1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 upto RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
170 for (i = 0; i < n; i++)
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
189 #include "coretypes.h"
194 #include "tree-flow.h"
196 #include "tree-data-ref.h"
197 #include "tree-scalar-evolution.h"
198 #include "tree-chrec.h"
200 #include "diagnostic.h"
201 #include "tree-pass.h"
202 #include "tree-affine.h"
203 #include "tree-inline.h"
205 /* The maximum number of iterations between the considered memory
208 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210 /* Data references (or phi nodes that carry data reference values across
213 typedef struct dref_d
215 /* The reference itself. */
216 struct data_reference
*ref
;
218 /* The statement in that the reference appears. */
221 /* In case that STMT is a phi node, this field is set to the SSA name
222 defined by it in replace_phis_by_defined_names (in order to avoid
223 pointing to phi node that got reallocated in the meantime). */
224 tree name_defined_by_phi
;
226 /* Distance of the reference from the root of the chain (in number of
227 iterations of the loop). */
230 /* Number of iterations offset from the first reference in the component. */
233 /* Number of the reference in a component, in dominance ordering. */
236 /* True if the memory reference is always accessed when the loop is
238 unsigned always_accessed
: 1;
242 DEF_VEC_ALLOC_P (dref
, heap
);
244 /* Type of the chain of the references. */
248 /* The addresses of the references in the chain are constant. */
251 /* There are only loads in the chain. */
254 /* Root of the chain is store, the rest are loads. */
257 /* A combination of two chains. */
261 /* Chains of data references. */
265 /* Type of the chain. */
266 enum chain_type type
;
268 /* For combination chains, the operator and the two chains that are
269 combined, and the type of the result. */
272 struct chain
*ch1
, *ch2
;
274 /* The references in the chain. */
275 VEC(dref
,heap
) *refs
;
277 /* The maximum distance of the reference in the chain from the root. */
280 /* The variables used to copy the value throughout iterations. */
281 VEC(tree
,heap
) *vars
;
283 /* Initializers for the variables. */
284 VEC(tree
,heap
) *inits
;
286 /* True if there is a use of a variable with the maximal distance
287 that comes after the root in the loop. */
288 unsigned has_max_use_after
: 1;
290 /* True if all the memory references in the chain are always accessed. */
291 unsigned all_always_accessed
: 1;
293 /* True if this chain was combined together with some other chain. */
294 unsigned combined
: 1;
298 DEF_VEC_ALLOC_P (chain_p
, heap
);
300 /* Describes the knowledge about the step of the memory references in
305 /* The step is zero. */
308 /* The step is nonzero. */
311 /* The step may or may not be nonzero. */
315 /* Components of the data dependence graph. */
319 /* The references in the component. */
320 VEC(dref
,heap
) *refs
;
322 /* What we know about the step of the references in the component. */
323 enum ref_step_type comp_step
;
325 /* Next component in the list. */
326 struct component
*next
;
329 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331 static bitmap looparound_phis
;
333 /* Cache used by tree_to_aff_combination_expand. */
335 static struct pointer_map_t
*name_expansions
;
337 /* Dumps data reference REF to FILE. */
339 extern void dump_dref (FILE *, dref
);
341 dump_dref (FILE *file
, dref ref
)
346 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
347 fprintf (file
, " (id %u%s)\n", ref
->pos
,
348 DR_IS_READ (ref
->ref
) ? "" : ", write");
350 fprintf (file
, " offset ");
351 dump_double_int (file
, ref
->offset
, false);
352 fprintf (file
, "\n");
354 fprintf (file
, " distance %u\n", ref
->distance
);
358 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
359 fprintf (file
, " looparound ref\n");
361 fprintf (file
, " combination ref\n");
362 fprintf (file
, " in statement ");
363 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
364 fprintf (file
, "\n");
365 fprintf (file
, " distance %u\n", ref
->distance
);
370 /* Dumps CHAIN to FILE. */
372 extern void dump_chain (FILE *, chain_p
);
374 dump_chain (FILE *file
, chain_p chain
)
377 const char *chain_type
;
384 chain_type
= "Load motion";
388 chain_type
= "Loads-only";
392 chain_type
= "Store-loads";
396 chain_type
= "Combination";
403 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
404 chain
->combined
? " (combined)" : "");
405 if (chain
->type
!= CT_INVARIANT
)
406 fprintf (file
, " max distance %u%s\n", chain
->length
,
407 chain
->has_max_use_after
? "" : ", may reuse first");
409 if (chain
->type
== CT_COMBINATION
)
411 fprintf (file
, " equal to %p %s %p in type ",
412 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
413 (void *) chain
->ch2
);
414 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
415 fprintf (file
, "\n");
420 fprintf (file
, " vars");
421 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
424 print_generic_expr (file
, var
, TDF_SLIM
);
426 fprintf (file
, "\n");
431 fprintf (file
, " inits");
432 for (i
= 0; VEC_iterate (tree
, chain
->inits
, i
, var
); i
++)
435 print_generic_expr (file
, var
, TDF_SLIM
);
437 fprintf (file
, "\n");
440 fprintf (file
, " references:\n");
441 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
444 fprintf (file
, "\n");
447 /* Dumps CHAINS to FILE. */
449 extern void dump_chains (FILE *, VEC (chain_p
, heap
) *);
451 dump_chains (FILE *file
, VEC (chain_p
, heap
) *chains
)
456 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
457 dump_chain (file
, chain
);
460 /* Dumps COMP to FILE. */
462 extern void dump_component (FILE *, struct component
*);
464 dump_component (FILE *file
, struct component
*comp
)
469 fprintf (file
, "Component%s:\n",
470 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
471 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
473 fprintf (file
, "\n");
476 /* Dumps COMPS to FILE. */
478 extern void dump_components (FILE *, struct component
*);
480 dump_components (FILE *file
, struct component
*comps
)
482 struct component
*comp
;
484 for (comp
= comps
; comp
; comp
= comp
->next
)
485 dump_component (file
, comp
);
488 /* Frees a chain CHAIN. */
491 release_chain (chain_p chain
)
499 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
502 VEC_free (dref
, heap
, chain
->refs
);
503 VEC_free (tree
, heap
, chain
->vars
);
504 VEC_free (tree
, heap
, chain
->inits
);
512 release_chains (VEC (chain_p
, heap
) *chains
)
517 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
518 release_chain (chain
);
519 VEC_free (chain_p
, heap
, chains
);
522 /* Frees a component COMP. */
525 release_component (struct component
*comp
)
527 VEC_free (dref
, heap
, comp
->refs
);
531 /* Frees list of components COMPS. */
534 release_components (struct component
*comps
)
536 struct component
*act
, *next
;
538 for (act
= comps
; act
; act
= next
)
541 release_component (act
);
545 /* Finds a root of tree given by FATHERS containing A, and performs path
