1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains various simple utilities to analyze the CFG. */
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
39 /* Store the data structures necessary for depth-first search. */
40 struct depth_first_search_dsS
{
41 /* stack for backtracking during the algorithm */
44 /* number of edges in the stack. That is, positions 0, ..., sp-1
48 /* record of basic blocks already seen by depth-first search */
49 sbitmap visited_blocks
;
51 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
53 static void flow_dfs_compute_reverse_init (depth_first_search_ds
);
54 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds
,
56 static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds
,
58 static void flow_dfs_compute_reverse_finish (depth_first_search_ds
);
59 static bool flow_active_insn_p (const_rtx
);
61 /* Like active_insn_p, except keep the return value clobber around
65 flow_active_insn_p (const_rtx insn
)
67 if (active_insn_p (insn
))
70 /* A clobber of the function return value exists for buggy
71 programs that fail to return a value. Its effect is to
72 keep the return value from being live across the entire
73 function. If we allow it to be skipped, we introduce the
74 possibility for register lifetime confusion. */
75 if (GET_CODE (PATTERN (insn
)) == CLOBBER
76 && REG_P (XEXP (PATTERN (insn
), 0))
77 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))
83 /* Return true if the block has no effect and only forwards control flow to
84 its single destination. */
87 forwarder_block_p (const_basic_block bb
)
91 if (bb
== EXIT_BLOCK_PTR
|| bb
== ENTRY_BLOCK_PTR
92 || !single_succ_p (bb
))
95 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
96 if (INSN_P (insn
) && flow_active_insn_p (insn
))
99 return (!INSN_P (insn
)
100 || (JUMP_P (insn
) && simplejump_p (insn
))
101 || !flow_active_insn_p (insn
));
104 /* Return nonzero if we can reach target from src by falling through. */
107 can_fallthru (basic_block src
, basic_block target
)
109 rtx insn
= BB_END (src
);
114 if (target
== EXIT_BLOCK_PTR
)
116 if (src
->next_bb
!= target
)
118 FOR_EACH_EDGE (e
, ei
, src
->succs
)
119 if (e
->dest
== EXIT_BLOCK_PTR
120 && e
->flags
& EDGE_FALLTHRU
)
123 insn2
= BB_HEAD (target
);
124 if (insn2
&& !active_insn_p (insn2
))
125 insn2
= next_active_insn (insn2
);
127 /* ??? Later we may add code to move jump tables offline. */
128 return next_active_insn (insn
) == insn2
;
131 /* Return nonzero if we could reach target from src by falling through,
132 if the target was made adjacent. If we already have a fall-through
133 edge to the exit block, we can't do that. */
135 could_fall_through (basic_block src
, basic_block target
)
140 if (target
== EXIT_BLOCK_PTR
)
142 FOR_EACH_EDGE (e
, ei
, src
->succs
)
143 if (e
->dest
== EXIT_BLOCK_PTR
144 && e
->flags
& EDGE_FALLTHRU
)
149 /* Mark the back edges in DFS traversal.
