checksum (unit_die
, &ctx
, &mark
);
5881 unmark_all_dies (unit_die
);
5882 md5_finish_ctx (&ctx
, checksum
);
5884 sprintf (name
, "%s.", base
);
5885 clean_symbol_name (name
);
5887 p
= name
+ strlen (name
);
5888 for (i
= 0; i
< 4; i
++)
5890 sprintf (p
, "%.2x", checksum
[i
]);
5894 comdat_symbol_id
= unit_die
->die_symbol
= xstrdup (name
);
5895 comdat_symbol_number
= 0;
5898 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5904 switch (die
->die_tag
)
5906 case DW_TAG_array_type
:
5907 case DW_TAG_class_type
:
5908 case DW_TAG_enumeration_type
:
5909 case DW_TAG_pointer_type
:
5910 case DW_TAG_reference_type
:
5911 case DW_TAG_string_type
:
5912 case DW_TAG_structure_type
:
5913 case DW_TAG_subroutine_type
:
5914 case DW_TAG_union_type
:
5915 case DW_TAG_ptr_to_member_type
:
5916 case DW_TAG_set_type
:
5917 case DW_TAG_subrange_type
:
5918 case DW_TAG_base_type
:
5919 case DW_TAG_const_type
:
5920 case DW_TAG_file_type
:
5921 case DW_TAG_packed_type
:
5922 case DW_TAG_volatile_type
:
5923 case DW_TAG_typedef
:
5930 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5931 Basically, we want to choose the bits that are likely to be shared between
5932 compilations (types) and leave out the bits that are specific to individual
5933 compilations (functions). */
5939 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5940 we do for stabs. The advantage is a greater likelihood of sharing between
5941 objects that don't include headers in the same order (and therefore would
5942 put the base types in a different comdat). jason 8/28/00 */
5944 if (c
->die_tag
== DW_TAG_base_type
)
5947 if (c
->die_tag
== DW_TAG_pointer_type
5948 || c
->die_tag
== DW_TAG_reference_type
5949 || c
->die_tag
== DW_TAG_const_type
5950 || c
->die_tag
== DW_TAG_volatile_type
)
5952 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
5954 return t
? is_comdat_die (t
) : 0;
5957 return is_type_die (c
);
5960 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5961 compilation unit. */
5967 return (is_type_die (c
)
5968 || (get_AT (c
, DW_AT_declaration
)
5969 && !get_AT (c
, DW_AT_specification
)));
5973 gen_internal_sym (prefix
)
5977 static int label_num
;
5979 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
5980 return xstrdup (buf
);
5983 /* Assign symbols to all worthy DIEs under DIE. */
5986 assign_symbol_names (die
)
5991 if (is_symbol_die (die
))
5993 if (comdat_symbol_id
)
5995 char *p
= alloca (strlen (comdat_symbol_id
) + 64);
5997 sprintf (p
, "%s.%s.%x", DIE_LABEL_PREFIX
,
5998 comdat_symbol_id
, comdat_symbol_number
++);
5999 die
->die_symbol
= xstrdup (p
);
6002 die
->die_symbol
= gen_internal_sym ("LDIE");
6005 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6006 assign_symbol_names (c
);
6009 struct cu_hash_table_entry
6012 unsigned min_comdat_num
, max_comdat_num
;
6013 struct cu_hash_table_entry
*next
;
6016 /* Routines to manipulate hash table of CUs. */
6021 const struct cu_hash_table_entry
*entry
= of
;
6023 return htab_hash_string (entry
->cu
->die_symbol
);
6027 htab_cu_eq (of1
, of2
)
6031 const struct cu_hash_table_entry
*entry1
= of1
;
6032 const struct die_struct
*entry2
= of2
;
6034 return !strcmp (entry1
->cu
->die_symbol
, entry2
->die_symbol
);
6041 struct cu_hash_table_entry
*next
, *entry
= what
;
6051 /* Check whether we have already seen this CU and set up SYM_NUM
6054 check_duplicate_cu (cu
, htable
, sym_num
)
6059 struct cu_hash_table_entry dummy
;
6060 struct cu_hash_table_entry
**slot
, *entry
, *last
= &dummy
;
6062 dummy
.max_comdat_num
= 0;
6064 slot
= (struct cu_hash_table_entry
**)
6065 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6069 for (; entry
; last
= entry
, entry
= entry
->next
)
6071 if (same_die_p_wrap (cu
, entry
->cu
))
6077 *sym_num
= entry
->min_comdat_num
;
6081 entry
= xcalloc (1, sizeof (struct cu_hash_table_entry
));
6083 entry
->min_comdat_num
= *sym_num
= last
->max_comdat_num
;
6084 entry
->next
= *slot
;
6090 /* Record SYM_NUM to record of CU in HTABLE. */
6092 record_comdat_symbol_number (cu
, htable
, sym_num
)
6097 struct cu_hash_table_entry
**slot
, *entry
;
6099 slot
= (struct cu_hash_table_entry
**)
6100 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6104 entry
->max_comdat_num
= sym_num
;
6107 /* Traverse the DIE (which is always comp_unit_die), and set up
6108 additional compilation units for each of the include files we see
6109 bracketed by BINCL/EINCL. */
6112 break_out_includes (die
)
6116 dw_die_ref unit
= NULL
;
6117 limbo_die_node
*node
, **pnode
;
6118 htab_t cu_hash_table
;
6120 for (ptr
= &(die
->die_child
); *ptr
;)
6122 dw_die_ref c
= *ptr
;
6124 if (c
->die_tag
== DW_TAG_GNU_BINCL
|| c
->die_tag
== DW_TAG_GNU_EINCL
6125 || (unit
&& is_comdat_die (c
)))
6127 /* This DIE is for a secondary CU; remove it from the main one. */
6130 if (c
->die_tag
== DW_TAG_GNU_BINCL
)
6132 unit
= push_new_compile_unit (unit
, c
);
6135 else if (c
->die_tag
== DW_TAG_GNU_EINCL
)
6137 unit
= pop_compile_unit (unit
);
6141 add_child_die (unit
, c
);
6145 /* Leave this DIE in the main CU. */
6146 ptr
= &(c
->die_sib
);
6152 /* We can only use this in debugging, since the frontend doesn't check
6153 to make sure that we leave every include file we enter. */
6158 assign_symbol_names (die
);
6159 cu_hash_table
= htab_create (10, htab_cu_hash
, htab_cu_eq
, htab_cu_del
);
6160 for (node
= limbo_die_list
, pnode
= &limbo_die_list
;
6166 compute_section_prefix (node
->die
);
6167 is_dupl
= check_duplicate_cu (node
->die
, cu_hash_table
,
6168 &comdat_symbol_number
);
6169 assign_symbol_names (node
->die
);
6171 *pnode
= node
->next
;
6174 pnode
= &node
->next
;
6175 record_comdat_symbol_number (node
->die
, cu_hash_table
,
6176 comdat_symbol_number
);
6179 htab_delete (cu_hash_table
);
6182 /* Traverse the DIE and add a sibling attribute if it may have the
6183 effect of speeding up access to siblings. To save some space,
6184 avoid generating sibling attributes for DIE's without children. */
6187 add_sibling_attributes (die
)
6192 if (die
->die_tag
!= DW_TAG_compile_unit
6193 && die
->die_sib
&& die
->die_child
!= NULL
)
6194 /* Add the sibling link to the front of the attribute list. */
6195 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
6197 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6198 add_sibling_attributes (c
);
6201 /* Output all location lists for the DIE and its children. */
6204 output_location_lists (die
)
6210 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
6211 if (AT_class (d_attr
) == dw_val_class_loc_list
)
6212 output_loc_list (AT_loc_list (d_attr
));
6214 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6215 output_location_lists (c
);
6219 /* The format of each DIE (and its attribute value pairs) is encoded in an
6220 abbreviation table. This routine builds the abbreviation table and assigns
6221 a unique abbreviation id for each abbreviation entry. The children of each
6222 die are visited recursively. */
6225 build_abbrev_table (die
)
6228 unsigned long abbrev_id
;
6229 unsigned int n_alloc
;
6231 dw_attr_ref d_attr
, a_attr
;
6233 /* Scan the DIE references, and mark as external any that refer to
6234 DIEs from other CUs (i.e. those which are not marked). */
6235 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
6236 if (AT_class (d_attr
) == dw_val_class_die_ref
6237 && AT_ref (d_attr
)->die_mark
== 0)
6239 if (AT_ref (d_attr
)->die_symbol
== 0)
6242 set_AT_ref_external (d_attr
, 1);
6245 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6247 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6249 if (abbrev
->die_tag
== die
->die_tag
)
6251 if ((abbrev
->die_child
!= NULL
) == (die
->die_child
!= NULL
))
6253 a_attr
= abbrev
->die_attr
;
6254 d_attr
= die
->die_attr
;
6256 while (a_attr
!= NULL
&& d_attr
!= NULL
)
6258 if ((a_attr
->dw_attr
!= d_attr
->dw_attr
)
6259 || (value_format (a_attr
) != value_format (d_attr
)))
6262 a_attr
= a_attr
->dw_attr_next
;
6263 d_attr
= d_attr
->dw_attr_next
;
6266 if (a_attr
== NULL
&& d_attr
== NULL
)
6272 if (abbrev_id
>= abbrev_die_table_in_use
)
6274 if (abbrev_die_table_in_use
>= abbrev_die_table_allocated
)
6276 n_alloc
= abbrev_die_table_allocated
+ ABBREV_DIE_TABLE_INCREMENT
;
6277 abbrev_die_table
= ggc_realloc (abbrev_die_table
,
6278 sizeof (dw_die_ref
) * n_alloc
);
6280 memset ((char *) &abbrev_die_table
[abbrev_die_table_allocated
], 0,
6281 (n_alloc
- abbrev_die_table_allocated
) * sizeof (dw_die_ref
));
6282 abbrev_die_table_allocated
= n_alloc
;
6285 ++abbrev_die_table_in_use
;
6286 abbrev_die_table
[abbrev_id
] = die
;
6289 die
->die_abbrev
= abbrev_id
;
6290 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6291 build_abbrev_table (c
);
6294 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6297 constant_size (value
)
6298 long unsigned value
;
6305 log
= floor_log2 (value
);
6308 log
= 1 << (floor_log2 (log
) + 1);
6313 /* Return the size of a DIE as it is represented in the
6314 .debug_info section. */
6316 static unsigned long
6320 unsigned long size
= 0;
6323 size
+= size_of_uleb128 (die
->die_abbrev
);
6324 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6326 switch (AT_class (a
))
6328 case dw_val_class_addr
:
6329 size
+= DWARF2_ADDR_SIZE
;
6331 case dw_val_class_offset
:
6332 size
+= DWARF_OFFSET_SIZE
;
6334 case dw_val_class_loc
:
6336 unsigned long lsize
= size_of_locs (AT_loc (a
));
6339 size
+= constant_size (lsize
);
6343 case dw_val_class_loc_list
:
6344 size
+= DWARF_OFFSET_SIZE
;
6346 case dw_val_class_range_list
:
6347 size
+= DWARF_OFFSET_SIZE
;
6349 case dw_val_class_const
:
6350 size
+= size_of_sleb128 (AT_int (a
));
6352 case dw_val_class_unsigned_const
:
6353 size
+= constant_size (AT_unsigned (a
));
6355 case dw_val_class_long_long
:
6356 size
+= 1 + 2*HOST_BITS_PER_LONG
/HOST_BITS_PER_CHAR
; /* block */
6358 case dw_val_class_float
:
6359 size
+= 1 + a
->dw_attr_val
.v
.val_float
.length
* 4; /* block */
6361 case dw_val_class_flag
:
6364 case dw_val_class_die_ref
:
6365 if (AT_ref_external (a
))
6366 size
+= DWARF2_ADDR_SIZE
;
6368 size
+= DWARF_OFFSET_SIZE
;
6370 case dw_val_class_fde_ref
:
6371 size
+= DWARF_OFFSET_SIZE
;
6373 case dw_val_class_lbl_id
:
6374 size
+= DWARF2_ADDR_SIZE
;
6376 case dw_val_class_lbl_offset
:
6377 size
+= DWARF_OFFSET_SIZE
;
6379 case dw_val_class_str
:
6380 if (AT_string_form (a
) == DW_FORM_strp
)
6381 size
+= DWARF_OFFSET_SIZE
;
6383 size
+= strlen (a
->dw_attr_val
.v
.val_str
->str
) + 1;
6393 /* Size the debugging information associated with a given DIE. Visits the
6394 DIE's children recursively. Updates the global variable next_die_offset, on
6395 each time through. Uses the current value of next_die_offset to update the
6396 die_offset field in each DIE. */
6399 calc_die_sizes (die
)
6404 die
->die_offset
= next_die_offset
;
6405 next_die_offset
+= size_of_die (die
);
6407 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6410 if (die
->die_child
!= NULL
)
6411 /* Count the null byte used to terminate sibling lists. */
6412 next_die_offset
+= 1;
6415 /* Set the marks for a die and its children. We do this so
6416 that we know whether or not a reference needs to use FORM_ref_addr; only
6417 DIEs in the same CU will be marked. We used to clear out the offset
6418 and use that as the flag, but ran into ordering problems. */
6430 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6434 /* Clear the marks for a die and its children. */
6446 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6450 /* Clear the marks for a die, its children and referred dies. */
6453 unmark_all_dies (die
)
6463 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6464 unmark_all_dies (c
);
6466 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
6467 if (AT_class (a
) == dw_val_class_die_ref
)
6468 unmark_all_dies (AT_ref (a
));
6471 /* Return the size of the .debug_pubnames table generated for the
6472 compilation unit. */
6474 static unsigned long
6480 size
= DWARF_PUBNAMES_HEADER_SIZE
;
6481 for (i
= 0; i
< pubname_table_in_use
; i
++)
6483 pubname_ref p
= &pubname_table
[i
];
6484 size
+= DWARF_OFFSET_SIZE
+ strlen (p
->name
) + 1;
6487 size
+= DWARF_OFFSET_SIZE
;
6491 /* Return the size of the information in the .debug_aranges section. */
6493 static unsigned long
6498 size
= DWARF_ARANGES_HEADER_SIZE
;
6500 /* Count the address/length pair for this compilation unit. */
6501 size
+= 2 * DWARF2_ADDR_SIZE
;
6502 size
+= 2 * DWARF2_ADDR_SIZE
* arange_table_in_use
;
6504 /* Count the two zero words used to terminated the address range table. */
6505 size
+= 2 * DWARF2_ADDR_SIZE
;
6509 /* Select the encoding of an attribute value. */
6511 static enum dwarf_form
6515 switch (a
->dw_attr_val
.val_class
)
6517 case dw_val_class_addr
:
6518 return DW_FORM_addr
;
6519 case dw_val_class_range_list
:
6520 case dw_val_class_offset
:
6521 if (DWARF_OFFSET_SIZE
== 4)
6522 return DW_FORM_data4
;
6523 if (DWARF_OFFSET_SIZE
== 8)
6524 return DW_FORM_data8
;
6526 case dw_val_class_loc_list
:
6527 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6528 .debug_loc section */
6529 return DW_FORM_data4
;
6530 case dw_val_class_loc
:
6531 switch (constant_size (size_of_locs (AT_loc (a
))))
6534 return DW_FORM_block1
;
6536 return DW_FORM_block2
;
6540 case dw_val_class_const
:
6541 return DW_FORM_sdata
;
6542 case dw_val_class_unsigned_const
:
6543 switch (constant_size (AT_unsigned (a
)))
6546 return DW_FORM_data1
;
6548 return DW_FORM_data2
;
6550 return DW_FORM_data4
;
6552 return DW_FORM_data8
;
6556 case dw_val_class_long_long
:
6557 return DW_FORM_block1
;
6558 case dw_val_class_float
:
6559 return DW_FORM_block1
;
6560 case dw_val_class_flag
:
6561 return DW_FORM_flag
;
6562 case dw_val_class_die_ref
:
6563 if (AT_ref_external (a
))
6564 return DW_FORM_ref_addr
;
6567 case dw_val_class_fde_ref
:
6568 return DW_FORM_data
;
6569 case dw_val_class_lbl_id
:
6570 return DW_FORM_addr
;
6571 case dw_val_class_lbl_offset
:
6572 return DW_FORM_data
;
6573 case dw_val_class_str
:
6574 return AT_string_form (a
);
6581 /* Output the encoding of an attribute value. */
6584 output_value_format (a
)
6587 enum dwarf_form form
= value_format (a
);
6589 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
6592 /* Output the .debug_abbrev section which defines the DIE abbreviation
6596 output_abbrev_section ()
6598 unsigned long abbrev_id
;
6602 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6604 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6606 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
6607 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
6608 dwarf_tag_name (abbrev
->die_tag
));
6610 if (abbrev
->die_child
!= NULL
)
6611 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
6613 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
6615 for (a_attr
= abbrev
->die_attr
; a_attr
!= NULL
;
6616 a_attr
= a_attr
->dw_attr_next
)
6618 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
6619 dwarf_attr_name (a_attr
->dw_attr
));
6620 output_value_format (a_attr
);
6623 dw2_asm_output_data (1, 0, NULL
);
6624 dw2_asm_output_data (1, 0, NULL
);
6627 /* Terminate the table. */
6628 dw2_asm_output_data (1, 0, NULL
);
6631 /* Output a symbol we can use to refer to this DIE from another CU. */
6634 output_die_symbol (die
)
6637 char *sym
= die
->die_symbol
;
6642 if (strncmp (sym
, DIE_LABEL_PREFIX
, sizeof (DIE_LABEL_PREFIX
) - 1) == 0)
6643 /* We make these global, not weak; if the target doesn't support
6644 .linkonce, it doesn't support combining the sections, so debugging
6646 (*targetm
.asm_out
.globalize_label
) (asm_out_file
, sym
);
6648 ASM_OUTPUT_LABEL (asm_out_file
, sym
);
6651 /* Return a new location list, given the begin and end range, and the
6652 expression. gensym tells us whether to generate a new internal symbol for
6653 this location list node, which is done for the head of the list only. */
6655 static inline dw_loc_list_ref
6656 new_loc_list (expr
, begin
, end
, section
, gensym
)
6657 dw_loc_descr_ref expr
;
6660 const char *section
;
6663 dw_loc_list_ref retlist
= ggc_alloc_cleared (sizeof (dw_loc_list_node
));
6665 retlist
->begin
= begin
;
6667 retlist
->expr
= expr
;
6668 retlist
->section
= section
;
6670 retlist
->ll_symbol
= gen_internal_sym ("LLST");
6675 /* Add a location description expression to a location list */
6678 add_loc_descr_to_loc_list (list_head
, descr
, begin
, end
, section
)
6679 dw_loc_list_ref
*list_head
;
6680 dw_loc_descr_ref descr
;
6683 const char *section
;
6687 /* Find the end of the chain. */
6688 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
6691 /* Add a new location list node to the list */
6692 *d
= new_loc_list (descr
, begin
, end
, section
, 0);
6695 /* Output the location list given to us */
6698 output_loc_list (list_head
)
6699 dw_loc_list_ref list_head
;
6701 dw_loc_list_ref curr
= list_head
;
6703 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
6705 /* ??? This shouldn't be needed now that we've forced the
6706 compilation unit base address to zero when there is code
6707 in more than one section. */
6708 if (strcmp (curr
->section
, ".text") == 0)
6710 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6711 dw2_asm_output_data (DWARF2_ADDR_SIZE
, ~(unsigned HOST_WIDE_INT
) 0,
6712 "Location list base address specifier fake entry");
6713 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, curr
->section
,
6714 "Location list base address specifier base");
6717 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
6721 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
6722 "Location list begin address (%s)",
6723 list_head
->ll_symbol
);
6724 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
6725 "Location list end address (%s)",
6726 list_head
->ll_symbol
);
6727 size
= size_of_locs (curr
->expr
);
6729 /* Output the block length for this list of location operations. */
6732 dw2_asm_output_data (2, size
, "%s", "Location expression size");
6734 output_loc_sequence (curr
->expr
);
6737 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0,
6738 "Location list terminator begin (%s)",
6739 list_head
->ll_symbol
);
6740 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0,
6741 "Location list terminator end (%s)",
6742 list_head
->ll_symbol
);
6745 /* Output the DIE and its attributes. Called recursively to generate
6746 the definitions of each child DIE. */
6756 /* If someone in another CU might refer to us, set up a symbol for
6757 them to point to. */
6758 if (die
->die_symbol
)
6759 output_die_symbol (die
);
6761 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (0x%lx) %s)",
6762 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
6764 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6766 const char *name
= dwarf_attr_name (a
->dw_attr
);
6768 switch (AT_class (a
))
6770 case dw_val_class_addr
:
6771 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
6774 case dw_val_class_offset
:
6775 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
6779 case dw_val_class_range_list
:
6781 char *p
= strchr (ranges_section_label
, '\0');
6783 sprintf (p
, "+0x%lx", a
->dw_attr_val
.v
.val_offset
);
6784 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
6790 case dw_val_class_loc
:
6791 size
= size_of_locs (AT_loc (a
));
6793 /* Output the block length for this list of location operations. */
6794 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
6796 output_loc_sequence (AT_loc (a
));
6799 case dw_val_class_const
:
6800 /* ??? It would be slightly more efficient to use a scheme like is
6801 used for unsigned constants below, but gdb 4.x does not sign
6802 extend. Gdb 5.x does sign extend. */
6803 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
6806 case dw_val_class_unsigned_const
:
6807 dw2_asm_output_data (constant_size (AT_unsigned (a
)),
6808 AT_unsigned (a
), "%s", name
);
6811 case dw_val_class_long_long
:
6813 unsigned HOST_WIDE_INT first
, second
;
6815 dw2_asm_output_data (1,
6816 2 * HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6819 if (WORDS_BIG_ENDIAN
)
6821 first
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6822 second
= a
->dw_attr_val
.v
.val_long_long
.low
;
6826 first
= a
->dw_attr_val
.v
.val_long_long
.low
;
6827 second
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6830 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6831 first
, "long long constant");
6832 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6837 case dw_val_class_float
:
6841 dw2_asm_output_data (1, a
->dw_attr_val
.v
.val_float
.length
* 4,
6844 for (i
= 0; i
< a
->dw_attr_val
.v
.val_float
.length
; i
++)
6845 dw2_asm_output_data (4, a
->dw_attr_val
.v
.val_float
.array
[i
],
6846 "fp constant word %u", i
);
6850 case dw_val_class_flag
:
6851 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
6854 case dw_val_class_loc_list
:
6856 char *sym
= AT_loc_list (a
)->ll_symbol
;
6860 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, sym
,
6861 loc_section_label
, "%s", name
);
6865 case dw_val_class_die_ref
:
6866 if (AT_ref_external (a
))
6868 char *sym
= AT_ref (a
)->die_symbol
;
6872 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, sym
, "%s", name
);
6874 else if (AT_ref (a
)->die_offset
== 0)
6877 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
6881 case dw_val_class_fde_ref
:
6885 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
6886 a
->dw_attr_val
.v
.val_fde_index
* 2);
6887 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, "%s", name
);
6891 case dw_val_class_lbl_id
:
6892 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
6895 case dw_val_class_lbl_offset
:
6896 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
), "%s", name
);
6899 case dw_val_class_str
:
6900 if (AT_string_form (a
) == DW_FORM_strp
)
6901 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
6902 a
->dw_attr_val
.v
.val_str
->label
,
6903 "%s: \"%s\"", name
, AT_string (a
));
6905 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
6913 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6916 /* Add null byte to terminate sibling list. */
6917 if (die
->die_child
!= NULL
)
6918 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6922 /* Output the compilation unit that appears at the beginning of the
6923 .debug_info section, and precedes the DIE descriptions. */
6926 output_compilation_unit_header ()
6928 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
6929 dw2_asm_output_data (4, 0xffffffff,
6930 "Initial length escape value indicating 64-bit DWARF extension");
6931 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
6932 next_die_offset
- DWARF_INITIAL_LENGTH_SIZE
,
6933 "Length of Compilation Unit Info");
6934 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF version number");
6935 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
6936 "Offset Into Abbrev. Section");
6937 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
6940 /* Output the compilation unit DIE and its children. */
6943 output_comp_unit (die
, output_if_empty
)
6945 int output_if_empty
;
6947 const char *secname
;
6950 /* Unless we are outputting main CU, we may throw away empty ones. */
6951 if (!output_if_empty
&& die
->die_child
== NULL
)
6954 /* Even if there are no children of this DIE, we must output the information
6955 about the compilation unit. Otherwise, on an empty translation unit, we
6956 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6957 will then complain when examining the file. First mark all the DIEs in
6958 this CU so we know which get local refs. */
6961 build_abbrev_table (die
);
6963 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6964 next_die_offset
= DWARF_COMPILE_UNIT_HEADER_SIZE
;
6965 calc_die_sizes (die
);
6967 oldsym
= die
->die_symbol
;
6970 tmp
= (char *) alloca (strlen (oldsym
) + 24);
6972 sprintf (tmp
, ".gnu.linkonce.wi.%s", oldsym
);
6974 die
->die_symbol
= NULL
;
6977 secname
= (const char *) DEBUG_INFO_SECTION
;
6979 /* Output debugging information. */
6980 named_section_flags (secname
, SECTION_DEBUG
);
6981 output_compilation_unit_header ();
6984 /* Leave the marks on the main CU, so we can check them in
6989 die
->die_symbol
= oldsym
;
6993 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6994 output of lang_hooks.decl_printable_name for C++ looks like
6995 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6998 dwarf2_name (decl
, scope
)
7002 return (*lang_hooks
.decl_printable_name
) (decl
, scope
? 1 : 0);
7005 /* Add a new entry to .debug_pubnames if appropriate. */
7008 add_pubname (decl
, die
)
7014 if (! TREE_PUBLIC (decl
))
7017 if (pubname_table_in_use
== pubname_table_allocated
)
7019 pubname_table_allocated
+= PUBNAME_TABLE_INCREMENT
;
7021 = (pubname_ref
) ggc_realloc (pubname_table
,
7022 (pubname_table_allocated
7023 * sizeof (pubname_entry
)));
7024 memset (pubname_table
+ pubname_table_in_use
, 0,
7025 PUBNAME_TABLE_INCREMENT
* sizeof (pubname_entry
));
7028 p
= &pubname_table
[pubname_table_in_use
++];
7030 p
->name
= xstrdup (dwarf2_name (decl
, 1));
7033 /* Output the public names table used to speed up access to externally
7034 visible names. For now, only generate entries for externally
7035 visible procedures. */
7041 unsigned long pubnames_length
= size_of_pubnames ();
7043 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7044 dw2_asm_output_data (4, 0xffffffff,
7045 "Initial length escape value indicating 64-bit DWARF extension");
7046 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
7047 "Length of Public Names Info");
7048 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7049 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7050 "Offset of Compilation Unit Info");
7051 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
7052 "Compilation Unit Length");
7054 for (i
= 0; i
< pubname_table_in_use
; i
++)
7056 pubname_ref pub
= &pubname_table
[i
];
7058 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7059 if (pub
->die
->die_mark
== 0)
7062 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pub
->die
->die_offset
,
7065 dw2_asm_output_nstring (pub
->name
, -1, "external name");
7068 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
7071 /* Add a new entry to .debug_aranges if appropriate. */
7074 add_arange (decl
, die
)
7078 if (! DECL_SECTION_NAME (decl
))
7081 if (arange_table_in_use
== arange_table_allocated
)
7083 arange_table_allocated
+= ARANGE_TABLE_INCREMENT
;
7084 arange_table
= ggc_realloc (arange_table
,
7085 (arange_table_allocated
7086 * sizeof (dw_die_ref
)));
7087 memset (arange_table
+ arange_table_in_use
, 0,
7088 ARANGE_TABLE_INCREMENT
* sizeof (dw_die_ref
));
7091 arange_table
[arange_table_in_use
++] = die
;
7094 /* Output the information that goes into the .debug_aranges table.