549 component_of (unsigned fathers
[], unsigned a
)
553 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
556 for (; a
!= root
; a
= n
)
565 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
566 components, A and B are components to merge. */
569 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
571 unsigned ca
= component_of (fathers
, a
);
572 unsigned cb
= component_of (fathers
, b
);
577 if (sizes
[ca
] < sizes
[cb
])
579 sizes
[cb
] += sizes
[ca
];
584 sizes
[ca
] += sizes
[cb
];
589 /* Returns true if A is a reference that is suitable for predictive commoning
590 in the innermost loop that contains it. REF_STEP is set according to the
591 step of the reference A. */
594 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
596 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
599 || !is_gimple_reg_type (TREE_TYPE (ref
))
600 || tree_could_throw_p (ref
))
603 if (integer_zerop (step
))
604 *ref_step
= RS_INVARIANT
;
605 else if (integer_nonzerop (step
))
606 *ref_step
= RS_NONZERO
;
613 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
620 tree_to_aff_combination_expand (DR_OFFSET (dr
), sizetype
, offset
,
622 aff_combination_const (&delta
, sizetype
, tree_to_double_int (DR_INIT (dr
)));
623 aff_combination_add (offset
, &delta
);
626 /* Determines number of iterations of the innermost enclosing loop before B
627 refers to exactly the same location as A and stores it to OFF. If A and
628 B do not have the same step, they never meet, or anything else fails,
629 returns false, otherwise returns true. Both A and B are assumed to
630 satisfy suitable_reference_p. */
633 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
636 aff_tree diff
, baseb
, step
;
639 /* Check that both the references access the location in the same type. */
640 typea
= TREE_TYPE (DR_REF (a
));
641 typeb
= TREE_TYPE (DR_REF (b
));
642 if (!useless_type_conversion_p (typeb
, typea
))
645 /* Check whether the base address and the step of both references is the
647 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
648 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
651 if (integer_zerop (DR_STEP (a
)))
653 /* If the references have loop invariant address, check that they access
654 exactly the same location. */
655 *off
= double_int_zero
;
656 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
657 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
660 /* Compare the offsets of the addresses, and check whether the difference
661 is a multiple of step. */
662 aff_combination_dr_offset (a
, &diff
);
663 aff_combination_dr_offset (b
, &baseb
);
664 aff_combination_scale (&baseb
, double_int_minus_one
);
665 aff_combination_add (&diff
, &baseb
);
667 tree_to_aff_combination_expand (DR_STEP (a
), sizetype
,
668 &step
, &name_expansions
);
669 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
672 /* Returns the last basic block in LOOP for that we are sure that
673 it is executed whenever the loop is entered. */
676 last_always_executed_block (struct loop
*loop
)
679 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
681 basic_block last
= loop
->latch
;
683 for (i
= 0; VEC_iterate (edge
, exits
, i
, ex
); i
++)
684 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
685 VEC_free (edge
, heap
, exits
);
690 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
692 static struct component
*
693 split_data_refs_to_components (struct loop
*loop
,
694 VEC (data_reference_p
, heap
) *datarefs
,
695 VEC (ddr_p
, heap
) *depends
)
697 unsigned i
, n
= VEC_length (data_reference_p
, datarefs
);
698 unsigned ca
, ia
, ib
, bad
;
699 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
700 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
701 struct component
**comps
;
702 struct data_reference
*dr
, *dra
, *drb
;
703 struct data_dependence_relation
*ddr
;
704 struct component
*comp_list
= NULL
, *comp
;
706 basic_block last_always_executed
= last_always_executed_block (loop
);
708 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
712 /* A fake reference for call or asm_expr that may clobber memory;
716 dr
->aux
= (void *) (size_t) i
;
721 /* A component reserved for the "bad" data references. */
725 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
727 enum ref_step_type dummy
;
729 if (!suitable_reference_p (dr
, &dummy
))
731 ia
= (unsigned) (size_t) dr
->aux
;
732 merge_comps (comp_father
, comp_size
, n
, ia
);
736 for (i
= 0; VEC_iterate (ddr_p
, depends
, i
, ddr
); i
++)
738 double_int dummy_off
;
740 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
745 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
746 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
750 bad
= component_of (comp_father
, n
);
752 /* If both A and B are reads, we may ignore unsuitable dependences. */
753 if (DR_IS_READ (dra
) && DR_IS_READ (drb
)
754 && (ia
== bad
|| ib
== bad
755 || !determine_offset (dra
, drb
, &dummy_off
)))
758 merge_comps (comp_father
, comp_size
, ia
, ib
);
761 comps
= XCNEWVEC (struct component
*, n
);
762 bad
= component_of (comp_father
, n
);
763 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
765 ia
= (unsigned) (size_t) dr
->aux
;
766 ca
= component_of (comp_father
, ia
);
773 comp
= XCNEW (struct component
);
774 comp
->refs
= VEC_alloc (dref
, heap
, comp_size
[ca
]);
778 dataref
= XCNEW (struct dref_d
);
780 dataref
->stmt
= DR_STMT (dr
);
781 dataref
->offset
= double_int_zero
;
782 dataref
->distance
= 0;
784 dataref
->always_accessed
785 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
786 gimple_bb (dataref
->stmt
));
787 dataref
->pos
= VEC_length (dref
, comp
->refs
);
788 VEC_quick_push (dref
, comp
->refs
, dataref
);
791 for (i
= 0; i
< n
; i
++)
796 comp
->next
= comp_list
;
808 /* Returns true if the component COMP satisfies the conditions
809 described in 2) at the beginning of this file. LOOP is the current
813 suitable_component_p (struct loop
*loop
, struct component
*comp
)
817 basic_block ba
, bp
= loop
->header
;
818 bool ok
, has_write
= false;
820 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
822 ba
= gimple_bb (a
->stmt
);
824 if (!just_once_each_iteration_p (loop
, ba
))
827 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
830 if (!DR_IS_READ (a
->ref
))
834 first
= VEC_index (dref
, comp
->refs
, 0);
835 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
837 first
->offset
= double_int_zero
;
839 for (i
= 1; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
841 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
844 #ifdef ENABLE_CHECKING
846 enum ref_step_type a_step
;
847 ok
= suitable_reference_p (a
->ref
, &a_step
);
848 gcc_assert (ok
&& a_step
== comp
->comp_step
);
853 /* If there is a write inside the component, we must know whether the
854 step is nonzero or not -- we would not otherwise be able to recognize
855 whether the value accessed by reads comes from the OFFSET-th iteration
856 or the previous one. */
857 if (has_write
&& comp
->comp_step
== RS_ANY
)
863 /* Check the conditions on references inside each of components COMPS,