150 Return nonzero if a loop (natural or otherwise) is present.
151 Inspired by Depth_First_Search_PP described in:
153 Advanced Compiler Design and Implementation
155 Morgan Kaufmann, 1997
157 and heavily borrowed from pre_and_rev_post_order_compute. */
160 mark_dfs_back_edges (void)
162 edge_iterator
*stack
;
171 /* Allocate the preorder and postorder number arrays. */
172 pre
= XCNEWVEC (int, last_basic_block
);
173 post
= XCNEWVEC (int, last_basic_block
);
175 /* Allocate stack for back-tracking up CFG. */
176 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
179 /* Allocate bitmap to track nodes that have been visited. */
180 visited
= sbitmap_alloc (last_basic_block
);
182 /* None of the nodes in the CFG have been visited yet. */
183 sbitmap_zero (visited
);
185 /* Push the first edge on to the stack. */
186 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
194 /* Look at the edge on the top of the stack. */
196 src
= ei_edge (ei
)->src
;
197 dest
= ei_edge (ei
)->dest
;
198 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
200 /* Check if the edge destination has been visited yet. */
201 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
203 /* Mark that we have visited the destination. */
204 SET_BIT (visited
, dest
->index
);
206 pre
[dest
->index
] = prenum
++;
207 if (EDGE_COUNT (dest
->succs
) > 0)
209 /* Since the DEST node has been visited for the first
210 time, check its successors. */
211 stack
[sp
++] = ei_start (dest
->succs
);
214 post
[dest
->index
] = postnum
++;
218 if (dest
!= EXIT_BLOCK_PTR
&& src
!= ENTRY_BLOCK_PTR
219 && pre
[src
->index
] >= pre
[dest
->index
]
220 && post
[dest
->index
] == 0)
221 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
, found
= true;
223 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
224 post
[src
->index
] = postnum
++;
226 if (!ei_one_before_end_p (ei
))
227 ei_next (&stack
[sp
- 1]);
236 sbitmap_free (visited
);
241 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
244 set_edge_can_fallthru_flag (void)
253 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
255 e
->flags
&= ~EDGE_CAN_FALLTHRU
;
257 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
258 if (e
->flags
& EDGE_FALLTHRU
)
259 e
->flags
|= EDGE_CAN_FALLTHRU
;
262 /* If the BB ends with an invertible condjump all (2) edges are
263 CAN_FALLTHRU edges. */
264 if (EDGE_COUNT (bb
->succs
) != 2)
266 if (!any_condjump_p (BB_END (bb
)))
268 if (!invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0))
270 invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0);
271 EDGE_SUCC (bb
, 0)->flags
|= EDGE_CAN_FALLTHRU
;
272 EDGE_SUCC (bb
, 1)->flags
|= EDGE_CAN_FALLTHRU
;
276 /* Find unreachable blocks. An unreachable block will have 0 in
277 the reachable bit in block->flags. A nonzero value indicates the
278 block is reachable. */
281 find_unreachable_blocks (void)
285 basic_block
*tos
, *worklist
, bb
;
287 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks
);
289 /* Clear all the reachability flags. */
292 bb
->flags
&= ~BB_REACHABLE
;
294 /* Add our starting points to the worklist. Almost always there will
295 be only one. It isn't inconceivable that we might one day directly
296 support Fortran alternate entry points. */
298 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
302 /* Mark the block reachable. */
303 e
->dest
->flags
|= BB_REACHABLE
;
306 /* Iterate: find everything reachable from what we've already seen. */
308 while (tos
!= worklist
)
310 basic_block b
= *--tos
;
312 FOR_EACH_EDGE (e
, ei
, b
->succs
)
314 basic_block dest
= e
->dest
;
316 if (!(dest
->flags
& BB_REACHABLE
))
319 dest
->flags
|= BB_REACHABLE
;
327 /* Functions to access an edge list with a vector representation.
328 Enough data is kept such that given an index number, the
329 pred and succ that edge represents can be determined, or
330 given a pred and a succ, its index number can be returned.
