2015-05-19 Christophe Lyon <christophe.lyon@linaro.org>
[official-gcc.git] / gcc / combine.c
bloba90849ed0e98dc23fbd56f0eb733b5f0bc8adf2b
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "hash-set.h"
84 #include "machmode.h"
85 #include "vec.h"
86 #include "double-int.h"
87 #include "input.h"
88 #include "alias.h"
89 #include "symtab.h"
90 #include "wide-int.h"
91 #include "inchash.h"
92 #include "tree.h"
93 #include "stor-layout.h"
94 #include "tm_p.h"
95 #include "flags.h"
96 #include "regs.h"
97 #include "hard-reg-set.h"
98 #include "predict.h"
99 #include "function.h"
100 #include "dominance.h"
101 #include "cfg.h"
102 #include "cfgrtl.h"
103 #include "cfgcleanup.h"
104 #include "basic-block.h"
105 #include "insn-config.h"
106 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
107 #include "hashtab.h"
108 #include "statistics.h"
109 #include "real.h"
110 #include "fixed-value.h"
111 #include "expmed.h"
112 #include "dojump.h"
113 #include "explow.h"
114 #include "calls.h"
115 #include "emit-rtl.h"
116 #include "varasm.h"
117 #include "stmt.h"
118 #include "expr.h"
119 #include "insn-attr.h"
120 #include "recog.h"
121 #include "diagnostic-core.h"
122 #include "target.h"
123 #include "insn-codes.h"
124 #include "optabs.h"
125 #include "rtlhooks-def.h"
126 #include "params.h"
127 #include "tree-pass.h"
128 #include "df.h"
129 #include "valtrack.h"
130 #include "hash-map.h"
131 #include "is-a.h"
132 #include "plugin-api.h"
133 #include "ipa-ref.h"
134 #include "cgraph.h"
135 #include "obstack.h"
136 #include "rtl-iter.h"
138 /* Number of attempts to combine instructions in this function. */
140 static int combine_attempts;
142 /* Number of attempts that got as far as substitution in this function. */
144 static int combine_merges;
146 /* Number of instructions combined with added SETs in this function. */
148 static int combine_extras;
150 /* Number of instructions combined in this function. */
152 static int combine_successes;
154 /* Totals over entire compilation. */
156 static int total_attempts, total_merges, total_extras, total_successes;
158 /* combine_instructions may try to replace the right hand side of the
159 second instruction with the value of an associated REG_EQUAL note
160 before throwing it at try_combine. That is problematic when there
161 is a REG_DEAD note for a register used in the old right hand side
162 and can cause distribute_notes to do wrong things. This is the
163 second instruction if it has been so modified, null otherwise. */
165 static rtx_insn *i2mod;
167 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
169 static rtx i2mod_old_rhs;
171 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
173 static rtx i2mod_new_rhs;
175 typedef struct reg_stat_struct {
176 /* Record last point of death of (hard or pseudo) register n. */
177 rtx_insn *last_death;
179 /* Record last point of modification of (hard or pseudo) register n. */
180 rtx_insn *last_set;
182 /* The next group of fields allows the recording of the last value assigned
183 to (hard or pseudo) register n. We use this information to see if an
184 operation being processed is redundant given a prior operation performed
185 on the register. For example, an `and' with a constant is redundant if
186 all the zero bits are already known to be turned off.
188 We use an approach similar to that used by cse, but change it in the
189 following ways:
191 (1) We do not want to reinitialize at each label.
192 (2) It is useful, but not critical, to know the actual value assigned
193 to a register. Often just its form is helpful.
195 Therefore, we maintain the following fields:
197 last_set_value the last value assigned
198 last_set_label records the value of label_tick when the
199 register was assigned
200 last_set_table_tick records the value of label_tick when a
201 value using the register is assigned
202 last_set_invalid set to nonzero when it is not valid
203 to use the value of this register in some
204 register's value
206 To understand the usage of these tables, it is important to understand
207 the distinction between the value in last_set_value being valid and
208 the register being validly contained in some other expression in the
209 table.
211 (The next two parameters are out of date).
213 reg_stat[i].last_set_value is valid if it is nonzero, and either
214 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
216 Register I may validly appear in any expression returned for the value
217 of another register if reg_n_sets[i] is 1. It may also appear in the
218 value for register J if reg_stat[j].last_set_invalid is zero, or
219 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
221 If an expression is found in the table containing a register which may
222 not validly appear in an expression, the register is replaced by
223 something that won't match, (clobber (const_int 0)). */
225 /* Record last value assigned to (hard or pseudo) register n. */
227 rtx last_set_value;
229 /* Record the value of label_tick when an expression involving register n
230 is placed in last_set_value. */
232 int last_set_table_tick;
234 /* Record the value of label_tick when the value for register n is placed in
235 last_set_value. */
237 int last_set_label;
239 /* These fields are maintained in parallel with last_set_value and are
240 used to store the mode in which the register was last set, the bits
241 that were known to be zero when it was last set, and the number of
242 sign bits copies it was known to have when it was last set. */
244 unsigned HOST_WIDE_INT last_set_nonzero_bits;
245 char last_set_sign_bit_copies;
246 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
248 /* Set nonzero if references to register n in expressions should not be
249 used. last_set_invalid is set nonzero when this register is being
250 assigned to and last_set_table_tick == label_tick. */
252 char last_set_invalid;
254 /* Some registers that are set more than once and used in more than one
255 basic block are nevertheless always set in similar ways. For example,
256 a QImode register may be loaded from memory in two places on a machine
257 where byte loads zero extend.
259 We record in the following fields if a register has some leading bits
260 that are always equal to the sign bit, and what we know about the
261 nonzero bits of a register, specifically which bits are known to be
262 zero.
264 If an entry is zero, it means that we don't know anything special. */
266 unsigned char sign_bit_copies;
268 unsigned HOST_WIDE_INT nonzero_bits;
270 /* Record the value of the label_tick when the last truncation
271 happened. The field truncated_to_mode is only valid if
272 truncation_label == label_tick. */
274 int truncation_label;
276 /* Record the last truncation seen for this register. If truncation
277 is not a nop to this mode we might be able to save an explicit
278 truncation if we know that value already contains a truncated
279 value. */
281 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
282 } reg_stat_type;
285 static vec<reg_stat_type> reg_stat;
287 /* One plus the highest pseudo for which we track REG_N_SETS.
288 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
289 but during combine_split_insns new pseudos can be created. As we don't have
290 updated DF information in that case, it is hard to initialize the array
291 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
292 so instead of growing the arrays, just assume all newly created pseudos
293 during combine might be set multiple times. */
295 static unsigned int reg_n_sets_max;
297 /* Record the luid of the last insn that invalidated memory
298 (anything that writes memory, and subroutine calls, but not pushes). */
300 static int mem_last_set;
302 /* Record the luid of the last CALL_INSN
303 so we can tell whether a potential combination crosses any calls. */
305 static int last_call_luid;
307 /* When `subst' is called, this is the insn that is being modified
308 (by combining in a previous insn). The PATTERN of this insn
309 is still the old pattern partially modified and it should not be
310 looked at, but this may be used to examine the successors of the insn
311 to judge whether a simplification is valid. */
313 static rtx_insn *subst_insn;
315 /* This is the lowest LUID that `subst' is currently dealing with.
316 get_last_value will not return a value if the register was set at or
317 after this LUID. If not for this mechanism, we could get confused if
318 I2 or I1 in try_combine were an insn that used the old value of a register
319 to obtain a new value. In that case, we might erroneously get the
320 new value of the register when we wanted the old one. */
322 static int subst_low_luid;
324 /* This contains any hard registers that are used in newpat; reg_dead_at_p
325 must consider all these registers to be always live. */
327 static HARD_REG_SET newpat_used_regs;
329 /* This is an insn to which a LOG_LINKS entry has been added. If this
330 insn is the earlier than I2 or I3, combine should rescan starting at
331 that location. */
333 static rtx_insn *added_links_insn;
335 /* Basic block in which we are performing combines. */
336 static basic_block this_basic_block;
337 static bool optimize_this_for_speed_p;
340 /* Length of the currently allocated uid_insn_cost array. */
342 static int max_uid_known;
344 /* The following array records the insn_rtx_cost for every insn
345 in the instruction stream. */
347 static int *uid_insn_cost;
349 /* The following array records the LOG_LINKS for every insn in the
350 instruction stream as struct insn_link pointers. */
352 struct insn_link {
353 rtx_insn *insn;
354 unsigned int regno;
355 struct insn_link *next;
358 static struct insn_link **uid_log_links;
360 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
361 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
363 #define FOR_EACH_LOG_LINK(L, INSN) \
364 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
366 /* Links for LOG_LINKS are allocated from this obstack. */
368 static struct obstack insn_link_obstack;
370 /* Allocate a link. */
372 static inline struct insn_link *
373 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
375 struct insn_link *l
376 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
377 sizeof (struct insn_link));
378 l->insn = insn;
379 l->regno = regno;
380 l->next = next;
381 return l;
384 /* Incremented for each basic block. */
386 static int label_tick;
388 /* Reset to label_tick for each extended basic block in scanning order. */
390 static int label_tick_ebb_start;
392 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
393 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
395 static machine_mode nonzero_bits_mode;
397 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
398 be safely used. It is zero while computing them and after combine has
399 completed. This former test prevents propagating values based on
400 previously set values, which can be incorrect if a variable is modified
401 in a loop. */
403 static int nonzero_sign_valid;
406 /* Record one modification to rtl structure
407 to be undone by storing old_contents into *where. */
409 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
411 struct undo
413 struct undo *next;
414 enum undo_kind kind;
415 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
416 union { rtx *r; int *i; struct insn_link **l; } where;
419 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
420 num_undo says how many are currently recorded.
422 other_insn is nonzero if we have modified some other insn in the process
423 of working on subst_insn. It must be verified too. */
425 struct undobuf
427 struct undo *undos;
428 struct undo *frees;
429 rtx_insn *other_insn;
432 static struct undobuf undobuf;
434 /* Number of times the pseudo being substituted for
435 was found and replaced. */
437 static int n_occurrences;
439 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
440 machine_mode,
441 unsigned HOST_WIDE_INT,
442 unsigned HOST_WIDE_INT *);
443 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
444 machine_mode,
445 unsigned int, unsigned int *);
446 static void do_SUBST (rtx *, rtx);
447 static void do_SUBST_INT (int *, int);
448 static void init_reg_last (void);
449 static void setup_incoming_promotions (rtx_insn *);
450 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
451 static int cant_combine_insn_p (rtx_insn *);
452 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
453 rtx_insn *, rtx_insn *, rtx *, rtx *);
454 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
455 static int contains_muldiv (rtx);
456 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
457 int *, rtx_insn *);
458 static void undo_all (void);
459 static void undo_commit (void);
460 static rtx *find_split_point (rtx *, rtx_insn *, bool);
461 static rtx subst (rtx, rtx, rtx, int, int, int);
462 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
463 static rtx simplify_if_then_else (rtx);
464 static rtx simplify_set (rtx);
465 static rtx simplify_logical (rtx);
466 static rtx expand_compound_operation (rtx);
467 static const_rtx expand_field_assignment (const_rtx);
468 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
469 rtx, unsigned HOST_WIDE_INT, int, int, int);
470 static rtx extract_left_shift (rtx, int);
471 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
472 unsigned HOST_WIDE_INT *);
473 static rtx canon_reg_for_combine (rtx, rtx);
474 static rtx force_to_mode (rtx, machine_mode,
475 unsigned HOST_WIDE_INT, int);
476 static rtx if_then_else_cond (rtx, rtx *, rtx *);
477 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
478 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
479 static rtx make_field_assignment (rtx);
480 static rtx apply_distributive_law (rtx);
481 static rtx distribute_and_simplify_rtx (rtx, int);
482 static rtx simplify_and_const_int_1 (machine_mode, rtx,
483 unsigned HOST_WIDE_INT);
484 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
485 unsigned HOST_WIDE_INT);
486 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
487 HOST_WIDE_INT, machine_mode, int *);
488 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
489 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
490 int);
491 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
492 static rtx gen_lowpart_for_combine (machine_mode, rtx);
493 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
494 rtx, rtx *);
495 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
496 static void update_table_tick (rtx);
497 static void record_value_for_reg (rtx, rtx_insn *, rtx);
498 static void check_promoted_subreg (rtx_insn *, rtx);
499 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
500 static void record_dead_and_set_regs (rtx_insn *);
501 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
502 static rtx get_last_value (const_rtx);
503 static int use_crosses_set_p (const_rtx, int);
504 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
505 static int reg_dead_at_p (rtx, rtx_insn *);
506 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
507 static int reg_bitfield_target_p (rtx, rtx);
508 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
509 static void distribute_links (struct insn_link *);
510 static void mark_used_regs_combine (rtx);
511 static void record_promoted_value (rtx_insn *, rtx);
512 static bool unmentioned_reg_p (rtx, rtx);
513 static void record_truncated_values (rtx *, void *);
514 static bool reg_truncated_to_mode (machine_mode, const_rtx);
515 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
518 /* It is not safe to use ordinary gen_lowpart in combine.
519 See comments in gen_lowpart_for_combine. */
520 #undef RTL_HOOKS_GEN_LOWPART
521 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
523 /* Our implementation of gen_lowpart never emits a new pseudo. */
524 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
525 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
527 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
528 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
530 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
531 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
533 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
534 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
536 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
539 /* Convenience wrapper for the canonicalize_comparison target hook.
540 Target hooks cannot use enum rtx_code. */
541 static inline void
542 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
543 bool op0_preserve_value)
545 int code_int = (int)*code;
546 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
547 *code = (enum rtx_code)code_int;
550 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
551 PATTERN can not be split. Otherwise, it returns an insn sequence.
552 This is a wrapper around split_insns which ensures that the
553 reg_stat vector is made larger if the splitter creates a new
554 register. */
556 static rtx_insn *
557 combine_split_insns (rtx pattern, rtx_insn *insn)
559 rtx_insn *ret;
560 unsigned int nregs;
562 ret = safe_as_a <rtx_insn *> (split_insns (pattern, insn));
563 nregs = max_reg_num ();
564 if (nregs > reg_stat.length ())
565 reg_stat.safe_grow_cleared (nregs);
566 return ret;
569 /* This is used by find_single_use to locate an rtx in LOC that
570 contains exactly one use of DEST, which is typically either a REG
571 or CC0. It returns a pointer to the innermost rtx expression
572 containing DEST. Appearances of DEST that are being used to
573 totally replace it are not counted. */
575 static rtx *
576 find_single_use_1 (rtx dest, rtx *loc)
578 rtx x = *loc;
579 enum rtx_code code = GET_CODE (x);
580 rtx *result = NULL;
581 rtx *this_result;
582 int i;
583 const char *fmt;
585 switch (code)
587 case CONST:
588 case LABEL_REF:
589 case SYMBOL_REF:
590 CASE_CONST_ANY:
591 case CLOBBER:
592 return 0;
594 case SET:
595 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
596 of a REG that occupies all of the REG, the insn uses DEST if
597 it is mentioned in the destination or the source. Otherwise, we
598 need just check the source. */
599 if (GET_CODE (SET_DEST (x)) != CC0
600 && GET_CODE (SET_DEST (x)) != PC
601 && !REG_P (SET_DEST (x))
602 && ! (GET_CODE (SET_DEST (x)) == SUBREG
603 && REG_P (SUBREG_REG (SET_DEST (x)))
604 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
605 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
606 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
607 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
608 break;
610 return find_single_use_1 (dest, &SET_SRC (x));
612 case MEM:
613 case SUBREG:
614 return find_single_use_1 (dest, &XEXP (x, 0));
616 default:
617 break;
620 /* If it wasn't one of the common cases above, check each expression and
621 vector of this code. Look for a unique usage of DEST. */
623 fmt = GET_RTX_FORMAT (code);
624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
626 if (fmt[i] == 'e')
628 if (dest == XEXP (x, i)
629 || (REG_P (dest) && REG_P (XEXP (x, i))
630 && REGNO (dest) == REGNO (XEXP (x, i))))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XEXP (x, i));
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 /* Duplicate usage. */
639 return NULL;
641 else if (fmt[i] == 'E')
643 int j;
645 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
647 if (XVECEXP (x, i, j) == dest
648 || (REG_P (dest)
649 && REG_P (XVECEXP (x, i, j))
650 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
651 this_result = loc;
652 else
653 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
655 if (result == NULL)
656 result = this_result;
657 else if (this_result)
658 return NULL;
663 return result;
667 /* See if DEST, produced in INSN, is used only a single time in the
668 sequel. If so, return a pointer to the innermost rtx expression in which
669 it is used.
671 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
673 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
674 care about REG_DEAD notes or LOG_LINKS.
676 Otherwise, we find the single use by finding an insn that has a
677 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
678 only referenced once in that insn, we know that it must be the first
679 and last insn referencing DEST. */
681 static rtx *
682 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
684 basic_block bb;
685 rtx_insn *next;
686 rtx *result;
687 struct insn_link *link;
689 if (dest == cc0_rtx)
691 next = NEXT_INSN (insn);
692 if (next == 0
693 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
694 return 0;
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (result && ploc)
698 *ploc = next;
699 return result;
702 if (!REG_P (dest))
703 return 0;
705 bb = BLOCK_FOR_INSN (insn);
706 for (next = NEXT_INSN (insn);
707 next && BLOCK_FOR_INSN (next) == bb;
708 next = NEXT_INSN (next))
709 if (INSN_P (next) && dead_or_set_p (next, dest))
711 FOR_EACH_LOG_LINK (link, next)
712 if (link->insn == insn && link->regno == REGNO (dest))
713 break;
715 if (link)
717 result = find_single_use_1 (dest, &PATTERN (next));
718 if (ploc)
719 *ploc = next;
720 return result;
724 return 0;
727 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
728 insn. The substitution can be undone by undo_all. If INTO is already
729 set to NEWVAL, do not record this change. Because computing NEWVAL might
730 also call SUBST, we have to compute it before we put anything into
731 the undo table. */
733 static void
734 do_SUBST (rtx *into, rtx newval)
736 struct undo *buf;
737 rtx oldval = *into;
739 if (oldval == newval)
740 return;
742 /* We'd like to catch as many invalid transformations here as
743 possible. Unfortunately, there are way too many mode changes
744 that are perfectly valid, so we'd waste too much effort for
745 little gain doing the checks here. Focus on catching invalid
746 transformations involving integer constants. */
747 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
748 && CONST_INT_P (newval))
750 /* Sanity check that we're replacing oldval with a CONST_INT
751 that is a valid sign-extension for the original mode. */
752 gcc_assert (INTVAL (newval)
753 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
755 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
756 CONST_INT is not valid, because after the replacement, the
757 original mode would be gone. Unfortunately, we can't tell
758 when do_SUBST is called to replace the operand thereof, so we
759 perform this test on oldval instead, checking whether an
760 invalid replacement took place before we got here. */
761 gcc_assert (!(GET_CODE (oldval) == SUBREG
762 && CONST_INT_P (SUBREG_REG (oldval))));
763 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
764 && CONST_INT_P (XEXP (oldval, 0))));
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
772 buf->kind = UNDO_RTX;
773 buf->where.r = into;
774 buf->old_contents.r = oldval;
775 *into = newval;
777 buf->next = undobuf.undos, undobuf.undos = buf;
780 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
782 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
783 for the value of a HOST_WIDE_INT value (including CONST_INT) is
784 not safe. */
786 static void
787 do_SUBST_INT (int *into, int newval)
789 struct undo *buf;
790 int oldval = *into;
792 if (oldval == newval)
793 return;
795 if (undobuf.frees)
796 buf = undobuf.frees, undobuf.frees = buf->next;
797 else
798 buf = XNEW (struct undo);
800 buf->kind = UNDO_INT;
801 buf->where.i = into;
802 buf->old_contents.i = oldval;
803 *into = newval;
805 buf->next = undobuf.undos, undobuf.undos = buf;
808 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
810 /* Similar to SUBST, but just substitute the mode. This is used when
811 changing the mode of a pseudo-register, so that any other
812 references to the entry in the regno_reg_rtx array will change as
813 well. */
815 static void
816 do_SUBST_MODE (rtx *into, machine_mode newval)
818 struct undo *buf;
819 machine_mode oldval = GET_MODE (*into);
821 if (oldval == newval)
822 return;
824 if (undobuf.frees)
825 buf = undobuf.frees, undobuf.frees = buf->next;
826 else
827 buf = XNEW (struct undo);
829 buf->kind = UNDO_MODE;
830 buf->where.r = into;
831 buf->old_contents.m = oldval;
832 adjust_reg_mode (*into, newval);
834 buf->next = undobuf.undos, undobuf.undos = buf;
837 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
839 #if !HAVE_cc0
840 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
842 static void
843 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
845 struct undo *buf;
846 struct insn_link * oldval = *into;
848 if (oldval == newval)
849 return;
851 if (undobuf.frees)
852 buf = undobuf.frees, undobuf.frees = buf->next;
853 else
854 buf = XNEW (struct undo);
856 buf->kind = UNDO_LINKS;
857 buf->where.l = into;
858 buf->old_contents.l = oldval;
859 *into = newval;
861 buf->next = undobuf.undos, undobuf.undos = buf;
864 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
865 #endif
867 /* Subroutine of try_combine. Determine whether the replacement patterns
868 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
869 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
870 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
871 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
872 of all the instructions can be estimated and the replacements are more
873 expensive than the original sequence. */
875 static bool
876 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
877 rtx newpat, rtx newi2pat, rtx newotherpat)
879 int i0_cost, i1_cost, i2_cost, i3_cost;
880 int new_i2_cost, new_i3_cost;
881 int old_cost, new_cost;
883 /* Lookup the original insn_rtx_costs. */
884 i2_cost = INSN_COST (i2);
885 i3_cost = INSN_COST (i3);
887 if (i1)
889 i1_cost = INSN_COST (i1);
890 if (i0)
892 i0_cost = INSN_COST (i0);
893 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
894 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
896 else
898 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
899 ? i1_cost + i2_cost + i3_cost : 0);
900 i0_cost = 0;
903 else
905 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
906 i1_cost = i0_cost = 0;
909 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
910 correct that. */
911 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
912 old_cost -= i1_cost;
915 /* Calculate the replacement insn_rtx_costs. */
916 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
917 if (newi2pat)
919 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
920 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
921 ? new_i2_cost + new_i3_cost : 0;
923 else
925 new_cost = new_i3_cost;
926 new_i2_cost = 0;
929 if (undobuf.other_insn)
931 int old_other_cost, new_other_cost;
933 old_other_cost = INSN_COST (undobuf.other_insn);
934 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
935 if (old_other_cost > 0 && new_other_cost > 0)
937 old_cost += old_other_cost;
938 new_cost += new_other_cost;
940 else
941 old_cost = 0;
944 /* Disallow this combination if both new_cost and old_cost are greater than
945 zero, and new_cost is greater than old cost. */
946 int reject = old_cost > 0 && new_cost > old_cost;
948 if (dump_file)
950 fprintf (dump_file, "%s combination of insns ",
951 reject ? "rejecting" : "allowing");
952 if (i0)
953 fprintf (dump_file, "%d, ", INSN_UID (i0));
954 if (i1 && INSN_UID (i1) != INSN_UID (i2))
955 fprintf (dump_file, "%d, ", INSN_UID (i1));
956 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
958 fprintf (dump_file, "original costs ");
959 if (i0)
960 fprintf (dump_file, "%d + ", i0_cost);
961 if (i1 && INSN_UID (i1) != INSN_UID (i2))
962 fprintf (dump_file, "%d + ", i1_cost);
963 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
965 if (newi2pat)
966 fprintf (dump_file, "replacement costs %d + %d = %d\n",
967 new_i2_cost, new_i3_cost, new_cost);
968 else
969 fprintf (dump_file, "replacement cost %d\n", new_cost);
972 if (reject)
973 return false;
975 /* Update the uid_insn_cost array with the replacement costs. */
976 INSN_COST (i2) = new_i2_cost;
977 INSN_COST (i3) = new_i3_cost;
978 if (i1)
980 INSN_COST (i1) = 0;
981 if (i0)
982 INSN_COST (i0) = 0;
985 return true;
989 /* Delete any insns that copy a register to itself. */
991 static void
992 delete_noop_moves (void)
994 rtx_insn *insn, *next;
995 basic_block bb;
997 FOR_EACH_BB_FN (bb, cfun)
999 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1001 next = NEXT_INSN (insn);
1002 if (INSN_P (insn) && noop_move_p (insn))
1004 if (dump_file)
1005 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1007 delete_insn_and_edges (insn);
1014 /* Return false if we do not want to (or cannot) combine DEF. */
1015 static bool
1016 can_combine_def_p (df_ref def)
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 return false;
1022 unsigned int regno = DF_REF_REGNO (def);
1024 /* Do not combine frame pointer adjustments. */
1025 if ((regno == FRAME_POINTER_REGNUM
1026 && (!reload_completed || frame_pointer_needed))
1027 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1028 || (regno == HARD_FRAME_POINTER_REGNUM
1029 && (!reload_completed || frame_pointer_needed))
1030 #endif
1031 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1033 #endif
1035 return false;
1037 return true;
1040 /* Return false if we do not want to (or cannot) combine USE. */
1041 static bool
1042 can_combine_use_p (df_ref use)
1044 /* Do not consider the usage of the stack pointer by function call. */
1045 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1046 return false;
1048 return true;
1051 /* Fill in log links field for all insns. */
1053 static void
1054 create_log_links (void)
1056 basic_block bb;
1057 rtx_insn **next_use;
1058 rtx_insn *insn;
1059 df_ref def, use;
1061 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1063 /* Pass through each block from the end, recording the uses of each
1064 register and establishing log links when def is encountered.
1065 Note that we do not clear next_use array in order to save time,
1066 so we have to test whether the use is in the same basic block as def.
1068 There are a few cases below when we do not consider the definition or
1069 usage -- these are taken from original flow.c did. Don't ask me why it is
1070 done this way; I don't know and if it works, I don't want to know. */
1072 FOR_EACH_BB_FN (bb, cfun)
1074 FOR_BB_INSNS_REVERSE (bb, insn)
1076 if (!NONDEBUG_INSN_P (insn))
1077 continue;
1079 /* Log links are created only once. */
1080 gcc_assert (!LOG_LINKS (insn));
1082 FOR_EACH_INSN_DEF (def, insn)
1084 unsigned int regno = DF_REF_REGNO (def);
1085 rtx_insn *use_insn;
1087 if (!next_use[regno])
1088 continue;
1090 if (!can_combine_def_p (def))
1091 continue;
1093 use_insn = next_use[regno];
1094 next_use[regno] = NULL;
1096 if (BLOCK_FOR_INSN (use_insn) != bb)
1097 continue;
1099 /* flow.c claimed:
1101 We don't build a LOG_LINK for hard registers contained
1102 in ASM_OPERANDs. If these registers get replaced,
1103 we might wind up changing the semantics of the insn,
1104 even if reload can make what appear to be valid
1105 assignments later. */
1106 if (regno < FIRST_PSEUDO_REGISTER
1107 && asm_noperands (PATTERN (use_insn)) >= 0)
1108 continue;
1110 /* Don't add duplicate links between instructions. */
1111 struct insn_link *links;
1112 FOR_EACH_LOG_LINK (links, use_insn)
1113 if (insn == links->insn && regno == links->regno)
1114 break;
1116 if (!links)
1117 LOG_LINKS (use_insn)
1118 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1121 FOR_EACH_INSN_USE (use, insn)
1122 if (can_combine_use_p (use))
1123 next_use[DF_REF_REGNO (use)] = insn;
1127 free (next_use);
1130 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1131 true if we found a LOG_LINK that proves that A feeds B. This only works
1132 if there are no instructions between A and B which could have a link
1133 depending on A, since in that case we would not record a link for B.
1134 We also check the implicit dependency created by a cc0 setter/user
1135 pair. */
1137 static bool
1138 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1140 struct insn_link *links;
1141 FOR_EACH_LOG_LINK (links, b)
1142 if (links->insn == a)
1143 return true;
1144 if (HAVE_cc0 && sets_cc0_p (a))
1145 return true;
1146 return false;
1149 /* Main entry point for combiner. F is the first insn of the function.
1150 NREGS is the first unused pseudo-reg number.
1152 Return nonzero if the combiner has turned an indirect jump
1153 instruction into a direct jump. */
1154 static int
1155 combine_instructions (rtx_insn *f, unsigned int nregs)
1157 rtx_insn *insn, *next;
1158 #if HAVE_cc0
1159 rtx_insn *prev;
1160 #endif
1161 struct insn_link *links, *nextlinks;
1162 rtx_insn *first;
1163 basic_block last_bb;
1165 int new_direct_jump_p = 0;
1167 for (first = f; first && !INSN_P (first); )
1168 first = NEXT_INSN (first);
1169 if (!first)
1170 return 0;
1172 combine_attempts = 0;
1173 combine_merges = 0;
1174 combine_extras = 0;
1175 combine_successes = 0;
1177 rtl_hooks = combine_rtl_hooks;
1179 reg_stat.safe_grow_cleared (nregs);
1181 init_recog_no_volatile ();
1183 /* Allocate array for insn info. */
1184 max_uid_known = get_max_uid ();
1185 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1186 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1187 gcc_obstack_init (&insn_link_obstack);
1189 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1191 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1192 problems when, for example, we have j <<= 1 in a loop. */
1194 nonzero_sign_valid = 0;
1195 label_tick = label_tick_ebb_start = 1;
1197 /* Scan all SETs and see if we can deduce anything about what
1198 bits are known to be zero for some registers and how many copies
1199 of the sign bit are known to exist for those registers.
1201 Also set any known values so that we can use it while searching
1202 for what bits are known to be set. */
1204 setup_incoming_promotions (first);
1205 /* Allow the entry block and the first block to fall into the same EBB.
1206 Conceptually the incoming promotions are assigned to the entry block. */
1207 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1209 create_log_links ();
1210 FOR_EACH_BB_FN (this_basic_block, cfun)
1212 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1213 last_call_luid = 0;
1214 mem_last_set = -1;
1216 label_tick++;
1217 if (!single_pred_p (this_basic_block)
1218 || single_pred (this_basic_block) != last_bb)
1219 label_tick_ebb_start = label_tick;
1220 last_bb = this_basic_block;
1222 FOR_BB_INSNS (this_basic_block, insn)
1223 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1225 #ifdef AUTO_INC_DEC
1226 rtx links;
1227 #endif
1229 subst_low_luid = DF_INSN_LUID (insn);
1230 subst_insn = insn;
1232 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1233 insn);
1234 record_dead_and_set_regs (insn);
1236 #ifdef AUTO_INC_DEC
1237 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1238 if (REG_NOTE_KIND (links) == REG_INC)
1239 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1240 insn);
1241 #endif
1243 /* Record the current insn_rtx_cost of this instruction. */
1244 if (NONJUMP_INSN_P (insn))
1245 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1246 optimize_this_for_speed_p);
1247 if (dump_file)
1248 fprintf (dump_file, "insn_cost %d: %d\n",
1249 INSN_UID (insn), INSN_COST (insn));
1253 nonzero_sign_valid = 1;
1255 /* Now scan all the insns in forward order. */
1256 label_tick = label_tick_ebb_start = 1;
1257 init_reg_last ();
1258 setup_incoming_promotions (first);
1259 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1260 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1262 FOR_EACH_BB_FN (this_basic_block, cfun)
1264 rtx_insn *last_combined_insn = NULL;
1265 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1266 last_call_luid = 0;
1267 mem_last_set = -1;
1269 label_tick++;
1270 if (!single_pred_p (this_basic_block)
1271 || single_pred (this_basic_block) != last_bb)
1272 label_tick_ebb_start = label_tick;
1273 last_bb = this_basic_block;
1275 rtl_profile_for_bb (this_basic_block);
1276 for (insn = BB_HEAD (this_basic_block);
1277 insn != NEXT_INSN (BB_END (this_basic_block));
1278 insn = next ? next : NEXT_INSN (insn))
1280 next = 0;
1281 if (!NONDEBUG_INSN_P (insn))
1282 continue;
1284 while (last_combined_insn
1285 && last_combined_insn->deleted ())
1286 last_combined_insn = PREV_INSN (last_combined_insn);
1287 if (last_combined_insn == NULL_RTX
1288 || BARRIER_P (last_combined_insn)
1289 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1290 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1291 last_combined_insn = insn;
1293 /* See if we know about function return values before this
1294 insn based upon SUBREG flags. */
1295 check_promoted_subreg (insn, PATTERN (insn));
1297 /* See if we can find hardregs and subreg of pseudos in
1298 narrower modes. This could help turning TRUNCATEs
1299 into SUBREGs. */
1300 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1302 /* Try this insn with each insn it links back to. */
1304 FOR_EACH_LOG_LINK (links, insn)
1305 if ((next = try_combine (insn, links->insn, NULL,
1306 NULL, &new_direct_jump_p,
1307 last_combined_insn)) != 0)
1309 statistics_counter_event (cfun, "two-insn combine", 1);
1310 goto retry;
1313 /* Try each sequence of three linked insns ending with this one. */
1315 if (max_combine >= 3)
1316 FOR_EACH_LOG_LINK (links, insn)
1318 rtx_insn *link = links->insn;
1320 /* If the linked insn has been replaced by a note, then there
1321 is no point in pursuing this chain any further. */
1322 if (NOTE_P (link))
1323 continue;
1325 FOR_EACH_LOG_LINK (nextlinks, link)
1326 if ((next = try_combine (insn, link, nextlinks->insn,
1327 NULL, &new_direct_jump_p,
1328 last_combined_insn)) != 0)
1330 statistics_counter_event (cfun, "three-insn combine", 1);
1331 goto retry;
1335 #if HAVE_cc0
1336 /* Try to combine a jump insn that uses CC0
1337 with a preceding insn that sets CC0, and maybe with its
1338 logical predecessor as well.
1339 This is how we make decrement-and-branch insns.
1340 We need this special code because data flow connections
1341 via CC0 do not get entered in LOG_LINKS. */
1343 if (JUMP_P (insn)
1344 && (prev = prev_nonnote_insn (insn)) != 0
1345 && NONJUMP_INSN_P (prev)
1346 && sets_cc0_p (PATTERN (prev)))
1348 if ((next = try_combine (insn, prev, NULL, NULL,
1349 &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1353 FOR_EACH_LOG_LINK (nextlinks, prev)
1354 if ((next = try_combine (insn, prev, nextlinks->insn,
1355 NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1360 /* Do the same for an insn that explicitly references CC0. */
1361 if (NONJUMP_INSN_P (insn)
1362 && (prev = prev_nonnote_insn (insn)) != 0
1363 && NONJUMP_INSN_P (prev)
1364 && sets_cc0_p (PATTERN (prev))
1365 && GET_CODE (PATTERN (insn)) == SET
1366 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1368 if ((next = try_combine (insn, prev, NULL, NULL,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1373 FOR_EACH_LOG_LINK (nextlinks, prev)
1374 if ((next = try_combine (insn, prev, nextlinks->insn,
1375 NULL, &new_direct_jump_p,
1376 last_combined_insn)) != 0)
1377 goto retry;
1380 /* Finally, see if any of the insns that this insn links to
1381 explicitly references CC0. If so, try this insn, that insn,
1382 and its predecessor if it sets CC0. */
1383 FOR_EACH_LOG_LINK (links, insn)
1384 if (NONJUMP_INSN_P (links->insn)
1385 && GET_CODE (PATTERN (links->insn)) == SET
1386 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1387 && (prev = prev_nonnote_insn (links->insn)) != 0
1388 && NONJUMP_INSN_P (prev)
1389 && sets_cc0_p (PATTERN (prev))
1390 && (next = try_combine (insn, links->insn,
1391 prev, NULL, &new_direct_jump_p,
1392 last_combined_insn)) != 0)
1393 goto retry;
1394 #endif
1396 /* Try combining an insn with two different insns whose results it
1397 uses. */
1398 if (max_combine >= 3)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 for (nextlinks = links->next; nextlinks;
1401 nextlinks = nextlinks->next)
1402 if ((next = try_combine (insn, links->insn,
1403 nextlinks->insn, NULL,
1404 &new_direct_jump_p,
1405 last_combined_insn)) != 0)
1408 statistics_counter_event (cfun, "three-insn combine", 1);
1409 goto retry;
1412 /* Try four-instruction combinations. */
1413 if (max_combine >= 4)
1414 FOR_EACH_LOG_LINK (links, insn)
1416 struct insn_link *next1;
1417 rtx_insn *link = links->insn;
1419 /* If the linked insn has been replaced by a note, then there
1420 is no point in pursuing this chain any further. */
1421 if (NOTE_P (link))
1422 continue;
1424 FOR_EACH_LOG_LINK (next1, link)
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I1 -> I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1439 /* I0, I1 -> I2, I2 -> I3. */
1440 for (nextlinks = next1->next; nextlinks;
1441 nextlinks = nextlinks->next)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1452 for (next1 = links->next; next1; next1 = next1->next)
1454 rtx_insn *link1 = next1->insn;
1455 if (NOTE_P (link1))
1456 continue;
1457 /* I0 -> I2; I1, I2 -> I3. */
1458 FOR_EACH_LOG_LINK (nextlinks, link)
1459 if ((next = try_combine (insn, link, link1,
1460 nextlinks->insn,
1461 &new_direct_jump_p,
1462 last_combined_insn)) != 0)
1464 statistics_counter_event (cfun, "four-insn combine", 1);
1465 goto retry;
1467 /* I0 -> I1; I1, I2 -> I3. */
1468 FOR_EACH_LOG_LINK (nextlinks, link1)
1469 if ((next = try_combine (insn, link, link1,
1470 nextlinks->insn,
1471 &new_direct_jump_p,
1472 last_combined_insn)) != 0)
1474 statistics_counter_event (cfun, "four-insn combine", 1);
1475 goto retry;
1480 /* Try this insn with each REG_EQUAL note it links back to. */
1481 FOR_EACH_LOG_LINK (links, insn)
1483 rtx set, note;
1484 rtx_insn *temp = links->insn;
1485 if ((set = single_set (temp)) != 0
1486 && (note = find_reg_equal_equiv_note (temp)) != 0
1487 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1488 /* Avoid using a register that may already been marked
1489 dead by an earlier instruction. */
1490 && ! unmentioned_reg_p (note, SET_SRC (set))
1491 && (GET_MODE (note) == VOIDmode
1492 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1493 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1495 /* Temporarily replace the set's source with the
1496 contents of the REG_EQUAL note. The insn will
1497 be deleted or recognized by try_combine. */
1498 rtx orig = SET_SRC (set);
1499 SET_SRC (set) = note;
1500 i2mod = temp;
1501 i2mod_old_rhs = copy_rtx (orig);
1502 i2mod_new_rhs = copy_rtx (note);
1503 next = try_combine (insn, i2mod, NULL, NULL,
1504 &new_direct_jump_p,
1505 last_combined_insn);
1506 i2mod = NULL;
1507 if (next)
1509 statistics_counter_event (cfun, "insn-with-note combine", 1);
1510 goto retry;
1512 SET_SRC (set) = orig;
1516 if (!NOTE_P (insn))
1517 record_dead_and_set_regs (insn);
1519 retry:
1524 default_rtl_profile ();
1525 clear_bb_flags ();
1526 new_direct_jump_p |= purge_all_dead_edges ();
1527 delete_noop_moves ();
1529 /* Clean up. */
1530 obstack_free (&insn_link_obstack, NULL);
1531 free (uid_log_links);
1532 free (uid_insn_cost);
1533 reg_stat.release ();
1536 struct undo *undo, *next;
1537 for (undo = undobuf.frees; undo; undo = next)
1539 next = undo->next;
1540 free (undo);
1542 undobuf.frees = 0;
1545 total_attempts += combine_attempts;
1546 total_merges += combine_merges;
1547 total_extras += combine_extras;
1548 total_successes += combine_successes;
1550 nonzero_sign_valid = 0;
1551 rtl_hooks = general_rtl_hooks;
1553 /* Make recognizer allow volatile MEMs again. */
1554 init_recog ();
1556 return new_direct_jump_p;
1559 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1561 static void
1562 init_reg_last (void)
1564 unsigned int i;
1565 reg_stat_type *p;
1567 FOR_EACH_VEC_ELT (reg_stat, i, p)
1568 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1571 /* Set up any promoted values for incoming argument registers. */
1573 static void
1574 setup_incoming_promotions (rtx_insn *first)
1576 tree arg;
1577 bool strictly_local = false;
1579 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1580 arg = DECL_CHAIN (arg))
1582 rtx x, reg = DECL_INCOMING_RTL (arg);
1583 int uns1, uns3;
1584 machine_mode mode1, mode2, mode3, mode4;
1586 /* Only continue if the incoming argument is in a register. */
1587 if (!REG_P (reg))
1588 continue;
1590 /* Determine, if possible, whether all call sites of the current
1591 function lie within the current compilation unit. (This does
1592 take into account the exporting of a function via taking its
1593 address, and so forth.) */
1594 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1596 /* The mode and signedness of the argument before any promotions happen
1597 (equal to the mode of the pseudo holding it at that stage). */
1598 mode1 = TYPE_MODE (TREE_TYPE (arg));
1599 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1601 /* The mode and signedness of the argument after any source language and
1602 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1603 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1604 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1606 /* The mode and signedness of the argument as it is actually passed,
1607 see assign_parm_setup_reg in function.c. */
1608 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1609 TREE_TYPE (cfun->decl), 0);
1611 /* The mode of the register in which the argument is being passed. */
1612 mode4 = GET_MODE (reg);
1614 /* Eliminate sign extensions in the callee when:
1615 (a) A mode promotion has occurred; */
1616 if (mode1 == mode3)
1617 continue;
1618 /* (b) The mode of the register is the same as the mode of
1619 the argument as it is passed; */
1620 if (mode3 != mode4)
1621 continue;
1622 /* (c) There's no language level extension; */
1623 if (mode1 == mode2)
1625 /* (c.1) All callers are from the current compilation unit. If that's
1626 the case we don't have to rely on an ABI, we only have to know
1627 what we're generating right now, and we know that we will do the
1628 mode1 to mode2 promotion with the given sign. */
1629 else if (!strictly_local)
1630 continue;
1631 /* (c.2) The combination of the two promotions is useful. This is
1632 true when the signs match, or if the first promotion is unsigned.
1633 In the later case, (sign_extend (zero_extend x)) is the same as
1634 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1635 else if (uns1)
1636 uns3 = true;
1637 else if (uns3)
1638 continue;
1640 /* Record that the value was promoted from mode1 to mode3,
1641 so that any sign extension at the head of the current
1642 function may be eliminated. */
1643 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1644 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1645 record_value_for_reg (reg, first, x);
1649 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1650 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1651 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1652 because some machines (maybe most) will actually do the sign-extension and
1653 this is the conservative approach.
1655 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1656 kludge. */
1658 static rtx
1659 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1661 if (GET_MODE_PRECISION (mode) < prec
1662 && CONST_INT_P (src)
1663 && INTVAL (src) > 0
1664 && val_signbit_known_set_p (mode, INTVAL (src)))
1665 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1667 return src;
1669 #endif
1671 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1672 and SET. */
1674 static void
1675 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1676 rtx x)
1678 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1679 unsigned HOST_WIDE_INT bits = 0;
1680 rtx reg_equal = NULL, src = SET_SRC (set);
1681 unsigned int num = 0;
1683 if (reg_equal_note)
1684 reg_equal = XEXP (reg_equal_note, 0);
1686 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1687 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1688 if (reg_equal)
1689 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1690 #endif
1692 /* Don't call nonzero_bits if it cannot change anything. */
1693 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1695 bits = nonzero_bits (src, nonzero_bits_mode);
1696 if (reg_equal && bits)
1697 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1698 rsp->nonzero_bits |= bits;
1701 /* Don't call num_sign_bit_copies if it cannot change anything. */
1702 if (rsp->sign_bit_copies != 1)
1704 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1705 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1707 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1708 if (num == 0 || numeq > num)
1709 num = numeq;
1711 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1712 rsp->sign_bit_copies = num;
1716 /* Called via note_stores. If X is a pseudo that is narrower than
1717 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1719 If we are setting only a portion of X and we can't figure out what
1720 portion, assume all bits will be used since we don't know what will
1721 be happening.
1723 Similarly, set how many bits of X are known to be copies of the sign bit
1724 at all locations in the function. This is the smallest number implied
1725 by any set of X. */
1727 static void
1728 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1730 rtx_insn *insn = (rtx_insn *) data;
1732 if (REG_P (x)
1733 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1734 /* If this register is undefined at the start of the file, we can't
1735 say what its contents were. */
1736 && ! REGNO_REG_SET_P
1737 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1738 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1740 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1742 if (set == 0 || GET_CODE (set) == CLOBBER)
1744 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1745 rsp->sign_bit_copies = 1;
1746 return;
1749 /* If this register is being initialized using itself, and the
1750 register is uninitialized in this basic block, and there are
1751 no LOG_LINKS which set the register, then part of the
1752 register is uninitialized. In that case we can't assume
1753 anything about the number of nonzero bits.
1755 ??? We could do better if we checked this in
1756 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1757 could avoid making assumptions about the insn which initially
1758 sets the register, while still using the information in other
1759 insns. We would have to be careful to check every insn
1760 involved in the combination. */
1762 if (insn
1763 && reg_referenced_p (x, PATTERN (insn))
1764 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1765 REGNO (x)))
1767 struct insn_link *link;
1769 FOR_EACH_LOG_LINK (link, insn)
1770 if (dead_or_set_p (link->insn, x))
1771 break;
1772 if (!link)
1774 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1775 rsp->sign_bit_copies = 1;
1776 return;
1780 /* If this is a complex assignment, see if we can convert it into a
1781 simple assignment. */
1782 set = expand_field_assignment (set);
1784 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1785 set what we know about X. */
1787 if (SET_DEST (set) == x
1788 || (paradoxical_subreg_p (SET_DEST (set))
1789 && SUBREG_REG (SET_DEST (set)) == x))
1790 update_rsp_from_reg_equal (rsp, insn, set, x);
1791 else
1793 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1794 rsp->sign_bit_copies = 1;
1799 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1800 optionally insns that were previously combined into I3 or that will be
1801 combined into the merger of INSN and I3. The order is PRED, PRED2,
1802 INSN, SUCC, SUCC2, I3.
1804 Return 0 if the combination is not allowed for any reason.
1806 If the combination is allowed, *PDEST will be set to the single
1807 destination of INSN and *PSRC to the single source, and this function
1808 will return 1. */
1810 static int
1811 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1812 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1813 rtx *pdest, rtx *psrc)
1815 int i;
1816 const_rtx set = 0;
1817 rtx src, dest;
1818 rtx_insn *p;
1819 #ifdef AUTO_INC_DEC
1820 rtx link;
1821 #endif
1822 bool all_adjacent = true;
1823 int (*is_volatile_p) (const_rtx);
1825 if (succ)
1827 if (succ2)
1829 if (next_active_insn (succ2) != i3)
1830 all_adjacent = false;
1831 if (next_active_insn (succ) != succ2)
1832 all_adjacent = false;
1834 else if (next_active_insn (succ) != i3)
1835 all_adjacent = false;
1836 if (next_active_insn (insn) != succ)
1837 all_adjacent = false;
1839 else if (next_active_insn (insn) != i3)
1840 all_adjacent = false;
1842 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1843 or a PARALLEL consisting of such a SET and CLOBBERs.
1845 If INSN has CLOBBER parallel parts, ignore them for our processing.
1846 By definition, these happen during the execution of the insn. When it
1847 is merged with another insn, all bets are off. If they are, in fact,
1848 needed and aren't also supplied in I3, they may be added by
1849 recog_for_combine. Otherwise, it won't match.
1851 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1852 note.
1854 Get the source and destination of INSN. If more than one, can't
1855 combine. */
1857 if (GET_CODE (PATTERN (insn)) == SET)
1858 set = PATTERN (insn);
1859 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1860 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1862 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1864 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1866 switch (GET_CODE (elt))
1868 /* This is important to combine floating point insns
1869 for the SH4 port. */
1870 case USE:
1871 /* Combining an isolated USE doesn't make sense.
1872 We depend here on combinable_i3pat to reject them. */
1873 /* The code below this loop only verifies that the inputs of
1874 the SET in INSN do not change. We call reg_set_between_p
1875 to verify that the REG in the USE does not change between
1876 I3 and INSN.
1877 If the USE in INSN was for a pseudo register, the matching
1878 insn pattern will likely match any register; combining this
1879 with any other USE would only be safe if we knew that the
1880 used registers have identical values, or if there was
1881 something to tell them apart, e.g. different modes. For
1882 now, we forgo such complicated tests and simply disallow
1883 combining of USES of pseudo registers with any other USE. */
1884 if (REG_P (XEXP (elt, 0))
1885 && GET_CODE (PATTERN (i3)) == PARALLEL)
1887 rtx i3pat = PATTERN (i3);
1888 int i = XVECLEN (i3pat, 0) - 1;
1889 unsigned int regno = REGNO (XEXP (elt, 0));
1893 rtx i3elt = XVECEXP (i3pat, 0, i);
1895 if (GET_CODE (i3elt) == USE
1896 && REG_P (XEXP (i3elt, 0))
1897 && (REGNO (XEXP (i3elt, 0)) == regno
1898 ? reg_set_between_p (XEXP (elt, 0),
1899 PREV_INSN (insn), i3)
1900 : regno >= FIRST_PSEUDO_REGISTER))
1901 return 0;
1903 while (--i >= 0);
1905 break;
1907 /* We can ignore CLOBBERs. */
1908 case CLOBBER:
1909 break;
1911 case SET:
1912 /* Ignore SETs whose result isn't used but not those that
1913 have side-effects. */
1914 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1915 && insn_nothrow_p (insn)
1916 && !side_effects_p (elt))
1917 break;
1919 /* If we have already found a SET, this is a second one and
1920 so we cannot combine with this insn. */
1921 if (set)
1922 return 0;
1924 set = elt;
1925 break;
1927 default:
1928 /* Anything else means we can't combine. */
1929 return 0;
1933 if (set == 0
1934 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1935 so don't do anything with it. */
1936 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1937 return 0;
1939 else
1940 return 0;
1942 if (set == 0)
1943 return 0;
1945 /* The simplification in expand_field_assignment may call back to
1946 get_last_value, so set safe guard here. */
1947 subst_low_luid = DF_INSN_LUID (insn);
1949 set = expand_field_assignment (set);
1950 src = SET_SRC (set), dest = SET_DEST (set);
1952 /* Do not eliminate user-specified register if it is in an
1953 asm input because we may break the register asm usage defined
1954 in GCC manual if allow to do so.