864 and remove the unsuitable components from the list. The new list
865 of components is returned. The conditions are described in 2) at
866 the beginning of this file. LOOP is the current loop. */
868 static struct component
*
869 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
871 struct component
**comp
, *act
;
873 for (comp
= &comps
; *comp
; )
876 if (suitable_component_p (loop
, act
))
884 for (i
= 0; VEC_iterate (dref
, act
->refs
, i
, ref
); i
++)
886 release_component (act
);
893 /* Compares two drefs A and B by their offset and position. Callback for
897 order_drefs (const void *a
, const void *b
)
899 const dref
*const da
= (const dref
*) a
;
900 const dref
*const db
= (const dref
*) b
;
901 int offcmp
= double_int_scmp ((*da
)->offset
, (*db
)->offset
);
906 return (*da
)->pos
- (*db
)->pos
;
909 /* Returns root of the CHAIN. */
912 get_chain_root (chain_p chain
)
914 return VEC_index (dref
, chain
->refs
, 0);
917 /* Adds REF to the chain CHAIN. */
920 add_ref_to_chain (chain_p chain
, dref ref
)
922 dref root
= get_chain_root (chain
);
925 gcc_assert (double_int_scmp (root
->offset
, ref
->offset
) <= 0);
926 dist
= double_int_add (ref
->offset
, double_int_neg (root
->offset
));
927 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
), dist
) <= 0)
932 gcc_assert (double_int_fits_in_uhwi_p (dist
));
934 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
936 ref
->distance
= double_int_to_uhwi (dist
);
938 if (ref
->distance
>= chain
->length
)
940 chain
->length
= ref
->distance
;
941 chain
->has_max_use_after
= false;
944 if (ref
->distance
== chain
->length
945 && ref
->pos
> root
->pos
)
946 chain
->has_max_use_after
= true;
948 chain
->all_always_accessed
&= ref
->always_accessed
;
951 /* Returns the chain for invariant component COMP. */
954 make_invariant_chain (struct component
*comp
)
956 chain_p chain
= XCNEW (struct chain
);
960 chain
->type
= CT_INVARIANT
;
962 chain
->all_always_accessed
= true;
964 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, ref
); i
++)
966 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
967 chain
->all_always_accessed
&= ref
->always_accessed
;
973 /* Make a new chain rooted at REF. */
976 make_rooted_chain (dref ref
)
978 chain_p chain
= XCNEW (struct chain
);
980 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
982 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
983 chain
->all_always_accessed
= ref
->always_accessed
;
990 /* Returns true if CHAIN is not trivial. */
993 nontrivial_chain_p (chain_p chain
)
995 return chain
!= NULL
&& VEC_length (dref
, chain
->refs
) > 1;
998 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 name_for_ref (dref ref
)
1006 if (is_gimple_assign (ref
->stmt
))
1008 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1009 name
= gimple_assign_lhs (ref
->stmt
);
1011 name
= gimple_assign_rhs1 (ref
->stmt
);
1014 name
= PHI_RESULT (ref
->stmt
);
1016 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1019 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1020 iterations of the innermost enclosing loop). */
1023 valid_initializer_p (struct data_reference
*ref
,
1024 unsigned distance
, struct data_reference
*root
)
1026 aff_tree diff
, base
, step
;
1029 /* Both REF and ROOT must be accessing the same object. */
1030 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1033 /* The initializer is defined outside of loop, hence its address must be
1034 invariant inside the loop. */
1035 gcc_assert (integer_zerop (DR_STEP (ref
)));
1037 /* If the address of the reference is invariant, initializer must access
1038 exactly the same location. */
1039 if (integer_zerop (DR_STEP (root
)))
1040 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1041 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1043 /* Verify that this index of REF is equal to the root's index at
1044 -DISTANCE-th iteration. */
1045 aff_combination_dr_offset (root
, &diff
);
1046 aff_combination_dr_offset (ref
, &base
);
1047 aff_combination_scale (&base
, double_int_minus_one
);
1048 aff_combination_add (&diff
, &base
);
1050 tree_to_aff_combination_expand (DR_STEP (root
), sizetype
, &step
,
1052 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1055 if (!double_int_equal_p (off
, uhwi_to_double_int (distance
)))
1061 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1062 initial value is correct (equal to initial value of REF shifted by one
1063 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1064 is the root of the current chain. */
1067 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1069 tree name
, init
, init_ref
;
1070 gimple phi
= NULL
, init_stmt
;
1071 edge latch
= loop_latch_edge (loop
);
1072 struct data_reference init_dr
;
1073 gimple_stmt_iterator psi
;
1075 if (is_gimple_assign (ref
->stmt
))
1077 if (DR_IS_READ (ref
->ref
))
1078 name
= gimple_assign_lhs (ref
->stmt
);
1080 name
= gimple_assign_rhs1 (ref
->stmt
);
1083 name
= PHI_RESULT (ref
->stmt
);
1087 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1089 phi
= gsi_stmt (psi
);
1090 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1094 if (gsi_end_p (psi
))
1097 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1098 if (TREE_CODE (init
) != SSA_NAME
)
1100 init_stmt
= SSA_NAME_DEF_STMT (init
);
1101 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1103 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1105 init_ref
= gimple_assign_rhs1 (init_stmt
);
1106 if (!REFERENCE_CLASS_P (init_ref
)
1107 && !DECL_P (init_ref
))
1110 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1111 loop enclosing PHI). */
1112 memset (&init_dr
, 0, sizeof (struct data_reference
));
1113 DR_REF (&init_dr
) = init_ref
;
1114 DR_STMT (&init_dr
) = phi
;
1115 if (!dr_analyze_innermost (&init_dr
))
1118 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1124 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1127 insert_looparound_copy (chain_p chain
, dref ref
, gimple phi
)
1129 dref nw
= XCNEW (struct dref_d
), aref
;
1133 nw
->distance
= ref
->distance
+ 1;
1134 nw
->always_accessed
= 1;
1136 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, aref
); i
++)
1137 if (aref
->distance
>= nw
->distance
)
1139 VEC_safe_insert (dref
, heap
, chain
->refs
, i
, nw
);
1141 if (nw
->distance
> chain
->length
)
1143 chain
->length
= nw
->distance
;
1144 chain
->has_max_use_after
= false;
1148 /* For references in CHAIN that are copied around the LOOP (created previously
1149 by PRE, or by user), add the results of such copies to the chain. This
1150 enables us to remove the copies by unrolling, and may need less registers
1151 (also, it may allow us to combine chains together). */
1154 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1157 dref ref
, root
= get_chain_root (chain
);
1160 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
1162 phi
= find_looparound_phi (loop
, ref
, root
);
1166 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1167 insert_looparound_copy (chain
, ref
, phi
);
1171 /* Find roots of the values and determine distances in the component COMP.