331 This allows algorithms which consume a lot of memory to
332 represent the normally full matrix of edge (pred,succ) with a
333 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
334 wasted space in the client code due to sparse flow graphs. */
336 /* This functions initializes the edge list. Basically the entire
337 flowgraph is processed, and all edges are assigned a number,
338 and the data structure is filled in. */
341 create_edge_list (void)
343 struct edge_list
*elist
;
350 block_count
= n_basic_blocks
; /* Include the entry and exit blocks. */
354 /* Determine the number of edges in the flow graph by counting successor
355 edges on each basic block. */
356 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
358 num_edges
+= EDGE_COUNT (bb
->succs
);
361 elist
= XNEW (struct edge_list
);
362 elist
->num_blocks
= block_count
;
363 elist
->num_edges
= num_edges
;
364 elist
->index_to_edge
= XNEWVEC (edge
, num_edges
);
368 /* Follow successors of blocks, and register these edges. */
369 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
370 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
371 elist
->index_to_edge
[num_edges
++] = e
;
376 /* This function free's memory associated with an edge list. */
379 free_edge_list (struct edge_list
*elist
)
383 free (elist
->index_to_edge
);
388 /* This function provides debug output showing an edge list. */
391 print_edge_list (FILE *f
, struct edge_list
*elist
)
395 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
396 elist
->num_blocks
, elist
->num_edges
);
398 for (x
= 0; x
< elist
->num_edges
; x
++)
400 fprintf (f
, " %-4d - edge(", x
);
401 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
402 fprintf (f
, "entry,");
404 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
406 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
407 fprintf (f
, "exit)\n");
409 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
413 /* This function provides an internal consistency check of an edge list,
414 verifying that all edges are present, and that there are no
418 verify_edge_list (FILE *f
, struct edge_list
*elist
)
420 int pred
, succ
, index
;
422 basic_block bb
, p
, s
;
425 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
427 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
429 pred
= e
->src
->index
;
430 succ
= e
->dest
->index
;
431 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
432 if (index
== EDGE_INDEX_NO_EDGE
)
434 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
438 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
439 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
440 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
441 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
442 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
443 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
447 /* We've verified that all the edges are in the list, now lets make sure
448 there are no spurious edges in the list. */
450 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
451 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
455 FOR_EACH_EDGE (e
, ei
, p
->succs
)
462 FOR_EACH_EDGE (e
, ei
, s
->preds
)
469 if (EDGE_INDEX (elist
, p
, s
)
470 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
471 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
473 if (EDGE_INDEX (elist
, p
, s
)
474 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
475 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
476 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
480 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
481 If no such edge exists, return NULL. */
484 find_edge (basic_block pred
, basic_block succ
)
489 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
491 FOR_EACH_EDGE (e
, ei
, pred
->succs
)
497 FOR_EACH_EDGE (e
, ei
, succ
->preds
)
505 /* This routine will determine what, if any, edge there is between
506 a specified predecessor and successor. */
509 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
513 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
514 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
515 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
518 return (EDGE_INDEX_NO_EDGE
);
521 /* Dump the list of basic blocks in the bitmap NODES. */
524 flow_nodes_print (const char *str
, const_sbitmap nodes
, FILE *file
)
526 unsigned int node
= 0;
527 sbitmap_iterator sbi
;
532 fprintf (file
, "%s { ", str
);
533 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, sbi
)
534 fprintf (file
, "%d ", node
);
538 /* Dump the list of edges in the array EDGE_LIST. */
541 flow_edge_list_print (const char *str
, const edge
*edge_list
, int num_edges
, FILE *file
)
548 fprintf (file
, "%s { ", str
);
549 for (i
= 0; i
< num_edges
; i
++)
550 fprintf (file
, "%d->%d ", edge_list
[i
]->src
->index
,
551 edge_list
[i
]->dest
->index
);
557 /* This routine will remove any fake predecessor edges for a basic block.
558 When the edge is removed, it is also removed from whatever successor
562 remove_fake_predecessors (basic_block bb
)
567 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
569 if ((e
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
576 /* This routine will remove all fake edges from the flow graph. If
577 we remove all fake successors, it will automatically remove all
578 fake predecessors. */
581 remove_fake_edges (void)
585 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
586 remove_fake_predecessors (bb
);
589 /* This routine will remove all fake edges to the EXIT_BLOCK. */
592 remove_fake_exit_edges (void)
594 remove_fake_predecessors (EXIT_BLOCK_PTR
);
598 /* This function will add a fake edge between any block which has no
599 successors, and the exit block. Some data flow equations require these
603 add_noreturn_fake_exit_edges (void)
608 if (EDGE_COUNT (bb
->succs
) == 0)