1955 Be aware that this may cover more cases than we expect but this
1956 should be harmless. */
1957 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1958 && extract_asm_operands (PATTERN (i3)))
1959 return 0;
1961 /* Don't eliminate a store in the stack pointer. */
1962 if (dest == stack_pointer_rtx
1963 /* Don't combine with an insn that sets a register to itself if it has
1964 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1965 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1966 /* Can't merge an ASM_OPERANDS. */
1967 || GET_CODE (src) == ASM_OPERANDS
1968 /* Can't merge a function call. */
1969 || GET_CODE (src) == CALL
1970 /* Don't eliminate a function call argument. */
1971 || (CALL_P (i3)
1972 && (find_reg_fusage (i3, USE, dest)
1973 || (REG_P (dest)
1974 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1975 && global_regs[REGNO (dest)])))
1976 /* Don't substitute into an incremented register. */
1977 || FIND_REG_INC_NOTE (i3, dest)
1978 || (succ && FIND_REG_INC_NOTE (succ, dest))
1979 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1980 /* Don't substitute into a non-local goto, this confuses CFG. */
1981 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1982 /* Make sure that DEST is not used after SUCC but before I3. */
1983 || (!all_adjacent
1984 && ((succ2
1985 && (reg_used_between_p (dest, succ2, i3)
1986 || reg_used_between_p (dest, succ, succ2)))
1987 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1988 /* Make sure that the value that is to be substituted for the register
1989 does not use any registers whose values alter in between. However,
1990 If the insns are adjacent, a use can't cross a set even though we
1991 think it might (this can happen for a sequence of insns each setting
1992 the same destination; last_set of that register might point to
1993 a NOTE). If INSN has a REG_EQUIV note, the register is always
1994 equivalent to the memory so the substitution is valid even if there
1995 are intervening stores. Also, don't move a volatile asm or
1996 UNSPEC_VOLATILE across any other insns. */
1997 || (! all_adjacent
1998 && (((!MEM_P (src)
1999 || ! find_reg_note (insn, REG_EQUIV, src))
2000 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
2001 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2002 || GET_CODE (src) == UNSPEC_VOLATILE))
2003 /* Don't combine across a CALL_INSN, because that would possibly
2004 change whether the life span of some REGs crosses calls or not,
2005 and it is a pain to update that information.
2006 Exception: if source is a constant, moving it later can't hurt.
2007 Accept that as a special case. */
2008 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2009 return 0;
2011 /* DEST must either be a REG or CC0. */
2012 if (REG_P (dest))
2014 /* If register alignment is being enforced for multi-word items in all
2015 cases except for parameters, it is possible to have a register copy
2016 insn referencing a hard register that is not allowed to contain the
2017 mode being copied and which would not be valid as an operand of most
2018 insns. Eliminate this problem by not combining with such an insn.
2020 Also, on some machines we don't want to extend the life of a hard
2021 register. */
2023 if (REG_P (src)
2024 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2025 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2026 /* Don't extend the life of a hard register unless it is
2027 user variable (if we have few registers) or it can't
2028 fit into the desired register (meaning something special
2029 is going on).
2030 Also avoid substituting a return register into I3, because
2031 reload can't handle a conflict with constraints of other
2032 inputs. */
2033 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2034 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2035 return 0;
2037 else if (GET_CODE (dest) != CC0)
2038 return 0;
2041 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2042 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2043 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2045 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2047 /* If the clobber represents an earlyclobber operand, we must not
2048 substitute an expression containing the clobbered register.
2049 As we do not analyze the constraint strings here, we have to
2050 make the conservative assumption. However, if the register is
2051 a fixed hard reg, the clobber cannot represent any operand;
2052 we leave it up to the machine description to either accept or
2053 reject use-and-clobber patterns. */
2054 if (!REG_P (reg)
2055 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2056 || !fixed_regs[REGNO (reg)])
2057 if (reg_overlap_mentioned_p (reg, src))
2058 return 0;
2061 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2062 or not), reject, unless nothing volatile comes between it and I3 */
2064 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2066 /* Make sure neither succ nor succ2 contains a volatile reference. */
2067 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2068 return 0;
2069 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2070 return 0;
2071 /* We'll check insns between INSN and I3 below. */
2074 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2075 to be an explicit register variable, and was chosen for a reason. */
2077 if (GET_CODE (src) == ASM_OPERANDS
2078 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2079 return 0;
2081 /* If INSN contains volatile references (specifically volatile MEMs),
2082 we cannot combine across any other volatile references.
2083 Even if INSN doesn't contain volatile references, any intervening
2084 volatile insn might affect machine state. */
2086 is_volatile_p = volatile_refs_p (PATTERN (insn))
2087 ? volatile_refs_p
2088 : volatile_insn_p;
2090 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2091 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2092 return 0;
2094 /* If INSN contains an autoincrement or autodecrement, make sure that
2095 register is not used between there and I3, and not already used in
2096 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2097 Also insist that I3 not be a jump; if it were one
2098 and the incremented register were spilled, we would lose. */
2100 #ifdef AUTO_INC_DEC
2101 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2102 if (REG_NOTE_KIND (link) == REG_INC
2103 && (JUMP_P (i3)
2104 || reg_used_between_p (XEXP (link, 0), insn, i3)
2105 || (pred != NULL_RTX
2106 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2107 || (pred2 != NULL_RTX
2108 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2109 || (succ != NULL_RTX
2110 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2111 || (succ2 != NULL_RTX
2112 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2113 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2114 return 0;
2115 #endif
2117 /* Don't combine an insn that follows a CC0-setting insn.
2118 An insn that uses CC0 must not be separated from the one that sets it.
2119 We do, however, allow I2 to follow a CC0-setting insn if that insn
2120 is passed as I1; in that case it will be deleted also.
2121 We also allow combining in this case if all the insns are adjacent
2122 because that would leave the two CC0 insns adjacent as well.
2123 It would be more logical to test whether CC0 occurs inside I1 or I2,
2124 but that would be much slower, and this ought to be equivalent. */
2126 if (HAVE_cc0)
2128 p = prev_nonnote_insn (insn);
2129 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2130 && ! all_adjacent)
2131 return 0;
2134 /* If we get here, we have passed all the tests and the combination is
2135 to be allowed. */
2137 *pdest = dest;
2138 *psrc = src;
2140 return 1;
2143 /* LOC is the location within I3 that contains its pattern or the component
2144 of a PARALLEL of the pattern. We validate that it is valid for combining.
2146 One problem is if I3 modifies its output, as opposed to replacing it
2147 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2148 doing so would produce an insn that is not equivalent to the original insns.
2150 Consider:
2152 (set (reg:DI 101) (reg:DI 100))
2153 (set (subreg:SI (reg:DI 101) 0) <foo>)
2155 This is NOT equivalent to:
2157 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2158 (set (reg:DI 101) (reg:DI 100))])
2160 Not only does this modify 100 (in which case it might still be valid
2161 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2163 We can also run into a problem if I2 sets a register that I1
2164 uses and I1 gets directly substituted into I3 (not via I2). In that
2165 case, we would be getting the wrong value of I2DEST into I3, so we
2166 must reject the combination. This case occurs when I2 and I1 both
2167 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2168 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2169 of a SET must prevent combination from occurring. The same situation
2170 can occur for I0, in which case I0_NOT_IN_SRC is set.
2172 Before doing the above check, we first try to expand a field assignment
2173 into a set of logical operations.
2175 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2176 we place a register that is both set and used within I3. If more than one
2177 such register is detected, we fail.
2179 Return 1 if the combination is valid, zero otherwise. */
2181 static int
2182 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2183 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2185 rtx x = *loc;
2187 if (GET_CODE (x) == SET)
2189 rtx set = x ;
2190 rtx dest = SET_DEST (set);
2191 rtx src = SET_SRC (set);
2192 rtx inner_dest = dest;
2193 rtx subdest;
2195 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2196 || GET_CODE (inner_dest) == SUBREG
2197 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2198 inner_dest = XEXP (inner_dest, 0);
2200 /* Check for the case where I3 modifies its output, as discussed
2201 above. We don't want to prevent pseudos from being combined
2202 into the address of a MEM, so only prevent the combination if
2203 i1 or i2 set the same MEM. */
2204 if ((inner_dest != dest &&
2205 (!MEM_P (inner_dest)
2206 || rtx_equal_p (i2dest, inner_dest)
2207 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2208 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2209 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2210 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2211 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2213 /* This is the same test done in can_combine_p except we can't test
2214 all_adjacent; we don't have to, since this instruction will stay
2215 in place, thus we are not considering increasing the lifetime of
2216 INNER_DEST.
2218 Also, if this insn sets a function argument, combining it with
2219 something that might need a spill could clobber a previous
2220 function argument; the all_adjacent test in can_combine_p also
2221 checks this; here, we do a more specific test for this case. */
2223 || (REG_P (inner_dest)
2224 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2225 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2226 GET_MODE (inner_dest))))
2227 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2228 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2229 return 0;
2231 /* If DEST is used in I3, it is being killed in this insn, so
2232 record that for later. We have to consider paradoxical
2233 subregs here, since they kill the whole register, but we
2234 ignore partial subregs, STRICT_LOW_PART, etc.
2235 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2236 STACK_POINTER_REGNUM, since these are always considered to be
2237 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2238 subdest = dest;
2239 if (GET_CODE (subdest) == SUBREG
2240 && (GET_MODE_SIZE (GET_MODE (subdest))
2241 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2242 subdest = SUBREG_REG (subdest);
2243 if (pi3dest_killed
2244 && REG_P (subdest)
2245 && reg_referenced_p (subdest, PATTERN (i3))
2246 && REGNO (subdest) != FRAME_POINTER_REGNUM
2247 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2248 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2249 #endif
2250 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2251 && (REGNO (subdest) != ARG_POINTER_REGNUM
2252 || ! fixed_regs [REGNO (subdest)])
2253 #endif
2254 && REGNO (subdest) != STACK_POINTER_REGNUM)
2256 if (*pi3dest_killed)
2257 return 0;
2259 *pi3dest_killed = subdest;
2263 else if (GET_CODE (x) == PARALLEL)
2265 int i;
2267 for (i = 0; i < XVECLEN (x, 0); i++)
2268 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2269 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2270 return 0;
2273 return 1;
2276 /* Return 1 if X is an arithmetic expression that contains a multiplication
2277 and division. We don't count multiplications by powers of two here. */
2279 static int
2280 contains_muldiv (rtx x)
2282 switch (GET_CODE (x))
2284 case MOD: case DIV: case UMOD: case UDIV:
2285 return 1;
2287 case MULT:
2288 return ! (CONST_INT_P (XEXP (x, 1))
2289 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2290 default:
2291 if (BINARY_P (x))
2292 return contains_muldiv (XEXP (x, 0))
2293 || contains_muldiv (XEXP (x, 1));
2295 if (UNARY_P (x))
2296 return contains_muldiv (XEXP (x, 0));
2298 return 0;
2302 /* Determine whether INSN can be used in a combination. Return nonzero if
2303 not. This is used in try_combine to detect early some cases where we
2304 can't perform combinations. */
2306 static int
2307 cant_combine_insn_p (rtx_insn *insn)
2309 rtx set;
2310 rtx src, dest;
2312 /* If this isn't really an insn, we can't do anything.
2313 This can occur when flow deletes an insn that it has merged into an
2314 auto-increment address. */
2315 if (! INSN_P (insn))
2316 return 1;
2318 /* Never combine loads and stores involving hard regs that are likely
2319 to be spilled. The register allocator can usually handle such
2320 reg-reg moves by tying. If we allow the combiner to make
2321 substitutions of likely-spilled regs, reload might die.
2322 As an exception, we allow combinations involving fixed regs; these are
2323 not available to the register allocator so there's no risk involved. */
2325 set = single_set (insn);
2326 if (! set)
2327 return 0;
2328 src = SET_SRC (set);
2329 dest = SET_DEST (set);
2330 if (GET_CODE (src) == SUBREG)
2331 src = SUBREG_REG (src);
2332 if (GET_CODE (dest) == SUBREG)
2333 dest = SUBREG_REG (dest);
2334 if (REG_P (src) && REG_P (dest)
2335 && ((HARD_REGISTER_P (src)
2336 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2337 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2338 || (HARD_REGISTER_P (dest)
2339 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2340 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2341 return 1;
2343 return 0;
2346 struct likely_spilled_retval_info
2348 unsigned regno, nregs;
2349 unsigned mask;
2352 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2353 hard registers that are known to be written to / clobbered in full. */
2354 static void
2355 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2357 struct likely_spilled_retval_info *const info =
2358 (struct likely_spilled_retval_info *) data;
2359 unsigned regno, nregs;
2360 unsigned new_mask;
2362 if (!REG_P (XEXP (set, 0)))
2363 return;
2364 regno = REGNO (x);
2365 if (regno >= info->regno + info->nregs)
2366 return;
2367 nregs = REG_NREGS (x);
2368 if (regno + nregs <= info->regno)
2369 return;
2370 new_mask = (2U << (nregs - 1)) - 1;
2371 if (regno < info->regno)
2372 new_mask >>= info->regno - regno;
2373 else
2374 new_mask <<= regno - info->regno;
2375 info->mask &= ~new_mask;
2378 /* Return nonzero iff part of the return value is live during INSN, and
2379 it is likely spilled. This can happen when more than one insn is needed
2380 to copy the return value, e.g. when we consider to combine into the
2381 second copy insn for a complex value. */
2383 static int
2384 likely_spilled_retval_p (rtx_insn *insn)
2386 rtx_insn *use = BB_END (this_basic_block);
2387 rtx reg;
2388 rtx_insn *p;
2389 unsigned regno, nregs;
2390 /* We assume here that no machine mode needs more than
2391 32 hard registers when the value overlaps with a register
2392 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2393 unsigned mask;
2394 struct likely_spilled_retval_info info;
2396 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2397 return 0;
2398 reg = XEXP (PATTERN (use), 0);
2399 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2400 return 0;
2401 regno = REGNO (reg);
2402 nregs = REG_NREGS (reg);
2403 if (nregs == 1)
2404 return 0;
2405 mask = (2U << (nregs - 1)) - 1;
2407 /* Disregard parts of the return value that are set later. */
2408 info.regno = regno;
2409 info.nregs = nregs;
2410 info.mask = mask;
2411 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2412 if (INSN_P (p))
2413 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2414 mask = info.mask;
2416 /* Check if any of the (probably) live return value registers is
2417 likely spilled. */
2418 nregs --;
2421 if ((mask & 1 << nregs)
2422 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2423 return 1;
2424 } while (nregs--);
2425 return 0;
2428 /* Adjust INSN after we made a change to its destination.
2430 Changing the destination can invalidate notes that say something about
2431 the results of the insn and a LOG_LINK pointing to the insn. */
2433 static void
2434 adjust_for_new_dest (rtx_insn *insn)
2436 /* For notes, be conservative and simply remove them. */
2437 remove_reg_equal_equiv_notes (insn);
2439 /* The new insn will have a destination that was previously the destination
2440 of an insn just above it. Call distribute_links to make a LOG_LINK from
2441 the next use of that destination. */
2443 rtx set = single_set (insn);
2444 gcc_assert (set);
2446 rtx reg = SET_DEST (set);
2448 while (GET_CODE (reg) == ZERO_EXTRACT
2449 || GET_CODE (reg) == STRICT_LOW_PART
2450 || GET_CODE (reg) == SUBREG)
2451 reg = XEXP (reg, 0);
2452 gcc_assert (REG_P (reg));
2454 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2456 df_insn_rescan (insn);
2459 /* Return TRUE if combine can reuse reg X in mode MODE.
2460 ADDED_SETS is nonzero if the original set is still required. */
2461 static bool
2462 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2464 unsigned int regno;
2466 if (!REG_P (x))
2467 return false;
2469 regno = REGNO (x);
2470 /* Allow hard registers if the new mode is legal, and occupies no more
2471 registers than the old mode. */
2472 if (regno < FIRST_PSEUDO_REGISTER)
2473 return (HARD_REGNO_MODE_OK (regno, mode)
2474 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2476 /* Or a pseudo that is only used once. */
2477 return (regno < reg_n_sets_max
2478 && REG_N_SETS (regno) == 1
2479 && !added_sets
2480 && !REG_USERVAR_P (x));
2484 /* Check whether X, the destination of a set, refers to part of
2485 the register specified by REG. */
2487 static bool
2488 reg_subword_p (rtx x, rtx reg)
2490 /* Check that reg is an integer mode register. */
2491 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2492 return false;
2494 if (GET_CODE (x) == STRICT_LOW_PART
2495 || GET_CODE (x) == ZERO_EXTRACT)
2496 x = XEXP (x, 0);
2498 return GET_CODE (x) == SUBREG
2499 && SUBREG_REG (x) == reg
2500 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2503 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2504 Note that the INSN should be deleted *after* removing dead edges, so
2505 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2506 but not for a (set (pc) (label_ref FOO)). */
2508 static void
2509 update_cfg_for_uncondjump (rtx_insn *insn)
2511 basic_block bb = BLOCK_FOR_INSN (insn);
2512 gcc_assert (BB_END (bb) == insn);
2514 purge_dead_edges (bb);
2516 delete_insn (insn);
2517 if (EDGE_COUNT (bb->succs) == 1)
2519 rtx_insn *insn;
2521 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2523 /* Remove barriers from the footer if there are any. */
2524 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2525 if (BARRIER_P (insn))
2527 if (PREV_INSN (insn))
2528 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2529 else
2530 BB_FOOTER (bb) = NEXT_INSN (insn);
2531 if (NEXT_INSN (insn))
2532 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2534 else if (LABEL_P (insn))
2535 break;
2539 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2540 by an arbitrary number of CLOBBERs. */
2541 static bool
2542 is_parallel_of_n_reg_sets (rtx pat, int n)
2544 if (GET_CODE (pat) != PARALLEL)
2545 return false;
2547 int len = XVECLEN (pat, 0);
2548 if (len < n)
2549 return false;
2551 int i;
2552 for (i = 0; i < n; i++)
2553 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2554 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2555 return false;
2556 for ( ; i < len; i++)
2557 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2558 return false;
2560 return true;
2563 #if !HAVE_cc0
2564 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2565 CLOBBERs), can be split into individual SETs in that order, without
2566 changing semantics. */
2567 static bool
2568 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2570 if (!insn_nothrow_p (insn))
2571 return false;
2573 rtx pat = PATTERN (insn);
2575 int i, j;
2576 for (i = 0; i < n; i++)
2578 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2579 return false;
2581 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2583 for (j = i + 1; j < n; j++)
2584 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2585 return false;
2588 return true;
2590 #endif
2592 /* Try to combine the insns I0, I1 and I2 into I3.
2593 Here I0, I1 and I2 appear earlier than I3.
2594 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2597 If we are combining more than two insns and the resulting insn is not
2598 recognized, try splitting it into two insns. If that happens, I2 and I3
2599 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2600 Otherwise, I0, I1 and I2 are pseudo-deleted.
2602 Return 0 if the combination does not work. Then nothing is changed.
2603 If we did the combination, return the insn at which combine should
2604 resume scanning.
2606 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2607 new direct jump instruction.
2609 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2610 been I3 passed to an earlier try_combine within the same basic
2611 block. */
2613 static rtx_insn *
2614 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2615 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2617 /* New patterns for I3 and I2, respectively. */
2618 rtx newpat, newi2pat = 0;
2619 rtvec newpat_vec_with_clobbers = 0;
2620 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2621 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2622 dead. */
2623 int added_sets_0, added_sets_1, added_sets_2;
2624 /* Total number of SETs to put into I3. */
2625 int total_sets;
2626 /* Nonzero if I2's or I1's body now appears in I3. */
2627 int i2_is_used = 0, i1_is_used = 0;
2628 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2629 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2630 /* Contains I3 if the destination of I3 is used in its source, which means
2631 that the old life of I3 is being killed. If that usage is placed into
2632 I2 and not in I3, a REG_DEAD note must be made. */
2633 rtx i3dest_killed = 0;
2634 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2635 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2636 /* Copy of SET_SRC of I1 and I0, if needed. */
2637 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2638 /* Set if I2DEST was reused as a scratch register. */
2639 bool i2scratch = false;
2640 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2641 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2642 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2643 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2644 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2645 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2646 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2647 /* Notes that must be added to REG_NOTES in I3 and I2. */
2648 rtx new_i3_notes, new_i2_notes;
2649 /* Notes that we substituted I3 into I2 instead of the normal case. */
2650 int i3_subst_into_i2 = 0;
2651 /* Notes that I1, I2 or I3 is a MULT operation. */
2652 int have_mult = 0;
2653 int swap_i2i3 = 0;
2654 int changed_i3_dest = 0;
2656 int maxreg;
2657 rtx_insn *temp_insn;
2658 rtx temp_expr;
2659 struct insn_link *link;
2660 rtx other_pat = 0;
2661 rtx new_other_notes;
2662 int i;
2664 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2665 never be). */
2666 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2667 return 0;
2669 /* Only try four-insn combinations when there's high likelihood of
2670 success. Look for simple insns, such as loads of constants or
2671 binary operations involving a constant. */
2672 if (i0)
2674 int i;
2675 int ngood = 0;
2676 int nshift = 0;
2677 rtx set0, set3;
2679 if (!flag_expensive_optimizations)
2680 return 0;
2682 for (i = 0; i < 4; i++)
2684 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2685 rtx set = single_set (insn);
2686 rtx src;
2687 if (!set)
2688 continue;
2689 src = SET_SRC (set);
2690 if (CONSTANT_P (src))
2692 ngood += 2;
2693 break;
2695 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2696 ngood++;
2697 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2698 || GET_CODE (src) == LSHIFTRT)
2699 nshift++;
2702 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2703 are likely manipulating its value. Ideally we'll be able to combine
2704 all four insns into a bitfield insertion of some kind.
2706 Note the source in I0 might be inside a sign/zero extension and the
2707 memory modes in I0 and I3 might be different. So extract the address
2708 from the destination of I3 and search for it in the source of I0.
2710 In the event that there's a match but the source/dest do not actually
2711 refer to the same memory, the worst that happens is we try some
2712 combinations that we wouldn't have otherwise. */
2713 if ((set0 = single_set (i0))
2714 /* Ensure the source of SET0 is a MEM, possibly buried inside
2715 an extension. */
2716 && (GET_CODE (SET_SRC (set0)) == MEM
2717 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2718 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2719 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2720 && (set3 = single_set (i3))
2721 /* Ensure the destination of SET3 is a MEM. */
2722 && GET_CODE (SET_DEST (set3)) == MEM
2723 /* Would it be better to extract the base address for the MEM
2724 in SET3 and look for that? I don't have cases where it matters
2725 but I could envision such cases. */
2726 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2727 ngood += 2;
2729 if (ngood < 2 && nshift < 2)
2730 return 0;
2733 /* Exit early if one of the insns involved can't be used for
2734 combinations. */
2735 if (CALL_P (i2)
2736 || (i1 && CALL_P (i1))
2737 || (i0 && CALL_P (i0))
2738 || cant_combine_insn_p (i3)
2739 || cant_combine_insn_p (i2)
2740 || (i1 && cant_combine_insn_p (i1))
2741 || (i0 && cant_combine_insn_p (i0))
2742 || likely_spilled_retval_p (i3))
2743 return 0;
2745 combine_attempts++;
2746 undobuf.other_insn = 0;
2748 /* Reset the hard register usage information. */
2749 CLEAR_HARD_REG_SET (newpat_used_regs);
2751 if (dump_file && (dump_flags & TDF_DETAILS))
2753 if (i0)
2754 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2755 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2756 else if (i1)
2757 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2758 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2759 else
2760 fprintf (dump_file, "\nTrying %d -> %d:\n",
2761 INSN_UID (i2), INSN_UID (i3));
2764 /* If multiple insns feed into one of I2 or I3, they can be in any
2765 order. To simplify the code below, reorder them in sequence. */
2766 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2767 temp_insn = i2, i2 = i0, i0 = temp_insn;
2768 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2769 temp_insn = i1, i1 = i0, i0 = temp_insn;
2770 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2771 temp_insn = i1, i1 = i2, i2 = temp_insn;
2773 added_links_insn = 0;
2775 /* First check for one important special case that the code below will
2776 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2777 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2778 we may be able to replace that destination with the destination of I3.
2779 This occurs in the common code where we compute both a quotient and
2780 remainder into a structure, in which case we want to do the computation
2781 directly into the structure to avoid register-register copies.
2783 Note that this case handles both multiple sets in I2 and also cases
2784 where I2 has a number of CLOBBERs inside the PARALLEL.
2786 We make very conservative checks below and only try to handle the
2787 most common cases of this. For example, we only handle the case
2788 where I2 and I3 are adjacent to avoid making difficult register
2789 usage tests. */
2791 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2792 && REG_P (SET_SRC (PATTERN (i3)))
2793 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2794 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2795 && GET_CODE (PATTERN (i2)) == PARALLEL
2796 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2797 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2798 below would need to check what is inside (and reg_overlap_mentioned_p
2799 doesn't support those codes anyway). Don't allow those destinations;
2800 the resulting insn isn't likely to be recognized anyway. */
2801 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2802 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2803 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2804 SET_DEST (PATTERN (i3)))
2805 && next_active_insn (i2) == i3)
2807 rtx p2 = PATTERN (i2);
2809 /* Make sure that the destination of I3,
2810 which we are going to substitute into one output of I2,
2811 is not used within another output of I2. We must avoid making this:
2812 (parallel [(set (mem (reg 69)) ...)
2813 (set (reg 69) ...)])
2814 which is not well-defined as to order of actions.
2815 (Besides, reload can't handle output reloads for this.)
2817 The problem can also happen if the dest of I3 is a memory ref,
2818 if another dest in I2 is an indirect memory ref. */
2819 for (i = 0; i < XVECLEN (p2, 0); i++)
2820 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2821 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2822 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2823 SET_DEST (XVECEXP (p2, 0, i))))
2824 break;
2826 /* Make sure this PARALLEL is not an asm. We do not allow combining
2827 that usually (see can_combine_p), so do not here either. */
2828 for (i = 0; i < XVECLEN (p2, 0); i++)
2829 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2830 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2831 break;
2833 if (i == XVECLEN (p2, 0))
2834 for (i = 0; i < XVECLEN (p2, 0); i++)
2835 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2836 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2838 combine_merges++;
2840 subst_insn = i3;
2841 subst_low_luid = DF_INSN_LUID (i2);
2843 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2844 i2src = SET_SRC (XVECEXP (p2, 0, i));
2845 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2846 i2dest_killed = dead_or_set_p (i2, i2dest);
2848 /* Replace the dest in I2 with our dest and make the resulting
2849 insn the new pattern for I3. Then skip to where we validate
2850 the pattern. Everything was set up above. */
2851 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2852 newpat = p2;
2853 i3_subst_into_i2 = 1;
2854 goto validate_replacement;
2858 /* If I2 is setting a pseudo to a constant and I3 is setting some
2859 sub-part of it to another constant, merge them by making a new
2860 constant. */
2861 if (i1 == 0
2862 && (temp_expr = single_set (i2)) != 0
2863 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2864 && GET_CODE (PATTERN (i3)) == SET
2865 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2866 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2868 rtx dest = SET_DEST (PATTERN (i3));
2869 int offset = -1;
2870 int width = 0;
2872 if (GET_CODE (dest) == ZERO_EXTRACT)
2874 if (CONST_INT_P (XEXP (dest, 1))
2875 && CONST_INT_P (XEXP (dest, 2)))
2877 width = INTVAL (XEXP (dest, 1));
2878 offset = INTVAL (XEXP (dest, 2));
2879 dest = XEXP (dest, 0);
2880 if (BITS_BIG_ENDIAN)
2881 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2884 else
2886 if (GET_CODE (dest) == STRICT_LOW_PART)
2887 dest = XEXP (dest, 0);
2888 width = GET_MODE_PRECISION (GET_MODE (dest));
2889 offset = 0;
2892 if (offset >= 0)
2894 /* If this is the low part, we're done. */
2895 if (subreg_lowpart_p (dest))
2897 /* Handle the case where inner is twice the size of outer. */
2898 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2899 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2900 offset += GET_MODE_PRECISION (GET_MODE (dest));
2901 /* Otherwise give up for now. */
2902 else
2903 offset = -1;
2906 if (offset >= 0)
2908 rtx inner = SET_SRC (PATTERN (i3));
2909 rtx outer = SET_SRC (temp_expr);
2911 wide_int o
2912 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2913 std::make_pair (inner, GET_MODE (dest)),
2914 offset, width);
2916 combine_merges++;
2917 subst_insn = i3;
2918 subst_low_luid = DF_INSN_LUID (i2);
2919 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2920 i2dest = SET_DEST (temp_expr);
2921 i2dest_killed = dead_or_set_p (i2, i2dest);
2923 /* Replace the source in I2 with the new constant and make the
2924 resulting insn the new pattern for I3. Then skip to where we
2925 validate the pattern. Everything was set up above. */
2926 SUBST (SET_SRC (temp_expr),
2927 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2929 newpat = PATTERN (i2);
2931 /* The dest of I3 has been replaced with the dest of I2. */
2932 changed_i3_dest = 1;
2933 goto validate_replacement;
2937 #if !HAVE_cc0
2938 /* If we have no I1 and I2 looks like:
2939 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2940 (set Y OP)])
2941 make up a dummy I1 that is
2942 (set Y OP)
2943 and change I2 to be
2944 (set (reg:CC X) (compare:CC Y (const_int 0)))
2946 (We can ignore any trailing CLOBBERs.)
2948 This undoes a previous combination and allows us to match a branch-and-
2949 decrement insn. */
2951 if (i1 == 0
2952 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2953 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2954 == MODE_CC)
2955 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2956 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2957 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2958 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2959 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2960 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2962 /* We make I1 with the same INSN_UID as I2. This gives it
2963 the same DF_INSN_LUID for value tracking. Our fake I1 will
2964 never appear in the insn stream so giving it the same INSN_UID
2965 as I2 will not cause a problem. */
2967 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2968 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2969 -1, NULL_RTX);
2970 INSN_UID (i1) = INSN_UID (i2);
2972 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2973 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2974 SET_DEST (PATTERN (i1)));
2975 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2976 SUBST_LINK (LOG_LINKS (i2),
2977 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2980 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2981 make those two SETs separate I1 and I2 insns, and make an I0 that is
2982 the original I1. */
2983 if (i0 == 0
2984 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2985 && can_split_parallel_of_n_reg_sets (i2, 2)
2986 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2987 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2989 /* If there is no I1, there is no I0 either. */
2990 i0 = i1;
2992 /* We make I1 with the same INSN_UID as I2. This gives it
2993 the same DF_INSN_LUID for value tracking. Our fake I1 will
2994 never appear in the insn stream so giving it the same INSN_UID
2995 as I2 will not cause a problem. */
2997 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2998 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2999 -1, NULL_RTX);
3000 INSN_UID (i1) = INSN_UID (i2);
3002 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3004 #endif
3006 /* Verify that I2 and I1 are valid for combining. */
3007 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
3008 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
3009 &i1dest, &i1src))
3010 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
3011 &i0dest, &i0src)))
3013 undo_all ();
3014 return 0;
3017 /* Record whether I2DEST is used in I2SRC and similarly for the other
3018 cases. Knowing this will help in register status updating below. */
3019 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3020 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3021 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3022 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3023 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3024 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3025 i2dest_killed = dead_or_set_p (i2, i2dest);
3026 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3027 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3029 /* For the earlier insns, determine which of the subsequent ones they
3030 feed. */
3031 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3032 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3033 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3034 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3035 && reg_overlap_mentioned_p (i0dest, i2src))));
3037 /* Ensure that I3's pattern can be the destination of combines. */
3038 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3039 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3040 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3041 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3042 &i3dest_killed))
3044 undo_all ();
3045 return 0;
3048 /* See if any of the insns is a MULT operation. Unless one is, we will
3049 reject a combination that is, since it must be slower. Be conservative
3050 here. */
3051 if (GET_CODE (i2src) == MULT
3052 || (i1 != 0 && GET_CODE (i1src) == MULT)
3053 || (i0 != 0 && GET_CODE (i0src) == MULT)
3054 || (GET_CODE (PATTERN (i3)) == SET
3055 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3056 have_mult = 1;
3058 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3059 We used to do this EXCEPT in one case: I3 has a post-inc in an
3060 output operand. However, that exception can give rise to insns like
3061 mov r3,(r3)+
3062 which is a famous insn on the PDP-11 where the value of r3 used as the
3063 source was model-dependent. Avoid this sort of thing. */
3065 #if 0
3066 if (!(GET_CODE (PATTERN (i3)) == SET
3067 && REG_P (SET_SRC (PATTERN (i3)))
3068 && MEM_P (SET_DEST (PATTERN (i3)))
3069 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3070 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3071 /* It's not the exception. */
3072 #endif
3073 #ifdef AUTO_INC_DEC
3075 rtx link;
3076 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3077 if (REG_NOTE_KIND (link) == REG_INC
3078 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3079 || (i1 != 0
3080 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3082 undo_all ();
3083 return 0;
3086 #endif
3088 /* See if the SETs in I1 or I2 need to be kept around in the merged
3089 instruction: whenever the value set there is still needed past I3.
3090 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3092 For the SET in I1, we have two cases: if I1 and I2 independently feed
3093 into I3, the set in I1 needs to be kept around unless I1DEST dies
3094 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3095 in I1 needs to be kept around unless I1DEST dies or is set in either
3096 I2 or I3. The same considerations apply to I0. */
3098 added_sets_2 = !dead_or_set_p (i3, i2dest);
3100 if (i1)
3101 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3102 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3103 else
3104 added_sets_1 = 0;
3106 if (i0)
3107 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3108 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3109 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3110 && dead_or_set_p (i2, i0dest)));
3111 else
3112 added_sets_0 = 0;
3114 /* We are about to copy insns for the case where they need to be kept
3115 around. Check that they can be copied in the merged instruction. */
3117 if (targetm.cannot_copy_insn_p
3118 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3119 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3120 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3122 undo_all ();
3123 return 0;
3126 /* If the set in I2 needs to be kept around, we must make a copy of
3127 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3128 PATTERN (I2), we are only substituting for the original I1DEST, not into
3129 an already-substituted copy. This also prevents making self-referential
3130 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3131 I2DEST. */
3133 if (added_sets_2)
3135 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3136 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3137 else
3138 i2pat = copy_rtx (PATTERN (i2));
3141 if (added_sets_1)
3143 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3144 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3145 else
3146 i1pat = copy_rtx (PATTERN (i1));
3149 if (added_sets_0)
3151 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3152 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3153 else
3154 i0pat = copy_rtx (PATTERN (i0));
3157 combine_merges++;
3159 /* Substitute in the latest insn for the regs set by the earlier ones. */
3161 maxreg = max_reg_num ();
3163 subst_insn = i3;
3165 /* Many machines that don't use CC0 have insns that can both perform an
3166 arithmetic operation and set the condition code. These operations will
3167 be represented as a PARALLEL with the first element of the vector
3168 being a COMPARE of an arithmetic operation with the constant zero.
3169 The second element of the vector will set some pseudo to the result
3170 of the same arithmetic operation. If we simplify the COMPARE, we won't
3171 match such a pattern and so will generate an extra insn. Here we test
3172 for this case, where both the comparison and the operation result are
3173 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3174 I2SRC. Later we will make the PARALLEL that contains I2. */
3176 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3177 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3178 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3179 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3181 rtx newpat_dest;
3182 rtx *cc_use_loc = NULL;
3183 rtx_insn *cc_use_insn = NULL;
3184 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3185 machine_mode compare_mode, orig_compare_mode;
3186 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3188 newpat = PATTERN (i3);
3189 newpat_dest = SET_DEST (newpat);
3190 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3192 if (undobuf.other_insn == 0
3193 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3194 &cc_use_insn)))
3196 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3197 compare_code = simplify_compare_const (compare_code,
3198 GET_MODE (i2dest), op0, &op1);
3199 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3202 /* Do the rest only if op1 is const0_rtx, which may be the
3203 result of simplification. */
3204 if (op1 == const0_rtx)
3206 /* If a single use of the CC is found, prepare to modify it
3207 when SELECT_CC_MODE returns a new CC-class mode, or when
3208 the above simplify_compare_const() returned a new comparison
3209 operator. undobuf.other_insn is assigned the CC use insn
3210 when modifying it. */
3211 if (cc_use_loc)
3213 #ifdef SELECT_CC_MODE
3214 machine_mode new_mode
3215 = SELECT_CC_MODE (compare_code, op0, op1);
3216 if (new_mode != orig_compare_mode
3217 && can_change_dest_mode (SET_DEST (newpat),
3218 added_sets_2, new_mode))
3220 unsigned int regno = REGNO (newpat_dest);
3221 compare_mode = new_mode;
3222 if (regno < FIRST_PSEUDO_REGISTER)
3223 newpat_dest = gen_rtx_REG (compare_mode, regno);
3224 else
3226 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3227 newpat_dest = regno_reg_rtx[regno];
3230 #endif
3231 /* Cases for modifying the CC-using comparison. */
3232 if (compare_code != orig_compare_code
3233 /* ??? Do we need to verify the zero rtx? */
3234 && XEXP (*cc_use_loc, 1) == const0_rtx)
3236 /* Replace cc_use_loc with entire new RTX. */
3237 SUBST (*cc_use_loc,
3238 gen_rtx_fmt_ee (compare_code, compare_mode,
3239 newpat_dest, const0_rtx));
3240 undobuf.other_insn = cc_use_insn;
3242 else if (compare_mode != orig_compare_mode)
3244 /* Just replace the CC reg with a new mode. */
3245 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3246 undobuf.other_insn = cc_use_insn;
3250 /* Now we modify the current newpat:
3251 First, SET_DEST(newpat) is updated if the CC mode has been
3252 altered. For targets without SELECT_CC_MODE, this should be
3253 optimized away. */
3254 if (compare_mode != orig_compare_mode)
3255 SUBST (SET_DEST (newpat), newpat_dest);
3256 /* This is always done to propagate i2src into newpat. */
3257 SUBST (SET_SRC (newpat),
3258 gen_rtx_COMPARE (compare_mode, op0, op1));
3259 /* Create new version of i2pat if needed; the below PARALLEL
3260 creation needs this to work correctly. */
3261 if (! rtx_equal_p (i2src, op0))
3262 i2pat = gen_rtx_SET (i2dest, op0);
3263 i2_is_used = 1;
3267 if (i2_is_used == 0)
3269 /* It is possible that the source of I2 or I1 may be performing
3270 an unneeded operation, such as a ZERO_EXTEND of something
3271 that is known to have the high part zero. Handle that case
3272 by letting subst look at the inner insns.
3274 Another way to do this would be to have a function that tries
3275 to simplify a single insn instead of merging two or more
3276 insns. We don't do this because of the potential of infinite
3277 loops and because of the potential extra memory required.
3278 However, doing it the way we are is a bit of a kludge and
3279 doesn't catch all cases.
3281 But only do this if -fexpensive-optimizations since it slows
3282 things down and doesn't usually win.
3284 This is not done in the COMPARE case above because the
3285 unmodified I2PAT is used in the PARALLEL and so a pattern
3286 with a modified I2SRC would not match. */
3288 if (flag_expensive_optimizations)
3290 /* Pass pc_rtx so no substitutions are done, just
3291 simplifications. */
3292 if (i1)
3294 subst_low_luid = DF_INSN_LUID (i1);
3295 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3298 subst_low_luid = DF_INSN_LUID (i2);
3299 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3302 n_occurrences = 0; /* `subst' counts here */
3303 subst_low_luid = DF_INSN_LUID (i2);
3305 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3306 copy of I2SRC each time we substitute it, in order to avoid creating
3307 self-referential RTL when we will be substituting I1SRC for I1DEST
3308 later. Likewise if I0 feeds into I2, either directly or indirectly
3309 through I1, and I0DEST is in I0SRC. */
3310 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3311 (i1_feeds_i2_n && i1dest_in_i1src)
3312 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3313 && i0dest_in_i0src));
3314 substed_i2 = 1;
3316 /* Record whether I2's body now appears within I3's body. */
3317 i2_is_used = n_occurrences;
3320 /* If we already got a failure, don't try to do more. Otherwise, try to
3321 substitute I1 if we have it. */
3323 if (i1 && GET_CODE (newpat) != CLOBBER)
3325 /* Check that an autoincrement side-effect on I1 has not been lost.
3326 This happens if I1DEST is mentioned in I2 and dies there, and
3327 has disappeared from the new pattern. */
3328 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3329 && i1_feeds_i2_n
3330 && dead_or_set_p (i2, i1dest)
3331 && !reg_overlap_mentioned_p (i1dest, newpat))
3332 /* Before we can do this substitution, we must redo the test done
3333 above (see detailed comments there) that ensures I1DEST isn't
3334 mentioned in any SETs in NEWPAT that are field assignments. */
3335 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3336 0, 0, 0))
3338 undo_all ();
3339 return 0;
3342 n_occurrences = 0;
3343 subst_low_luid = DF_INSN_LUID (i1);
3345 /* If the following substitution will modify I1SRC, make a copy of it
3346 for the case where it is substituted for I1DEST in I2PAT later. */
3347 if (added_sets_2 && i1_feeds_i2_n)
3348 i1src_copy = copy_rtx (i1src);
3350 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3351 copy of I1SRC each time we substitute it, in order to avoid creating
3352 self-referential RTL when we will be substituting I0SRC for I0DEST
3353 later. */
3354 newpat = subst (newpat, i1dest, i1src, 0, 0,
3355 i0_feeds_i1_n && i0dest_in_i0src);
3356 substed_i1 = 1;
3358 /* Record whether I1's body now appears within I3's body. */
3359 i1_is_used = n_occurrences;
3362 /* Likewise for I0 if we have it. */
3364 if (i0 && GET_CODE (newpat) != CLOBBER)
3366 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3367 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3368 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3369 && !reg_overlap_mentioned_p (i0dest, newpat))
3370 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3371 0, 0, 0))
3373 undo_all ();
3374 return 0;
3377 /* If the following substitution will modify I0SRC, make a copy of it
3378 for the case where it is substituted for I0DEST in I1PAT later. */
3379 if (added_sets_1 && i0_feeds_i1_n)
3380 i0src_copy = copy_rtx (i0src);
3381 /* And a copy for I0DEST in I2PAT substitution. */
3382 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3383 || (i0_feeds_i2_n)))
3384 i0src_copy2 = copy_rtx (i0src);
3386 n_occurrences = 0;
3387 subst_low_luid = DF_INSN_LUID (i0);
3388 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3389 substed_i0 = 1;
3392 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3393 to count all the ways that I2SRC and I1SRC can be used. */
3394 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3395 && i2_is_used + added_sets_2 > 1)
3396 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3397 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3398 > 1))
3399 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3400 && (n_occurrences + added_sets_0
3401 + (added_sets_1 && i0_feeds_i1_n)
3402 + (added_sets_2 && i0_feeds_i2_n)
3403 > 1))
3404 /* Fail if we tried to make a new register. */
3405 || max_reg_num () != maxreg
3406 /* Fail if we couldn't do something and have a CLOBBER. */
3407 || GET_CODE (newpat) == CLOBBER
3408 /* Fail if this new pattern is a MULT and we didn't have one before
3409 at the outer level. */
3410 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3411 && ! have_mult))
3413 undo_all ();
3414 return 0;
3417 /* If the actions of the earlier insns must be kept
3418 in addition to substituting them into the latest one,
3419 we must make a new PARALLEL for the latest insn
3420 to hold additional the SETs. */
3422 if (added_sets_0 || added_sets_1 || added_sets_2)
3424 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3425 combine_extras++;
3427 if (GET_CODE (newpat) == PARALLEL)
3429 rtvec old = XVEC (newpat, 0);
3430 total_sets = XVECLEN (newpat, 0) + extra_sets;
3431 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3432 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3433 sizeof (old->elem[0]) * old->num_elem);
3435 else
3437 rtx old = newpat;
3438 total_sets = 1 + extra_sets;
3439 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3440 XVECEXP (newpat, 0, 0) = old;
3443 if (added_sets_0)
3444 XVECEXP (newpat, 0, --total_sets) = i0pat;
3446 if (added_sets_1)
3448 rtx t = i1pat;
3449 if (i0_feeds_i1_n)
3450 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3452 XVECEXP (newpat, 0, --total_sets) = t;
3454 if (added_sets_2)
3456 rtx t = i2pat;
3457 if (i1_feeds_i2_n)
3458 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3459 i0_feeds_i1_n && i0dest_in_i0src);
3460 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3461 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3463 XVECEXP (newpat, 0, --total_sets) = t;
3467 validate_replacement:
3469 /* Note which hard regs this insn has as inputs. */
3470 mark_used_regs_combine (newpat);
3472 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3473 consider splitting this pattern, we might need these clobbers. */
3474 if (i1 && GET_CODE (newpat) == PARALLEL
3475 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3477 int len = XVECLEN (newpat, 0);
3479 newpat_vec_with_clobbers = rtvec_alloc (len);
3480 for (i = 0; i < len; i++)
3481 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3484 /* We have recognized nothing yet. */
3485 insn_code_number = -1;
3487 /* See if this is a PARALLEL of two SETs where one SET's destination is
3488 a register that is unused and this isn't marked as an instruction that
3489 might trap in an EH region. In that case, we just need the other SET.
3490 We prefer this over the PARALLEL.
3492 This can occur when simplifying a divmod insn. We *must* test for this
3493 case here because the code below that splits two independent SETs doesn't
3494 handle this case correctly when it updates the register status.
3496 It's pointless doing this if we originally had two sets, one from
3497 i3, and one from i2. Combining then splitting the parallel results
3498 in the original i2 again plus an invalid insn (which we delete).
3499 The net effect is only to move instructions around, which makes
3500 debug info less accurate. */
3502 if (!(added_sets_2 && i1 == 0)
3503 && is_parallel_of_n_reg_sets (newpat, 2)
3504 && asm_noperands (newpat) < 0)
3506 rtx set0 = XVECEXP (newpat, 0, 0);
3507 rtx set1 = XVECEXP (newpat, 0, 1);
3508 rtx oldpat = newpat;
3510 if (((REG_P (SET_DEST (set1))
3511 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3512 || (GET_CODE (SET_DEST (set1)) == SUBREG
3513 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3514 && insn_nothrow_p (i3)
3515 && !side_effects_p (SET_SRC (set1)))
3517 newpat = set0;
3518 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3521 else if (((REG_P (SET_DEST (set0))
3522 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3523 || (GET_CODE (SET_DEST (set0)) == SUBREG
3524 && find_reg_note (i3, REG_UNUSED,
3525 SUBREG_REG (SET_DEST (set0)))))
3526 && insn_nothrow_p (i3)
3527 && !side_effects_p (SET_SRC (set0)))
3529 newpat = set1;
3530 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3532 if (insn_code_number >= 0)
3533 changed_i3_dest = 1;
3536 if (insn_code_number < 0)
3537 newpat = oldpat;
3540 /* Is the result of combination a valid instruction? */
3541 if (insn_code_number < 0)
3542 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3544 /* If we were combining three insns and the result is a simple SET
3545 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3546 insns. There are two ways to do this. It can be split using a
3547 machine-specific method (like when you have an addition of a large
3548 constant) or by combine in the function find_split_point. */
3550 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3551 && asm_noperands (newpat) < 0)
3553 rtx parallel, *split;
3554 rtx_insn *m_split_insn;
3556 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3557 use I2DEST as a scratch register will help. In the latter case,
3558 convert I2DEST to the mode of the source of NEWPAT if we can. */
3560 m_split_insn = combine_split_insns (newpat, i3);
3562 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3563 inputs of NEWPAT. */
3565 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3566 possible to try that as a scratch reg. This would require adding
3567 more code to make it work though. */
3569 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3571 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3573 /* First try to split using the original register as a
3574 scratch register. */
3575 parallel = gen_rtx_PARALLEL (VOIDmode,
3576 gen_rtvec (2, newpat,
3577 gen_rtx_CLOBBER (VOIDmode,
3578 i2dest)));
3579 m_split_insn = combine_split_insns (parallel, i3);
3581 /* If that didn't work, try changing the mode of I2DEST if
3582 we can. */
3583 if (m_split_insn == 0
3584 && new_mode != GET_MODE (i2dest)
3585 && new_mode != VOIDmode
3586 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3588 machine_mode old_mode = GET_MODE (i2dest);
3589 rtx ni2dest;
3591 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3592 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3593 else
3595 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3596 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3599 parallel = (gen_rtx_PARALLEL
3600 (VOIDmode,
3601 gen_rtvec (2, newpat,
3602 gen_rtx_CLOBBER (VOIDmode,
3603 ni2dest))));
3604 m_split_insn = combine_split_insns (parallel, i3);
3606 if (m_split_insn == 0
3607 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3609 struct undo *buf;
3611 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3612 buf = undobuf.undos;
3613 undobuf.undos = buf->next;
3614 buf->next = undobuf.frees;
3615 undobuf.frees = buf;
3619 i2scratch = m_split_insn != 0;
3622 /* If recog_for_combine has discarded clobbers, try to use them
3623 again for the split. */
3624 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3626 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3627 m_split_insn = combine_split_insns (parallel, i3);
3630 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3632 rtx m_split_pat = PATTERN (m_split_insn);
3633 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3634 if (insn_code_number >= 0)
3635 newpat = m_split_pat;
3637 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3638 && (next_nonnote_nondebug_insn (i2) == i3
3639 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3641 rtx i2set, i3set;
3642 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3643 newi2pat = PATTERN (m_split_insn);
3645 i3set = single_set (NEXT_INSN (m_split_insn));
3646 i2set = single_set (m_split_insn);
3648 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3650 /* If I2 or I3 has multiple SETs, we won't know how to track
3651 register status, so don't use these insns. If I2's destination
3652 is used between I2 and I3, we also can't use these insns. */
3654 if (i2_code_number >= 0 && i2set && i3set
3655 && (next_nonnote_nondebug_insn (i2) == i3
3656 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3657 insn_code_number = recog_for_combine (&newi3pat, i3,
3658 &new_i3_notes);
3659 if (insn_code_number >= 0)
3660 newpat = newi3pat;
3662 /* It is possible that both insns now set the destination of I3.
