Daily bump.
[official-gcc.git] / gcc / ada / sem_res.adb
blob84612c3d7ba99694af992c0dc166d2b32309d979
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Debug_A; use Debug_A;
31 with Einfo; use Einfo;
32 with Einfo.Entities; use Einfo.Entities;
33 with Einfo.Utils; use Einfo.Utils;
34 with Errout; use Errout;
35 with Expander; use Expander;
36 with Exp_Ch6; use Exp_Ch6;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Nlists; use Nlists;
50 with Opt; use Opt;
51 with Output; use Output;
52 with Par_SCO; use Par_SCO;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aggr; use Sem_Aggr;
58 with Sem_Attr; use Sem_Attr;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Case; use Sem_Case;
61 with Sem_Cat; use Sem_Cat;
62 with Sem_Ch3; use Sem_Ch3;
63 with Sem_Ch4; use Sem_Ch4;
64 with Sem_Ch6; use Sem_Ch6;
65 with Sem_Ch8; use Sem_Ch8;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elab; use Sem_Elab;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Intr; use Sem_Intr;
74 with Sem_Mech; use Sem_Mech;
75 with Sem_Type; use Sem_Type;
76 with Sem_Util; use Sem_Util;
77 with Sem_Warn; use Sem_Warn;
78 with Sinfo; use Sinfo;
79 with Sinfo.Nodes; use Sinfo.Nodes;
80 with Sinfo.Utils; use Sinfo.Utils;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stand; use Stand;
84 with Stringt; use Stringt;
85 with Strub; use Strub;
86 with Style; use Style;
87 with Targparm; use Targparm;
88 with Tbuild; use Tbuild;
89 with Uintp; use Uintp;
90 with Urealp; use Urealp;
92 package body Sem_Res is
94 -----------------------
95 -- Local Subprograms --
96 -----------------------
98 -- Second pass (top-down) type checking and overload resolution procedures
99 -- Typ is the type required by context. These procedures propagate the
100 -- type information recursively to the descendants of N. If the node is not
101 -- overloaded, its Etype is established in the first pass. If overloaded,
102 -- the Resolve routines set the correct type. For arithmetic operators, the
103 -- Etype is the base type of the context.
105 -- Note that Resolve_Attribute is separated off in Sem_Attr
107 function Has_Applicable_User_Defined_Literal
108 (N : Node_Id;
109 Typ : Entity_Id) return Boolean;
110 -- If N is a literal or a named number, check whether Typ
111 -- has a user-defined literal aspect that can apply to N.
112 -- If present, replace N with a call to the corresponding
113 -- function and return True.
115 procedure Check_Discriminant_Use (N : Node_Id);
116 -- Enforce the restrictions on the use of discriminants when constraining
117 -- a component of a discriminated type (record or concurrent type).
119 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
120 -- Given a node for an operator associated with type T, check that the
121 -- operator is visible. Operators all of whose operands are universal must
122 -- be checked for visibility during resolution because their type is not
123 -- determinable based on their operands.
125 procedure Check_Fully_Declared_Prefix
126 (Typ : Entity_Id;
127 Pref : Node_Id);
128 -- Check that the type of the prefix of a dereference is not incomplete
130 function Check_Infinite_Recursion (Call : Node_Id) return Boolean;
131 -- Given a call node, Call, which is known to occur immediately within the
132 -- subprogram being called, determines whether it is a detectable case of
133 -- an infinite recursion, and if so, outputs appropriate messages. Returns
134 -- True if an infinite recursion is detected, and False otherwise.
136 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
137 -- N is the node for a logical operator. If the operator is predefined, and
138 -- the root type of the operands is Standard.Boolean, then a check is made
139 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
140 -- the style check for Style_Check_Boolean_And_Or.
142 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
143 -- N is either an indexed component or a selected component. This function
144 -- returns true if the prefix refers to an object that has an address
145 -- clause (the case in which we may want to issue a warning).
147 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
148 -- Determine whether E is an access type declared by an access declaration,
149 -- and not an (anonymous) allocator type.