7095 Namely, define the beginning and ending address range of the
7096 text section generated for this compilation unit. */
7102 unsigned long aranges_length
= size_of_aranges ();
7104 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7105 dw2_asm_output_data (4, 0xffffffff,
7106 "Initial length escape value indicating 64-bit DWARF extension");
7107 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
7108 "Length of Address Ranges Info");
7109 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7110 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7111 "Offset of Compilation Unit Info");
7112 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
7113 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7115 /* We need to align to twice the pointer size here. */
7116 if (DWARF_ARANGES_PAD_SIZE
)
7118 /* Pad using a 2 byte words so that padding is correct for any
7120 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7121 2 * DWARF2_ADDR_SIZE
);
7122 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
7123 dw2_asm_output_data (2, 0, NULL
);
7126 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
7127 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
7128 text_section_label
, "Length");
7130 for (i
= 0; i
< arange_table_in_use
; i
++)
7132 dw_die_ref die
= arange_table
[i
];
7134 /* We shouldn't see aranges for DIEs outside of the main CU. */
7135 if (die
->die_mark
== 0)
7138 if (die
->die_tag
== DW_TAG_subprogram
)
7140 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, get_AT_low_pc (die
),
7142 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, get_AT_hi_pc (die
),
7143 get_AT_low_pc (die
), "Length");
7147 /* A static variable; extract the symbol from DW_AT_location.
7148 Note that this code isn't currently hit, as we only emit
7149 aranges for functions (jason 9/23/99). */
7150 dw_attr_ref a
= get_AT (die
, DW_AT_location
);
7151 dw_loc_descr_ref loc
;
7153 if (! a
|| AT_class (a
) != dw_val_class_loc
)
7157 if (loc
->dw_loc_opc
!= DW_OP_addr
)
7160 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
,
7161 loc
->dw_loc_oprnd1
.v
.val_addr
, "Address");
7162 dw2_asm_output_data (DWARF2_ADDR_SIZE
,
7163 get_AT_unsigned (die
, DW_AT_byte_size
),
7168 /* Output the terminator words. */
7169 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7170 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7173 /* Add a new entry to .debug_ranges. Return the offset at which it
7180 unsigned int in_use
= ranges_table_in_use
;
7182 if (in_use
== ranges_table_allocated
)
7184 ranges_table_allocated
+= RANGES_TABLE_INCREMENT
;
7185 ranges_table
= (dw_ranges_ref
)
7186 ggc_realloc (ranges_table
, (ranges_table_allocated
7187 * sizeof (struct dw_ranges_struct
)));
7188 memset (ranges_table
+ ranges_table_in_use
, 0,
7189 RANGES_TABLE_INCREMENT
* sizeof (struct dw_ranges_struct
));
7192 ranges_table
[in_use
].block_num
= (block
? BLOCK_NUMBER (block
) : 0);
7193 ranges_table_in_use
= in_use
+ 1;
7195 return in_use
* 2 * DWARF2_ADDR_SIZE
;
7202 static const char *const start_fmt
= "Offset 0x%x";
7203 const char *fmt
= start_fmt
;
7205 for (i
= 0; i
< ranges_table_in_use
; i
++)
7207 int block_num
= ranges_table
[i
].block_num
;
7211 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7212 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7214 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
7215 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
7217 /* If all code is in the text section, then the compilation
7218 unit base address defaults to DW_AT_low_pc, which is the
7219 base of the text section. */
7220 if (separate_line_info_table_in_use
== 0)
7222 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
7224 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7225 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
7226 text_section_label
, NULL
);
7229 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7230 compilation unit base address to zero, which allows us to
7231 use absolute addresses, and not worry about whether the
7232 target supports cross-section arithmetic. */
7235 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
7236 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7237 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
7244 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7245 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7251 /* Data structure containing information about input files. */
7254 char *path
; /* Complete file name. */
7255 char *fname
; /* File name part. */
7256 int length
; /* Length of entire string. */
7257 int file_idx
; /* Index in input file table. */
7258 int dir_idx
; /* Index in directory table. */
7261 /* Data structure containing information about directories with source
7265 char *path
; /* Path including directory name. */
7266 int length
; /* Path length. */
7267 int prefix
; /* Index of directory entry which is a prefix. */
7268 int count
; /* Number of files in this directory. */
7269 int dir_idx
; /* Index of directory used as base. */
7270 int used
; /* Used in the end? */
7273 /* Callback function for file_info comparison. We sort by looking at
7274 the directories in the path. */
7277 file_info_cmp (p1
, p2
)
7281 const struct file_info
*s1
= p1
;
7282 const struct file_info
*s2
= p2
;
7286 /* Take care of file names without directories. We need to make sure that
7287 we return consistent values to qsort since some will get confused if
7288 we return the same value when identical operands are passed in opposite
7289 orders. So if neither has a directory, return 0 and otherwise return
7290 1 or -1 depending on which one has the directory. */
7291 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
7292 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
7294 cp1
= (unsigned char *) s1
->path
;
7295 cp2
= (unsigned char *) s2
->path
;
7301 /* Reached the end of the first path? If so, handle like above. */
7302 if ((cp1
== (unsigned char *) s1
->fname
)
7303 || (cp2
== (unsigned char *) s2
->fname
))
7304 return ((cp2
== (unsigned char *) s2
->fname
)
7305 - (cp1
== (unsigned char *) s1
->fname
));
7307 /* Character of current path component the same? */
7308 else if (*cp1
!= *cp2
)
7313 /* Output the directory table and the file name table. We try to minimize
7314 the total amount of memory needed. A heuristic is used to avoid large
7315 slowdowns with many input files. */
7318 output_file_names ()
7320 struct file_info
*files
;
7321 struct dir_info
*dirs
;
7330 /* Handle the case where file_table is empty. */
7331 if (VARRAY_ACTIVE_SIZE (file_table
) <= 1)
7333 dw2_asm_output_data (1, 0, "End directory table");
7334 dw2_asm_output_data (1, 0, "End file name table");
7338 /* Allocate the various arrays we need. */
7339 files
= (struct file_info
*) alloca (VARRAY_ACTIVE_SIZE (file_table
)
7340 * sizeof (struct file_info
));
7341 dirs
= (struct dir_info
*) alloca (VARRAY_ACTIVE_SIZE (file_table
)
7342 * sizeof (struct dir_info
));
7344 /* Sort the file names. */
7345 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7349 /* Skip all leading "./". */
7350 f
= VARRAY_CHAR_PTR (file_table
, i
);
7351 while (f
[0] == '.' && f
[1] == '/')
7354 /* Create a new array entry. */
7356 files
[i
].length
= strlen (f
);
7357 files
[i
].file_idx
= i
;
7359 /* Search for the file name part. */
7360 f
= strrchr (f
, '/');
7361 files
[i
].fname
= f
== NULL
? files
[i
].path
: f
+ 1;
7364 qsort (files
+ 1, VARRAY_ACTIVE_SIZE (file_table
) - 1,
7365 sizeof (files
[0]), file_info_cmp
);
7367 /* Find all the different directories used. */
7368 dirs
[0].path
= files
[1].path
;
7369 dirs
[0].length
= files
[1].fname
- files
[1].path
;
7370 dirs
[0].prefix
= -1;
7372 dirs
[0].dir_idx
= 0;
7374 files
[1].dir_idx
= 0;
7377 for (i
= 2; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7378 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
7379 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
7380 dirs
[ndirs
- 1].length
) == 0)
7382 /* Same directory as last entry. */
7383 files
[i
].dir_idx
= ndirs
- 1;
7384 ++dirs
[ndirs
- 1].count
;
7390 /* This is a new directory. */
7391 dirs
[ndirs
].path
= files
[i
].path
;
7392 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
7393 dirs
[ndirs
].count
= 1;
7394 dirs
[ndirs
].dir_idx
= ndirs
;
7395 dirs
[ndirs
].used
= 0;
7396 files
[i
].dir_idx
= ndirs
;
7398 /* Search for a prefix. */
7399 dirs
[ndirs
].prefix
= -1;
7400 for (j
= 0; j
< ndirs
; j
++)
7401 if (dirs
[j
].length
< dirs
[ndirs
].length
7402 && dirs
[j
].length
> 1
7403 && (dirs
[ndirs
].prefix
== -1
7404 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
7405 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
7406 dirs
[ndirs
].prefix
= j
;
7411 /* Now to the actual work. We have to find a subset of the directories which
7412 allow expressing the file name using references to the directory table
7413 with the least amount of characters. We do not do an exhaustive search
7414 where we would have to check out every combination of every single
7415 possible prefix. Instead we use a heuristic which provides nearly optimal
7416 results in most cases and never is much off. */
7417 saved
= (int *) alloca (ndirs
* sizeof (int));
7418 savehere
= (int *) alloca (ndirs
* sizeof (int));
7420 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
7421 for (i
= 0; i
< ndirs
; i
++)
7426 /* We can always save some space for the current directory. But this
7427 does not mean it will be enough to justify adding the directory. */
7428 savehere
[i
] = dirs
[i
].length
;
7429 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
7431 for (j
= i
+ 1; j
< ndirs
; j
++)
7434 if (saved
[j
] < dirs
[i
].length
)
7436 /* Determine whether the dirs[i] path is a prefix of the
7441 while (k
!= -1 && k
!= (int) i
)
7446 /* Yes it is. We can possibly safe some memory but
7447 writing the filenames in dirs[j] relative to
7449 savehere
[j
] = dirs
[i
].length
;
7450 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
7455 /* Check whether we can safe enough to justify adding the dirs[i]
7457 if (total
> dirs
[i
].length
+ 1)
7459 /* It's worthwhile adding. */
7460 for (j
= i
; j
< ndirs
; j
++)
7461 if (savehere
[j
] > 0)
7463 /* Remember how much we saved for this directory so far. */
7464 saved
[j
] = savehere
[j
];
7466 /* Remember the prefix directory. */
7467 dirs
[j
].dir_idx
= i
;
7472 /* We have to emit them in the order they appear in the file_table array
7473 since the index is used in the debug info generation. To do this
7474 efficiently we generate a back-mapping of the indices first. */
7475 backmap
= (int *) alloca (VARRAY_ACTIVE_SIZE (file_table
) * sizeof (int));
7476 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7478 backmap
[files
[i
].file_idx
] = i
;
7480 /* Mark this directory as used. */
7481 dirs
[dirs
[files
[i
].dir_idx
].dir_idx
].used
= 1;
7484 /* That was it. We are ready to emit the information. First emit the
7485 directory name table. We have to make sure the first actually emitted
7486 directory name has index one; zero is reserved for the current working
7487 directory. Make sure we do not confuse these indices with the one for the
7488 constructed table (even though most of the time they are identical). */
7490 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
7491 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
7492 if (dirs
[i
].used
!= 0)
7494 dirs
[i
].used
= idx
++;
7495 dw2_asm_output_nstring (dirs
[i
].path
, dirs
[i
].length
- 1,
7496 "Directory Entry: 0x%x", dirs
[i
].used
);
7499 dw2_asm_output_data (1, 0, "End directory table");
7501 /* Correct the index for the current working directory entry if it
7503 if (idx_offset
== 0)
7506 /* Now write all the file names. */
7507 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7509 int file_idx
= backmap
[i
];
7510 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
7512 dw2_asm_output_nstring (files
[file_idx
].path
+ dirs
[dir_idx
].length
, -1,
7513 "File Entry: 0x%lx", (unsigned long) i
);
7515 /* Include directory index. */
7516 dw2_asm_output_data_uleb128 (dirs
[dir_idx
].used
, NULL
);
7518 /* Modification time. */
7519 dw2_asm_output_data_uleb128 (0, NULL
);
7521 /* File length in bytes. */
7522 dw2_asm_output_data_uleb128 (0, NULL
);
7525 dw2_asm_output_data (1, 0, "End file name table");
7529 /* Output the source line number correspondence information. This
7530 information goes into the .debug_line section. */
7535 char l1
[20], l2
[20], p1
[20], p2
[20];
7536 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7537 char prev_line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7540 unsigned long lt_index
;
7541 unsigned long current_line
;
7544 unsigned long current_file
;
7545 unsigned long function
;
7547 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, 0);
7548 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, 0);
7549 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, 0);
7550 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, 0);
7552 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7553 dw2_asm_output_data (4, 0xffffffff,
7554 "Initial length escape value indicating 64-bit DWARF extension");
7555 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
7556 "Length of Source Line Info");
7557 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
7559 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7560 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
7561 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
7563 /* Define the architecture-dependent minimum instruction length (in
7564 bytes). In this implementation of DWARF, this field is used for
7565 information purposes only. Since GCC generates assembly language,
7566 we have no a priori knowledge of how many instruction bytes are
7567 generated for each source line, and therefore can use only the
7568 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7569 commands. Accordingly, we fix this as `1', which is "correct
7570 enough" for all architectures, and don't let the target override. */
7571 dw2_asm_output_data (1, 1,
7572 "Minimum Instruction Length");
7574 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
7575 "Default is_stmt_start flag");
7576 dw2_asm_output_data (1, DWARF_LINE_BASE
,
7577 "Line Base Value (Special Opcodes)");
7578 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
7579 "Line Range Value (Special Opcodes)");
7580 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
7581 "Special Opcode Base");
7583 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
7587 case DW_LNS_advance_pc
:
7588 case DW_LNS_advance_line
:
7589 case DW_LNS_set_file
:
7590 case DW_LNS_set_column
:
7591 case DW_LNS_fixed_advance_pc
:
7599 dw2_asm_output_data (1, n_op_args
, "opcode: 0x%x has %d args",
7603 /* Write out the information about the files we use. */
7604 output_file_names ();
7605 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
7607 /* We used to set the address register to the first location in the text
7608 section here, but that didn't accomplish anything since we already
7609 have a line note for the opening brace of the first function. */
7611 /* Generate the line number to PC correspondence table, encoded as
7612 a series of state machine operations. */
7615 strcpy (prev_line_label
, text_section_label
);
7616 for (lt_index
= 1; lt_index
< line_info_table_in_use
; ++lt_index
)
7618 dw_line_info_ref line_info
= &line_info_table
[lt_index
];
7621 /* Disable this optimization for now; GDB wants to see two line notes
7622 at the beginning of a function so it can find the end of the
7625 /* Don't emit anything for redundant notes. Just updating the
7626 address doesn't accomplish anything, because we already assume
7627 that anything after the last address is this line. */
7628 if (line_info
->dw_line_num
== current_line
7629 && line_info
->dw_file_num
== current_file
)
7633 /* Emit debug info for the address of the current line.
7635 Unfortunately, we have little choice here currently, and must always
7636 use the most general form. GCC does not know the address delta
7637 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7638 attributes which will give an upper bound on the address range. We
7639 could perhaps use length attributes to determine when it is safe to
7640 use DW_LNS_fixed_advance_pc. */
7642 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, lt_index
);
7645 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7646 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7647 "DW_LNS_fixed_advance_pc");
7648 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7652 /* This can handle any delta. This takes
7653 4+DWARF2_ADDR_SIZE bytes. */
7654 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7655 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7656 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7657 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7660 strcpy (prev_line_label
, line_label
);
7662 /* Emit debug info for the source file of the current line, if
7663 different from the previous line. */
7664 if (line_info
->dw_file_num
!= current_file
)
7666 current_file
= line_info
->dw_file_num
;
7667 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7668 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7669 VARRAY_CHAR_PTR (file_table
,
7673 /* Emit debug info for the current line number, choosing the encoding
7674 that uses the least amount of space. */
7675 if (line_info
->dw_line_num
!= current_line
)
7677 line_offset
= line_info
->dw_line_num
- current_line
;
7678 line_delta
= line_offset
- DWARF_LINE_BASE
;
7679 current_line
= line_info
->dw_line_num
;
7680 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7681 /* This can handle deltas from -10 to 234, using the current
7682 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7684 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7685 "line %lu", current_line
);
7688 /* This can handle any delta. This takes at least 4 bytes,
7689 depending on the value being encoded. */
7690 dw2_asm_output_data (1, DW_LNS_advance_line
,
7691 "advance to line %lu", current_line
);
7692 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7693 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7697 /* We still need to start a new row, so output a copy insn. */
7698 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7701 /* Emit debug info for the address of the end of the function. */
7704 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7705 "DW_LNS_fixed_advance_pc");
7706 dw2_asm_output_delta (2, text_end_label
, prev_line_label
, NULL
);
7710 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7711 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7712 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7713 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_end_label
, NULL
);
7716 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7717 dw2_asm_output_data_uleb128 (1, NULL
);
7718 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7723 for (lt_index
= 0; lt_index
< separate_line_info_table_in_use
;)
7725 dw_separate_line_info_ref line_info
7726 = &separate_line_info_table
[lt_index
];
7729 /* Don't emit anything for redundant notes. */
7730 if (line_info
->dw_line_num
== current_line
7731 && line_info
->dw_file_num
== current_file
7732 && line_info
->function
== function
)
7736 /* Emit debug info for the address of the current line. If this is
7737 a new function, or the first line of a function, then we need
7738 to handle it differently. */
7739 ASM_GENERATE_INTERNAL_LABEL (line_label
, SEPARATE_LINE_CODE_LABEL
,
7741 if (function
!= line_info
->function
)
7743 function
= line_info
->function
;
7745 /* Set the address register to the first line in the function */
7746 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7747 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7748 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7749 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7753 /* ??? See the DW_LNS_advance_pc comment above. */
7756 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7757 "DW_LNS_fixed_advance_pc");
7758 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7762 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7763 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7764 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7765 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7769 strcpy (prev_line_label
, line_label
);
7771 /* Emit debug info for the source file of the current line, if
7772 different from the previous line. */
7773 if (line_info
->dw_file_num
!= current_file
)
7775 current_file
= line_info
->dw_file_num
;
7776 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7777 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7778 VARRAY_CHAR_PTR (file_table
,
7782 /* Emit debug info for the current line number, choosing the encoding
7783 that uses the least amount of space. */
7784 if (line_info
->dw_line_num
!= current_line
)
7786 line_offset
= line_info
->dw_line_num
- current_line
;
7787 line_delta
= line_offset
- DWARF_LINE_BASE
;
7788 current_line
= line_info
->dw_line_num
;
7789 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7790 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7791 "line %lu", current_line
);
7794 dw2_asm_output_data (1, DW_LNS_advance_line
,
7795 "advance to line %lu", current_line
);
7796 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7797 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7801 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7809 /* If we're done with a function, end its sequence. */
7810 if (lt_index
== separate_line_info_table_in_use
7811 || separate_line_info_table
[lt_index
].function
!= function
)
7816 /* Emit debug info for the address of the end of the function. */
7817 ASM_GENERATE_INTERNAL_LABEL (line_label
, FUNC_END_LABEL
, function
);
7820 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7821 "DW_LNS_fixed_advance_pc");
7822 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7826 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7827 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7828 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7829 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7832 /* Output the marker for the end of this sequence. */
7833 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7834 dw2_asm_output_data_uleb128 (1, NULL
);
7835 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7839 /* Output the marker for the end of the line number info. */
7840 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
7843 /* Given a pointer to a tree node for some base type, return a pointer to
7844 a DIE that describes the given type.