3663 If so, we must show an extra use of it. */
3665 if (insn_code_number >= 0)
3667 rtx new_i3_dest = SET_DEST (i3set);
3668 rtx new_i2_dest = SET_DEST (i2set);
3670 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3671 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3672 || GET_CODE (new_i3_dest) == SUBREG)
3673 new_i3_dest = XEXP (new_i3_dest, 0);
3675 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3676 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3677 || GET_CODE (new_i2_dest) == SUBREG)
3678 new_i2_dest = XEXP (new_i2_dest, 0);
3680 if (REG_P (new_i3_dest)
3681 && REG_P (new_i2_dest)
3682 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3683 && REGNO (new_i2_dest) < reg_n_sets_max)
3684 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3688 /* If we can split it and use I2DEST, go ahead and see if that
3689 helps things be recognized. Verify that none of the registers
3690 are set between I2 and I3. */
3691 if (insn_code_number < 0
3692 && (split = find_split_point (&newpat, i3, false)) != 0
3693 && (!HAVE_cc0 || REG_P (i2dest))
3694 /* We need I2DEST in the proper mode. If it is a hard register
3695 or the only use of a pseudo, we can change its mode.
3696 Make sure we don't change a hard register to have a mode that
3697 isn't valid for it, or change the number of registers. */
3698 && (GET_MODE (*split) == GET_MODE (i2dest)
3699 || GET_MODE (*split) == VOIDmode
3700 || can_change_dest_mode (i2dest, added_sets_2,
3701 GET_MODE (*split)))
3702 && (next_nonnote_nondebug_insn (i2) == i3
3703 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3704 /* We can't overwrite I2DEST if its value is still used by
3705 NEWPAT. */
3706 && ! reg_referenced_p (i2dest, newpat))
3708 rtx newdest = i2dest;
3709 enum rtx_code split_code = GET_CODE (*split);
3710 machine_mode split_mode = GET_MODE (*split);
3711 bool subst_done = false;
3712 newi2pat = NULL_RTX;
3714 i2scratch = true;
3716 /* *SPLIT may be part of I2SRC, so make sure we have the
3717 original expression around for later debug processing.
3718 We should not need I2SRC any more in other cases. */
3719 if (MAY_HAVE_DEBUG_INSNS)
3720 i2src = copy_rtx (i2src);
3721 else
3722 i2src = NULL;
3724 /* Get NEWDEST as a register in the proper mode. We have already
3725 validated that we can do this. */
3726 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3728 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3729 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3730 else
3732 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3733 newdest = regno_reg_rtx[REGNO (i2dest)];
3737 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3738 an ASHIFT. This can occur if it was inside a PLUS and hence
3739 appeared to be a memory address. This is a kludge. */
3740 if (split_code == MULT
3741 && CONST_INT_P (XEXP (*split, 1))
3742 && INTVAL (XEXP (*split, 1)) > 0
3743 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3745 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3746 XEXP (*split, 0), GEN_INT (i)));
3747 /* Update split_code because we may not have a multiply
3748 anymore. */
3749 split_code = GET_CODE (*split);
3752 #ifdef INSN_SCHEDULING
3753 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3754 be written as a ZERO_EXTEND. */
3755 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3757 #ifdef LOAD_EXTEND_OP
3758 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3759 what it really is. */
3760 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3761 == SIGN_EXTEND)
3762 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3763 SUBREG_REG (*split)));
3764 else
3765 #endif
3766 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3767 SUBREG_REG (*split)));
3769 #endif
3771 /* Attempt to split binary operators using arithmetic identities. */
3772 if (BINARY_P (SET_SRC (newpat))
3773 && split_mode == GET_MODE (SET_SRC (newpat))
3774 && ! side_effects_p (SET_SRC (newpat)))
3776 rtx setsrc = SET_SRC (newpat);
3777 machine_mode mode = GET_MODE (setsrc);
3778 enum rtx_code code = GET_CODE (setsrc);
3779 rtx src_op0 = XEXP (setsrc, 0);
3780 rtx src_op1 = XEXP (setsrc, 1);
3782 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3783 if (rtx_equal_p (src_op0, src_op1))
3785 newi2pat = gen_rtx_SET (newdest, src_op0);
3786 SUBST (XEXP (setsrc, 0), newdest);
3787 SUBST (XEXP (setsrc, 1), newdest);
3788 subst_done = true;
3790 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3791 else if ((code == PLUS || code == MULT)
3792 && GET_CODE (src_op0) == code
3793 && GET_CODE (XEXP (src_op0, 0)) == code
3794 && (INTEGRAL_MODE_P (mode)
3795 || (FLOAT_MODE_P (mode)
3796 && flag_unsafe_math_optimizations)))
3798 rtx p = XEXP (XEXP (src_op0, 0), 0);
3799 rtx q = XEXP (XEXP (src_op0, 0), 1);
3800 rtx r = XEXP (src_op0, 1);
3801 rtx s = src_op1;
3803 /* Split both "((X op Y) op X) op Y" and
3804 "((X op Y) op Y) op X" as "T op T" where T is
3805 "X op Y". */
3806 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3807 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3809 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3810 SUBST (XEXP (setsrc, 0), newdest);
3811 SUBST (XEXP (setsrc, 1), newdest);
3812 subst_done = true;
3814 /* Split "((X op X) op Y) op Y)" as "T op T" where
3815 T is "X op Y". */
3816 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3818 rtx tmp = simplify_gen_binary (code, mode, p, r);
3819 newi2pat = gen_rtx_SET (newdest, tmp);
3820 SUBST (XEXP (setsrc, 0), newdest);
3821 SUBST (XEXP (setsrc, 1), newdest);
3822 subst_done = true;
3827 if (!subst_done)
3829 newi2pat = gen_rtx_SET (newdest, *split);
3830 SUBST (*split, newdest);
3833 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3835 /* recog_for_combine might have added CLOBBERs to newi2pat.
3836 Make sure NEWPAT does not depend on the clobbered regs. */
3837 if (GET_CODE (newi2pat) == PARALLEL)
3838 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3839 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3841 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3842 if (reg_overlap_mentioned_p (reg, newpat))
3844 undo_all ();
3845 return 0;
3849 /* If the split point was a MULT and we didn't have one before,
3850 don't use one now. */
3851 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3852 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3856 /* Check for a case where we loaded from memory in a narrow mode and
3857 then sign extended it, but we need both registers. In that case,
3858 we have a PARALLEL with both loads from the same memory location.
3859 We can split this into a load from memory followed by a register-register
3860 copy. This saves at least one insn, more if register allocation can
3861 eliminate the copy.
3863 We cannot do this if the destination of the first assignment is a
3864 condition code register or cc0. We eliminate this case by making sure
3865 the SET_DEST and SET_SRC have the same mode.
3867 We cannot do this if the destination of the second assignment is
3868 a register that we have already assumed is zero-extended. Similarly
3869 for a SUBREG of such a register. */
3871 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3872 && GET_CODE (newpat) == PARALLEL
3873 && XVECLEN (newpat, 0) == 2
3874 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3875 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3876 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3877 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3878 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3879 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3880 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3881 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3882 DF_INSN_LUID (i2))
3883 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3884 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3885 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3886 (REG_P (temp_expr)
3887 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3889 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3890 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3891 != GET_MODE_MASK (word_mode))))
3892 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3893 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3894 (REG_P (temp_expr)
3895 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3896 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3897 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3898 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3899 != GET_MODE_MASK (word_mode)))))
3900 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3901 SET_SRC (XVECEXP (newpat, 0, 1)))
3902 && ! find_reg_note (i3, REG_UNUSED,
3903 SET_DEST (XVECEXP (newpat, 0, 0))))
3905 rtx ni2dest;
3907 newi2pat = XVECEXP (newpat, 0, 0);
3908 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3909 newpat = XVECEXP (newpat, 0, 1);
3910 SUBST (SET_SRC (newpat),
3911 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3912 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3914 if (i2_code_number >= 0)
3915 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3917 if (insn_code_number >= 0)
3918 swap_i2i3 = 1;
3921 /* Similarly, check for a case where we have a PARALLEL of two independent
3922 SETs but we started with three insns. In this case, we can do the sets
3923 as two separate insns. This case occurs when some SET allows two
3924 other insns to combine, but the destination of that SET is still live.
3926 Also do this if we started with two insns and (at least) one of the
3927 resulting sets is a noop; this noop will be deleted later. */
3929 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3930 && GET_CODE (newpat) == PARALLEL
3931 && XVECLEN (newpat, 0) == 2
3932 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3933 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3934 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3935 || set_noop_p (XVECEXP (newpat, 0, 1)))
3936 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3937 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3938 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3939 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3940 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3941 XVECEXP (newpat, 0, 0))
3942 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3943 XVECEXP (newpat, 0, 1))
3944 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3945 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3947 rtx set0 = XVECEXP (newpat, 0, 0);
3948 rtx set1 = XVECEXP (newpat, 0, 1);
3950 /* Normally, it doesn't matter which of the two is done first,
3951 but the one that references cc0 can't be the second, and
3952 one which uses any regs/memory set in between i2 and i3 can't
3953 be first. The PARALLEL might also have been pre-existing in i3,
3954 so we need to make sure that we won't wrongly hoist a SET to i2
3955 that would conflict with a death note present in there. */
3956 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3957 && !(REG_P (SET_DEST (set1))
3958 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3959 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3960 && find_reg_note (i2, REG_DEAD,
3961 SUBREG_REG (SET_DEST (set1))))
3962 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3963 /* If I3 is a jump, ensure that set0 is a jump so that
3964 we do not create invalid RTL. */
3965 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3968 newi2pat = set1;
3969 newpat = set0;
3971 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3972 && !(REG_P (SET_DEST (set0))
3973 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3974 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3975 && find_reg_note (i2, REG_DEAD,
3976 SUBREG_REG (SET_DEST (set0))))
3977 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3978 /* If I3 is a jump, ensure that set1 is a jump so that
3979 we do not create invalid RTL. */
3980 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3983 newi2pat = set0;
3984 newpat = set1;
3986 else
3988 undo_all ();
3989 return 0;
3992 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3994 if (i2_code_number >= 0)
3996 /* recog_for_combine might have added CLOBBERs to newi2pat.
3997 Make sure NEWPAT does not depend on the clobbered regs. */
3998 if (GET_CODE (newi2pat) == PARALLEL)
4000 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4001 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4003 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4004 if (reg_overlap_mentioned_p (reg, newpat))
4006 undo_all ();
4007 return 0;
4012 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4016 /* If it still isn't recognized, fail and change things back the way they
4017 were. */
4018 if ((insn_code_number < 0
4019 /* Is the result a reasonable ASM_OPERANDS? */
4020 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4022 undo_all ();
4023 return 0;
4026 /* If we had to change another insn, make sure it is valid also. */
4027 if (undobuf.other_insn)
4029 CLEAR_HARD_REG_SET (newpat_used_regs);
4031 other_pat = PATTERN (undobuf.other_insn);
4032 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4033 &new_other_notes);
4035 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4037 undo_all ();
4038 return 0;
4042 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4043 they are adjacent to each other or not. */
4044 if (HAVE_cc0)
4046 rtx_insn *p = prev_nonnote_insn (i3);
4047 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4048 && sets_cc0_p (newi2pat))
4050 undo_all ();
4051 return 0;
4055 /* Only allow this combination if insn_rtx_costs reports that the
4056 replacement instructions are cheaper than the originals. */
4057 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4059 undo_all ();
4060 return 0;
4063 if (MAY_HAVE_DEBUG_INSNS)
4065 struct undo *undo;
4067 for (undo = undobuf.undos; undo; undo = undo->next)
4068 if (undo->kind == UNDO_MODE)
4070 rtx reg = *undo->where.r;
4071 machine_mode new_mode = GET_MODE (reg);
4072 machine_mode old_mode = undo->old_contents.m;
4074 /* Temporarily revert mode back. */
4075 adjust_reg_mode (reg, old_mode);
4077 if (reg == i2dest && i2scratch)
4079 /* If we used i2dest as a scratch register with a
4080 different mode, substitute it for the original
4081 i2src while its original mode is temporarily
4082 restored, and then clear i2scratch so that we don't
4083 do it again later. */
4084 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4085 this_basic_block);
4086 i2scratch = false;
4087 /* Put back the new mode. */
4088 adjust_reg_mode (reg, new_mode);
4090 else
4092 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4093 rtx_insn *first, *last;
4095 if (reg == i2dest)
4097 first = i2;
4098 last = last_combined_insn;
4100 else
4102 first = i3;
4103 last = undobuf.other_insn;
4104 gcc_assert (last);
4105 if (DF_INSN_LUID (last)
4106 < DF_INSN_LUID (last_combined_insn))
4107 last = last_combined_insn;
4110 /* We're dealing with a reg that changed mode but not
4111 meaning, so we want to turn it into a subreg for
4112 the new mode. However, because of REG sharing and
4113 because its mode had already changed, we have to do
4114 it in two steps. First, replace any debug uses of
4115 reg, with its original mode temporarily restored,
4116 with this copy we have created; then, replace the
4117 copy with the SUBREG of the original shared reg,
4118 once again changed to the new mode. */
4119 propagate_for_debug (first, last, reg, tempreg,
4120 this_basic_block);
4121 adjust_reg_mode (reg, new_mode);
4122 propagate_for_debug (first, last, tempreg,
4123 lowpart_subreg (old_mode, reg, new_mode),
4124 this_basic_block);
4129 /* If we will be able to accept this, we have made a
4130 change to the destination of I3. This requires us to
4131 do a few adjustments. */
4133 if (changed_i3_dest)
4135 PATTERN (i3) = newpat;
4136 adjust_for_new_dest (i3);
4139 /* We now know that we can do this combination. Merge the insns and
4140 update the status of registers and LOG_LINKS. */
4142 if (undobuf.other_insn)
4144 rtx note, next;
4146 PATTERN (undobuf.other_insn) = other_pat;
4148 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4149 ensure that they are still valid. Then add any non-duplicate
4150 notes added by recog_for_combine. */
4151 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4153 next = XEXP (note, 1);
4155 if ((REG_NOTE_KIND (note) == REG_DEAD
4156 && !reg_referenced_p (XEXP (note, 0),
4157 PATTERN (undobuf.other_insn)))
4158 ||(REG_NOTE_KIND (note) == REG_UNUSED
4159 && !reg_set_p (XEXP (note, 0),
4160 PATTERN (undobuf.other_insn))))
4161 remove_note (undobuf.other_insn, note);
4164 distribute_notes (new_other_notes, undobuf.other_insn,
4165 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4166 NULL_RTX);
4169 if (swap_i2i3)
4171 rtx_insn *insn;
4172 struct insn_link *link;
4173 rtx ni2dest;
4175 /* I3 now uses what used to be its destination and which is now
4176 I2's destination. This requires us to do a few adjustments. */
4177 PATTERN (i3) = newpat;
4178 adjust_for_new_dest (i3);
4180 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4181 so we still will.
4183 However, some later insn might be using I2's dest and have
4184 a LOG_LINK pointing at I3. We must remove this link.
4185 The simplest way to remove the link is to point it at I1,
4186 which we know will be a NOTE. */
4188 /* newi2pat is usually a SET here; however, recog_for_combine might
4189 have added some clobbers. */
4190 if (GET_CODE (newi2pat) == PARALLEL)
4191 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4192 else
4193 ni2dest = SET_DEST (newi2pat);
4195 for (insn = NEXT_INSN (i3);
4196 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4197 || insn != BB_HEAD (this_basic_block->next_bb));
4198 insn = NEXT_INSN (insn))
4200 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4202 FOR_EACH_LOG_LINK (link, insn)
4203 if (link->insn == i3)
4204 link->insn = i1;
4206 break;
4212 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4213 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4214 rtx midnotes = 0;
4215 int from_luid;
4216 /* Compute which registers we expect to eliminate. newi2pat may be setting
4217 either i3dest or i2dest, so we must check it. */
4218 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4219 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4220 || !i2dest_killed
4221 ? 0 : i2dest);
4222 /* For i1, we need to compute both local elimination and global
4223 elimination information with respect to newi2pat because i1dest
4224 may be the same as i3dest, in which case newi2pat may be setting
4225 i1dest. Global information is used when distributing REG_DEAD
4226 note for i2 and i3, in which case it does matter if newi2pat sets
4227 i1dest or not.
4229 Local information is used when distributing REG_DEAD note for i1,
4230 in which case it doesn't matter if newi2pat sets i1dest or not.
4231 See PR62151, if we have four insns combination:
4232 i0: r0 <- i0src
4233 i1: r1 <- i1src (using r0)
4234 REG_DEAD (r0)
4235 i2: r0 <- i2src (using r1)
4236 i3: r3 <- i3src (using r0)
4237 ix: using r0
4238 From i1's point of view, r0 is eliminated, no matter if it is set
4239 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4240 should be discarded.
4242 Note local information only affects cases in forms like "I1->I2->I3",
4243 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4244 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4245 i0dest anyway. */
4246 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4247 || !i1dest_killed
4248 ? 0 : i1dest);
4249 rtx elim_i1 = (local_elim_i1 == 0
4250 || (newi2pat && reg_set_p (i1dest, newi2pat))
4251 ? 0 : i1dest);
4252 /* Same case as i1. */
4253 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4254 ? 0 : i0dest);
4255 rtx elim_i0 = (local_elim_i0 == 0
4256 || (newi2pat && reg_set_p (i0dest, newi2pat))
4257 ? 0 : i0dest);
4259 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4260 clear them. */
4261 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4262 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4263 if (i1)
4264 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4265 if (i0)
4266 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4268 /* Ensure that we do not have something that should not be shared but
4269 occurs multiple times in the new insns. Check this by first
4270 resetting all the `used' flags and then copying anything is shared. */
4272 reset_used_flags (i3notes);
4273 reset_used_flags (i2notes);
4274 reset_used_flags (i1notes);
4275 reset_used_flags (i0notes);
4276 reset_used_flags (newpat);
4277 reset_used_flags (newi2pat);
4278 if (undobuf.other_insn)
4279 reset_used_flags (PATTERN (undobuf.other_insn));
4281 i3notes = copy_rtx_if_shared (i3notes);
4282 i2notes = copy_rtx_if_shared (i2notes);
4283 i1notes = copy_rtx_if_shared (i1notes);
4284 i0notes = copy_rtx_if_shared (i0notes);
4285 newpat = copy_rtx_if_shared (newpat);
4286 newi2pat = copy_rtx_if_shared (newi2pat);
4287 if (undobuf.other_insn)
4288 reset_used_flags (PATTERN (undobuf.other_insn));
4290 INSN_CODE (i3) = insn_code_number;
4291 PATTERN (i3) = newpat;
4293 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4295 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4297 reset_used_flags (call_usage);
4298 call_usage = copy_rtx (call_usage);
4300 if (substed_i2)
4302 /* I2SRC must still be meaningful at this point. Some splitting
4303 operations can invalidate I2SRC, but those operations do not
4304 apply to calls. */
4305 gcc_assert (i2src);
4306 replace_rtx (call_usage, i2dest, i2src);
4309 if (substed_i1)
4310 replace_rtx (call_usage, i1dest, i1src);
4311 if (substed_i0)
4312 replace_rtx (call_usage, i0dest, i0src);
4314 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4317 if (undobuf.other_insn)
4318 INSN_CODE (undobuf.other_insn) = other_code_number;
4320 /* We had one special case above where I2 had more than one set and
4321 we replaced a destination of one of those sets with the destination
4322 of I3. In that case, we have to update LOG_LINKS of insns later
4323 in this basic block. Note that this (expensive) case is rare.
4325 Also, in this case, we must pretend that all REG_NOTEs for I2
4326 actually came from I3, so that REG_UNUSED notes from I2 will be
4327 properly handled. */
4329 if (i3_subst_into_i2)
4331 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4332 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4333 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4334 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4335 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4336 && ! find_reg_note (i2, REG_UNUSED,
4337 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4338 for (temp_insn = NEXT_INSN (i2);
4339 temp_insn
4340 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4341 || BB_HEAD (this_basic_block) != temp_insn);
4342 temp_insn = NEXT_INSN (temp_insn))
4343 if (temp_insn != i3 && INSN_P (temp_insn))
4344 FOR_EACH_LOG_LINK (link, temp_insn)
4345 if (link->insn == i2)
4346 link->insn = i3;
4348 if (i3notes)
4350 rtx link = i3notes;
4351 while (XEXP (link, 1))
4352 link = XEXP (link, 1);
4353 XEXP (link, 1) = i2notes;
4355 else
4356 i3notes = i2notes;
4357 i2notes = 0;
4360 LOG_LINKS (i3) = NULL;
4361 REG_NOTES (i3) = 0;
4362 LOG_LINKS (i2) = NULL;
4363 REG_NOTES (i2) = 0;
4365 if (newi2pat)
4367 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4368 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4369 this_basic_block);
4370 INSN_CODE (i2) = i2_code_number;
4371 PATTERN (i2) = newi2pat;
4373 else
4375 if (MAY_HAVE_DEBUG_INSNS && i2src)
4376 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4377 this_basic_block);
4378 SET_INSN_DELETED (i2);
4381 if (i1)
4383 LOG_LINKS (i1) = NULL;
4384 REG_NOTES (i1) = 0;
4385 if (MAY_HAVE_DEBUG_INSNS)
4386 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4387 this_basic_block);
4388 SET_INSN_DELETED (i1);
4391 if (i0)
4393 LOG_LINKS (i0) = NULL;
4394 REG_NOTES (i0) = 0;
4395 if (MAY_HAVE_DEBUG_INSNS)
4396 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4397 this_basic_block);
4398 SET_INSN_DELETED (i0);
4401 /* Get death notes for everything that is now used in either I3 or
4402 I2 and used to die in a previous insn. If we built two new
4403 patterns, move from I1 to I2 then I2 to I3 so that we get the
4404 proper movement on registers that I2 modifies. */
4406 if (i0)
4407 from_luid = DF_INSN_LUID (i0);
4408 else if (i1)
4409 from_luid = DF_INSN_LUID (i1);
4410 else
4411 from_luid = DF_INSN_LUID (i2);
4412 if (newi2pat)
4413 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4414 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4416 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4417 if (i3notes)
4418 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4419 elim_i2, elim_i1, elim_i0);
4420 if (i2notes)
4421 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4422 elim_i2, elim_i1, elim_i0);
4423 if (i1notes)
4424 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4425 elim_i2, local_elim_i1, local_elim_i0);
4426 if (i0notes)
4427 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4428 elim_i2, elim_i1, local_elim_i0);
4429 if (midnotes)
4430 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4431 elim_i2, elim_i1, elim_i0);
4433 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4434 know these are REG_UNUSED and want them to go to the desired insn,
4435 so we always pass it as i3. */
4437 if (newi2pat && new_i2_notes)
4438 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4439 NULL_RTX);
4441 if (new_i3_notes)
4442 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4443 NULL_RTX);
4445 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4446 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4447 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4448 in that case, it might delete I2. Similarly for I2 and I1.
4449 Show an additional death due to the REG_DEAD note we make here. If
4450 we discard it in distribute_notes, we will decrement it again. */
4452 if (i3dest_killed)
4454 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4455 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4456 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4457 elim_i1, elim_i0);
4458 else
4459 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4460 elim_i2, elim_i1, elim_i0);
4463 if (i2dest_in_i2src)
4465 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4466 if (newi2pat && reg_set_p (i2dest, newi2pat))
4467 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4468 NULL_RTX, NULL_RTX);
4469 else
4470 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4471 NULL_RTX, NULL_RTX, NULL_RTX);
4474 if (i1dest_in_i1src)
4476 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4477 if (newi2pat && reg_set_p (i1dest, newi2pat))
4478 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4479 NULL_RTX, NULL_RTX);
4480 else
4481 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4482 NULL_RTX, NULL_RTX, NULL_RTX);
4485 if (i0dest_in_i0src)
4487 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4488 if (newi2pat && reg_set_p (i0dest, newi2pat))
4489 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4490 NULL_RTX, NULL_RTX);
4491 else
4492 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4493 NULL_RTX, NULL_RTX, NULL_RTX);
4496 distribute_links (i3links);
4497 distribute_links (i2links);
4498 distribute_links (i1links);
4499 distribute_links (i0links);
4501 if (REG_P (i2dest))
4503 struct insn_link *link;
4504 rtx_insn *i2_insn = 0;
4505 rtx i2_val = 0, set;
4507 /* The insn that used to set this register doesn't exist, and
4508 this life of the register may not exist either. See if one of
4509 I3's links points to an insn that sets I2DEST. If it does,
4510 that is now the last known value for I2DEST. If we don't update
4511 this and I2 set the register to a value that depended on its old
4512 contents, we will get confused. If this insn is used, thing
4513 will be set correctly in combine_instructions. */
4514 FOR_EACH_LOG_LINK (link, i3)
4515 if ((set = single_set (link->insn)) != 0
4516 && rtx_equal_p (i2dest, SET_DEST (set)))
4517 i2_insn = link->insn, i2_val = SET_SRC (set);
4519 record_value_for_reg (i2dest, i2_insn, i2_val);
4521 /* If the reg formerly set in I2 died only once and that was in I3,
4522 zero its use count so it won't make `reload' do any work. */
4523 if (! added_sets_2
4524 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4525 && ! i2dest_in_i2src
4526 && REGNO (i2dest) < reg_n_sets_max)
4527 INC_REG_N_SETS (REGNO (i2dest), -1);
4530 if (i1 && REG_P (i1dest))
4532 struct insn_link *link;
4533 rtx_insn *i1_insn = 0;
4534 rtx i1_val = 0, set;
4536 FOR_EACH_LOG_LINK (link, i3)
4537 if ((set = single_set (link->insn)) != 0
4538 && rtx_equal_p (i1dest, SET_DEST (set)))
4539 i1_insn = link->insn, i1_val = SET_SRC (set);
4541 record_value_for_reg (i1dest, i1_insn, i1_val);
4543 if (! added_sets_1
4544 && ! i1dest_in_i1src
4545 && REGNO (i1dest) < reg_n_sets_max)
4546 INC_REG_N_SETS (REGNO (i1dest), -1);
4549 if (i0 && REG_P (i0dest))
4551 struct insn_link *link;
4552 rtx_insn *i0_insn = 0;
4553 rtx i0_val = 0, set;
4555 FOR_EACH_LOG_LINK (link, i3)
4556 if ((set = single_set (link->insn)) != 0
4557 && rtx_equal_p (i0dest, SET_DEST (set)))
4558 i0_insn = link->insn, i0_val = SET_SRC (set);
4560 record_value_for_reg (i0dest, i0_insn, i0_val);
4562 if (! added_sets_0
4563 && ! i0dest_in_i0src
4564 && REGNO (i0dest) < reg_n_sets_max)
4565 INC_REG_N_SETS (REGNO (i0dest), -1);
4568 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4569 been made to this insn. The order is important, because newi2pat
4570 can affect nonzero_bits of newpat. */
4571 if (newi2pat)
4572 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4573 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4576 if (undobuf.other_insn != NULL_RTX)
4578 if (dump_file)
4580 fprintf (dump_file, "modifying other_insn ");
4581 dump_insn_slim (dump_file, undobuf.other_insn);
4583 df_insn_rescan (undobuf.other_insn);
4586 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4588 if (dump_file)
4590 fprintf (dump_file, "modifying insn i0 ");
4591 dump_insn_slim (dump_file, i0);
4593 df_insn_rescan (i0);
4596 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4598 if (dump_file)
4600 fprintf (dump_file, "modifying insn i1 ");
4601 dump_insn_slim (dump_file, i1);
4603 df_insn_rescan (i1);
4606 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4608 if (dump_file)
4610 fprintf (dump_file, "modifying insn i2 ");
4611 dump_insn_slim (dump_file, i2);
4613 df_insn_rescan (i2);
4616 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4618 if (dump_file)
4620 fprintf (dump_file, "modifying insn i3 ");
4621 dump_insn_slim (dump_file, i3);
4623 df_insn_rescan (i3);
4626 /* Set new_direct_jump_p if a new return or simple jump instruction
4627 has been created. Adjust the CFG accordingly. */
4628 if (returnjump_p (i3) || any_uncondjump_p (i3))
4630 *new_direct_jump_p = 1;
4631 mark_jump_label (PATTERN (i3), i3, 0);
4632 update_cfg_for_uncondjump (i3);
4635 if (undobuf.other_insn != NULL_RTX
4636 && (returnjump_p (undobuf.other_insn)
4637 || any_uncondjump_p (undobuf.other_insn)))
4639 *new_direct_jump_p = 1;
4640 update_cfg_for_uncondjump (undobuf.other_insn);
4643 /* A noop might also need cleaning up of CFG, if it comes from the
4644 simplification of a jump. */
4645 if (JUMP_P (i3)
4646 && GET_CODE (newpat) == SET
4647 && SET_SRC (newpat) == pc_rtx
4648 && SET_DEST (newpat) == pc_rtx)
4650 *new_direct_jump_p = 1;
4651 update_cfg_for_uncondjump (i3);
4654 if (undobuf.other_insn != NULL_RTX
4655 && JUMP_P (undobuf.other_insn)
4656 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4657 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4658 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4660 *new_direct_jump_p = 1;
4661 update_cfg_for_uncondjump (undobuf.other_insn);
4664 combine_successes++;
4665 undo_commit ();
4667 if (added_links_insn
4668 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4669 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4670 return added_links_insn;
4671 else
4672 return newi2pat ? i2 : i3;
4675 /* Get a marker for undoing to the current state. */
4677 static void *
4678 get_undo_marker (void)
4680 return undobuf.undos;
4683 /* Undo the modifications up to the marker. */
4685 static void
4686 undo_to_marker (void *marker)
4688 struct undo *undo, *next;
4690 for (undo = undobuf.undos; undo != marker; undo = next)
4692 gcc_assert (undo);
4694 next = undo->next;
4695 switch (undo->kind)
4697 case UNDO_RTX:
4698 *undo->where.r = undo->old_contents.r;
4699 break;
4700 case UNDO_INT:
4701 *undo->where.i = undo->old_contents.i;
4702 break;
4703 case UNDO_MODE:
4704 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4705 break;
4706 case UNDO_LINKS:
4707 *undo->where.l = undo->old_contents.l;
4708 break;
4709 default:
4710 gcc_unreachable ();
4713 undo->next = undobuf.frees;
4714 undobuf.frees = undo;
4717 undobuf.undos = (struct undo *) marker;
4720 /* Undo all the modifications recorded in undobuf. */
4722 static void
4723 undo_all (void)
4725 undo_to_marker (0);
4728 /* We've committed to accepting the changes we made. Move all
4729 of the undos to the free list. */
4731 static void
4732 undo_commit (void)
4734 struct undo *undo, *next;
4736 for (undo = undobuf.undos; undo; undo = next)
4738 next = undo->next;
4739 undo->next = undobuf.frees;
4740 undobuf.frees = undo;
4742 undobuf.undos = 0;
4745 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4746 where we have an arithmetic expression and return that point. LOC will
4747 be inside INSN.
4749 try_combine will call this function to see if an insn can be split into
4750 two insns. */
4752 static rtx *
4753 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4755 rtx x = *loc;
4756 enum rtx_code code = GET_CODE (x);
4757 rtx *split;
4758 unsigned HOST_WIDE_INT len = 0;
4759 HOST_WIDE_INT pos = 0;
4760 int unsignedp = 0;
4761 rtx inner = NULL_RTX;
4763 /* First special-case some codes. */
4764 switch (code)
4766 case SUBREG:
4767 #ifdef INSN_SCHEDULING
4768 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4769 point. */
4770 if (MEM_P (SUBREG_REG (x)))
4771 return loc;
4772 #endif
4773 return find_split_point (&SUBREG_REG (x), insn, false);
4775 case MEM:
4776 #ifdef HAVE_lo_sum
4777 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4778 using LO_SUM and HIGH. */
4779 if (GET_CODE (XEXP (x, 0)) == CONST
4780 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4782 machine_mode address_mode = get_address_mode (x);
4784 SUBST (XEXP (x, 0),
4785 gen_rtx_LO_SUM (address_mode,
4786 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4787 XEXP (x, 0)));
4788 return &XEXP (XEXP (x, 0), 0);
4790 #endif
4792 /* If we have a PLUS whose second operand is a constant and the
4793 address is not valid, perhaps will can split it up using
4794 the machine-specific way to split large constants. We use
4795 the first pseudo-reg (one of the virtual regs) as a placeholder;
4796 it will not remain in the result. */
4797 if (GET_CODE (XEXP (x, 0)) == PLUS
4798 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4799 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4800 MEM_ADDR_SPACE (x)))
4802 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4803 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4804 subst_insn);
4806 /* This should have produced two insns, each of which sets our
4807 placeholder. If the source of the second is a valid address,
4808 we can make put both sources together and make a split point
4809 in the middle. */
4811 if (seq
4812 && NEXT_INSN (seq) != NULL_RTX
4813 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4814 && NONJUMP_INSN_P (seq)
4815 && GET_CODE (PATTERN (seq)) == SET
4816 && SET_DEST (PATTERN (seq)) == reg
4817 && ! reg_mentioned_p (reg,
4818 SET_SRC (PATTERN (seq)))
4819 && NONJUMP_INSN_P (NEXT_INSN (seq))
4820 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4821 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4822 && memory_address_addr_space_p
4823 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4824 MEM_ADDR_SPACE (x)))
4826 rtx src1 = SET_SRC (PATTERN (seq));
4827 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4829 /* Replace the placeholder in SRC2 with SRC1. If we can
4830 find where in SRC2 it was placed, that can become our
4831 split point and we can replace this address with SRC2.
4832 Just try two obvious places. */
4834 src2 = replace_rtx (src2, reg, src1);
4835 split = 0;
4836 if (XEXP (src2, 0) == src1)
4837 split = &XEXP (src2, 0);
4838 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4839 && XEXP (XEXP (src2, 0), 0) == src1)
4840 split = &XEXP (XEXP (src2, 0), 0);
4842 if (split)
4844 SUBST (XEXP (x, 0), src2);
4845 return split;
4849 /* If that didn't work, perhaps the first operand is complex and
4850 needs to be computed separately, so make a split point there.
4851 This will occur on machines that just support REG + CONST
4852 and have a constant moved through some previous computation. */
4854 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4855 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4856 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4857 return &XEXP (XEXP (x, 0), 0);
4860 /* If we have a PLUS whose first operand is complex, try computing it
4861 separately by making a split there. */
4862 if (GET_CODE (XEXP (x, 0)) == PLUS
4863 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4864 MEM_ADDR_SPACE (x))
4865 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4866 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4867 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4868 return &XEXP (XEXP (x, 0), 0);
4869 break;
4871 case SET:
4872 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4873 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4874 we need to put the operand into a register. So split at that
4875 point. */
4877 if (SET_DEST (x) == cc0_rtx
4878 && GET_CODE (SET_SRC (x)) != COMPARE
4879 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4880 && !OBJECT_P (SET_SRC (x))
4881 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4882 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4883 return &SET_SRC (x);
4885 /* See if we can split SET_SRC as it stands. */
4886 split = find_split_point (&SET_SRC (x), insn, true);
4887 if (split && split != &SET_SRC (x))
4888 return split;
4890 /* See if we can split SET_DEST as it stands. */
4891 split = find_split_point (&SET_DEST (x), insn, false);
4892 if (split && split != &SET_DEST (x))
4893 return split;
4895 /* See if this is a bitfield assignment with everything constant. If
4896 so, this is an IOR of an AND, so split it into that. */
4897 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4898 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4899 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4900 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4901 && CONST_INT_P (SET_SRC (x))
4902 && ((INTVAL (XEXP (SET_DEST (x), 1))
4903 + INTVAL (XEXP (SET_DEST (x), 2)))
4904 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4905 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4907 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4908 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4909 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4910 rtx dest = XEXP (SET_DEST (x), 0);
4911 machine_mode mode = GET_MODE (dest);
4912 unsigned HOST_WIDE_INT mask
4913 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4914 rtx or_mask;
4916 if (BITS_BIG_ENDIAN)
4917 pos = GET_MODE_PRECISION (mode) - len - pos;
4919 or_mask = gen_int_mode (src << pos, mode);
4920 if (src == mask)
4921 SUBST (SET_SRC (x),
4922 simplify_gen_binary (IOR, mode, dest, or_mask));
4923 else
4925 rtx negmask = gen_int_mode (~(mask << pos), mode);
4926 SUBST (SET_SRC (x),
4927 simplify_gen_binary (IOR, mode,
4928 simplify_gen_binary (AND, mode,
4929 dest, negmask),
4930 or_mask));
4933 SUBST (SET_DEST (x), dest);
4935 split = find_split_point (&SET_SRC (x), insn, true);
4936 if (split && split != &SET_SRC (x))
4937 return split;
4940 /* Otherwise, see if this is an operation that we can split into two.
4941 If so, try to split that. */
4942 code = GET_CODE (SET_SRC (x));
4944 switch (code)
4946 case AND:
4947 /* If we are AND'ing with a large constant that is only a single
4948 bit and the result is only being used in a context where we
4949 need to know if it is zero or nonzero, replace it with a bit
4950 extraction. This will avoid the large constant, which might
4951 have taken more than one insn to make. If the constant were
4952 not a valid argument to the AND but took only one insn to make,
4953 this is no worse, but if it took more than one insn, it will
4954 be better. */
4956 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4957 && REG_P (XEXP (SET_SRC (x), 0))
4958 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4959 && REG_P (SET_DEST (x))
4960 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4961 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4962 && XEXP (*split, 0) == SET_DEST (x)
4963 && XEXP (*split, 1) == const0_rtx)
4965 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4966 XEXP (SET_SRC (x), 0),
4967 pos, NULL_RTX, 1, 1, 0, 0);
4968 if (extraction != 0)
4970 SUBST (SET_SRC (x), extraction);
4971 return find_split_point (loc, insn, false);
4974 break;
4976 case NE:
4977 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4978 is known to be on, this can be converted into a NEG of a shift. */
4979 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4980 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4981 && 1 <= (pos = exact_log2
4982 (nonzero_bits (XEXP (SET_SRC (x), 0),
4983 GET_MODE (XEXP (SET_SRC (x), 0))))))
4985 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4987 SUBST (SET_SRC (x),
4988 gen_rtx_NEG (mode,
4989 gen_rtx_LSHIFTRT (mode,
4990 XEXP (SET_SRC (x), 0),
4991 GEN_INT (pos))));
4993 split = find_split_point (&SET_SRC (x), insn, true);
4994 if (split && split != &SET_SRC (x))
4995 return split;
4997 break;
4999 case SIGN_EXTEND:
5000 inner = XEXP (SET_SRC (x), 0);
5002 /* We can't optimize if either mode is a partial integer
5003 mode as we don't know how many bits are significant
5004 in those modes. */
5005 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5006 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5007 break;
5009 pos = 0;
5010 len = GET_MODE_PRECISION (GET_MODE (inner));
5011 unsignedp = 0;
5012 break;
5014 case SIGN_EXTRACT:
5015 case ZERO_EXTRACT:
5016 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5017 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5019 inner = XEXP (SET_SRC (x), 0);
5020 len = INTVAL (XEXP (SET_SRC (x), 1));
5021 pos = INTVAL (XEXP (SET_SRC (x), 2));
5023 if (BITS_BIG_ENDIAN)
5024 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5025 unsignedp = (code == ZERO_EXTRACT);
5027 break;
5029 default:
5030 break;
5033 if (len && pos >= 0
5034 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5036 machine_mode mode = GET_MODE (SET_SRC (x));
5038 /* For unsigned, we have a choice of a shift followed by an
5039 AND or two shifts. Use two shifts for field sizes where the
5040 constant might be too large. We assume here that we can
5041 always at least get 8-bit constants in an AND insn, which is
5042 true for every current RISC. */
5044 if (unsignedp && len <= 8)
5046 unsigned HOST_WIDE_INT mask
5047 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5048 SUBST (SET_SRC (x),
5049 gen_rtx_AND (mode,
5050 gen_rtx_LSHIFTRT
5051 (mode, gen_lowpart (mode, inner),
5052 GEN_INT (pos)),
5053 gen_int_mode (mask, mode)));
5055 split = find_split_point (&SET_SRC (x), insn, true);
5056 if (split && split != &SET_SRC (x))
5057 return split;
5059 else
5061 SUBST (SET_SRC (x),
5062 gen_rtx_fmt_ee
5063 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5064 gen_rtx_ASHIFT (mode,
5065 gen_lowpart (mode, inner),
5066 GEN_INT (GET_MODE_PRECISION (mode)
5067 - len - pos)),
5068 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5070 split = find_split_point (&SET_SRC (x), insn, true);
5071 if (split && split != &SET_SRC (x))
5072 return split;
5076 /* See if this is a simple operation with a constant as the second
5077 operand. It might be that this constant is out of range and hence
5078 could be used as a split point. */
5079 if (BINARY_P (SET_SRC (x))
5080 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5081 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5082 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5083 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5084 return &XEXP (SET_SRC (x), 1);
5086 /* Finally, see if this is a simple operation with its first operand
5087 not in a register. The operation might require this operand in a
5088 register, so return it as a split point. We can always do this
5089 because if the first operand were another operation, we would have
5090 already found it as a split point. */
5091 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5092 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5093 return &XEXP (SET_SRC (x), 0);
5095 return 0;
5097 case AND:
5098 case IOR:
5099 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5100 it is better to write this as (not (ior A B)) so we can split it.
5101 Similarly for IOR. */
5102 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5104 SUBST (*loc,
5105 gen_rtx_NOT (GET_MODE (x),
5106 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5107 GET_MODE (x),
5108 XEXP (XEXP (x, 0), 0),
5109 XEXP (XEXP (x, 1), 0))));
5110 return find_split_point (loc, insn, set_src);
5113 /* Many RISC machines have a large set of logical insns. If the
5114 second operand is a NOT, put it first so we will try to split the
5115 other operand first. */
5116 if (GET_CODE (XEXP (x, 1)) == NOT)
5118 rtx tem = XEXP (x, 0);
5119 SUBST (XEXP (x, 0), XEXP (x, 1));
5120 SUBST (XEXP (x, 1), tem);
5122 break;
5124 case PLUS:
5125 case MINUS:
5126 /* Canonicalization can produce (minus A (mult B C)), where C is a
5127 constant. It may be better to try splitting (plus (mult B -C) A)
5128 instead if this isn't a multiply by a power of two. */
5129 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5130 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5131 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5133 machine_mode mode = GET_MODE (x);
5134 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5135 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5136 SUBST (*loc, gen_rtx_PLUS (mode,
5137 gen_rtx_MULT (mode,
5138 XEXP (XEXP (x, 1), 0),
5139 gen_int_mode (other_int,
5140 mode)),
5141 XEXP (x, 0)));
5142 return find_split_point (loc, insn, set_src);
5145 /* Split at a multiply-accumulate instruction. However if this is
5146 the SET_SRC, we likely do not have such an instruction and it's
5147 worthless to try this split. */
5148 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
5149 return loc;
5151 default:
5152 break;
5155 /* Otherwise, select our actions depending on our rtx class. */
5156 switch (GET_RTX_CLASS (code))
5158 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5159 case RTX_TERNARY:
5160 split = find_split_point (&XEXP (x, 2), insn, false);
5161 if (split)
5162 return split;
5163 /* ... fall through ... */
5164 case RTX_BIN_ARITH:
5165 case RTX_COMM_ARITH:
5166 case RTX_COMPARE:
5167 case RTX_COMM_COMPARE:
5168 split = find_split_point (&XEXP (x, 1), insn, false);
5169 if (split)
5170 return split;
5171 /* ... fall through ... */
5172 case RTX_UNARY:
5173 /* Some machines have (and (shift ...) ...) insns. If X is not
5174 an AND, but XEXP (X, 0) is, use it as our split point. */
5175 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5176 return &XEXP (x, 0);
5178 split = find_split_point (&XEXP (x, 0), insn, false);
5179 if (split)
5180 return split;
5181 return loc;
5183 default:
5184 /* Otherwise, we don't have a split point. */
5185 return 0;
5189 /* Throughout X, replace FROM with TO, and return the result.
5190 The result is TO if X is FROM;
5191 otherwise the result is X, but its contents may have been modified.
5192 If they were modified, a record was made in undobuf so that
5193 undo_all will (among other things) return X to its original state.
5195 If the number of changes necessary is too much to record to undo,
5196 the excess changes are not made, so the result is invalid.
5197 The changes already made can still be undone.
5198 undobuf.num_undo is incremented for such changes, so by testing that
5199 the caller can tell whether the result is valid.
5201 `n_occurrences' is incremented each time FROM is replaced.
5203 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5205 IN_COND is nonzero if we are at the top level of a condition.
5207 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5208 by copying if `n_occurrences' is nonzero. */
5210 static rtx
5211 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5213 enum rtx_code code = GET_CODE (x);
5214 machine_mode op0_mode = VOIDmode;
5215 const char *fmt;
5216 int len, i;
5217 rtx new_rtx;
5219 /* Two expressions are equal if they are identical copies of a shared
5220 RTX or if they are both registers with the same register number
5221 and mode. */
5223 #define COMBINE_RTX_EQUAL_P(X,Y) \
5224 ((X) == (Y) \
5225 || (REG_P (X) && REG_P (Y) \
5226 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5228 /* Do not substitute into clobbers of regs -- this will never result in
5229 valid RTL. */
5230 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5231 return x;
5233 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5235 n_occurrences++;
5236 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5239 /* If X and FROM are the same register but different modes, they
5240 will not have been seen as equal above. However, the log links code
5241 will make a LOG_LINKS entry for that case. If we do nothing, we
5242 will try to rerecognize our original insn and, when it succeeds,
5243 we will delete the feeding insn, which is incorrect.
5245 So force this insn not to match in this (rare) case. */
5246 if (! in_dest && code == REG && REG_P (from)
5247 && reg_overlap_mentioned_p (x, from))
5248 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5250 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5251 of which may contain things that can be combined. */
5252 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5253 return x;
5255 /* It is possible to have a subexpression appear twice in the insn.
5256 Suppose that FROM is a register that appears within TO.
5257 Then, after that subexpression has been scanned once by `subst',
5258 the second time it is scanned, TO may be found. If we were
5259 to scan TO here, we would find FROM within it and create a
5260 self-referent rtl structure which is completely wrong. */
5261 if (COMBINE_RTX_EQUAL_P (x, to))
5262 return to;
5264 /* Parallel asm_operands need special attention because all of the
5265 inputs are shared across the arms. Furthermore, unsharing the
5266 rtl results in recognition failures. Failure to handle this case
5267 specially can result in circular rtl.
5269 Solve this by doing a normal pass across the first entry of the
5270 parallel, and only processing the SET_DESTs of the subsequent
5271 entries. Ug. */
5273 if (code == PARALLEL
5274 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5275 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5277 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5279 /* If this substitution failed, this whole thing fails. */
5280 if (GET_CODE (new_rtx) == CLOBBER
5281 && XEXP (new_rtx, 0) == const0_rtx)
5282 return new_rtx;
5284 SUBST (XVECEXP (x, 0, 0), new_rtx);
5286 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5288 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5290 if (!REG_P (dest)
5291 && GET_CODE (dest) != CC0
5292 && GET_CODE (dest) != PC)
5294 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5296 /* If this substitution failed, this whole thing fails. */
5297 if (GET_CODE (new_rtx) == CLOBBER
5298 && XEXP (new_rtx, 0) == const0_rtx)
5299 return new_rtx;
5301 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5305 else
5307 len = GET_RTX_LENGTH (code);
5308 fmt = GET_RTX_FORMAT (code);
5310 /* We don't need to process a SET_DEST that is a register, CC0,
5311 or PC, so set up to skip this common case. All other cases
5312 where we want to suppress replacing something inside a
5313 SET_SRC are handled via the IN_DEST operand. */
5314 if (code == SET
5315 && (REG_P (SET_DEST (x))
5316 || GET_CODE (SET_DEST (x)) == CC0
5317 || GET_CODE (SET_DEST (x)) == PC))
5318 fmt = "ie";
5320 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5321 constant. */
5322 if (fmt[0] == 'e')
5323 op0_mode = GET_MODE (XEXP (x, 0));
5325 for (i = 0; i < len; i++)
5327 if (fmt[i] == 'E')
5329 int j;
5330 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5332 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5334 new_rtx = (unique_copy && n_occurrences
5335 ? copy_rtx (to) : to);
5336 n_occurrences++;
5338 else
5340 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5341 unique_copy);
5343 /* If this substitution failed, this whole thing
5344 fails. */
5345 if (GET_CODE (new_rtx) == CLOBBER
5346 && XEXP (new_rtx, 0) == const0_rtx)
5347 return new_rtx;
5350 SUBST (XVECEXP (x, i, j), new_rtx);
5353 else if (fmt[i] == 'e')
5355 /* If this is a register being set, ignore it. */
5356 new_rtx = XEXP (x, i);
5357 if (in_dest
5358 && i == 0
5359 && (((code == SUBREG || code == ZERO_EXTRACT)
5360 && REG_P (new_rtx))
5361 || code == STRICT_LOW_PART))
5364 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5366 /* In general, don't install a subreg involving two
5367 modes not tieable. It can worsen register
5368 allocation, and can even make invalid reload
5369 insns, since the reg inside may need to be copied
5370 from in the outside mode, and that may be invalid
5371 if it is an fp reg copied in integer mode.