151 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
152 -- Utility to check whether the entity for an operator is a predefined
153 -- operator, in which case the expression is left as an operator in the
154 -- tree (else it is rewritten into a call). An instance of an intrinsic
155 -- conversion operation may be given an operator name, but is not treated
156 -- like an operator. Note that an operator that is an imported back-end
157 -- builtin has convention Intrinsic, but is expected to be rewritten into
158 -- a call, so such an operator is not treated as predefined by this
159 -- predicate.
161 procedure Preanalyze_And_Resolve
162 (N : Node_Id;
163 T : Entity_Id;
164 With_Freezing : Boolean);
165 -- Subsidiary of public versions of Preanalyze_And_Resolve.
167 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
168 -- If a default expression in entry call N depends on the discriminants
169 -- of the task, it must be replaced with a reference to the discriminant
170 -- of the task being called.
172 procedure Resolve_Op_Concat_Arg
173 (N : Node_Id;
174 Arg : Node_Id;
175 Typ : Entity_Id;
176 Is_Comp : Boolean);
177 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
178 -- concatenation operator. The operand is either of the array type or of
179 -- the component type. If the operand is an aggregate, and the component
180 -- type is composite, this is ambiguous if component type has aggregates.
182 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
183 -- Does the first part of the work of Resolve_Op_Concat
185 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
186 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
187 -- has been resolved. See Resolve_Op_Concat for details.
189 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Declare_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
210 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
211 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
212 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
213 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
214 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
215 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
216 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
217 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
218 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
219 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
220 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
221 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
222 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
223 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
224 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
225 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
227 function Operator_Kind
228 (Op_Name : Name_Id;
229 Is_Binary : Boolean) return Node_Kind;
230 -- Utility to map the name of an operator into the corresponding Node. Used
231 -- by other node rewriting procedures.
233 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
234 -- Resolve actuals of call, and add default expressions for missing ones.
235 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
236 -- called subprogram.
238 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
239 -- Called from Resolve_Call, when the prefix denotes an entry or element
240 -- of entry family. Actuals are resolved as for subprograms, and the node
241 -- is rebuilt as an entry call. Also called for protected operations. Typ
242 -- is the context type, which is used when the operation is a protected
243 -- function with no arguments, and the return value is indexed.
245 procedure Resolve_Implicit_Dereference (P : Node_Id);
246 -- Called when P is the prefix of an indexed component, or of a selected
247 -- component, or of a slice. If P is of an access type, we unconditionally
248 -- rewrite it as an explicit dereference. This ensures that the expander
249 -- and the code generator have a fully explicit tree to work with.
251 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
252 -- A call to a user-defined intrinsic operator is rewritten as a call to
253 -- the corresponding predefined operator, with suitable conversions. Note
254 -- that this applies only for intrinsic operators that denote predefined
255 -- operators, not ones that are intrinsic imports of back-end builtins.
257 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
258 -- Ditto, for arithmetic unary operators
260 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
261 -- If an operator node resolves to a call to a user-defined operator,
262 -- rewrite the node as a function call.
264 procedure Make_Call_Into_Operator
265 (N : Node_Id;
266 Typ : Entity_Id;
267 Op_Id : Entity_Id);
268 -- Inverse transformation: if an operator is given in functional notation,
269 -- then after resolving the node, transform into an operator node, so that
270 -- operands are resolved properly. Recall that predefined operators do not
271 -- have a full signature and special resolution rules apply.
273 procedure Rewrite_Renamed_Operator
274 (N : Node_Id;
275 Op : Entity_Id;
276 Typ : Entity_Id);
277 -- An operator can rename another, e.g. in an instantiation. In that
278 -- case, the proper operator node must be constructed and resolved.
280 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
281 -- The String_Literal_Subtype is built for all strings that are not
282 -- operands of a static concatenation operation. If the argument is not
283 -- a N_String_Literal node, then the call has no effect.
285 procedure Set_Slice_Subtype (N : Node_Id);
286 -- Build subtype of array type, with the range specified by the slice
288 procedure Simplify_Type_Conversion (N : Node_Id);
289 -- Called after N has been resolved and evaluated, but before range checks
290 -- have been applied. This rewrites the conversion into a simpler form.