7846 This routine must only be called for GCC type nodes that correspond to
7847 Dwarf base (fundamental) types. */
7850 base_type_die (type
)
7853 dw_die_ref base_type_result
;
7854 const char *type_name
;
7855 enum dwarf_type encoding
;
7856 tree name
= TYPE_NAME (type
);
7858 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
7863 if (TREE_CODE (name
) == TYPE_DECL
)
7864 name
= DECL_NAME (name
);
7866 type_name
= IDENTIFIER_POINTER (name
);
7869 type_name
= "__unknown__";
7871 switch (TREE_CODE (type
))
7874 /* Carefully distinguish the C character types, without messing
7875 up if the language is not C. Note that we check only for the names
7876 that contain spaces; other names might occur by coincidence in other
7878 if (! (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
7879 && (type
== char_type_node
7880 || ! strcmp (type_name
, "signed char")
7881 || ! strcmp (type_name
, "unsigned char"))))
7883 if (TREE_UNSIGNED (type
))
7884 encoding
= DW_ATE_unsigned
;
7886 encoding
= DW_ATE_signed
;
7889 /* else fall through. */
7892 /* GNU Pascal/Ada CHAR type. Not used in C. */
7893 if (TREE_UNSIGNED (type
))
7894 encoding
= DW_ATE_unsigned_char
;
7896 encoding
= DW_ATE_signed_char
;
7900 encoding
= DW_ATE_float
;
7903 /* Dwarf2 doesn't know anything about complex ints, so use
7904 a user defined type for it. */
7906 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
7907 encoding
= DW_ATE_complex_float
;
7909 encoding
= DW_ATE_lo_user
;
7913 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7914 encoding
= DW_ATE_boolean
;
7918 /* No other TREE_CODEs are Dwarf fundamental types. */
7922 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die
, type
);
7923 if (demangle_name_func
)
7924 type_name
= (*demangle_name_func
) (type_name
);
7926 add_AT_string (base_type_result
, DW_AT_name
, type_name
);
7927 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
7928 int_size_in_bytes (type
));
7929 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
7931 return base_type_result
;
7934 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7935 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7936 a given type is generally the same as the given type, except that if the
7937 given type is a pointer or reference type, then the root type of the given
7938 type is the root type of the "basis" type for the pointer or reference
7939 type. (This definition of the "root" type is recursive.) Also, the root
7940 type of a `const' qualified type or a `volatile' qualified type is the
7941 root type of the given type without the qualifiers. */
7947 if (TREE_CODE (type
) == ERROR_MARK
)
7948 return error_mark_node
;
7950 switch (TREE_CODE (type
))
7953 return error_mark_node
;
7956 case REFERENCE_TYPE
:
7957 return type_main_variant (root_type (TREE_TYPE (type
)));
7960 return type_main_variant (type
);
7964 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7965 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7971 switch (TREE_CODE (type
))
7986 case QUAL_UNION_TYPE
:
7991 case REFERENCE_TYPE
:
8005 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8006 node, return the size in bits for the type if it is a constant, or else
8007 return the alignment for the type if the type's size is not constant, or
8008 else return BITS_PER_WORD if the type actually turns out to be an
8011 static inline unsigned HOST_WIDE_INT
8012 simple_type_size_in_bits (type
)
8016 if (TREE_CODE (type
) == ERROR_MARK
)
8017 return BITS_PER_WORD
;
8018 else if (TYPE_SIZE (type
) == NULL_TREE
)
8020 else if (host_integerp (TYPE_SIZE (type
), 1))
8021 return tree_low_cst (TYPE_SIZE (type
), 1);
8023 return TYPE_ALIGN (type
);
8026 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8027 entry that chains various modifiers in front of the given type. */
8030 modified_type_die (type
, is_const_type
, is_volatile_type
, context_die
)
8033 int is_volatile_type
;
8034 dw_die_ref context_die
;
8036 enum tree_code code
= TREE_CODE (type
);
8037 dw_die_ref mod_type_die
= NULL
;
8038 dw_die_ref sub_die
= NULL
;
8039 tree item_type
= NULL
;
8041 if (code
!= ERROR_MARK
)
8043 tree qualified_type
;
8045 /* See if we already have the appropriately qualified variant of
8048 = get_qualified_type (type
,
8049 ((is_const_type
? TYPE_QUAL_CONST
: 0)
8051 ? TYPE_QUAL_VOLATILE
: 0)));
8053 /* If we do, then we can just use its DIE, if it exists. */
8056 mod_type_die
= lookup_type_die (qualified_type
);
8058 return mod_type_die
;
8061 /* Handle C typedef types. */
8062 if (qualified_type
&& TYPE_NAME (qualified_type
)
8063 && TREE_CODE (TYPE_NAME (qualified_type
)) == TYPE_DECL
8064 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type
)))
8066 tree type_name
= TYPE_NAME (qualified_type
);
8067 tree dtype
= TREE_TYPE (type_name
);
8069 if (qualified_type
== dtype
)
8071 /* For a named type, use the typedef. */
8072 gen_type_die (qualified_type
, context_die
);
8073 mod_type_die
= lookup_type_die (qualified_type
);
8075 else if (is_const_type
< TYPE_READONLY (dtype
)
8076 || is_volatile_type
< TYPE_VOLATILE (dtype
))
8077 /* cv-unqualified version of named type. Just use the unnamed
8078 type to which it refers. */
8080 = modified_type_die (DECL_ORIGINAL_TYPE (type_name
),
8081 is_const_type
, is_volatile_type
,
8084 /* Else cv-qualified version of named type; fall through. */
8090 else if (is_const_type
)
8092 mod_type_die
= new_die (DW_TAG_const_type
, comp_unit_die
, type
);
8093 sub_die
= modified_type_die (type
, 0, is_volatile_type
, context_die
);
8095 else if (is_volatile_type
)
8097 mod_type_die
= new_die (DW_TAG_volatile_type
, comp_unit_die
, type
);
8098 sub_die
= modified_type_die (type
, 0, 0, context_die
);
8100 else if (code
== POINTER_TYPE
)
8102 mod_type_die
= new_die (DW_TAG_pointer_type
, comp_unit_die
, type
);
8103 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8104 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8106 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
8108 item_type
= TREE_TYPE (type
);
8110 else if (code
== REFERENCE_TYPE
)
8112 mod_type_die
= new_die (DW_TAG_reference_type
, comp_unit_die
, type
);
8113 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8114 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8116 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
8118 item_type
= TREE_TYPE (type
);
8120 else if (is_base_type (type
))
8121 mod_type_die
= base_type_die (type
);
8124 gen_type_die (type
, context_die
);
8126 /* We have to get the type_main_variant here (and pass that to the
8127 `lookup_type_die' routine) because the ..._TYPE node we have
8128 might simply be a *copy* of some original type node (where the
8129 copy was created to help us keep track of typedef names) and
8130 that copy might have a different TYPE_UID from the original
8132 if (TREE_CODE (type
) != VECTOR_TYPE
)
8133 mod_type_die
= lookup_type_die (type_main_variant (type
));
8135 /* Vectors have the debugging information in the type,
8136 not the main variant. */
8137 mod_type_die
= lookup_type_die (type
);
8138 if (mod_type_die
== NULL
)
8142 /* We want to equate the qualified type to the die below. */
8143 type
= qualified_type
;
8147 equate_type_number_to_die (type
, mod_type_die
);
8149 /* We must do this after the equate_type_number_to_die call, in case
8150 this is a recursive type. This ensures that the modified_type_die
8151 recursion will terminate even if the type is recursive. Recursive
8152 types are possible in Ada. */
8153 sub_die
= modified_type_die (item_type
,
8154 TYPE_READONLY (item_type
),
8155 TYPE_VOLATILE (item_type
),
8158 if (sub_die
!= NULL
)
8159 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
8161 return mod_type_die
;
8164 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8165 an enumerated type. */
8171 return TREE_CODE (type
) == ENUMERAL_TYPE
;
8174 /* Return the register number described by a given RTL node. */
8180 unsigned regno
= REGNO (rtl
);
8182 if (regno
>= FIRST_PSEUDO_REGISTER
)
8185 return DBX_REGISTER_NUMBER (regno
);
8188 /* Return a location descriptor that designates a machine register or
8189 zero if there is none. */
8191 static dw_loc_descr_ref
8192 reg_loc_descriptor (rtl
)
8198 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
8201 reg
= reg_number (rtl
);
8202 regs
= (*targetm
.dwarf_register_span
) (rtl
);
8204 if (HARD_REGNO_NREGS (reg
, GET_MODE (rtl
)) > 1
8206 return multiple_reg_loc_descriptor (rtl
, regs
);
8208 return one_reg_loc_descriptor (reg
);
8211 /* Return a location descriptor that designates a machine register for
8212 a given hard register number. */
8214 static dw_loc_descr_ref
8215 one_reg_loc_descriptor (regno
)
8219 return new_loc_descr (DW_OP_reg0
+ regno
, 0, 0);
8221 return new_loc_descr (DW_OP_regx
, regno
, 0);
8224 /* Given an RTL of a register, return a location descriptor that
8225 designates a value that spans more than one register. */
8227 static dw_loc_descr_ref
8228 multiple_reg_loc_descriptor (rtl
, regs
)
8233 dw_loc_descr_ref loc_result
= NULL
;
8235 reg
= reg_number (rtl
);
8236 nregs
= HARD_REGNO_NREGS (reg
, GET_MODE (rtl
));
8238 /* Simple, contiguous registers. */
8239 if (regs
== NULL_RTX
)
8241 size
= GET_MODE_SIZE (GET_MODE (rtl
)) / nregs
;
8248 t
= one_reg_loc_descriptor (reg
);
8249 add_loc_descr (&loc_result
, t
);
8250 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_piece
, size
, 0));
8256 /* Now onto stupid register sets in non contiguous locations. */
8258 if (GET_CODE (regs
) != PARALLEL
)
8261 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8264 for (i
= 0; i
< XVECLEN (regs
, 0); ++i
)
8268 t
= one_reg_loc_descriptor (REGNO (XVECEXP (regs
, 0, i
)));
8269 add_loc_descr (&loc_result
, t
);
8270 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8271 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_piece
, size
, 0));
8276 /* Return a location descriptor that designates a constant. */
8278 static dw_loc_descr_ref
8279 int_loc_descriptor (i
)
8282 enum dwarf_location_atom op
;
8284 /* Pick the smallest representation of a constant, rather than just
8285 defaulting to the LEB encoding. */
8289 op
= DW_OP_lit0
+ i
;
8292 else if (i
<= 0xffff)
8294 else if (HOST_BITS_PER_WIDE_INT
== 32
8304 else if (i
>= -0x8000)
8306 else if (HOST_BITS_PER_WIDE_INT
== 32
8307 || i
>= -0x80000000)
8313 return new_loc_descr (op
, i
, 0);
8316 /* Return a location descriptor that designates a base+offset location. */
8318 static dw_loc_descr_ref
8319 based_loc_descr (reg
, offset
)
8323 dw_loc_descr_ref loc_result
;
8324 /* For the "frame base", we use the frame pointer or stack pointer
8325 registers, since the RTL for local variables is relative to one of
8327 unsigned fp_reg
= DBX_REGISTER_NUMBER (frame_pointer_needed
8328 ? HARD_FRAME_POINTER_REGNUM
8329 : STACK_POINTER_REGNUM
);
8332 loc_result
= new_loc_descr (DW_OP_fbreg
, offset
, 0);
8334 loc_result
= new_loc_descr (DW_OP_breg0
+ reg
, offset
, 0);
8336 loc_result
= new_loc_descr (DW_OP_bregx
, reg
, offset
);
8341 /* Return true if this RTL expression describes a base+offset calculation. */
8347 return (GET_CODE (rtl
) == PLUS
8348 && ((GET_CODE (XEXP (rtl
, 0)) == REG
8349 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
8350 && GET_CODE (XEXP (rtl
, 1)) == CONST_INT
)));
8353 /* The following routine converts the RTL for a variable or parameter
8354 (resident in memory) into an equivalent Dwarf representation of a
8355 mechanism for getting the address of that same variable onto the top of a
8356 hypothetical "address evaluation" stack.
8358 When creating memory location descriptors, we are effectively transforming
8359 the RTL for a memory-resident object into its Dwarf postfix expression
8360 equivalent. This routine recursively descends an RTL tree, turning
8361 it into Dwarf postfix code as it goes.
8363 MODE is the mode of the memory reference, needed to handle some
8364 autoincrement addressing modes.
8366 Return 0 if we can't represent the location. */
8368 static dw_loc_descr_ref
8369 mem_loc_descriptor (rtl
, mode
)
8371 enum machine_mode mode
;
8373 dw_loc_descr_ref mem_loc_result
= NULL
;
8375 /* Note that for a dynamically sized array, the location we will generate a
8376 description of here will be the lowest numbered location which is
8377 actually within the array. That's *not* necessarily the same as the
8378 zeroth element of the array. */
8380 rtl
= (*targetm
.delegitimize_address
) (rtl
);
8382 switch (GET_CODE (rtl
))
8387 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8388 just fall into the SUBREG code. */
8390 /* ... fall through ... */
8393 /* The case of a subreg may arise when we have a local (register)
8394 variable or a formal (register) parameter which doesn't quite fill
8395 up an entire register. For now, just assume that it is
8396 legitimate to make the Dwarf info refer to the whole register which
8397 contains the given subreg. */
8398 rtl
= SUBREG_REG (rtl
);
8400 /* ... fall through ... */
8403 /* Whenever a register number forms a part of the description of the
8404 method for calculating the (dynamic) address of a memory resident
8405 object, DWARF rules require the register number be referred to as
8406 a "base register". This distinction is not based in any way upon
8407 what category of register the hardware believes the given register
8408 belongs to. This is strictly DWARF terminology we're dealing with
8409 here. Note that in cases where the location of a memory-resident
8410 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8411 OP_CONST (0)) the actual DWARF location descriptor that we generate
8412 may just be OP_BASEREG (basereg). This may look deceptively like
8413 the object in question was allocated to a register (rather than in
8414 memory) so DWARF consumers need to be aware of the subtle
8415 distinction between OP_REG and OP_BASEREG. */
8416 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
8417 mem_loc_result
= based_loc_descr (reg_number (rtl
), 0);
8421 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
8422 if (mem_loc_result
!= 0)
8423 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
8427 /* Some ports can transform a symbol ref into a label ref, because
8428 the symbol ref is too far away and has to be dumped into a constant
8432 /* Alternatively, the symbol in the constant pool might be referenced
8433 by a different symbol. */
8434 if (GET_CODE (rtl
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (rtl
))
8437 rtx tmp
= get_pool_constant_mark (rtl
, &marked
);
8439 if (GET_CODE (tmp
) == SYMBOL_REF
)
8442 if (CONSTANT_POOL_ADDRESS_P (tmp
))
8443 get_pool_constant_mark (tmp
, &marked
);
8448 /* If all references to this pool constant were optimized away,
8449 it was not output and thus we can't represent it.
8450 FIXME: might try to use DW_OP_const_value here, though
8451 DW_OP_piece complicates it. */
8456 mem_loc_result
= new_loc_descr (DW_OP_addr
, 0, 0);
8457 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8458 mem_loc_result
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8459 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
8463 /* Extract the PLUS expression nested inside and fall into
8465 rtl
= XEXP (rtl
, 1);
8470 /* Turn these into a PLUS expression and fall into the PLUS code
8472 rtl
= gen_rtx_PLUS (word_mode
, XEXP (rtl
, 0),
8473 GEN_INT (GET_CODE (rtl
) == PRE_INC
8474 ? GET_MODE_UNIT_SIZE (mode
)
8475 : -GET_MODE_UNIT_SIZE (mode
)));
8477 /* ... fall through ... */
8481 if (is_based_loc (rtl
))
8482 mem_loc_result
= based_loc_descr (reg_number (XEXP (rtl
, 0)),
8483 INTVAL (XEXP (rtl
, 1)));
8486 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
8487 if (mem_loc_result
== 0)
8490 if (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
8491 && INTVAL (XEXP (rtl
, 1)) >= 0)
8492 add_loc_descr (&mem_loc_result
,
8493 new_loc_descr (DW_OP_plus_uconst
,
8494 INTVAL (XEXP (rtl
, 1)), 0));
8497 add_loc_descr (&mem_loc_result
,
8498 mem_loc_descriptor (XEXP (rtl
, 1), mode
));
8499 add_loc_descr (&mem_loc_result
,
8500 new_loc_descr (DW_OP_plus
, 0, 0));
8507 /* If a pseudo-reg is optimized away, it is possible for it to
8508 be replaced with a MEM containing a multiply. */
8509 dw_loc_descr_ref op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
8510 dw_loc_descr_ref op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
);
8512 if (op0
== 0 || op1
== 0)
8515 mem_loc_result
= op0
;
8516 add_loc_descr (&mem_loc_result
, op1
);
8517 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_mul
, 0, 0));
8522 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
8526 /* If this is a MEM, return its address. Otherwise, we can't
8528 if (GET_CODE (XEXP (rtl
, 0)) == MEM
)
8529 return mem_loc_descriptor (XEXP (XEXP (rtl
, 0), 0), mode
);
8537 return mem_loc_result
;
8540 /* Return a descriptor that describes the concatenation of two locations.
8541 This is typically a complex variable. */
8543 static dw_loc_descr_ref
8544 concat_loc_descriptor (x0
, x1
)
8547 dw_loc_descr_ref cc_loc_result
= NULL
;
8548 dw_loc_descr_ref x0_ref
= loc_descriptor (x0
);
8549 dw_loc_descr_ref x1_ref
= loc_descriptor (x1
);
8551 if (x0_ref
== 0 || x1_ref
== 0)
8554 cc_loc_result
= x0_ref
;
8555 add_loc_descr (&cc_loc_result
,
8556 new_loc_descr (DW_OP_piece
,
8557 GET_MODE_SIZE (GET_MODE (x0
)), 0));
8559 add_loc_descr (&cc_loc_result
, x1_ref
);
8560 add_loc_descr (&cc_loc_result
,
8561 new_loc_descr (DW_OP_piece
,
8562 GET_MODE_SIZE (GET_MODE (x1
)), 0));
8564 return cc_loc_result
;
8567 /* Output a proper Dwarf location descriptor for a variable or parameter
8568 which is either allocated in a register or in a memory location. For a
8569 register, we just generate an OP_REG and the register number. For a
8570 memory location we provide a Dwarf postfix expression describing how to
8571 generate the (dynamic) address of the object onto the address stack.
8573 If we don't know how to describe it, return 0. */
8575 static dw_loc_descr_ref
8576 loc_descriptor (rtl
)
8579 dw_loc_descr_ref loc_result
= NULL
;
8581 switch (GET_CODE (rtl
))
8584 /* The case of a subreg may arise when we have a local (register)
8585 variable or a formal (register) parameter which doesn't quite fill
8586 up an entire register. For now, just assume that it is
8587 legitimate to make the Dwarf info refer to the whole register which
8588 contains the given subreg. */
8589 rtl
= SUBREG_REG (rtl
);
8591 /* ... fall through ... */
8594 loc_result
= reg_loc_descriptor (rtl
);
8598 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
8602 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1));
8612 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8613 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8614 looking for an address. Otherwise, we return a value. If we can't make a
8615 descriptor, return 0. */
8617 static dw_loc_descr_ref
8618 loc_descriptor_from_tree (loc
, addressp
)
8622 dw_loc_descr_ref ret
, ret1
;
8624 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (loc
));
8625 enum dwarf_location_atom op
;
8627 /* ??? Most of the time we do not take proper care for sign/zero
8628 extending the values properly. Hopefully this won't be a real
8631 switch (TREE_CODE (loc
))
8636 case WITH_RECORD_EXPR
:
8637 case PLACEHOLDER_EXPR
:
8638 /* This case involves extracting fields from an object to determine the
8639 position of other fields. We don't try to encode this here. The
8640 only user of this is Ada, which encodes the needed information using
8641 the names of types. */
8648 /* We can support this only if we can look through conversions and
8649 find an INDIRECT_EXPR. */
8650 for (loc
= TREE_OPERAND (loc
, 0);
8651 TREE_CODE (loc
) == CONVERT_EXPR
|| TREE_CODE (loc
) == NOP_EXPR
8652 || TREE_CODE (loc
) == NON_LVALUE_EXPR
8653 || TREE_CODE (loc
) == VIEW_CONVERT_EXPR
8654 || TREE_CODE (loc
) == SAVE_EXPR
;
8655 loc
= TREE_OPERAND (loc
, 0))
8658 return (TREE_CODE (loc
) == INDIRECT_REF
8659 ? loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), addressp
)
8663 if (DECL_THREAD_LOCAL (loc
))
8667 #ifndef ASM_OUTPUT_DWARF_DTPREL
8668 /* If this is not defined, we have no way to emit the data. */
8672 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8673 look up addresses of objects in the current module. */
8674 if (DECL_EXTERNAL (loc
))
8677 rtl
= rtl_for_decl_location (loc
);
8678 if (rtl
== NULL_RTX
)
8681 if (GET_CODE (rtl
) != MEM
)
8683 rtl
= XEXP (rtl
, 0);
8684 if (! CONSTANT_P (rtl
))
8687 ret
= new_loc_descr (INTERNAL_DW_OP_tls_addr
, 0, 0);
8688 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8689 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8691 ret1
= new_loc_descr (DW_OP_GNU_push_tls_address
, 0, 0);
8692 add_loc_descr (&ret
, ret1
);
8701 rtx rtl
= rtl_for_decl_location (loc
);
8703 if (rtl
== NULL_RTX
)
8705 else if (CONSTANT_P (rtl
))
8707 ret
= new_loc_descr (DW_OP_addr
, 0, 0);
8708 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8709 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8714 enum machine_mode mode
= GET_MODE (rtl
);
8716 if (GET_CODE (rtl
) == MEM
)
8719 rtl
= XEXP (rtl
, 0);
8722 ret
= mem_loc_descriptor (rtl
, mode
);
8728 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8733 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), addressp
);
8737 case NON_LVALUE_EXPR
:
8738 case VIEW_CONVERT_EXPR
:
8740 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), addressp
);
8745 case ARRAY_RANGE_REF
:
8748 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
8749 enum machine_mode mode
;
8752 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
8753 &unsignedp
, &volatilep
);
8758 ret
= loc_descriptor_from_tree (obj
, 1);
8760 || bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
8763 if (offset
!= NULL_TREE
)
8765 /* Variable offset. */
8766 add_loc_descr (&ret
, loc_descriptor_from_tree (offset
, 0));
8767 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8773 bytepos
= bitpos
/ BITS_PER_UNIT
;
8775 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
8776 else if (bytepos
< 0)
8778 add_loc_descr (&ret
, int_loc_descriptor (bytepos
));
8779 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8785 if (host_integerp (loc
, 0))
8786 ret
= int_loc_descriptor (tree_low_cst (loc
, 0));
8791 case TRUTH_AND_EXPR
:
8792 case TRUTH_ANDIF_EXPR
:
8797 case TRUTH_XOR_EXPR
:
8803 case TRUTH_ORIF_EXPR
:
8808 case TRUNC_DIV_EXPR
:
8816 case TRUNC_MOD_EXPR
:
8829 op
= (unsignedp
? DW_OP_shr
: DW_OP_shra
);
8833 if (TREE_CODE (TREE_OPERAND (loc
, 1)) == INTEGER_CST
8834 && host_integerp (TREE_OPERAND (loc
, 1), 0))
8836 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8840 add_loc_descr (&ret
,
8841 new_loc_descr (DW_OP_plus_uconst
,
8842 tree_low_cst (TREE_OPERAND (loc
, 1),
8852 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8859 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8866 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8873 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8888 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8889 ret1
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
8890 if (ret
== 0 || ret1
== 0)
8893 add_loc_descr (&ret
, ret1
);
8894 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
8897 case TRUTH_NOT_EXPR
:
8911 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8915 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
8919 loc
= build (COND_EXPR
, TREE_TYPE (loc
),
8920 build (LT_EXPR
, integer_type_node
,
8921 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
8922 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
8924 /* ... fall through ... */
8928 dw_loc_descr_ref lhs
8929 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
8930 dw_loc_descr_ref rhs
8931 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 2), 0);
8932 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
8934 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8935 if (ret
== 0 || lhs
== 0 || rhs
== 0)
8938 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
8939 add_loc_descr (&ret
, bra_node
);
8941 add_loc_descr (&ret
, rhs
);
8942 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
8943 add_loc_descr (&ret
, jump_node
);
8945 add_loc_descr (&ret
, lhs
);
8946 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
8947 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
8949 /* ??? Need a node to point the skip at. Use a nop. */
8950 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
8951 add_loc_descr (&ret
, tmp
);
8952 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
8953 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
8961 /* Show if we can't fill the request for an address. */
8962 if (addressp
&& indirect_p
== 0)
8965 /* If we've got an address and don't want one, dereference. */
8966 if (!addressp
&& indirect_p
> 0)
8968 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
8970 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
8972 else if (size
== DWARF2_ADDR_SIZE
)
8975 op
= DW_OP_deref_size
;
8977 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
8983 /* Given a value, round it up to the lowest multiple of `boundary'
8984 which is not less than the value itself. */
8986 static inline HOST_WIDE_INT
8987 ceiling (value
, boundary
)
8988 HOST_WIDE_INT value
;
8989 unsigned int boundary
;
8991 return (((value
+ boundary
- 1) / boundary
) * boundary
);
8994 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8995 pointer to the declared type for the relevant field variable, or return
8996 `integer_type_node' if the given node turns out to be an
9005 if (TREE_CODE (decl
) == ERROR_MARK
)
9006 return integer_type_node
;
9008 type
= DECL_BIT_FIELD_TYPE (decl
);
9009 if (type
== NULL_TREE
)
9010 type
= TREE_TYPE (decl
);
9015 /* Given a pointer to a tree node, return the alignment in bits for
9016 it, or else return BITS_PER_WORD if the node actually turns out to
9017 be an ERROR_MARK node. */
9019 static inline unsigned
9020 simple_type_align_in_bits (type
)
9023 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
9026 static inline unsigned
9027 simple_decl_align_in_bits (decl
)
9030 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
9033 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9034 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9035 or return 0 if we are unable to determine what that offset is, either
9036 because the argument turns out to be a pointer to an ERROR_MARK node, or
9037 because the offset is actually variable. (We can't handle the latter case
9040 static HOST_WIDE_INT
9041 field_byte_offset (decl
)
9044 unsigned int type_align_in_bits
;
9045 unsigned int decl_align_in_bits
;
9046 unsigned HOST_WIDE_INT type_size_in_bits
;
9047 HOST_WIDE_INT object_offset_in_bits
;
9049 tree field_size_tree
;
9050 HOST_WIDE_INT bitpos_int
;
9051 HOST_WIDE_INT deepest_bitpos
;
9052 unsigned HOST_WIDE_INT field_size_in_bits
;
9054 if (TREE_CODE (decl
) == ERROR_MARK
)
9056 else if (TREE_CODE (decl
) != FIELD_DECL
)
9059 type
= field_type (decl
);
9060 field_size_tree
= DECL_SIZE (decl
);
9062 /* The size could be unspecified if there was an error, or for
9063 a flexible array member. */
9064 if (! field_size_tree
)
9065 field_size_tree
= bitsize_zero_node
;
9067 /* We cannot yet cope with fields whose positions are variable, so
9068 for now, when we see such things, we simply return 0. Someday, we may
9069 be able to handle such cases, but it will be damn difficult. */
9070 if (! host_integerp (bit_position (decl
), 0))
9073 bitpos_int
= int_bit_position (decl
);
9075 /* If we don't know the size of the field, pretend it's a full word. */
9076 if (host_integerp (field_size_tree
, 1))
9077 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
9079 field_size_in_bits
= BITS_PER_WORD
;
9081 type_size_in_bits
= simple_type_size_in_bits (type
);
9082 type_align_in_bits
= simple_type_align_in_bits (type
);
9083 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
9085 /* The GCC front-end doesn't make any attempt to keep track of the starting
9086 bit offset (relative to the start of the containing structure type) of the
9087 hypothetical "containing object" for a bit-field. Thus, when computing
9088 the byte offset value for the start of the "containing object" of a
9089 bit-field, we must deduce this information on our own. This can be rather
9090 tricky to do in some cases. For example, handling the following structure
9091 type definition when compiling for an i386/i486 target (which only aligns
9092 long long's to 32-bit boundaries) can be very tricky:
9094 struct S { int field1; long long field2:31; };
9096 Fortunately, there is a simple rule-of-thumb which can be used in such
9097 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9098 structure shown above. It decides to do this based upon one simple rule
9099 for bit-field allocation. GCC allocates each "containing object" for each
9100 bit-field at the first (i.e. lowest addressed) legitimate alignment
9101 boundary (based upon the required minimum alignment for the declared type
9102 of the field) which it can possibly use, subject to the condition that
9103 there is still enough available space remaining in the containing object
9104 (when allocated at the selected point) to fully accommodate all of the
9105 bits of the bit-field itself.