5373 We allow two exceptions to this: It is valid if
5374 it is inside another SUBREG and the mode of that
5375 SUBREG and the mode of the inside of TO is
5376 tieable and it is valid if X is a SET that copies
5377 FROM to CC0. */
5379 if (GET_CODE (to) == SUBREG
5380 && ! MODES_TIEABLE_P (GET_MODE (to),
5381 GET_MODE (SUBREG_REG (to)))
5382 && ! (code == SUBREG
5383 && MODES_TIEABLE_P (GET_MODE (x),
5384 GET_MODE (SUBREG_REG (to))))
5385 #if HAVE_cc0
5386 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5387 #endif
5389 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5391 if (code == SUBREG
5392 && REG_P (to)
5393 && REGNO (to) < FIRST_PSEUDO_REGISTER
5394 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5395 SUBREG_BYTE (x),
5396 GET_MODE (x)) < 0)
5397 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5399 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5400 n_occurrences++;
5402 else
5403 /* If we are in a SET_DEST, suppress most cases unless we
5404 have gone inside a MEM, in which case we want to
5405 simplify the address. We assume here that things that
5406 are actually part of the destination have their inner
5407 parts in the first expression. This is true for SUBREG,
5408 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5409 things aside from REG and MEM that should appear in a
5410 SET_DEST. */
5411 new_rtx = subst (XEXP (x, i), from, to,
5412 (((in_dest
5413 && (code == SUBREG || code == STRICT_LOW_PART
5414 || code == ZERO_EXTRACT))
5415 || code == SET)
5416 && i == 0),
5417 code == IF_THEN_ELSE && i == 0,
5418 unique_copy);
5420 /* If we found that we will have to reject this combination,
5421 indicate that by returning the CLOBBER ourselves, rather than
5422 an expression containing it. This will speed things up as
5423 well as prevent accidents where two CLOBBERs are considered
5424 to be equal, thus producing an incorrect simplification. */
5426 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5427 return new_rtx;
5429 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5431 machine_mode mode = GET_MODE (x);
5433 x = simplify_subreg (GET_MODE (x), new_rtx,
5434 GET_MODE (SUBREG_REG (x)),
5435 SUBREG_BYTE (x));
5436 if (! x)
5437 x = gen_rtx_CLOBBER (mode, const0_rtx);
5439 else if (CONST_SCALAR_INT_P (new_rtx)
5440 && GET_CODE (x) == ZERO_EXTEND)
5442 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5443 new_rtx, GET_MODE (XEXP (x, 0)));
5444 gcc_assert (x);
5446 else
5447 SUBST (XEXP (x, i), new_rtx);
5452 /* Check if we are loading something from the constant pool via float
5453 extension; in this case we would undo compress_float_constant
5454 optimization and degenerate constant load to an immediate value. */
5455 if (GET_CODE (x) == FLOAT_EXTEND
5456 && MEM_P (XEXP (x, 0))
5457 && MEM_READONLY_P (XEXP (x, 0)))
5459 rtx tmp = avoid_constant_pool_reference (x);
5460 if (x != tmp)
5461 return x;
5464 /* Try to simplify X. If the simplification changed the code, it is likely
5465 that further simplification will help, so loop, but limit the number
5466 of repetitions that will be performed. */
5468 for (i = 0; i < 4; i++)
5470 /* If X is sufficiently simple, don't bother trying to do anything
5471 with it. */
5472 if (code != CONST_INT && code != REG && code != CLOBBER)
5473 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5475 if (GET_CODE (x) == code)
5476 break;
5478 code = GET_CODE (x);
5480 /* We no longer know the original mode of operand 0 since we
5481 have changed the form of X) */
5482 op0_mode = VOIDmode;
5485 return x;
5488 /* Simplify X, a piece of RTL. We just operate on the expression at the
5489 outer level; call `subst' to simplify recursively. Return the new
5490 expression.
5492 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5493 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5494 of a condition. */
5496 static rtx
5497 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5498 int in_cond)
5500 enum rtx_code code = GET_CODE (x);
5501 machine_mode mode = GET_MODE (x);
5502 rtx temp;
5503 int i;
5505 /* If this is a commutative operation, put a constant last and a complex
5506 expression first. We don't need to do this for comparisons here. */
5507 if (COMMUTATIVE_ARITH_P (x)
5508 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5510 temp = XEXP (x, 0);
5511 SUBST (XEXP (x, 0), XEXP (x, 1));
5512 SUBST (XEXP (x, 1), temp);
5515 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5516 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5517 things. Check for cases where both arms are testing the same
5518 condition.
5520 Don't do anything if all operands are very simple. */
5522 if ((BINARY_P (x)
5523 && ((!OBJECT_P (XEXP (x, 0))
5524 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5525 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5526 || (!OBJECT_P (XEXP (x, 1))
5527 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5528 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5529 || (UNARY_P (x)
5530 && (!OBJECT_P (XEXP (x, 0))
5531 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5532 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5534 rtx cond, true_rtx, false_rtx;
5536 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5537 if (cond != 0
5538 /* If everything is a comparison, what we have is highly unlikely
5539 to be simpler, so don't use it. */
5540 && ! (COMPARISON_P (x)
5541 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5543 rtx cop1 = const0_rtx;
5544 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5546 if (cond_code == NE && COMPARISON_P (cond))
5547 return x;
5549 /* Simplify the alternative arms; this may collapse the true and
5550 false arms to store-flag values. Be careful to use copy_rtx
5551 here since true_rtx or false_rtx might share RTL with x as a
5552 result of the if_then_else_cond call above. */
5553 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5554 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5556 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5557 is unlikely to be simpler. */
5558 if (general_operand (true_rtx, VOIDmode)
5559 && general_operand (false_rtx, VOIDmode))
5561 enum rtx_code reversed;
5563 /* Restarting if we generate a store-flag expression will cause
5564 us to loop. Just drop through in this case. */
5566 /* If the result values are STORE_FLAG_VALUE and zero, we can
5567 just make the comparison operation. */
5568 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5569 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5570 cond, cop1);
5571 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5572 && ((reversed = reversed_comparison_code_parts
5573 (cond_code, cond, cop1, NULL))
5574 != UNKNOWN))
5575 x = simplify_gen_relational (reversed, mode, VOIDmode,
5576 cond, cop1);
5578 /* Likewise, we can make the negate of a comparison operation
5579 if the result values are - STORE_FLAG_VALUE and zero. */
5580 else if (CONST_INT_P (true_rtx)
5581 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5582 && false_rtx == const0_rtx)
5583 x = simplify_gen_unary (NEG, mode,
5584 simplify_gen_relational (cond_code,
5585 mode, VOIDmode,
5586 cond, cop1),
5587 mode);
5588 else if (CONST_INT_P (false_rtx)
5589 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5590 && true_rtx == const0_rtx
5591 && ((reversed = reversed_comparison_code_parts
5592 (cond_code, cond, cop1, NULL))
5593 != UNKNOWN))
5594 x = simplify_gen_unary (NEG, mode,
5595 simplify_gen_relational (reversed,
5596 mode, VOIDmode,
5597 cond, cop1),
5598 mode);
5599 else
5600 return gen_rtx_IF_THEN_ELSE (mode,
5601 simplify_gen_relational (cond_code,
5602 mode,
5603 VOIDmode,
5604 cond,
5605 cop1),
5606 true_rtx, false_rtx);
5608 code = GET_CODE (x);
5609 op0_mode = VOIDmode;
5614 /* Try to fold this expression in case we have constants that weren't
5615 present before. */
5616 temp = 0;
5617 switch (GET_RTX_CLASS (code))
5619 case RTX_UNARY:
5620 if (op0_mode == VOIDmode)
5621 op0_mode = GET_MODE (XEXP (x, 0));
5622 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5623 break;
5624 case RTX_COMPARE:
5625 case RTX_COMM_COMPARE:
5627 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5628 if (cmp_mode == VOIDmode)
5630 cmp_mode = GET_MODE (XEXP (x, 1));
5631 if (cmp_mode == VOIDmode)
5632 cmp_mode = op0_mode;
5634 temp = simplify_relational_operation (code, mode, cmp_mode,
5635 XEXP (x, 0), XEXP (x, 1));
5637 break;
5638 case RTX_COMM_ARITH:
5639 case RTX_BIN_ARITH:
5640 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5641 break;
5642 case RTX_BITFIELD_OPS:
5643 case RTX_TERNARY:
5644 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5645 XEXP (x, 1), XEXP (x, 2));
5646 break;
5647 default:
5648 break;
5651 if (temp)
5653 x = temp;
5654 code = GET_CODE (temp);
5655 op0_mode = VOIDmode;
5656 mode = GET_MODE (temp);
5659 /* First see if we can apply the inverse distributive law. */
5660 if (code == PLUS || code == MINUS
5661 || code == AND || code == IOR || code == XOR)
5663 x = apply_distributive_law (x);
5664 code = GET_CODE (x);
5665 op0_mode = VOIDmode;
5668 /* If CODE is an associative operation not otherwise handled, see if we
5669 can associate some operands. This can win if they are constants or
5670 if they are logically related (i.e. (a & b) & a). */
5671 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5672 || code == AND || code == IOR || code == XOR
5673 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5674 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5675 || (flag_associative_math && FLOAT_MODE_P (mode))))
5677 if (GET_CODE (XEXP (x, 0)) == code)
5679 rtx other = XEXP (XEXP (x, 0), 0);
5680 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5681 rtx inner_op1 = XEXP (x, 1);
5682 rtx inner;
5684 /* Make sure we pass the constant operand if any as the second
5685 one if this is a commutative operation. */
5686 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5688 rtx tem = inner_op0;
5689 inner_op0 = inner_op1;
5690 inner_op1 = tem;
5692 inner = simplify_binary_operation (code == MINUS ? PLUS
5693 : code == DIV ? MULT
5694 : code,
5695 mode, inner_op0, inner_op1);
5697 /* For commutative operations, try the other pair if that one
5698 didn't simplify. */
5699 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5701 other = XEXP (XEXP (x, 0), 1);
5702 inner = simplify_binary_operation (code, mode,
5703 XEXP (XEXP (x, 0), 0),
5704 XEXP (x, 1));
5707 if (inner)
5708 return simplify_gen_binary (code, mode, other, inner);
5712 /* A little bit of algebraic simplification here. */
5713 switch (code)
5715 case MEM:
5716 /* Ensure that our address has any ASHIFTs converted to MULT in case
5717 address-recognizing predicates are called later. */
5718 temp = make_compound_operation (XEXP (x, 0), MEM);
5719 SUBST (XEXP (x, 0), temp);
5720 break;
5722 case SUBREG:
5723 if (op0_mode == VOIDmode)
5724 op0_mode = GET_MODE (SUBREG_REG (x));
5726 /* See if this can be moved to simplify_subreg. */
5727 if (CONSTANT_P (SUBREG_REG (x))
5728 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5729 /* Don't call gen_lowpart if the inner mode
5730 is VOIDmode and we cannot simplify it, as SUBREG without
5731 inner mode is invalid. */
5732 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5733 || gen_lowpart_common (mode, SUBREG_REG (x))))
5734 return gen_lowpart (mode, SUBREG_REG (x));
5736 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5737 break;
5739 rtx temp;
5740 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5741 SUBREG_BYTE (x));
5742 if (temp)
5743 return temp;
5745 /* If op is known to have all lower bits zero, the result is zero. */
5746 if (!in_dest
5747 && SCALAR_INT_MODE_P (mode)
5748 && SCALAR_INT_MODE_P (op0_mode)
5749 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5750 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5751 && HWI_COMPUTABLE_MODE_P (op0_mode)
5752 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5753 & GET_MODE_MASK (mode)) == 0)
5754 return CONST0_RTX (mode);
5757 /* Don't change the mode of the MEM if that would change the meaning
5758 of the address. */
5759 if (MEM_P (SUBREG_REG (x))
5760 && (MEM_VOLATILE_P (SUBREG_REG (x))
5761 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5762 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5763 return gen_rtx_CLOBBER (mode, const0_rtx);
5765 /* Note that we cannot do any narrowing for non-constants since
5766 we might have been counting on using the fact that some bits were
5767 zero. We now do this in the SET. */
5769 break;
5771 case NEG:
5772 temp = expand_compound_operation (XEXP (x, 0));
5774 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5775 replaced by (lshiftrt X C). This will convert
5776 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5778 if (GET_CODE (temp) == ASHIFTRT
5779 && CONST_INT_P (XEXP (temp, 1))
5780 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5781 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5782 INTVAL (XEXP (temp, 1)));
5784 /* If X has only a single bit that might be nonzero, say, bit I, convert
5785 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5786 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5787 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5788 or a SUBREG of one since we'd be making the expression more
5789 complex if it was just a register. */
5791 if (!REG_P (temp)
5792 && ! (GET_CODE (temp) == SUBREG
5793 && REG_P (SUBREG_REG (temp)))
5794 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5796 rtx temp1 = simplify_shift_const
5797 (NULL_RTX, ASHIFTRT, mode,
5798 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5799 GET_MODE_PRECISION (mode) - 1 - i),
5800 GET_MODE_PRECISION (mode) - 1 - i);
5802 /* If all we did was surround TEMP with the two shifts, we
5803 haven't improved anything, so don't use it. Otherwise,
5804 we are better off with TEMP1. */
5805 if (GET_CODE (temp1) != ASHIFTRT
5806 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5807 || XEXP (XEXP (temp1, 0), 0) != temp)
5808 return temp1;
5810 break;
5812 case TRUNCATE:
5813 /* We can't handle truncation to a partial integer mode here
5814 because we don't know the real bitsize of the partial
5815 integer mode. */
5816 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5817 break;
5819 if (HWI_COMPUTABLE_MODE_P (mode))
5820 SUBST (XEXP (x, 0),
5821 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5822 GET_MODE_MASK (mode), 0));
5824 /* We can truncate a constant value and return it. */
5825 if (CONST_INT_P (XEXP (x, 0)))
5826 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5828 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5829 whose value is a comparison can be replaced with a subreg if
5830 STORE_FLAG_VALUE permits. */
5831 if (HWI_COMPUTABLE_MODE_P (mode)
5832 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5833 && (temp = get_last_value (XEXP (x, 0)))
5834 && COMPARISON_P (temp))
5835 return gen_lowpart (mode, XEXP (x, 0));
5836 break;
5838 case CONST:
5839 /* (const (const X)) can become (const X). Do it this way rather than
5840 returning the inner CONST since CONST can be shared with a
5841 REG_EQUAL note. */
5842 if (GET_CODE (XEXP (x, 0)) == CONST)
5843 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5844 break;
5846 #ifdef HAVE_lo_sum
5847 case LO_SUM:
5848 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5849 can add in an offset. find_split_point will split this address up
5850 again if it doesn't match. */
5851 if (GET_CODE (XEXP (x, 0)) == HIGH
5852 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5853 return XEXP (x, 1);
5854 break;
5855 #endif
5857 case PLUS:
5858 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5859 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5860 bit-field and can be replaced by either a sign_extend or a
5861 sign_extract. The `and' may be a zero_extend and the two
5862 <c>, -<c> constants may be reversed. */
5863 if (GET_CODE (XEXP (x, 0)) == XOR
5864 && CONST_INT_P (XEXP (x, 1))
5865 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5866 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5867 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5868 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5869 && HWI_COMPUTABLE_MODE_P (mode)
5870 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5871 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5872 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5873 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5874 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5875 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5876 == (unsigned int) i + 1))))
5877 return simplify_shift_const
5878 (NULL_RTX, ASHIFTRT, mode,
5879 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5880 XEXP (XEXP (XEXP (x, 0), 0), 0),
5881 GET_MODE_PRECISION (mode) - (i + 1)),
5882 GET_MODE_PRECISION (mode) - (i + 1));
5884 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5885 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5886 the bitsize of the mode - 1. This allows simplification of
5887 "a = (b & 8) == 0;" */
5888 if (XEXP (x, 1) == constm1_rtx
5889 && !REG_P (XEXP (x, 0))
5890 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5891 && REG_P (SUBREG_REG (XEXP (x, 0))))
5892 && nonzero_bits (XEXP (x, 0), mode) == 1)
5893 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5894 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5895 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5896 GET_MODE_PRECISION (mode) - 1),
5897 GET_MODE_PRECISION (mode) - 1);
5899 /* If we are adding two things that have no bits in common, convert
5900 the addition into an IOR. This will often be further simplified,
5901 for example in cases like ((a & 1) + (a & 2)), which can
5902 become a & 3. */
5904 if (HWI_COMPUTABLE_MODE_P (mode)
5905 && (nonzero_bits (XEXP (x, 0), mode)
5906 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5908 /* Try to simplify the expression further. */
5909 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5910 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5912 /* If we could, great. If not, do not go ahead with the IOR
5913 replacement, since PLUS appears in many special purpose
5914 address arithmetic instructions. */
5915 if (GET_CODE (temp) != CLOBBER
5916 && (GET_CODE (temp) != IOR
5917 || ((XEXP (temp, 0) != XEXP (x, 0)
5918 || XEXP (temp, 1) != XEXP (x, 1))
5919 && (XEXP (temp, 0) != XEXP (x, 1)
5920 || XEXP (temp, 1) != XEXP (x, 0)))))
5921 return temp;
5923 break;
5925 case MINUS:
5926 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5927 (and <foo> (const_int pow2-1)) */
5928 if (GET_CODE (XEXP (x, 1)) == AND
5929 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5930 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5931 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5932 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5933 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5934 break;
5936 case MULT:
5937 /* If we have (mult (plus A B) C), apply the distributive law and then
5938 the inverse distributive law to see if things simplify. This
5939 occurs mostly in addresses, often when unrolling loops. */
5941 if (GET_CODE (XEXP (x, 0)) == PLUS)
5943 rtx result = distribute_and_simplify_rtx (x, 0);
5944 if (result)
5945 return result;
5948 /* Try simplify a*(b/c) as (a*b)/c. */
5949 if (FLOAT_MODE_P (mode) && flag_associative_math
5950 && GET_CODE (XEXP (x, 0)) == DIV)
5952 rtx tem = simplify_binary_operation (MULT, mode,
5953 XEXP (XEXP (x, 0), 0),
5954 XEXP (x, 1));
5955 if (tem)
5956 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5958 break;
5960 case UDIV:
5961 /* If this is a divide by a power of two, treat it as a shift if
5962 its first operand is a shift. */
5963 if (CONST_INT_P (XEXP (x, 1))
5964 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5965 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5966 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5967 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5968 || GET_CODE (XEXP (x, 0)) == ROTATE
5969 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5970 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5971 break;
5973 case EQ: case NE:
5974 case GT: case GTU: case GE: case GEU:
5975 case LT: case LTU: case LE: case LEU:
5976 case UNEQ: case LTGT:
5977 case UNGT: case UNGE:
5978 case UNLT: case UNLE:
5979 case UNORDERED: case ORDERED:
5980 /* If the first operand is a condition code, we can't do anything
5981 with it. */
5982 if (GET_CODE (XEXP (x, 0)) == COMPARE
5983 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5984 && ! CC0_P (XEXP (x, 0))))
5986 rtx op0 = XEXP (x, 0);
5987 rtx op1 = XEXP (x, 1);
5988 enum rtx_code new_code;
5990 if (GET_CODE (op0) == COMPARE)
5991 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5993 /* Simplify our comparison, if possible. */
5994 new_code = simplify_comparison (code, &op0, &op1);
5996 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5997 if only the low-order bit is possibly nonzero in X (such as when
5998 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5999 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6000 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6001 (plus X 1).
6003 Remove any ZERO_EXTRACT we made when thinking this was a
6004 comparison. It may now be simpler to use, e.g., an AND. If a
6005 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6006 the call to make_compound_operation in the SET case.
6008 Don't apply these optimizations if the caller would
6009 prefer a comparison rather than a value.
6010 E.g., for the condition in an IF_THEN_ELSE most targets need
6011 an explicit comparison. */
6013 if (in_cond)
6016 else if (STORE_FLAG_VALUE == 1
6017 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6018 && op1 == const0_rtx
6019 && mode == GET_MODE (op0)
6020 && nonzero_bits (op0, mode) == 1)
6021 return gen_lowpart (mode,
6022 expand_compound_operation (op0));
6024 else if (STORE_FLAG_VALUE == 1
6025 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6026 && op1 == const0_rtx
6027 && mode == GET_MODE (op0)
6028 && (num_sign_bit_copies (op0, mode)
6029 == GET_MODE_PRECISION (mode)))
6031 op0 = expand_compound_operation (op0);
6032 return simplify_gen_unary (NEG, mode,
6033 gen_lowpart (mode, op0),
6034 mode);
6037 else if (STORE_FLAG_VALUE == 1
6038 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6039 && op1 == const0_rtx
6040 && mode == GET_MODE (op0)
6041 && nonzero_bits (op0, mode) == 1)
6043 op0 = expand_compound_operation (op0);
6044 return simplify_gen_binary (XOR, mode,
6045 gen_lowpart (mode, op0),
6046 const1_rtx);
6049 else if (STORE_FLAG_VALUE == 1
6050 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6051 && op1 == const0_rtx
6052 && mode == GET_MODE (op0)
6053 && (num_sign_bit_copies (op0, mode)
6054 == GET_MODE_PRECISION (mode)))
6056 op0 = expand_compound_operation (op0);
6057 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6060 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6061 those above. */
6062 if (in_cond)
6065 else if (STORE_FLAG_VALUE == -1
6066 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6067 && op1 == const0_rtx
6068 && mode == GET_MODE (op0)
6069 && (num_sign_bit_copies (op0, mode)
6070 == GET_MODE_PRECISION (mode)))
6071 return gen_lowpart (mode,
6072 expand_compound_operation (op0));
6074 else if (STORE_FLAG_VALUE == -1
6075 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6076 && op1 == const0_rtx
6077 && mode == GET_MODE (op0)
6078 && nonzero_bits (op0, mode) == 1)
6080 op0 = expand_compound_operation (op0);
6081 return simplify_gen_unary (NEG, mode,
6082 gen_lowpart (mode, op0),
6083 mode);
6086 else if (STORE_FLAG_VALUE == -1
6087 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6088 && op1 == const0_rtx
6089 && mode == GET_MODE (op0)
6090 && (num_sign_bit_copies (op0, mode)
6091 == GET_MODE_PRECISION (mode)))
6093 op0 = expand_compound_operation (op0);
6094 return simplify_gen_unary (NOT, mode,
6095 gen_lowpart (mode, op0),
6096 mode);
6099 /* If X is 0/1, (eq X 0) is X-1. */
6100 else if (STORE_FLAG_VALUE == -1
6101 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6102 && op1 == const0_rtx
6103 && mode == GET_MODE (op0)
6104 && nonzero_bits (op0, mode) == 1)
6106 op0 = expand_compound_operation (op0);
6107 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6110 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6111 one bit that might be nonzero, we can convert (ne x 0) to
6112 (ashift x c) where C puts the bit in the sign bit. Remove any
6113 AND with STORE_FLAG_VALUE when we are done, since we are only
6114 going to test the sign bit. */
6115 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6116 && HWI_COMPUTABLE_MODE_P (mode)
6117 && val_signbit_p (mode, STORE_FLAG_VALUE)
6118 && op1 == const0_rtx
6119 && mode == GET_MODE (op0)
6120 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6122 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6123 expand_compound_operation (op0),
6124 GET_MODE_PRECISION (mode) - 1 - i);
6125 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6126 return XEXP (x, 0);
6127 else
6128 return x;
6131 /* If the code changed, return a whole new comparison.
6132 We also need to avoid using SUBST in cases where
6133 simplify_comparison has widened a comparison with a CONST_INT,
6134 since in that case the wider CONST_INT may fail the sanity
6135 checks in do_SUBST. */
6136 if (new_code != code
6137 || (CONST_INT_P (op1)
6138 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6139 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6140 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6142 /* Otherwise, keep this operation, but maybe change its operands.
6143 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6144 SUBST (XEXP (x, 0), op0);
6145 SUBST (XEXP (x, 1), op1);
6147 break;
6149 case IF_THEN_ELSE:
6150 return simplify_if_then_else (x);
6152 case ZERO_EXTRACT:
6153 case SIGN_EXTRACT:
6154 case ZERO_EXTEND:
6155 case SIGN_EXTEND:
6156 /* If we are processing SET_DEST, we are done. */
6157 if (in_dest)
6158 return x;
6160 return expand_compound_operation (x);
6162 case SET:
6163 return simplify_set (x);
6165 case AND:
6166 case IOR:
6167 return simplify_logical (x);
6169 case ASHIFT:
6170 case LSHIFTRT:
6171 case ASHIFTRT:
6172 case ROTATE:
6173 case ROTATERT:
6174 /* If this is a shift by a constant amount, simplify it. */
6175 if (CONST_INT_P (XEXP (x, 1)))
6176 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6177 INTVAL (XEXP (x, 1)));
6179 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6180 SUBST (XEXP (x, 1),
6181 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6182 ((unsigned HOST_WIDE_INT) 1
6183 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6184 - 1,
6185 0));
6186 break;
6188 default:
6189 break;
6192 return x;
6195 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6197 static rtx
6198 simplify_if_then_else (rtx x)
6200 machine_mode mode = GET_MODE (x);
6201 rtx cond = XEXP (x, 0);
6202 rtx true_rtx = XEXP (x, 1);
6203 rtx false_rtx = XEXP (x, 2);
6204 enum rtx_code true_code = GET_CODE (cond);
6205 int comparison_p = COMPARISON_P (cond);
6206 rtx temp;
6207 int i;
6208 enum rtx_code false_code;
6209 rtx reversed;
6211 /* Simplify storing of the truth value. */
6212 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6213 return simplify_gen_relational (true_code, mode, VOIDmode,
6214 XEXP (cond, 0), XEXP (cond, 1));
6216 /* Also when the truth value has to be reversed. */
6217 if (comparison_p
6218 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6219 && (reversed = reversed_comparison (cond, mode)))
6220 return reversed;
6222 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6223 in it is being compared against certain values. Get the true and false
6224 comparisons and see if that says anything about the value of each arm. */
6226 if (comparison_p
6227 && ((false_code = reversed_comparison_code (cond, NULL))
6228 != UNKNOWN)
6229 && REG_P (XEXP (cond, 0)))
6231 HOST_WIDE_INT nzb;
6232 rtx from = XEXP (cond, 0);
6233 rtx true_val = XEXP (cond, 1);
6234 rtx false_val = true_val;
6235 int swapped = 0;
6237 /* If FALSE_CODE is EQ, swap the codes and arms. */
6239 if (false_code == EQ)
6241 swapped = 1, true_code = EQ, false_code = NE;
6242 std::swap (true_rtx, false_rtx);
6245 /* If we are comparing against zero and the expression being tested has
6246 only a single bit that might be nonzero, that is its value when it is
6247 not equal to zero. Similarly if it is known to be -1 or 0. */
6249 if (true_code == EQ && true_val == const0_rtx
6250 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6252 false_code = EQ;
6253 false_val = gen_int_mode (nzb, GET_MODE (from));
6255 else if (true_code == EQ && true_val == const0_rtx
6256 && (num_sign_bit_copies (from, GET_MODE (from))
6257 == GET_MODE_PRECISION (GET_MODE (from))))
6259 false_code = EQ;
6260 false_val = constm1_rtx;
6263 /* Now simplify an arm if we know the value of the register in the
6264 branch and it is used in the arm. Be careful due to the potential
6265 of locally-shared RTL. */
6267 if (reg_mentioned_p (from, true_rtx))
6268 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6269 from, true_val),
6270 pc_rtx, pc_rtx, 0, 0, 0);
6271 if (reg_mentioned_p (from, false_rtx))
6272 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6273 from, false_val),
6274 pc_rtx, pc_rtx, 0, 0, 0);
6276 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6277 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6279 true_rtx = XEXP (x, 1);
6280 false_rtx = XEXP (x, 2);
6281 true_code = GET_CODE (cond);
6284 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6285 reversed, do so to avoid needing two sets of patterns for
6286 subtract-and-branch insns. Similarly if we have a constant in the true
6287 arm, the false arm is the same as the first operand of the comparison, or
6288 the false arm is more complicated than the true arm. */
6290 if (comparison_p
6291 && reversed_comparison_code (cond, NULL) != UNKNOWN
6292 && (true_rtx == pc_rtx
6293 || (CONSTANT_P (true_rtx)
6294 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6295 || true_rtx == const0_rtx
6296 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6297 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6298 && !OBJECT_P (false_rtx))
6299 || reg_mentioned_p (true_rtx, false_rtx)
6300 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6302 true_code = reversed_comparison_code (cond, NULL);
6303 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6304 SUBST (XEXP (x, 1), false_rtx);
6305 SUBST (XEXP (x, 2), true_rtx);
6307 std::swap (true_rtx, false_rtx);
6308 cond = XEXP (x, 0);
6310 /* It is possible that the conditional has been simplified out. */
6311 true_code = GET_CODE (cond);
6312 comparison_p = COMPARISON_P (cond);
6315 /* If the two arms are identical, we don't need the comparison. */
6317 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6318 return true_rtx;
6320 /* Convert a == b ? b : a to "a". */
6321 if (true_code == EQ && ! side_effects_p (cond)
6322 && !HONOR_NANS (mode)
6323 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6324 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6325 return false_rtx;
6326 else if (true_code == NE && ! side_effects_p (cond)
6327 && !HONOR_NANS (mode)
6328 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6329 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6330 return true_rtx;
6332 /* Look for cases where we have (abs x) or (neg (abs X)). */
6334 if (GET_MODE_CLASS (mode) == MODE_INT
6335 && comparison_p
6336 && XEXP (cond, 1) == const0_rtx
6337 && GET_CODE (false_rtx) == NEG
6338 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6339 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6340 && ! side_effects_p (true_rtx))
6341 switch (true_code)
6343 case GT:
6344 case GE:
6345 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6346 case LT:
6347 case LE:
6348 return
6349 simplify_gen_unary (NEG, mode,
6350 simplify_gen_unary (ABS, mode, true_rtx, mode),
6351 mode);
6352 default:
6353 break;
6356 /* Look for MIN or MAX. */
6358 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6359 && comparison_p
6360 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6361 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6362 && ! side_effects_p (cond))
6363 switch (true_code)
6365 case GE:
6366 case GT:
6367 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6368 case LE:
6369 case LT:
6370 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6371 case GEU:
6372 case GTU:
6373 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6374 case LEU:
6375 case LTU:
6376 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6377 default:
6378 break;
6381 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6382 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6383 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6384 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6385 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6386 neither 1 or -1, but it isn't worth checking for. */
6388 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6389 && comparison_p
6390 && GET_MODE_CLASS (mode) == MODE_INT
6391 && ! side_effects_p (x))
6393 rtx t = make_compound_operation (true_rtx, SET);
6394 rtx f = make_compound_operation (false_rtx, SET);
6395 rtx cond_op0 = XEXP (cond, 0);
6396 rtx cond_op1 = XEXP (cond, 1);
6397 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6398 machine_mode m = mode;
6399 rtx z = 0, c1 = NULL_RTX;
6401 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6402 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6403 || GET_CODE (t) == ASHIFT
6404 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6405 && rtx_equal_p (XEXP (t, 0), f))
6406 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6408 /* If an identity-zero op is commutative, check whether there
6409 would be a match if we swapped the operands. */
6410 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6411 || GET_CODE (t) == XOR)
6412 && rtx_equal_p (XEXP (t, 1), f))
6413 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6414 else if (GET_CODE (t) == SIGN_EXTEND
6415 && (GET_CODE (XEXP (t, 0)) == PLUS
6416 || GET_CODE (XEXP (t, 0)) == MINUS
6417 || GET_CODE (XEXP (t, 0)) == IOR
6418 || GET_CODE (XEXP (t, 0)) == XOR
6419 || GET_CODE (XEXP (t, 0)) == ASHIFT
6420 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6421 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6422 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6423 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6424 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6425 && (num_sign_bit_copies (f, GET_MODE (f))
6426 > (unsigned int)
6427 (GET_MODE_PRECISION (mode)
6428 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6430 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6431 extend_op = SIGN_EXTEND;
6432 m = GET_MODE (XEXP (t, 0));
6434 else if (GET_CODE (t) == SIGN_EXTEND
6435 && (GET_CODE (XEXP (t, 0)) == PLUS
6436 || GET_CODE (XEXP (t, 0)) == IOR
6437 || GET_CODE (XEXP (t, 0)) == XOR)
6438 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6439 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6440 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6441 && (num_sign_bit_copies (f, GET_MODE (f))
6442 > (unsigned int)
6443 (GET_MODE_PRECISION (mode)
6444 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6446 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6447 extend_op = SIGN_EXTEND;
6448 m = GET_MODE (XEXP (t, 0));
6450 else if (GET_CODE (t) == ZERO_EXTEND
6451 && (GET_CODE (XEXP (t, 0)) == PLUS
6452 || GET_CODE (XEXP (t, 0)) == MINUS
6453 || GET_CODE (XEXP (t, 0)) == IOR
6454 || GET_CODE (XEXP (t, 0)) == XOR
6455 || GET_CODE (XEXP (t, 0)) == ASHIFT
6456 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6457 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6458 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6459 && HWI_COMPUTABLE_MODE_P (mode)
6460 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6461 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6462 && ((nonzero_bits (f, GET_MODE (f))
6463 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6464 == 0))
6466 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6467 extend_op = ZERO_EXTEND;
6468 m = GET_MODE (XEXP (t, 0));
6470 else if (GET_CODE (t) == ZERO_EXTEND
6471 && (GET_CODE (XEXP (t, 0)) == PLUS
6472 || GET_CODE (XEXP (t, 0)) == IOR
6473 || GET_CODE (XEXP (t, 0)) == XOR)
6474 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6475 && HWI_COMPUTABLE_MODE_P (mode)
6476 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6477 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6478 && ((nonzero_bits (f, GET_MODE (f))
6479 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6480 == 0))
6482 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6483 extend_op = ZERO_EXTEND;
6484 m = GET_MODE (XEXP (t, 0));
6487 if (z)
6489 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6490 cond_op0, cond_op1),
6491 pc_rtx, pc_rtx, 0, 0, 0);
6492 temp = simplify_gen_binary (MULT, m, temp,
6493 simplify_gen_binary (MULT, m, c1,
6494 const_true_rtx));
6495 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6496 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6498 if (extend_op != UNKNOWN)
6499 temp = simplify_gen_unary (extend_op, mode, temp, m);
6501 return temp;
6505 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6506 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6507 negation of a single bit, we can convert this operation to a shift. We
6508 can actually do this more generally, but it doesn't seem worth it. */
6510 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6511 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6512 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6513 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6514 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6515 == GET_MODE_PRECISION (mode))
6516 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6517 return
6518 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6519 gen_lowpart (mode, XEXP (cond, 0)), i);
6521 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6522 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6523 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6524 && GET_MODE (XEXP (cond, 0)) == mode
6525 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6526 == nonzero_bits (XEXP (cond, 0), mode)
6527 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6528 return XEXP (cond, 0);
6530 return x;
6533 /* Simplify X, a SET expression. Return the new expression. */
6535 static rtx
6536 simplify_set (rtx x)
6538 rtx src = SET_SRC (x);
6539 rtx dest = SET_DEST (x);
6540 machine_mode mode
6541 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6542 rtx_insn *other_insn;
6543 rtx *cc_use;
6545 /* (set (pc) (return)) gets written as (return). */
6546 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6547 return src;
6549 /* Now that we know for sure which bits of SRC we are using, see if we can
6550 simplify the expression for the object knowing that we only need the
6551 low-order bits. */
6553 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6555 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6556 SUBST (SET_SRC (x), src);
6559 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6560 the comparison result and try to simplify it unless we already have used
6561 undobuf.other_insn. */
6562 if ((GET_MODE_CLASS (mode) == MODE_CC
6563 || GET_CODE (src) == COMPARE
6564 || CC0_P (dest))
6565 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6566 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6567 && COMPARISON_P (*cc_use)
6568 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6570 enum rtx_code old_code = GET_CODE (*cc_use);
6571 enum rtx_code new_code;
6572 rtx op0, op1, tmp;
6573 int other_changed = 0;
6574 rtx inner_compare = NULL_RTX;
6575 machine_mode compare_mode = GET_MODE (dest);
6577 if (GET_CODE (src) == COMPARE)
6579 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6580 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6582 inner_compare = op0;
6583 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6586 else
6587 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6589 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6590 op0, op1);
6591 if (!tmp)
6592 new_code = old_code;
6593 else if (!CONSTANT_P (tmp))
6595 new_code = GET_CODE (tmp);
6596 op0 = XEXP (tmp, 0);
6597 op1 = XEXP (tmp, 1);
6599 else
6601 rtx pat = PATTERN (other_insn);
6602 undobuf.other_insn = other_insn;
6603 SUBST (*cc_use, tmp);
6605 /* Attempt to simplify CC user. */
6606 if (GET_CODE (pat) == SET)
6608 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6609 if (new_rtx != NULL_RTX)
6610 SUBST (SET_SRC (pat), new_rtx);
6613 /* Convert X into a no-op move. */
6614 SUBST (SET_DEST (x), pc_rtx);
6615 SUBST (SET_SRC (x), pc_rtx);
6616 return x;
6619 /* Simplify our comparison, if possible. */
6620 new_code = simplify_comparison (new_code, &op0, &op1);
6622 #ifdef SELECT_CC_MODE
6623 /* If this machine has CC modes other than CCmode, check to see if we
6624 need to use a different CC mode here. */
6625 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6626 compare_mode = GET_MODE (op0);
6627 else if (inner_compare
6628 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6629 && new_code == old_code
6630 && op0 == XEXP (inner_compare, 0)
6631 && op1 == XEXP (inner_compare, 1))
6632 compare_mode = GET_MODE (inner_compare);
6633 else
6634 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6636 /* If the mode changed, we have to change SET_DEST, the mode in the
6637 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6638 a hard register, just build new versions with the proper mode. If it
6639 is a pseudo, we lose unless it is only time we set the pseudo, in
6640 which case we can safely change its mode. */
6641 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6643 if (can_change_dest_mode (dest, 0, compare_mode))
6645 unsigned int regno = REGNO (dest);
6646 rtx new_dest;
6648 if (regno < FIRST_PSEUDO_REGISTER)
6649 new_dest = gen_rtx_REG (compare_mode, regno);
6650 else
6652 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6653 new_dest = regno_reg_rtx[regno];
6656 SUBST (SET_DEST (x), new_dest);
6657 SUBST (XEXP (*cc_use, 0), new_dest);
6658 other_changed = 1;
6660 dest = new_dest;
6663 #endif /* SELECT_CC_MODE */
6665 /* If the code changed, we have to build a new comparison in
6666 undobuf.other_insn. */
6667 if (new_code != old_code)
6669 int other_changed_previously = other_changed;
6670 unsigned HOST_WIDE_INT mask;
6671 rtx old_cc_use = *cc_use;
6673 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6674 dest, const0_rtx));
6675 other_changed = 1;
6677 /* If the only change we made was to change an EQ into an NE or
6678 vice versa, OP0 has only one bit that might be nonzero, and OP1
6679 is zero, check if changing the user of the condition code will
6680 produce a valid insn. If it won't, we can keep the original code
6681 in that insn by surrounding our operation with an XOR. */
6683 if (((old_code == NE && new_code == EQ)
6684 || (old_code == EQ && new_code == NE))
6685 && ! other_changed_previously && op1 == const0_rtx
6686 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6687 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6689 rtx pat = PATTERN (other_insn), note = 0;
6691 if ((recog_for_combine (&pat, other_insn, &note) < 0
6692 && ! check_asm_operands (pat)))
6694 *cc_use = old_cc_use;
6695 other_changed = 0;
6697 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6698 gen_int_mode (mask,
6699 GET_MODE (op0)));
6704 if (other_changed)
6705 undobuf.other_insn = other_insn;
6707 /* Don't generate a compare of a CC with 0, just use that CC. */
6708 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6710 SUBST (SET_SRC (x), op0);
6711 src = SET_SRC (x);
6713 /* Otherwise, if we didn't previously have the same COMPARE we
6714 want, create it from scratch. */
6715 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6716 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6718 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6719 src = SET_SRC (x);
6722 else
6724 /* Get SET_SRC in a form where we have placed back any
6725 compound expressions. Then do the checks below. */
6726 src = make_compound_operation (src, SET);
6727 SUBST (SET_SRC (x), src);
6730 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6731 and X being a REG or (subreg (reg)), we may be able to convert this to
6732 (set (subreg:m2 x) (op)).
6734 We can always do this if M1 is narrower than M2 because that means that
6735 we only care about the low bits of the result.
6737 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6738 perform a narrower operation than requested since the high-order bits will
6739 be undefined. On machine where it is defined, this transformation is safe
6740 as long as M1 and M2 have the same number of words. */
6742 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6743 && !OBJECT_P (SUBREG_REG (src))
6744 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6745 / UNITS_PER_WORD)
6746 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6747 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6748 #ifndef WORD_REGISTER_OPERATIONS
6749 && (GET_MODE_SIZE (GET_MODE (src))
6750 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6751 #endif
6752 #ifdef CANNOT_CHANGE_MODE_CLASS
6753 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6754 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6755 GET_MODE (SUBREG_REG (src)),
6756 GET_MODE (src)))
6757 #endif
6758 && (REG_P (dest)
6759 || (GET_CODE (dest) == SUBREG
6760 && REG_P (SUBREG_REG (dest)))))
6762 SUBST (SET_DEST (x),
6763 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6764 dest));
6765 SUBST (SET_SRC (x), SUBREG_REG (src));
6767 src = SET_SRC (x), dest = SET_DEST (x);
6770 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6771 in SRC. */
6772 if (dest == cc0_rtx
6773 && GET_CODE (src) == SUBREG
6774 && subreg_lowpart_p (src)
6775 && (GET_MODE_PRECISION (GET_MODE (src))
6776 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6778 rtx inner = SUBREG_REG (src);
6779 machine_mode inner_mode = GET_MODE (inner);
6781 /* Here we make sure that we don't have a sign bit on. */
6782 if (val_signbit_known_clear_p (GET_MODE (src),
6783 nonzero_bits (inner, inner_mode)))
6785 SUBST (SET_SRC (x), inner);
6786 src = SET_SRC (x);
6790 #ifdef LOAD_EXTEND_OP
6791 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6792 would require a paradoxical subreg. Replace the subreg with a
6793 zero_extend to avoid the reload that would otherwise be required. */
6795 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6796 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6797 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6798 && SUBREG_BYTE (src) == 0
6799 && paradoxical_subreg_p (src)
6800 && MEM_P (SUBREG_REG (src)))
6802 SUBST (SET_SRC (x),
6803 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6804 GET_MODE (src), SUBREG_REG (src)));
6806 src = SET_SRC (x);
6808 #endif
6810 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6811 are comparing an item known to be 0 or -1 against 0, use a logical
6812 operation instead. Check for one of the arms being an IOR of the other
6813 arm with some value. We compute three terms to be IOR'ed together. In
6814 practice, at most two will be nonzero. Then we do the IOR's. */
6816 if (GET_CODE (dest) != PC
6817 && GET_CODE (src) == IF_THEN_ELSE
6818 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6819 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6820 && XEXP (XEXP (src, 0), 1) == const0_rtx
6821 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6822 #ifdef HAVE_conditional_move
6823 && ! can_conditionally_move_p (GET_MODE (src))
6824 #endif
6825 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6826 GET_MODE (XEXP (XEXP (src, 0), 0)))
6827 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6828 && ! side_effects_p (src))
6830 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6831 ? XEXP (src, 1) : XEXP (src, 2));
6832 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6833 ? XEXP (src, 2) : XEXP (src, 1));
6834 rtx term1 = const0_rtx, term2, term3;
6836 if (GET_CODE (true_rtx) == IOR
6837 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6838 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6839 else if (GET_CODE (true_rtx) == IOR
6840 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6841 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6842 else if (GET_CODE (false_rtx) == IOR
6843 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6844 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6845 else if (GET_CODE (false_rtx) == IOR
6846 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6847 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6849 term2 = simplify_gen_binary (AND, GET_MODE (src),
6850 XEXP (XEXP (src, 0), 0), true_rtx);
6851 term3 = simplify_gen_binary (AND, GET_MODE (src),
6852 simplify_gen_unary (NOT, GET_MODE (src),
6853 XEXP (XEXP (src, 0), 0),
6854 GET_MODE (src)),
6855 false_rtx);
6857 SUBST (SET_SRC (x),
6858 simplify_gen_binary (IOR, GET_MODE (src),
6859 simplify_gen_binary (IOR, GET_MODE (src),
6860 term1, term2),
6861 term3));
6863 src = SET_SRC (x);
6866 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6867 whole thing fail. */
6868 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6869 return src;
6870 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6871 return dest;
6872 else
6873 /* Convert this into a field assignment operation, if possible. */
6874 return make_field_assignment (x);
6877 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6878 result. */
6880 static rtx
6881 simplify_logical (rtx x)
6883 machine_mode mode = GET_MODE (x);
6884 rtx op0 = XEXP (x, 0);
6885 rtx op1 = XEXP (x, 1);
6887 switch (GET_CODE (x))
6889 case AND:
6890 /* We can call simplify_and_const_int only if we don't lose
6891 any (sign) bits when converting INTVAL (op1) to
6892 "unsigned HOST_WIDE_INT". */
6893 if (CONST_INT_P (op1)
6894 && (HWI_COMPUTABLE_MODE_P (mode)
6895 || INTVAL (op1) > 0))
6897 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6898 if (GET_CODE (x) != AND)
6899 return x;
6901 op0 = XEXP (x, 0);
6902 op1 = XEXP (x, 1);
6905 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6906 apply the distributive law and then the inverse distributive
6907 law to see if things simplify. */
6908 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6910 rtx result = distribute_and_simplify_rtx (x, 0);
6911 if (result)
6912 return result;
6914 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6916 rtx result = distribute_and_simplify_rtx (x, 1);
6917 if (result)
6918 return result;
6920 break;
6922 case IOR:
6923 /* If we have (ior (and A B) C), apply the distributive law and then
6924 the inverse distributive law to see if things simplify. */
6926 if (GET_CODE (op0) == AND)
6928 rtx result = distribute_and_simplify_rtx (x, 0);
6929 if (result)
6930 return result;
6933 if (GET_CODE (op1) == AND)
6935 rtx result = distribute_and_simplify_rtx (x, 1);
6936 if (result)
6937 return result;
6939 break;
6941 default:
6942 gcc_unreachable ();
6945 return x;
6948 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6949 operations" because they can be replaced with two more basic operations.
6950 ZERO_EXTEND is also considered "compound" because it can be replaced with
6951 an AND operation, which is simpler, though only one operation.
6953 The function expand_compound_operation is called with an rtx expression
6954 and will convert it to the appropriate shifts and AND operations,
6955 simplifying at each stage.
6957 The function make_compound_operation is called to convert an expression
6958 consisting of shifts and ANDs into the equivalent compound expression.
6959 It is the inverse of this function, loosely speaking. */
6961 static rtx
6962 expand_compound_operation (rtx x)
6964 unsigned HOST_WIDE_INT pos = 0, len;
6965 int unsignedp = 0;
6966 unsigned int modewidth;
6967 rtx tem;
6969 switch (GET_CODE (x))
6971 case ZERO_EXTEND:
6972 unsignedp = 1;
6973 case SIGN_EXTEND:
6974 /* We can't necessarily use a const_int for a multiword mode;
6975 it depends on implicitly extending the value.
6976 Since we don't know the right way to extend it,
6977 we can't tell whether the implicit way is right.
6979 Even for a mode that is no wider than a const_int,
6980 we can't win, because we need to sign extend one of its bits through
6981 the rest of it, and we don't know which bit. */
6982 if (CONST_INT_P (XEXP (x, 0)))
6983 return x;
6985 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6986 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6987 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6988 reloaded. If not for that, MEM's would very rarely be safe.
6990 Reject MODEs bigger than a word, because we might not be able
6991 to reference a two-register group starting with an arbitrary register
6992 (and currently gen_lowpart might crash for a SUBREG). */
6994 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6995 return x;
6997 /* Reject MODEs that aren't scalar integers because turning vector
6998 or complex modes into shifts causes problems. */
7000 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7001 return x;
7003 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7004 /* If the inner object has VOIDmode (the only way this can happen
7005 is if it is an ASM_OPERANDS), we can't do anything since we don't
7006 know how much masking to do. */
7007 if (len == 0)
7008 return x;
7010 break;
7012 case ZERO_EXTRACT:
7013 unsignedp = 1;
7015 /* ... fall through ... */
7017 case SIGN_EXTRACT:
7018 /* If the operand is a CLOBBER, just return it. */
7019 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7020 return XEXP (x, 0);
7022 if (!CONST_INT_P (XEXP (x, 1))
7023 || !CONST_INT_P (XEXP (x, 2))
7024 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7025 return x;
7027 /* Reject MODEs that aren't scalar integers because turning vector
7028 or complex modes into shifts causes problems. */
7030 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7031 return x;
7033 len = INTVAL (XEXP (x, 1));
7034 pos = INTVAL (XEXP (x, 2));
7036 /* This should stay within the object being extracted, fail otherwise. */
7037 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7038 return x;
7040 if (BITS_BIG_ENDIAN)
7041 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7043 break;
7045 default:
7046 return x;
7048 /* Convert sign extension to zero extension, if we know that the high
7049 bit is not set, as this is easier to optimize. It will be converted
7050 back to cheaper alternative in make_extraction. */
7051 if (GET_CODE (x) == SIGN_EXTEND
7052 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7053 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7054 & ~(((unsigned HOST_WIDE_INT)
7055 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7056 >> 1))
7057 == 0)))
7059 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
7060 rtx temp2 = expand_compound_operation (temp);
7062 /* Make sure this is a profitable operation. */
7063 if (set_src_cost (x, optimize_this_for_speed_p)
7064 > set_src_cost (temp2, optimize_this_for_speed_p))
7065 return temp2;
7066 else if (set_src_cost (x, optimize_this_for_speed_p)
7067 > set_src_cost (temp, optimize_this_for_speed_p))
7068 return temp;
7069 else
7070 return x;
7073 /* We can optimize some special cases of ZERO_EXTEND. */
7074 if (GET_CODE (x) == ZERO_EXTEND)
7076 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7077 know that the last value didn't have any inappropriate bits
7078 set. */
7079 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7080 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7081 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7082 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7083 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7084 return XEXP (XEXP (x, 0), 0);
7086 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7087 if (GET_CODE (XEXP (x, 0)) == SUBREG
7088 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7089 && subreg_lowpart_p (XEXP (x, 0))
7090 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7091 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7092 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7093 return SUBREG_REG (XEXP (x, 0));
7095 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7096 is a comparison and STORE_FLAG_VALUE permits. This is like
7097 the first case, but it works even when GET_MODE (x) is larger
7098 than HOST_WIDE_INT. */
7099 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7100 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7101 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7102 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7103 <= HOST_BITS_PER_WIDE_INT)
7104 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7105 return XEXP (XEXP (x, 0), 0);
7107 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7108 if (GET_CODE (XEXP (x, 0)) == SUBREG
7109 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7110 && subreg_lowpart_p (XEXP (x, 0))
7111 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7112 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7113 <= HOST_BITS_PER_WIDE_INT)
7114 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7115 return SUBREG_REG (XEXP (x, 0));
7119 /* If we reach here, we want to return a pair of shifts. The inner
7120 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7121 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7122 logical depending on the value of UNSIGNEDP.
7124 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7125 converted into an AND of a shift.