609 make_single_succ_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
612 /* This function adds a fake edge between any infinite loops to the
613 exit block. Some optimizations require a path from each node to
616 See also Morgan, Figure 3.10, pp. 82-83.
618 The current implementation is ugly, not attempting to minimize the
619 number of inserted fake edges. To reduce the number of fake edges
620 to insert, add fake edges from _innermost_ loops containing only
621 nodes not reachable from the exit block. */
624 connect_infinite_loops_to_exit (void)
626 basic_block unvisited_block
= EXIT_BLOCK_PTR
;
627 struct depth_first_search_dsS dfs_ds
;
629 /* Perform depth-first search in the reverse graph to find nodes
630 reachable from the exit block. */
631 flow_dfs_compute_reverse_init (&dfs_ds
);
632 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
634 /* Repeatedly add fake edges, updating the unreachable nodes. */
637 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
,
639 if (!unvisited_block
)
642 make_edge (unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
643 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
646 flow_dfs_compute_reverse_finish (&dfs_ds
);
650 /* Compute reverse top sort order. This is computing a post order
651 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then then
652 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
653 true, unreachable blocks are deleted. */
656 post_order_compute (int *post_order
, bool include_entry_exit
,
657 bool delete_unreachable
)
659 edge_iterator
*stack
;
661 int post_order_num
= 0;
665 if (include_entry_exit
)
666 post_order
[post_order_num
++] = EXIT_BLOCK
;
668 /* Allocate stack for back-tracking up CFG. */
669 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
672 /* Allocate bitmap to track nodes that have been visited. */
673 visited
= sbitmap_alloc (last_basic_block
);
675 /* None of the nodes in the CFG have been visited yet. */
676 sbitmap_zero (visited
);
678 /* Push the first edge on to the stack. */
679 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
687 /* Look at the edge on the top of the stack. */
689 src
= ei_edge (ei
)->src
;
690 dest
= ei_edge (ei
)->dest
;
692 /* Check if the edge destination has been visited yet. */
693 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
695 /* Mark that we have visited the destination. */
696 SET_BIT (visited
, dest
->index
);
698 if (EDGE_COUNT (dest
->succs
) > 0)
699 /* Since the DEST node has been visited for the first
700 time, check its successors. */
701 stack
[sp
++] = ei_start (dest
->succs
);
703 post_order
[post_order_num
++] = dest
->index
;
707 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
708 post_order
[post_order_num
++] = src
->index
;
710 if (!ei_one_before_end_p (ei
))
711 ei_next (&stack
[sp
- 1]);
717 if (include_entry_exit
)
719 post_order
[post_order_num
++] = ENTRY_BLOCK
;
720 count
= post_order_num
;
723 count
= post_order_num
+ 2;
725 /* Delete the unreachable blocks if some were found and we are
726 supposed to do it. */
727 if (delete_unreachable
&& (count
!= n_basic_blocks
))
731 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
733 next_bb
= b
->next_bb
;
735 if (!(TEST_BIT (visited
, b
->index
)))
736 delete_basic_block (b
);
739 tidy_fallthru_edges ();
743 sbitmap_free (visited
);
744 return post_order_num
;
748 /* Helper routine for inverted_post_order_compute.
749 BB has to belong to a region of CFG
750 unreachable by inverted traversal from the exit.
751 i.e. there's no control flow path from ENTRY to EXIT
752 that contains this BB.
753 This can happen in two cases - if there's an infinite loop
754 or if there's a block that has no successor
755 (call to a function with no return).
756 Some RTL passes deal with this condition by
757 calling connect_infinite_loops_to_exit () and/or
758 add_noreturn_fake_exit_edges ().
759 However, those methods involve modifying the CFG itself
760 which may not be desirable.
761 Hence, we deal with the infinite loop/no return cases
762 by identifying a unique basic block that can reach all blocks
763 in such a region by inverted traversal.
764 This function returns a basic block that guarantees
765 that all blocks in the region are reachable
766 by starting an inverted traversal from the returned block. */
769 dfs_find_deadend (basic_block bb
)
771 sbitmap visited
= sbitmap_alloc (last_basic_block
);
772 sbitmap_zero (visited
);
776 SET_BIT (visited
, bb
->index
);
777 if (EDGE_COUNT (bb
->succs
) == 0
778 || TEST_BIT (visited
, EDGE_SUCC (bb
, 0)->dest
->index
))
780 sbitmap_free (visited
);
784 bb
= EDGE_SUCC (bb
, 0)->dest
;
791 /* Compute the reverse top sort order of the inverted CFG
792 i.e. starting from the exit block and following the edges backward
793 (from successors to predecessors).