292 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
293 -- A universal_fixed expression in an universal context is unambiguous if
294 -- there is only one applicable fixed point type. Determining whether there
295 -- is only one requires a search over all visible entities, and happens
296 -- only in very pathological cases (see 6115-006).
298 function Try_User_Defined_Literal
299 (N : Node_Id;
300 Typ : Entity_Id) return Boolean;
301 -- If an operator node has a literal operand, check whether the type
302 -- of the context, or the type of the other operand has a user-defined
303 -- literal aspect that can be applied to the literal to resolve the node.
304 -- If such aspect exists, replace literal with a call to the
305 -- corresponing function and return True, return false otherwise.
307 -------------------------
308 -- Ambiguous_Character --
309 -------------------------
311 procedure Ambiguous_Character (C : Node_Id) is
312 E : Entity_Id;
314 begin
315 if Nkind (C) = N_Character_Literal then
316 Error_Msg_N ("ambiguous character literal", C);
318 -- First the ones in Standard
320 Error_Msg_N ("\\possible interpretation: Character!", C);
321 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
323 -- Include Wide_Wide_Character in Ada 2005 mode
325 if Ada_Version >= Ada_2005 then
326 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
327 end if;
329 -- Now any other types that match
331 E := Current_Entity (C);
332 while Present (E) loop
333 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
334 E := Homonym (E);
335 end loop;
336 end if;
337 end Ambiguous_Character;
339 -------------------------
340 -- Analyze_And_Resolve --
341 -------------------------
343 procedure Analyze_And_Resolve (N : Node_Id) is
344 begin
345 Analyze (N);
346 Resolve (N);
347 end Analyze_And_Resolve;
349 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
350 begin
351 Analyze (N);
352 Resolve (N, Typ);
353 end Analyze_And_Resolve;
355 -- Versions with check(s) suppressed
357 procedure Analyze_And_Resolve
358 (N : Node_Id;
359 Typ : Entity_Id;
360 Suppress : Check_Id)
362 Scop : constant Entity_Id := Current_Scope;
364 begin
365 if Suppress = All_Checks then
366 declare
367 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
368 begin
369 Scope_Suppress.Suppress := (others => True);
370 Analyze_And_Resolve (N, Typ);
371 Scope_Suppress.Suppress := Sva;
372 end;
374 else
375 declare
376 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
377 begin
378 Scope_Suppress.Suppress (Suppress) := True;
379 Analyze_And_Resolve (N, Typ);
380 Scope_Suppress.Suppress (Suppress) := Svg;
381 end;
382 end if;
384 if Current_Scope /= Scop
385 and then Scope_Is_Transient
386 then
387 -- This can only happen if a transient scope was created for an inner
388 -- expression, which will be removed upon completion of the analysis
389 -- of an enclosing construct. The transient scope must have the
390 -- suppress status of the enclosing environment, not of this Analyze
391 -- call.
393 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
394 Scope_Suppress;
395 end if;
396 end Analyze_And_Resolve;
398 procedure Analyze_And_Resolve
399 (N : Node_Id;
400 Suppress : Check_Id)
402 Scop : constant Entity_Id := Current_Scope;
404 begin
405 if Suppress = All_Checks then
406 declare
407 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
408 begin
409 Scope_Suppress.Suppress := (others => True);
410 Analyze_And_Resolve (N);
411 Scope_Suppress.Suppress := Sva;
412 end;
414 else
415 declare
416 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
417 begin
418 Scope_Suppress.Suppress (Suppress) := True;
419 Analyze_And_Resolve (N);
420 Scope_Suppress.Suppress (Suppress) := Svg;
421 end;
422 end if;
424 if Current_Scope /= Scop and then Scope_Is_Transient then
425 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
426 Scope_Suppress;
427 end if;