9107 This simple rule makes it obvious why GCC allocates 8 bytes for each
9108 object of the structure type shown above. When looking for a place to
9109 allocate the "containing object" for `field2', the compiler simply tries
9110 to allocate a 64-bit "containing object" at each successive 32-bit
9111 boundary (starting at zero) until it finds a place to allocate that 64-
9112 bit field such that at least 31 contiguous (and previously unallocated)
9113 bits remain within that selected 64 bit field. (As it turns out, for the
9114 example above, the compiler finds it is OK to allocate the "containing
9115 object" 64-bit field at bit-offset zero within the structure type.)
9117 Here we attempt to work backwards from the limited set of facts we're
9118 given, and we try to deduce from those facts, where GCC must have believed
9119 that the containing object started (within the structure type). The value
9120 we deduce is then used (by the callers of this routine) to generate
9121 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9122 and, in the case of DW_AT_location, regular fields as well). */
9124 /* Figure out the bit-distance from the start of the structure to the
9125 "deepest" bit of the bit-field. */
9126 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
9128 /* This is the tricky part. Use some fancy footwork to deduce where the
9129 lowest addressed bit of the containing object must be. */
9130 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9132 /* Round up to type_align by default. This works best for bitfields. */
9133 object_offset_in_bits
+= type_align_in_bits
- 1;
9134 object_offset_in_bits
/= type_align_in_bits
;
9135 object_offset_in_bits
*= type_align_in_bits
;
9137 if (object_offset_in_bits
> bitpos_int
)
9139 /* Sigh, the decl must be packed. */
9140 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9142 /* Round up to decl_align instead. */
9143 object_offset_in_bits
+= decl_align_in_bits
- 1;
9144 object_offset_in_bits
/= decl_align_in_bits
;
9145 object_offset_in_bits
*= decl_align_in_bits
;
9148 return object_offset_in_bits
/ BITS_PER_UNIT
;
9151 /* The following routines define various Dwarf attributes and any data
9152 associated with them. */
9154 /* Add a location description attribute value to a DIE.
9156 This emits location attributes suitable for whole variables and
9157 whole parameters. Note that the location attributes for struct fields are
9158 generated by the routine `data_member_location_attribute' below. */
9161 add_AT_location_description (die
, attr_kind
, descr
)
9163 enum dwarf_attribute attr_kind
;
9164 dw_loc_descr_ref descr
;
9167 add_AT_loc (die
, attr_kind
, descr
);
9170 /* Attach the specialized form of location attribute used for data members of
9171 struct and union types. In the special case of a FIELD_DECL node which
9172 represents a bit-field, the "offset" part of this special location
9173 descriptor must indicate the distance in bytes from the lowest-addressed
9174 byte of the containing struct or union type to the lowest-addressed byte of
9175 the "containing object" for the bit-field. (See the `field_byte_offset'
9178 For any given bit-field, the "containing object" is a hypothetical object
9179 (of some integral or enum type) within which the given bit-field lives. The
9180 type of this hypothetical "containing object" is always the same as the
9181 declared type of the individual bit-field itself (for GCC anyway... the
9182 DWARF spec doesn't actually mandate this). Note that it is the size (in
9183 bytes) of the hypothetical "containing object" which will be given in the
9184 DW_AT_byte_size attribute for this bit-field. (See the
9185 `byte_size_attribute' function below.) It is also used when calculating the
9186 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9190 add_data_member_location_attribute (die
, decl
)
9195 dw_loc_descr_ref loc_descr
= 0;
9197 if (TREE_CODE (decl
) == TREE_VEC
)
9199 /* We're working on the TAG_inheritance for a base class. */
9200 if (TREE_VIA_VIRTUAL (decl
) && is_cxx ())
9202 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9203 aren't at a fixed offset from all (sub)objects of the same
9204 type. We need to extract the appropriate offset from our
9205 vtable. The following dwarf expression means
9207 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9209 This is specific to the V3 ABI, of course. */
9211 dw_loc_descr_ref tmp
;
9213 /* Make a copy of the object address. */
9214 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
9215 add_loc_descr (&loc_descr
, tmp
);
9217 /* Extract the vtable address. */
9218 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9219 add_loc_descr (&loc_descr
, tmp
);
9221 /* Calculate the address of the offset. */
9222 offset
= tree_low_cst (BINFO_VPTR_FIELD (decl
), 0);
9226 tmp
= int_loc_descriptor (-offset
);
9227 add_loc_descr (&loc_descr
, tmp
);
9228 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
9229 add_loc_descr (&loc_descr
, tmp
);
9231 /* Extract the offset. */
9232 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9233 add_loc_descr (&loc_descr
, tmp
);
9235 /* Add it to the object address. */
9236 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
9237 add_loc_descr (&loc_descr
, tmp
);
9240 offset
= tree_low_cst (BINFO_OFFSET (decl
), 0);
9243 offset
= field_byte_offset (decl
);
9247 enum dwarf_location_atom op
;
9249 /* The DWARF2 standard says that we should assume that the structure
9250 address is already on the stack, so we can specify a structure field
9251 address by using DW_OP_plus_uconst. */
9253 #ifdef MIPS_DEBUGGING_INFO
9254 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9255 operator correctly. It works only if we leave the offset on the
9259 op
= DW_OP_plus_uconst
;
9262 loc_descr
= new_loc_descr (op
, offset
, 0);
9265 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
9268 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9269 does not have a "location" either in memory or in a register. These
9270 things can arise in GNU C when a constant is passed as an actual parameter
9271 to an inlined function. They can also arise in C++ where declared
9272 constants do not necessarily get memory "homes". */
9275 add_const_value_attribute (die
, rtl
)
9279 switch (GET_CODE (rtl
))
9282 /* Note that a CONST_INT rtx could represent either an integer
9283 or a floating-point constant. A CONST_INT is used whenever
9284 the constant will fit into a single word. In all such
9285 cases, the original mode of the constant value is wiped
9286 out, and the CONST_INT rtx is assigned VOIDmode. */
9288 HOST_WIDE_INT val
= INTVAL (rtl
);
9290 /* ??? We really should be using HOST_WIDE_INT throughout. */
9291 if (val
< 0 && (long) val
== val
)
9292 add_AT_int (die
, DW_AT_const_value
, (long) val
);
9293 else if ((unsigned long) val
== (unsigned HOST_WIDE_INT
) val
)
9294 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned long) val
);
9297 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9298 add_AT_long_long (die
, DW_AT_const_value
,
9299 val
>> HOST_BITS_PER_LONG
, val
);
9308 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9309 floating-point constant. A CONST_DOUBLE is used whenever the
9310 constant requires more than one word in order to be adequately
9311 represented. We output CONST_DOUBLEs as blocks. */
9313 enum machine_mode mode
= GET_MODE (rtl
);
9315 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
9317 unsigned length
= GET_MODE_SIZE (mode
) / 4;
9318 long *array
= (long *) ggc_alloc (sizeof (long) * length
);
9321 REAL_VALUE_FROM_CONST_DOUBLE (rv
, rtl
);
9325 REAL_VALUE_TO_TARGET_SINGLE (rv
, array
[0]);
9329 REAL_VALUE_TO_TARGET_DOUBLE (rv
, array
);
9334 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, array
);
9341 add_AT_float (die
, DW_AT_const_value
, length
, array
);
9345 /* ??? We really should be using HOST_WIDE_INT throughout. */
9346 if (HOST_BITS_PER_LONG
!= HOST_BITS_PER_WIDE_INT
)
9349 add_AT_long_long (die
, DW_AT_const_value
,
9350 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
9356 add_AT_string (die
, DW_AT_const_value
, XSTR (rtl
, 0));
9362 add_AT_addr (die
, DW_AT_const_value
, rtl
);
9363 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
9367 /* In cases where an inlined instance of an inline function is passed
9368 the address of an `auto' variable (which is local to the caller) we
9369 can get a situation where the DECL_RTL of the artificial local
9370 variable (for the inlining) which acts as a stand-in for the
9371 corresponding formal parameter (of the inline function) will look
9372 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9373 exactly a compile-time constant expression, but it isn't the address
9374 of the (artificial) local variable either. Rather, it represents the
9375 *value* which the artificial local variable always has during its
9376 lifetime. We currently have no way to represent such quasi-constant
9377 values in Dwarf, so for now we just punt and generate nothing. */
9381 /* No other kinds of rtx should be possible here. */
9388 rtl_for_decl_location (decl
)
9393 /* Here we have to decide where we are going to say the parameter "lives"
9394 (as far as the debugger is concerned). We only have a couple of
9395 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9397 DECL_RTL normally indicates where the parameter lives during most of the
9398 activation of the function. If optimization is enabled however, this
9399 could be either NULL or else a pseudo-reg. Both of those cases indicate
9400 that the parameter doesn't really live anywhere (as far as the code
9401 generation parts of GCC are concerned) during most of the function's
9402 activation. That will happen (for example) if the parameter is never
9403 referenced within the function.
9405 We could just generate a location descriptor here for all non-NULL
9406 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9407 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9408 where DECL_RTL is NULL or is a pseudo-reg.
9410 Note however that we can only get away with using DECL_INCOMING_RTL as
9411 a backup substitute for DECL_RTL in certain limited cases. In cases
9412 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9413 we can be sure that the parameter was passed using the same type as it is
9414 declared to have within the function, and that its DECL_INCOMING_RTL
9415 points us to a place where a value of that type is passed.
9417 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9418 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9419 because in these cases DECL_INCOMING_RTL points us to a value of some
9420 type which is *different* from the type of the parameter itself. Thus,
9421 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9422 such cases, the debugger would end up (for example) trying to fetch a
9423 `float' from a place which actually contains the first part of a
9424 `double'. That would lead to really incorrect and confusing
9425 output at debug-time.
9427 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9428 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9429 are a couple of exceptions however. On little-endian machines we can
9430 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9431 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9432 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9433 when (on a little-endian machine) a non-prototyped function has a
9434 parameter declared to be of type `short' or `char'. In such cases,
9435 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9436 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9437 passed `int' value. If the debugger then uses that address to fetch
9438 a `short' or a `char' (on a little-endian machine) the result will be
9439 the correct data, so we allow for such exceptional cases below.
9441 Note that our goal here is to describe the place where the given formal
9442 parameter lives during most of the function's activation (i.e. between the
9443 end of the prologue and the start of the epilogue). We'll do that as best
9444 as we can. Note however that if the given formal parameter is modified
9445 sometime during the execution of the function, then a stack backtrace (at
9446 debug-time) will show the function as having been called with the *new*
9447 value rather than the value which was originally passed in. This happens
9448 rarely enough that it is not a major problem, but it *is* a problem, and
9451 A future version of dwarf2out.c may generate two additional attributes for
9452 any given DW_TAG_formal_parameter DIE which will describe the "passed
9453 type" and the "passed location" for the given formal parameter in addition
9454 to the attributes we now generate to indicate the "declared type" and the
9455 "active location" for each parameter. This additional set of attributes
9456 could be used by debuggers for stack backtraces. Separately, note that
9457 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9458 This happens (for example) for inlined-instances of inline function formal
9459 parameters which are never referenced. This really shouldn't be
9460 happening. All PARM_DECL nodes should get valid non-NULL
9461 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9462 values for inlined instances of inline function parameters, so when we see
9463 such cases, we are just out-of-luck for the time being (until integrate.c
9466 /* Use DECL_RTL as the "location" unless we find something better. */
9467 rtl
= DECL_RTL_IF_SET (decl
);
9469 /* When generating abstract instances, ignore everything except
9470 constants, symbols living in memory, and symbols living in
9472 if (! reload_completed
)
9475 && (CONSTANT_P (rtl
)
9476 || (GET_CODE (rtl
) == MEM
9477 && CONSTANT_P (XEXP (rtl
, 0)))
9478 || (GET_CODE (rtl
) == REG
9479 && TREE_CODE (decl
) == VAR_DECL
9480 && TREE_STATIC (decl
))))
9482 rtl
= (*targetm
.delegitimize_address
) (rtl
);
9487 else if (TREE_CODE (decl
) == PARM_DECL
)
9489 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
9491 tree declared_type
= type_main_variant (TREE_TYPE (decl
));
9492 tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
9494 /* This decl represents a formal parameter which was optimized out.
9495 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9496 all cases where (rtl == NULL_RTX) just below. */
9497 if (declared_type
== passed_type
)
9498 rtl
= DECL_INCOMING_RTL (decl
);
9499 else if (! BYTES_BIG_ENDIAN
9500 && TREE_CODE (declared_type
) == INTEGER_TYPE
9501 && (GET_MODE_SIZE (TYPE_MODE (declared_type
))
9502 <= GET_MODE_SIZE (TYPE_MODE (passed_type
))))
9503 rtl
= DECL_INCOMING_RTL (decl
);
9506 /* If the parm was passed in registers, but lives on the stack, then
9507 make a big endian correction if the mode of the type of the
9508 parameter is not the same as the mode of the rtl. */
9509 /* ??? This is the same series of checks that are made in dbxout.c before
9510 we reach the big endian correction code there. It isn't clear if all
9511 of these checks are necessary here, but keeping them all is the safe
9513 else if (GET_CODE (rtl
) == MEM
9514 && XEXP (rtl
, 0) != const0_rtx
9515 && ! CONSTANT_P (XEXP (rtl
, 0))
9516 /* Not passed in memory. */
9517 && GET_CODE (DECL_INCOMING_RTL (decl
)) != MEM
9518 /* Not passed by invisible reference. */
9519 && (GET_CODE (XEXP (rtl
, 0)) != REG
9520 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
9521 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
9522 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9523 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
9526 /* Big endian correction check. */
9528 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
9529 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
9532 int offset
= (UNITS_PER_WORD
9533 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
9535 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
9536 plus_constant (XEXP (rtl
, 0), offset
));
9540 if (rtl
!= NULL_RTX
)
9542 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
9543 #ifdef LEAF_REG_REMAP
9544 if (current_function_uses_only_leaf_regs
)
9545 leaf_renumber_regs_insn (rtl
);
9549 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9550 and will have been substituted directly into all expressions that use it.
9551 C does not have such a concept, but C++ and other languages do. */
9552 else if (TREE_CODE (decl
) == VAR_DECL
&& DECL_INITIAL (decl
))
9554 /* If a variable is initialized with a string constant without embedded
9555 zeros, build CONST_STRING. */
9556 if (TREE_CODE (DECL_INITIAL (decl
)) == STRING_CST
9557 && TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
)
9559 tree arrtype
= TREE_TYPE (decl
);
9560 tree enttype
= TREE_TYPE (arrtype
);
9561 tree domain
= TYPE_DOMAIN (arrtype
);
9562 tree init
= DECL_INITIAL (decl
);
9563 enum machine_mode mode
= TYPE_MODE (enttype
);
9565 if (GET_MODE_CLASS (mode
) == MODE_INT
&& GET_MODE_SIZE (mode
) == 1
9567 && integer_zerop (TYPE_MIN_VALUE (domain
))
9568 && compare_tree_int (TYPE_MAX_VALUE (domain
),
9569 TREE_STRING_LENGTH (init
) - 1) == 0
9570 && ((size_t) TREE_STRING_LENGTH (init
)
9571 == strlen (TREE_STRING_POINTER (init
)) + 1))
9572 rtl
= gen_rtx_CONST_STRING (VOIDmode
, TREE_STRING_POINTER (init
));
9574 /* If the initializer is something that we know will expand into an
9575 immediate RTL constant, expand it now. Expanding anything else
9576 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9577 else if (TREE_CODE (DECL_INITIAL (decl
)) == INTEGER_CST
9578 || TREE_CODE (DECL_INITIAL (decl
)) == REAL_CST
)
9580 rtl
= expand_expr (DECL_INITIAL (decl
), NULL_RTX
, VOIDmode
,
9581 EXPAND_INITIALIZER
);
9582 /* If expand_expr returns a MEM, it wasn't immediate. */
9583 if (rtl
&& GET_CODE (rtl
) == MEM
)
9589 rtl
= (*targetm
.delegitimize_address
) (rtl
);
9591 /* If we don't look past the constant pool, we risk emitting a
9592 reference to a constant pool entry that isn't referenced from
9593 code, and thus is not emitted. */
9595 rtl
= avoid_constant_pool_reference (rtl
);
9600 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9601 data attribute for a variable or a parameter. We generate the
9602 DW_AT_const_value attribute only in those cases where the given variable
9603 or parameter does not have a true "location" either in memory or in a
9604 register. This can happen (for example) when a constant is passed as an
9605 actual argument in a call to an inline function. (It's possible that
9606 these things can crop up in other ways also.) Note that one type of
9607 constant value which can be passed into an inlined function is a constant
9608 pointer. This can happen for example if an actual argument in an inlined
9609 function call evaluates to a compile-time constant address. */
9612 add_location_or_const_value_attribute (die
, decl
)
9617 dw_loc_descr_ref descr
;
9619 if (TREE_CODE (decl
) == ERROR_MARK
)
9621 else if (TREE_CODE (decl
) != VAR_DECL
&& TREE_CODE (decl
) != PARM_DECL
)
9624 rtl
= rtl_for_decl_location (decl
);
9625 if (rtl
== NULL_RTX
)
9628 switch (GET_CODE (rtl
))
9631 /* The address of a variable that was optimized away;
9632 don't emit anything. */
9642 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9643 add_const_value_attribute (die
, rtl
);
9647 if (TREE_CODE (decl
) == VAR_DECL
&& DECL_THREAD_LOCAL (decl
))
9649 /* Need loc_descriptor_from_tree since that's where we know
9650 how to handle TLS variables. Want the object's address
9651 since the top-level DW_AT_location assumes such. See
9652 the confusion in loc_descriptor for reference. */
9653 descr
= loc_descriptor_from_tree (decl
, 1);
9660 descr
= loc_descriptor (rtl
);
9662 add_AT_location_description (die
, DW_AT_location
, descr
);
9670 /* If we don't have a copy of this variable in memory for some reason (such
9671 as a C++ member constant that doesn't have an out-of-line definition),
9672 we should tell the debugger about the constant value. */
9675 tree_add_const_value_attribute (var_die
, decl
)
9679 tree init
= DECL_INITIAL (decl
);
9680 tree type
= TREE_TYPE (decl
);
9682 if (TREE_READONLY (decl
) && ! TREE_THIS_VOLATILE (decl
) && init
9683 && initializer_constant_valid_p (init
, type
) == null_pointer_node
)
9688 switch (TREE_CODE (type
))
9691 if (host_integerp (init
, 0))
9692 add_AT_unsigned (var_die
, DW_AT_const_value
,
9693 tree_low_cst (init
, 0));
9695 add_AT_long_long (var_die
, DW_AT_const_value
,
9696 TREE_INT_CST_HIGH (init
),
9697 TREE_INT_CST_LOW (init
));
9704 /* Generate an DW_AT_name attribute given some string value to be included as
9705 the value of the attribute. */
9708 add_name_attribute (die
, name_string
)
9710 const char *name_string
;
9712 if (name_string
!= NULL
&& *name_string
!= 0)
9714 if (demangle_name_func
)
9715 name_string
= (*demangle_name_func
) (name_string
);
9717 add_AT_string (die
, DW_AT_name
, name_string
);
9721 /* Generate an DW_AT_comp_dir attribute for DIE. */
9724 add_comp_dir_attribute (die
)
9727 const char *wd
= getpwd ();
9729 add_AT_string (die
, DW_AT_comp_dir
, wd
);
9732 /* Given a tree node describing an array bound (either lower or upper) output
9733 a representation for that bound. */
9736 add_bound_info (subrange_die
, bound_attr
, bound
)
9737 dw_die_ref subrange_die
;
9738 enum dwarf_attribute bound_attr
;
9741 switch (TREE_CODE (bound
))
9746 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9748 if (! host_integerp (bound
, 0)
9749 || (bound_attr
== DW_AT_lower_bound
9750 && (((is_c_family () || is_java ()) && integer_zerop (bound
))
9751 || (is_fortran () && integer_onep (bound
)))))
9752 /* use the default */
9755 add_AT_unsigned (subrange_die
, bound_attr
, tree_low_cst (bound
, 0));
9760 case NON_LVALUE_EXPR
:
9761 case VIEW_CONVERT_EXPR
:
9762 add_bound_info (subrange_die
, bound_attr
, TREE_OPERAND (bound
, 0));
9766 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9767 access the upper bound values may be bogus. If they refer to a
9768 register, they may only describe how to get at these values at the
9769 points in the generated code right after they have just been
9770 computed. Worse yet, in the typical case, the upper bound values
9771 will not even *be* computed in the optimized code (though the
9772 number of elements will), so these SAVE_EXPRs are entirely
9773 bogus. In order to compensate for this fact, we check here to see
9774 if optimization is enabled, and if so, we don't add an attribute
9775 for the (unknown and unknowable) upper bound. This should not
9776 cause too much trouble for existing (stupid?) debuggers because
9777 they have to deal with empty upper bounds location descriptions
9778 anyway in order to be able to deal with incomplete array types.
9779 Of course an intelligent debugger (GDB?) should be able to
9780 comprehend that a missing upper bound specification in an array
9781 type used for a storage class `auto' local array variable
9782 indicates that the upper bound is both unknown (at compile- time)
9783 and unknowable (at run-time) due to optimization.