794 This ordering can be used for forward dataflow problems among others.
796 This function assumes that all blocks in the CFG are reachable
797 from the ENTRY (but not necessarily from EXIT).
799 If there's an infinite loop,
800 a simple inverted traversal starting from the blocks
801 with no successors can't visit all blocks.
802 To solve this problem, we first do inverted traversal
803 starting from the blocks with no successor.
804 And if there's any block left that's not visited by the regular
805 inverted traversal from EXIT,
806 those blocks are in such problematic region.
807 Among those, we find one block that has
808 any visited predecessor (which is an entry into such a region),
809 and start looking for a "dead end" from that block
810 and do another inverted traversal from that block. */
813 inverted_post_order_compute (int *post_order
)
816 edge_iterator
*stack
;
818 int post_order_num
= 0;
821 /* Allocate stack for back-tracking up CFG. */
822 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
825 /* Allocate bitmap to track nodes that have been visited. */
826 visited
= sbitmap_alloc (last_basic_block
);
828 /* None of the nodes in the CFG have been visited yet. */
829 sbitmap_zero (visited
);
831 /* Put all blocks that have no successor into the initial work list. */
832 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
833 if (EDGE_COUNT (bb
->succs
) == 0)
835 /* Push the initial edge on to the stack. */
836 if (EDGE_COUNT (bb
->preds
) > 0)
838 stack
[sp
++] = ei_start (bb
->preds
);
839 SET_BIT (visited
, bb
->index
);
845 bool has_unvisited_bb
= false;
847 /* The inverted traversal loop. */
853 /* Look at the edge on the top of the stack. */
855 bb
= ei_edge (ei
)->dest
;
856 pred
= ei_edge (ei
)->src
;
858 /* Check if the predecessor has been visited yet. */
859 if (! TEST_BIT (visited
, pred
->index
))
861 /* Mark that we have visited the destination. */
862 SET_BIT (visited
, pred
->index
);
864 if (EDGE_COUNT (pred
->preds
) > 0)
865 /* Since the predecessor node has been visited for the first
866 time, check its predecessors. */
867 stack
[sp
++] = ei_start (pred
->preds
);
869 post_order
[post_order_num
++] = pred
->index
;
873 if (bb
!= EXIT_BLOCK_PTR
&& ei_one_before_end_p (ei
))
874 post_order
[post_order_num
++] = bb
->index
;
876 if (!ei_one_before_end_p (ei
))
877 ei_next (&stack
[sp
- 1]);
883 /* Detect any infinite loop and activate the kludge.
884 Note that this doesn't check EXIT_BLOCK itself
885 since EXIT_BLOCK is always added after the outer do-while loop. */
886 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
887 if (!TEST_BIT (visited
, bb
->index
))
889 has_unvisited_bb
= true;
891 if (EDGE_COUNT (bb
->preds
) > 0)
895 basic_block visited_pred
= NULL
;
897 /* Find an already visited predecessor. */
898 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
900 if (TEST_BIT (visited
, e
->src
->index
))
901 visited_pred
= e
->src
;
906 basic_block be
= dfs_find_deadend (bb
);
907 gcc_assert (be
!= NULL
);
908 SET_BIT (visited
, be
->index
);
909 stack
[sp
++] = ei_start (be
->preds
);
915 if (has_unvisited_bb
&& sp
== 0)
917 /* No blocks are reachable from EXIT at all.