428 end Analyze_And_Resolve;
430 -------------------------------------
431 -- Has_Applicable_User_Defined_Literal --
432 -------------------------------------
434 function Has_Applicable_User_Defined_Literal
435 (N : Node_Id;
436 Typ : Entity_Id) return Boolean
438 Loc : constant Source_Ptr := Sloc (N);
439 Literal_Aspect_Map :
440 constant array (N_Numeric_Or_String_Literal) of Aspect_Id :=
441 (N_Integer_Literal => Aspect_Integer_Literal,
442 N_Real_Literal => Aspect_Real_Literal,
443 N_String_Literal => Aspect_String_Literal);
445 Named_Number_Aspect_Map : constant array (Named_Kind) of Aspect_Id :=
446 (E_Named_Integer => Aspect_Integer_Literal,
447 E_Named_Real => Aspect_Real_Literal);
449 Lit_Aspect : Aspect_Id;
451 Callee : Entity_Id;
452 Name : Node_Id;
453 Param1 : Node_Id;
454 Param2 : Node_Id;
455 Params : List_Id;
456 Call : Node_Id;
457 Expr : Node_Id;
459 begin
460 if (Nkind (N) in N_Numeric_Or_String_Literal
461 and then Present
462 (Find_Aspect (Typ, Literal_Aspect_Map (Nkind (N)))))
463 or else
464 (Nkind (N) = N_Identifier
465 and then Is_Named_Number (Entity (N))
466 and then
467 Present
468 (Find_Aspect
469 (Typ, Named_Number_Aspect_Map (Ekind (Entity (N))))))
470 then
471 Lit_Aspect :=
472 (if Nkind (N) = N_Identifier
473 then Named_Number_Aspect_Map (Ekind (Entity (N)))
474 else Literal_Aspect_Map (Nkind (N)));
475 Callee :=
476 Entity (Expression (Find_Aspect (Typ, Lit_Aspect)));
477 Name := Make_Identifier (Loc, Chars (Callee));
479 if Is_Derived_Type (Typ)
480 and then Is_Tagged_Type (Typ)
481 and then Base_Type (Etype (Callee)) /= Base_Type (Typ)
482 then
483 Callee :=
484 Corresponding_Primitive_Op
485 (Ancestor_Op => Callee,
486 Descendant_Type => Base_Type (Typ));
487 end if;
489 -- Handle an identifier that denotes a named number.
491 if Nkind (N) = N_Identifier then
492 Expr := Expression (Declaration_Node (Entity (N)));
494 if Ekind (Entity (N)) = E_Named_Integer then
495 UI_Image (Expr_Value (Expr), Decimal);
496 Start_String;
497 Store_String_Chars
498 (UI_Image_Buffer (1 .. UI_Image_Length));
499 Param1 := Make_String_Literal (Loc, End_String);
500 Params := New_List (Param1);
502 else
503 UI_Image (Norm_Num (Expr_Value_R (Expr)), Decimal);
504 Start_String;
506 if UR_Is_Negative (Expr_Value_R (Expr)) then
507 Store_String_Chars ("-");
508 end if;
510 Store_String_Chars
511 (UI_Image_Buffer (1 .. UI_Image_Length));
512 Param1 := Make_String_Literal (Loc, End_String);
514 -- Note: Set_Etype is called below on Param1
516 UI_Image (Norm_Den (Expr_Value_R (Expr)), Decimal);
517 Start_String;
518 Store_String_Chars
519 (UI_Image_Buffer (1 .. UI_Image_Length));
520 Param2 := Make_String_Literal (Loc, End_String);
521 Set_Etype (Param2, Standard_String);
523 Params := New_List (Param1, Param2);
525 if Present (Related_Expression (Callee)) then
526 Callee := Related_Expression (Callee);
527 else
528 Error_Msg_NE
529 ("cannot resolve & for a named real", N, Callee);
530 return False;
531 end if;
532 end if;
534 elsif Nkind (N) = N_String_Literal then
535 Param1 := Make_String_Literal (Loc, Strval (N));
536 Params := New_List (Param1);
538 else
539 Param1 :=
540 Make_String_Literal
541 (Loc, String_From_Numeric_Literal (N));
542 Params := New_List (Param1);
543 end if;
545 Call :=
546 Make_Function_Call
547 (Sloc => Loc,
548 Name => Name,
549 Parameter_Associations => Params);
551 Set_Entity (Name, Callee);
552 Set_Is_Overloaded (Name, False);
554 if Lit_Aspect = Aspect_String_Literal then
555 Set_Etype (Param1, Standard_Wide_Wide_String);
556 else
557 Set_Etype (Param1, Standard_String);
558 end if;
560 Set_Etype (Call, Etype (Callee));
562 if Base_Type (Etype (Call)) /= Base_Type (Typ) then
563 -- Conversion may be needed in case of an inherited
564 -- aspect of a derived type. For a null extension, we
565 -- use a null extension aggregate instead because the
566 -- downward type conversion would be illegal.