9785 We assume that a MEM rtx is safe because gcc wouldn't put the
9786 value there unless it was going to be used repeatedly in the
9787 function, i.e. for cleanups. */
9788 if (SAVE_EXPR_RTL (bound
)
9789 && (! optimize
|| GET_CODE (SAVE_EXPR_RTL (bound
)) == MEM
))
9791 dw_die_ref ctx
= lookup_decl_die (current_function_decl
);
9792 dw_die_ref decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
9793 rtx loc
= SAVE_EXPR_RTL (bound
);
9795 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9796 it references an outer function's frame. */
9797 if (GET_CODE (loc
) == MEM
)
9799 rtx new_addr
= fix_lexical_addr (XEXP (loc
, 0), bound
);
9801 if (XEXP (loc
, 0) != new_addr
)
9802 loc
= gen_rtx_MEM (GET_MODE (loc
), new_addr
);
9805 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
9806 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
9807 add_AT_location_description (decl_die
, DW_AT_location
,
9808 loc_descriptor (loc
));
9809 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9812 /* Else leave out the attribute. */
9818 dw_die_ref decl_die
= lookup_decl_die (bound
);
9820 /* ??? Can this happen, or should the variable have been bound
9821 first? Probably it can, since I imagine that we try to create
9822 the types of parameters in the order in which they exist in
9823 the list, and won't have created a forward reference to a
9825 if (decl_die
!= NULL
)
9826 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9832 /* Otherwise try to create a stack operation procedure to
9833 evaluate the value of the array bound. */
9835 dw_die_ref ctx
, decl_die
;
9836 dw_loc_descr_ref loc
;
9838 loc
= loc_descriptor_from_tree (bound
, 0);
9842 if (current_function_decl
== 0)
9843 ctx
= comp_unit_die
;
9845 ctx
= lookup_decl_die (current_function_decl
);
9847 /* If we weren't able to find a context, it's most likely the case
9848 that we are processing the return type of the function. So
9849 make a SAVE_EXPR to point to it and have the limbo DIE code
9850 find the proper die. The save_expr function doesn't always
9851 make a SAVE_EXPR, so do it ourselves. */
9853 bound
= build (SAVE_EXPR
, TREE_TYPE (bound
), bound
,
9854 current_function_decl
, NULL_TREE
);
9856 decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
9857 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
9858 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
9859 add_AT_loc (decl_die
, DW_AT_location
, loc
);
9861 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9867 /* Note that the block of subscript information for an array type also
9868 includes information about the element type of type given array type. */
9871 add_subscript_info (type_die
, type
)
9872 dw_die_ref type_die
;
9875 #ifndef MIPS_DEBUGGING_INFO
9876 unsigned dimension_number
;
9879 dw_die_ref subrange_die
;
9881 /* The GNU compilers represent multidimensional array types as sequences of
9882 one dimensional array types whose element types are themselves array
9883 types. Here we squish that down, so that each multidimensional array
9884 type gets only one array_type DIE in the Dwarf debugging info. The draft
9885 Dwarf specification say that we are allowed to do this kind of
9886 compression in C (because there is no difference between an array or
9887 arrays and a multidimensional array in C) but for other source languages
9888 (e.g. Ada) we probably shouldn't do this. */
9890 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9891 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9892 We work around this by disabling this feature. See also
9893 gen_array_type_die. */
9894 #ifndef MIPS_DEBUGGING_INFO
9895 for (dimension_number
= 0;
9896 TREE_CODE (type
) == ARRAY_TYPE
;
9897 type
= TREE_TYPE (type
), dimension_number
++)
9900 tree domain
= TYPE_DOMAIN (type
);
9902 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9903 and (in GNU C only) variable bounds. Handle all three forms
9905 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
9908 /* We have an array type with specified bounds. */
9909 lower
= TYPE_MIN_VALUE (domain
);
9910 upper
= TYPE_MAX_VALUE (domain
);
9912 /* define the index type. */
9913 if (TREE_TYPE (domain
))
9915 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9916 TREE_TYPE field. We can't emit debug info for this
9917 because it is an unnamed integral type. */
9918 if (TREE_CODE (domain
) == INTEGER_TYPE
9919 && TYPE_NAME (domain
) == NULL_TREE
9920 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
9921 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
9924 add_type_attribute (subrange_die
, TREE_TYPE (domain
), 0, 0,
9928 /* ??? If upper is NULL, the array has unspecified length,
9929 but it does have a lower bound. This happens with Fortran
9931 Since the debugger is definitely going to need to know N
9932 to produce useful results, go ahead and output the lower
9933 bound solo, and hope the debugger can cope. */
9935 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
);
9937 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
);
9940 /* Otherwise we have an array type with an unspecified length. The
9941 DWARF-2 spec does not say how to handle this; let's just leave out the
9947 add_byte_size_attribute (die
, tree_node
)
9953 switch (TREE_CODE (tree_node
))
9961 case QUAL_UNION_TYPE
:
9962 size
= int_size_in_bytes (tree_node
);
9965 /* For a data member of a struct or union, the DW_AT_byte_size is
9966 generally given as the number of bytes normally allocated for an
9967 object of the *declared* type of the member itself. This is true
9968 even for bit-fields. */
9969 size
= simple_type_size_in_bits (field_type (tree_node
)) / BITS_PER_UNIT
;
9975 /* Note that `size' might be -1 when we get to this point. If it is, that
9976 indicates that the byte size of the entity in question is variable. We
9977 have no good way of expressing this fact in Dwarf at the present time,
9978 so just let the -1 pass on through. */
9979 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
9982 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9983 which specifies the distance in bits from the highest order bit of the
9984 "containing object" for the bit-field to the highest order bit of the
9987 For any given bit-field, the "containing object" is a hypothetical object
9988 (of some integral or enum type) within which the given bit-field lives. The
9989 type of this hypothetical "containing object" is always the same as the
9990 declared type of the individual bit-field itself. The determination of the
9991 exact location of the "containing object" for a bit-field is rather
9992 complicated. It's handled by the `field_byte_offset' function (above).
9994 Note that it is the size (in bytes) of the hypothetical "containing object"
9995 which will be given in the DW_AT_byte_size attribute for this bit-field.
9996 (See `byte_size_attribute' above). */
9999 add_bit_offset_attribute (die
, decl
)
10003 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
10004 tree type
= DECL_BIT_FIELD_TYPE (decl
);
10005 HOST_WIDE_INT bitpos_int
;
10006 HOST_WIDE_INT highest_order_object_bit_offset
;
10007 HOST_WIDE_INT highest_order_field_bit_offset
;
10008 HOST_WIDE_INT
unsigned bit_offset
;
10010 /* Must be a field and a bit field. */
10012 || TREE_CODE (decl
) != FIELD_DECL
)
10015 /* We can't yet handle bit-fields whose offsets are variable, so if we
10016 encounter such things, just return without generating any attribute
10017 whatsoever. Likewise for variable or too large size. */
10018 if (! host_integerp (bit_position (decl
), 0)
10019 || ! host_integerp (DECL_SIZE (decl
), 1))
10022 bitpos_int
= int_bit_position (decl
);
10024 /* Note that the bit offset is always the distance (in bits) from the
10025 highest-order bit of the "containing object" to the highest-order bit of
10026 the bit-field itself. Since the "high-order end" of any object or field
10027 is different on big-endian and little-endian machines, the computation
10028 below must take account of these differences. */
10029 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
10030 highest_order_field_bit_offset
= bitpos_int
;
10032 if (! BYTES_BIG_ENDIAN
)
10034 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 0);
10035 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
10039 = (! BYTES_BIG_ENDIAN
10040 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
10041 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
10043 add_AT_unsigned (die
, DW_AT_bit_offset
, bit_offset
);
10046 /* For a FIELD_DECL node which represents a bit field, output an attribute
10047 which specifies the length in bits of the given field. */
10050 add_bit_size_attribute (die
, decl
)
10054 /* Must be a field and a bit field. */
10055 if (TREE_CODE (decl
) != FIELD_DECL
10056 || ! DECL_BIT_FIELD_TYPE (decl
))
10059 if (host_integerp (DECL_SIZE (decl
), 1))
10060 add_AT_unsigned (die
, DW_AT_bit_size
, tree_low_cst (DECL_SIZE (decl
), 1));
10063 /* If the compiled language is ANSI C, then add a 'prototyped'
10064 attribute, if arg types are given for the parameters of a function. */
10067 add_prototyped_attribute (die
, func_type
)
10071 if (get_AT_unsigned (comp_unit_die
, DW_AT_language
) == DW_LANG_C89
10072 && TYPE_ARG_TYPES (func_type
) != NULL
)
10073 add_AT_flag (die
, DW_AT_prototyped
, 1);
10076 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10077 by looking in either the type declaration or object declaration
10081 add_abstract_origin_attribute (die
, origin
)
10085 dw_die_ref origin_die
= NULL
;
10087 if (TREE_CODE (origin
) != FUNCTION_DECL
)
10089 /* We may have gotten separated from the block for the inlined
10090 function, if we're in an exception handler or some such; make
10091 sure that the abstract function has been written out.
10093 Doing this for nested functions is wrong, however; functions are
10094 distinct units, and our context might not even be inline. */
10098 fn
= TYPE_STUB_DECL (fn
);
10100 fn
= decl_function_context (fn
);
10102 dwarf2out_abstract_function (fn
);
10105 if (DECL_P (origin
))
10106 origin_die
= lookup_decl_die (origin
);
10107 else if (TYPE_P (origin
))
10108 origin_die
= lookup_type_die (origin
);
10110 if (origin_die
== NULL
)
10113 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
10116 /* We do not currently support the pure_virtual attribute. */
10119 add_pure_or_virtual_attribute (die
, func_decl
)
10123 if (DECL_VINDEX (func_decl
))
10125 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
10127 if (host_integerp (DECL_VINDEX (func_decl
), 0))
10128 add_AT_loc (die
, DW_AT_vtable_elem_location
,
10129 new_loc_descr (DW_OP_constu
,
10130 tree_low_cst (DECL_VINDEX (func_decl
), 0),
10133 /* GNU extension: Record what type this method came from originally. */
10134 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10135 add_AT_die_ref (die
, DW_AT_containing_type
,
10136 lookup_type_die (DECL_CONTEXT (func_decl
)));
10140 /* Add source coordinate attributes for the given decl. */
10143 add_src_coords_attributes (die
, decl
)
10147 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
10149 add_AT_unsigned (die
, DW_AT_decl_file
, file_index
);
10150 add_AT_unsigned (die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
10153 /* Add an DW_AT_name attribute and source coordinate attribute for the
10154 given decl, but only if it actually has a name. */
10157 add_name_and_src_coords_attributes (die
, decl
)
10163 decl_name
= DECL_NAME (decl
);
10164 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
10166 add_name_attribute (die
, dwarf2_name (decl
, 0));
10167 if (! DECL_ARTIFICIAL (decl
))
10168 add_src_coords_attributes (die
, decl
);
10170 if ((TREE_CODE (decl
) == FUNCTION_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
10171 && TREE_PUBLIC (decl
)
10172 && DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
10173 && !DECL_ABSTRACT (decl
))
10174 add_AT_string (die
, DW_AT_MIPS_linkage_name
,
10175 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
10178 #ifdef VMS_DEBUGGING_INFO
10179 /* Get the function's name, as described by its RTL. This may be different
10180 from the DECL_NAME name used in the source file. */
10181 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
10183 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
10184 XEXP (DECL_RTL (decl
), 0));
10185 VARRAY_PUSH_RTX (used_rtx_varray
, XEXP (DECL_RTL (decl
), 0));
10190 /* Push a new declaration scope. */
10193 push_decl_scope (scope
)
10196 VARRAY_PUSH_TREE (decl_scope_table
, scope
);
10199 /* Pop a declaration scope. */
10204 if (VARRAY_ACTIVE_SIZE (decl_scope_table
) <= 0)
10207 VARRAY_POP (decl_scope_table
);
10210 /* Return the DIE for the scope that immediately contains this type.
10211 Non-named types get global scope. Named types nested in other
10212 types get their containing scope if it's open, or global scope
10213 otherwise. All other types (i.e. function-local named types) get
10214 the current active scope. */
10217 scope_die_for (t
, context_die
)
10219 dw_die_ref context_die
;
10221 dw_die_ref scope_die
= NULL
;
10222 tree containing_scope
;
10225 /* Non-types always go in the current scope. */
10229 containing_scope
= TYPE_CONTEXT (t
);
10231 /* Ignore namespaces for the moment. */
10232 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
10233 containing_scope
= NULL_TREE
;
10235 /* Ignore function type "scopes" from the C frontend. They mean that
10236 a tagged type is local to a parmlist of a function declarator, but
10237 that isn't useful to DWARF. */
10238 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
10239 containing_scope
= NULL_TREE
;
10241 if (containing_scope
== NULL_TREE
)
10242 scope_die
= comp_unit_die
;
10243 else if (TYPE_P (containing_scope
))
10245 /* For types, we can just look up the appropriate DIE. But
10246 first we check to see if we're in the middle of emitting it
10247 so we know where the new DIE should go. */
10248 for (i
= VARRAY_ACTIVE_SIZE (decl_scope_table
) - 1; i
>= 0; --i
)
10249 if (VARRAY_TREE (decl_scope_table
, i
) == containing_scope
)
10254 if (debug_info_level
> DINFO_LEVEL_TERSE
10255 && !TREE_ASM_WRITTEN (containing_scope
))
10258 /* If none of the current dies are suitable, we get file scope. */
10259 scope_die
= comp_unit_die
;
10262 scope_die
= lookup_type_die (containing_scope
);
10265 scope_die
= context_die
;
10270 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10273 local_scope_p (context_die
)
10274 dw_die_ref context_die
;
10276 for (; context_die
; context_die
= context_die
->die_parent
)
10277 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
10278 || context_die
->die_tag
== DW_TAG_subprogram
)
10284 /* Returns nonzero if CONTEXT_DIE is a class. */
10287 class_scope_p (context_die
)
10288 dw_die_ref context_die
;
10290 return (context_die
10291 && (context_die
->die_tag
== DW_TAG_structure_type
10292 || context_die
->die_tag
== DW_TAG_union_type
));
10295 /* Many forms of DIEs require a "type description" attribute. This
10296 routine locates the proper "type descriptor" die for the type given
10297 by 'type', and adds an DW_AT_type attribute below the given die. */
10300 add_type_attribute (object_die
, type
, decl_const
, decl_volatile
, context_die
)
10301 dw_die_ref object_die
;
10305 dw_die_ref context_die
;
10307 enum tree_code code
= TREE_CODE (type
);
10308 dw_die_ref type_die
= NULL
;
10310 /* ??? If this type is an unnamed subrange type of an integral or
10311 floating-point type, use the inner type. This is because we have no
10312 support for unnamed types in base_type_die. This can happen if this is
10313 an Ada subrange type. Correct solution is emit a subrange type die. */
10314 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
10315 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
10316 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
10318 if (code
== ERROR_MARK
10319 /* Handle a special case. For functions whose return type is void, we
10320 generate *no* type attribute. (Note that no object may have type
10321 `void', so this only applies to function return types). */
10322 || code
== VOID_TYPE
)
10325 type_die
= modified_type_die (type
,
10326 decl_const
|| TYPE_READONLY (type
),
10327 decl_volatile
|| TYPE_VOLATILE (type
),
10330 if (type_die
!= NULL
)
10331 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
10334 /* Given a tree pointer to a struct, class, union, or enum type node, return
10335 a pointer to the (string) tag name for the given type, or zero if the type
10336 was declared without a tag. */
10338 static const char *
10342 const char *name
= 0;
10344 if (TYPE_NAME (type
) != 0)
10348 /* Find the IDENTIFIER_NODE for the type name. */
10349 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
10350 t
= TYPE_NAME (type
);
10352 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10353 a TYPE_DECL node, regardless of whether or not a `typedef' was
10355 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
10356 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
10357 t
= DECL_NAME (TYPE_NAME (type
));
10359 /* Now get the name as a string, or invent one. */
10361 name
= IDENTIFIER_POINTER (t
);
10364 return (name
== 0 || *name
== '\0') ? 0 : name
;
10367 /* Return the type associated with a data member, make a special check
10368 for bit field types. */
10371 member_declared_type (member
)
10374 return (DECL_BIT_FIELD_TYPE (member
)
10375 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
10378 /* Get the decl's label, as described by its RTL. This may be different
10379 from the DECL_NAME name used in the source file. */
10382 static const char *
10383 decl_start_label (decl
)
10387 const char *fnname
;
10389 x
= DECL_RTL (decl
);
10390 if (GET_CODE (x
) != MEM
)
10394 if (GET_CODE (x
) != SYMBOL_REF
)
10397 fnname
= XSTR (x
, 0);
10402 /* These routines generate the internal representation of the DIE's for
10403 the compilation unit. Debugging information is collected by walking
10404 the declaration trees passed in from dwarf2out_decl(). */
10407 gen_array_type_die (type
, context_die
)
10409 dw_die_ref context_die
;
10411 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
10412 dw_die_ref array_die
;
10415 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10416 the inner array type comes before the outer array type. Thus we must
10417 call gen_type_die before we call new_die. See below also. */
10418 #ifdef MIPS_DEBUGGING_INFO
10419 gen_type_die (TREE_TYPE (type
), context_die
);
10422 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
10423 add_name_attribute (array_die
, type_tag (type
));
10424 equate_type_number_to_die (type
, array_die
);
10426 if (TREE_CODE (type
) == VECTOR_TYPE
)
10428 /* The frontend feeds us a representation for the vector as a struct
10429 containing an array. Pull out the array type. */
10430 type
= TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type
)));
10431 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
10435 /* We default the array ordering. SDB will probably do
10436 the right things even if DW_AT_ordering is not present. It's not even
10437 an issue until we start to get into multidimensional arrays anyway. If
10438 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10439 then we'll have to put the DW_AT_ordering attribute back in. (But if
10440 and when we find out that we need to put these in, we will only do so
10441 for multidimensional arrays. */
10442 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
10445 #ifdef MIPS_DEBUGGING_INFO
10446 /* The SGI compilers handle arrays of unknown bound by setting
10447 AT_declaration and not emitting any subrange DIEs. */
10448 if (! TYPE_DOMAIN (type
))
10449 add_AT_unsigned (array_die
, DW_AT_declaration
, 1);
10452 add_subscript_info (array_die
, type
);
10454 /* Add representation of the type of the elements of this array type. */
10455 element_type
= TREE_TYPE (type
);
10457 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10458 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10459 We work around this by disabling this feature. See also
10460 add_subscript_info. */
10461 #ifndef MIPS_DEBUGGING_INFO
10462 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
10463 element_type
= TREE_TYPE (element_type
);
10465 gen_type_die (element_type
, context_die
);
10468 add_type_attribute (array_die
, element_type
, 0, 0, context_die
);
10472 gen_set_type_die (type
, context_die
)
10474 dw_die_ref context_die
;
10476 dw_die_ref type_die
10477 = new_die (DW_TAG_set_type
, scope_die_for (type
, context_die
), type
);
10479 equate_type_number_to_die (type
, type_die
);
10480 add_type_attribute (type_die
, TREE_TYPE (type
), 0, 0, context_die
);
10485 gen_entry_point_die (decl
, context_die
)
10487 dw_die_ref context_die
;
10489 tree origin
= decl_ultimate_origin (decl
);
10490 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
10492 if (origin
!= NULL
)
10493 add_abstract_origin_attribute (decl_die
, origin
);
10496 add_name_and_src_coords_attributes (decl_die
, decl
);
10497 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
10498 0, 0, context_die
);
10501 if (DECL_ABSTRACT (decl
))
10502 equate_decl_number_to_die (decl
, decl_die
);
10504 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
10508 /* Walk through the list of incomplete types again, trying once more to
10509 emit full debugging info for them. */
10512 retry_incomplete_types ()
10516 for (i
= VARRAY_ACTIVE_SIZE (incomplete_types
) - 1; i
>= 0; i
--)
10517 gen_type_die (VARRAY_TREE (incomplete_types
, i
), comp_unit_die
);
10520 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10523 gen_inlined_enumeration_type_die (type
, context_die
)
10525 dw_die_ref context_die
;
10527 dw_die_ref type_die
= new_die (DW_TAG_enumeration_type
, context_die
, type
);
10529 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10530 be incomplete and such types are not marked. */
10531 add_abstract_origin_attribute (type_die
, type
);
10534 /* Generate a DIE to represent an inlined instance of a structure type. */
10537 gen_inlined_structure_type_die (type
, context_die
)
10539 dw_die_ref context_die
;
10541 dw_die_ref type_die
= new_die (DW_TAG_structure_type
, context_die
, type
);
10543 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10544 be incomplete and such types are not marked. */
10545 add_abstract_origin_attribute (type_die
, type
);
10548 /* Generate a DIE to represent an inlined instance of a union type. */
10551 gen_inlined_union_type_die (type
, context_die
)
10553 dw_die_ref context_die
;
10555 dw_die_ref type_die
= new_die (DW_TAG_union_type
, context_die
, type
);
10557 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10558 be incomplete and such types are not marked. */
10559 add_abstract_origin_attribute (type_die
, type
);
10562 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10563 include all of the information about the enumeration values also. Each
10564 enumerated type name/value is listed as a child of the enumerated type
10568 gen_enumeration_type_die (type
, context_die
)
10570 dw_die_ref context_die
;
10572 dw_die_ref type_die
= lookup_type_die (type
);
10574 if (type_die
== NULL
)
10576 type_die
= new_die (DW_TAG_enumeration_type
,
10577 scope_die_for (type
, context_die
), type
);
10578 equate_type_number_to_die (type
, type_die
);
10579 add_name_attribute (type_die
, type_tag (type
));
10581 else if (! TYPE_SIZE (type
))
10584 remove_AT (type_die
, DW_AT_declaration
);
10586 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10587 given enum type is incomplete, do not generate the DW_AT_byte_size
10588 attribute or the DW_AT_element_list attribute. */
10589 if (TYPE_SIZE (type
))
10593 TREE_ASM_WRITTEN (type
) = 1;
10594 add_byte_size_attribute (type_die
, type
);
10595 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
10596 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
10598 /* If the first reference to this type was as the return type of an
10599 inline function, then it may not have a parent. Fix this now. */
10600 if (type_die
->die_parent
== NULL
)
10601 add_child_die (scope_die_for (type
, context_die
), type_die
);
10603 for (link
= TYPE_FIELDS (type
);
10604 link
!= NULL
; link
= TREE_CHAIN (link
))
10606 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
10608 add_name_attribute (enum_die
,
10609 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
10611 if (host_integerp (TREE_VALUE (link
), 0))
10613 if (tree_int_cst_sgn (TREE_VALUE (link
)) < 0)
10614 add_AT_int (enum_die
, DW_AT_const_value
,
10615 tree_low_cst (TREE_VALUE (link
), 0));
10617 add_AT_unsigned (enum_die
, DW_AT_const_value
,
10618 tree_low_cst (TREE_VALUE (link
), 0));
10623 add_AT_flag (type_die
, DW_AT_declaration
, 1);
10626 /* Generate a DIE to represent either a real live formal parameter decl or to
10627 represent just the type of some formal parameter position in some function
10630 Note that this routine is a bit unusual because its argument may be a
10631 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10632 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10633 node. If it's the former then this function is being called to output a
10634 DIE to represent a formal parameter object (or some inlining thereof). If
10635 it's the latter, then this function is only being called to output a
10636 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10637 argument type of some subprogram type. */
10640 gen_formal_parameter_die (node
, context_die
)
10642 dw_die_ref context_die
;
10644 dw_die_ref parm_die
10645 = new_die (DW_TAG_formal_parameter
, context_die
, node
);
10648 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
10651 origin
= decl_ultimate_origin (node
);
10652 if (origin
!= NULL
)
10653 add_abstract_origin_attribute (parm_die
, origin
);
10656 add_name_and_src_coords_attributes (parm_die
, node
);
10657 add_type_attribute (parm_die
, TREE_TYPE (node
),
10658 TREE_READONLY (node
),
10659 TREE_THIS_VOLATILE (node
),
10661 if (DECL_ARTIFICIAL (node
))
10662 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
10665 equate_decl_number_to_die (node
, parm_die
);
10666 if (! DECL_ABSTRACT (node
))
10667 add_location_or_const_value_attribute (parm_die
, node
);
10672 /* We were called with some kind of a ..._TYPE node. */
10673 add_type_attribute (parm_die
, node
, 0, 0, context_die
);
10683 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10684 at the end of an (ANSI prototyped) formal parameters list. */
10687 gen_unspecified_parameters_die (decl_or_type
, context_die
)
10689 dw_die_ref context_die
;
10691 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
10694 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10695 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10696 parameters as specified in some function type specification (except for
10697 those which appear as part of a function *definition*). */
10700 gen_formal_types_die (function_or_method_type
, context_die
)
10701 tree function_or_method_type
;
10702 dw_die_ref context_die
;
10705 tree formal_type
= NULL
;
10706 tree first_parm_type
;
10709 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
10711 arg
= DECL_ARGUMENTS (function_or_method_type
);
10712 function_or_method_type
= TREE_TYPE (function_or_method_type
);
10717 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
10719 /* Make our first pass over the list of formal parameter types and output a
10720 DW_TAG_formal_parameter DIE for each one. */
10721 for (link
= first_parm_type
; link
; )
10723 dw_die_ref parm_die
;
10725 formal_type
= TREE_VALUE (link
);
10726 if (formal_type
== void_type_node
)
10729 /* Output a (nameless) DIE to represent the formal parameter itself. */
10730 parm_die
= gen_formal_parameter_die (formal_type
, context_die
);
10731 if ((TREE_CODE (function_or_method_type
) == METHOD_TYPE
10732 && link
== first_parm_type
)
10733 || (arg
&& DECL_ARTIFICIAL (arg
)))
10734 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
10736 link
= TREE_CHAIN (link
);
10738 arg
= TREE_CHAIN (arg
);
10741 /* If this function type has an ellipsis, add a
10742 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10743 if (formal_type
!= void_type_node
)
10744 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
10746 /* Make our second (and final) pass over the list of formal parameter types
10747 and output DIEs to represent those types (as necessary). */
10748 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
10749 link
&& TREE_VALUE (link
);
10750 link
= TREE_CHAIN (link
))
10751 gen_type_die (TREE_VALUE (link
), context_die
);
10754 /* We want to generate the DIE for TYPE so that we can generate the
10755 die for MEMBER, which has been defined; we will need to refer back
10756 to the member declaration nested within TYPE. If we're trying to
10757 generate minimal debug info for TYPE, processing TYPE won't do the
10758 trick; we need to attach the member declaration by hand. */
10761 gen_type_die_for_member (type
, member
, context_die
)
10763 dw_die_ref context_die
;
10765 gen_type_die (type
, context_die
);
10767 /* If we're trying to avoid duplicate debug info, we may not have
10768 emitted the member decl for this function. Emit it now. */
10769 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
10770 && ! lookup_decl_die (member
))
10772 if (decl_ultimate_origin (member
))
10775 push_decl_scope (type
);
10776 if (TREE_CODE (member
) == FUNCTION_DECL
)
10777 gen_subprogram_die (member
, lookup_type_die (type
));
10779 gen_variable_die (member
, lookup_type_die (type
));
10785 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10786 may later generate inlined and/or out-of-line instances of. */
10789 dwarf2out_abstract_function (decl
)
10792 dw_die_ref old_die
;
10795 int was_abstract
= DECL_ABSTRACT (decl
);
10797 /* Make sure we have the actual abstract inline, not a clone. */
10798 decl
= DECL_ORIGIN (decl
);
10800 old_die
= lookup_decl_die (decl
);
10801 if (old_die
&& get_AT_unsigned (old_die
, DW_AT_inline
))
10802 /* We've already generated the abstract instance. */
10805 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10806 we don't get confused by DECL_ABSTRACT. */
10807 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10809 context
= decl_class_context (decl
);
10811 gen_type_die_for_member
10812 (context
, decl
, decl_function_context (decl
) ? NULL
: comp_unit_die
);
10815 /* Pretend we've just finished compiling this function. */
10816 save_fn
= current_function_decl
;
10817 current_function_decl
= decl
;
10819 set_decl_abstract_flags (decl
, 1);
10820 dwarf2out_decl (decl
);
10821 if (! was_abstract
)
10822 set_decl_abstract_flags (decl
, 0);
10824 current_function_decl
= save_fn
;
10827 /* Generate a DIE to represent a declared function (either file-scope or
10831 gen_subprogram_die (decl
, context_die
)
10833 dw_die_ref context_die
;
10835 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
10836 tree origin
= decl_ultimate_origin (decl
);
10837 dw_die_ref subr_die
;
10841 dw_die_ref old_die
= lookup_decl_die (decl
);
10842 int declaration
= (current_function_decl
!= decl
10843 || class_scope_p (context_die
));
10845 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10846 started to generate the abstract instance of an inline, decided to output
10847 its containing class, and proceeded to emit the declaration of the inline
10848 from the member list for the class. If so, DECLARATION takes priority;
10849 we'll get back to the abstract instance when done with the class. */
10851 /* The class-scope declaration DIE must be the primary DIE. */
10852 if (origin
&& declaration
&& class_scope_p (context_die
))
10859 if (origin
!= NULL
)
10861 if (declaration
&& ! local_scope_p (context_die
))
10864 /* Fixup die_parent for the abstract instance of a nested
10865 inline function. */
10866 if (old_die
&& old_die
->die_parent
== NULL
)
10867 add_child_die (context_die
, old_die
);
10869 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10870 add_abstract_origin_attribute (subr_die
, origin
);
10874 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
10876 if (!get_AT_flag (old_die
, DW_AT_declaration
)
10877 /* We can have a normal definition following an inline one in the
10878 case of redefinition of GNU C extern inlines.