7127 We must check for the case where the left shift would have a negative
7128 count. This can happen in a case like (x >> 31) & 255 on machines
7129 that can't shift by a constant. On those machines, we would first
7130 combine the shift with the AND to produce a variable-position
7131 extraction. Then the constant of 31 would be substituted in
7132 to produce such a position. */
7134 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7135 if (modewidth >= pos + len)
7137 machine_mode mode = GET_MODE (x);
7138 tem = gen_lowpart (mode, XEXP (x, 0));
7139 if (!tem || GET_CODE (tem) == CLOBBER)
7140 return x;
7141 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7142 tem, modewidth - pos - len);
7143 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7144 mode, tem, modewidth - len);
7146 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7147 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7148 simplify_shift_const (NULL_RTX, LSHIFTRT,
7149 GET_MODE (x),
7150 XEXP (x, 0), pos),
7151 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7152 else
7153 /* Any other cases we can't handle. */
7154 return x;
7156 /* If we couldn't do this for some reason, return the original
7157 expression. */
7158 if (GET_CODE (tem) == CLOBBER)
7159 return x;
7161 return tem;
7164 /* X is a SET which contains an assignment of one object into
7165 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7166 or certain SUBREGS). If possible, convert it into a series of
7167 logical operations.
7169 We half-heartedly support variable positions, but do not at all
7170 support variable lengths. */
7172 static const_rtx
7173 expand_field_assignment (const_rtx x)
7175 rtx inner;
7176 rtx pos; /* Always counts from low bit. */
7177 int len;
7178 rtx mask, cleared, masked;
7179 machine_mode compute_mode;
7181 /* Loop until we find something we can't simplify. */
7182 while (1)
7184 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7185 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7187 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7188 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7189 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7191 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7192 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7194 inner = XEXP (SET_DEST (x), 0);
7195 len = INTVAL (XEXP (SET_DEST (x), 1));
7196 pos = XEXP (SET_DEST (x), 2);
7198 /* A constant position should stay within the width of INNER. */
7199 if (CONST_INT_P (pos)
7200 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7201 break;
7203 if (BITS_BIG_ENDIAN)
7205 if (CONST_INT_P (pos))
7206 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7207 - INTVAL (pos));
7208 else if (GET_CODE (pos) == MINUS
7209 && CONST_INT_P (XEXP (pos, 1))
7210 && (INTVAL (XEXP (pos, 1))
7211 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7212 /* If position is ADJUST - X, new position is X. */
7213 pos = XEXP (pos, 0);
7214 else
7216 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7217 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7218 gen_int_mode (prec - len,
7219 GET_MODE (pos)),
7220 pos);
7225 /* A SUBREG between two modes that occupy the same numbers of words
7226 can be done by moving the SUBREG to the source. */
7227 else if (GET_CODE (SET_DEST (x)) == SUBREG
7228 /* We need SUBREGs to compute nonzero_bits properly. */
7229 && nonzero_sign_valid
7230 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7231 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7232 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7233 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7235 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7236 gen_lowpart
7237 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7238 SET_SRC (x)));
7239 continue;
7241 else
7242 break;
7244 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7245 inner = SUBREG_REG (inner);
7247 compute_mode = GET_MODE (inner);
7249 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7250 if (! SCALAR_INT_MODE_P (compute_mode))
7252 machine_mode imode;
7254 /* Don't do anything for vector or complex integral types. */
7255 if (! FLOAT_MODE_P (compute_mode))
7256 break;
7258 /* Try to find an integral mode to pun with. */
7259 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7260 if (imode == BLKmode)
7261 break;
7263 compute_mode = imode;
7264 inner = gen_lowpart (imode, inner);
7267 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7268 if (len >= HOST_BITS_PER_WIDE_INT)
7269 break;
7271 /* Now compute the equivalent expression. Make a copy of INNER
7272 for the SET_DEST in case it is a MEM into which we will substitute;
7273 we don't want shared RTL in that case. */
7274 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7275 compute_mode);
7276 cleared = simplify_gen_binary (AND, compute_mode,
7277 simplify_gen_unary (NOT, compute_mode,
7278 simplify_gen_binary (ASHIFT,
7279 compute_mode,
7280 mask, pos),
7281 compute_mode),
7282 inner);
7283 masked = simplify_gen_binary (ASHIFT, compute_mode,
7284 simplify_gen_binary (
7285 AND, compute_mode,
7286 gen_lowpart (compute_mode, SET_SRC (x)),
7287 mask),
7288 pos);
7290 x = gen_rtx_SET (copy_rtx (inner),
7291 simplify_gen_binary (IOR, compute_mode,
7292 cleared, masked));
7295 return x;
7298 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7299 it is an RTX that represents the (variable) starting position; otherwise,
7300 POS is the (constant) starting bit position. Both are counted from the LSB.
7302 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7304 IN_DEST is nonzero if this is a reference in the destination of a SET.
7305 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7306 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7307 be used.
7309 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7310 ZERO_EXTRACT should be built even for bits starting at bit 0.
7312 MODE is the desired mode of the result (if IN_DEST == 0).
7314 The result is an RTX for the extraction or NULL_RTX if the target
7315 can't handle it. */
7317 static rtx
7318 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7319 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7320 int in_dest, int in_compare)
7322 /* This mode describes the size of the storage area
7323 to fetch the overall value from. Within that, we
7324 ignore the POS lowest bits, etc. */
7325 machine_mode is_mode = GET_MODE (inner);
7326 machine_mode inner_mode;
7327 machine_mode wanted_inner_mode;
7328 machine_mode wanted_inner_reg_mode = word_mode;
7329 machine_mode pos_mode = word_mode;
7330 machine_mode extraction_mode = word_mode;
7331 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7332 rtx new_rtx = 0;
7333 rtx orig_pos_rtx = pos_rtx;
7334 HOST_WIDE_INT orig_pos;
7336 if (pos_rtx && CONST_INT_P (pos_rtx))
7337 pos = INTVAL (pos_rtx), pos_rtx = 0;
7339 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7341 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7342 consider just the QI as the memory to extract from.
7343 The subreg adds or removes high bits; its mode is
7344 irrelevant to the meaning of this extraction,
7345 since POS and LEN count from the lsb. */
7346 if (MEM_P (SUBREG_REG (inner)))
7347 is_mode = GET_MODE (SUBREG_REG (inner));
7348 inner = SUBREG_REG (inner);
7350 else if (GET_CODE (inner) == ASHIFT
7351 && CONST_INT_P (XEXP (inner, 1))
7352 && pos_rtx == 0 && pos == 0
7353 && len > UINTVAL (XEXP (inner, 1)))
7355 /* We're extracting the least significant bits of an rtx
7356 (ashift X (const_int C)), where LEN > C. Extract the
7357 least significant (LEN - C) bits of X, giving an rtx
7358 whose mode is MODE, then shift it left C times. */
7359 new_rtx = make_extraction (mode, XEXP (inner, 0),
7360 0, 0, len - INTVAL (XEXP (inner, 1)),
7361 unsignedp, in_dest, in_compare);
7362 if (new_rtx != 0)
7363 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7365 else if (GET_CODE (inner) == TRUNCATE)
7366 inner = XEXP (inner, 0);
7368 inner_mode = GET_MODE (inner);
7370 /* See if this can be done without an extraction. We never can if the
7371 width of the field is not the same as that of some integer mode. For
7372 registers, we can only avoid the extraction if the position is at the
7373 low-order bit and this is either not in the destination or we have the
7374 appropriate STRICT_LOW_PART operation available.
7376 For MEM, we can avoid an extract if the field starts on an appropriate
7377 boundary and we can change the mode of the memory reference. */
7379 if (tmode != BLKmode
7380 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7381 && !MEM_P (inner)
7382 && (inner_mode == tmode
7383 || !REG_P (inner)
7384 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7385 || reg_truncated_to_mode (tmode, inner))
7386 && (! in_dest
7387 || (REG_P (inner)
7388 && have_insn_for (STRICT_LOW_PART, tmode))))
7389 || (MEM_P (inner) && pos_rtx == 0
7390 && (pos
7391 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7392 : BITS_PER_UNIT)) == 0
7393 /* We can't do this if we are widening INNER_MODE (it
7394 may not be aligned, for one thing). */
7395 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7396 && (inner_mode == tmode
7397 || (! mode_dependent_address_p (XEXP (inner, 0),
7398 MEM_ADDR_SPACE (inner))
7399 && ! MEM_VOLATILE_P (inner))))))
7401 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7402 field. If the original and current mode are the same, we need not
7403 adjust the offset. Otherwise, we do if bytes big endian.
7405 If INNER is not a MEM, get a piece consisting of just the field
7406 of interest (in this case POS % BITS_PER_WORD must be 0). */
7408 if (MEM_P (inner))
7410 HOST_WIDE_INT offset;
7412 /* POS counts from lsb, but make OFFSET count in memory order. */
7413 if (BYTES_BIG_ENDIAN)
7414 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7415 else
7416 offset = pos / BITS_PER_UNIT;
7418 new_rtx = adjust_address_nv (inner, tmode, offset);
7420 else if (REG_P (inner))
7422 if (tmode != inner_mode)
7424 /* We can't call gen_lowpart in a DEST since we
7425 always want a SUBREG (see below) and it would sometimes
7426 return a new hard register. */
7427 if (pos || in_dest)
7429 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7431 if (WORDS_BIG_ENDIAN
7432 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7433 final_word = ((GET_MODE_SIZE (inner_mode)
7434 - GET_MODE_SIZE (tmode))
7435 / UNITS_PER_WORD) - final_word;
7437 final_word *= UNITS_PER_WORD;
7438 if (BYTES_BIG_ENDIAN &&
7439 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7440 final_word += (GET_MODE_SIZE (inner_mode)
7441 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7443 /* Avoid creating invalid subregs, for example when
7444 simplifying (x>>32)&255. */
7445 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7446 return NULL_RTX;
7448 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7450 else
7451 new_rtx = gen_lowpart (tmode, inner);
7453 else
7454 new_rtx = inner;
7456 else
7457 new_rtx = force_to_mode (inner, tmode,
7458 len >= HOST_BITS_PER_WIDE_INT
7459 ? ~(unsigned HOST_WIDE_INT) 0
7460 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7463 /* If this extraction is going into the destination of a SET,
7464 make a STRICT_LOW_PART unless we made a MEM. */
7466 if (in_dest)
7467 return (MEM_P (new_rtx) ? new_rtx
7468 : (GET_CODE (new_rtx) != SUBREG
7469 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7470 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7472 if (mode == tmode)
7473 return new_rtx;
7475 if (CONST_SCALAR_INT_P (new_rtx))
7476 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7477 mode, new_rtx, tmode);
7479 /* If we know that no extraneous bits are set, and that the high
7480 bit is not set, convert the extraction to the cheaper of
7481 sign and zero extension, that are equivalent in these cases. */
7482 if (flag_expensive_optimizations
7483 && (HWI_COMPUTABLE_MODE_P (tmode)
7484 && ((nonzero_bits (new_rtx, tmode)
7485 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7486 == 0)))
7488 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7489 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7491 /* Prefer ZERO_EXTENSION, since it gives more information to
7492 backends. */
7493 if (set_src_cost (temp, optimize_this_for_speed_p)
7494 <= set_src_cost (temp1, optimize_this_for_speed_p))
7495 return temp;
7496 return temp1;
7499 /* Otherwise, sign- or zero-extend unless we already are in the
7500 proper mode. */
7502 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7503 mode, new_rtx));
7506 /* Unless this is a COMPARE or we have a funny memory reference,
7507 don't do anything with zero-extending field extracts starting at
7508 the low-order bit since they are simple AND operations. */
7509 if (pos_rtx == 0 && pos == 0 && ! in_dest
7510 && ! in_compare && unsignedp)
7511 return 0;
7513 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7514 if the position is not a constant and the length is not 1. In all
7515 other cases, we would only be going outside our object in cases when
7516 an original shift would have been undefined. */
7517 if (MEM_P (inner)
7518 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7519 || (pos_rtx != 0 && len != 1)))
7520 return 0;
7522 enum extraction_pattern pattern = (in_dest ? EP_insv
7523 : unsignedp ? EP_extzv : EP_extv);
7525 /* If INNER is not from memory, we want it to have the mode of a register
7526 extraction pattern's structure operand, or word_mode if there is no
7527 such pattern. The same applies to extraction_mode and pos_mode
7528 and their respective operands.
7530 For memory, assume that the desired extraction_mode and pos_mode
7531 are the same as for a register operation, since at present we don't
7532 have named patterns for aligned memory structures. */
7533 struct extraction_insn insn;
7534 if (get_best_reg_extraction_insn (&insn, pattern,
7535 GET_MODE_BITSIZE (inner_mode), mode))
7537 wanted_inner_reg_mode = insn.struct_mode;
7538 pos_mode = insn.pos_mode;
7539 extraction_mode = insn.field_mode;
7542 /* Never narrow an object, since that might not be safe. */
7544 if (mode != VOIDmode
7545 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7546 extraction_mode = mode;
7548 if (!MEM_P (inner))
7549 wanted_inner_mode = wanted_inner_reg_mode;
7550 else
7552 /* Be careful not to go beyond the extracted object and maintain the
7553 natural alignment of the memory. */
7554 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7555 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7556 > GET_MODE_BITSIZE (wanted_inner_mode))
7558 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7559 gcc_assert (wanted_inner_mode != VOIDmode);
7563 orig_pos = pos;
7565 if (BITS_BIG_ENDIAN)
7567 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7568 BITS_BIG_ENDIAN style. If position is constant, compute new
7569 position. Otherwise, build subtraction.
7570 Note that POS is relative to the mode of the original argument.
7571 If it's a MEM we need to recompute POS relative to that.
7572 However, if we're extracting from (or inserting into) a register,
7573 we want to recompute POS relative to wanted_inner_mode. */
7574 int width = (MEM_P (inner)
7575 ? GET_MODE_BITSIZE (is_mode)
7576 : GET_MODE_BITSIZE (wanted_inner_mode));
7578 if (pos_rtx == 0)
7579 pos = width - len - pos;
7580 else
7581 pos_rtx
7582 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7583 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7584 pos_rtx);
7585 /* POS may be less than 0 now, but we check for that below.
7586 Note that it can only be less than 0 if !MEM_P (inner). */
7589 /* If INNER has a wider mode, and this is a constant extraction, try to
7590 make it smaller and adjust the byte to point to the byte containing
7591 the value. */
7592 if (wanted_inner_mode != VOIDmode
7593 && inner_mode != wanted_inner_mode
7594 && ! pos_rtx
7595 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7596 && MEM_P (inner)
7597 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7598 && ! MEM_VOLATILE_P (inner))
7600 int offset = 0;
7602 /* The computations below will be correct if the machine is big
7603 endian in both bits and bytes or little endian in bits and bytes.
7604 If it is mixed, we must adjust. */
7606 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7607 adjust OFFSET to compensate. */
7608 if (BYTES_BIG_ENDIAN
7609 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7610 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7612 /* We can now move to the desired byte. */
7613 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7614 * GET_MODE_SIZE (wanted_inner_mode);
7615 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7617 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7618 && is_mode != wanted_inner_mode)
7619 offset = (GET_MODE_SIZE (is_mode)
7620 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7622 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7625 /* If INNER is not memory, get it into the proper mode. If we are changing
7626 its mode, POS must be a constant and smaller than the size of the new
7627 mode. */
7628 else if (!MEM_P (inner))
7630 /* On the LHS, don't create paradoxical subregs implicitely truncating
7631 the register unless TRULY_NOOP_TRUNCATION. */
7632 if (in_dest
7633 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7634 wanted_inner_mode))
7635 return NULL_RTX;
7637 if (GET_MODE (inner) != wanted_inner_mode
7638 && (pos_rtx != 0
7639 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7640 return NULL_RTX;
7642 if (orig_pos < 0)
7643 return NULL_RTX;
7645 inner = force_to_mode (inner, wanted_inner_mode,
7646 pos_rtx
7647 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7648 ? ~(unsigned HOST_WIDE_INT) 0
7649 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7650 << orig_pos),
7654 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7655 have to zero extend. Otherwise, we can just use a SUBREG. */
7656 if (pos_rtx != 0
7657 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7659 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7660 GET_MODE (pos_rtx));
7662 /* If we know that no extraneous bits are set, and that the high
7663 bit is not set, convert extraction to cheaper one - either
7664 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7665 cases. */
7666 if (flag_expensive_optimizations
7667 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7668 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7669 & ~(((unsigned HOST_WIDE_INT)
7670 GET_MODE_MASK (GET_MODE (pos_rtx)))
7671 >> 1))
7672 == 0)))
7674 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7675 GET_MODE (pos_rtx));
7677 /* Prefer ZERO_EXTENSION, since it gives more information to
7678 backends. */
7679 if (set_src_cost (temp1, optimize_this_for_speed_p)
7680 < set_src_cost (temp, optimize_this_for_speed_p))
7681 temp = temp1;
7683 pos_rtx = temp;
7686 /* Make POS_RTX unless we already have it and it is correct. If we don't
7687 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7688 be a CONST_INT. */
7689 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7690 pos_rtx = orig_pos_rtx;
7692 else if (pos_rtx == 0)
7693 pos_rtx = GEN_INT (pos);
7695 /* Make the required operation. See if we can use existing rtx. */
7696 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7697 extraction_mode, inner, GEN_INT (len), pos_rtx);
7698 if (! in_dest)
7699 new_rtx = gen_lowpart (mode, new_rtx);
7701 return new_rtx;
7704 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7705 with any other operations in X. Return X without that shift if so. */
7707 static rtx
7708 extract_left_shift (rtx x, int count)
7710 enum rtx_code code = GET_CODE (x);
7711 machine_mode mode = GET_MODE (x);
7712 rtx tem;
7714 switch (code)
7716 case ASHIFT:
7717 /* This is the shift itself. If it is wide enough, we will return
7718 either the value being shifted if the shift count is equal to
7719 COUNT or a shift for the difference. */
7720 if (CONST_INT_P (XEXP (x, 1))
7721 && INTVAL (XEXP (x, 1)) >= count)
7722 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7723 INTVAL (XEXP (x, 1)) - count);
7724 break;
7726 case NEG: case NOT:
7727 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7728 return simplify_gen_unary (code, mode, tem, mode);
7730 break;
7732 case PLUS: case IOR: case XOR: case AND:
7733 /* If we can safely shift this constant and we find the inner shift,
7734 make a new operation. */
7735 if (CONST_INT_P (XEXP (x, 1))
7736 && (UINTVAL (XEXP (x, 1))
7737 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7738 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7740 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7741 return simplify_gen_binary (code, mode, tem,
7742 gen_int_mode (val, mode));
7744 break;
7746 default:
7747 break;
7750 return 0;
7753 /* Look at the expression rooted at X. Look for expressions
7754 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7755 Form these expressions.
7757 Return the new rtx, usually just X.
7759 Also, for machines like the VAX that don't have logical shift insns,
7760 try to convert logical to arithmetic shift operations in cases where
7761 they are equivalent. This undoes the canonicalizations to logical
7762 shifts done elsewhere.
7764 We try, as much as possible, to re-use rtl expressions to save memory.
7766 IN_CODE says what kind of expression we are processing. Normally, it is
7767 SET. In a memory address it is MEM. When processing the arguments of
7768 a comparison or a COMPARE against zero, it is COMPARE. */
7771 make_compound_operation (rtx x, enum rtx_code in_code)
7773 enum rtx_code code = GET_CODE (x);
7774 machine_mode mode = GET_MODE (x);
7775 int mode_width = GET_MODE_PRECISION (mode);
7776 rtx rhs, lhs;
7777 enum rtx_code next_code;
7778 int i, j;
7779 rtx new_rtx = 0;
7780 rtx tem;
7781 const char *fmt;
7783 /* Select the code to be used in recursive calls. Once we are inside an
7784 address, we stay there. If we have a comparison, set to COMPARE,
7785 but once inside, go back to our default of SET. */
7787 next_code = (code == MEM ? MEM
7788 : ((code == COMPARE || COMPARISON_P (x))
7789 && XEXP (x, 1) == const0_rtx) ? COMPARE
7790 : in_code == COMPARE ? SET : in_code);
7792 /* Process depending on the code of this operation. If NEW is set
7793 nonzero, it will be returned. */
7795 switch (code)
7797 case ASHIFT:
7798 /* Convert shifts by constants into multiplications if inside
7799 an address. */
7800 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7801 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7802 && INTVAL (XEXP (x, 1)) >= 0
7803 && SCALAR_INT_MODE_P (mode))
7805 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7806 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7808 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7809 if (GET_CODE (new_rtx) == NEG)
7811 new_rtx = XEXP (new_rtx, 0);
7812 multval = -multval;
7814 multval = trunc_int_for_mode (multval, mode);
7815 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7817 break;
7819 case PLUS:
7820 lhs = XEXP (x, 0);
7821 rhs = XEXP (x, 1);
7822 lhs = make_compound_operation (lhs, next_code);
7823 rhs = make_compound_operation (rhs, next_code);
7824 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7825 && SCALAR_INT_MODE_P (mode))
7827 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7828 XEXP (lhs, 1));
7829 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7831 else if (GET_CODE (lhs) == MULT
7832 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7834 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7835 simplify_gen_unary (NEG, mode,
7836 XEXP (lhs, 1),
7837 mode));
7838 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7840 else
7842 SUBST (XEXP (x, 0), lhs);
7843 SUBST (XEXP (x, 1), rhs);
7844 goto maybe_swap;
7846 x = gen_lowpart (mode, new_rtx);
7847 goto maybe_swap;
7849 case MINUS:
7850 lhs = XEXP (x, 0);
7851 rhs = XEXP (x, 1);
7852 lhs = make_compound_operation (lhs, next_code);
7853 rhs = make_compound_operation (rhs, next_code);
7854 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7855 && SCALAR_INT_MODE_P (mode))
7857 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7858 XEXP (rhs, 1));
7859 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7861 else if (GET_CODE (rhs) == MULT
7862 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7864 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7865 simplify_gen_unary (NEG, mode,
7866 XEXP (rhs, 1),
7867 mode));
7868 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7870 else
7872 SUBST (XEXP (x, 0), lhs);
7873 SUBST (XEXP (x, 1), rhs);
7874 return x;
7876 return gen_lowpart (mode, new_rtx);
7878 case AND:
7879 /* If the second operand is not a constant, we can't do anything
7880 with it. */
7881 if (!CONST_INT_P (XEXP (x, 1)))
7882 break;
7884 /* If the constant is a power of two minus one and the first operand
7885 is a logical right shift, make an extraction. */
7886 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7887 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7889 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7890 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7891 0, in_code == COMPARE);
7894 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7895 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7896 && subreg_lowpart_p (XEXP (x, 0))
7897 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7898 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7900 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7901 next_code);
7902 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7903 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7904 0, in_code == COMPARE);
7906 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7907 else if ((GET_CODE (XEXP (x, 0)) == XOR
7908 || GET_CODE (XEXP (x, 0)) == IOR)
7909 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7910 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7911 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7913 /* Apply the distributive law, and then try to make extractions. */
7914 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7915 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7916 XEXP (x, 1)),
7917 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7918 XEXP (x, 1)));
7919 new_rtx = make_compound_operation (new_rtx, in_code);
7922 /* If we are have (and (rotate X C) M) and C is larger than the number
7923 of bits in M, this is an extraction. */
7925 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7926 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7927 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7928 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7930 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7931 new_rtx = make_extraction (mode, new_rtx,
7932 (GET_MODE_PRECISION (mode)
7933 - INTVAL (XEXP (XEXP (x, 0), 1))),
7934 NULL_RTX, i, 1, 0, in_code == COMPARE);
7937 /* On machines without logical shifts, if the operand of the AND is
7938 a logical shift and our mask turns off all the propagated sign
7939 bits, we can replace the logical shift with an arithmetic shift. */
7940 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7941 && !have_insn_for (LSHIFTRT, mode)
7942 && have_insn_for (ASHIFTRT, mode)
7943 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7944 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7945 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7946 && mode_width <= HOST_BITS_PER_WIDE_INT)
7948 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7950 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7951 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7952 SUBST (XEXP (x, 0),
7953 gen_rtx_ASHIFTRT (mode,
7954 make_compound_operation
7955 (XEXP (XEXP (x, 0), 0), next_code),
7956 XEXP (XEXP (x, 0), 1)));
7959 /* If the constant is one less than a power of two, this might be
7960 representable by an extraction even if no shift is present.
7961 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7962 we are in a COMPARE. */
7963 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7964 new_rtx = make_extraction (mode,
7965 make_compound_operation (XEXP (x, 0),
7966 next_code),
7967 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7969 /* If we are in a comparison and this is an AND with a power of two,
7970 convert this into the appropriate bit extract. */
7971 else if (in_code == COMPARE
7972 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7973 new_rtx = make_extraction (mode,
7974 make_compound_operation (XEXP (x, 0),
7975 next_code),
7976 i, NULL_RTX, 1, 1, 0, 1);
7978 break;
7980 case LSHIFTRT:
7981 /* If the sign bit is known to be zero, replace this with an
7982 arithmetic shift. */
7983 if (have_insn_for (ASHIFTRT, mode)
7984 && ! have_insn_for (LSHIFTRT, mode)
7985 && mode_width <= HOST_BITS_PER_WIDE_INT
7986 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7988 new_rtx = gen_rtx_ASHIFTRT (mode,
7989 make_compound_operation (XEXP (x, 0),
7990 next_code),
7991 XEXP (x, 1));
7992 break;
7995 /* ... fall through ... */
7997 case ASHIFTRT:
7998 lhs = XEXP (x, 0);
7999 rhs = XEXP (x, 1);
8001 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8002 this is a SIGN_EXTRACT. */
8003 if (CONST_INT_P (rhs)
8004 && GET_CODE (lhs) == ASHIFT
8005 && CONST_INT_P (XEXP (lhs, 1))
8006 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8007 && INTVAL (XEXP (lhs, 1)) >= 0
8008 && INTVAL (rhs) < mode_width)
8010 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8011 new_rtx = make_extraction (mode, new_rtx,
8012 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8013 NULL_RTX, mode_width - INTVAL (rhs),
8014 code == LSHIFTRT, 0, in_code == COMPARE);
8015 break;
8018 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8019 If so, try to merge the shifts into a SIGN_EXTEND. We could
8020 also do this for some cases of SIGN_EXTRACT, but it doesn't
8021 seem worth the effort; the case checked for occurs on Alpha. */
8023 if (!OBJECT_P (lhs)
8024 && ! (GET_CODE (lhs) == SUBREG
8025 && (OBJECT_P (SUBREG_REG (lhs))))
8026 && CONST_INT_P (rhs)
8027 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8028 && INTVAL (rhs) < mode_width
8029 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8030 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8031 0, NULL_RTX, mode_width - INTVAL (rhs),
8032 code == LSHIFTRT, 0, in_code == COMPARE);
8034 break;
8036 case SUBREG:
8037 /* Call ourselves recursively on the inner expression. If we are
8038 narrowing the object and it has a different RTL code from
8039 what it originally did, do this SUBREG as a force_to_mode. */
8041 rtx inner = SUBREG_REG (x), simplified;
8042 enum rtx_code subreg_code = in_code;
8044 /* If in_code is COMPARE, it isn't always safe to pass it through
8045 to the recursive make_compound_operation call. */
8046 if (subreg_code == COMPARE
8047 && (!subreg_lowpart_p (x)
8048 || GET_CODE (inner) == SUBREG
8049 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8050 is (const_int 0), rather than
8051 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8052 || (GET_CODE (inner) == AND
8053 && CONST_INT_P (XEXP (inner, 1))
8054 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8055 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8056 >= GET_MODE_BITSIZE (mode))))
8057 subreg_code = SET;
8059 tem = make_compound_operation (inner, subreg_code);
8061 simplified
8062 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8063 if (simplified)
8064 tem = simplified;
8066 if (GET_CODE (tem) != GET_CODE (inner)
8067 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8068 && subreg_lowpart_p (x))
8070 rtx newer
8071 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8073 /* If we have something other than a SUBREG, we might have
8074 done an expansion, so rerun ourselves. */
8075 if (GET_CODE (newer) != SUBREG)
8076 newer = make_compound_operation (newer, in_code);
8078 /* force_to_mode can expand compounds. If it just re-expanded the
8079 compound, use gen_lowpart to convert to the desired mode. */
8080 if (rtx_equal_p (newer, x)
8081 /* Likewise if it re-expanded the compound only partially.
8082 This happens for SUBREG of ZERO_EXTRACT if they extract
8083 the same number of bits. */
8084 || (GET_CODE (newer) == SUBREG
8085 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8086 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8087 && GET_CODE (inner) == AND
8088 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8089 return gen_lowpart (GET_MODE (x), tem);
8091 return newer;
8094 if (simplified)
8095 return tem;
8097 break;
8099 default:
8100 break;
8103 if (new_rtx)
8105 x = gen_lowpart (mode, new_rtx);
8106 code = GET_CODE (x);
8109 /* Now recursively process each operand of this operation. We need to
8110 handle ZERO_EXTEND specially so that we don't lose track of the
8111 inner mode. */
8112 if (GET_CODE (x) == ZERO_EXTEND)
8114 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8115 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8116 new_rtx, GET_MODE (XEXP (x, 0)));
8117 if (tem)
8118 return tem;
8119 SUBST (XEXP (x, 0), new_rtx);
8120 return x;
8123 fmt = GET_RTX_FORMAT (code);
8124 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8125 if (fmt[i] == 'e')
8127 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8128 SUBST (XEXP (x, i), new_rtx);
8130 else if (fmt[i] == 'E')
8131 for (j = 0; j < XVECLEN (x, i); j++)
8133 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8134 SUBST (XVECEXP (x, i, j), new_rtx);
8137 maybe_swap:
8138 /* If this is a commutative operation, the changes to the operands
8139 may have made it noncanonical. */
8140 if (COMMUTATIVE_ARITH_P (x)
8141 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8143 tem = XEXP (x, 0);
8144 SUBST (XEXP (x, 0), XEXP (x, 1));
8145 SUBST (XEXP (x, 1), tem);
8148 return x;
8151 /* Given M see if it is a value that would select a field of bits
8152 within an item, but not the entire word. Return -1 if not.
8153 Otherwise, return the starting position of the field, where 0 is the
8154 low-order bit.
8156 *PLEN is set to the length of the field. */
8158 static int
8159 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8161 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8162 int pos = m ? ctz_hwi (m) : -1;
8163 int len = 0;
8165 if (pos >= 0)
8166 /* Now shift off the low-order zero bits and see if we have a
8167 power of two minus 1. */
8168 len = exact_log2 ((m >> pos) + 1);
8170 if (len <= 0)
8171 pos = -1;
8173 *plen = len;
8174 return pos;
8177 /* If X refers to a register that equals REG in value, replace these
8178 references with REG. */
8179 static rtx
8180 canon_reg_for_combine (rtx x, rtx reg)
8182 rtx op0, op1, op2;
8183 const char *fmt;
8184 int i;
8185 bool copied;
8187 enum rtx_code code = GET_CODE (x);
8188 switch (GET_RTX_CLASS (code))
8190 case RTX_UNARY:
8191 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8192 if (op0 != XEXP (x, 0))
8193 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8194 GET_MODE (reg));
8195 break;
8197 case RTX_BIN_ARITH:
8198 case RTX_COMM_ARITH:
8199 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8200 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8201 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8202 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8203 break;
8205 case RTX_COMPARE:
8206 case RTX_COMM_COMPARE:
8207 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8208 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8209 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8210 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8211 GET_MODE (op0), op0, op1);
8212 break;
8214 case RTX_TERNARY:
8215 case RTX_BITFIELD_OPS:
8216 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8217 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8218 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8219 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8220 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8221 GET_MODE (op0), op0, op1, op2);
8223 case RTX_OBJ:
8224 if (REG_P (x))
8226 if (rtx_equal_p (get_last_value (reg), x)
8227 || rtx_equal_p (reg, get_last_value (x)))
8228 return reg;
8229 else
8230 break;
8233 /* fall through */
8235 default:
8236 fmt = GET_RTX_FORMAT (code);
8237 copied = false;
8238 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8239 if (fmt[i] == 'e')
8241 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8242 if (op != XEXP (x, i))
8244 if (!copied)
8246 copied = true;
8247 x = copy_rtx (x);
8249 XEXP (x, i) = op;
8252 else if (fmt[i] == 'E')
8254 int j;
8255 for (j = 0; j < XVECLEN (x, i); j++)
8257 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8258 if (op != XVECEXP (x, i, j))
8260 if (!copied)
8262 copied = true;
8263 x = copy_rtx (x);
8265 XVECEXP (x, i, j) = op;
8270 break;
8273 return x;
8276 /* Return X converted to MODE. If the value is already truncated to
8277 MODE we can just return a subreg even though in the general case we
8278 would need an explicit truncation. */
8280 static rtx
8281 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8283 if (!CONST_INT_P (x)
8284 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8285 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8286 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8288 /* Bit-cast X into an integer mode. */
8289 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8290 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8291 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8292 x, GET_MODE (x));
8295 return gen_lowpart (mode, x);
8298 /* See if X can be simplified knowing that we will only refer to it in
8299 MODE and will only refer to those bits that are nonzero in MASK.
8300 If other bits are being computed or if masking operations are done
8301 that select a superset of the bits in MASK, they can sometimes be
8302 ignored.
8304 Return a possibly simplified expression, but always convert X to
8305 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8307 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8308 are all off in X. This is used when X will be complemented, by either
8309 NOT, NEG, or XOR. */
8311 static rtx
8312 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8313 int just_select)
8315 enum rtx_code code = GET_CODE (x);
8316 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8317 machine_mode op_mode;
8318 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8319 rtx op0, op1, temp;
8321 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8322 code below will do the wrong thing since the mode of such an
8323 expression is VOIDmode.
8325 Also do nothing if X is a CLOBBER; this can happen if X was
8326 the return value from a call to gen_lowpart. */
8327 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8328 return x;
8330 /* We want to perform the operation in its present mode unless we know
8331 that the operation is valid in MODE, in which case we do the operation
8332 in MODE. */
8333 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8334 && have_insn_for (code, mode))
8335 ? mode : GET_MODE (x));
8337 /* It is not valid to do a right-shift in a narrower mode
8338 than the one it came in with. */
8339 if ((code == LSHIFTRT || code == ASHIFTRT)
8340 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8341 op_mode = GET_MODE (x);
8343 /* Truncate MASK to fit OP_MODE. */
8344 if (op_mode)
8345 mask &= GET_MODE_MASK (op_mode);
8347 /* When we have an arithmetic operation, or a shift whose count we
8348 do not know, we need to assume that all bits up to the highest-order
8349 bit in MASK will be needed. This is how we form such a mask. */
8350 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8351 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8352 else
8353 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8354 - 1);
8356 /* Determine what bits of X are guaranteed to be (non)zero. */
8357 nonzero = nonzero_bits (x, mode);
8359 /* If none of the bits in X are needed, return a zero. */
8360 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8361 x = const0_rtx;
8363 /* If X is a CONST_INT, return a new one. Do this here since the
8364 test below will fail. */
8365 if (CONST_INT_P (x))
8367 if (SCALAR_INT_MODE_P (mode))
8368 return gen_int_mode (INTVAL (x) & mask, mode);
8369 else
8371 x = GEN_INT (INTVAL (x) & mask);
8372 return gen_lowpart_common (mode, x);
8376 /* If X is narrower than MODE and we want all the bits in X's mode, just
8377 get X in the proper mode. */
8378 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8379 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8380 return gen_lowpart (mode, x);
8382 /* We can ignore the effect of a SUBREG if it narrows the mode or
8383 if the constant masks to zero all the bits the mode doesn't have. */
8384 if (GET_CODE (x) == SUBREG
8385 && subreg_lowpart_p (x)
8386 && ((GET_MODE_SIZE (GET_MODE (x))
8387 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8388 || (0 == (mask
8389 & GET_MODE_MASK (GET_MODE (x))
8390 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8391 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8393 /* The arithmetic simplifications here only work for scalar integer modes. */
8394 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8395 return gen_lowpart_or_truncate (mode, x);
8397 switch (code)
8399 case CLOBBER:
8400 /* If X is a (clobber (const_int)), return it since we know we are
8401 generating something that won't match. */
8402 return x;
8404 case SIGN_EXTEND:
8405 case ZERO_EXTEND:
8406 case ZERO_EXTRACT:
8407 case SIGN_EXTRACT:
8408 x = expand_compound_operation (x);
8409 if (GET_CODE (x) != code)
8410 return force_to_mode (x, mode, mask, next_select);
8411 break;
8413 case TRUNCATE:
8414 /* Similarly for a truncate. */
8415 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8417 case AND:
8418 /* If this is an AND with a constant, convert it into an AND
8419 whose constant is the AND of that constant with MASK. If it
8420 remains an AND of MASK, delete it since it is redundant. */
8422 if (CONST_INT_P (XEXP (x, 1)))
8424 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8425 mask & INTVAL (XEXP (x, 1)));
8427 /* If X is still an AND, see if it is an AND with a mask that
8428 is just some low-order bits. If so, and it is MASK, we don't
8429 need it. */
8431 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8432 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8433 == mask))
8434 x = XEXP (x, 0);
8436 /* If it remains an AND, try making another AND with the bits
8437 in the mode mask that aren't in MASK turned on. If the
8438 constant in the AND is wide enough, this might make a
8439 cheaper constant. */
8441 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8442 && GET_MODE_MASK (GET_MODE (x)) != mask
8443 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8445 unsigned HOST_WIDE_INT cval
8446 = UINTVAL (XEXP (x, 1))
8447 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8448 rtx y;
8450 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8451 gen_int_mode (cval, GET_MODE (x)));
8452 if (set_src_cost (y, optimize_this_for_speed_p)
8453 < set_src_cost (x, optimize_this_for_speed_p))
8454 x = y;
8457 break;
8460 goto binop;
8462 case PLUS:
8463 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8464 low-order bits (as in an alignment operation) and FOO is already
8465 aligned to that boundary, mask C1 to that boundary as well.
8466 This may eliminate that PLUS and, later, the AND. */
8469 unsigned int width = GET_MODE_PRECISION (mode);
8470 unsigned HOST_WIDE_INT smask = mask;
8472 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8473 number, sign extend it. */
8475 if (width < HOST_BITS_PER_WIDE_INT
8476 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8477 smask |= HOST_WIDE_INT_M1U << width;
8479 if (CONST_INT_P (XEXP (x, 1))
8480 && exact_log2 (- smask) >= 0
8481 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8482 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8483 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8484 (INTVAL (XEXP (x, 1)) & smask)),
8485 mode, smask, next_select);
8488 /* ... fall through ... */
8490 case MULT:
8491 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8492 most significant bit in MASK since carries from those bits will
8493 affect the bits we are interested in. */
8494 mask = fuller_mask;
8495 goto binop;
8497 case MINUS:
8498 /* If X is (minus C Y) where C's least set bit is larger than any bit
8499 in the mask, then we may replace with (neg Y). */
8500 if (CONST_INT_P (XEXP (x, 0))
8501 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8503 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8504 GET_MODE (x));
8505 return force_to_mode (x, mode, mask, next_select);
8508 /* Similarly, if C contains every bit in the fuller_mask, then we may
8509 replace with (not Y). */
8510 if (CONST_INT_P (XEXP (x, 0))
8511 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8513 x = simplify_gen_unary (NOT, GET_MODE (x),
8514 XEXP (x, 1), GET_MODE (x));
8515 return force_to_mode (x, mode, mask, next_select);
8518 mask = fuller_mask;
8519 goto binop;
8521 case IOR:
8522 case XOR:
8523 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8524 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8525 operation which may be a bitfield extraction. Ensure that the
8526 constant we form is not wider than the mode of X. */
8528 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8529 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8530 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8531 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8532 && CONST_INT_P (XEXP (x, 1))
8533 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8534 + floor_log2 (INTVAL (XEXP (x, 1))))
8535 < GET_MODE_PRECISION (GET_MODE (x)))
8536 && (UINTVAL (XEXP (x, 1))
8537 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8539 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8540 << INTVAL (XEXP (XEXP (x, 0), 1)),
8541 GET_MODE (x));
8542 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8543 XEXP (XEXP (x, 0), 0), temp);
8544 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8545 XEXP (XEXP (x, 0), 1));
8546 return force_to_mode (x, mode, mask, next_select);
8549 binop:
8550 /* For most binary operations, just propagate into the operation and
8551 change the mode if we have an operation of that mode. */
8553 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8554 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8556 /* If we ended up truncating both operands, truncate the result of the
8557 operation instead. */
8558 if (GET_CODE (op0) == TRUNCATE
8559 && GET_CODE (op1) == TRUNCATE)
8561 op0 = XEXP (op0, 0);
8562 op1 = XEXP (op1, 0);
8565 op0 = gen_lowpart_or_truncate (op_mode, op0);
8566 op1 = gen_lowpart_or_truncate (op_mode, op1);
8568 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8569 x = simplify_gen_binary (code, op_mode, op0, op1);
8570 break;
8572 case ASHIFT:
8573 /* For left shifts, do the same, but just for the first operand.
8574 However, we cannot do anything with shifts where we cannot
8575 guarantee that the counts are smaller than the size of the mode
8576 because such a count will have a different meaning in a
8577 wider mode. */
8579 if (! (CONST_INT_P (XEXP (x, 1))
8580 && INTVAL (XEXP (x, 1)) >= 0
8581 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8582 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8583 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8584 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8585 break;
8587 /* If the shift count is a constant and we can do arithmetic in
8588 the mode of the shift, refine which bits we need. Otherwise, use the
8589 conservative form of the mask. */
8590 if (CONST_INT_P (XEXP (x, 1))
8591 && INTVAL (XEXP (x, 1)) >= 0
8592 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8593 && HWI_COMPUTABLE_MODE_P (op_mode))
8594 mask >>= INTVAL (XEXP (x, 1));
8595 else
8596 mask = fuller_mask;
8598 op0 = gen_lowpart_or_truncate (op_mode,
8599 force_to_mode (XEXP (x, 0), op_mode,
8600 mask, next_select));
8602 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8603 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8604 break;
8606 case LSHIFTRT:
8607 /* Here we can only do something if the shift count is a constant,
8608 this shift constant is valid for the host, and we can do arithmetic
8609 in OP_MODE. */
8611 if (CONST_INT_P (XEXP (x, 1))
8612 && INTVAL (XEXP (x, 1)) >= 0
8613 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8614 && HWI_COMPUTABLE_MODE_P (op_mode))
8616 rtx inner = XEXP (x, 0);
8617 unsigned HOST_WIDE_INT inner_mask;
8619 /* Select the mask of the bits we need for the shift operand. */
8620 inner_mask = mask << INTVAL (XEXP (x, 1));
8622 /* We can only change the mode of the shift if we can do arithmetic
8623 in the mode of the shift and INNER_MASK is no wider than the
8624 width of X's mode. */
8625 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8626 op_mode = GET_MODE (x);
8628 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8630 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8631 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8634 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8635 shift and AND produces only copies of the sign bit (C2 is one less
8636 than a power of two), we can do this with just a shift. */
8638 if (GET_CODE (x) == LSHIFTRT
8639 && CONST_INT_P (XEXP (x, 1))
8640 /* The shift puts one of the sign bit copies in the least significant
8641 bit. */
8642 && ((INTVAL (XEXP (x, 1))
8643 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8644 >= GET_MODE_PRECISION (GET_MODE (x)))
8645 && exact_log2 (mask + 1) >= 0
8646 /* Number of bits left after the shift must be more than the mask
8647 needs. */
8648 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8649 <= GET_MODE_PRECISION (GET_MODE (x)))
8650 /* Must be more sign bit copies than the mask needs. */
8651 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8652 >= exact_log2 (mask + 1)))
8653 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8654 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8655 - exact_log2 (mask + 1)));
8657 goto shiftrt;
8659 case ASHIFTRT:
8660 /* If we are just looking for the sign bit, we don't need this shift at
8661 all, even if it has a variable count. */
8662 if (val_signbit_p (GET_MODE (x), mask))
8663 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8665 /* If this is a shift by a constant, get a mask that contains those bits
8666 that are not copies of the sign bit. We then have two cases: If
8667 MASK only includes those bits, this can be a logical shift, which may
8668 allow simplifications. If MASK is a single-bit field not within
8669 those bits, we are requesting a copy of the sign bit and hence can
8670 shift the sign bit to the appropriate location. */
8672 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8673 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8675 int i;
8677 /* If the considered data is wider than HOST_WIDE_INT, we can't
8678 represent a mask for all its bits in a single scalar.
8679 But we only care about the lower bits, so calculate these. */
8681 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8683 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8685 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8686 is the number of bits a full-width mask would have set.
8687 We need only shift if these are fewer than nonzero can
8688 hold. If not, we must keep all bits set in nonzero. */
8690 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8691 < HOST_BITS_PER_WIDE_INT)
8692 nonzero >>= INTVAL (XEXP (x, 1))
8693 + HOST_BITS_PER_WIDE_INT
8694 - GET_MODE_PRECISION (GET_MODE (x)) ;
8696 else
8698 nonzero = GET_MODE_MASK (GET_MODE (x));
8699 nonzero >>= INTVAL (XEXP (x, 1));
8702 if ((mask & ~nonzero) == 0)
8704 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8705 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8706 if (GET_CODE (x) != ASHIFTRT)
8707 return force_to_mode (x, mode, mask, next_select);
8710 else if ((i = exact_log2 (mask)) >= 0)
8712 x = simplify_shift_const
8713 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8714 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8716 if (GET_CODE (x) != ASHIFTRT)
8717 return force_to_mode (x, mode, mask, next_select);
8721 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8722 even if the shift count isn't a constant. */
8723 if (mask == 1)
8724 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8725 XEXP (x, 0), XEXP (x, 1));
8727 shiftrt:
8729 /* If this is a zero- or sign-extension operation that just affects bits
8730 we don't care about, remove it. Be sure the call above returned
8731 something that is still a shift. */
8733 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8734 && CONST_INT_P (XEXP (x, 1))
8735 && INTVAL (XEXP (x, 1)) >= 0
8736 && (INTVAL (XEXP (x, 1))
8737 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8738 && GET_CODE (XEXP (x, 0)) == ASHIFT
8739 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8740 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8741 next_select);
8743 break;
8745 case ROTATE:
8746 case ROTATERT:
8747 /* If the shift count is constant and we can do computations
8748 in the mode of X, compute where the bits we care about are.
8749 Otherwise, we can't do anything. Don't change the mode of
8750 the shift or propagate MODE into the shift, though. */
8751 if (CONST_INT_P (XEXP (x, 1))
8752 && INTVAL (XEXP (x, 1)) >= 0)
8754 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8755 GET_MODE (x),
8756 gen_int_mode (mask, GET_MODE (x)),
8757 XEXP (x, 1));
8758 if (temp && CONST_INT_P (temp))
8759 x = simplify_gen_binary (code, GET_MODE (x),
8760 force_to_mode (XEXP (x, 0), GET_MODE (x),
8761 INTVAL (temp), next_select),
8762 XEXP (x, 1));
8764 break;
8766 case NEG:
8767 /* If we just want the low-order bit, the NEG isn't needed since it
8768 won't change the low-order bit. */
8769 if (mask == 1)
8770 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8772 /* We need any bits less significant than the most significant bit in
8773 MASK since carries from those bits will affect the bits we are
8774 interested in. */
8775 mask = fuller_mask;
8776 goto unop;
8778 case NOT:
8779 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8780 same as the XOR case above. Ensure that the constant we form is not
8781 wider than the mode of X. */
8783 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8784 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8785 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8786 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8787 < GET_MODE_PRECISION (GET_MODE (x)))
8788 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8790 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8791 GET_MODE (x));
8792 temp = simplify_gen_binary (XOR, GET_MODE (x),
8793 XEXP (XEXP (x, 0), 0), temp);
8794 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8795 temp, XEXP (XEXP (x, 0), 1));
8797 return force_to_mode (x, mode, mask, next_select);
8800 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8801 use the full mask inside the NOT. */
8802 mask = fuller_mask;
8804 unop:
8805 op0 = gen_lowpart_or_truncate (op_mode,
8806 force_to_mode (XEXP (x, 0), mode, mask,
8807 next_select));
8808 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8809 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8810 break;
8812 case NE:
8813 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8814 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8815 which is equal to STORE_FLAG_VALUE. */
8816 if ((mask & ~STORE_FLAG_VALUE) == 0
8817 && XEXP (x, 1) == const0_rtx
8818 && GET_MODE (XEXP (x, 0)) == mode
8819 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8820 && (nonzero_bits (XEXP (x, 0), mode)
8821 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8822 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8824 break;
8826 case IF_THEN_ELSE:
8827 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8828 written in a narrower mode. We play it safe and do not do so. */
8830 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8831 force_to_mode (XEXP (x, 1), mode,
8832 mask, next_select));
8833 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8834 force_to_mode (XEXP (x, 2), mode,
8835 mask, next_select));
8836 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8837 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8838 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8839 op0, op1);
8840 break;
8842 default:
8843 break;
8846 /* Ensure we return a value of the proper mode. */
8847 return gen_lowpart_or_truncate (mode, x);
8850 /* Return nonzero if X is an expression that has one of two values depending on
8851 whether some other value is zero or nonzero. In that case, we return the
8852 value that is being tested, *PTRUE is set to the value if the rtx being
8853 returned has a nonzero value, and *PFALSE is set to the other alternative.