1172 The references are redistributed into CHAINS. LOOP is the current
1176 determine_roots_comp (struct loop
*loop
,
1177 struct component
*comp
,
1178 VEC (chain_p
, heap
) **chains
)
1182 chain_p chain
= NULL
;
1183 double_int last_ofs
= double_int_zero
;
1185 /* Invariants are handled specially. */
1186 if (comp
->comp_step
== RS_INVARIANT
)
1188 chain
= make_invariant_chain (comp
);
1189 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1193 qsort (VEC_address (dref
, comp
->refs
), VEC_length (dref
, comp
->refs
),
1194 sizeof (dref
), order_drefs
);
1196 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
1198 if (!chain
|| !DR_IS_READ (a
->ref
)
1199 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
),
1200 double_int_add (a
->offset
,
1201 double_int_neg (last_ofs
))) <= 0)
1203 if (nontrivial_chain_p (chain
))
1205 add_looparound_copies (loop
, chain
);
1206 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1209 release_chain (chain
);
1210 chain
= make_rooted_chain (a
);
1211 last_ofs
= a
->offset
;
1215 add_ref_to_chain (chain
, a
);
1218 if (nontrivial_chain_p (chain
))
1220 add_looparound_copies (loop
, chain
);
1221 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1224 release_chain (chain
);
1227 /* Find roots of the values and determine distances in components COMPS, and
1228 separates the references to CHAINS. LOOP is the current loop. */
1231 determine_roots (struct loop
*loop
,
1232 struct component
*comps
, VEC (chain_p
, heap
) **chains
)
1234 struct component
*comp
;
1236 for (comp
= comps
; comp
; comp
= comp
->next
)
1237 determine_roots_comp (loop
, comp
, chains
);
1240 /* Replace the reference in statement STMT with temporary variable
1241 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1242 the reference in the statement. IN_LHS is true if the reference
1243 is in the lhs of STMT, false if it is in rhs. */
1246 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1250 gimple_stmt_iterator bsi
, psi
;
1252 if (gimple_code (stmt
) == GIMPLE_PHI
)
1254 gcc_assert (!in_lhs
&& !set
);
1256 val
= PHI_RESULT (stmt
);
1257 bsi
= gsi_after_labels (gimple_bb (stmt
));
1258 psi
= gsi_for_stmt (stmt
);
1259 remove_phi_node (&psi
, false);
1261 /* Turn the phi node into GIMPLE_ASSIGN. */
1262 new_stmt
= gimple_build_assign (val
, new_tree
);
1263 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1267 /* Since the reference is of gimple_reg type, it should only
1268 appear as lhs or rhs of modify statement. */
1269 gcc_assert (is_gimple_assign (stmt
));
1271 bsi
= gsi_for_stmt (stmt
);
1273 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1276 gcc_assert (!in_lhs
);
1277 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1278 stmt
= gsi_stmt (bsi
);
1285 /* We have statement
1289 If OLD is a memory reference, then VAL is gimple_val, and we transform
1295 Otherwise, we are replacing a combination chain,
1296 VAL is the expression that performs the combination, and OLD is an
1297 SSA name. In this case, we transform the assignment to
1304 val
= gimple_assign_lhs (stmt
);
1305 if (TREE_CODE (val
) != SSA_NAME
)
1307 gcc_assert (gimple_assign_copy_p (stmt
));
1308 val
= gimple_assign_rhs1 (stmt
);
1320 val
= gimple_assign_lhs (stmt
);
1323 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1324 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1327 /* Returns the reference to the address of REF in the ITER-th iteration of
1328 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1329 try to preserve the original shape of the reference (not rewrite it
1330 as an indirect ref to the address), to make tree_could_trap_p in
1331 prepare_initializers_chain return false more often. */
1334 ref_at_iteration (struct loop
*loop
, tree ref
, int iter
)
1336 tree idx
, *idx_p
, type
, val
, op0
= NULL_TREE
, ret
;
1340 if (handled_component_p (ref
))
1342 op0
= ref_at_iteration (loop
, TREE_OPERAND (ref
, 0), iter
);
1346 else if (!INDIRECT_REF_P (ref
))
1347 return unshare_expr (ref
);
1349 if (INDIRECT_REF_P (ref
))
1351 /* Take care for INDIRECT_REF and MISALIGNED_INDIRECT_REF at
1353 ret
= copy_node (ref
);
1354 idx
= TREE_OPERAND (ref
, 0);
1355 idx_p
= &TREE_OPERAND (ret
, 0);
1357 else if (TREE_CODE (ref
) == COMPONENT_REF
)
1359 /* Check that the offset is loop invariant. */
1360 if (TREE_OPERAND (ref
, 2)
1361 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1364 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), op0
,
1365 unshare_expr (TREE_OPERAND (ref
, 1)),
1366 unshare_expr (TREE_OPERAND (ref
, 2)));
1368 else if (TREE_CODE (ref
) == ARRAY_REF
)
1370 /* Check that the lower bound and the step are loop invariant. */
1371 if (TREE_OPERAND (ref
, 2)
1372 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1374 if (TREE_OPERAND (ref
, 3)
1375 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 3)))
1378 ret
= build4 (ARRAY_REF
, TREE_TYPE (ref
), op0
, NULL_TREE
,
1379 unshare_expr (TREE_OPERAND (ref
, 2)),
1380 unshare_expr (TREE_OPERAND (ref
, 3)));
1381 idx
= TREE_OPERAND (ref
, 1);
1382 idx_p
= &TREE_OPERAND (ret
, 1);
1387 ok
= simple_iv (loop
, loop
, idx
, &iv
, true);
1390 iv
.base
= expand_simple_operations (iv
.base
);
1391 if (integer_zerop (iv
.step
))
1392 *idx_p
= unshare_expr (iv
.base
);
1395 type
= TREE_TYPE (iv
.base
);
1396 if (POINTER_TYPE_P (type
))
1398 val
= fold_build2 (MULT_EXPR
, sizetype
, iv
.step
,
1400 val
= fold_build2 (POINTER_PLUS_EXPR
, type
, iv
.base
, val
);
1404 val
= fold_build2 (MULT_EXPR
, type
, iv
.step
,
1405 build_int_cst_type (type
, iter
));
1406 val
= fold_build2 (PLUS_EXPR
, type
, iv
.base
, val
);
1408 *idx_p
= unshare_expr (val
);
1414 /* Get the initialization expression for the INDEX-th temporary variable
1418 get_init_expr (chain_p chain
, unsigned index
)
1420 if (chain
->type
== CT_COMBINATION
)
1422 tree e1
= get_init_expr (chain
->ch1
, index
);
1423 tree e2
= get_init_expr (chain
->ch2
, index
);
1425 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1428 return VEC_index (tree
, chain
->inits
, index
);
1431 /* Marks all virtual operands of statement STMT for renaming. */
1434 mark_virtual_ops_for_renaming (gimple stmt
)
1438 if (gimple_code (stmt
) == GIMPLE_PHI
)
1440 var
= PHI_RESULT (stmt
);
1441 if (is_gimple_reg (var
))
1444 if (TREE_CODE (var
) == SSA_NAME
)
1445 var
= SSA_NAME_VAR (var
);
1446 mark_sym_for_renaming (var
);
1451 if (gimple_vuse (stmt
))
1452 mark_sym_for_renaming (gimple_vop (cfun
));
1455 /* Returns a new temporary variable used for the I-th variable carrying
1456 value of REF. The variable's uid is marked in TMP_VARS. */
1459 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1461 tree type
= TREE_TYPE (ref
);
1462 tree var
= create_tmp_var (type
, get_lsm_tmp_name (ref
, i
));