568 if Is_Null_Extension_Of
569 (Descendant => Typ,
570 Ancestor => Etype (Call))
571 then
572 Call := Make_Extension_Aggregate (Loc,
573 Ancestor_Part => Call,
574 Null_Record_Present => True);
575 else
576 Call := Convert_To (Typ, Call);
577 end if;
578 end if;
580 Rewrite (N, Call);
582 Analyze_And_Resolve (N, Typ);
583 return True;
584 else
585 return False;
586 end if;
587 end Has_Applicable_User_Defined_Literal;
589 ----------------------------
590 -- Check_Discriminant_Use --
591 ----------------------------
593 procedure Check_Discriminant_Use (N : Node_Id) is
594 PN : constant Node_Id := Parent (N);
595 Disc : constant Entity_Id := Entity (N);
596 P : Node_Id;
597 D : Node_Id;
599 begin
600 -- Any use in a spec-expression is legal
602 if In_Spec_Expression then
603 null;
605 elsif Nkind (PN) = N_Range then
607 -- Discriminant cannot be used to constrain a scalar type
609 P := Parent (PN);
611 if Nkind (P) = N_Range_Constraint
612 and then Nkind (Parent (P)) = N_Subtype_Indication
613 and then Nkind (Parent (Parent (P))) = N_Component_Definition
614 then
615 Error_Msg_N ("discriminant cannot constrain scalar type", N);
617 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
619 -- The following check catches the unusual case where a
620 -- discriminant appears within an index constraint that is part
621 -- of a larger expression within a constraint on a component,
622 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
623 -- check case of record components, and note that a similar check
624 -- should also apply in the case of discriminant constraints
625 -- below. ???
627 -- Note that the check for N_Subtype_Declaration below is to
628 -- detect the valid use of discriminants in the constraints of a
629 -- subtype declaration when this subtype declaration appears
630 -- inside the scope of a record type (which is syntactically
631 -- illegal, but which may be created as part of derived type
632 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
633 -- for more info.
635 if Ekind (Current_Scope) = E_Record_Type
636 and then Scope (Disc) = Current_Scope
637 and then not
638 (Nkind (Parent (P)) = N_Subtype_Indication
639 and then
640 Nkind (Parent (Parent (P))) in N_Component_Definition
641 | N_Subtype_Declaration
642 and then Paren_Count (N) = 0)
643 then
644 Error_Msg_N
645 ("discriminant must appear alone in component constraint", N);
646 return;
647 end if;
649 -- Detect a common error:
651 -- type R (D : Positive := 100) is record
652 -- Name : String (1 .. D);
653 -- end record;
655 -- The default value causes an object of type R to be allocated
656 -- with room for Positive'Last characters. The RM does not mandate
657 -- the allocation of the maximum size, but that is what GNAT does
658 -- so we should warn the programmer that there is a problem.
660 Check_Large : declare
661 SI : Node_Id;
662 T : Entity_Id;
663 TB : Node_Id;
664 CB : Entity_Id;
666 function Large_Storage_Type (T : Entity_Id) return Boolean;
667 -- Return True if type T has a large enough range that any
668 -- array whose index type covered the whole range of the type
669 -- would likely raise Storage_Error.
671 ------------------------
672 -- Large_Storage_Type --
673 ------------------------
675 function Large_Storage_Type (T : Entity_Id) return Boolean is
676 begin
677 -- The type is considered large if its bounds are known at
678 -- compile time and if it requires at least as many bits as
679 -- a Positive to store the possible values.