918 Find a dead-end from the ENTRY, and restart the iteration. */
919 basic_block be
= dfs_find_deadend (ENTRY_BLOCK_PTR
);
920 gcc_assert (be
!= NULL
);
921 SET_BIT (visited
, be
->index
);
922 stack
[sp
++] = ei_start (be
->preds
);
925 /* The only case the below while fires is
926 when there's an infinite loop. */
930 /* EXIT_BLOCK is always included. */
931 post_order
[post_order_num
++] = EXIT_BLOCK
;
934 sbitmap_free (visited
);
935 return post_order_num
;
938 /* Compute the depth first search order and store in the array
939 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
940 REV_POST_ORDER is nonzero, return the reverse completion number for each
941 node. Returns the number of nodes visited. A depth first search
942 tries to get as far away from the starting point as quickly as
945 pre_order is a really a preorder numbering of the graph.
946 rev_post_order is really a reverse postorder numbering of the graph.
950 pre_and_rev_post_order_compute (int *pre_order
, int *rev_post_order
,
951 bool include_entry_exit
)
953 edge_iterator
*stack
;
955 int pre_order_num
= 0;
956 int rev_post_order_num
= n_basic_blocks
- 1;
959 /* Allocate stack for back-tracking up CFG. */
960 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
963 if (include_entry_exit
)
966 pre_order
[pre_order_num
] = ENTRY_BLOCK
;
969 rev_post_order
[rev_post_order_num
--] = ENTRY_BLOCK
;
972 rev_post_order_num
-= NUM_FIXED_BLOCKS
;
974 /* Allocate bitmap to track nodes that have been visited. */
975 visited
= sbitmap_alloc (last_basic_block
);
977 /* None of the nodes in the CFG have been visited yet. */
978 sbitmap_zero (visited
);
980 /* Push the first edge on to the stack. */
981 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
989 /* Look at the edge on the top of the stack. */
991 src
= ei_edge (ei
)->src
;
992 dest
= ei_edge (ei
)->dest
;
994 /* Check if the edge destination has been visited yet. */
995 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
997 /* Mark that we have visited the destination. */
998 SET_BIT (visited
, dest
->index
);
1001 pre_order
[pre_order_num
] = dest
->index
;
1005 if (EDGE_COUNT (dest
->succs
) > 0)
1006 /* Since the DEST node has been visited for the first
1007 time, check its successors. */
1008 stack
[sp
++] = ei_start (dest
->succs
);
1009 else if (rev_post_order
)
1010 /* There are no successors for the DEST node so assign
1011 its reverse completion number. */
1012 rev_post_order
[rev_post_order_num
--] = dest
->index
;
1016 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
1018 /* There are no more successors for the SRC node
1019 so assign its reverse completion number. */
1020 rev_post_order
[rev_post_order_num
--] = src
->index
;
1022 if (!ei_one_before_end_p (ei
))
1023 ei_next (&stack
[sp
- 1]);
1030 sbitmap_free (visited
);
1032 if (include_entry_exit
)
1035 pre_order
[pre_order_num
] = EXIT_BLOCK
;
1038 rev_post_order
[rev_post_order_num
--] = EXIT_BLOCK
;
1039 /* The number of nodes visited should be the number of blocks. */
1040 gcc_assert (pre_order_num
== n_basic_blocks
);
1043 /* The number of nodes visited should be the number of blocks minus
1044 the entry and exit blocks which are not visited here. */
1045 gcc_assert (pre_order_num
== n_basic_blocks
- NUM_FIXED_BLOCKS
);
1047 return pre_order_num
;
1050 /* Compute the depth first search order on the _reverse_ graph and
1051 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1052 Returns the number of nodes visited.
1054 The computation is split into three pieces:
1056 flow_dfs_compute_reverse_init () creates the necessary data
1059 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1060 structures. The block will start the search.