10879 It seems reasonable to use AT_specification in this case. */
10880 && !get_AT_unsigned (old_die
, DW_AT_inline
))
10882 /* ??? This can happen if there is a bug in the program, for
10883 instance, if it has duplicate function definitions. Ideally,
10884 we should detect this case and ignore it. For now, if we have
10885 already reported an error, any error at all, then assume that
10886 we got here because of an input error, not a dwarf2 bug. */
10892 /* If the definition comes from the same place as the declaration,
10893 maybe use the old DIE. We always want the DIE for this function
10894 that has the *_pc attributes to be under comp_unit_die so the
10895 debugger can find it. We also need to do this for abstract
10896 instances of inlines, since the spec requires the out-of-line copy
10897 to have the same parent. For local class methods, this doesn't
10898 apply; we just use the old DIE. */
10899 if ((old_die
->die_parent
== comp_unit_die
|| context_die
== NULL
)
10900 && (DECL_ARTIFICIAL (decl
)
10901 || (get_AT_unsigned (old_die
, DW_AT_decl_file
) == file_index
10902 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10903 == (unsigned) DECL_SOURCE_LINE (decl
)))))
10905 subr_die
= old_die
;
10907 /* Clear out the declaration attribute and the parm types. */
10908 remove_AT (subr_die
, DW_AT_declaration
);
10909 remove_children (subr_die
);
10913 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10914 add_AT_die_ref (subr_die
, DW_AT_specification
, old_die
);
10915 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
10916 add_AT_unsigned (subr_die
, DW_AT_decl_file
, file_index
);
10917 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10918 != (unsigned) DECL_SOURCE_LINE (decl
))
10920 (subr_die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
10925 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10927 if (TREE_PUBLIC (decl
))
10928 add_AT_flag (subr_die
, DW_AT_external
, 1);
10930 add_name_and_src_coords_attributes (subr_die
, decl
);
10931 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10933 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
10934 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
10935 0, 0, context_die
);
10938 add_pure_or_virtual_attribute (subr_die
, decl
);
10939 if (DECL_ARTIFICIAL (decl
))
10940 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
10942 if (TREE_PROTECTED (decl
))
10943 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10944 else if (TREE_PRIVATE (decl
))
10945 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_private
);
10950 if (!old_die
|| !get_AT_unsigned (old_die
, DW_AT_inline
))
10952 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
10954 /* The first time we see a member function, it is in the context of
10955 the class to which it belongs. We make sure of this by emitting
10956 the class first. The next time is the definition, which is
10957 handled above. The two may come from the same source text. */
10958 if (DECL_CONTEXT (decl
) || DECL_ABSTRACT (decl
))
10959 equate_decl_number_to_die (decl
, subr_die
);
10962 else if (DECL_ABSTRACT (decl
))
10964 if (DECL_INLINE (decl
) && !flag_no_inline
)
10966 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10967 inline functions, but not for extern inline functions.
10968 We can't get this completely correct because information
10969 about whether the function was declared inline is not
10971 if (DECL_DEFER_OUTPUT (decl
))
10972 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_inlined
);
10974 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_inlined
);
10977 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
10979 equate_decl_number_to_die (decl
, subr_die
);
10981 else if (!DECL_EXTERNAL (decl
))
10983 if (!old_die
|| !get_AT_unsigned (old_die
, DW_AT_inline
))
10984 equate_decl_number_to_die (decl
, subr_die
);
10986 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_BEGIN_LABEL
,
10987 current_function_funcdef_no
);
10988 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label_id
);
10989 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
10990 current_function_funcdef_no
);
10991 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label_id
);
10993 add_pubname (decl
, subr_die
);
10994 add_arange (decl
, subr_die
);
10996 #ifdef MIPS_DEBUGGING_INFO
10997 /* Add a reference to the FDE for this routine. */
10998 add_AT_fde_ref (subr_die
, DW_AT_MIPS_fde
, current_funcdef_fde
);
11001 /* Define the "frame base" location for this routine. We use the
11002 frame pointer or stack pointer registers, since the RTL for local
11003 variables is relative to one of them. */
11005 = frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx
;
11006 add_AT_loc (subr_die
, DW_AT_frame_base
, reg_loc_descriptor (fp_reg
));
11009 /* ??? This fails for nested inline functions, because context_display
11010 is not part of the state saved/restored for inline functions. */
11011 if (current_function_needs_context
)
11012 add_AT_location_description (subr_die
, DW_AT_static_link
,
11013 loc_descriptor (lookup_static_chain (decl
)));
11017 /* Now output descriptions of the arguments for this function. This gets
11018 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11019 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11020 `...' at the end of the formal parameter list. In order to find out if
11021 there was a trailing ellipsis or not, we must instead look at the type
11022 associated with the FUNCTION_DECL. This will be a node of type
11023 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11024 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11025 an ellipsis at the end. */
11027 /* In the case where we are describing a mere function declaration, all we
11028 need to do here (and all we *can* do here) is to describe the *types* of
11029 its formal parameters. */
11030 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11032 else if (declaration
)
11033 gen_formal_types_die (decl
, subr_die
);
11036 /* Generate DIEs to represent all known formal parameters */
11037 tree arg_decls
= DECL_ARGUMENTS (decl
);
11040 /* When generating DIEs, generate the unspecified_parameters DIE
11041 instead if we come across the arg "__builtin_va_alist" */
11042 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
11043 if (TREE_CODE (parm
) == PARM_DECL
)
11045 if (DECL_NAME (parm
)
11046 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
11047 "__builtin_va_alist"))
11048 gen_unspecified_parameters_die (parm
, subr_die
);
11050 gen_decl_die (parm
, subr_die
);
11053 /* Decide whether we need an unspecified_parameters DIE at the end.
11054 There are 2 more cases to do this for: 1) the ansi ... declaration -
11055 this is detectable when the end of the arg list is not a
11056 void_type_node 2) an unprototyped function declaration (not a
11057 definition). This just means that we have no info about the
11058 parameters at all. */
11059 fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
11060 if (fn_arg_types
!= NULL
)
11062 /* this is the prototyped case, check for ... */
11063 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
11064 gen_unspecified_parameters_die (decl
, subr_die
);
11066 else if (DECL_INITIAL (decl
) == NULL_TREE
)
11067 gen_unspecified_parameters_die (decl
, subr_die
);
11070 /* Output Dwarf info for all of the stuff within the body of the function
11071 (if it has one - it may be just a declaration). */
11072 outer_scope
= DECL_INITIAL (decl
);
11074 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11075 a function. This BLOCK actually represents the outermost binding contour
11076 for the function, i.e. the contour in which the function's formal
11077 parameters and labels get declared. Curiously, it appears that the front
11078 end doesn't actually put the PARM_DECL nodes for the current function onto
11079 the BLOCK_VARS list for this outer scope, but are strung off of the
11080 DECL_ARGUMENTS list for the function instead.
11082 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11083 the LABEL_DECL nodes for the function however, and we output DWARF info
11084 for those in decls_for_scope. Just within the `outer_scope' there will be
11085 a BLOCK node representing the function's outermost pair of curly braces,
11086 and any blocks used for the base and member initializers of a C++
11087 constructor function. */
11088 if (! declaration
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
11090 current_function_has_inlines
= 0;
11091 decls_for_scope (outer_scope
, subr_die
, 0);
11093 #if 0 && defined (MIPS_DEBUGGING_INFO)
11094 if (current_function_has_inlines
)
11096 add_AT_flag (subr_die
, DW_AT_MIPS_has_inlines
, 1);
11097 if (! comp_unit_has_inlines
)
11099 add_AT_flag (comp_unit_die
, DW_AT_MIPS_has_inlines
, 1);
11100 comp_unit_has_inlines
= 1;
11107 /* Generate a DIE to represent a declared data object. */
11110 gen_variable_die (decl
, context_die
)
11112 dw_die_ref context_die
;
11114 tree origin
= decl_ultimate_origin (decl
);
11115 dw_die_ref var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
11117 dw_die_ref old_die
= lookup_decl_die (decl
);
11118 int declaration
= (DECL_EXTERNAL (decl
)
11119 || class_scope_p (context_die
));
11121 if (origin
!= NULL
)
11122 add_abstract_origin_attribute (var_die
, origin
);
11124 /* Loop unrolling can create multiple blocks that refer to the same
11125 static variable, so we must test for the DW_AT_declaration flag.
11127 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11128 copy decls and set the DECL_ABSTRACT flag on them instead of
11131 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11132 else if (old_die
&& TREE_STATIC (decl
)
11133 && get_AT_flag (old_die
, DW_AT_declaration
) == 1)
11135 /* This is a definition of a C++ class level static. */
11136 add_AT_die_ref (var_die
, DW_AT_specification
, old_die
);
11137 if (DECL_NAME (decl
))
11139 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
11141 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
11142 add_AT_unsigned (var_die
, DW_AT_decl_file
, file_index
);
11144 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11145 != (unsigned) DECL_SOURCE_LINE (decl
))
11147 add_AT_unsigned (var_die
, DW_AT_decl_line
,
11148 DECL_SOURCE_LINE (decl
));
11153 add_name_and_src_coords_attributes (var_die
, decl
);
11154 add_type_attribute (var_die
, TREE_TYPE (decl
), TREE_READONLY (decl
),
11155 TREE_THIS_VOLATILE (decl
), context_die
);
11157 if (TREE_PUBLIC (decl
))
11158 add_AT_flag (var_die
, DW_AT_external
, 1);
11160 if (DECL_ARTIFICIAL (decl
))
11161 add_AT_flag (var_die
, DW_AT_artificial
, 1);
11163 if (TREE_PROTECTED (decl
))
11164 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11165 else if (TREE_PRIVATE (decl
))
11166 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11170 add_AT_flag (var_die
, DW_AT_declaration
, 1);
11172 if (class_scope_p (context_die
) || DECL_ABSTRACT (decl
))
11173 equate_decl_number_to_die (decl
, var_die
);
11175 if (! declaration
&& ! DECL_ABSTRACT (decl
))
11177 add_location_or_const_value_attribute (var_die
, decl
);
11178 add_pubname (decl
, var_die
);
11181 tree_add_const_value_attribute (var_die
, decl
);
11184 /* Generate a DIE to represent a label identifier. */
11187 gen_label_die (decl
, context_die
)
11189 dw_die_ref context_die
;
11191 tree origin
= decl_ultimate_origin (decl
);
11192 dw_die_ref lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
11194 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11196 if (origin
!= NULL
)
11197 add_abstract_origin_attribute (lbl_die
, origin
);
11199 add_name_and_src_coords_attributes (lbl_die
, decl
);
11201 if (DECL_ABSTRACT (decl
))
11202 equate_decl_number_to_die (decl
, lbl_die
);
11205 insn
= DECL_RTL (decl
);
11207 /* Deleted labels are programmer specified labels which have been
11208 eliminated because of various optimisations. We still emit them
11209 here so that it is possible to put breakpoints on them. */
11210 if (GET_CODE (insn
) == CODE_LABEL
11211 || ((GET_CODE (insn
) == NOTE
11212 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
)))
11214 /* When optimization is enabled (via -O) some parts of the compiler
11215 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11216 represent source-level labels which were explicitly declared by
11217 the user. This really shouldn't be happening though, so catch
11218 it if it ever does happen. */
11219 if (INSN_DELETED_P (insn
))
11222 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
11223 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
11228 /* Generate a DIE for a lexical block. */
11231 gen_lexical_block_die (stmt
, context_die
, depth
)
11233 dw_die_ref context_die
;
11236 dw_die_ref stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
11237 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11239 if (! BLOCK_ABSTRACT (stmt
))
11241 if (BLOCK_FRAGMENT_CHAIN (stmt
))
11245 add_AT_range_list (stmt_die
, DW_AT_ranges
, add_ranges (stmt
));
11247 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
11250 add_ranges (chain
);
11251 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
11258 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
11259 BLOCK_NUMBER (stmt
));
11260 add_AT_lbl_id (stmt_die
, DW_AT_low_pc
, label
);
11261 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
11262 BLOCK_NUMBER (stmt
));
11263 add_AT_lbl_id (stmt_die
, DW_AT_high_pc
, label
);
11267 decls_for_scope (stmt
, stmt_die
, depth
);
11270 /* Generate a DIE for an inlined subprogram. */
11273 gen_inlined_subroutine_die (stmt
, context_die
, depth
)
11275 dw_die_ref context_die
;
11278 if (! BLOCK_ABSTRACT (stmt
))
11280 dw_die_ref subr_die
11281 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
11282 tree decl
= block_ultimate_origin (stmt
);
11283 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11285 /* Emit info for the abstract instance first, if we haven't yet. */
11286 dwarf2out_abstract_function (decl
);
11288 add_abstract_origin_attribute (subr_die
, decl
);
11289 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
11290 BLOCK_NUMBER (stmt
));
11291 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label
);
11292 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
11293 BLOCK_NUMBER (stmt
));
11294 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label
);
11295 decls_for_scope (stmt
, subr_die
, depth
);
11296 current_function_has_inlines
= 1;
11299 /* We may get here if we're the outer block of function A that was
11300 inlined into function B that was inlined into function C. When
11301 generating debugging info for C, dwarf2out_abstract_function(B)
11302 would mark all inlined blocks as abstract, including this one.
11303 So, we wouldn't (and shouldn't) expect labels to be generated
11304 for this one. Instead, just emit debugging info for
11305 declarations within the block. This is particularly important
11306 in the case of initializers of arguments passed from B to us:
11307 if they're statement expressions containing declarations, we
11308 wouldn't generate dies for their abstract variables, and then,
11309 when generating dies for the real variables, we'd die (pun
11311 gen_lexical_block_die (stmt
, context_die
, depth
);
11314 /* Generate a DIE for a field in a record, or structure. */
11317 gen_field_die (decl
, context_die
)
11319 dw_die_ref context_die
;
11321 dw_die_ref decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
11323 add_name_and_src_coords_attributes (decl_die
, decl
);
11324 add_type_attribute (decl_die
, member_declared_type (decl
),
11325 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
),
11328 if (DECL_BIT_FIELD_TYPE (decl
))
11330 add_byte_size_attribute (decl_die
, decl
);
11331 add_bit_size_attribute (decl_die
, decl
);
11332 add_bit_offset_attribute (decl_die
, decl
);
11335 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
11336 add_data_member_location_attribute (decl_die
, decl
);
11338 if (DECL_ARTIFICIAL (decl
))
11339 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
11341 if (TREE_PROTECTED (decl
))
11342 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11343 else if (TREE_PRIVATE (decl
))
11344 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11348 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11349 Use modified_type_die instead.
11350 We keep this code here just in case these types of DIEs may be needed to
11351 represent certain things in other languages (e.g. Pascal) someday. */
11354 gen_pointer_type_die (type
, context_die
)
11356 dw_die_ref context_die
;
11359 = new_die (DW_TAG_pointer_type
, scope_die_for (type
, context_die
), type
);
11361 equate_type_number_to_die (type
, ptr_die
);
11362 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
11363 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
11366 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11367 Use modified_type_die instead.
11368 We keep this code here just in case these types of DIEs may be needed to
11369 represent certain things in other languages (e.g. Pascal) someday. */
11372 gen_reference_type_die (type
, context_die
)
11374 dw_die_ref context_die
;
11377 = new_die (DW_TAG_reference_type
, scope_die_for (type
, context_die
), type
);
11379 equate_type_number_to_die (type
, ref_die
);
11380 add_type_attribute (ref_die
, TREE_TYPE (type
), 0, 0, context_die
);
11381 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
11385 /* Generate a DIE for a pointer to a member type. */
11388 gen_ptr_to_mbr_type_die (type
, context_die
)
11390 dw_die_ref context_die
;
11393 = new_die (DW_TAG_ptr_to_member_type
,
11394 scope_die_for (type
, context_die
), type
);
11396 equate_type_number_to_die (type
, ptr_die
);
11397 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
11398 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
11399 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
11402 /* Generate the DIE for the compilation unit. */
11405 gen_compile_unit_die (filename
)
11406 const char *filename
;
11409 char producer
[250];
11410 const char *language_string
= lang_hooks
.name
;
11413 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
11417 add_name_attribute (die
, filename
);
11418 if (filename
[0] != DIR_SEPARATOR
)
11419 add_comp_dir_attribute (die
);
11422 sprintf (producer
, "%s %s", language_string
, version_string
);
11424 #ifdef MIPS_DEBUGGING_INFO
11425 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11426 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11427 not appear in the producer string, the debugger reaches the conclusion
11428 that the object file is stripped and has no debugging information.
11429 To get the MIPS/SGI debugger to believe that there is debugging
11430 information in the object file, we add a -g to the producer string. */
11431 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11432 strcat (producer
, " -g");
11435 add_AT_string (die
, DW_AT_producer
, producer
);
11437 if (strcmp (language_string
, "GNU C++") == 0)
11438 language
= DW_LANG_C_plus_plus
;
11439 else if (strcmp (language_string
, "GNU Ada") == 0)
11440 language
= DW_LANG_Ada83
;
11441 else if (strcmp (language_string
, "GNU F77") == 0)
11442 language
= DW_LANG_Fortran77
;
11443 else if (strcmp (language_string
, "GNU Pascal") == 0)
11444 language
= DW_LANG_Pascal83
;
11445 else if (strcmp (language_string
, "GNU Java") == 0)
11446 language
= DW_LANG_Java
;
11448 language
= DW_LANG_C89
;
11450 add_AT_unsigned (die
, DW_AT_language
, language
);
11454 /* Generate a DIE for a string type. */
11457 gen_string_type_die (type
, context_die
)
11459 dw_die_ref context_die
;
11461 dw_die_ref type_die
11462 = new_die (DW_TAG_string_type
, scope_die_for (type
, context_die
), type
);
11464 equate_type_number_to_die (type
, type_die
);
11466 /* ??? Fudge the string length attribute for now.