8855 If we return zero, we set *PTRUE and *PFALSE to X. */
8857 static rtx
8858 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8860 machine_mode mode = GET_MODE (x);
8861 enum rtx_code code = GET_CODE (x);
8862 rtx cond0, cond1, true0, true1, false0, false1;
8863 unsigned HOST_WIDE_INT nz;
8865 /* If we are comparing a value against zero, we are done. */
8866 if ((code == NE || code == EQ)
8867 && XEXP (x, 1) == const0_rtx)
8869 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8870 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8871 return XEXP (x, 0);
8874 /* If this is a unary operation whose operand has one of two values, apply
8875 our opcode to compute those values. */
8876 else if (UNARY_P (x)
8877 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8879 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8880 *pfalse = simplify_gen_unary (code, mode, false0,
8881 GET_MODE (XEXP (x, 0)));
8882 return cond0;
8885 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8886 make can't possibly match and would suppress other optimizations. */
8887 else if (code == COMPARE)
8890 /* If this is a binary operation, see if either side has only one of two
8891 values. If either one does or if both do and they are conditional on
8892 the same value, compute the new true and false values. */
8893 else if (BINARY_P (x))
8895 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8896 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8898 if ((cond0 != 0 || cond1 != 0)
8899 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8901 /* If if_then_else_cond returned zero, then true/false are the
8902 same rtl. We must copy one of them to prevent invalid rtl
8903 sharing. */
8904 if (cond0 == 0)
8905 true0 = copy_rtx (true0);
8906 else if (cond1 == 0)
8907 true1 = copy_rtx (true1);
8909 if (COMPARISON_P (x))
8911 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8912 true0, true1);
8913 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8914 false0, false1);
8916 else
8918 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8919 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8922 return cond0 ? cond0 : cond1;
8925 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8926 operands is zero when the other is nonzero, and vice-versa,
8927 and STORE_FLAG_VALUE is 1 or -1. */
8929 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8930 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8931 || code == UMAX)
8932 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8934 rtx op0 = XEXP (XEXP (x, 0), 1);
8935 rtx op1 = XEXP (XEXP (x, 1), 1);
8937 cond0 = XEXP (XEXP (x, 0), 0);
8938 cond1 = XEXP (XEXP (x, 1), 0);
8940 if (COMPARISON_P (cond0)
8941 && COMPARISON_P (cond1)
8942 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8943 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8944 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8945 || ((swap_condition (GET_CODE (cond0))
8946 == reversed_comparison_code (cond1, NULL))
8947 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8948 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8949 && ! side_effects_p (x))
8951 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8952 *pfalse = simplify_gen_binary (MULT, mode,
8953 (code == MINUS
8954 ? simplify_gen_unary (NEG, mode,
8955 op1, mode)
8956 : op1),
8957 const_true_rtx);
8958 return cond0;
8962 /* Similarly for MULT, AND and UMIN, except that for these the result
8963 is always zero. */
8964 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8965 && (code == MULT || code == AND || code == UMIN)
8966 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8968 cond0 = XEXP (XEXP (x, 0), 0);
8969 cond1 = XEXP (XEXP (x, 1), 0);
8971 if (COMPARISON_P (cond0)
8972 && COMPARISON_P (cond1)
8973 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8974 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8975 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8976 || ((swap_condition (GET_CODE (cond0))
8977 == reversed_comparison_code (cond1, NULL))
8978 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8979 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8980 && ! side_effects_p (x))
8982 *ptrue = *pfalse = const0_rtx;
8983 return cond0;
8988 else if (code == IF_THEN_ELSE)
8990 /* If we have IF_THEN_ELSE already, extract the condition and
8991 canonicalize it if it is NE or EQ. */
8992 cond0 = XEXP (x, 0);
8993 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8994 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8995 return XEXP (cond0, 0);
8996 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8998 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8999 return XEXP (cond0, 0);
9001 else
9002 return cond0;
9005 /* If X is a SUBREG, we can narrow both the true and false values
9006 if the inner expression, if there is a condition. */
9007 else if (code == SUBREG
9008 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9009 &true0, &false0)))
9011 true0 = simplify_gen_subreg (mode, true0,
9012 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9013 false0 = simplify_gen_subreg (mode, false0,
9014 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9015 if (true0 && false0)
9017 *ptrue = true0;
9018 *pfalse = false0;
9019 return cond0;
9023 /* If X is a constant, this isn't special and will cause confusions
9024 if we treat it as such. Likewise if it is equivalent to a constant. */
9025 else if (CONSTANT_P (x)
9026 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9029 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9030 will be least confusing to the rest of the compiler. */
9031 else if (mode == BImode)
9033 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9034 return x;
9037 /* If X is known to be either 0 or -1, those are the true and
9038 false values when testing X. */
9039 else if (x == constm1_rtx || x == const0_rtx
9040 || (mode != VOIDmode
9041 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9043 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9044 return x;
9047 /* Likewise for 0 or a single bit. */
9048 else if (HWI_COMPUTABLE_MODE_P (mode)
9049 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9051 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9052 return x;
9055 /* Otherwise fail; show no condition with true and false values the same. */
9056 *ptrue = *pfalse = x;
9057 return 0;
9060 /* Return the value of expression X given the fact that condition COND
9061 is known to be true when applied to REG as its first operand and VAL
9062 as its second. X is known to not be shared and so can be modified in
9063 place.
9065 We only handle the simplest cases, and specifically those cases that
9066 arise with IF_THEN_ELSE expressions. */
9068 static rtx
9069 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9071 enum rtx_code code = GET_CODE (x);
9072 const char *fmt;
9073 int i, j;
9075 if (side_effects_p (x))
9076 return x;
9078 /* If either operand of the condition is a floating point value,
9079 then we have to avoid collapsing an EQ comparison. */
9080 if (cond == EQ
9081 && rtx_equal_p (x, reg)
9082 && ! FLOAT_MODE_P (GET_MODE (x))
9083 && ! FLOAT_MODE_P (GET_MODE (val)))
9084 return val;
9086 if (cond == UNEQ && rtx_equal_p (x, reg))
9087 return val;
9089 /* If X is (abs REG) and we know something about REG's relationship
9090 with zero, we may be able to simplify this. */
9092 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9093 switch (cond)
9095 case GE: case GT: case EQ:
9096 return XEXP (x, 0);
9097 case LT: case LE:
9098 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9099 XEXP (x, 0),
9100 GET_MODE (XEXP (x, 0)));
9101 default:
9102 break;
9105 /* The only other cases we handle are MIN, MAX, and comparisons if the
9106 operands are the same as REG and VAL. */
9108 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9110 if (rtx_equal_p (XEXP (x, 0), val))
9112 std::swap (val, reg);
9113 cond = swap_condition (cond);
9116 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9118 if (COMPARISON_P (x))
9120 if (comparison_dominates_p (cond, code))
9121 return const_true_rtx;
9123 code = reversed_comparison_code (x, NULL);
9124 if (code != UNKNOWN
9125 && comparison_dominates_p (cond, code))
9126 return const0_rtx;
9127 else
9128 return x;
9130 else if (code == SMAX || code == SMIN
9131 || code == UMIN || code == UMAX)
9133 int unsignedp = (code == UMIN || code == UMAX);
9135 /* Do not reverse the condition when it is NE or EQ.
9136 This is because we cannot conclude anything about
9137 the value of 'SMAX (x, y)' when x is not equal to y,
9138 but we can when x equals y. */
9139 if ((code == SMAX || code == UMAX)
9140 && ! (cond == EQ || cond == NE))
9141 cond = reverse_condition (cond);
9143 switch (cond)
9145 case GE: case GT:
9146 return unsignedp ? x : XEXP (x, 1);
9147 case LE: case LT:
9148 return unsignedp ? x : XEXP (x, 0);
9149 case GEU: case GTU:
9150 return unsignedp ? XEXP (x, 1) : x;
9151 case LEU: case LTU:
9152 return unsignedp ? XEXP (x, 0) : x;
9153 default:
9154 break;
9159 else if (code == SUBREG)
9161 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9162 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9164 if (SUBREG_REG (x) != r)
9166 /* We must simplify subreg here, before we lose track of the
9167 original inner_mode. */
9168 new_rtx = simplify_subreg (GET_MODE (x), r,
9169 inner_mode, SUBREG_BYTE (x));
9170 if (new_rtx)
9171 return new_rtx;
9172 else
9173 SUBST (SUBREG_REG (x), r);
9176 return x;
9178 /* We don't have to handle SIGN_EXTEND here, because even in the
9179 case of replacing something with a modeless CONST_INT, a
9180 CONST_INT is already (supposed to be) a valid sign extension for
9181 its narrower mode, which implies it's already properly
9182 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9183 story is different. */
9184 else if (code == ZERO_EXTEND)
9186 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9187 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9189 if (XEXP (x, 0) != r)
9191 /* We must simplify the zero_extend here, before we lose
9192 track of the original inner_mode. */
9193 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9194 r, inner_mode);
9195 if (new_rtx)
9196 return new_rtx;
9197 else
9198 SUBST (XEXP (x, 0), r);
9201 return x;
9204 fmt = GET_RTX_FORMAT (code);
9205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9207 if (fmt[i] == 'e')
9208 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9209 else if (fmt[i] == 'E')
9210 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9211 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9212 cond, reg, val));
9215 return x;
9218 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9219 assignment as a field assignment. */
9221 static int
9222 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9224 if (widen_x && GET_MODE (x) != GET_MODE (y))
9226 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9227 return 0;
9228 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9229 return 0;
9230 /* For big endian, adjust the memory offset. */
9231 if (BYTES_BIG_ENDIAN)
9232 x = adjust_address_nv (x, GET_MODE (y),
9233 -subreg_lowpart_offset (GET_MODE (x),
9234 GET_MODE (y)));
9235 else
9236 x = adjust_address_nv (x, GET_MODE (y), 0);
9239 if (x == y || rtx_equal_p (x, y))
9240 return 1;
9242 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9243 return 0;
9245 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9246 Note that all SUBREGs of MEM are paradoxical; otherwise they
9247 would have been rewritten. */
9248 if (MEM_P (x) && GET_CODE (y) == SUBREG
9249 && MEM_P (SUBREG_REG (y))
9250 && rtx_equal_p (SUBREG_REG (y),
9251 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9252 return 1;
9254 if (MEM_P (y) && GET_CODE (x) == SUBREG
9255 && MEM_P (SUBREG_REG (x))
9256 && rtx_equal_p (SUBREG_REG (x),
9257 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9258 return 1;
9260 /* We used to see if get_last_value of X and Y were the same but that's
9261 not correct. In one direction, we'll cause the assignment to have
9262 the wrong destination and in the case, we'll import a register into this
9263 insn that might have already have been dead. So fail if none of the
9264 above cases are true. */
9265 return 0;
9268 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9269 Return that assignment if so.
9271 We only handle the most common cases. */
9273 static rtx
9274 make_field_assignment (rtx x)
9276 rtx dest = SET_DEST (x);
9277 rtx src = SET_SRC (x);
9278 rtx assign;
9279 rtx rhs, lhs;
9280 HOST_WIDE_INT c1;
9281 HOST_WIDE_INT pos;
9282 unsigned HOST_WIDE_INT len;
9283 rtx other;
9284 machine_mode mode;
9286 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9287 a clear of a one-bit field. We will have changed it to
9288 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9289 for a SUBREG. */
9291 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9292 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9293 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9294 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9296 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9297 1, 1, 1, 0);
9298 if (assign != 0)
9299 return gen_rtx_SET (assign, const0_rtx);
9300 return x;
9303 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9304 && subreg_lowpart_p (XEXP (src, 0))
9305 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9306 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9307 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9308 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9309 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9310 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9312 assign = make_extraction (VOIDmode, dest, 0,
9313 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9314 1, 1, 1, 0);
9315 if (assign != 0)
9316 return gen_rtx_SET (assign, const0_rtx);
9317 return x;
9320 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9321 one-bit field. */
9322 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9323 && XEXP (XEXP (src, 0), 0) == const1_rtx
9324 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9326 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9327 1, 1, 1, 0);
9328 if (assign != 0)
9329 return gen_rtx_SET (assign, const1_rtx);
9330 return x;
9333 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9334 SRC is an AND with all bits of that field set, then we can discard
9335 the AND. */
9336 if (GET_CODE (dest) == ZERO_EXTRACT
9337 && CONST_INT_P (XEXP (dest, 1))
9338 && GET_CODE (src) == AND
9339 && CONST_INT_P (XEXP (src, 1)))
9341 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9342 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9343 unsigned HOST_WIDE_INT ze_mask;
9345 if (width >= HOST_BITS_PER_WIDE_INT)
9346 ze_mask = -1;
9347 else
9348 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9350 /* Complete overlap. We can remove the source AND. */
9351 if ((and_mask & ze_mask) == ze_mask)
9352 return gen_rtx_SET (dest, XEXP (src, 0));
9354 /* Partial overlap. We can reduce the source AND. */
9355 if ((and_mask & ze_mask) != and_mask)
9357 mode = GET_MODE (src);
9358 src = gen_rtx_AND (mode, XEXP (src, 0),
9359 gen_int_mode (and_mask & ze_mask, mode));
9360 return gen_rtx_SET (dest, src);
9364 /* The other case we handle is assignments into a constant-position
9365 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9366 a mask that has all one bits except for a group of zero bits and
9367 OTHER is known to have zeros where C1 has ones, this is such an
9368 assignment. Compute the position and length from C1. Shift OTHER
9369 to the appropriate position, force it to the required mode, and
9370 make the extraction. Check for the AND in both operands. */
9372 /* One or more SUBREGs might obscure the constant-position field
9373 assignment. The first one we are likely to encounter is an outer
9374 narrowing SUBREG, which we can just strip for the purposes of
9375 identifying the constant-field assignment. */
9376 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9377 src = SUBREG_REG (src);
9379 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9380 return x;
9382 rhs = expand_compound_operation (XEXP (src, 0));
9383 lhs = expand_compound_operation (XEXP (src, 1));
9385 if (GET_CODE (rhs) == AND
9386 && CONST_INT_P (XEXP (rhs, 1))
9387 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9388 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9389 /* The second SUBREG that might get in the way is a paradoxical
9390 SUBREG around the first operand of the AND. We want to
9391 pretend the operand is as wide as the destination here. We
9392 do this by adjusting the MEM to wider mode for the sole
9393 purpose of the call to rtx_equal_for_field_assignment_p. Also
9394 note this trick only works for MEMs. */
9395 else if (GET_CODE (rhs) == AND
9396 && paradoxical_subreg_p (XEXP (rhs, 0))
9397 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9398 && CONST_INT_P (XEXP (rhs, 1))
9399 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9400 dest, true))
9401 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9402 else if (GET_CODE (lhs) == AND
9403 && CONST_INT_P (XEXP (lhs, 1))
9404 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9405 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9406 /* The second SUBREG that might get in the way is a paradoxical
9407 SUBREG around the first operand of the AND. We want to
9408 pretend the operand is as wide as the destination here. We
9409 do this by adjusting the MEM to wider mode for the sole
9410 purpose of the call to rtx_equal_for_field_assignment_p. Also
9411 note this trick only works for MEMs. */
9412 else if (GET_CODE (lhs) == AND
9413 && paradoxical_subreg_p (XEXP (lhs, 0))
9414 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9415 && CONST_INT_P (XEXP (lhs, 1))
9416 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9417 dest, true))
9418 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9419 else
9420 return x;
9422 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9423 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9424 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9425 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9426 return x;
9428 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9429 if (assign == 0)
9430 return x;
9432 /* The mode to use for the source is the mode of the assignment, or of
9433 what is inside a possible STRICT_LOW_PART. */
9434 mode = (GET_CODE (assign) == STRICT_LOW_PART
9435 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9437 /* Shift OTHER right POS places and make it the source, restricting it
9438 to the proper length and mode. */
9440 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9441 GET_MODE (src),
9442 other, pos),
9443 dest);
9444 src = force_to_mode (src, mode,
9445 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9446 ? ~(unsigned HOST_WIDE_INT) 0
9447 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9450 /* If SRC is masked by an AND that does not make a difference in
9451 the value being stored, strip it. */
9452 if (GET_CODE (assign) == ZERO_EXTRACT
9453 && CONST_INT_P (XEXP (assign, 1))
9454 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9455 && GET_CODE (src) == AND
9456 && CONST_INT_P (XEXP (src, 1))
9457 && UINTVAL (XEXP (src, 1))
9458 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9459 src = XEXP (src, 0);
9461 return gen_rtx_SET (assign, src);
9464 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9465 if so. */
9467 static rtx
9468 apply_distributive_law (rtx x)
9470 enum rtx_code code = GET_CODE (x);
9471 enum rtx_code inner_code;
9472 rtx lhs, rhs, other;
9473 rtx tem;
9475 /* Distributivity is not true for floating point as it can change the
9476 value. So we don't do it unless -funsafe-math-optimizations. */
9477 if (FLOAT_MODE_P (GET_MODE (x))
9478 && ! flag_unsafe_math_optimizations)
9479 return x;
9481 /* The outer operation can only be one of the following: */
9482 if (code != IOR && code != AND && code != XOR
9483 && code != PLUS && code != MINUS)
9484 return x;
9486 lhs = XEXP (x, 0);
9487 rhs = XEXP (x, 1);
9489 /* If either operand is a primitive we can't do anything, so get out
9490 fast. */
9491 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9492 return x;
9494 lhs = expand_compound_operation (lhs);
9495 rhs = expand_compound_operation (rhs);
9496 inner_code = GET_CODE (lhs);
9497 if (inner_code != GET_CODE (rhs))
9498 return x;
9500 /* See if the inner and outer operations distribute. */
9501 switch (inner_code)
9503 case LSHIFTRT:
9504 case ASHIFTRT:
9505 case AND:
9506 case IOR:
9507 /* These all distribute except over PLUS. */
9508 if (code == PLUS || code == MINUS)
9509 return x;
9510 break;
9512 case MULT:
9513 if (code != PLUS && code != MINUS)
9514 return x;
9515 break;
9517 case ASHIFT:
9518 /* This is also a multiply, so it distributes over everything. */
9519 break;
9521 /* This used to handle SUBREG, but this turned out to be counter-
9522 productive, since (subreg (op ...)) usually is not handled by
9523 insn patterns, and this "optimization" therefore transformed
9524 recognizable patterns into unrecognizable ones. Therefore the
9525 SUBREG case was removed from here.
9527 It is possible that distributing SUBREG over arithmetic operations
9528 leads to an intermediate result than can then be optimized further,
9529 e.g. by moving the outer SUBREG to the other side of a SET as done
9530 in simplify_set. This seems to have been the original intent of
9531 handling SUBREGs here.
9533 However, with current GCC this does not appear to actually happen,
9534 at least on major platforms. If some case is found where removing
9535 the SUBREG case here prevents follow-on optimizations, distributing
9536 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9538 default:
9539 return x;
9542 /* Set LHS and RHS to the inner operands (A and B in the example
9543 above) and set OTHER to the common operand (C in the example).
9544 There is only one way to do this unless the inner operation is
9545 commutative. */
9546 if (COMMUTATIVE_ARITH_P (lhs)
9547 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9548 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9549 else if (COMMUTATIVE_ARITH_P (lhs)
9550 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9551 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9552 else if (COMMUTATIVE_ARITH_P (lhs)
9553 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9554 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9555 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9556 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9557 else
9558 return x;
9560 /* Form the new inner operation, seeing if it simplifies first. */
9561 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9563 /* There is one exception to the general way of distributing:
9564 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9565 if (code == XOR && inner_code == IOR)
9567 inner_code = AND;
9568 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9571 /* We may be able to continuing distributing the result, so call
9572 ourselves recursively on the inner operation before forming the
9573 outer operation, which we return. */
9574 return simplify_gen_binary (inner_code, GET_MODE (x),
9575 apply_distributive_law (tem), other);
9578 /* See if X is of the form (* (+ A B) C), and if so convert to
9579 (+ (* A C) (* B C)) and try to simplify.
9581 Most of the time, this results in no change. However, if some of
9582 the operands are the same or inverses of each other, simplifications
9583 will result.
9585 For example, (and (ior A B) (not B)) can occur as the result of
9586 expanding a bit field assignment. When we apply the distributive
9587 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9588 which then simplifies to (and (A (not B))).
9590 Note that no checks happen on the validity of applying the inverse
9591 distributive law. This is pointless since we can do it in the
9592 few places where this routine is called.
9594 N is the index of the term that is decomposed (the arithmetic operation,
9595 i.e. (+ A B) in the first example above). !N is the index of the term that
9596 is distributed, i.e. of C in the first example above. */
9597 static rtx
9598 distribute_and_simplify_rtx (rtx x, int n)
9600 machine_mode mode;
9601 enum rtx_code outer_code, inner_code;
9602 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9604 /* Distributivity is not true for floating point as it can change the
9605 value. So we don't do it unless -funsafe-math-optimizations. */
9606 if (FLOAT_MODE_P (GET_MODE (x))
9607 && ! flag_unsafe_math_optimizations)
9608 return NULL_RTX;
9610 decomposed = XEXP (x, n);
9611 if (!ARITHMETIC_P (decomposed))
9612 return NULL_RTX;
9614 mode = GET_MODE (x);
9615 outer_code = GET_CODE (x);
9616 distributed = XEXP (x, !n);
9618 inner_code = GET_CODE (decomposed);
9619 inner_op0 = XEXP (decomposed, 0);
9620 inner_op1 = XEXP (decomposed, 1);
9622 /* Special case (and (xor B C) (not A)), which is equivalent to
9623 (xor (ior A B) (ior A C)) */
9624 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9626 distributed = XEXP (distributed, 0);
9627 outer_code = IOR;
9630 if (n == 0)
9632 /* Distribute the second term. */
9633 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9634 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9636 else
9638 /* Distribute the first term. */
9639 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9640 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9643 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9644 new_op0, new_op1));
9645 if (GET_CODE (tmp) != outer_code
9646 && (set_src_cost (tmp, optimize_this_for_speed_p)
9647 < set_src_cost (x, optimize_this_for_speed_p)))
9648 return tmp;
9650 return NULL_RTX;
9653 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9654 in MODE. Return an equivalent form, if different from (and VAROP
9655 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9657 static rtx
9658 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9659 unsigned HOST_WIDE_INT constop)
9661 unsigned HOST_WIDE_INT nonzero;
9662 unsigned HOST_WIDE_INT orig_constop;
9663 rtx orig_varop;
9664 int i;
9666 orig_varop = varop;
9667 orig_constop = constop;
9668 if (GET_CODE (varop) == CLOBBER)
9669 return NULL_RTX;
9671 /* Simplify VAROP knowing that we will be only looking at some of the
9672 bits in it.
9674 Note by passing in CONSTOP, we guarantee that the bits not set in
9675 CONSTOP are not significant and will never be examined. We must
9676 ensure that is the case by explicitly masking out those bits
9677 before returning. */
9678 varop = force_to_mode (varop, mode, constop, 0);
9680 /* If VAROP is a CLOBBER, we will fail so return it. */
9681 if (GET_CODE (varop) == CLOBBER)
9682 return varop;
9684 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9685 to VAROP and return the new constant. */
9686 if (CONST_INT_P (varop))
9687 return gen_int_mode (INTVAL (varop) & constop, mode);
9689 /* See what bits may be nonzero in VAROP. Unlike the general case of
9690 a call to nonzero_bits, here we don't care about bits outside
9691 MODE. */
9693 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9695 /* Turn off all bits in the constant that are known to already be zero.
9696 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9697 which is tested below. */
9699 constop &= nonzero;
9701 /* If we don't have any bits left, return zero. */
9702 if (constop == 0)
9703 return const0_rtx;
9705 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9706 a power of two, we can replace this with an ASHIFT. */
9707 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9708 && (i = exact_log2 (constop)) >= 0)
9709 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9711 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9712 or XOR, then try to apply the distributive law. This may eliminate
9713 operations if either branch can be simplified because of the AND.
9714 It may also make some cases more complex, but those cases probably
9715 won't match a pattern either with or without this. */
9717 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9718 return
9719 gen_lowpart
9720 (mode,
9721 apply_distributive_law
9722 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9723 simplify_and_const_int (NULL_RTX,
9724 GET_MODE (varop),
9725 XEXP (varop, 0),
9726 constop),
9727 simplify_and_const_int (NULL_RTX,
9728 GET_MODE (varop),
9729 XEXP (varop, 1),
9730 constop))));
9732 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9733 the AND and see if one of the operands simplifies to zero. If so, we
9734 may eliminate it. */
9736 if (GET_CODE (varop) == PLUS
9737 && exact_log2 (constop + 1) >= 0)
9739 rtx o0, o1;
9741 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9742 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9743 if (o0 == const0_rtx)
9744 return o1;
9745 if (o1 == const0_rtx)
9746 return o0;
9749 /* Make a SUBREG if necessary. If we can't make it, fail. */
9750 varop = gen_lowpart (mode, varop);
9751 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9752 return NULL_RTX;
9754 /* If we are only masking insignificant bits, return VAROP. */
9755 if (constop == nonzero)
9756 return varop;
9758 if (varop == orig_varop && constop == orig_constop)
9759 return NULL_RTX;
9761 /* Otherwise, return an AND. */
9762 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9766 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9767 in MODE.
9769 Return an equivalent form, if different from X. Otherwise, return X. If
9770 X is zero, we are to always construct the equivalent form. */
9772 static rtx
9773 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9774 unsigned HOST_WIDE_INT constop)
9776 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9777 if (tem)
9778 return tem;
9780 if (!x)
9781 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9782 gen_int_mode (constop, mode));
9783 if (GET_MODE (x) != mode)
9784 x = gen_lowpart (mode, x);
9785 return x;
9788 /* Given a REG, X, compute which bits in X can be nonzero.
9789 We don't care about bits outside of those defined in MODE.
9791 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9792 a shift, AND, or zero_extract, we can do better. */
9794 static rtx
9795 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9796 const_rtx known_x ATTRIBUTE_UNUSED,
9797 machine_mode known_mode ATTRIBUTE_UNUSED,
9798 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9799 unsigned HOST_WIDE_INT *nonzero)
9801 rtx tem;
9802 reg_stat_type *rsp;
9804 /* If X is a register whose nonzero bits value is current, use it.
9805 Otherwise, if X is a register whose value we can find, use that
9806 value. Otherwise, use the previously-computed global nonzero bits
9807 for this register. */
9809 rsp = &reg_stat[REGNO (x)];
9810 if (rsp->last_set_value != 0
9811 && (rsp->last_set_mode == mode
9812 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9813 && GET_MODE_CLASS (mode) == MODE_INT))
9814 && ((rsp->last_set_label >= label_tick_ebb_start
9815 && rsp->last_set_label < label_tick)
9816 || (rsp->last_set_label == label_tick
9817 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9818 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9819 && REGNO (x) < reg_n_sets_max
9820 && REG_N_SETS (REGNO (x)) == 1
9821 && !REGNO_REG_SET_P
9822 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9823 REGNO (x)))))
9825 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9827 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9828 /* We don't know anything about the upper bits. */
9829 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9831 *nonzero &= mask;
9832 return NULL;
9835 tem = get_last_value (x);
9837 if (tem)
9839 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9840 tem = sign_extend_short_imm (tem, GET_MODE (x),
9841 GET_MODE_PRECISION (mode));
9842 #endif
9843 return tem;
9845 else if (nonzero_sign_valid && rsp->nonzero_bits)
9847 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9849 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9850 /* We don't know anything about the upper bits. */
9851 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9853 *nonzero &= mask;
9856 return NULL;
9859 /* Return the number of bits at the high-order end of X that are known to
9860 be equal to the sign bit. X will be used in mode MODE; if MODE is
9861 VOIDmode, X will be used in its own mode. The returned value will always
9862 be between 1 and the number of bits in MODE. */
9864 static rtx
9865 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9866 const_rtx known_x ATTRIBUTE_UNUSED,
9867 machine_mode known_mode
9868 ATTRIBUTE_UNUSED,
9869 unsigned int known_ret ATTRIBUTE_UNUSED,
9870 unsigned int *result)
9872 rtx tem;
9873 reg_stat_type *rsp;
9875 rsp = &reg_stat[REGNO (x)];
9876 if (rsp->last_set_value != 0
9877 && rsp->last_set_mode == mode
9878 && ((rsp->last_set_label >= label_tick_ebb_start
9879 && rsp->last_set_label < label_tick)
9880 || (rsp->last_set_label == label_tick
9881 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9882 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9883 && REGNO (x) < reg_n_sets_max
9884 && REG_N_SETS (REGNO (x)) == 1
9885 && !REGNO_REG_SET_P
9886 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9887 REGNO (x)))))
9889 *result = rsp->last_set_sign_bit_copies;
9890 return NULL;
9893 tem = get_last_value (x);
9894 if (tem != 0)
9895 return tem;
9897 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9898 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9899 *result = rsp->sign_bit_copies;
9901 return NULL;
9904 /* Return the number of "extended" bits there are in X, when interpreted
9905 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9906 unsigned quantities, this is the number of high-order zero bits.
9907 For signed quantities, this is the number of copies of the sign bit
9908 minus 1. In both case, this function returns the number of "spare"
9909 bits. For example, if two quantities for which this function returns
9910 at least 1 are added, the addition is known not to overflow.
9912 This function will always return 0 unless called during combine, which
9913 implies that it must be called from a define_split. */
9915 unsigned int
9916 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9918 if (nonzero_sign_valid == 0)
9919 return 0;
9921 return (unsignedp
9922 ? (HWI_COMPUTABLE_MODE_P (mode)
9923 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9924 - floor_log2 (nonzero_bits (x, mode)))
9925 : 0)
9926 : num_sign_bit_copies (x, mode) - 1);
9929 /* This function is called from `simplify_shift_const' to merge two
9930 outer operations. Specifically, we have already found that we need
9931 to perform operation *POP0 with constant *PCONST0 at the outermost
9932 position. We would now like to also perform OP1 with constant CONST1
9933 (with *POP0 being done last).
9935 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9936 the resulting operation. *PCOMP_P is set to 1 if we would need to
9937 complement the innermost operand, otherwise it is unchanged.
9939 MODE is the mode in which the operation will be done. No bits outside
9940 the width of this mode matter. It is assumed that the width of this mode
9941 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9943 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9944 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9945 result is simply *PCONST0.
9947 If the resulting operation cannot be expressed as one operation, we
9948 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9950 static int
9951 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9953 enum rtx_code op0 = *pop0;
9954 HOST_WIDE_INT const0 = *pconst0;
9956 const0 &= GET_MODE_MASK (mode);
9957 const1 &= GET_MODE_MASK (mode);
9959 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9960 if (op0 == AND)
9961 const1 &= const0;
9963 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9964 if OP0 is SET. */
9966 if (op1 == UNKNOWN || op0 == SET)
9967 return 1;
9969 else if (op0 == UNKNOWN)
9970 op0 = op1, const0 = const1;
9972 else if (op0 == op1)
9974 switch (op0)
9976 case AND:
9977 const0 &= const1;
9978 break;
9979 case IOR:
9980 const0 |= const1;
9981 break;
9982 case XOR:
9983 const0 ^= const1;
9984 break;
9985 case PLUS:
9986 const0 += const1;
9987 break;
9988 case NEG:
9989 op0 = UNKNOWN;
9990 break;
9991 default:
9992 break;
9996 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9997 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9998 return 0;
10000 /* If the two constants aren't the same, we can't do anything. The
10001 remaining six cases can all be done. */
10002 else if (const0 != const1)
10003 return 0;
10005 else
10006 switch (op0)
10008 case IOR:
10009 if (op1 == AND)
10010 /* (a & b) | b == b */
10011 op0 = SET;
10012 else /* op1 == XOR */
10013 /* (a ^ b) | b == a | b */
10015 break;
10017 case XOR:
10018 if (op1 == AND)
10019 /* (a & b) ^ b == (~a) & b */
10020 op0 = AND, *pcomp_p = 1;
10021 else /* op1 == IOR */
10022 /* (a | b) ^ b == a & ~b */
10023 op0 = AND, const0 = ~const0;
10024 break;
10026 case AND:
10027 if (op1 == IOR)
10028 /* (a | b) & b == b */
10029 op0 = SET;
10030 else /* op1 == XOR */
10031 /* (a ^ b) & b) == (~a) & b */
10032 *pcomp_p = 1;
10033 break;
10034 default:
10035 break;
10038 /* Check for NO-OP cases. */
10039 const0 &= GET_MODE_MASK (mode);
10040 if (const0 == 0
10041 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10042 op0 = UNKNOWN;
10043 else if (const0 == 0 && op0 == AND)
10044 op0 = SET;
10045 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10046 && op0 == AND)
10047 op0 = UNKNOWN;
10049 *pop0 = op0;
10051 /* ??? Slightly redundant with the above mask, but not entirely.
10052 Moving this above means we'd have to sign-extend the mode mask
10053 for the final test. */
10054 if (op0 != UNKNOWN && op0 != NEG)
10055 *pconst0 = trunc_int_for_mode (const0, mode);
10057 return 1;
10060 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10061 the shift in. The original shift operation CODE is performed on OP in
10062 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10063 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10064 result of the shift is subject to operation OUTER_CODE with operand
10065 OUTER_CONST. */
10067 static machine_mode
10068 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10069 machine_mode orig_mode, machine_mode mode,
10070 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10072 if (orig_mode == mode)
10073 return mode;
10074 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10076 /* In general we can't perform in wider mode for right shift and rotate. */
10077 switch (code)
10079 case ASHIFTRT:
10080 /* We can still widen if the bits brought in from the left are identical
10081 to the sign bit of ORIG_MODE. */
10082 if (num_sign_bit_copies (op, mode)
10083 > (unsigned) (GET_MODE_PRECISION (mode)
10084 - GET_MODE_PRECISION (orig_mode)))
10085 return mode;
10086 return orig_mode;
10088 case LSHIFTRT:
10089 /* Similarly here but with zero bits. */
10090 if (HWI_COMPUTABLE_MODE_P (mode)
10091 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10092 return mode;
10094 /* We can also widen if the bits brought in will be masked off. This
10095 operation is performed in ORIG_MODE. */
10096 if (outer_code == AND)
10098 int care_bits = low_bitmask_len (orig_mode, outer_const);
10100 if (care_bits >= 0
10101 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10102 return mode;
10104 /* fall through */
10106 case ROTATE:
10107 return orig_mode;
10109 case ROTATERT:
10110 gcc_unreachable ();
10112 default:
10113 return mode;
10117 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10118 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10119 if we cannot simplify it. Otherwise, return a simplified value.
10121 The shift is normally computed in the widest mode we find in VAROP, as
10122 long as it isn't a different number of words than RESULT_MODE. Exceptions
10123 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10125 static rtx
10126 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10127 rtx varop, int orig_count)
10129 enum rtx_code orig_code = code;
10130 rtx orig_varop = varop;
10131 int count;
10132 machine_mode mode = result_mode;
10133 machine_mode shift_mode, tmode;
10134 unsigned int mode_words
10135 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10136 /* We form (outer_op (code varop count) (outer_const)). */
10137 enum rtx_code outer_op = UNKNOWN;
10138 HOST_WIDE_INT outer_const = 0;
10139 int complement_p = 0;
10140 rtx new_rtx, x;
10142 /* Make sure and truncate the "natural" shift on the way in. We don't
10143 want to do this inside the loop as it makes it more difficult to
10144 combine shifts. */
10145 if (SHIFT_COUNT_TRUNCATED)
10146 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10148 /* If we were given an invalid count, don't do anything except exactly
10149 what was requested. */
10151 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10152 return NULL_RTX;
10154 count = orig_count;
10156 /* Unless one of the branches of the `if' in this loop does a `continue',
10157 we will `break' the loop after the `if'. */
10159 while (count != 0)
10161 /* If we have an operand of (clobber (const_int 0)), fail. */
10162 if (GET_CODE (varop) == CLOBBER)
10163 return NULL_RTX;
10165 /* Convert ROTATERT to ROTATE. */
10166 if (code == ROTATERT)
10168 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10169 code = ROTATE;
10170 if (VECTOR_MODE_P (result_mode))
10171 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10172 else
10173 count = bitsize - count;
10176 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10177 mode, outer_op, outer_const);
10179 /* Handle cases where the count is greater than the size of the mode
10180 minus 1. For ASHIFT, use the size minus one as the count (this can
10181 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10182 take the count modulo the size. For other shifts, the result is
10183 zero.
10185 Since these shifts are being produced by the compiler by combining
10186 multiple operations, each of which are defined, we know what the
10187 result is supposed to be. */
10189 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10191 if (code == ASHIFTRT)
10192 count = GET_MODE_PRECISION (shift_mode) - 1;
10193 else if (code == ROTATE || code == ROTATERT)
10194 count %= GET_MODE_PRECISION (shift_mode);
10195 else
10197 /* We can't simply return zero because there may be an
10198 outer op. */
10199 varop = const0_rtx;
10200 count = 0;
10201 break;
10205 /* If we discovered we had to complement VAROP, leave. Making a NOT
10206 here would cause an infinite loop. */
10207 if (complement_p)
10208 break;
10210 /* An arithmetic right shift of a quantity known to be -1 or 0
10211 is a no-op. */
10212 if (code == ASHIFTRT
10213 && (num_sign_bit_copies (varop, shift_mode)
10214 == GET_MODE_PRECISION (shift_mode)))
10216 count = 0;
10217 break;
10220 /* If we are doing an arithmetic right shift and discarding all but
10221 the sign bit copies, this is equivalent to doing a shift by the
10222 bitsize minus one. Convert it into that shift because it will often
10223 allow other simplifications. */
10225 if (code == ASHIFTRT
10226 && (count + num_sign_bit_copies (varop, shift_mode)
10227 >= GET_MODE_PRECISION (shift_mode)))
10228 count = GET_MODE_PRECISION (shift_mode) - 1;
10230 /* We simplify the tests below and elsewhere by converting
10231 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10232 `make_compound_operation' will convert it to an ASHIFTRT for
10233 those machines (such as VAX) that don't have an LSHIFTRT. */
10234 if (code == ASHIFTRT
10235 && val_signbit_known_clear_p (shift_mode,
10236 nonzero_bits (varop, shift_mode)))
10237 code = LSHIFTRT;
10239 if (((code == LSHIFTRT
10240 && HWI_COMPUTABLE_MODE_P (shift_mode)
10241 && !(nonzero_bits (varop, shift_mode) >> count))
10242 || (code == ASHIFT
10243 && HWI_COMPUTABLE_MODE_P (shift_mode)
10244 && !((nonzero_bits (varop, shift_mode) << count)
10245 & GET_MODE_MASK (shift_mode))))
10246 && !side_effects_p (varop))
10247 varop = const0_rtx;
10249 switch (GET_CODE (varop))
10251 case SIGN_EXTEND:
10252 case ZERO_EXTEND:
10253 case SIGN_EXTRACT:
10254 case ZERO_EXTRACT:
10255 new_rtx = expand_compound_operation (varop);
10256 if (new_rtx != varop)
10258 varop = new_rtx;
10259 continue;
10261 break;
10263 case MEM:
10264 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10265 minus the width of a smaller mode, we can do this with a
10266 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10267 if ((code == ASHIFTRT || code == LSHIFTRT)
10268 && ! mode_dependent_address_p (XEXP (varop, 0),
10269 MEM_ADDR_SPACE (varop))
10270 && ! MEM_VOLATILE_P (varop)
10271 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10272 MODE_INT, 1)) != BLKmode)
10274 new_rtx = adjust_address_nv (varop, tmode,
10275 BYTES_BIG_ENDIAN ? 0
10276 : count / BITS_PER_UNIT);
10278 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10279 : ZERO_EXTEND, mode, new_rtx);
10280 count = 0;
10281 continue;
10283 break;
10285 case SUBREG:
10286 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10287 the same number of words as what we've seen so far. Then store
10288 the widest mode in MODE. */
10289 if (subreg_lowpart_p (varop)
10290 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10291 > GET_MODE_SIZE (GET_MODE (varop)))
10292 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10293 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10294 == mode_words
10295 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10296 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10298 varop = SUBREG_REG (varop);
10299 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10300 mode = GET_MODE (varop);
10301 continue;
10303 break;
10305 case MULT:
10306 /* Some machines use MULT instead of ASHIFT because MULT
10307 is cheaper. But it is still better on those machines to
10308 merge two shifts into one. */
10309 if (CONST_INT_P (XEXP (varop, 1))
10310 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10312 varop
10313 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10314 XEXP (varop, 0),
10315 GEN_INT (exact_log2 (
10316 UINTVAL (XEXP (varop, 1)))));
10317 continue;
10319 break;
10321 case UDIV:
10322 /* Similar, for when divides are cheaper. */
10323 if (CONST_INT_P (XEXP (varop, 1))
10324 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10326 varop
10327 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10328 XEXP (varop, 0),
10329 GEN_INT (exact_log2 (
10330 UINTVAL (XEXP (varop, 1)))));
10331 continue;
10333 break;
10335 case ASHIFTRT:
10336 /* If we are extracting just the sign bit of an arithmetic
10337 right shift, that shift is not needed. However, the sign
10338 bit of a wider mode may be different from what would be
10339 interpreted as the sign bit in a narrower mode, so, if
10340 the result is narrower, don't discard the shift. */
10341 if (code == LSHIFTRT
10342 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10343 && (GET_MODE_BITSIZE (result_mode)
10344 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10346 varop = XEXP (varop, 0);
10347 continue;
10350 /* ... fall through ... */
10352 case LSHIFTRT:
10353 case ASHIFT:
10354 case ROTATE:
10355 /* Here we have two nested shifts. The result is usually the
10356 AND of a new shift with a mask. We compute the result below. */
10357 if (CONST_INT_P (XEXP (varop, 1))
10358 && INTVAL (XEXP (varop, 1)) >= 0
10359 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10360 && HWI_COMPUTABLE_MODE_P (result_mode)
10361 && HWI_COMPUTABLE_MODE_P (mode)
10362 && !VECTOR_MODE_P (result_mode))
10364 enum rtx_code first_code = GET_CODE (varop);
10365 unsigned int first_count = INTVAL (XEXP (varop, 1));
10366 unsigned HOST_WIDE_INT mask;
10367 rtx mask_rtx;
10369 /* We have one common special case. We can't do any merging if
10370 the inner code is an ASHIFTRT of a smaller mode. However, if
10371 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10372 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10373 we can convert it to
10374 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10375 This simplifies certain SIGN_EXTEND operations. */
10376 if (code == ASHIFT && first_code == ASHIFTRT
10377 && count == (GET_MODE_PRECISION (result_mode)
10378 - GET_MODE_PRECISION (GET_MODE (varop))))
10380 /* C3 has the low-order C1 bits zero. */
10382 mask = GET_MODE_MASK (mode)
10383 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10385 varop = simplify_and_const_int (NULL_RTX, result_mode,
10386 XEXP (varop, 0), mask);
10387 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10388 varop, count);
10389 count = first_count;
10390 code = ASHIFTRT;
10391 continue;
10394 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10395 than C1 high-order bits equal to the sign bit, we can convert
10396 this to either an ASHIFT or an ASHIFTRT depending on the
10397 two counts.
10399 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10401 if (code == ASHIFTRT && first_code == ASHIFT
10402 && GET_MODE (varop) == shift_mode
10403 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10404 > first_count))
10406 varop = XEXP (varop, 0);
10407 count -= first_count;
10408 if (count < 0)
10410 count = -count;
10411 code = ASHIFT;
10414 continue;
10417 /* There are some cases we can't do. If CODE is ASHIFTRT,
10418 we can only do this if FIRST_CODE is also ASHIFTRT.
10420 We can't do the case when CODE is ROTATE and FIRST_CODE is
10421 ASHIFTRT.
10423 If the mode of this shift is not the mode of the outer shift,
10424 we can't do this if either shift is a right shift or ROTATE.
10426 Finally, we can't do any of these if the mode is too wide
10427 unless the codes are the same.
10429 Handle the case where the shift codes are the same
10430 first. */
10432 if (code == first_code)
10434 if (GET_MODE (varop) != result_mode
10435 && (code == ASHIFTRT || code == LSHIFTRT
10436 || code == ROTATE))
10437 break;
10439 count += first_count;
10440 varop = XEXP (varop, 0);
10441 continue;
10444 if (code == ASHIFTRT
10445 || (code == ROTATE && first_code == ASHIFTRT)
10446 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10447 || (GET_MODE (varop) != result_mode
10448 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10449 || first_code == ROTATE
10450 || code == ROTATE)))
10451 break;
10453 /* To compute the mask to apply after the shift, shift the
10454 nonzero bits of the inner shift the same way the
10455 outer shift will. */
10457 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10458 result_mode);
10460 mask_rtx
10461 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10462 GEN_INT (count));
10464 /* Give up if we can't compute an outer operation to use. */
10465 if (mask_rtx == 0
10466 || !CONST_INT_P (mask_rtx)
10467 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10468 INTVAL (mask_rtx),
10469 result_mode, &complement_p))
10470 break;
10472 /* If the shifts are in the same direction, we add the
10473 counts. Otherwise, we subtract them. */
10474 if ((code == ASHIFTRT || code == LSHIFTRT)
10475 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10476 count += first_count;
10477 else
10478 count -= first_count;
10480 /* If COUNT is positive, the new shift is usually CODE,
10481 except for the two exceptions below, in which case it is
10482 FIRST_CODE. If the count is negative, FIRST_CODE should
10483 always be used */
10484 if (count > 0
10485 && ((first_code == ROTATE && code == ASHIFT)
10486 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10487 code = first_code;
10488 else if (count < 0)
10489 code = first_code, count = -count;
10491 varop = XEXP (varop, 0);
10492 continue;
10495 /* If we have (A << B << C) for any shift, we can convert this to
10496 (A << C << B). This wins if A is a constant. Only try this if
10497 B is not a constant. */
10499 else if (GET_CODE (varop) == code
10500 && CONST_INT_P (XEXP (varop, 0))
10501 && !CONST_INT_P (XEXP (varop, 1)))
10503 rtx new_rtx = simplify_const_binary_operation (code, mode,
10504 XEXP (varop, 0),
10505 GEN_INT (count));
10506 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10507 count = 0;
10508 continue;
10510 break;
10512 case NOT:
10513 if (VECTOR_MODE_P (mode))
10514 break;
10516 /* Make this fit the case below. */
10517 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10518 continue;
10520 case IOR:
10521 case AND:
10522 case XOR:
10523 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10524 with C the size of VAROP - 1 and the shift is logical if
10525 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10526 we have an (le X 0) operation. If we have an arithmetic shift
10527 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10528 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10530 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10531 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10532 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10533 && (code == LSHIFTRT || code == ASHIFTRT)
10534 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10535 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10537 count = 0;
10538 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10539 const0_rtx);
10541 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10542 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10544 continue;
10547 /* If we have (shift (logical)), move the logical to the outside
10548 to allow it to possibly combine with another logical and the
10549 shift to combine with another shift. This also canonicalizes to
10550 what a ZERO_EXTRACT looks like. Also, some machines have
10551 (and (shift)) insns. */
10553 if (CONST_INT_P (XEXP (varop, 1))
10554 /* We can't do this if we have (ashiftrt (xor)) and the
10555 constant has its sign bit set in shift_mode with shift_mode
10556 wider than result_mode. */
10557 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10558 && result_mode != shift_mode
10559 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10560 shift_mode))
10561 && (new_rtx = simplify_const_binary_operation
10562 (code, result_mode,
10563 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10564 GEN_INT (count))) != 0
10565 && CONST_INT_P (new_rtx)
10566 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10567 INTVAL (new_rtx), result_mode, &complement_p))
10569 varop = XEXP (varop, 0);
10570 continue;
10573 /* If we can't do that, try to simplify the shift in each arm of the
10574 logical expression, make a new logical expression, and apply
10575 the inverse distributive law. This also can't be done for
10576 (ashiftrt (xor)) where we've widened the shift and the constant
10577 changes the sign bit. */
10578 if (CONST_INT_P (XEXP (varop, 1))
10579 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10580 && result_mode != shift_mode
10581 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10582 shift_mode)))
10584 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10585 XEXP (varop, 0), count);
10586 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10587 XEXP (varop, 1), count);
10589 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10590 lhs, rhs);
10591 varop = apply_distributive_law (varop);
10593 count = 0;
10594 continue;
10596 break;
10598 case EQ:
10599 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10600 says that the sign bit can be tested, FOO has mode MODE, C is
10601 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10602 that may be nonzero. */
10603 if (code == LSHIFTRT
10604 && XEXP (varop, 1) == const0_rtx
10605 && GET_MODE (XEXP (varop, 0)) == result_mode
10606 && count == (GET_MODE_PRECISION (result_mode) - 1)
10607 && HWI_COMPUTABLE_MODE_P (result_mode)
10608 && STORE_FLAG_VALUE == -1
10609 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10610 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10611 &complement_p))
10613 varop = XEXP (varop, 0);
10614 count = 0;
10615 continue;
10617 break;
10619 case NEG:
10620 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10621 than the number of bits in the mode is equivalent to A. */
10622 if (code == LSHIFTRT
10623 && count == (GET_MODE_PRECISION (result_mode) - 1)
10624 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10626 varop = XEXP (varop, 0);
10627 count = 0;
10628 continue;
10631 /* NEG commutes with ASHIFT since it is multiplication. Move the
10632 NEG outside to allow shifts to combine. */
10633 if (code == ASHIFT
10634 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10635 &complement_p))
10637 varop = XEXP (varop, 0);
10638 continue;
10640 break;
10642 case PLUS:
10643 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10644 is one less than the number of bits in the mode is
10645 equivalent to (xor A 1). */
10646 if (code == LSHIFTRT
10647 && count == (GET_MODE_PRECISION (result_mode) - 1)
10648 && XEXP (varop, 1) == constm1_rtx
10649 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10650 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10651 &complement_p))
10653 count = 0;
10654 varop = XEXP (varop, 0);
10655 continue;
10658 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10659 that might be nonzero in BAR are those being shifted out and those
10660 bits are known zero in FOO, we can replace the PLUS with FOO.