681 return Compile_Time_Known_Value (Type_Low_Bound (T))
682 and then Compile_Time_Known_Value (Type_High_Bound (T))
683 and then
684 Minimum_Size (T, Biased => True) >=
685 RM_Size (Standard_Positive);
686 end Large_Storage_Type;
688 -- Start of processing for Check_Large
690 begin
691 -- Check that the Disc has a large range
693 if not Large_Storage_Type (Etype (Disc)) then
694 goto No_Danger;
695 end if;
697 -- If the enclosing type is limited, we allocate only the
698 -- default value, not the maximum, and there is no need for
699 -- a warning.
701 if Is_Limited_Type (Scope (Disc)) then
702 goto No_Danger;
703 end if;
705 -- Check that it is the high bound
707 if N /= High_Bound (PN)
708 or else No (Discriminant_Default_Value (Disc))
709 then
710 goto No_Danger;
711 end if;
713 -- Check the array allows a large range at this bound. First
714 -- find the array
716 SI := Parent (P);
718 if Nkind (SI) /= N_Subtype_Indication then
719 goto No_Danger;
720 end if;
722 T := Entity (Subtype_Mark (SI));
724 if not Is_Array_Type (T) then
725 goto No_Danger;
726 end if;
728 -- Next, find the dimension
730 TB := First_Index (T);
731 CB := First (Constraints (P));
732 while True
733 and then Present (TB)
734 and then Present (CB)
735 and then CB /= PN
736 loop
737 Next_Index (TB);
738 Next (CB);
739 end loop;
741 if CB /= PN then
742 goto No_Danger;
743 end if;
745 -- Now, check the dimension has a large range
747 if not Large_Storage_Type (Etype (TB)) then
748 goto No_Danger;
749 end if;
751 -- Warn about the danger
753 Error_Msg_N
754 ("??creation of & object may raise Storage_Error!",
755 Scope (Disc));
757 <<No_Danger>>
758 null;
760 end Check_Large;
761 end if;
763 -- Legal case is in index or discriminant constraint
765 elsif Nkind (PN) in N_Index_Or_Discriminant_Constraint
766 | N_Discriminant_Association
767 then
768 if Paren_Count (N) > 0 then
769 Error_Msg_N
770 ("discriminant in constraint must appear alone", N);
772 elsif Nkind (N) = N_Expanded_Name
773 and then Comes_From_Source (N)
774 then
775 Error_Msg_N
776 ("discriminant must appear alone as a direct name", N);
777 end if;
779 return;
781 -- Otherwise, context is an expression. It should not be within (i.e. a
782 -- subexpression of) a constraint for a component.
784 else
785 D := PN;
786 P := Parent (PN);
787 while Nkind (P) not in
788 N_Component_Declaration | N_Subtype_Indication | N_Entry_Declaration
789 loop
790 D := P;
791 P := Parent (P);
792 exit when No (P);
793 end loop;
795 -- If the discriminant is used in an expression that is a bound of a
796 -- scalar type, an Itype is created and the bounds are attached to
797 -- its range, not to the original subtype indication. Such use is of
798 -- course a double fault.
800 if (Nkind (P) = N_Subtype_Indication
801 and then Nkind (Parent (P)) in N_Component_Definition
802 | N_Derived_Type_Definition
803 and then D = Constraint (P))
805 -- The constraint itself may be given by a subtype indication,
806 -- rather than by a more common discrete range.
808 or else (Nkind (P) = N_Subtype_Indication
809 and then
810 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
811 or else Nkind (P) = N_Entry_Declaration
812 or else Nkind (D) = N_Defining_Identifier
813 then
814 Error_Msg_N
815 ("discriminant in constraint must appear alone", N);
816 end if;
817 end if;
818 end Check_Discriminant_Use;
820 --------------------------------
821 -- Check_For_Visible_Operator --
822 --------------------------------
824 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
825 begin
826 if Is_Invisible_Operator (N, T) then
827 Error_Msg_NE -- CODEFIX
828 ("operator for} is not directly visible!", N, First_Subtype (T));
829 Error_Msg_N -- CODEFIX
830 ("use clause would make operation legal!", N);
831 end if;
832 end Check_For_Visible_Operator;
834 ---------------------------------
835 -- Check_Fully_Declared_Prefix --
836 ---------------------------------
838 procedure Check_Fully_Declared_Prefix
839 (Typ : Entity_Id;
840 Pref : Node_Id)
842 begin
843 -- Check that the designated type of the prefix of a dereference is
844 -- not an incomplete type. This cannot be done unconditionally, because
845 -- dereferences of private types are legal in default expressions. This
846 -- case is taken care of in Check_Fully_Declared, called below. There
847 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
849 -- This consideration also applies to similar checks for allocators,
850 -- qualified expressions, and type conversions.