11467 TODO: add string length info. */
11469 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)));
11470 bound_representation (upper_bound
, 0, 'u');
11474 /* Generate the DIE for a base class. */
11477 gen_inheritance_die (binfo
, access
, context_die
)
11478 tree binfo
, access
;
11479 dw_die_ref context_die
;
11481 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
11483 add_type_attribute (die
, BINFO_TYPE (binfo
), 0, 0, context_die
);
11484 add_data_member_location_attribute (die
, binfo
);
11486 if (TREE_VIA_VIRTUAL (binfo
))
11487 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
11489 if (access
== access_public_node
)
11490 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
11491 else if (access
== access_protected_node
)
11492 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11495 /* Generate a DIE for a class member. */
11498 gen_member_die (type
, context_die
)
11500 dw_die_ref context_die
;
11503 tree binfo
= TYPE_BINFO (type
);
11506 /* If this is not an incomplete type, output descriptions of each of its
11507 members. Note that as we output the DIEs necessary to represent the
11508 members of this record or union type, we will also be trying to output
11509 DIEs to represent the *types* of those members. However the `type'
11510 function (above) will specifically avoid generating type DIEs for member
11511 types *within* the list of member DIEs for this (containing) type except
11512 for those types (of members) which are explicitly marked as also being
11513 members of this (containing) type themselves. The g++ front- end can
11514 force any given type to be treated as a member of some other (containing)
11515 type by setting the TYPE_CONTEXT of the given (member) type to point to
11516 the TREE node representing the appropriate (containing) type. */
11518 /* First output info about the base classes. */
11519 if (binfo
&& BINFO_BASETYPES (binfo
))
11521 tree bases
= BINFO_BASETYPES (binfo
);
11522 tree accesses
= BINFO_BASEACCESSES (binfo
);
11523 int n_bases
= TREE_VEC_LENGTH (bases
);
11526 for (i
= 0; i
< n_bases
; i
++)
11527 gen_inheritance_die (TREE_VEC_ELT (bases
, i
),
11528 (accesses
? TREE_VEC_ELT (accesses
, i
)
11529 : access_public_node
), context_die
);
11532 /* Now output info about the data members and type members. */
11533 for (member
= TYPE_FIELDS (type
); member
; member
= TREE_CHAIN (member
))
11535 /* If we thought we were generating minimal debug info for TYPE
11536 and then changed our minds, some of the member declarations
11537 may have already been defined. Don't define them again, but
11538 do put them in the right order. */
11540 child
= lookup_decl_die (member
);
11542 splice_child_die (context_die
, child
);
11544 gen_decl_die (member
, context_die
);
11547 /* Now output info about the function members (if any). */
11548 for (member
= TYPE_METHODS (type
); member
; member
= TREE_CHAIN (member
))
11550 /* Don't include clones in the member list. */
11551 if (DECL_ABSTRACT_ORIGIN (member
))
11554 child
= lookup_decl_die (member
);
11556 splice_child_die (context_die
, child
);
11558 gen_decl_die (member
, context_die
);
11562 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11563 is set, we pretend that the type was never defined, so we only get the
11564 member DIEs needed by later specification DIEs. */
11567 gen_struct_or_union_type_die (type
, context_die
)
11569 dw_die_ref context_die
;
11571 dw_die_ref type_die
= lookup_type_die (type
);
11572 dw_die_ref scope_die
= 0;
11574 int complete
= (TYPE_SIZE (type
)
11575 && (! TYPE_STUB_DECL (type
)
11576 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
11578 if (type_die
&& ! complete
)
11581 if (TYPE_CONTEXT (type
) != NULL_TREE
11582 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
)))
11585 scope_die
= scope_die_for (type
, context_die
);
11587 if (! type_die
|| (nested
&& scope_die
== comp_unit_die
))
11588 /* First occurrence of type or toplevel definition of nested class. */
11590 dw_die_ref old_die
= type_die
;
11592 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
11593 ? DW_TAG_structure_type
: DW_TAG_union_type
,
11595 equate_type_number_to_die (type
, type_die
);
11597 add_AT_die_ref (type_die
, DW_AT_specification
, old_die
);
11599 add_name_attribute (type_die
, type_tag (type
));
11602 remove_AT (type_die
, DW_AT_declaration
);
11604 /* If this type has been completed, then give it a byte_size attribute and
11605 then give a list of members. */
11608 /* Prevent infinite recursion in cases where the type of some member of
11609 this type is expressed in terms of this type itself. */
11610 TREE_ASM_WRITTEN (type
) = 1;
11611 add_byte_size_attribute (type_die
, type
);
11612 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
11613 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
11615 /* If the first reference to this type was as the return type of an
11616 inline function, then it may not have a parent. Fix this now. */
11617 if (type_die
->die_parent
== NULL
)
11618 add_child_die (scope_die
, type_die
);
11620 push_decl_scope (type
);
11621 gen_member_die (type
, type_die
);
11624 /* GNU extension: Record what type our vtable lives in. */
11625 if (TYPE_VFIELD (type
))
11627 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
11629 gen_type_die (vtype
, context_die
);
11630 add_AT_die_ref (type_die
, DW_AT_containing_type
,
11631 lookup_type_die (vtype
));
11636 add_AT_flag (type_die
, DW_AT_declaration
, 1);
11638 /* We don't need to do this for function-local types. */
11639 if (TYPE_STUB_DECL (type
)
11640 && ! decl_function_context (TYPE_STUB_DECL (type
)))
11641 VARRAY_PUSH_TREE (incomplete_types
, type
);
11645 /* Generate a DIE for a subroutine _type_. */
11648 gen_subroutine_type_die (type
, context_die
)
11650 dw_die_ref context_die
;
11652 tree return_type
= TREE_TYPE (type
);
11653 dw_die_ref subr_die
11654 = new_die (DW_TAG_subroutine_type
,
11655 scope_die_for (type
, context_die
), type
);
11657 equate_type_number_to_die (type
, subr_die
);
11658 add_prototyped_attribute (subr_die
, type
);
11659 add_type_attribute (subr_die
, return_type
, 0, 0, context_die
);
11660 gen_formal_types_die (type
, subr_die
);
11663 /* Generate a DIE for a type definition */
11666 gen_typedef_die (decl
, context_die
)
11668 dw_die_ref context_die
;
11670 dw_die_ref type_die
;
11673 if (TREE_ASM_WRITTEN (decl
))
11676 TREE_ASM_WRITTEN (decl
) = 1;
11677 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
11678 origin
= decl_ultimate_origin (decl
);
11679 if (origin
!= NULL
)
11680 add_abstract_origin_attribute (type_die
, origin
);
11685 add_name_and_src_coords_attributes (type_die
, decl
);
11686 if (DECL_ORIGINAL_TYPE (decl
))
11688 type
= DECL_ORIGINAL_TYPE (decl
);
11690 if (type
== TREE_TYPE (decl
))
11693 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
11696 type
= TREE_TYPE (decl
);
11698 add_type_attribute (type_die
, type
, TREE_READONLY (decl
),
11699 TREE_THIS_VOLATILE (decl
), context_die
);
11702 if (DECL_ABSTRACT (decl
))
11703 equate_decl_number_to_die (decl
, type_die
);
11706 /* Generate a type description DIE. */
11709 gen_type_die (type
, context_die
)
11711 dw_die_ref context_die
;
11715 if (type
== NULL_TREE
|| type
== error_mark_node
)
11718 if (TYPE_NAME (type
) && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
11719 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
11721 if (TREE_ASM_WRITTEN (type
))
11724 /* Prevent broken recursion; we can't hand off to the same type. */
11725 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type
)) == type
)
11728 TREE_ASM_WRITTEN (type
) = 1;
11729 gen_decl_die (TYPE_NAME (type
), context_die
);
11733 /* We are going to output a DIE to represent the unqualified version
11734 of this type (i.e. without any const or volatile qualifiers) so
11735 get the main variant (i.e. the unqualified version) of this type
11736 now. (Vectors are special because the debugging info is in the
11737 cloned type itself). */
11738 if (TREE_CODE (type
) != VECTOR_TYPE
)
11739 type
= type_main_variant (type
);
11741 if (TREE_ASM_WRITTEN (type
))
11744 switch (TREE_CODE (type
))
11750 case REFERENCE_TYPE
:
11751 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11752 ensures that the gen_type_die recursion will terminate even if the
11753 type is recursive. Recursive types are possible in Ada. */
11754 /* ??? We could perhaps do this for all types before the switch
11756 TREE_ASM_WRITTEN (type
) = 1;
11758 /* For these types, all that is required is that we output a DIE (or a
11759 set of DIEs) to represent the "basis" type. */
11760 gen_type_die (TREE_TYPE (type
), context_die
);
11764 /* This code is used for C++ pointer-to-data-member types.
11765 Output a description of the relevant class type. */
11766 gen_type_die (TYPE_OFFSET_BASETYPE (type
), context_die
);
11768 /* Output a description of the type of the object pointed to. */
11769 gen_type_die (TREE_TYPE (type
), context_die
);
11771 /* Now output a DIE to represent this pointer-to-data-member type
11773 gen_ptr_to_mbr_type_die (type
, context_die
);
11777 gen_type_die (TYPE_DOMAIN (type
), context_die
);
11778 gen_set_type_die (type
, context_die
);
11782 gen_type_die (TREE_TYPE (type
), context_die
);
11783 abort (); /* No way to represent these in Dwarf yet! */
11786 case FUNCTION_TYPE
:
11787 /* Force out return type (in case it wasn't forced out already). */
11788 gen_type_die (TREE_TYPE (type
), context_die
);
11789 gen_subroutine_type_die (type
, context_die
);
11793 /* Force out return type (in case it wasn't forced out already). */
11794 gen_type_die (TREE_TYPE (type
), context_die
);
11795 gen_subroutine_type_die (type
, context_die
);
11799 if (TYPE_STRING_FLAG (type
) && TREE_CODE (TREE_TYPE (type
)) == CHAR_TYPE
)
11801 gen_type_die (TREE_TYPE (type
), context_die
);
11802 gen_string_type_die (type
, context_die
);
11805 gen_array_type_die (type
, context_die
);
11809 gen_array_type_die (type
, context_die
);
11812 case ENUMERAL_TYPE
:
11815 case QUAL_UNION_TYPE
:
11816 /* If this is a nested type whose containing class hasn't been written
11817 out yet, writing it out will cover this one, too. This does not apply
11818 to instantiations of member class templates; they need to be added to
11819 the containing class as they are generated. FIXME: This hurts the
11820 idea of combining type decls from multiple TUs, since we can't predict
11821 what set of template instantiations we'll get. */
11822 if (TYPE_CONTEXT (type
)
11823 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
11824 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
11826 gen_type_die (TYPE_CONTEXT (type
), context_die
);
11828 if (TREE_ASM_WRITTEN (type
))
11831 /* If that failed, attach ourselves to the stub. */
11832 push_decl_scope (TYPE_CONTEXT (type
));
11833 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
11839 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
11840 gen_enumeration_type_die (type
, context_die
);
11842 gen_struct_or_union_type_die (type
, context_die
);
11847 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11848 it up if it is ever completed. gen_*_type_die will set it for us
11849 when appropriate. */
11858 /* No DIEs needed for fundamental types. */
11862 /* No Dwarf representation currently defined. */
11869 TREE_ASM_WRITTEN (type
) = 1;
11872 /* Generate a DIE for a tagged type instantiation. */
11875 gen_tagged_type_instantiation_die (type
, context_die
)
11877 dw_die_ref context_die
;
11879 if (type
== NULL_TREE
|| type
== error_mark_node
)
11882 /* We are going to output a DIE to represent the unqualified version of
11883 this type (i.e. without any const or volatile qualifiers) so make sure
11884 that we have the main variant (i.e. the unqualified version) of this
11886 if (type
!= type_main_variant (type
))
11889 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11890 an instance of an unresolved type. */
11892 switch (TREE_CODE (type
))
11897 case ENUMERAL_TYPE
:
11898 gen_inlined_enumeration_type_die (type
, context_die
);
11902 gen_inlined_structure_type_die (type
, context_die
);
11906 case QUAL_UNION_TYPE
:
11907 gen_inlined_union_type_die (type
, context_die
);
11915 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11916 things which are local to the given block. */
11919 gen_block_die (stmt
, context_die
, depth
)
11921 dw_die_ref context_die
;
11924 int must_output_die
= 0;
11927 enum tree_code origin_code
;
11929 /* Ignore blocks never really used to make RTL. */
11930 if (stmt
== NULL_TREE
|| !TREE_USED (stmt
)
11931 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
11934 /* If the block is one fragment of a non-contiguous block, do not
11935 process the variables, since they will have been done by the
11936 origin block. Do process subblocks. */
11937 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
11941 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
11942 gen_block_die (sub
, context_die
, depth
+ 1);
11947 /* Determine the "ultimate origin" of this block. This block may be an
11948 inlined instance of an inlined instance of inline function, so we have
11949 to trace all of the way back through the origin chain to find out what
11950 sort of node actually served as the original seed for the creation of
11951 the current block. */
11952 origin
= block_ultimate_origin (stmt
);
11953 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
11955 /* Determine if we need to output any Dwarf DIEs at all to represent this
11957 if (origin_code
== FUNCTION_DECL
)
11958 /* The outer scopes for inlinings *must* always be represented. We
11959 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11960 must_output_die
= 1;
11963 /* In the case where the current block represents an inlining of the
11964 "body block" of an inline function, we must *NOT* output any DIE for
11965 this block because we have already output a DIE to represent the whole
11966 inlined function scope and the "body block" of any function doesn't
11967 really represent a different scope according to ANSI C rules. So we
11968 check here to make sure that this block does not represent a "body
11969 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11970 if (! is_body_block (origin
? origin
: stmt
))
11972 /* Determine if this block directly contains any "significant"
11973 local declarations which we will need to output DIEs for. */
11974 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11975 /* We are not in terse mode so *any* local declaration counts
11976 as being a "significant" one. */
11977 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
11979 /* We are in terse mode, so only local (nested) function
11980 definitions count as "significant" local declarations. */
11981 for (decl
= BLOCK_VARS (stmt
);
11982 decl
!= NULL
; decl
= TREE_CHAIN (decl
))
11983 if (TREE_CODE (decl
) == FUNCTION_DECL
11984 && DECL_INITIAL (decl
))
11986 must_output_die
= 1;
11992 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11993 DIE for any block which contains no significant local declarations at
11994 all. Rather, in such cases we just call `decls_for_scope' so that any
11995 needed Dwarf info for any sub-blocks will get properly generated. Note
11996 that in terse mode, our definition of what constitutes a "significant"
11997 local declaration gets restricted to include only inlined function
11998 instances and local (nested) function definitions. */
11999 if (must_output_die
)
12001 if (origin_code
== FUNCTION_DECL
)
12002 gen_inlined_subroutine_die (stmt
, context_die
, depth
);
12004 gen_lexical_block_die (stmt
, context_die
, depth
);
12007 decls_for_scope (stmt
, context_die
, depth
);
12010 /* Generate all of the decls declared within a given scope and (recursively)
12011 all of its sub-blocks. */
12014 decls_for_scope (stmt
, context_die
, depth
)
12016 dw_die_ref context_die
;
12022 /* Ignore blocks never really used to make RTL. */
12023 if (stmt
== NULL_TREE
|| ! TREE_USED (stmt
))
12026 /* Output the DIEs to represent all of the data objects and typedefs
12027 declared directly within this block but not within any nested
12028 sub-blocks. Also, nested function and tag DIEs have been
12029 generated with a parent of NULL; fix that up now. */
12030 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= TREE_CHAIN (decl
))
12034 if (TREE_CODE (decl
) == FUNCTION_DECL
)
12035 die
= lookup_decl_die (decl
);
12036 else if (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
))
12037 die
= lookup_type_die (TREE_TYPE (decl
));
12041 if (die
!= NULL
&& die
->die_parent
== NULL
)
12042 add_child_die (context_die
, die
);
12044 gen_decl_die (decl
, context_die
);
12047 /* If we're at -g1, we're not interested in subblocks. */
12048 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12051 /* Output the DIEs to represent all sub-blocks (and the items declared
12052 therein) of this block. */
12053 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
12055 subblocks
= BLOCK_CHAIN (subblocks
))
12056 gen_block_die (subblocks
, context_die
, depth
+ 1);
12059 /* Is this a typedef we can avoid emitting? */
12062 is_redundant_typedef (decl
)
12065 if (TYPE_DECL_IS_STUB (decl
))
12068 if (DECL_ARTIFICIAL (decl
)
12069 && DECL_CONTEXT (decl
)
12070 && is_tagged_type (DECL_CONTEXT (decl
))
12071 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
12072 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
12073 /* Also ignore the artificial member typedef for the class name. */
12079 /* Generate Dwarf debug information for a decl described by DECL. */
12082 gen_decl_die (decl
, context_die
)
12084 dw_die_ref context_die
;
12088 if (DECL_P (decl
) && DECL_IGNORED_P (decl
))
12091 switch (TREE_CODE (decl
))
12097 /* The individual enumerators of an enum type get output when we output
12098 the Dwarf representation of the relevant enum type itself. */
12101 case FUNCTION_DECL
:
12102 /* Don't output any DIEs to represent mere function declarations,
12103 unless they are class members or explicit block externs. */
12104 if (DECL_INITIAL (decl
) == NULL_TREE
&& DECL_CONTEXT (decl
) == NULL_TREE
12105 && (current_function_decl
== NULL_TREE
|| DECL_ARTIFICIAL (decl
)))
12108 /* If we're emitting a clone, emit info for the abstract instance. */
12109 if (DECL_ORIGIN (decl
) != decl
)
12110 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl
));
12112 /* If we're emitting an out-of-line copy of an inline function,
12113 emit info for the abstract instance and set up to refer to it. */
12114 else if (DECL_INLINE (decl
) && ! DECL_ABSTRACT (decl
)
12115 && ! class_scope_p (context_die
)
12116 /* dwarf2out_abstract_function won't emit a die if this is just
12117 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12118 that case, because that works only if we have a die. */
12119 && DECL_INITIAL (decl
) != NULL_TREE
)
12121 dwarf2out_abstract_function (decl
);
12122 set_decl_origin_self (decl
);
12125 /* Otherwise we're emitting the primary DIE for this decl. */
12126 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
12128 /* Before we describe the FUNCTION_DECL itself, make sure that we
12129 have described its return type. */
12130 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
12132 /* And its virtual context. */
12133 if (DECL_VINDEX (decl
) != NULL_TREE
)
12134 gen_type_die (DECL_CONTEXT (decl
), context_die
);
12136 /* And its containing type. */
12137 origin
= decl_class_context (decl
);
12138 if (origin
!= NULL_TREE
)
12139 gen_type_die_for_member (origin
, decl
, context_die
);
12142 /* Now output a DIE to represent the function itself. */
12143 gen_subprogram_die (decl
, context_die
);
12147 /* If we are in terse mode, don't generate any DIEs to represent any
12148 actual typedefs. */
12149 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12152 /* In the special case of a TYPE_DECL node representing the declaration
12153 of some type tag, if the given TYPE_DECL is marked as having been
12154 instantiated from some other (original) TYPE_DECL node (e.g. one which
12155 was generated within the original definition of an inline function) we
12156 have to generate a special (abbreviated) DW_TAG_structure_type,
12157 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12158 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
12160 gen_tagged_type_instantiation_die (TREE_TYPE (decl
), context_die
);
12164 if (is_redundant_typedef (decl
))
12165 gen_type_die (TREE_TYPE (decl
), context_die
);
12167 /* Output a DIE to represent the typedef itself. */
12168 gen_typedef_die (decl
, context_die
);
12172 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
12173 gen_label_die (decl
, context_die
);
12177 /* If we are in terse mode, don't generate any DIEs to represent any
12178 variable declarations or definitions. */
12179 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12182 /* Output any DIEs that are needed to specify the type of this data
12184 gen_type_die (TREE_TYPE (decl
), context_die
);
12186 /* And its containing type. */
12187 origin
= decl_class_context (decl
);
12188 if (origin
!= NULL_TREE
)
12189 gen_type_die_for_member (origin
, decl
, context_die
);
12191 /* Now output the DIE to represent the data object itself. This gets
12192 complicated because of the possibility that the VAR_DECL really
12193 represents an inlined instance of a formal parameter for an inline
12195 origin
= decl_ultimate_origin (decl
);
12196 if (origin
!= NULL_TREE
&& TREE_CODE (origin
) == PARM_DECL
)
12197 gen_formal_parameter_die (decl
, context_die
);
12199 gen_variable_die (decl
, context_die
);
12203 /* Ignore the nameless fields that are used to skip bits but handle C++
12204 anonymous unions. */
12205 if (DECL_NAME (decl
) != NULL_TREE
12206 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
)
12208 gen_type_die (member_declared_type (decl
), context_die
);
12209 gen_field_die (decl
, context_die
);
12214 gen_type_die (TREE_TYPE (decl
), context_die
);
12215 gen_formal_parameter_die (decl
, context_die
);
12218 case NAMESPACE_DECL
:
12219 /* Ignore for now. */
12223 if ((int)TREE_CODE (decl
) > NUM_TREE_CODES
)
12224 /* Probably some frontend-internal decl. Assume we don't care. */
12230 /* Add Ada "use" clause information for SGI Workshop debugger. */
12233 dwarf2out_add_library_unit_info (filename
, context_list
)
12234 const char *filename
;
12235 const char *context_list
;
12237 unsigned int file_index
;
12239 if (filename
!= NULL
)
12241 dw_die_ref unit_die
= new_die (DW_TAG_module
, comp_unit_die
, NULL
);
12242 tree context_list_decl
12243 = build_decl (LABEL_DECL
, get_identifier (context_list
),
12246 TREE_PUBLIC (context_list_decl
) = TRUE
;
12247 add_name_attribute (unit_die
, context_list
);
12248 file_index
= lookup_filename (filename
);
12249 add_AT_unsigned (unit_die
, DW_AT_decl_file
, file_index
);
12250 add_pubname (context_list_decl
, unit_die
);
12254 /* Output debug information for global decl DECL. Called from toplev.c after
12255 compilation proper has finished. */
12258 dwarf2out_global_decl (decl
)
12261 /* Output DWARF2 information for file-scope tentative data object
12262 declarations, file-scope (extern) function declarations (which had no
12263 corresponding body) and file-scope tagged type declarations and
12264 definitions which have not yet been forced out. */
12265 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
12266 dwarf2out_decl (decl
);
12269 /* Write the debugging output for DECL. */
12272 dwarf2out_decl (decl
)
12275 dw_die_ref context_die
= comp_unit_die
;
12277 switch (TREE_CODE (decl
))
12282 case FUNCTION_DECL
:
12283 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12284 builtin function. Explicit programmer-supplied declarations of
12285 these same functions should NOT be ignored however. */
12286 if (DECL_EXTERNAL (decl
) && DECL_BUILT_IN (decl
))
12289 /* What we would really like to do here is to filter out all mere
12290 file-scope declarations of file-scope functions which are never
12291 referenced later within this translation unit (and keep all of ones
12292 that *are* referenced later on) but we aren't clairvoyant, so we have
12293 no idea which functions will be referenced in the future (i.e. later
12294 on within the current translation unit). So here we just ignore all
12295 file-scope function declarations which are not also definitions. If
12296 and when the debugger needs to know something about these functions,
12297 it will have to hunt around and find the DWARF information associated
12298 with the definition of the function.
12300 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12301 nodes represent definitions and which ones represent mere
12302 declarations. We have to check DECL_INITIAL instead. That's because
12303 the C front-end supports some weird semantics for "extern inline"
12304 function definitions. These can get inlined within the current
12305 translation unit (an thus, we need to generate Dwarf info for their
12306 abstract instances so that the Dwarf info for the concrete inlined
12307 instances can have something to refer to) but the compiler never
12308 generates any out-of-lines instances of such things (despite the fact
12309 that they *are* definitions).
12311 The important point is that the C front-end marks these "extern
12312 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12313 them anyway. Note that the C++ front-end also plays some similar games
12314 for inline function definitions appearing within include files which
12315 also contain `#pragma interface' pragmas. */
12316 if (DECL_INITIAL (decl
) == NULL_TREE
)
12319 /* If we're a nested function, initially use a parent of NULL; if we're
12320 a plain function, this will be fixed up in decls_for_scope. If
12321 we're a method, it will be ignored, since we already have a DIE. */
12322 if (decl_function_context (decl
)
12323 /* But if we're in terse mode, we don't care about scope. */
12324 && debug_info_level
> DINFO_LEVEL_TERSE
)
12325 context_die
= NULL
;
12329 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12330 declaration and if the declaration was never even referenced from
12331 within this entire compilation unit. We suppress these DIEs in
12332 order to save space in the .debug section (by eliminating entries
12333 which are probably useless). Note that we must not suppress
12334 block-local extern declarations (whether used or not) because that
12335 would screw-up the debugger's name lookup mechanism and cause it to
12336 miss things which really ought to be in scope at a given point. */
12337 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
12340 /* If we are in terse mode, don't generate any DIEs to represent any
12341 variable declarations or definitions. */
12342 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12347 /* Don't emit stubs for types unless they are needed by other DIEs. */
12348 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
12351 /* Don't bother trying to generate any DIEs to represent any of the
12352 normal built-in types for the language we are compiling. */
12353 if (DECL_SOURCE_LINE (decl
) == 0)
12355 /* OK, we need to generate one for `bool' so GDB knows what type
12356 comparisons have. */
12357 if ((get_AT_unsigned (comp_unit_die
, DW_AT_language
)
12358 == DW_LANG_C_plus_plus
)
12359 && TREE_CODE (TREE_TYPE (decl
)) == BOOLEAN_TYPE
12360 && ! DECL_IGNORED_P (decl
))
12361 modified_type_die (TREE_TYPE (decl
), 0, 0, NULL
);
12366 /* If we are in terse mode, don't generate any DIEs for types. */
12367 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12370 /* If we're a function-scope tag, initially use a parent of NULL;
12371 this will be fixed up in decls_for_scope. */
12372 if (decl_function_context (decl
))
12373 context_die
= NULL
;
12381 gen_decl_die (decl
, context_die
);
12384 /* Output a marker (i.e. a label) for the beginning of the generated code for
12385 a lexical block. */
12388 dwarf2out_begin_block (line
, blocknum
)
12389 unsigned int line ATTRIBUTE_UNUSED
;
12390 unsigned int blocknum
;
12392 function_section (current_function_decl
);
12393 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
12396 /* Output a marker (i.e. a label) for the end of the generated code for a
12400 dwarf2out_end_block (line
, blocknum
)
12401 unsigned int line ATTRIBUTE_UNUSED
;
12402 unsigned int blocknum
;
12404 function_section (current_function_decl
);
12405 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
12408 /* Returns nonzero if it is appropriate not to emit any debugging
12409 information for BLOCK, because it doesn't contain any instructions.