1464 /* We never access the components of the temporary variable in predictive
1466 if (TREE_CODE (type
) == COMPLEX_TYPE
1467 || TREE_CODE (type
) == VECTOR_TYPE
)
1468 DECL_GIMPLE_REG_P (var
) = 1;
1470 add_referenced_var (var
);
1471 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1475 /* Creates the variables for CHAIN, as well as phi nodes for them and
1476 initialization on entry to LOOP. Uids of the newly created
1477 temporary variables are marked in TMP_VARS. */
1480 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1483 unsigned n
= chain
->length
;
1484 dref root
= get_chain_root (chain
);
1485 bool reuse_first
= !chain
->has_max_use_after
;
1486 tree ref
, init
, var
, next
;
1489 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1491 /* If N == 0, then all the references are within the single iteration. And
1492 since this is an nonempty chain, reuse_first cannot be true. */
1493 gcc_assert (n
> 0 || !reuse_first
);
1495 chain
->vars
= VEC_alloc (tree
, heap
, n
+ 1);
1497 if (chain
->type
== CT_COMBINATION
)
1498 ref
= gimple_assign_lhs (root
->stmt
);
1500 ref
= DR_REF (root
->ref
);
1502 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1504 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1505 VEC_quick_push (tree
, chain
->vars
, var
);
1508 VEC_quick_push (tree
, chain
->vars
, VEC_index (tree
, chain
->vars
, 0));
1510 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
1511 VEC_replace (tree
, chain
->vars
, i
, make_ssa_name (var
, NULL
));
1513 for (i
= 0; i
< n
; i
++)
1515 var
= VEC_index (tree
, chain
->vars
, i
);
1516 next
= VEC_index (tree
, chain
->vars
, i
+ 1);
1517 init
= get_init_expr (chain
, i
);
1519 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1521 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1523 phi
= create_phi_node (var
, loop
->header
);
1524 SSA_NAME_DEF_STMT (var
) = phi
;
1525 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1526 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1530 /* Create the variables and initialization statement for root of chain
1531 CHAIN. Uids of the newly created temporary variables are marked
1535 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1537 dref root
= get_chain_root (chain
);
1538 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1539 || chain
->type
== CT_COMBINATION
);
1541 initialize_root_vars (loop
, chain
, tmp_vars
);
1542 replace_ref_with (root
->stmt
,
1543 VEC_index (tree
, chain
->vars
, chain
->length
),
1547 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1548 initialization on entry to LOOP if necessary. The ssa name for the variable
1549 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1550 around the loop is created. Uid of the newly created temporary variable
1551 is marked in TMP_VARS. INITS is the list containing the (single)
1555 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1556 VEC(tree
, heap
) **vars
, VEC(tree
, heap
) *inits
,
1560 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1563 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1565 /* Find the initializer for the variable, and check that it cannot
1567 init
= VEC_index (tree
, inits
, 0);
1569 *vars
= VEC_alloc (tree
, heap
, written
? 2 : 1);
1570 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1571 VEC_quick_push (tree
, *vars
, var
);
1573 VEC_quick_push (tree
, *vars
, VEC_index (tree
, *vars
, 0));
1575 for (i
= 0; VEC_iterate (tree
, *vars
, i
, var
); i
++)
1576 VEC_replace (tree
, *vars
, i
, make_ssa_name (var
, NULL
));
1578 var
= VEC_index (tree
, *vars
, 0);
1580 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1582 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1586 next
= VEC_index (tree
, *vars
, 1);
1587 phi
= create_phi_node (var
, loop
->header
);
1588 SSA_NAME_DEF_STMT (var
) = phi
;
1589 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1590 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1594 gimple init_stmt
= gimple_build_assign (var
, init
);
1595 mark_virtual_ops_for_renaming (init_stmt
);
1596 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1601 /* Execute load motion for references in chain CHAIN. Uids of the newly
1602 created temporary variables are marked in TMP_VARS. */
1605 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1607 VEC (tree
, heap
) *vars
;
1609 unsigned n_writes
= 0, ridx
, i
;
1612 gcc_assert (chain
->type
== CT_INVARIANT
);
1613 gcc_assert (!chain
->combined
);
1614 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1615 if (!DR_IS_READ (a
->ref
))
1618 /* If there are no reads in the loop, there is nothing to do. */
1619 if (n_writes
== VEC_length (dref
, chain
->refs
))
1622 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1623 &vars
, chain
->inits
, tmp_vars
);
1626 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1628 bool is_read
= DR_IS_READ (a
->ref
);
1629 mark_virtual_ops_for_renaming (a
->stmt
);
1631 if (!DR_IS_READ (a
->ref
))
1636 var
= VEC_index (tree
, vars
, 0);
1637 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1638 VEC_replace (tree
, vars
, 0, var
);
1644 replace_ref_with (a
->stmt
, VEC_index (tree
, vars
, ridx
),
1645 !is_read
, !is_read
);
1648 VEC_free (tree
, heap
, vars
);
1651 /* Returns the single statement in that NAME is used, excepting
1652 the looparound phi nodes contained in one of the chains. If there is no
1653 such statement, or more statements, NULL is returned. */
1656 single_nonlooparound_use (tree name
)
1659 imm_use_iterator it
;
1660 gimple stmt
, ret
= NULL
;
1662 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1664 stmt
= USE_STMT (use
);
1666 if (gimple_code (stmt
) == GIMPLE_PHI
)
1668 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1669 could not be processed anyway, so just fail for them. */
1670 if (bitmap_bit_p (looparound_phis
,
1671 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1676 else if (ret
!= NULL
)
1685 /* Remove statement STMT, as well as the chain of assignments in that it is
1689 remove_stmt (gimple stmt
)
1693 gimple_stmt_iterator psi
;
1695 if (gimple_code (stmt
) == GIMPLE_PHI
)
1697 name
= PHI_RESULT (stmt
);
1698 next
= single_nonlooparound_use (name
);
1699 psi
= gsi_for_stmt (stmt
);
1700 remove_phi_node (&psi
, true);
1703 || !gimple_assign_ssa_name_copy_p (next
)
1704 || gimple_assign_rhs1 (next
) != name
)
1712 gimple_stmt_iterator bsi
;
1714 bsi
= gsi_for_stmt (stmt
);
1716 name
= gimple_assign_lhs (stmt
);
1717 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1719 next
= single_nonlooparound_use (name
);
1721 mark_virtual_ops_for_renaming (stmt
);
1722 gsi_remove (&bsi
, true);
1723 release_defs (stmt
);
1726 || !gimple_assign_ssa_name_copy_p (next
)
1727 || gimple_assign_rhs1 (next
) != name
)
1734 /* Perform the predictive commoning optimization for a chain CHAIN.