1062 flow_dfs_compute_reverse_execute () continues (or starts) the
1063 search using the block on the top of the stack, stopping when the
1066 flow_dfs_compute_reverse_finish () destroys the necessary data
1069 Thus, the user will probably call ..._init(), call ..._add_bb() to
1070 add a beginning basic block to the stack, call ..._execute(),
1071 possibly add another bb to the stack and again call ..._execute(),
1072 ..., and finally call _finish(). */
1074 /* Initialize the data structures used for depth-first search on the
1075 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1076 added to the basic block stack. DATA is the current depth-first
1077 search context. If INITIALIZE_STACK is nonzero, there is an
1078 element on the stack. */
1081 flow_dfs_compute_reverse_init (depth_first_search_ds data
)
1083 /* Allocate stack for back-tracking up CFG. */
1084 data
->stack
= XNEWVEC (basic_block
, n_basic_blocks
);
1087 /* Allocate bitmap to track nodes that have been visited. */
1088 data
->visited_blocks
= sbitmap_alloc (last_basic_block
);
1090 /* None of the nodes in the CFG have been visited yet. */
1091 sbitmap_zero (data
->visited_blocks
);
1096 /* Add the specified basic block to the top of the dfs data
1097 structures. When the search continues, it will start at the
1101 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data
, basic_block bb
)
1103 data
->stack
[data
->sp
++] = bb
;
1104 SET_BIT (data
->visited_blocks
, bb
->index
);
1107 /* Continue the depth-first search through the reverse graph starting with the
1108 block at the stack's top and ending when the stack is empty. Visited nodes
1109 are marked. Returns an unvisited basic block, or NULL if there is none
1113 flow_dfs_compute_reverse_execute (depth_first_search_ds data
,
1114 basic_block last_unvisited
)
1120 while (data
->sp
> 0)
1122 bb
= data
->stack
[--data
->sp
];
1124 /* Perform depth-first search on adjacent vertices. */
1125 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1126 if (!TEST_BIT (data
->visited_blocks
, e
->src
->index
))
1127 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
1130 /* Determine if there are unvisited basic blocks. */
1131 FOR_BB_BETWEEN (bb
, last_unvisited
, NULL
, prev_bb
)
1132 if (!TEST_BIT (data
->visited_blocks
, bb
->index
))
1138 /* Destroy the data structures needed for depth-first search on the
1142 flow_dfs_compute_reverse_finish (depth_first_search_ds data
)
1145 sbitmap_free (data
->visited_blocks
);
1148 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1149 if REVERSE, go against direction of edges. Returns number of blocks
1150 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1152 dfs_enumerate_from (basic_block bb
, int reverse
,
1153 bool (*predicate
) (const_basic_block
, const void *),
1154 basic_block
*rslt
, int rslt_max
, const void *data
)
1156 basic_block
*st
, lbb
;
1160 /* A bitmap to keep track of visited blocks. Allocating it each time
1161 this function is called is not possible, since dfs_enumerate_from
1162 is often used on small (almost) disjoint parts of cfg (bodies of
1163 loops), and allocating a large sbitmap would lead to quadratic
1165 static sbitmap visited
;
1166 static unsigned v_size
;
1168 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
1169 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
1170 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
1172 /* Resize the VISITED sbitmap if necessary. */
1173 size
= last_basic_block
;
1180 visited
= sbitmap_alloc (size
);
1181 sbitmap_zero (visited
);
1184 else if (v_size
< size
)
1186 /* Ensure that we increase the size of the sbitmap exponentially. */
1187 if (2 * v_size
> size
)
1190 visited
= sbitmap_resize (visited
, size
, 0);
1194 st
= XCNEWVEC (basic_block
, rslt_max
);
1195 rslt
[tv
++] = st
[sp
++] = bb
;
1204 FOR_EACH_EDGE (e
, ei
, lbb
->preds
)
1205 if (!VISITED_P (e
->src
) && predicate (e
->src
, data
))
1207 gcc_assert (tv
!= rslt_max
);
1208 rslt
[tv
++] = st
[sp
++] = e
->src
;
1209 MARK_VISITED (e
->src
);
1214 FOR_EACH_EDGE (e
, ei
, lbb
->succs
)
1215 if (!VISITED_P (e
->dest
) && predicate (e
->dest
, data
))
1217 gcc_assert (tv
!= rslt_max
);
1218 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1219 MARK_VISITED (e
->dest
);
1224 for (sp
= 0; sp
< tv
; sp
++)
1225 UNMARK_VISITED (rslt
[sp
]);
1228 #undef UNMARK_VISITED
1233 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1235 This algorithm can be found in Timothy Harvey's PhD thesis, at
1236 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1237 dominance algorithms.