12411 Don't allow this for blocks with nested functions or local classes
12412 as we would end up with orphans, and in the presence of scheduling
12413 we may end up calling them anyway. */
12416 dwarf2out_ignore_block (block
)
12421 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
12422 if (TREE_CODE (decl
) == FUNCTION_DECL
12423 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
12429 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12430 dwarf2out.c) and return its "index". The index of each (known) filename is
12431 just a unique number which is associated with only that one filename. We
12432 need such numbers for the sake of generating labels (in the .debug_sfnames
12433 section) and references to those files numbers (in the .debug_srcinfo
12434 and.debug_macinfo sections). If the filename given as an argument is not
12435 found in our current list, add it to the list and assign it the next
12436 available unique index number. In order to speed up searches, we remember
12437 the index of the filename was looked up last. This handles the majority of
12441 lookup_filename (file_name
)
12442 const char *file_name
;
12445 char *save_file_name
;
12447 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
12448 if (strcmp (file_name
, "<internal>") == 0
12449 || strcmp (file_name
, "<built-in>") == 0)
12452 /* Check to see if the file name that was searched on the previous
12453 call matches this file name. If so, return the index. */
12454 if (file_table_last_lookup_index
!= 0)
12457 = VARRAY_CHAR_PTR (file_table
, file_table_last_lookup_index
);
12458 if (strcmp (file_name
, last
) == 0)
12459 return file_table_last_lookup_index
;
12462 /* Didn't match the previous lookup, search the table */
12463 n
= VARRAY_ACTIVE_SIZE (file_table
);
12464 for (i
= 1; i
< n
; i
++)
12465 if (strcmp (file_name
, VARRAY_CHAR_PTR (file_table
, i
)) == 0)
12467 file_table_last_lookup_index
= i
;
12471 /* Add the new entry to the end of the filename table. */
12472 file_table_last_lookup_index
= n
;
12473 save_file_name
= (char *) ggc_strdup (file_name
);
12474 VARRAY_PUSH_CHAR_PTR (file_table
, save_file_name
);
12475 VARRAY_PUSH_UINT (file_table_emitted
, 0);
12481 maybe_emit_file (fileno
)
12484 static int emitcount
= 0;
12485 if (DWARF2_ASM_LINE_DEBUG_INFO
&& fileno
> 0)
12487 if (!VARRAY_UINT (file_table_emitted
, fileno
))
12489 VARRAY_UINT (file_table_emitted
, fileno
) = ++emitcount
;
12490 fprintf (asm_out_file
, "\t.file %u ",
12491 VARRAY_UINT (file_table_emitted
, fileno
));
12492 output_quoted_string (asm_out_file
,
12493 VARRAY_CHAR_PTR (file_table
, fileno
));
12494 fputc ('\n', asm_out_file
);
12496 return VARRAY_UINT (file_table_emitted
, fileno
);
12505 /* Allocate the initial hunk of the file_table. */
12506 VARRAY_CHAR_PTR_INIT (file_table
, 64, "file_table");
12507 VARRAY_UINT_INIT (file_table_emitted
, 64, "file_table_emitted");
12509 /* Skip the first entry - file numbers begin at 1. */
12510 VARRAY_PUSH_CHAR_PTR (file_table
, NULL
);
12511 VARRAY_PUSH_UINT (file_table_emitted
, 0);
12512 file_table_last_lookup_index
= 0;
12515 /* Output a label to mark the beginning of a source code line entry
12516 and record information relating to this source line, in
12517 'line_info_table' for later output of the .debug_line section. */
12520 dwarf2out_source_line (line
, filename
)
12522 const char *filename
;
12524 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
12526 function_section (current_function_decl
);
12528 /* If requested, emit something human-readable. */
12529 if (flag_debug_asm
)
12530 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
12533 if (DWARF2_ASM_LINE_DEBUG_INFO
)
12535 unsigned file_num
= lookup_filename (filename
);
12537 file_num
= maybe_emit_file (file_num
);
12539 /* Emit the .loc directive understood by GNU as. */
12540 fprintf (asm_out_file
, "\t.loc %d %d 0\n", file_num
, line
);
12542 /* Indicate that line number info exists. */
12543 line_info_table_in_use
++;
12545 /* Indicate that multiple line number tables exist. */
12546 if (DECL_SECTION_NAME (current_function_decl
))
12547 separate_line_info_table_in_use
++;
12549 else if (DECL_SECTION_NAME (current_function_decl
))
12551 dw_separate_line_info_ref line_info
;
12552 (*targetm
.asm_out
.internal_label
) (asm_out_file
, SEPARATE_LINE_CODE_LABEL
,
12553 separate_line_info_table_in_use
);
12555 /* expand the line info table if necessary */
12556 if (separate_line_info_table_in_use
12557 == separate_line_info_table_allocated
)
12559 separate_line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
12560 separate_line_info_table
12561 = (dw_separate_line_info_ref
)
12562 ggc_realloc (separate_line_info_table
,
12563 separate_line_info_table_allocated
12564 * sizeof (dw_separate_line_info_entry
));
12565 memset ((separate_line_info_table
12566 + separate_line_info_table_in_use
),
12568 (LINE_INFO_TABLE_INCREMENT
12569 * sizeof (dw_separate_line_info_entry
)));
12572 /* Add the new entry at the end of the line_info_table. */
12574 = &separate_line_info_table
[separate_line_info_table_in_use
++];
12575 line_info
->dw_file_num
= lookup_filename (filename
);
12576 line_info
->dw_line_num
= line
;
12577 line_info
->function
= current_function_funcdef_no
;
12581 dw_line_info_ref line_info
;
12583 (*targetm
.asm_out
.internal_label
) (asm_out_file
, LINE_CODE_LABEL
,
12584 line_info_table_in_use
);
12586 /* Expand the line info table if necessary. */
12587 if (line_info_table_in_use
== line_info_table_allocated
)
12589 line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
12591 = ggc_realloc (line_info_table
,
12592 (line_info_table_allocated
12593 * sizeof (dw_line_info_entry
)));
12594 memset (line_info_table
+ line_info_table_in_use
, 0,
12595 LINE_INFO_TABLE_INCREMENT
* sizeof (dw_line_info_entry
));
12598 /* Add the new entry at the end of the line_info_table. */
12599 line_info
= &line_info_table
[line_info_table_in_use
++];
12600 line_info
->dw_file_num
= lookup_filename (filename
);
12601 line_info
->dw_line_num
= line
;
12606 /* Record the beginning of a new source file. */
12609 dwarf2out_start_source_file (lineno
, filename
)
12610 unsigned int lineno
;
12611 const char *filename
;
12613 if (flag_eliminate_dwarf2_dups
&& !is_main_source
)
12615 /* Record the beginning of the file for break_out_includes. */
12616 dw_die_ref bincl_die
;
12618 bincl_die
= new_die (DW_TAG_GNU_BINCL
, comp_unit_die
, NULL
);
12619 add_AT_string (bincl_die
, DW_AT_name
, filename
);
12622 is_main_source
= 0;
12624 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12626 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12627 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
12628 dw2_asm_output_data_uleb128 (lineno
, "Included from line number %d",
12630 maybe_emit_file (lookup_filename (filename
));
12631 dw2_asm_output_data_uleb128 (lookup_filename (filename
),
12632 "Filename we just started");
12636 /* Record the end of a source file. */
12639 dwarf2out_end_source_file (lineno
)
12640 unsigned int lineno ATTRIBUTE_UNUSED
;
12642 if (flag_eliminate_dwarf2_dups
)
12643 /* Record the end of the file for break_out_includes. */
12644 new_die (DW_TAG_GNU_EINCL
, comp_unit_die
, NULL
);
12646 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12648 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12649 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
12653 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12654 the tail part of the directive line, i.e. the part which is past the
12655 initial whitespace, #, whitespace, directive-name, whitespace part. */
12658 dwarf2out_define (lineno
, buffer
)
12659 unsigned lineno ATTRIBUTE_UNUSED
;
12660 const char *buffer ATTRIBUTE_UNUSED
;
12662 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12664 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12665 dw2_asm_output_data (1, DW_MACINFO_define
, "Define macro");
12666 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
12667 dw2_asm_output_nstring (buffer
, -1, "The macro");
12671 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12672 the tail part of the directive line, i.e. the part which is past the
12673 initial whitespace, #, whitespace, directive-name, whitespace part. */
12676 dwarf2out_undef (lineno
, buffer
)
12677 unsigned lineno ATTRIBUTE_UNUSED
;
12678 const char *buffer ATTRIBUTE_UNUSED
;
12680 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12682 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12683 dw2_asm_output_data (1, DW_MACINFO_undef
, "Undefine macro");
12684 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
12685 dw2_asm_output_nstring (buffer
, -1, "The macro");
12689 /* Set up for Dwarf output at the start of compilation. */
12692 dwarf2out_init (input_filename
)
12693 const char *input_filename ATTRIBUTE_UNUSED
;
12695 init_file_table ();
12697 /* Allocate the initial hunk of the decl_die_table. */
12698 decl_die_table
= ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12699 * sizeof (dw_die_ref
));
12700 decl_die_table_allocated
= DECL_DIE_TABLE_INCREMENT
;
12701 decl_die_table_in_use
= 0;
12703 /* Allocate the initial hunk of the decl_scope_table. */
12704 VARRAY_TREE_INIT (decl_scope_table
, 256, "decl_scope_table");
12706 /* Allocate the initial hunk of the abbrev_die_table. */
12707 abbrev_die_table
= ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12708 * sizeof (dw_die_ref
));
12709 abbrev_die_table_allocated
= ABBREV_DIE_TABLE_INCREMENT
;
12710 /* Zero-th entry is allocated, but unused */
12711 abbrev_die_table_in_use
= 1;
12713 /* Allocate the initial hunk of the line_info_table. */
12714 line_info_table
= ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12715 * sizeof (dw_line_info_entry
));
12716 line_info_table_allocated
= LINE_INFO_TABLE_INCREMENT
;
12718 /* Zero-th entry is allocated, but unused */
12719 line_info_table_in_use
= 1;
12721 /* Generate the initial DIE for the .debug section. Note that the (string)
12722 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12723 will (typically) be a relative pathname and that this pathname should be
12724 taken as being relative to the directory from which the compiler was
12725 invoked when the given (base) source file was compiled. We will fill
12726 in this value in dwarf2out_finish. */
12727 comp_unit_die
= gen_compile_unit_die (NULL
);
12728 is_main_source
= 1;
12730 VARRAY_TREE_INIT (incomplete_types
, 64, "incomplete_types");
12732 VARRAY_RTX_INIT (used_rtx_varray
, 32, "used_rtx_varray");
12734 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
12735 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
12736 DEBUG_ABBREV_SECTION_LABEL
, 0);
12737 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
12738 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
12740 strcpy (text_section_label
, stripattributes (TEXT_SECTION_NAME
));
12742 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
12743 DEBUG_INFO_SECTION_LABEL
, 0);
12744 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
12745 DEBUG_LINE_SECTION_LABEL
, 0);
12746 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
12747 DEBUG_RANGES_SECTION_LABEL
, 0);
12748 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
12749 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
12750 named_section_flags (DEBUG_INFO_SECTION
, SECTION_DEBUG
);
12751 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
12752 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
12753 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
12755 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12757 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12758 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
12759 DEBUG_MACINFO_SECTION_LABEL
, 0);
12760 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
12763 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
12766 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
12770 /* A helper function for dwarf2out_finish called through
12771 ht_forall. Emit one queued .debug_str string. */
12774 output_indirect_string (h
, v
)
12776 void *v ATTRIBUTE_UNUSED
;
12778 struct indirect_string_node
*node
= (struct indirect_string_node
*) *h
;
12780 if (node
->form
== DW_FORM_strp
)
12782 named_section_flags (DEBUG_STR_SECTION
, DEBUG_STR_SECTION_FLAGS
);
12783 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
12784 assemble_string (node
->str
, strlen (node
->str
) + 1);
12792 /* Clear the marks for a die and its children.
12793 Be cool if the mark isn't set. */
12796 prune_unmark_dies (die
)
12801 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
12802 prune_unmark_dies (c
);
12806 /* Given DIE that we're marking as used, find any other dies
12807 it references as attributes and mark them as used. */
12810 prune_unused_types_walk_attribs (die
)
12815 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
12817 if (a
->dw_attr_val
.val_class
== dw_val_class_die_ref
)
12819 /* A reference to another DIE.
12820 Make sure that it will get emitted. */
12821 prune_unused_types_mark (a
->dw_attr_val
.v
.val_die_ref
.die
, 1);
12823 else if (a
->dw_attr
== DW_AT_decl_file
)
12825 /* A reference to a file. Make sure the file name is emitted. */
12826 a
->dw_attr_val
.v
.val_unsigned
=
12827 maybe_emit_file (a
->dw_attr_val
.v
.val_unsigned
);
12833 /* Mark DIE as being used. If DOKIDS is true, then walk down
12834 to DIE's children. */
12837 prune_unused_types_mark (die
, dokids
)
12843 if (die
->die_mark
== 0)
12845 /* We haven't done this node yet. Mark it as used. */
12848 /* We also have to mark its parents as used.
12849 (But we don't want to mark our parents' kids due to this.) */
12850 if (die
->die_parent
)
12851 prune_unused_types_mark (die
->die_parent
, 0);
12853 /* Mark any referenced nodes. */
12854 prune_unused_types_walk_attribs (die
);
12857 if (dokids
&& die
->die_mark
!= 2)
12859 /* We need to walk the children, but haven't done so yet.
12860 Remember that we've walked the kids. */
12864 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
12866 /* If this is an array type, we need to make sure our
12867 kids get marked, even if they're types. */
12868 if (die
->die_tag
== DW_TAG_array_type
)
12869 prune_unused_types_mark (c
, 1);
12871 prune_unused_types_walk (c
);
12877 /* Walk the tree DIE and mark types that we actually use. */
12880 prune_unused_types_walk (die
)
12885 /* Don't do anything if this node is already marked. */
12889 switch (die
->die_tag
) {
12890 case DW_TAG_const_type
:
12891 case DW_TAG_packed_type
:
12892 case DW_TAG_pointer_type
:
12893 case DW_TAG_reference_type
:
12894 case DW_TAG_volatile_type
:
12895 case DW_TAG_typedef
:
12896 case DW_TAG_array_type
:
12897 case DW_TAG_structure_type
:
12898 case DW_TAG_union_type
:
12899 case DW_TAG_class_type
:
12900 case DW_TAG_friend
:
12901 case DW_TAG_variant_part
:
12902 case DW_TAG_enumeration_type
:
12903 case DW_TAG_subroutine_type
:
12904 case DW_TAG_string_type
:
12905 case DW_TAG_set_type
:
12906 case DW_TAG_subrange_type
:
12907 case DW_TAG_ptr_to_member_type
:
12908 case DW_TAG_file_type
:
12909 /* It's a type node --- don't mark it. */
12913 /* Mark everything else. */
12919 /* Now, mark any dies referenced from here. */
12920 prune_unused_types_walk_attribs (die
);
12922 /* Mark children. */
12923 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
12924 prune_unused_types_walk (c
);
12928 /* Remove from the tree DIE any dies that aren't marked. */
12931 prune_unused_types_prune (die
)
12934 dw_die_ref c
, p
, n
;
12935 if (!die
->die_mark
)
12939 for (c
= die
->die_child
; c
; c
= n
)
12944 prune_unused_types_prune (c
);
12952 die
->die_child
= n
;
12959 /* Remove dies representing declarations that we never use. */
12962 prune_unused_types ()
12965 limbo_die_node
*node
;
12967 /* Clear all the marks. */
12968 prune_unmark_dies (comp_unit_die
);
12969 for (node
= limbo_die_list
; node
; node
= node
->next
)
12970 prune_unmark_dies (node
->die
);
12972 /* Set the mark on nodes that are actually used. */
12973 prune_unused_types_walk (comp_unit_die
);
12974 for (node
= limbo_die_list
; node
; node
= node
->next
)
12975 prune_unused_types_walk (node
->die
);
12977 /* Also set the mark on nodes referenced from the
12978 pubname_table or arange_table. */
12979 for (i
= 0; i
< pubname_table_in_use
; i
++)
12980 prune_unused_types_mark (pubname_table
[i
].die
, 1);
12981 for (i
= 0; i
< arange_table_in_use
; i
++)
12982 prune_unused_types_mark (arange_table
[i
], 1);
12984 /* Get rid of nodes that aren't marked. */
12985 prune_unused_types_prune (comp_unit_die
);
12986 for (node
= limbo_die_list
; node
; node
= node
->next
)
12987 prune_unused_types_prune (node
->die
);
12989 /* Leave the marks clear. */
12990 prune_unmark_dies (comp_unit_die
);
12991 for (node
= limbo_die_list
; node
; node
= node
->next
)
12992 prune_unmark_dies (node
->die
);
12995 /* Output stuff that dwarf requires at the end of every file,
12996 and generate the DWARF-2 debugging info. */
12999 dwarf2out_finish (input_filename
)
13000 const char *input_filename
;
13002 limbo_die_node
*node
, *next_node
;
13003 dw_die_ref die
= 0;
13005 /* Add the name for the main input file now. We delayed this from
13006 dwarf2out_init to avoid complications with PCH. */
13007 add_name_attribute (comp_unit_die
, input_filename
);
13008 if (input_filename
[0] != DIR_SEPARATOR
)
13009 add_comp_dir_attribute (comp_unit_die
);
13010 else if (get_AT (comp_unit_die
, DW_AT_comp_dir
) == NULL
)
13013 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
13014 if (VARRAY_CHAR_PTR (file_table
, i
)[0] != DIR_SEPARATOR
)
13016 add_comp_dir_attribute (comp_unit_die
);
13021 /* Traverse the limbo die list, and add parent/child links. The only
13022 dies without parents that should be here are concrete instances of
13023 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13024 For concrete instances, we can get the parent die from the abstract
13026 for (node
= limbo_die_list
; node
; node
= next_node
)
13028 next_node
= node
->next
;
13031 if (die
->die_parent
== NULL
)
13033 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
13037 add_child_die (origin
->die_parent
, die
);
13038 else if (die
== comp_unit_die
)
13040 /* If this was an expression for a bound involved in a function
13041 return type, it may be a SAVE_EXPR for which we weren't able
13042 to find a DIE previously. So try now. */
13043 else if (node
->created_for
13044 && TREE_CODE (node
->created_for
) == SAVE_EXPR
13045 && 0 != (origin
= (lookup_decl_die
13047 (node
->created_for
)))))
13048 add_child_die (origin
, die
);
13049 else if (errorcount
> 0 || sorrycount
> 0)
13050 /* It's OK to be confused by errors in the input. */
13051 add_child_die (comp_unit_die
, die
);
13052 else if (node
->created_for
13053 && ((DECL_P (node
->created_for
)
13054 && (context
= DECL_CONTEXT (node
->created_for
)))
13055 || (TYPE_P (node
->created_for
)
13056 && (context
= TYPE_CONTEXT (node
->created_for
))))
13057 && TREE_CODE (context
) == FUNCTION_DECL
)
13059 /* In certain situations, the lexical block containing a
13060 nested function can be optimized away, which results
13061 in the nested function die being orphaned. Likewise
13062 with the return type of that nested function. Force
13063 this to be a child of the containing function. */
13064 origin
= lookup_decl_die (context
);
13067 add_child_die (origin
, die
);
13074 limbo_die_list
= NULL
;
13076 /* Walk through the list of incomplete types again, trying once more to
13077 emit full debugging info for them. */
13078 retry_incomplete_types ();
13080 /* We need to reverse all the dies before break_out_includes, or
13081 we'll see the end of an include file before the beginning. */
13082 reverse_all_dies (comp_unit_die
);
13084 if (flag_eliminate_unused_debug_types
)
13085 prune_unused_types ();
13087 /* Generate separate CUs for each of the include files we've seen.
13088 They will go into limbo_die_list. */
13089 if (flag_eliminate_dwarf2_dups
)
13090 break_out_includes (comp_unit_die
);
13092 /* Traverse the DIE's and add add sibling attributes to those DIE's
13093 that have children. */
13094 add_sibling_attributes (comp_unit_die
);
13095 for (node
= limbo_die_list
; node
; node
= node
->next
)
13096 add_sibling_attributes (node
->die
);
13098 /* Output a terminator label for the .text section. */
13100 (*targetm
.asm_out
.internal_label
) (asm_out_file
, TEXT_END_LABEL
, 0);
13102 /* Output the source line correspondence table. We must do this
13103 even if there is no line information. Otherwise, on an empty
13104 translation unit, we will generate a present, but empty,
13105 .debug_info section. IRIX 6.5 `nm' will then complain when
13106 examining the file. */
13107 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
13109 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
13110 output_line_info ();
13113 /* Output location list section if necessary. */
13114 if (have_location_lists
)
13116 /* Output the location lists info. */
13117 named_section_flags (DEBUG_LOC_SECTION
, SECTION_DEBUG
);
13118 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
,
13119 DEBUG_LOC_SECTION_LABEL
, 0);
13120 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
13121 output_location_lists (die
);
13122 have_location_lists
= 0;
13125 /* We can only use the low/high_pc attributes if all of the code was
13127 if (separate_line_info_table_in_use
== 0)
13129 add_AT_lbl_id (comp_unit_die
, DW_AT_low_pc
, text_section_label
);
13130 add_AT_lbl_id (comp_unit_die
, DW_AT_high_pc
, text_end_label
);
13133 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13134 "base address". Use zero so that these addresses become absolute. */
13135 else if (have_location_lists
|| ranges_table_in_use
)
13136 add_AT_addr (comp_unit_die
, DW_AT_entry_pc
, const0_rtx
);
13138 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
13139 add_AT_lbl_offset (comp_unit_die
, DW_AT_stmt_list
,
13140 debug_line_section_label
);
13142 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13143 add_AT_lbl_offset (comp_unit_die
, DW_AT_macro_info
, macinfo_section_label
);
13145 /* Output all of the compilation units. We put the main one last so that
13146 the offsets are available to output_pubnames. */
13147 for (node
= limbo_die_list
; node
; node
= node
->next
)
13148 output_comp_unit (node
->die
, 0);
13150 output_comp_unit (comp_unit_die
, 0);
13152 /* Output the abbreviation table. */
13153 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
13154 output_abbrev_section ();
13156 /* Output public names table if necessary. */
13157 if (pubname_table_in_use
)
13159 named_section_flags (DEBUG_PUBNAMES_SECTION
, SECTION_DEBUG
);
13160 output_pubnames ();
13163 /* Output the address range information. We only put functions in the arange
13164 table, so don't write it out if we don't have any. */
13165 if (fde_table_in_use
)
13167 named_section_flags (DEBUG_ARANGES_SECTION
, SECTION_DEBUG
);
13171 /* Output ranges section if necessary. */
13172 if (ranges_table_in_use
)
13174 named_section_flags (DEBUG_RANGES_SECTION
, SECTION_DEBUG
);
13175 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
13179 /* Have to end the primary source file. */
13180 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13182 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13183 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
13184 dw2_asm_output_data (1, 0, "End compilation unit");
13187 /* If we emitted any DW_FORM_strp form attribute, output the string
13189 if (debug_str_hash
)
13190 htab_traverse (debug_str_hash
, output_indirect_string
, NULL
);
13194 /* This should never be used, but its address is needed for comparisons. */
13195 const struct gcc_debug_hooks dwarf2_debug_hooks
;
13197 #endif /* DWARF2_DEBUGGING_INFO */
13199 #include "gt-dwarf2out.h"