1735 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1738 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1745 if (chain
->combined
)
1747 /* For combined chains, just remove the statements that are used to
1748 compute the values of the expression (except for the root one). */
1749 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1750 remove_stmt (a
->stmt
);
1754 /* For non-combined chains, set up the variables that hold its value,
1755 and replace the uses of the original references by these
1757 root
= get_chain_root (chain
);
1758 mark_virtual_ops_for_renaming (root
->stmt
);
1760 initialize_root (loop
, chain
, tmp_vars
);
1761 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1763 mark_virtual_ops_for_renaming (a
->stmt
);
1764 var
= VEC_index (tree
, chain
->vars
, chain
->length
- a
->distance
);
1765 replace_ref_with (a
->stmt
, var
, false, false);
1770 /* Determines the unroll factor necessary to remove as many temporary variable
1771 copies as possible. CHAINS is the list of chains that will be
1775 determine_unroll_factor (VEC (chain_p
, heap
) *chains
)
1778 unsigned factor
= 1, af
, nfactor
, i
;
1779 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1781 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1783 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1786 /* The best unroll factor for this chain is equal to the number of
1787 temporary variables that we create for it. */
1789 if (chain
->has_max_use_after
)
1792 nfactor
= factor
* af
/ gcd (factor
, af
);
1800 /* Perform the predictive commoning optimization for CHAINS.
1801 Uids of the newly created temporary variables are marked in TMP_VARS. */
1804 execute_pred_commoning (struct loop
*loop
, VEC (chain_p
, heap
) *chains
,
1810 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1812 if (chain
->type
== CT_INVARIANT
)
1813 execute_load_motion (loop
, chain
, tmp_vars
);
1815 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1818 update_ssa (TODO_update_ssa_only_virtuals
);
1821 /* For each reference in CHAINS, if its defining statement is
1822 phi node, record the ssa name that is defined by it. */
1825 replace_phis_by_defined_names (VEC (chain_p
, heap
) *chains
)
1831 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1832 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1834 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1836 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1842 /* For each reference in CHAINS, if name_defined_by_phi is not
1843 NULL, use it to set the stmt field. */
1846 replace_names_by_phis (VEC (chain_p
, heap
) *chains
)
1852 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1853 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1854 if (a
->stmt
== NULL
)
1856 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1857 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1858 a
->name_defined_by_phi
= NULL_TREE
;
1862 /* Wrapper over execute_pred_commoning, to pass it as a callback
1863 to tree_transform_and_unroll_loop. */
1867 VEC (chain_p
, heap
) *chains
;
1872 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1874 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1876 /* Restore phi nodes that were replaced by ssa names before
1877 tree_transform_and_unroll_loop (see detailed description in
1878 tree_predictive_commoning_loop). */
1879 replace_names_by_phis (dta
->chains
);
1880 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1883 /* Base NAME and all the names in the chain of phi nodes that use it
1884 on variable VAR. The phi nodes are recognized by being in the copies of
1885 the header of the LOOP. */
1888 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1891 imm_use_iterator iter
;
1893 SSA_NAME_VAR (name
) = var
;
1898 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1900 if (gimple_code (stmt
) == GIMPLE_PHI
1901 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1904 BREAK_FROM_IMM_USE_STMT (iter
);
1910 name
= PHI_RESULT (phi
);
1911 SSA_NAME_VAR (name
) = var
;
1915 /* Given an unrolled LOOP after predictive commoning, remove the
1916 register copies arising from phi nodes by changing the base
1917 variables of SSA names. TMP_VARS is the set of the temporary variables
1918 for those we want to perform this. */
1921 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1925 tree name
, use
, var
;
1926 gimple_stmt_iterator psi
;
1928 e
= loop_latch_edge (loop
);
1929 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1931 phi
= gsi_stmt (psi
);
1932 name
= PHI_RESULT (phi
);
1933 var
= SSA_NAME_VAR (name
);
1934 if (!bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1936 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1937 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1939 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1940 stmt
= SSA_NAME_DEF_STMT (use
);
1941 while (gimple_code (stmt
) == GIMPLE_PHI
1942 /* In case we could not unroll the loop enough to eliminate
1943 all copies, we may reach the loop header before the defining
1944 statement (in that case, some register copies will be present
1945 in loop latch in the final code, corresponding to the newly
1946 created looparound phi nodes). */
1947 && gimple_bb (stmt
) != loop
->header
)
1949 gcc_assert (single_pred_p (gimple_bb (stmt
)));
1950 use
= PHI_ARG_DEF (stmt
, 0);
1951 stmt
= SSA_NAME_DEF_STMT (use
);
1954 base_names_in_chain_on (loop
, use
, var
);
1958 /* Returns true if CHAIN is suitable to be combined. */
1961 chain_can_be_combined_p (chain_p chain
)
1963 return (!chain
->combined
1964 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
1967 /* Returns the modify statement that uses NAME. Skips over assignment
1968 statements, NAME is replaced with the actual name used in the returned
1972 find_use_stmt (tree
*name
)
1977 /* Skip over assignments. */
1980 stmt
= single_nonlooparound_use (*name
);
1984 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1987 lhs
= gimple_assign_lhs (stmt
);
1988 if (TREE_CODE (lhs
) != SSA_NAME
)
1991 if (gimple_assign_copy_p (stmt
))
1993 rhs
= gimple_assign_rhs1 (stmt
);
1999 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2000 == GIMPLE_BINARY_RHS
)
2007 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2010 may_reassociate_p (tree type
, enum tree_code code
)
2012 if (FLOAT_TYPE_P (type
)
2013 && !flag_unsafe_math_optimizations
)
2016 return (commutative_tree_code (code
)
2017 && associative_tree_code (code
));
2020 /* If the operation used in STMT is associative and commutative, go through the
2021 tree of the same operations and returns its root. Distance to the root
2022 is stored in DISTANCE. */
2025 find_associative_operation_root (gimple stmt