10661 Similarly in the other operand order. This code occurs when
10662 we are computing the size of a variable-size array. */
10664 if ((code == ASHIFTRT || code == LSHIFTRT)
10665 && count < HOST_BITS_PER_WIDE_INT
10666 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10667 && (nonzero_bits (XEXP (varop, 1), result_mode)
10668 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10670 varop = XEXP (varop, 0);
10671 continue;
10673 else if ((code == ASHIFTRT || code == LSHIFTRT)
10674 && count < HOST_BITS_PER_WIDE_INT
10675 && HWI_COMPUTABLE_MODE_P (result_mode)
10676 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10677 >> count)
10678 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10679 & nonzero_bits (XEXP (varop, 1),
10680 result_mode)))
10682 varop = XEXP (varop, 1);
10683 continue;
10686 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10687 if (code == ASHIFT
10688 && CONST_INT_P (XEXP (varop, 1))
10689 && (new_rtx = simplify_const_binary_operation
10690 (ASHIFT, result_mode,
10691 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10692 GEN_INT (count))) != 0
10693 && CONST_INT_P (new_rtx)
10694 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10695 INTVAL (new_rtx), result_mode, &complement_p))
10697 varop = XEXP (varop, 0);
10698 continue;
10701 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10702 signbit', and attempt to change the PLUS to an XOR and move it to
10703 the outer operation as is done above in the AND/IOR/XOR case
10704 leg for shift(logical). See details in logical handling above
10705 for reasoning in doing so. */
10706 if (code == LSHIFTRT
10707 && CONST_INT_P (XEXP (varop, 1))
10708 && mode_signbit_p (result_mode, XEXP (varop, 1))
10709 && (new_rtx = simplify_const_binary_operation
10710 (code, result_mode,
10711 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10712 GEN_INT (count))) != 0
10713 && CONST_INT_P (new_rtx)
10714 && merge_outer_ops (&outer_op, &outer_const, XOR,
10715 INTVAL (new_rtx), result_mode, &complement_p))
10717 varop = XEXP (varop, 0);
10718 continue;
10721 break;
10723 case MINUS:
10724 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10725 with C the size of VAROP - 1 and the shift is logical if
10726 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10727 we have a (gt X 0) operation. If the shift is arithmetic with
10728 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10729 we have a (neg (gt X 0)) operation. */
10731 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10732 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10733 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10734 && (code == LSHIFTRT || code == ASHIFTRT)
10735 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10736 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10737 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10739 count = 0;
10740 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10741 const0_rtx);
10743 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10744 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10746 continue;
10748 break;
10750 case TRUNCATE:
10751 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10752 if the truncate does not affect the value. */
10753 if (code == LSHIFTRT
10754 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10755 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10756 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10757 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10758 - GET_MODE_PRECISION (GET_MODE (varop)))))
10760 rtx varop_inner = XEXP (varop, 0);
10762 varop_inner
10763 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10764 XEXP (varop_inner, 0),
10765 GEN_INT
10766 (count + INTVAL (XEXP (varop_inner, 1))));
10767 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10768 count = 0;
10769 continue;
10771 break;
10773 default:
10774 break;
10777 break;
10780 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10781 outer_op, outer_const);
10783 /* We have now finished analyzing the shift. The result should be
10784 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10785 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10786 to the result of the shift. OUTER_CONST is the relevant constant,
10787 but we must turn off all bits turned off in the shift. */
10789 if (outer_op == UNKNOWN
10790 && orig_code == code && orig_count == count
10791 && varop == orig_varop
10792 && shift_mode == GET_MODE (varop))
10793 return NULL_RTX;
10795 /* Make a SUBREG if necessary. If we can't make it, fail. */
10796 varop = gen_lowpart (shift_mode, varop);
10797 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10798 return NULL_RTX;
10800 /* If we have an outer operation and we just made a shift, it is
10801 possible that we could have simplified the shift were it not
10802 for the outer operation. So try to do the simplification
10803 recursively. */
10805 if (outer_op != UNKNOWN)
10806 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10807 else
10808 x = NULL_RTX;
10810 if (x == NULL_RTX)
10811 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10813 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10814 turn off all the bits that the shift would have turned off. */
10815 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10816 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10817 GET_MODE_MASK (result_mode) >> orig_count);
10819 /* Do the remainder of the processing in RESULT_MODE. */
10820 x = gen_lowpart_or_truncate (result_mode, x);
10822 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10823 operation. */
10824 if (complement_p)
10825 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10827 if (outer_op != UNKNOWN)
10829 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10830 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10831 outer_const = trunc_int_for_mode (outer_const, result_mode);
10833 if (outer_op == AND)
10834 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10835 else if (outer_op == SET)
10837 /* This means that we have determined that the result is
10838 equivalent to a constant. This should be rare. */
10839 if (!side_effects_p (x))
10840 x = GEN_INT (outer_const);
10842 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10843 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10844 else
10845 x = simplify_gen_binary (outer_op, result_mode, x,
10846 GEN_INT (outer_const));
10849 return x;
10852 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10853 The result of the shift is RESULT_MODE. If we cannot simplify it,
10854 return X or, if it is NULL, synthesize the expression with
10855 simplify_gen_binary. Otherwise, return a simplified value.
10857 The shift is normally computed in the widest mode we find in VAROP, as
10858 long as it isn't a different number of words than RESULT_MODE. Exceptions
10859 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10861 static rtx
10862 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10863 rtx varop, int count)
10865 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10866 if (tem)
10867 return tem;
10869 if (!x)
10870 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10871 if (GET_MODE (x) != result_mode)
10872 x = gen_lowpart (result_mode, x);
10873 return x;
10877 /* A subroutine of recog_for_combine. See there for arguments and
10878 return value. */
10880 static int
10881 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10883 rtx pat = *pnewpat;
10884 rtx pat_without_clobbers;
10885 int insn_code_number;
10886 int num_clobbers_to_add = 0;
10887 int i;
10888 rtx notes = NULL_RTX;
10889 rtx old_notes, old_pat;
10890 int old_icode;
10892 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10893 we use to indicate that something didn't match. If we find such a
10894 thing, force rejection. */
10895 if (GET_CODE (pat) == PARALLEL)
10896 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10897 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10898 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10899 return -1;
10901 old_pat = PATTERN (insn);
10902 old_notes = REG_NOTES (insn);
10903 PATTERN (insn) = pat;
10904 REG_NOTES (insn) = NULL_RTX;
10906 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10907 if (dump_file && (dump_flags & TDF_DETAILS))
10909 if (insn_code_number < 0)
10910 fputs ("Failed to match this instruction:\n", dump_file);
10911 else
10912 fputs ("Successfully matched this instruction:\n", dump_file);
10913 print_rtl_single (dump_file, pat);
10916 /* If it isn't, there is the possibility that we previously had an insn
10917 that clobbered some register as a side effect, but the combined
10918 insn doesn't need to do that. So try once more without the clobbers
10919 unless this represents an ASM insn. */
10921 if (insn_code_number < 0 && ! check_asm_operands (pat)
10922 && GET_CODE (pat) == PARALLEL)
10924 int pos;
10926 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10927 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10929 if (i != pos)
10930 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10931 pos++;
10934 SUBST_INT (XVECLEN (pat, 0), pos);
10936 if (pos == 1)
10937 pat = XVECEXP (pat, 0, 0);
10939 PATTERN (insn) = pat;
10940 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10941 if (dump_file && (dump_flags & TDF_DETAILS))
10943 if (insn_code_number < 0)
10944 fputs ("Failed to match this instruction:\n", dump_file);
10945 else
10946 fputs ("Successfully matched this instruction:\n", dump_file);
10947 print_rtl_single (dump_file, pat);
10951 pat_without_clobbers = pat;
10953 PATTERN (insn) = old_pat;
10954 REG_NOTES (insn) = old_notes;
10956 /* Recognize all noop sets, these will be killed by followup pass. */
10957 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10958 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10960 /* If we had any clobbers to add, make a new pattern than contains
10961 them. Then check to make sure that all of them are dead. */
10962 if (num_clobbers_to_add)
10964 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10965 rtvec_alloc (GET_CODE (pat) == PARALLEL
10966 ? (XVECLEN (pat, 0)
10967 + num_clobbers_to_add)
10968 : num_clobbers_to_add + 1));
10970 if (GET_CODE (pat) == PARALLEL)
10971 for (i = 0; i < XVECLEN (pat, 0); i++)
10972 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10973 else
10974 XVECEXP (newpat, 0, 0) = pat;
10976 add_clobbers (newpat, insn_code_number);
10978 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10979 i < XVECLEN (newpat, 0); i++)
10981 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10982 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10983 return -1;
10984 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10986 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10987 notes = alloc_reg_note (REG_UNUSED,
10988 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10991 pat = newpat;
10994 if (insn_code_number >= 0
10995 && insn_code_number != NOOP_MOVE_INSN_CODE)
10997 old_pat = PATTERN (insn);
10998 old_notes = REG_NOTES (insn);
10999 old_icode = INSN_CODE (insn);
11000 PATTERN (insn) = pat;
11001 REG_NOTES (insn) = notes;
11003 /* Allow targets to reject combined insn. */
11004 if (!targetm.legitimate_combined_insn (insn))
11006 if (dump_file && (dump_flags & TDF_DETAILS))
11007 fputs ("Instruction not appropriate for target.",
11008 dump_file);
11010 /* Callers expect recog_for_combine to strip
11011 clobbers from the pattern on failure. */
11012 pat = pat_without_clobbers;
11013 notes = NULL_RTX;
11015 insn_code_number = -1;
11018 PATTERN (insn) = old_pat;
11019 REG_NOTES (insn) = old_notes;
11020 INSN_CODE (insn) = old_icode;
11023 *pnewpat = pat;
11024 *pnotes = notes;
11026 return insn_code_number;
11029 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11030 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11031 Return whether anything was so changed. */
11033 static bool
11034 change_zero_ext (rtx *src)
11036 bool changed = false;
11038 subrtx_ptr_iterator::array_type array;
11039 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11041 rtx x = **iter;
11042 machine_mode mode = GET_MODE (x);
11043 int size;
11045 if (GET_CODE (x) == ZERO_EXTRACT
11046 && CONST_INT_P (XEXP (x, 1))
11047 && CONST_INT_P (XEXP (x, 2))
11048 && GET_MODE (XEXP (x, 0)) == mode)
11050 size = INTVAL (XEXP (x, 1));
11052 int start = INTVAL (XEXP (x, 2));
11053 if (BITS_BIG_ENDIAN)
11054 start = GET_MODE_PRECISION (mode) - size - start;
11056 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11058 else if (GET_CODE (x) == ZERO_EXTEND
11059 && GET_CODE (XEXP (x, 0)) == SUBREG
11060 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11061 && subreg_lowpart_p (XEXP (x, 0)))
11063 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11064 x = SUBREG_REG (XEXP (x, 0));
11066 else
11067 continue;
11069 unsigned HOST_WIDE_INT mask = 1;
11070 mask <<= size;
11071 mask--;
11073 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11075 SUBST (**iter, x);
11076 changed = true;
11079 return changed;
11082 /* Like recog, but we receive the address of a pointer to a new pattern.
11083 We try to match the rtx that the pointer points to.
11084 If that fails, we may try to modify or replace the pattern,
11085 storing the replacement into the same pointer object.
11087 Modifications include deletion or addition of CLOBBERs. If the
11088 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11089 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11090 (and undo if that fails).
11092 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11093 the CLOBBERs are placed.
11095 The value is the final insn code from the pattern ultimately matched,
11096 or -1. */
11098 static int
11099 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11101 rtx pat = PATTERN (insn);
11102 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11103 if (insn_code_number >= 0 || check_asm_operands (pat))
11104 return insn_code_number;
11106 void *marker = get_undo_marker ();
11107 bool changed = false;
11109 if (GET_CODE (pat) == SET)
11110 changed = change_zero_ext (&SET_SRC (pat));
11111 else if (GET_CODE (pat) == PARALLEL)
11113 int i;
11114 for (i = 0; i < XVECLEN (pat, 0); i++)
11116 rtx set = XVECEXP (pat, 0, i);
11117 if (GET_CODE (set) == SET)
11118 changed |= change_zero_ext (&SET_SRC (set));
11122 if (changed)
11124 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11126 if (insn_code_number < 0)
11127 undo_to_marker (marker);
11130 return insn_code_number;
11133 /* Like gen_lowpart_general but for use by combine. In combine it
11134 is not possible to create any new pseudoregs. However, it is
11135 safe to create invalid memory addresses, because combine will
11136 try to recognize them and all they will do is make the combine
11137 attempt fail.
11139 If for some reason this cannot do its job, an rtx
11140 (clobber (const_int 0)) is returned.
11141 An insn containing that will not be recognized. */
11143 static rtx
11144 gen_lowpart_for_combine (machine_mode omode, rtx x)
11146 machine_mode imode = GET_MODE (x);
11147 unsigned int osize = GET_MODE_SIZE (omode);
11148 unsigned int isize = GET_MODE_SIZE (imode);
11149 rtx result;
11151 if (omode == imode)
11152 return x;
11154 /* We can only support MODE being wider than a word if X is a
11155 constant integer or has a mode the same size. */
11156 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11157 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11158 goto fail;
11160 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11161 won't know what to do. So we will strip off the SUBREG here and
11162 process normally. */
11163 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11165 x = SUBREG_REG (x);
11167 /* For use in case we fall down into the address adjustments
11168 further below, we need to adjust the known mode and size of
11169 x; imode and isize, since we just adjusted x. */
11170 imode = GET_MODE (x);
11172 if (imode == omode)
11173 return x;
11175 isize = GET_MODE_SIZE (imode);
11178 result = gen_lowpart_common (omode, x);
11180 if (result)
11181 return result;
11183 if (MEM_P (x))
11185 int offset = 0;
11187 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11188 address. */
11189 if (MEM_VOLATILE_P (x)
11190 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11191 goto fail;
11193 /* If we want to refer to something bigger than the original memref,
11194 generate a paradoxical subreg instead. That will force a reload
11195 of the original memref X. */
11196 if (isize < osize)
11197 return gen_rtx_SUBREG (omode, x, 0);
11199 if (WORDS_BIG_ENDIAN)
11200 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11202 /* Adjust the address so that the address-after-the-data is
11203 unchanged. */
11204 if (BYTES_BIG_ENDIAN)
11205 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11207 return adjust_address_nv (x, omode, offset);
11210 /* If X is a comparison operator, rewrite it in a new mode. This
11211 probably won't match, but may allow further simplifications. */
11212 else if (COMPARISON_P (x))
11213 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11215 /* If we couldn't simplify X any other way, just enclose it in a
11216 SUBREG. Normally, this SUBREG won't match, but some patterns may
11217 include an explicit SUBREG or we may simplify it further in combine. */
11218 else
11220 int offset = 0;
11221 rtx res;
11223 offset = subreg_lowpart_offset (omode, imode);
11224 if (imode == VOIDmode)
11226 imode = int_mode_for_mode (omode);
11227 x = gen_lowpart_common (imode, x);
11228 if (x == NULL)
11229 goto fail;
11231 res = simplify_gen_subreg (omode, x, imode, offset);
11232 if (res)
11233 return res;
11236 fail:
11237 return gen_rtx_CLOBBER (omode, const0_rtx);
11240 /* Try to simplify a comparison between OP0 and a constant OP1,
11241 where CODE is the comparison code that will be tested, into a
11242 (CODE OP0 const0_rtx) form.
11244 The result is a possibly different comparison code to use.
11245 *POP1 may be updated. */
11247 static enum rtx_code
11248 simplify_compare_const (enum rtx_code code, machine_mode mode,
11249 rtx op0, rtx *pop1)
11251 unsigned int mode_width = GET_MODE_PRECISION (mode);
11252 HOST_WIDE_INT const_op = INTVAL (*pop1);
11254 /* Get the constant we are comparing against and turn off all bits
11255 not on in our mode. */
11256 if (mode != VOIDmode)
11257 const_op = trunc_int_for_mode (const_op, mode);
11259 /* If we are comparing against a constant power of two and the value
11260 being compared can only have that single bit nonzero (e.g., it was
11261 `and'ed with that bit), we can replace this with a comparison
11262 with zero. */
11263 if (const_op
11264 && (code == EQ || code == NE || code == GE || code == GEU
11265 || code == LT || code == LTU)
11266 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11267 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11268 && (nonzero_bits (op0, mode)
11269 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11271 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11272 const_op = 0;
11275 /* Similarly, if we are comparing a value known to be either -1 or
11276 0 with -1, change it to the opposite comparison against zero. */
11277 if (const_op == -1
11278 && (code == EQ || code == NE || code == GT || code == LE
11279 || code == GEU || code == LTU)
11280 && num_sign_bit_copies (op0, mode) == mode_width)
11282 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11283 const_op = 0;
11286 /* Do some canonicalizations based on the comparison code. We prefer
11287 comparisons against zero and then prefer equality comparisons.
11288 If we can reduce the size of a constant, we will do that too. */
11289 switch (code)
11291 case LT:
11292 /* < C is equivalent to <= (C - 1) */
11293 if (const_op > 0)
11295 const_op -= 1;
11296 code = LE;
11297 /* ... fall through to LE case below. */
11299 else
11300 break;
11302 case LE:
11303 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11304 if (const_op < 0)
11306 const_op += 1;
11307 code = LT;
11310 /* If we are doing a <= 0 comparison on a value known to have
11311 a zero sign bit, we can replace this with == 0. */
11312 else if (const_op == 0
11313 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11314 && (nonzero_bits (op0, mode)
11315 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11316 == 0)
11317 code = EQ;
11318 break;
11320 case GE:
11321 /* >= C is equivalent to > (C - 1). */
11322 if (const_op > 0)
11324 const_op -= 1;
11325 code = GT;
11326 /* ... fall through to GT below. */
11328 else
11329 break;
11331 case GT:
11332 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11333 if (const_op < 0)
11335 const_op += 1;
11336 code = GE;
11339 /* If we are doing a > 0 comparison on a value known to have
11340 a zero sign bit, we can replace this with != 0. */
11341 else if (const_op == 0
11342 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11343 && (nonzero_bits (op0, mode)
11344 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11345 == 0)
11346 code = NE;
11347 break;
11349 case LTU:
11350 /* < C is equivalent to <= (C - 1). */
11351 if (const_op > 0)
11353 const_op -= 1;
11354 code = LEU;
11355 /* ... fall through ... */
11357 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11358 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11359 && (unsigned HOST_WIDE_INT) const_op
11360 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11362 const_op = 0;
11363 code = GE;
11364 break;
11366 else
11367 break;
11369 case LEU:
11370 /* unsigned <= 0 is equivalent to == 0 */
11371 if (const_op == 0)
11372 code = EQ;
11373 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11374 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11375 && (unsigned HOST_WIDE_INT) const_op
11376 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11378 const_op = 0;
11379 code = GE;
11381 break;
11383 case GEU:
11384 /* >= C is equivalent to > (C - 1). */
11385 if (const_op > 1)
11387 const_op -= 1;
11388 code = GTU;
11389 /* ... fall through ... */
11392 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11393 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11394 && (unsigned HOST_WIDE_INT) const_op
11395 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11397 const_op = 0;
11398 code = LT;
11399 break;
11401 else
11402 break;
11404 case GTU:
11405 /* unsigned > 0 is equivalent to != 0 */
11406 if (const_op == 0)
11407 code = NE;
11408 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11409 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11410 && (unsigned HOST_WIDE_INT) const_op
11411 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11413 const_op = 0;
11414 code = LT;
11416 break;
11418 default:
11419 break;
11422 *pop1 = GEN_INT (const_op);
11423 return code;
11426 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11427 comparison code that will be tested.
11429 The result is a possibly different comparison code to use. *POP0 and
11430 *POP1 may be updated.
11432 It is possible that we might detect that a comparison is either always
11433 true or always false. However, we do not perform general constant
11434 folding in combine, so this knowledge isn't useful. Such tautologies
11435 should have been detected earlier. Hence we ignore all such cases. */
11437 static enum rtx_code
11438 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11440 rtx op0 = *pop0;
11441 rtx op1 = *pop1;
11442 rtx tem, tem1;
11443 int i;
11444 machine_mode mode, tmode;
11446 /* Try a few ways of applying the same transformation to both operands. */
11447 while (1)
11449 #ifndef WORD_REGISTER_OPERATIONS
11450 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11451 so check specially. */
11452 if (code != GTU && code != GEU && code != LTU && code != LEU
11453 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11454 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11455 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11456 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11457 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11458 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11459 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11460 && CONST_INT_P (XEXP (op0, 1))
11461 && XEXP (op0, 1) == XEXP (op1, 1)
11462 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11463 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11464 && (INTVAL (XEXP (op0, 1))
11465 == (GET_MODE_PRECISION (GET_MODE (op0))
11466 - (GET_MODE_PRECISION
11467 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11469 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11470 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11472 #endif
11474 /* If both operands are the same constant shift, see if we can ignore the
11475 shift. We can if the shift is a rotate or if the bits shifted out of
11476 this shift are known to be zero for both inputs and if the type of
11477 comparison is compatible with the shift. */
11478 if (GET_CODE (op0) == GET_CODE (op1)
11479 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11480 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11481 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11482 && (code != GT && code != LT && code != GE && code != LE))
11483 || (GET_CODE (op0) == ASHIFTRT
11484 && (code != GTU && code != LTU
11485 && code != GEU && code != LEU)))
11486 && CONST_INT_P (XEXP (op0, 1))
11487 && INTVAL (XEXP (op0, 1)) >= 0
11488 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11489 && XEXP (op0, 1) == XEXP (op1, 1))
11491 machine_mode mode = GET_MODE (op0);
11492 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11493 int shift_count = INTVAL (XEXP (op0, 1));
11495 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11496 mask &= (mask >> shift_count) << shift_count;
11497 else if (GET_CODE (op0) == ASHIFT)
11498 mask = (mask & (mask << shift_count)) >> shift_count;
11500 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11501 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11502 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11503 else
11504 break;
11507 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11508 SUBREGs are of the same mode, and, in both cases, the AND would
11509 be redundant if the comparison was done in the narrower mode,
11510 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11511 and the operand's possibly nonzero bits are 0xffffff01; in that case
11512 if we only care about QImode, we don't need the AND). This case
11513 occurs if the output mode of an scc insn is not SImode and
11514 STORE_FLAG_VALUE == 1 (e.g., the 386).
11516 Similarly, check for a case where the AND's are ZERO_EXTEND
11517 operations from some narrower mode even though a SUBREG is not
11518 present. */
11520 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11521 && CONST_INT_P (XEXP (op0, 1))
11522 && CONST_INT_P (XEXP (op1, 1)))
11524 rtx inner_op0 = XEXP (op0, 0);
11525 rtx inner_op1 = XEXP (op1, 0);
11526 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11527 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11528 int changed = 0;
11530 if (paradoxical_subreg_p (inner_op0)
11531 && GET_CODE (inner_op1) == SUBREG
11532 && (GET_MODE (SUBREG_REG (inner_op0))
11533 == GET_MODE (SUBREG_REG (inner_op1)))
11534 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11535 <= HOST_BITS_PER_WIDE_INT)
11536 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11537 GET_MODE (SUBREG_REG (inner_op0)))))
11538 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11539 GET_MODE (SUBREG_REG (inner_op1))))))
11541 op0 = SUBREG_REG (inner_op0);
11542 op1 = SUBREG_REG (inner_op1);
11544 /* The resulting comparison is always unsigned since we masked
11545 off the original sign bit. */
11546 code = unsigned_condition (code);
11548 changed = 1;
11551 else if (c0 == c1)
11552 for (tmode = GET_CLASS_NARROWEST_MODE
11553 (GET_MODE_CLASS (GET_MODE (op0)));
11554 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11555 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11557 op0 = gen_lowpart (tmode, inner_op0);
11558 op1 = gen_lowpart (tmode, inner_op1);
11559 code = unsigned_condition (code);
11560 changed = 1;
11561 break;
11564 if (! changed)
11565 break;
11568 /* If both operands are NOT, we can strip off the outer operation
11569 and adjust the comparison code for swapped operands; similarly for
11570 NEG, except that this must be an equality comparison. */
11571 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11572 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11573 && (code == EQ || code == NE)))
11574 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11576 else
11577 break;
11580 /* If the first operand is a constant, swap the operands and adjust the
11581 comparison code appropriately, but don't do this if the second operand
11582 is already a constant integer. */
11583 if (swap_commutative_operands_p (op0, op1))
11585 std::swap (op0, op1);
11586 code = swap_condition (code);
11589 /* We now enter a loop during which we will try to simplify the comparison.
11590 For the most part, we only are concerned with comparisons with zero,
11591 but some things may really be comparisons with zero but not start
11592 out looking that way. */
11594 while (CONST_INT_P (op1))
11596 machine_mode mode = GET_MODE (op0);
11597 unsigned int mode_width = GET_MODE_PRECISION (mode);
11598 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11599 int equality_comparison_p;
11600 int sign_bit_comparison_p;
11601 int unsigned_comparison_p;
11602 HOST_WIDE_INT const_op;
11604 /* We only want to handle integral modes. This catches VOIDmode,
11605 CCmode, and the floating-point modes. An exception is that we
11606 can handle VOIDmode if OP0 is a COMPARE or a comparison
11607 operation. */
11609 if (GET_MODE_CLASS (mode) != MODE_INT
11610 && ! (mode == VOIDmode
11611 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11612 break;
11614 /* Try to simplify the compare to constant, possibly changing the
11615 comparison op, and/or changing op1 to zero. */
11616 code = simplify_compare_const (code, mode, op0, &op1);
11617 const_op = INTVAL (op1);
11619 /* Compute some predicates to simplify code below. */
11621 equality_comparison_p = (code == EQ || code == NE);
11622 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11623 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11624 || code == GEU);
11626 /* If this is a sign bit comparison and we can do arithmetic in
11627 MODE, say that we will only be needing the sign bit of OP0. */
11628 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11629 op0 = force_to_mode (op0, mode,
11630 (unsigned HOST_WIDE_INT) 1
11631 << (GET_MODE_PRECISION (mode) - 1),
11634 /* Now try cases based on the opcode of OP0. If none of the cases
11635 does a "continue", we exit this loop immediately after the
11636 switch. */
11638 switch (GET_CODE (op0))
11640 case ZERO_EXTRACT:
11641 /* If we are extracting a single bit from a variable position in
11642 a constant that has only a single bit set and are comparing it
11643 with zero, we can convert this into an equality comparison
11644 between the position and the location of the single bit. */
11645 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11646 have already reduced the shift count modulo the word size. */
11647 if (!SHIFT_COUNT_TRUNCATED
11648 && CONST_INT_P (XEXP (op0, 0))
11649 && XEXP (op0, 1) == const1_rtx
11650 && equality_comparison_p && const_op == 0
11651 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11653 if (BITS_BIG_ENDIAN)
11654 i = BITS_PER_WORD - 1 - i;
11656 op0 = XEXP (op0, 2);
11657 op1 = GEN_INT (i);
11658 const_op = i;
11660 /* Result is nonzero iff shift count is equal to I. */
11661 code = reverse_condition (code);
11662 continue;
11665 /* ... fall through ... */
11667 case SIGN_EXTRACT:
11668 tem = expand_compound_operation (op0);
11669 if (tem != op0)
11671 op0 = tem;
11672 continue;
11674 break;
11676 case NOT:
11677 /* If testing for equality, we can take the NOT of the constant. */
11678 if (equality_comparison_p
11679 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11681 op0 = XEXP (op0, 0);
11682 op1 = tem;
11683 continue;
11686 /* If just looking at the sign bit, reverse the sense of the
11687 comparison. */
11688 if (sign_bit_comparison_p)
11690 op0 = XEXP (op0, 0);
11691 code = (code == GE ? LT : GE);
11692 continue;
11694 break;
11696 case NEG:
11697 /* If testing for equality, we can take the NEG of the constant. */
11698 if (equality_comparison_p
11699 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11701 op0 = XEXP (op0, 0);
11702 op1 = tem;
11703 continue;
11706 /* The remaining cases only apply to comparisons with zero. */
11707 if (const_op != 0)
11708 break;
11710 /* When X is ABS or is known positive,
11711 (neg X) is < 0 if and only if X != 0. */
11713 if (sign_bit_comparison_p
11714 && (GET_CODE (XEXP (op0, 0)) == ABS
11715 || (mode_width <= HOST_BITS_PER_WIDE_INT
11716 && (nonzero_bits (XEXP (op0, 0), mode)
11717 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11718 == 0)))
11720 op0 = XEXP (op0, 0);
11721 code = (code == LT ? NE : EQ);
11722 continue;
11725 /* If we have NEG of something whose two high-order bits are the
11726 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11727 if (num_sign_bit_copies (op0, mode) >= 2)
11729 op0 = XEXP (op0, 0);
11730 code = swap_condition (code);
11731 continue;
11733 break;
11735 case ROTATE:
11736 /* If we are testing equality and our count is a constant, we
11737 can perform the inverse operation on our RHS. */
11738 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11739 && (tem = simplify_binary_operation (ROTATERT, mode,
11740 op1, XEXP (op0, 1))) != 0)
11742 op0 = XEXP (op0, 0);
11743 op1 = tem;
11744 continue;
11747 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11748 a particular bit. Convert it to an AND of a constant of that
11749 bit. This will be converted into a ZERO_EXTRACT. */
11750 if (const_op == 0 && sign_bit_comparison_p
11751 && CONST_INT_P (XEXP (op0, 1))
11752 && mode_width <= HOST_BITS_PER_WIDE_INT)
11754 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11755 ((unsigned HOST_WIDE_INT) 1
11756 << (mode_width - 1
11757 - INTVAL (XEXP (op0, 1)))));
11758 code = (code == LT ? NE : EQ);
11759 continue;
11762 /* Fall through. */
11764 case ABS:
11765 /* ABS is ignorable inside an equality comparison with zero. */
11766 if (const_op == 0 && equality_comparison_p)
11768 op0 = XEXP (op0, 0);
11769 continue;
11771 break;
11773 case SIGN_EXTEND:
11774 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11775 (compare FOO CONST) if CONST fits in FOO's mode and we
11776 are either testing inequality or have an unsigned
11777 comparison with ZERO_EXTEND or a signed comparison with
11778 SIGN_EXTEND. But don't do it if we don't have a compare
11779 insn of the given mode, since we'd have to revert it
11780 later on, and then we wouldn't know whether to sign- or
11781 zero-extend. */
11782 mode = GET_MODE (XEXP (op0, 0));
11783 if (GET_MODE_CLASS (mode) == MODE_INT
11784 && ! unsigned_comparison_p
11785 && HWI_COMPUTABLE_MODE_P (mode)
11786 && trunc_int_for_mode (const_op, mode) == const_op
11787 && have_insn_for (COMPARE, mode))
11789 op0 = XEXP (op0, 0);
11790 continue;
11792 break;
11794 case SUBREG:
11795 /* Check for the case where we are comparing A - C1 with C2, that is
11797 (subreg:MODE (plus (A) (-C1))) op (C2)
11799 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11800 comparison in the wider mode. One of the following two conditions
11801 must be true in order for this to be valid:
11803 1. The mode extension results in the same bit pattern being added
11804 on both sides and the comparison is equality or unsigned. As
11805 C2 has been truncated to fit in MODE, the pattern can only be
11806 all 0s or all 1s.
11808 2. The mode extension results in the sign bit being copied on
11809 each side.
11811 The difficulty here is that we have predicates for A but not for
11812 (A - C1) so we need to check that C1 is within proper bounds so
11813 as to perturbate A as little as possible. */
11815 if (mode_width <= HOST_BITS_PER_WIDE_INT
11816 && subreg_lowpart_p (op0)
11817 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11818 && GET_CODE (SUBREG_REG (op0)) == PLUS
11819 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11821 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11822 rtx a = XEXP (SUBREG_REG (op0), 0);
11823 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11825 if ((c1 > 0
11826 && (unsigned HOST_WIDE_INT) c1
11827 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11828 && (equality_comparison_p || unsigned_comparison_p)
11829 /* (A - C1) zero-extends if it is positive and sign-extends
11830 if it is negative, C2 both zero- and sign-extends. */
11831 && ((0 == (nonzero_bits (a, inner_mode)
11832 & ~GET_MODE_MASK (mode))
11833 && const_op >= 0)
11834 /* (A - C1) sign-extends if it is positive and 1-extends
11835 if it is negative, C2 both sign- and 1-extends. */
11836 || (num_sign_bit_copies (a, inner_mode)
11837 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11838 - mode_width)
11839 && const_op < 0)))
11840 || ((unsigned HOST_WIDE_INT) c1
11841 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11842 /* (A - C1) always sign-extends, like C2. */
11843 && num_sign_bit_copies (a, inner_mode)
11844 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11845 - (mode_width - 1))))
11847 op0 = SUBREG_REG (op0);
11848 continue;
11852 /* If the inner mode is narrower and we are extracting the low part,
11853 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11854 if (subreg_lowpart_p (op0)
11855 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11856 /* Fall through */ ;
11857 else
11858 break;
11860 /* ... fall through ... */
11862 case ZERO_EXTEND:
11863 mode = GET_MODE (XEXP (op0, 0));
11864 if (GET_MODE_CLASS (mode) == MODE_INT
11865 && (unsigned_comparison_p || equality_comparison_p)
11866 && HWI_COMPUTABLE_MODE_P (mode)
11867 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11868 && const_op >= 0
11869 && have_insn_for (COMPARE, mode))
11871 op0 = XEXP (op0, 0);
11872 continue;
11874 break;
11876 case PLUS:
11877 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11878 this for equality comparisons due to pathological cases involving
11879 overflows. */
11880 if (equality_comparison_p
11881 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11882 op1, XEXP (op0, 1))))
11884 op0 = XEXP (op0, 0);
11885 op1 = tem;
11886 continue;
11889 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11890 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11891 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11893 op0 = XEXP (XEXP (op0, 0), 0);
11894 code = (code == LT ? EQ : NE);
11895 continue;
11897 break;
11899 case MINUS:
11900 /* We used to optimize signed comparisons against zero, but that
11901 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11902 arrive here as equality comparisons, or (GEU, LTU) are
11903 optimized away. No need to special-case them. */
11905 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11906 (eq B (minus A C)), whichever simplifies. We can only do
11907 this for equality comparisons due to pathological cases involving
11908 overflows. */
11909 if (equality_comparison_p
11910 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11911 XEXP (op0, 1), op1)))
11913 op0 = XEXP (op0, 0);
11914 op1 = tem;
11915 continue;
11918 if (equality_comparison_p
11919 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11920 XEXP (op0, 0), op1)))
11922 op0 = XEXP (op0, 1);
11923 op1 = tem;
11924 continue;
11927 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11928 of bits in X minus 1, is one iff X > 0. */
11929 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11930 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11931 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11932 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11934 op0 = XEXP (op0, 1);
11935 code = (code == GE ? LE : GT);
11936 continue;
11938 break;
11940 case XOR:
11941 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11942 if C is zero or B is a constant. */
11943 if (equality_comparison_p
11944 && 0 != (tem = simplify_binary_operation (XOR, mode,
11945 XEXP (op0, 1), op1)))
11947 op0 = XEXP (op0, 0);
11948 op1 = tem;
11949 continue;
11951 break;
11953 case EQ: case NE:
11954 case UNEQ: case LTGT:
11955 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11956 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11957 case UNORDERED: case ORDERED:
11958 /* We can't do anything if OP0 is a condition code value, rather
11959 than an actual data value. */
11960 if (const_op != 0
11961 || CC0_P (XEXP (op0, 0))
11962 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11963 break;
11965 /* Get the two operands being compared. */
11966 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11967 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11968 else
11969 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11971 /* Check for the cases where we simply want the result of the
11972 earlier test or the opposite of that result. */
11973 if (code == NE || code == EQ
11974 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11975 && (code == LT || code == GE)))
11977 enum rtx_code new_code;
11978 if (code == LT || code == NE)
11979 new_code = GET_CODE (op0);
11980 else
11981 new_code = reversed_comparison_code (op0, NULL);
11983 if (new_code != UNKNOWN)
11985 code = new_code;
11986 op0 = tem;
11987 op1 = tem1;
11988 continue;
11991 break;
11993 case IOR:
11994 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11995 iff X <= 0. */
11996 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11997 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11998 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12000 op0 = XEXP (op0, 1);
12001 code = (code == GE ? GT : LE);
12002 continue;
12004 break;
12006 case AND:
12007 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12008 will be converted to a ZERO_EXTRACT later. */
12009 if (const_op == 0 && equality_comparison_p
12010 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12011 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12013 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12014 XEXP (XEXP (op0, 0), 1));
12015 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12016 continue;
12019 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12020 zero and X is a comparison and C1 and C2 describe only bits set
12021 in STORE_FLAG_VALUE, we can compare with X. */
12022 if (const_op == 0 && equality_comparison_p
12023 && mode_width <= HOST_BITS_PER_WIDE_INT
12024 && CONST_INT_P (XEXP (op0, 1))
12025 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12026 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12027 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12028 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12030 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12031 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12032 if ((~STORE_FLAG_VALUE & mask) == 0
12033 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12034 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12035 && COMPARISON_P (tem))))
12037 op0 = XEXP (XEXP (op0, 0), 0);
12038 continue;
12042 /* If we are doing an equality comparison of an AND of a bit equal
12043 to the sign bit, replace this with a LT or GE comparison of
12044 the underlying value. */
12045 if (equality_comparison_p
12046 && const_op == 0
12047 && CONST_INT_P (XEXP (op0, 1))
12048 && mode_width <= HOST_BITS_PER_WIDE_INT
12049 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12050 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12052 op0 = XEXP (op0, 0);
12053 code = (code == EQ ? GE : LT);
12054 continue;
12057 /* If this AND operation is really a ZERO_EXTEND from a narrower
12058 mode, the constant fits within that mode, and this is either an
12059 equality or unsigned comparison, try to do this comparison in
12060 the narrower mode.
12062 Note that in:
12064 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12065 -> (ne:DI (reg:SI 4) (const_int 0))
12067 unless TRULY_NOOP_TRUNCATION allows it or the register is
12068 known to hold a value of the required mode the
12069 transformation is invalid. */
12070 if ((equality_comparison_p || unsigned_comparison_p)
12071 && CONST_INT_P (XEXP (op0, 1))
12072 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12073 & GET_MODE_MASK (mode))
12074 + 1)) >= 0
12075 && const_op >> i == 0
12076 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
12077 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
12078 || (REG_P (XEXP (op0, 0))
12079 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
12081 op0 = gen_lowpart (tmode, XEXP (op0, 0));
12082 continue;
12085 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
12086 fits in both M1 and M2 and the SUBREG is either paradoxical
12087 or represents the low part, permute the SUBREG and the AND
12088 and try again. */
12089 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
12091 unsigned HOST_WIDE_INT c1;
12092 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12093 /* Require an integral mode, to avoid creating something like
12094 (AND:SF ...). */
12095 if (SCALAR_INT_MODE_P (tmode)
12096 /* It is unsafe to commute the AND into the SUBREG if the
12097 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12098 not defined. As originally written the upper bits
12099 have a defined value due to the AND operation.
12100 However, if we commute the AND inside the SUBREG then
12101 they no longer have defined values and the meaning of
12102 the code has been changed. */
12103 && (0
12104 #ifdef WORD_REGISTER_OPERATIONS
12105 || (mode_width > GET_MODE_PRECISION (tmode)
12106 && mode_width <= BITS_PER_WORD)
12107 #endif
12108 || (mode_width <= GET_MODE_PRECISION (tmode)
12109 && subreg_lowpart_p (XEXP (op0, 0))))
12110 && CONST_INT_P (XEXP (op0, 1))
12111 && mode_width <= HOST_BITS_PER_WIDE_INT
12112 && HWI_COMPUTABLE_MODE_P (tmode)
12113 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
12114 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12115 && c1 != mask
12116 && c1 != GET_MODE_MASK (tmode))
12118 op0 = simplify_gen_binary (AND, tmode,
12119 SUBREG_REG (XEXP (op0, 0)),
12120 gen_int_mode (c1, tmode));
12121 op0 = gen_lowpart (mode, op0);
12122 continue;
12126 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12127 if (const_op == 0 && equality_comparison_p
12128 && XEXP (op0, 1) == const1_rtx
12129 && GET_CODE (XEXP (op0, 0)) == NOT)
12131 op0 = simplify_and_const_int (NULL_RTX, mode,
12132 XEXP (XEXP (op0, 0), 0), 1);
12133 code = (code == NE ? EQ : NE);
12134 continue;
12137 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12138 (eq (and (lshiftrt X) 1) 0).
12139 Also handle the case where (not X) is expressed using xor. */
12140 if (const_op == 0 && equality_comparison_p
12141 && XEXP (op0, 1) == const1_rtx
12142 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12144 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12145 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12147 if (GET_CODE (shift_op) == NOT
12148 || (GET_CODE (shift_op) == XOR
12149 && CONST_INT_P (XEXP (shift_op, 1))
12150 && CONST_INT_P (shift_count)
12151 && HWI_COMPUTABLE_MODE_P (mode)
12152 && (UINTVAL (XEXP (shift_op, 1))
12153 == (unsigned HOST_WIDE_INT) 1
12154 << INTVAL (shift_count))))
12157 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12158 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12159 code = (code == NE ? EQ : NE);
12160 continue;
12163 break;
12165 case ASHIFT:
12166 /* If we have (compare (ashift FOO N) (const_int C)) and
12167 the high order N bits of FOO (N+1 if an inequality comparison)
12168 are known to be zero, we can do this by comparing FOO with C
12169 shifted right N bits so long as the low-order N bits of C are
12170 zero. */
12171 if (CONST_INT_P (XEXP (op0, 1))
12172 && INTVAL (XEXP (op0, 1)) >= 0
12173 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12174 < HOST_BITS_PER_WIDE_INT)
12175 && (((unsigned HOST_WIDE_INT) const_op
12176 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12177 - 1)) == 0)
12178 && mode_width <= HOST_BITS_PER_WIDE_INT
12179 && (nonzero_bits (XEXP (op0, 0), mode)
12180 & ~(mask >> (INTVAL (XEXP (op0, 1))
12181 + ! equality_comparison_p))) == 0)
12183 /* We must perform a logical shift, not an arithmetic one,
12184 as we want the top N bits of C to be zero. */
12185 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12187 temp >>= INTVAL (XEXP (op0, 1));
12188 op1 = gen_int_mode (temp, mode);
12189 op0 = XEXP (op0, 0);
12190 continue;
12193 /* If we are doing a sign bit comparison, it means we are testing
12194 a particular bit. Convert it to the appropriate AND. */
12195 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12196 && mode_width <= HOST_BITS_PER_WIDE_INT)
12198 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12199 ((unsigned HOST_WIDE_INT) 1
12200 << (mode_width - 1
12201 - INTVAL (XEXP (op0, 1)))));
12202 code = (code == LT ? NE : EQ);
12203 continue;
12206 /* If this an equality comparison with zero and we are shifting
12207 the low bit to the sign bit, we can convert this to an AND of the
12208 low-order bit. */
12209 if (const_op == 0 && equality_comparison_p
12210 && CONST_INT_P (XEXP (op0, 1))
12211 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12213 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12214 continue;
12216 break;
12218 case ASHIFTRT:
12219 /* If this is an equality comparison with zero, we can do this
12220 as a logical shift, which might be much simpler. */
12221 if (equality_comparison_p && const_op == 0
12222 && CONST_INT_P (XEXP (op0, 1)))
12224 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12225 XEXP (op0, 0),
12226 INTVAL (XEXP (op0, 1)));
12227 continue;
12230 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12231 do the comparison in a narrower mode. */
12232 if (! unsigned_comparison_p
12233 && CONST_INT_P (XEXP (op0, 1))
12234 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12235 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12236 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12237 MODE_INT, 1)) != BLKmode
12238 && (((unsigned HOST_WIDE_INT) const_op
12239 + (GET_MODE_MASK (tmode) >> 1) + 1)
12240 <= GET_MODE_MASK (tmode)))
12242 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12243 continue;
12246 /* Likewise if OP0 is a PLUS of a sign extension with a
12247 constant, which is usually represented with the PLUS
12248 between the shifts. */
12249 if (! unsigned_comparison_p
12250 && CONST_INT_P (XEXP (op0, 1))
12251 && GET_CODE (XEXP (op0, 0)) == PLUS
12252 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12253 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12254 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12255 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12256 MODE_INT, 1)) != BLKmode
12257 && (((unsigned HOST_WIDE_INT) const_op
12258 + (GET_MODE_MASK (tmode) >> 1) + 1)
12259 <= GET_MODE_MASK (tmode)))
12261 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12262 rtx add_const = XEXP (XEXP (op0, 0), 1);
12263 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12264 add_const, XEXP (op0, 1));
12266 op0 = simplify_gen_binary (PLUS, tmode,
12267 gen_lowpart (tmode, inner),
12268 new_const);
12269 continue;
12272 /* ... fall through ... */
12273 case LSHIFTRT:
12274 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12275 the low order N bits of FOO are known to be zero, we can do this
12276 by comparing FOO with C shifted left N bits so long as no
12277 overflow occurs. Even if the low order N bits of FOO aren't known
12278 to be zero, if the comparison is >= or < we can use the same
12279 optimization and for > or <= by setting all the low
12280 order N bits in the comparison constant. */
12281 if (CONST_INT_P (XEXP (op0, 1))
12282 && INTVAL (XEXP (op0, 1)) > 0
12283 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12284 && mode_width <= HOST_BITS_PER_WIDE_INT
12285 && (((unsigned HOST_WIDE_INT) const_op
12286 + (GET_CODE (op0) != LSHIFTRT
12287 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12288 + 1)
12289 : 0))
12290 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12292 unsigned HOST_WIDE_INT low_bits
12293 = (nonzero_bits (XEXP (op0, 0), mode)
12294 & (((unsigned HOST_WIDE_INT) 1
12295 << INTVAL (XEXP (op0, 1))) - 1));
12296 if (low_bits == 0 || !equality_comparison_p)
12298 /* If the shift was logical, then we must make the condition
12299 unsigned. */
12300 if (GET_CODE (op0) == LSHIFTRT)
12301 code = unsigned_condition (code);
12303 const_op <<= INTVAL (XEXP (op0, 1));
12304 if (low_bits != 0
12305 && (code == GT || code == GTU
12306 || code == LE || code == LEU))
12307 const_op
12308 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12309 op1 = GEN_INT (const_op);
12310 op0 = XEXP (op0, 0);
12311 continue;
12315 /* If we are using this shift to extract just the sign bit, we
12316 can replace this with an LT or GE comparison. */
12317 if (const_op == 0
12318 && (equality_comparison_p || sign_bit_comparison_p)
12319 && CONST_INT_P (XEXP (op0, 1))
12320 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12322 op0 = XEXP (op0, 0);
12323 code = (code == NE || code == GT ? LT : GE);
12324 continue;
12326 break;
12328 default:
12329 break;
12332 break;
12335 /* Now make any compound operations involved in this comparison. Then,
12336 check for an outmost SUBREG on OP0 that is not doing anything or is
12337 paradoxical. The latter transformation must only be performed when
12338 it is known that the "extra" bits will be the same in op0 and op1 or
12339 that they don't matter. There are three cases to consider:
12341 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12342 care bits and we can assume they have any convenient value. So
12343 making the transformation is safe.
12345 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12346 In this case the upper bits of op0 are undefined. We should not make
12347 the simplification in that case as we do not know the contents of
12348 those bits.
12350 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12351 UNKNOWN. In that case we know those bits are zeros or ones. We must
12352 also be sure that they are the same as the upper bits of op1.
12354 We can never remove a SUBREG for a non-equality comparison because
12355 the sign bit is in a different place in the underlying object. */
12357 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12358 op1 = make_compound_operation (op1, SET);
12360 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12361 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12362 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12363 && (code == NE || code == EQ))
12365 if (paradoxical_subreg_p (op0))
12367 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12368 implemented. */
12369 if (REG_P (SUBREG_REG (op0)))
12371 op0 = SUBREG_REG (op0);
12372 op1 = gen_lowpart (GET_MODE (op0), op1);
12375 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12376 <= HOST_BITS_PER_WIDE_INT)
12377 && (nonzero_bits (SUBREG_REG (op0),
12378 GET_MODE (SUBREG_REG (op0)))
12379 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12381 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12383 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12384 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12385 op0 = SUBREG_REG (op0), op1 = tem;
12389 /* We now do the opposite procedure: Some machines don't have compare
12390 insns in all modes. If OP0's mode is an integer mode smaller than a
12391 word and we can't do a compare in that mode, see if there is a larger
12392 mode for which we can do the compare. There are a number of cases in
12393 which we can use the wider mode. */
12395 mode = GET_MODE (op0);
12396 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12397 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12398 && ! have_insn_for (COMPARE, mode))
12399 for (tmode = GET_MODE_WIDER_MODE (mode);
12400 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12401 tmode = GET_MODE_WIDER_MODE (tmode))
12402 if (have_insn_for (COMPARE, tmode))
12404 int zero_extended;
12406 /* If this is a test for negative, we can make an explicit
12407 test of the sign bit. Test this first so we can use
12408 a paradoxical subreg to extend OP0. */
12410 if (op1 == const0_rtx && (code == LT || code == GE)
12411 && HWI_COMPUTABLE_MODE_P (mode))
12413 unsigned HOST_WIDE_INT sign
12414 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12415 op0 = simplify_gen_binary (AND, tmode,
12416 gen_lowpart (tmode, op0),
12417 gen_int_mode (sign, tmode));
12418 code = (code == LT) ? NE : EQ;
12419 break;
12422 /* If the only nonzero bits in OP0 and OP1 are those in the
12423 narrower mode and this is an equality or unsigned comparison,
12424 we can use the wider mode. Similarly for sign-extended
12425 values, in which case it is true for all comparisons. */
12426 zero_extended = ((code == EQ || code == NE
12427 || code == GEU || code == GTU
12428 || code == LEU || code == LTU)
12429 && (nonzero_bits (op0, tmode)
12430 & ~GET_MODE_MASK (mode)) == 0
12431 && ((CONST_INT_P (op1)
12432 || (nonzero_bits (op1, tmode)
12433 & ~GET_MODE_MASK (mode)) == 0)));
12435 if (zero_extended
12436 || ((num_sign_bit_copies (op0, tmode)
12437 > (unsigned int) (GET_MODE_PRECISION (tmode)
12438 - GET_MODE_PRECISION (mode)))
12439 && (num_sign_bit_copies (op1, tmode)
12440 > (unsigned int) (GET_MODE_PRECISION (tmode)
12441 - GET_MODE_PRECISION (mode)))))
12443 /* If OP0 is an AND and we don't have an AND in MODE either,
12444 make a new AND in the proper mode. */
12445 if (GET_CODE (op0) == AND
12446 && !have_insn_for (AND, mode))
12447 op0 = simplify_gen_binary (AND, tmode,
12448 gen_lowpart (tmode,
12449 XEXP (op0, 0)),
12450 gen_lowpart (tmode,
12451 XEXP (op0, 1)));
12452 else
12454 if (zero_extended)
12456 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12457 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12459 else
12461 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12462 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12464 break;
12469 /* We may have changed the comparison operands. Re-canonicalize. */
12470 if (swap_commutative_operands_p (op0, op1))
12472 std::swap (op0, op1);
12473 code = swap_condition (code);
12476 /* If this machine only supports a subset of valid comparisons, see if we
12477 can convert an unsupported one into a supported one. */
12478 target_canonicalize_comparison (&code, &op0, &op1, 0);
12480 *pop0 = op0;
12481 *pop1 = op1;
12483 return code;
12486 /* Utility function for record_value_for_reg. Count number of
12487 rtxs in X. */
12488 static int
12489 count_rtxs (rtx x)
12491 enum rtx_code code = GET_CODE (x);
12492 const char *fmt;
12493 int i, j, ret = 1;
12495 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12496 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12498 rtx x0 = XEXP (x, 0);
12499 rtx x1 = XEXP (x, 1);
12501 if (x0 == x1)
12502 return 1 + 2 * count_rtxs (x0);
12504 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12505 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12506 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12507 return 2 + 2 * count_rtxs (x0)
12508 + count_rtxs (x == XEXP (x1, 0)
12509 ? XEXP (x1, 1) : XEXP (x1, 0));
12511 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12512 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12513 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12514 return 2 + 2 * count_rtxs (x1)
12515 + count_rtxs (x == XEXP (x0, 0)
12516 ? XEXP (x0, 1) : XEXP (x0, 0));
12519 fmt = GET_RTX_FORMAT (code);
12520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12521 if (fmt[i] == 'e')
12522 ret += count_rtxs (XEXP (x, i));
12523 else if (fmt[i] == 'E')
12524 for (j = 0; j < XVECLEN (x, i); j++)
12525 ret += count_rtxs (XVECEXP (x, i, j));
12527 return ret;
12530 /* Utility function for following routine. Called when X is part of a value
12531 being stored into last_set_value. Sets last_set_table_tick
12532 for each register mentioned. Similar to mention_regs in cse.c */
12534 static void
12535 update_table_tick (rtx x)
12537 enum rtx_code code = GET_CODE (x);
12538 const char *fmt = GET_RTX_FORMAT (code);
12539 int i, j;
12541 if (code == REG)
12543 unsigned int regno = REGNO (x);
12544 unsigned int endregno = END_REGNO (x);
12545 unsigned int r;
12547 for (r = regno; r < endregno; r++)
12549 reg_stat_type *rsp = &reg_stat[r];
12550 rsp->last_set_table_tick = label_tick;
12553 return;
12556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12557 if (fmt[i] == 'e')
12559 /* Check for identical subexpressions. If x contains
12560 identical subexpression we only have to traverse one of
12561 them. */
12562 if (i == 0 && ARITHMETIC_P (x))
12564 /* Note that at this point x1 has already been
12565 processed. */
12566 rtx x0 = XEXP (x, 0);
12567 rtx x1 = XEXP (x, 1);
12569 /* If x0 and x1 are identical then there is no need to
12570 process x0. */
12571 if (x0 == x1)
12572 break;
12574 /* If x0 is identical to a subexpression of x1 then while
12575 processing x1, x0 has already been processed. Thus we
12576 are done with x. */
12577 if (ARITHMETIC_P (x1)
12578 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12579 break;
12581 /* If x1 is identical to a subexpression of x0 then we
12582 still have to process the rest of x0. */
12583 if (ARITHMETIC_P (x0)
12584 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12586 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12587 break;
12591 update_table_tick (XEXP (x, i));
12593 else if (fmt[i] == 'E')
12594 for (j = 0; j < XVECLEN (x, i); j++)
12595 update_table_tick (XVECEXP (x, i, j));
12598 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12599 are saying that the register is clobbered and we no longer know its
12600 value. If INSN is zero, don't update reg_stat[].last_set; this is
12601 only permitted with VALUE also zero and is used to invalidate the
12602 register. */
12604 static void
12605 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12607 unsigned int regno = REGNO (reg);
12608 unsigned int endregno = END_REGNO (reg);
12609 unsigned int i;
12610 reg_stat_type *rsp;
12612 /* If VALUE contains REG and we have a previous value for REG, substitute
12613 the previous value. */
12614 if (value && insn && reg_overlap_mentioned_p (reg, value))
12616 rtx tem;
12618 /* Set things up so get_last_value is allowed to see anything set up to
12619 our insn. */
12620 subst_low_luid = DF_INSN_LUID (insn);
12621 tem = get_last_value (reg);
12623 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12624 it isn't going to be useful and will take a lot of time to process,
12625 so just use the CLOBBER. */
12627 if (tem)
12629 if (ARITHMETIC_P (tem)
12630 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12631 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12632 tem = XEXP (tem, 0);
12633 else if (count_occurrences (value, reg, 1) >= 2)
12635 /* If there are two or more occurrences of REG in VALUE,
12636 prevent the value from growing too much. */
12637 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12638 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12641 value = replace_rtx (copy_rtx (value), reg, tem);
12645 /* For each register modified, show we don't know its value, that
12646 we don't know about its bitwise content, that its value has been
12647 updated, and that we don't know the location of the death of the
12648 register. */
12649 for (i = regno; i < endregno; i++)
12651 rsp = &reg_stat[i];
12653 if (insn)
12654 rsp->last_set = insn;
12656 rsp->last_set_value = 0;
12657 rsp->last_set_mode = VOIDmode;
12658 rsp->last_set_nonzero_bits = 0;
12659 rsp->last_set_sign_bit_copies = 0;
12660 rsp->last_death = 0;
12661 rsp->truncated_to_mode = VOIDmode;
12664 /* Mark registers that are being referenced in this value. */
12665 if (value)
12666 update_table_tick (value);
12668 /* Now update the status of each register being set.