1239 First, we identify each join point, j (any node with more than one
1240 incoming edge is a join point).
1242 We then examine each predecessor, p, of j and walk up the dominator tree
1245 We stop the walk when we reach j's immediate dominator - j is in the
1246 dominance frontier of each of the nodes in the walk, except for j's
1247 immediate dominator. Intuitively, all of the rest of j's dominators are
1248 shared by j's predecessors as well.
1249 Since they dominate j, they will not have j in their dominance frontiers.
1251 The number of nodes touched by this algorithm is equal to the size
1252 of the dominance frontiers, no more, no less.
1257 compute_dominance_frontiers_1 (bitmap
*frontiers
)
1264 if (EDGE_COUNT (b
->preds
) >= 2)
1266 FOR_EACH_EDGE (p
, ei
, b
->preds
)
1268 basic_block runner
= p
->src
;
1270 if (runner
== ENTRY_BLOCK_PTR
)
1273 domsb
= get_immediate_dominator (CDI_DOMINATORS
, b
);
1274 while (runner
!= domsb
)
1276 if (bitmap_bit_p (frontiers
[runner
->index
], b
->index
))
1278 bitmap_set_bit (frontiers
[runner
->index
],
1280 runner
= get_immediate_dominator (CDI_DOMINATORS
,
1290 compute_dominance_frontiers (bitmap
*frontiers
)
1292 timevar_push (TV_DOM_FRONTIERS
);
1294 compute_dominance_frontiers_1 (frontiers
);
1296 timevar_pop (TV_DOM_FRONTIERS
);
1299 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1300 return a bitmap with all the blocks in the iterated dominance
1301 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1302 frontier information as returned by compute_dominance_frontiers.
1304 The resulting set of blocks are the potential sites where PHI nodes
1305 are needed. The caller is responsible for freeing the memory
1306 allocated for the return value. */
1309 compute_idf (bitmap def_blocks
, bitmap
*dfs
)
1312 unsigned bb_index
, i
;
1313 VEC(int,heap
) *work_stack
;
1314 bitmap phi_insertion_points
;
1316 work_stack
= VEC_alloc (int, heap
, n_basic_blocks
);
1317 phi_insertion_points
= BITMAP_ALLOC (NULL
);
1319 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1320 VEC_quick_push here for speed. This is safe because we know that
1321 the number of definition blocks is no greater than the number of
1322 basic blocks, which is the initial capacity of WORK_STACK. */
1323 EXECUTE_IF_SET_IN_BITMAP (def_blocks
, 0, bb_index
, bi
)
1324 VEC_quick_push (int, work_stack
, bb_index
);
1326 /* Pop a block off the worklist, add every block that appears in
1327 the original block's DF that we have not already processed to
1328 the worklist. Iterate until the worklist is empty. Blocks
1329 which are added to the worklist are potential sites for
1331 while (VEC_length (int, work_stack
) > 0)
1333 bb_index
= VEC_pop (int, work_stack
);
1335 /* Since the registration of NEW -> OLD name mappings is done
1336 separately from the call to update_ssa, when updating the SSA
1337 form, the basic blocks where new and/or old names are defined
1338 may have disappeared by CFG cleanup calls. In this case,
1339 we may pull a non-existing block from the work stack. */
1340 gcc_assert (bb_index
< (unsigned) last_basic_block
);
1342 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs
[bb_index
], phi_insertion_points
,
1345 /* Use a safe push because if there is a definition of VAR
1346 in every basic block, then WORK_STACK may eventually have
1347 more than N_BASIC_BLOCK entries. */
1348 VEC_safe_push (int, heap
, work_stack
, i
);
1349 bitmap_set_bit (phi_insertion_points
, i
);
1353 VEC_free (int, heap
, work_stack
);
1355 return phi_insertion_points
;