, unsigned *distance
)
2029 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2030 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2033 if (!may_reassociate_p (type
, code
))
2038 lhs
= gimple_assign_lhs (stmt
);
2039 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2041 next
= find_use_stmt (&lhs
);
2043 || gimple_assign_rhs_code (next
) != code
)
2055 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2056 is no such statement, returns NULL_TREE. In case the operation used on
2057 NAME1 and NAME2 is associative and commutative, returns the root of the
2058 tree formed by this operation instead of the statement that uses NAME1 or
2062 find_common_use_stmt (tree
*name1
, tree
*name2
)
2064 gimple stmt1
, stmt2
;
2066 stmt1
= find_use_stmt (name1
);
2070 stmt2
= find_use_stmt (name2
);
2077 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2080 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2084 return (stmt1
== stmt2
? stmt1
: NULL
);
2087 /* Checks whether R1 and R2 are combined together using CODE, with the result
2088 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2089 if it is true. If CODE is ERROR_MARK, set these values instead. */
2092 combinable_refs_p (dref r1
, dref r2
,
2093 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2095 enum tree_code acode
;
2101 name1
= name_for_ref (r1
);
2102 name2
= name_for_ref (r2
);
2103 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2105 stmt
= find_common_use_stmt (&name1
, &name2
);
2110 acode
= gimple_assign_rhs_code (stmt
);
2111 aswap
= (!commutative_tree_code (acode
)
2112 && gimple_assign_rhs1 (stmt
) != name1
);
2113 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2115 if (*code
== ERROR_MARK
)
2123 return (*code
== acode
2125 && *rslt_type
== atype
);
2128 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2129 an assignment of the remaining operand. */
2132 remove_name_from_operation (gimple stmt
, tree op
)
2135 gimple_stmt_iterator si
;
2137 gcc_assert (is_gimple_assign (stmt
));
2139 if (gimple_assign_rhs1 (stmt
) == op
)
2140 other_op
= gimple_assign_rhs2 (stmt
);
2142 other_op
= gimple_assign_rhs1 (stmt
);
2144 si
= gsi_for_stmt (stmt
);
2145 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2147 /* We should not have reallocated STMT. */
2148 gcc_assert (gsi_stmt (si
) == stmt
);
2153 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2154 are combined in a single statement, and returns this statement. */
2157 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2159 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2160 gimple new_stmt
, tmp_stmt
;
2161 tree new_name
, tmp_name
, var
, r1
, r2
;
2162 unsigned dist1
, dist2
;
2163 enum tree_code code
;
2164 tree type
= TREE_TYPE (name1
);
2165 gimple_stmt_iterator bsi
;
2167 stmt1
= find_use_stmt (&name1
);
2168 stmt2
= find_use_stmt (&name2
);
2169 root1
= find_associative_operation_root (stmt1
, &dist1
);
2170 root2
= find_associative_operation_root (stmt2
, &dist2
);
2171 code
= gimple_assign_rhs_code (stmt1
);
2173 gcc_assert (root1
&& root2
&& root1
== root2
2174 && code
== gimple_assign_rhs_code (stmt2
));
2176 /* Find the root of the nearest expression in that both NAME1 and NAME2
2183 while (dist1
> dist2
)
2185 s1
= find_use_stmt (&r1
);
2186 r1
= gimple_assign_lhs (s1
);
2189 while (dist2
> dist1
)
2191 s2
= find_use_stmt (&r2
);
2192 r2
= gimple_assign_lhs (s2
);
2198 s1
= find_use_stmt (&r1
);
2199 r1
= gimple_assign_lhs (s1
);
2200 s2
= find_use_stmt (&r2
);
2201 r2
= gimple_assign_lhs (s2
);
2204 /* Remove NAME1 and NAME2 from the statements in that they are used
2206 remove_name_from_operation (stmt1
, name1
);
2207 remove_name_from_operation (stmt2
, name2
);
2209 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2210 combine it with the rhs of S1. */
2211 var
= create_tmp_var (type
, "predreastmp");
2212 if (TREE_CODE (type
) == COMPLEX_TYPE
2213 || TREE_CODE (type
) == VECTOR_TYPE
)
2214 DECL_GIMPLE_REG_P (var
) = 1;
2215 add_referenced_var (var
);
2216 new_name
= make_ssa_name (var
, NULL
);
2217 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2219 var
= create_tmp_var (type
, "predreastmp");
2220 if (TREE_CODE (type
) == COMPLEX_TYPE
2221 || TREE_CODE (type
) == VECTOR_TYPE
)
2222 DECL_GIMPLE_REG_P (var
) = 1;
2223 add_referenced_var (var
);
2224 tmp_name
= make_ssa_name (var
, NULL
);
2226 /* Rhs of S1 may now be either a binary expression with operation
2227 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2228 so that name1 or name2 was removed from it). */
2229 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2231 gimple_assign_rhs1 (s1
),
2232 gimple_assign_rhs2 (s1
));
2234 bsi
= gsi_for_stmt (s1
);
2235 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2236 s1
= gsi_stmt (bsi
);
2239 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2240 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2245 /* Returns the statement that combines references R1 and R2. In case R1
2246 and R2 are not used in the same statement, but they are used with an
2247 associative and commutative operation in the same expression, reassociate
2248 the expression so that they are used in the same statement. */
2251 stmt_combining_refs (dref r1
, dref r2
)
2253 gimple stmt1
, stmt2
;
2254 tree name1
= name_for_ref (r1
);
2255 tree name2
= name_for_ref (r2
);
2257 stmt1
= find_use_stmt (&name1
);
2258 stmt2
= find_use_stmt (&name2
);
2262 return reassociate_to_the_same_stmt (name1
, name2
);
2265 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2266 description of the new chain is returned, otherwise we return NULL. */
2269 combine_chains (chain_p ch1
, chain_p ch2
)
2272 enum tree_code op
= ERROR_MARK
;
2277 tree rslt_type
= NULL_TREE
;
2281 if (ch1
->length
!= ch2
->length
)
2284 if (VEC_length (dref
, ch1
->refs
) != VEC_length (dref
, ch2
->refs
))
2287 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2288 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2290 if (r1
->distance
!= r2
->distance
)
2293 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2304 new_chain
= XCNEW (struct chain
);
2305 new_chain
->type
= CT_COMBINATION
;
2307 new_chain
->ch1
= ch1
;
2308 new_chain
->ch2
= ch2
;
2309 new_chain
->rslt_type
= rslt_type
;
2310 new_chain
->length
= ch1
->length
;
2312 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2313 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2315 nw
= XCNEW (struct dref_d
);
2316 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2317 nw
->distance
= r1
->distance
;
2319 VEC_safe_push (dref
, heap
, new_chain
->refs
, nw
);
2322 new_chain
->has_max_use_after
= false;
2323 root_stmt
= get_chain_root (new_chain
)->stmt
;