12669 If someone is using this register in this block, set this register
12670 to invalid since we will get confused between the two lives in this
12671 basic block. This makes using this register always invalid. In cse, we
12672 scan the table to invalidate all entries using this register, but this
12673 is too much work for us. */
12675 for (i = regno; i < endregno; i++)
12677 rsp = &reg_stat[i];
12678 rsp->last_set_label = label_tick;
12679 if (!insn
12680 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12681 rsp->last_set_invalid = 1;
12682 else
12683 rsp->last_set_invalid = 0;
12686 /* The value being assigned might refer to X (like in "x++;"). In that
12687 case, we must replace it with (clobber (const_int 0)) to prevent
12688 infinite loops. */
12689 rsp = &reg_stat[regno];
12690 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12692 value = copy_rtx (value);
12693 if (!get_last_value_validate (&value, insn, label_tick, 1))
12694 value = 0;
12697 /* For the main register being modified, update the value, the mode, the
12698 nonzero bits, and the number of sign bit copies. */
12700 rsp->last_set_value = value;
12702 if (value)
12704 machine_mode mode = GET_MODE (reg);
12705 subst_low_luid = DF_INSN_LUID (insn);
12706 rsp->last_set_mode = mode;
12707 if (GET_MODE_CLASS (mode) == MODE_INT
12708 && HWI_COMPUTABLE_MODE_P (mode))
12709 mode = nonzero_bits_mode;
12710 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12711 rsp->last_set_sign_bit_copies
12712 = num_sign_bit_copies (value, GET_MODE (reg));
12716 /* Called via note_stores from record_dead_and_set_regs to handle one
12717 SET or CLOBBER in an insn. DATA is the instruction in which the
12718 set is occurring. */
12720 static void
12721 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12723 rtx_insn *record_dead_insn = (rtx_insn *) data;
12725 if (GET_CODE (dest) == SUBREG)
12726 dest = SUBREG_REG (dest);
12728 if (!record_dead_insn)
12730 if (REG_P (dest))
12731 record_value_for_reg (dest, NULL, NULL_RTX);
12732 return;
12735 if (REG_P (dest))
12737 /* If we are setting the whole register, we know its value. Otherwise
12738 show that we don't know the value. We can handle SUBREG in
12739 some cases. */
12740 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12741 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12742 else if (GET_CODE (setter) == SET
12743 && GET_CODE (SET_DEST (setter)) == SUBREG
12744 && SUBREG_REG (SET_DEST (setter)) == dest
12745 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12746 && subreg_lowpart_p (SET_DEST (setter)))
12747 record_value_for_reg (dest, record_dead_insn,
12748 gen_lowpart (GET_MODE (dest),
12749 SET_SRC (setter)));
12750 else
12751 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12753 else if (MEM_P (dest)
12754 /* Ignore pushes, they clobber nothing. */
12755 && ! push_operand (dest, GET_MODE (dest)))
12756 mem_last_set = DF_INSN_LUID (record_dead_insn);
12759 /* Update the records of when each REG was most recently set or killed
12760 for the things done by INSN. This is the last thing done in processing
12761 INSN in the combiner loop.
12763 We update reg_stat[], in particular fields last_set, last_set_value,
12764 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12765 last_death, and also the similar information mem_last_set (which insn
12766 most recently modified memory) and last_call_luid (which insn was the
12767 most recent subroutine call). */
12769 static void
12770 record_dead_and_set_regs (rtx_insn *insn)
12772 rtx link;
12773 unsigned int i;
12775 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12777 if (REG_NOTE_KIND (link) == REG_DEAD
12778 && REG_P (XEXP (link, 0)))
12780 unsigned int regno = REGNO (XEXP (link, 0));
12781 unsigned int endregno = END_REGNO (XEXP (link, 0));
12783 for (i = regno; i < endregno; i++)
12785 reg_stat_type *rsp;
12787 rsp = &reg_stat[i];
12788 rsp->last_death = insn;
12791 else if (REG_NOTE_KIND (link) == REG_INC)
12792 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12795 if (CALL_P (insn))
12797 hard_reg_set_iterator hrsi;
12798 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12800 reg_stat_type *rsp;
12802 rsp = &reg_stat[i];
12803 rsp->last_set_invalid = 1;
12804 rsp->last_set = insn;
12805 rsp->last_set_value = 0;
12806 rsp->last_set_mode = VOIDmode;
12807 rsp->last_set_nonzero_bits = 0;
12808 rsp->last_set_sign_bit_copies = 0;
12809 rsp->last_death = 0;
12810 rsp->truncated_to_mode = VOIDmode;
12813 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12815 /* We can't combine into a call pattern. Remember, though, that
12816 the return value register is set at this LUID. We could
12817 still replace a register with the return value from the
12818 wrong subroutine call! */
12819 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12821 else
12822 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12825 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12826 register present in the SUBREG, so for each such SUBREG go back and
12827 adjust nonzero and sign bit information of the registers that are
12828 known to have some zero/sign bits set.
12830 This is needed because when combine blows the SUBREGs away, the
12831 information on zero/sign bits is lost and further combines can be
12832 missed because of that. */
12834 static void
12835 record_promoted_value (rtx_insn *insn, rtx subreg)
12837 struct insn_link *links;
12838 rtx set;
12839 unsigned int regno = REGNO (SUBREG_REG (subreg));
12840 machine_mode mode = GET_MODE (subreg);
12842 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12843 return;
12845 for (links = LOG_LINKS (insn); links;)
12847 reg_stat_type *rsp;
12849 insn = links->insn;
12850 set = single_set (insn);
12852 if (! set || !REG_P (SET_DEST (set))
12853 || REGNO (SET_DEST (set)) != regno
12854 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12856 links = links->next;
12857 continue;
12860 rsp = &reg_stat[regno];
12861 if (rsp->last_set == insn)
12863 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12864 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12867 if (REG_P (SET_SRC (set)))
12869 regno = REGNO (SET_SRC (set));
12870 links = LOG_LINKS (insn);
12872 else
12873 break;
12877 /* Check if X, a register, is known to contain a value already
12878 truncated to MODE. In this case we can use a subreg to refer to
12879 the truncated value even though in the generic case we would need
12880 an explicit truncation. */
12882 static bool
12883 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12885 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12886 machine_mode truncated = rsp->truncated_to_mode;
12888 if (truncated == 0
12889 || rsp->truncation_label < label_tick_ebb_start)
12890 return false;
12891 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12892 return true;
12893 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12894 return true;
12895 return false;
12898 /* If X is a hard reg or a subreg record the mode that the register is
12899 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12900 to turn a truncate into a subreg using this information. Return true
12901 if traversing X is complete. */
12903 static bool
12904 record_truncated_value (rtx x)
12906 machine_mode truncated_mode;
12907 reg_stat_type *rsp;
12909 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12911 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12912 truncated_mode = GET_MODE (x);
12914 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12915 return true;
12917 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12918 return true;
12920 x = SUBREG_REG (x);
12922 /* ??? For hard-regs we now record everything. We might be able to
12923 optimize this using last_set_mode. */
12924 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12925 truncated_mode = GET_MODE (x);
12926 else
12927 return false;
12929 rsp = &reg_stat[REGNO (x)];
12930 if (rsp->truncated_to_mode == 0
12931 || rsp->truncation_label < label_tick_ebb_start
12932 || (GET_MODE_SIZE (truncated_mode)
12933 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12935 rsp->truncated_to_mode = truncated_mode;
12936 rsp->truncation_label = label_tick;
12939 return true;
12942 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12943 the modes they are used in. This can help truning TRUNCATEs into
12944 SUBREGs. */
12946 static void
12947 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12949 subrtx_var_iterator::array_type array;
12950 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12951 if (record_truncated_value (*iter))
12952 iter.skip_subrtxes ();
12955 /* Scan X for promoted SUBREGs. For each one found,
12956 note what it implies to the registers used in it. */
12958 static void
12959 check_promoted_subreg (rtx_insn *insn, rtx x)
12961 if (GET_CODE (x) == SUBREG
12962 && SUBREG_PROMOTED_VAR_P (x)
12963 && REG_P (SUBREG_REG (x)))
12964 record_promoted_value (insn, x);
12965 else
12967 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12968 int i, j;
12970 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12971 switch (format[i])
12973 case 'e':
12974 check_promoted_subreg (insn, XEXP (x, i));
12975 break;
12976 case 'V':
12977 case 'E':
12978 if (XVEC (x, i) != 0)
12979 for (j = 0; j < XVECLEN (x, i); j++)
12980 check_promoted_subreg (insn, XVECEXP (x, i, j));
12981 break;
12986 /* Verify that all the registers and memory references mentioned in *LOC are
12987 still valid. *LOC was part of a value set in INSN when label_tick was
12988 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12989 the invalid references with (clobber (const_int 0)) and return 1. This
12990 replacement is useful because we often can get useful information about
12991 the form of a value (e.g., if it was produced by a shift that always
12992 produces -1 or 0) even though we don't know exactly what registers it
12993 was produced from. */
12995 static int
12996 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12998 rtx x = *loc;
12999 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13000 int len = GET_RTX_LENGTH (GET_CODE (x));
13001 int i, j;
13003 if (REG_P (x))
13005 unsigned int regno = REGNO (x);
13006 unsigned int endregno = END_REGNO (x);
13007 unsigned int j;
13009 for (j = regno; j < endregno; j++)
13011 reg_stat_type *rsp = &reg_stat[j];
13012 if (rsp->last_set_invalid
13013 /* If this is a pseudo-register that was only set once and not
13014 live at the beginning of the function, it is always valid. */
13015 || (! (regno >= FIRST_PSEUDO_REGISTER
13016 && regno < reg_n_sets_max
13017 && REG_N_SETS (regno) == 1
13018 && (!REGNO_REG_SET_P
13019 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13020 regno)))
13021 && rsp->last_set_label > tick))
13023 if (replace)
13024 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13025 return replace;
13029 return 1;
13031 /* If this is a memory reference, make sure that there were no stores after
13032 it that might have clobbered the value. We don't have alias info, so we
13033 assume any store invalidates it. Moreover, we only have local UIDs, so
13034 we also assume that there were stores in the intervening basic blocks. */
13035 else if (MEM_P (x) && !MEM_READONLY_P (x)
13036 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13038 if (replace)
13039 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13040 return replace;
13043 for (i = 0; i < len; i++)
13045 if (fmt[i] == 'e')
13047 /* Check for identical subexpressions. If x contains
13048 identical subexpression we only have to traverse one of
13049 them. */
13050 if (i == 1 && ARITHMETIC_P (x))
13052 /* Note that at this point x0 has already been checked
13053 and found valid. */
13054 rtx x0 = XEXP (x, 0);
13055 rtx x1 = XEXP (x, 1);
13057 /* If x0 and x1 are identical then x is also valid. */
13058 if (x0 == x1)
13059 return 1;
13061 /* If x1 is identical to a subexpression of x0 then
13062 while checking x0, x1 has already been checked. Thus
13063 it is valid and so as x. */
13064 if (ARITHMETIC_P (x0)
13065 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13066 return 1;
13068 /* If x0 is identical to a subexpression of x1 then x is
13069 valid iff the rest of x1 is valid. */
13070 if (ARITHMETIC_P (x1)
13071 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13072 return
13073 get_last_value_validate (&XEXP (x1,
13074 x0 == XEXP (x1, 0) ? 1 : 0),
13075 insn, tick, replace);
13078 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13079 replace) == 0)
13080 return 0;
13082 else if (fmt[i] == 'E')
13083 for (j = 0; j < XVECLEN (x, i); j++)
13084 if (get_last_value_validate (&XVECEXP (x, i, j),
13085 insn, tick, replace) == 0)
13086 return 0;
13089 /* If we haven't found a reason for it to be invalid, it is valid. */
13090 return 1;
13093 /* Get the last value assigned to X, if known. Some registers
13094 in the value may be replaced with (clobber (const_int 0)) if their value
13095 is known longer known reliably. */
13097 static rtx
13098 get_last_value (const_rtx x)
13100 unsigned int regno;
13101 rtx value;
13102 reg_stat_type *rsp;
13104 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13105 then convert it to the desired mode. If this is a paradoxical SUBREG,
13106 we cannot predict what values the "extra" bits might have. */
13107 if (GET_CODE (x) == SUBREG
13108 && subreg_lowpart_p (x)
13109 && !paradoxical_subreg_p (x)
13110 && (value = get_last_value (SUBREG_REG (x))) != 0)
13111 return gen_lowpart (GET_MODE (x), value);
13113 if (!REG_P (x))
13114 return 0;
13116 regno = REGNO (x);
13117 rsp = &reg_stat[regno];
13118 value = rsp->last_set_value;
13120 /* If we don't have a value, or if it isn't for this basic block and
13121 it's either a hard register, set more than once, or it's a live
13122 at the beginning of the function, return 0.
13124 Because if it's not live at the beginning of the function then the reg
13125 is always set before being used (is never used without being set).
13126 And, if it's set only once, and it's always set before use, then all
13127 uses must have the same last value, even if it's not from this basic
13128 block. */
13130 if (value == 0
13131 || (rsp->last_set_label < label_tick_ebb_start
13132 && (regno < FIRST_PSEUDO_REGISTER
13133 || regno >= reg_n_sets_max
13134 || REG_N_SETS (regno) != 1
13135 || REGNO_REG_SET_P
13136 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13137 return 0;
13139 /* If the value was set in a later insn than the ones we are processing,
13140 we can't use it even if the register was only set once. */
13141 if (rsp->last_set_label == label_tick
13142 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13143 return 0;
13145 /* If the value has all its registers valid, return it. */
13146 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13147 return value;
13149 /* Otherwise, make a copy and replace any invalid register with
13150 (clobber (const_int 0)). If that fails for some reason, return 0. */
13152 value = copy_rtx (value);
13153 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13154 return value;
13156 return 0;
13159 /* Return nonzero if expression X refers to a REG or to memory
13160 that is set in an instruction more recent than FROM_LUID. */
13162 static int
13163 use_crosses_set_p (const_rtx x, int from_luid)
13165 const char *fmt;
13166 int i;
13167 enum rtx_code code = GET_CODE (x);
13169 if (code == REG)
13171 unsigned int regno = REGNO (x);
13172 unsigned endreg = END_REGNO (x);
13174 #ifdef PUSH_ROUNDING
13175 /* Don't allow uses of the stack pointer to be moved,
13176 because we don't know whether the move crosses a push insn. */
13177 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13178 return 1;
13179 #endif
13180 for (; regno < endreg; regno++)
13182 reg_stat_type *rsp = &reg_stat[regno];
13183 if (rsp->last_set
13184 && rsp->last_set_label == label_tick
13185 && DF_INSN_LUID (rsp->last_set) > from_luid)
13186 return 1;
13188 return 0;
13191 if (code == MEM && mem_last_set > from_luid)
13192 return 1;
13194 fmt = GET_RTX_FORMAT (code);
13196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13198 if (fmt[i] == 'E')
13200 int j;
13201 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13202 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13203 return 1;
13205 else if (fmt[i] == 'e'
13206 && use_crosses_set_p (XEXP (x, i), from_luid))
13207 return 1;
13209 return 0;
13212 /* Define three variables used for communication between the following
13213 routines. */
13215 static unsigned int reg_dead_regno, reg_dead_endregno;
13216 static int reg_dead_flag;
13218 /* Function called via note_stores from reg_dead_at_p.
13220 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13221 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13223 static void
13224 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13226 unsigned int regno, endregno;
13228 if (!REG_P (dest))
13229 return;
13231 regno = REGNO (dest);
13232 endregno = END_REGNO (dest);
13233 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13234 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13237 /* Return nonzero if REG is known to be dead at INSN.
13239 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13240 referencing REG, it is dead. If we hit a SET referencing REG, it is
13241 live. Otherwise, see if it is live or dead at the start of the basic
13242 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13243 must be assumed to be always live. */
13245 static int
13246 reg_dead_at_p (rtx reg, rtx_insn *insn)
13248 basic_block block;
13249 unsigned int i;
13251 /* Set variables for reg_dead_at_p_1. */
13252 reg_dead_regno = REGNO (reg);
13253 reg_dead_endregno = END_REGNO (reg);
13255 reg_dead_flag = 0;
13257 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13258 we allow the machine description to decide whether use-and-clobber
13259 patterns are OK. */
13260 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13262 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13263 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13264 return 0;
13267 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13268 beginning of basic block. */
13269 block = BLOCK_FOR_INSN (insn);
13270 for (;;)
13272 if (INSN_P (insn))
13274 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13275 return 1;
13277 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13278 if (reg_dead_flag)
13279 return reg_dead_flag == 1 ? 1 : 0;
13281 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13282 return 1;
13285 if (insn == BB_HEAD (block))
13286 break;
13288 insn = PREV_INSN (insn);
13291 /* Look at live-in sets for the basic block that we were in. */
13292 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13293 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13294 return 0;
13296 return 1;
13299 /* Note hard registers in X that are used. */
13301 static void
13302 mark_used_regs_combine (rtx x)
13304 RTX_CODE code = GET_CODE (x);
13305 unsigned int regno;
13306 int i;
13308 switch (code)
13310 case LABEL_REF:
13311 case SYMBOL_REF:
13312 case CONST:
13313 CASE_CONST_ANY:
13314 case PC:
13315 case ADDR_VEC:
13316 case ADDR_DIFF_VEC:
13317 case ASM_INPUT:
13318 /* CC0 must die in the insn after it is set, so we don't need to take
13319 special note of it here. */
13320 case CC0:
13321 return;
13323 case CLOBBER:
13324 /* If we are clobbering a MEM, mark any hard registers inside the
13325 address as used. */
13326 if (MEM_P (XEXP (x, 0)))
13327 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13328 return;
13330 case REG:
13331 regno = REGNO (x);
13332 /* A hard reg in a wide mode may really be multiple registers.
13333 If so, mark all of them just like the first. */
13334 if (regno < FIRST_PSEUDO_REGISTER)
13336 /* None of this applies to the stack, frame or arg pointers. */
13337 if (regno == STACK_POINTER_REGNUM
13338 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
13339 || regno == HARD_FRAME_POINTER_REGNUM
13340 #endif
13341 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13342 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13343 #endif
13344 || regno == FRAME_POINTER_REGNUM)
13345 return;
13347 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13349 return;
13351 case SET:
13353 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13354 the address. */
13355 rtx testreg = SET_DEST (x);
13357 while (GET_CODE (testreg) == SUBREG
13358 || GET_CODE (testreg) == ZERO_EXTRACT
13359 || GET_CODE (testreg) == STRICT_LOW_PART)
13360 testreg = XEXP (testreg, 0);
13362 if (MEM_P (testreg))
13363 mark_used_regs_combine (XEXP (testreg, 0));
13365 mark_used_regs_combine (SET_SRC (x));
13367 return;
13369 default:
13370 break;
13373 /* Recursively scan the operands of this expression. */
13376 const char *fmt = GET_RTX_FORMAT (code);
13378 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13380 if (fmt[i] == 'e')
13381 mark_used_regs_combine (XEXP (x, i));
13382 else if (fmt[i] == 'E')
13384 int j;
13386 for (j = 0; j < XVECLEN (x, i); j++)
13387 mark_used_regs_combine (XVECEXP (x, i, j));
13393 /* Remove register number REGNO from the dead registers list of INSN.
13395 Return the note used to record the death, if there was one. */
13398 remove_death (unsigned int regno, rtx_insn *insn)
13400 rtx note = find_regno_note (insn, REG_DEAD, regno);
13402 if (note)
13403 remove_note (insn, note);
13405 return note;
13408 /* For each register (hardware or pseudo) used within expression X, if its
13409 death is in an instruction with luid between FROM_LUID (inclusive) and
13410 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13411 list headed by PNOTES.
13413 That said, don't move registers killed by maybe_kill_insn.
13415 This is done when X is being merged by combination into TO_INSN. These
13416 notes will then be distributed as needed. */
13418 static void
13419 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13420 rtx *pnotes)
13422 const char *fmt;
13423 int len, i;
13424 enum rtx_code code = GET_CODE (x);
13426 if (code == REG)
13428 unsigned int regno = REGNO (x);
13429 rtx_insn *where_dead = reg_stat[regno].last_death;
13431 /* Don't move the register if it gets killed in between from and to. */
13432 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13433 && ! reg_referenced_p (x, maybe_kill_insn))
13434 return;
13436 if (where_dead
13437 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13438 && DF_INSN_LUID (where_dead) >= from_luid
13439 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13441 rtx note = remove_death (regno, where_dead);
13443 /* It is possible for the call above to return 0. This can occur
13444 when last_death points to I2 or I1 that we combined with.
13445 In that case make a new note.
13447 We must also check for the case where X is a hard register
13448 and NOTE is a death note for a range of hard registers
13449 including X. In that case, we must put REG_DEAD notes for
13450 the remaining registers in place of NOTE. */
13452 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13453 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13454 > GET_MODE_SIZE (GET_MODE (x))))
13456 unsigned int deadregno = REGNO (XEXP (note, 0));
13457 unsigned int deadend = END_REGNO (XEXP (note, 0));
13458 unsigned int ourend = END_REGNO (x);
13459 unsigned int i;
13461 for (i = deadregno; i < deadend; i++)
13462 if (i < regno || i >= ourend)
13463 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13466 /* If we didn't find any note, or if we found a REG_DEAD note that
13467 covers only part of the given reg, and we have a multi-reg hard
13468 register, then to be safe we must check for REG_DEAD notes
13469 for each register other than the first. They could have
13470 their own REG_DEAD notes lying around. */
13471 else if ((note == 0
13472 || (note != 0
13473 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13474 < GET_MODE_SIZE (GET_MODE (x)))))
13475 && regno < FIRST_PSEUDO_REGISTER
13476 && REG_NREGS (x) > 1)
13478 unsigned int ourend = END_REGNO (x);
13479 unsigned int i, offset;
13480 rtx oldnotes = 0;
13482 if (note)
13483 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13484 else
13485 offset = 1;
13487 for (i = regno + offset; i < ourend; i++)
13488 move_deaths (regno_reg_rtx[i],
13489 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13492 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13494 XEXP (note, 1) = *pnotes;
13495 *pnotes = note;
13497 else
13498 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13501 return;
13504 else if (GET_CODE (x) == SET)
13506 rtx dest = SET_DEST (x);
13508 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13510 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13511 that accesses one word of a multi-word item, some
13512 piece of everything register in the expression is used by
13513 this insn, so remove any old death. */
13514 /* ??? So why do we test for equality of the sizes? */
13516 if (GET_CODE (dest) == ZERO_EXTRACT
13517 || GET_CODE (dest) == STRICT_LOW_PART
13518 || (GET_CODE (dest) == SUBREG
13519 && (((GET_MODE_SIZE (GET_MODE (dest))
13520 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13521 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13522 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13524 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13525 return;
13528 /* If this is some other SUBREG, we know it replaces the entire
13529 value, so use that as the destination. */
13530 if (GET_CODE (dest) == SUBREG)
13531 dest = SUBREG_REG (dest);
13533 /* If this is a MEM, adjust deaths of anything used in the address.
13534 For a REG (the only other possibility), the entire value is
13535 being replaced so the old value is not used in this insn. */
13537 if (MEM_P (dest))
13538 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13539 to_insn, pnotes);
13540 return;
13543 else if (GET_CODE (x) == CLOBBER)
13544 return;
13546 len = GET_RTX_LENGTH (code);
13547 fmt = GET_RTX_FORMAT (code);
13549 for (i = 0; i < len; i++)
13551 if (fmt[i] == 'E')
13553 int j;
13554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13555 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13556 to_insn, pnotes);
13558 else if (fmt[i] == 'e')
13559 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13563 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13564 pattern of an insn. X must be a REG. */
13566 static int
13567 reg_bitfield_target_p (rtx x, rtx body)
13569 int i;
13571 if (GET_CODE (body) == SET)
13573 rtx dest = SET_DEST (body);
13574 rtx target;
13575 unsigned int regno, tregno, endregno, endtregno;
13577 if (GET_CODE (dest) == ZERO_EXTRACT)
13578 target = XEXP (dest, 0);
13579 else if (GET_CODE (dest) == STRICT_LOW_PART)
13580 target = SUBREG_REG (XEXP (dest, 0));
13581 else
13582 return 0;
13584 if (GET_CODE (target) == SUBREG)
13585 target = SUBREG_REG (target);
13587 if (!REG_P (target))
13588 return 0;
13590 tregno = REGNO (target), regno = REGNO (x);
13591 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13592 return target == x;
13594 endtregno = end_hard_regno (GET_MODE (target), tregno);
13595 endregno = end_hard_regno (GET_MODE (x), regno);
13597 return endregno > tregno && regno < endtregno;
13600 else if (GET_CODE (body) == PARALLEL)
13601 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13602 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13603 return 1;
13605 return 0;
13608 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13609 as appropriate. I3 and I2 are the insns resulting from the combination
13610 insns including FROM (I2 may be zero).
13612 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13613 not need REG_DEAD notes because they are being substituted for. This
13614 saves searching in the most common cases.
13616 Each note in the list is either ignored or placed on some insns, depending
13617 on the type of note. */
13619 static void
13620 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13621 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13623 rtx note, next_note;
13624 rtx tem_note;
13625 rtx_insn *tem_insn;
13627 for (note = notes; note; note = next_note)
13629 rtx_insn *place = 0, *place2 = 0;
13631 next_note = XEXP (note, 1);
13632 switch (REG_NOTE_KIND (note))
13634 case REG_BR_PROB:
13635 case REG_BR_PRED:
13636 /* Doesn't matter much where we put this, as long as it's somewhere.
13637 It is preferable to keep these notes on branches, which is most
13638 likely to be i3. */
13639 place = i3;
13640 break;
13642 case REG_NON_LOCAL_GOTO:
13643 if (JUMP_P (i3))
13644 place = i3;
13645 else
13647 gcc_assert (i2 && JUMP_P (i2));
13648 place = i2;
13650 break;
13652 case REG_EH_REGION:
13653 /* These notes must remain with the call or trapping instruction. */
13654 if (CALL_P (i3))
13655 place = i3;
13656 else if (i2 && CALL_P (i2))
13657 place = i2;
13658 else
13660 gcc_assert (cfun->can_throw_non_call_exceptions);
13661 if (may_trap_p (i3))
13662 place = i3;
13663 else if (i2 && may_trap_p (i2))
13664 place = i2;
13665 /* ??? Otherwise assume we've combined things such that we
13666 can now prove that the instructions can't trap. Drop the
13667 note in this case. */
13669 break;
13671 case REG_ARGS_SIZE:
13672 /* ??? How to distribute between i3-i1. Assume i3 contains the
13673 entire adjustment. Assert i3 contains at least some adjust. */
13674 if (!noop_move_p (i3))
13676 int old_size, args_size = INTVAL (XEXP (note, 0));
13677 /* fixup_args_size_notes looks at REG_NORETURN note,
13678 so ensure the note is placed there first. */
13679 if (CALL_P (i3))
13681 rtx *np;
13682 for (np = &next_note; *np; np = &XEXP (*np, 1))
13683 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13685 rtx n = *np;
13686 *np = XEXP (n, 1);
13687 XEXP (n, 1) = REG_NOTES (i3);
13688 REG_NOTES (i3) = n;
13689 break;
13692 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13693 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13694 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13695 gcc_assert (old_size != args_size
13696 || (CALL_P (i3)
13697 && !ACCUMULATE_OUTGOING_ARGS
13698 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13700 break;
13702 case REG_NORETURN:
13703 case REG_SETJMP:
13704 case REG_TM:
13705 case REG_CALL_DECL:
13706 /* These notes must remain with the call. It should not be
13707 possible for both I2 and I3 to be a call. */
13708 if (CALL_P (i3))
13709 place = i3;
13710 else
13712 gcc_assert (i2 && CALL_P (i2));
13713 place = i2;
13715 break;
13717 case REG_UNUSED:
13718 /* Any clobbers for i3 may still exist, and so we must process
13719 REG_UNUSED notes from that insn.
13721 Any clobbers from i2 or i1 can only exist if they were added by
13722 recog_for_combine. In that case, recog_for_combine created the
13723 necessary REG_UNUSED notes. Trying to keep any original
13724 REG_UNUSED notes from these insns can cause incorrect output
13725 if it is for the same register as the original i3 dest.
13726 In that case, we will notice that the register is set in i3,
13727 and then add a REG_UNUSED note for the destination of i3, which
13728 is wrong. However, it is possible to have REG_UNUSED notes from
13729 i2 or i1 for register which were both used and clobbered, so
13730 we keep notes from i2 or i1 if they will turn into REG_DEAD
13731 notes. */
13733 /* If this register is set or clobbered in I3, put the note there
13734 unless there is one already. */
13735 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13737 if (from_insn != i3)
13738 break;
13740 if (! (REG_P (XEXP (note, 0))
13741 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13742 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13743 place = i3;
13745 /* Otherwise, if this register is used by I3, then this register
13746 now dies here, so we must put a REG_DEAD note here unless there
13747 is one already. */
13748 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13749 && ! (REG_P (XEXP (note, 0))
13750 ? find_regno_note (i3, REG_DEAD,
13751 REGNO (XEXP (note, 0)))
13752 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13754 PUT_REG_NOTE_KIND (note, REG_DEAD);
13755 place = i3;
13757 break;
13759 case REG_EQUAL:
13760 case REG_EQUIV:
13761 case REG_NOALIAS:
13762 /* These notes say something about results of an insn. We can
13763 only support them if they used to be on I3 in which case they
13764 remain on I3. Otherwise they are ignored.
13766 If the note refers to an expression that is not a constant, we
13767 must also ignore the note since we cannot tell whether the
13768 equivalence is still true. It might be possible to do
13769 slightly better than this (we only have a problem if I2DEST
13770 or I1DEST is present in the expression), but it doesn't
13771 seem worth the trouble. */
13773 if (from_insn == i3
13774 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13775 place = i3;
13776 break;
13778 case REG_INC:
13779 /* These notes say something about how a register is used. They must
13780 be present on any use of the register in I2 or I3. */
13781 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13782 place = i3;
13784 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13786 if (place)
13787 place2 = i2;
13788 else
13789 place = i2;
13791 break;
13793 case REG_LABEL_TARGET:
13794 case REG_LABEL_OPERAND:
13795 /* This can show up in several ways -- either directly in the
13796 pattern, or hidden off in the constant pool with (or without?)
13797 a REG_EQUAL note. */
13798 /* ??? Ignore the without-reg_equal-note problem for now. */
13799 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13800 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13801 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13802 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13803 place = i3;
13805 if (i2
13806 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13807 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13808 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13809 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13811 if (place)
13812 place2 = i2;
13813 else
13814 place = i2;
13817 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13818 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13819 there. */
13820 if (place && JUMP_P (place)
13821 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13822 && (JUMP_LABEL (place) == NULL
13823 || JUMP_LABEL (place) == XEXP (note, 0)))
13825 rtx label = JUMP_LABEL (place);
13827 if (!label)
13828 JUMP_LABEL (place) = XEXP (note, 0);
13829 else if (LABEL_P (label))
13830 LABEL_NUSES (label)--;
13833 if (place2 && JUMP_P (place2)
13834 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13835 && (JUMP_LABEL (place2) == NULL
13836 || JUMP_LABEL (place2) == XEXP (note, 0)))
13838 rtx label = JUMP_LABEL (place2);
13840 if (!label)
13841 JUMP_LABEL (place2) = XEXP (note, 0);
13842 else if (LABEL_P (label))
13843 LABEL_NUSES (label)--;
13844 place2 = 0;
13846 break;
13848 case REG_NONNEG:
13849 /* This note says something about the value of a register prior
13850 to the execution of an insn. It is too much trouble to see
13851 if the note is still correct in all situations. It is better
13852 to simply delete it. */
13853 break;
13855 case REG_DEAD:
13856 /* If we replaced the right hand side of FROM_INSN with a
13857 REG_EQUAL note, the original use of the dying register
13858 will not have been combined into I3 and I2. In such cases,
13859 FROM_INSN is guaranteed to be the first of the combined
13860 instructions, so we simply need to search back before
13861 FROM_INSN for the previous use or set of this register,
13862 then alter the notes there appropriately.
13864 If the register is used as an input in I3, it dies there.
13865 Similarly for I2, if it is nonzero and adjacent to I3.
13867 If the register is not used as an input in either I3 or I2
13868 and it is not one of the registers we were supposed to eliminate,
13869 there are two possibilities. We might have a non-adjacent I2
13870 or we might have somehow eliminated an additional register
13871 from a computation. For example, we might have had A & B where
13872 we discover that B will always be zero. In this case we will
13873 eliminate the reference to A.
13875 In both cases, we must search to see if we can find a previous
13876 use of A and put the death note there. */
13878 if (from_insn
13879 && from_insn == i2mod
13880 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13881 tem_insn = from_insn;
13882 else
13884 if (from_insn
13885 && CALL_P (from_insn)
13886 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13887 place = from_insn;
13888 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13889 place = i3;
13890 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13891 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13892 place = i2;
13893 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13894 && !(i2mod
13895 && reg_overlap_mentioned_p (XEXP (note, 0),
13896 i2mod_old_rhs)))
13897 || rtx_equal_p (XEXP (note, 0), elim_i1)
13898 || rtx_equal_p (XEXP (note, 0), elim_i0))
13899 break;
13900 tem_insn = i3;
13901 /* If the new I2 sets the same register that is marked dead
13902 in the note, the note now should not be put on I2, as the
13903 note refers to a previous incarnation of the reg. */
13904 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13905 tem_insn = i2;
13908 if (place == 0)
13910 basic_block bb = this_basic_block;
13912 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13914 if (!NONDEBUG_INSN_P (tem_insn))
13916 if (tem_insn == BB_HEAD (bb))
13917 break;
13918 continue;
13921 /* If the register is being set at TEM_INSN, see if that is all
13922 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13923 into a REG_UNUSED note instead. Don't delete sets to
13924 global register vars. */
13925 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13926 || !global_regs[REGNO (XEXP (note, 0))])
13927 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13929 rtx set = single_set (tem_insn);
13930 rtx inner_dest = 0;
13931 rtx_insn *cc0_setter = NULL;
13933 if (set != 0)
13934 for (inner_dest = SET_DEST (set);
13935 (GET_CODE (inner_dest) == STRICT_LOW_PART
13936 || GET_CODE (inner_dest) == SUBREG
13937 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13938 inner_dest = XEXP (inner_dest, 0))
13941 /* Verify that it was the set, and not a clobber that
13942 modified the register.
13944 CC0 targets must be careful to maintain setter/user
13945 pairs. If we cannot delete the setter due to side
13946 effects, mark the user with an UNUSED note instead
13947 of deleting it. */
13949 if (set != 0 && ! side_effects_p (SET_SRC (set))
13950 && rtx_equal_p (XEXP (note, 0), inner_dest)
13951 #if HAVE_cc0
13952 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13953 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13954 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13955 #endif
13958 /* Move the notes and links of TEM_INSN elsewhere.
13959 This might delete other dead insns recursively.
13960 First set the pattern to something that won't use
13961 any register. */
13962 rtx old_notes = REG_NOTES (tem_insn);
13964 PATTERN (tem_insn) = pc_rtx;
13965 REG_NOTES (tem_insn) = NULL;
13967 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13968 NULL_RTX, NULL_RTX, NULL_RTX);
13969 distribute_links (LOG_LINKS (tem_insn));
13971 SET_INSN_DELETED (tem_insn);
13972 if (tem_insn == i2)
13973 i2 = NULL;
13975 /* Delete the setter too. */
13976 if (cc0_setter)
13978 PATTERN (cc0_setter) = pc_rtx;
13979 old_notes = REG_NOTES (cc0_setter);
13980 REG_NOTES (cc0_setter) = NULL;
13982 distribute_notes (old_notes, cc0_setter,
13983 cc0_setter, NULL,
13984 NULL_RTX, NULL_RTX, NULL_RTX);
13985 distribute_links (LOG_LINKS (cc0_setter));
13987 SET_INSN_DELETED (cc0_setter);
13988 if (cc0_setter == i2)
13989 i2 = NULL;
13992 else
13994 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13996 /* If there isn't already a REG_UNUSED note, put one
13997 here. Do not place a REG_DEAD note, even if
13998 the register is also used here; that would not
13999 match the algorithm used in lifetime analysis
14000 and can cause the consistency check in the
14001 scheduler to fail. */
14002 if (! find_regno_note (tem_insn, REG_UNUSED,
14003 REGNO (XEXP (note, 0))))
14004 place = tem_insn;
14005 break;
14008 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14009 || (CALL_P (tem_insn)
14010 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14012 place = tem_insn;
14014 /* If we are doing a 3->2 combination, and we have a
14015 register which formerly died in i3 and was not used
14016 by i2, which now no longer dies in i3 and is used in
14017 i2 but does not die in i2, and place is between i2
14018 and i3, then we may need to move a link from place to
14019 i2. */
14020 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14021 && from_insn
14022 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14023 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14025 struct insn_link *links = LOG_LINKS (place);
14026 LOG_LINKS (place) = NULL;
14027 distribute_links (links);
14029 break;
14032 if (tem_insn == BB_HEAD (bb))
14033 break;
14038 /* If the register is set or already dead at PLACE, we needn't do
14039 anything with this note if it is still a REG_DEAD note.
14040 We check here if it is set at all, not if is it totally replaced,
14041 which is what `dead_or_set_p' checks, so also check for it being
14042 set partially. */
14044 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14046 unsigned int regno = REGNO (XEXP (note, 0));
14047 reg_stat_type *rsp = &reg_stat[regno];
14049 if (dead_or_set_p (place, XEXP (note, 0))
14050 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14052 /* Unless the register previously died in PLACE, clear
14053 last_death. [I no longer understand why this is
14054 being done.] */
14055 if (rsp->last_death != place)
14056 rsp->last_death = 0;
14057 place = 0;
14059 else
14060 rsp->last_death = place;
14062 /* If this is a death note for a hard reg that is occupying
14063 multiple registers, ensure that we are still using all
14064 parts of the object. If we find a piece of the object
14065 that is unused, we must arrange for an appropriate REG_DEAD
14066 note to be added for it. However, we can't just emit a USE
14067 and tag the note to it, since the register might actually
14068 be dead; so we recourse, and the recursive call then finds
14069 the previous insn that used this register. */
14071 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14073 unsigned int endregno = END_REGNO (XEXP (note, 0));
14074 bool all_used = true;
14075 unsigned int i;
14077 for (i = regno; i < endregno; i++)
14078 if ((! refers_to_regno_p (i, PATTERN (place))
14079 && ! find_regno_fusage (place, USE, i))
14080 || dead_or_set_regno_p (place, i))
14082 all_used = false;
14083 break;
14086 if (! all_used)
14088 /* Put only REG_DEAD notes for pieces that are
14089 not already dead or set. */
14091 for (i = regno; i < endregno;
14092 i += hard_regno_nregs[i][reg_raw_mode[i]])
14094 rtx piece = regno_reg_rtx[i];
14095 basic_block bb = this_basic_block;
14097 if (! dead_or_set_p (place, piece)
14098 && ! reg_bitfield_target_p (piece,
14099 PATTERN (place)))
14101 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14102 NULL_RTX);
14104 distribute_notes (new_note, place, place,
14105 NULL, NULL_RTX, NULL_RTX,
14106 NULL_RTX);
14108 else if (! refers_to_regno_p (i, PATTERN (place))
14109 && ! find_regno_fusage (place, USE, i))
14110 for (tem_insn = PREV_INSN (place); ;
14111 tem_insn = PREV_INSN (tem_insn))
14113 if (!NONDEBUG_INSN_P (tem_insn))
14115 if (tem_insn == BB_HEAD (bb))
14116 break;
14117 continue;
14119 if (dead_or_set_p (tem_insn, piece)
14120 || reg_bitfield_target_p (piece,
14121 PATTERN (tem_insn)))
14123 add_reg_note (tem_insn, REG_UNUSED, piece);
14124 break;
14129 place = 0;
14133 break;
14135 default:
14136 /* Any other notes should not be present at this point in the
14137 compilation. */
14138 gcc_unreachable ();
14141 if (place)
14143 XEXP (note, 1) = REG_NOTES (place);
14144 REG_NOTES (place) = note;
14147 if (place2)
14148 add_shallow_copy_of_reg_note (place2, note);
14152 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14153 I3, I2, and I1 to new locations. This is also called to add a link
14154 pointing at I3 when I3's destination is changed. */
14156 static void
14157 distribute_links (struct insn_link *links)
14159 struct insn_link *link, *next_link;
14161 for (link = links; link; link = next_link)
14163 rtx_insn *place = 0;
14164 rtx_insn *insn;
14165 rtx set, reg;
14167 next_link = link->next;
14169 /* If the insn that this link points to is a NOTE, ignore it. */
14170 if (NOTE_P (link->insn))
14171 continue;
14173 set = 0;
14174 rtx pat = PATTERN (link->insn);
14175 if (GET_CODE (pat) == SET)
14176 set = pat;
14177 else if (GET_CODE (pat) == PARALLEL)
14179 int i;
14180 for (i = 0; i < XVECLEN (pat, 0); i++)
14182 set = XVECEXP (pat, 0, i);
14183 if (GET_CODE (set) != SET)
14184 continue;
14186 reg = SET_DEST (set);
14187 while (GET_CODE (reg) == ZERO_EXTRACT
14188 || GET_CODE (reg) == STRICT_LOW_PART
14189 || GET_CODE (reg) == SUBREG)
14190 reg = XEXP (reg, 0);
14192 if (!REG_P (reg))
14193 continue;
14195 if (REGNO (reg) == link->regno)
14196 break;
14198 if (i == XVECLEN (pat, 0))
14199 continue;
14201 else
14202 continue;
14204 reg = SET_DEST (set);
14206 while (GET_CODE (reg) == ZERO_EXTRACT
14207 || GET_CODE (reg) == STRICT_LOW_PART
14208 || GET_CODE (reg) == SUBREG)
14209 reg = XEXP (reg, 0);
14211 /* A LOG_LINK is defined as being placed on the first insn that uses
14212 a register and points to the insn that sets the register. Start
14213 searching at the next insn after the target of the link and stop
14214 when we reach a set of the register or the end of the basic block.
14216 Note that this correctly handles the link that used to point from
14217 I3 to I2. Also note that not much searching is typically done here
14218 since most links don't point very far away. */
14220 for (insn = NEXT_INSN (link->insn);
14221 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14222 || BB_HEAD (this_basic_block->next_bb) != insn));
14223 insn = NEXT_INSN (insn))
14224 if (DEBUG_INSN_P (insn))
14225 continue;
14226 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14228 if (reg_referenced_p (reg, PATTERN (insn)))
14229 place = insn;
14230 break;
14232 else if (CALL_P (insn)
14233 && find_reg_fusage (insn, USE, reg))
14235 place = insn;
14236 break;
14238 else if (INSN_P (insn) && reg_set_p (reg, insn))
14239 break;
14241 /* If we found a place to put the link, place it there unless there
14242 is already a link to the same insn as LINK at that point. */
14244 if (place)
14246 struct insn_link *link2;
14248 FOR_EACH_LOG_LINK (link2, place)
14249 if (link2->insn == link->insn && link2->regno == link->regno)
14250 break;
14252 if (link2 == NULL)
14254 link->next = LOG_LINKS (place);
14255 LOG_LINKS (place) = link;
14257 /* Set added_links_insn to the earliest insn we added a
14258 link to. */
14259 if (added_links_insn == 0
14260 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14261 added_links_insn = place;
14267 /* Check for any register or memory mentioned in EQUIV that is not
14268 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14269 of EXPR where some registers may have been replaced by constants. */
14271 static bool
14272 unmentioned_reg_p (rtx equiv, rtx expr)
14274 subrtx_iterator::array_type array;
14275 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14277 const_rtx x = *iter;
14278 if ((REG_P (x) || MEM_P (x))
14279 && !reg_mentioned_p (x, expr))
14280 return true;
14282 return false;
14285 DEBUG_FUNCTION void
14286 dump_combine_stats (FILE *file)
14288 fprintf
14289 (file,
14290 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14291 combine_attempts, combine_merges, combine_extras, combine_successes);
14294 void
14295 dump_combine_total_stats (FILE *file)
14297 fprintf
14298 (file,
14299 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14300 total_attempts, total_merges, total_extras, total_successes);
14303 /* Try combining insns through substitution. */
14304 static unsigned int
14305 rest_of_handle_combine (void)
14307 int rebuild_jump_labels_after_combine;
14309 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14310 df_note_add_problem ();
14311 df_analyze ();
14313 regstat_init_n_sets_and_refs ();
14314 reg_n_sets_max = max_reg_num ();
14316 rebuild_jump_labels_after_combine
14317 = combine_instructions (get_insns (), max_reg_num ());
14319 /* Combining insns may have turned an indirect jump into a
14320 direct jump. Rebuild the JUMP_LABEL fields of jumping
14321 instructions. */
14322 if (rebuild_jump_labels_after_combine)
14324 timevar_push (TV_JUMP);
14325 rebuild_jump_labels (get_insns ());
14326 cleanup_cfg (0);
14327 timevar_pop (TV_JUMP);
14330 regstat_free_n_sets_and_refs ();
14331 return 0;
14334 namespace {
14336 const pass_data pass_data_combine =
14338 RTL_PASS, /* type */
14339 "combine", /* name */
14340 OPTGROUP_NONE, /* optinfo_flags */
14341 TV_COMBINE, /* tv_id */
14342 PROP_cfglayout, /* properties_required */
14343 0, /* properties_provided */
14344 0, /* properties_destroyed */
14345 0, /* todo_flags_start */
14346 TODO_df_finish, /* todo_flags_finish */
14349 class pass_combine : public rtl_opt_pass
14351 public:
14352 pass_combine (gcc::context *ctxt)
14353 : rtl_opt_pass (pass_data_combine, ctxt)
14356 /* opt_pass methods: */
14357 virtual bool gate (function *) { return (optimize > 0); }
14358 virtual unsigned int execute (function *)
14360 return rest_of_handle_combine ();
14363 }; // class pass_combine
14365 } // anon namespace
14367 rtl_opt_pass *
14368 make_pass_combine (gcc::context *ctxt)
14370 return new pass_combine (ctxt);