2324 for (i
= 1; VEC_iterate (dref
, new_chain
->refs
, i
, nw
); i
++)
2326 if (nw
->distance
== new_chain
->length
2327 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2329 new_chain
->has_max_use_after
= true;
2334 ch1
->combined
= true;
2335 ch2
->combined
= true;
2339 /* Try to combine the CHAINS. */
2342 try_combine_chains (VEC (chain_p
, heap
) **chains
)
2345 chain_p ch1
, ch2
, cch
;
2346 VEC (chain_p
, heap
) *worklist
= NULL
;
2348 for (i
= 0; VEC_iterate (chain_p
, *chains
, i
, ch1
); i
++)
2349 if (chain_can_be_combined_p (ch1
))
2350 VEC_safe_push (chain_p
, heap
, worklist
, ch1
);
2352 while (!VEC_empty (chain_p
, worklist
))
2354 ch1
= VEC_pop (chain_p
, worklist
);
2355 if (!chain_can_be_combined_p (ch1
))
2358 for (j
= 0; VEC_iterate (chain_p
, *chains
, j
, ch2
); j
++)
2360 if (!chain_can_be_combined_p (ch2
))
2363 cch
= combine_chains (ch1
, ch2
);
2366 VEC_safe_push (chain_p
, heap
, worklist
, cch
);
2367 VEC_safe_push (chain_p
, heap
, *chains
, cch
);
2374 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2375 impossible because one of these initializers may trap, true otherwise. */
2378 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2380 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2381 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2385 edge entry
= loop_preheader_edge (loop
);
2387 /* Find the initializers for the variables, and check that they cannot
2389 chain
->inits
= VEC_alloc (tree
, heap
, n
);
2390 for (i
= 0; i
< n
; i
++)
2391 VEC_quick_push (tree
, chain
->inits
, NULL_TREE
);
2393 /* If we have replaced some looparound phi nodes, use their initializers
2394 instead of creating our own. */
2395 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, laref
); i
++)
2397 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2400 gcc_assert (laref
->distance
> 0);
2401 VEC_replace (tree
, chain
->inits
, n
- laref
->distance
,
2402 PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
));
2405 for (i
= 0; i
< n
; i
++)
2407 if (VEC_index (tree
, chain
->inits
, i
) != NULL_TREE
)
2410 init
= ref_at_iteration (loop
, DR_REF (dr
), (int) i
- n
);
2414 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2417 init
= force_gimple_operand (init
, &stmts
, false, NULL_TREE
);
2419 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2421 VEC_replace (tree
, chain
->inits
, i
, init
);
2427 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2428 be used because the initializers might trap. */
2431 prepare_initializers (struct loop
*loop
, VEC (chain_p
, heap
) *chains
)
2436 for (i
= 0; i
< VEC_length (chain_p
, chains
); )
2438 chain
= VEC_index (chain_p
, chains
, i
);
2439 if (prepare_initializers_chain (loop
, chain
))
2443 release_chain (chain
);
2444 VEC_unordered_remove (chain_p
, chains
, i
);
2449 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2453 tree_predictive_commoning_loop (struct loop
*loop
)
2455 VEC (data_reference_p
, heap
) *datarefs
;
2456 VEC (ddr_p
, heap
) *dependences
;
2457 struct component
*components
;
2458 VEC (chain_p
, heap
) *chains
= NULL
;
2459 unsigned unroll_factor
;
2460 struct tree_niter_desc desc
;
2461 bool unroll
= false;
2465 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2466 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2468 /* Find the data references and split them into components according to their
2469 dependence relations. */
2470 datarefs
= VEC_alloc (data_reference_p
, heap
, 10);
2471 dependences
= VEC_alloc (ddr_p
, heap
, 10);
2472 compute_data_dependences_for_loop (loop
, true, &datarefs
, &dependences
);
2473 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2474 dump_data_dependence_relations (dump_file
, dependences
);
2476 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2477 free_dependence_relations (dependences
);
2480 free_data_refs (datarefs
);
2484 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2486 fprintf (dump_file
, "Initial state:\n\n");
2487 dump_components (dump_file
, components
);
2490 /* Find the suitable components and split them into chains. */
2491 components
= filter_suitable_components (loop
, components
);
2493 tmp_vars
= BITMAP_ALLOC (NULL
);
2494 looparound_phis
= BITMAP_ALLOC (NULL
);
2495 determine_roots (loop
, components
, &chains
);
2496 release_components (components
);
2500 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2502 "Predictive commoning failed: no suitable chains\n");
2505 prepare_initializers (loop
, chains
);
2507 /* Try to combine the chains that are always worked with together. */
2508 try_combine_chains (&chains
);
2510 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2512 fprintf (dump_file
, "Before commoning:\n\n");
2513 dump_chains (dump_file
, chains
);
2516 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2517 that its number of iterations is divisible by the factor. */
2518 unroll_factor
= determine_unroll_factor (chains
);
2520 unroll
= (unroll_factor
> 1
2521 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
2522 exit
= single_dom_exit (loop
);
2524 /* Execute the predictive commoning transformations, and possibly unroll the
2528 struct epcc_data dta
;
2530 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2531 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2533 dta
.chains
= chains
;
2534 dta
.tmp_vars
= tmp_vars
;
2536 update_ssa (TODO_update_ssa_only_virtuals
);
2538 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2539 execute_pred_commoning_cbck is called may cause phi nodes to be
2540 reallocated, which is a problem since CHAINS may point to these
2541 statements. To fix this, we store the ssa names defined by the
2542 phi nodes here instead of the phi nodes themselves, and restore
2543 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2544 replace_phis_by_defined_names (chains
);
2546 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2547 execute_pred_commoning_cbck
, &dta
);
2548 eliminate_temp_copies (loop
, tmp_vars
);
2552 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2554 "Executing predictive commoning without unrolling.\n");
2555 execute_pred_commoning (loop
, chains
, tmp_vars
);
2559 release_chains (chains
);
2560 free_data_refs (datarefs
);
2561 BITMAP_FREE (tmp_vars
);
2562 BITMAP_FREE (looparound_phis
);
2564 free_affine_expand_cache (&name_expansions
);
2569 /* Runs predictive commoning. */
2572 tree_predictive_commoning (void)
2574 bool unrolled
= false;
2579 initialize_original_copy_tables ();
2580 FOR_EACH_LOOP (li
, loop
, LI_ONLY_INNERMOST
)
2581 if (optimize_loop_for_speed_p (loop
))
2583 unrolled
|= tree_predictive_commoning_loop (loop
);
2589 ret
= TODO_cleanup_cfg
;
2591 free_original_copy_tables ();