852 -- An additional exception concerns other per-object expressions that
853 -- are not directly related to component declarations, in particular
854 -- representation pragmas for tasks. These will be per-object
855 -- expressions if they depend on discriminants or some global entity.
856 -- If the task has access discriminants, the designated type may be
857 -- incomplete at the point the expression is resolved. This resolution
858 -- takes place within the body of the initialization procedure, where
859 -- the discriminant is replaced by its discriminal.
861 if Is_Entity_Name (Pref)
862 and then Ekind (Entity (Pref)) = E_In_Parameter
863 then
864 null;
866 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
867 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
868 -- Analyze_Object_Renaming, and Freeze_Entity.
870 elsif Ada_Version >= Ada_2005
871 and then Is_Entity_Name (Pref)
872 and then Is_Access_Type (Etype (Pref))
873 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
874 E_Incomplete_Type
875 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
876 then
877 null;
878 else
879 Check_Fully_Declared (Typ, Parent (Pref));
880 end if;
881 end Check_Fully_Declared_Prefix;
883 ------------------------------
884 -- Check_Infinite_Recursion --
885 ------------------------------
887 function Check_Infinite_Recursion (Call : Node_Id) return Boolean is
888 function Enclosing_Declaration_Or_Statement (N : Node_Id) return Node_Id;
889 -- Return the nearest enclosing declaration or statement that houses
890 -- arbitrary node N.
892 function Invoked_With_Different_Arguments (N : Node_Id) return Boolean;
893 -- Determine whether call N invokes the related enclosing subprogram
894 -- with actuals that differ from the subprogram's formals.
896 function Is_Conditional_Statement (N : Node_Id) return Boolean;
897 -- Determine whether arbitrary node N denotes a conditional construct
899 function Is_Control_Flow_Statement (N : Node_Id) return Boolean;
900 -- Determine whether arbitrary node N denotes a control flow statement
901 -- or a construct that may contains such a statement.
903 function Is_Immediately_Within_Body (N : Node_Id) return Boolean;
904 -- Determine whether arbitrary node N appears immediately within the
905 -- statements of an entry or subprogram body.
907 function Is_Raise_Idiom (N : Node_Id) return Boolean;
908 -- Determine whether arbitrary node N appears immediately within the
909 -- body of an entry or subprogram, and is preceded by a single raise
910 -- statement.
912 function Is_Raise_Statement (N : Node_Id) return Boolean;
913 -- Determine whether arbitrary node N denotes a raise statement
915 function Is_Sole_Statement (N : Node_Id) return Boolean;
916 -- Determine whether arbitrary node N is the sole source statement in
917 -- the body of the enclosing subprogram.
919 function Preceded_By_Control_Flow_Statement (N : Node_Id) return Boolean;
920 -- Determine whether arbitrary node N is preceded by a control flow
921 -- statement.
923 function Within_Conditional_Statement (N : Node_Id) return Boolean;
924 -- Determine whether arbitrary node N appears within a conditional
925 -- construct.
927 ----------------------------------------
928 -- Enclosing_Declaration_Or_Statement --
929 ----------------------------------------
931 function Enclosing_Declaration_Or_Statement
932 (N : Node_Id) return Node_Id
934 Par : Node_Id;
936 begin
937 Par := N;
938 while Present (Par) loop
939 if Is_Declaration (Par) or else Is_Statement (Par) then
940 return Par;
942 -- Prevent the search from going too far
944 elsif Is_Body_Or_Package_Declaration (Par) then
945 exit;
946 end if;
948 Par := Parent (Par);
949 end loop;
951 return N;
952 end Enclosing_Declaration_Or_Statement;
954 --------------------------------------
955 -- Invoked_With_Different_Arguments --
956 --------------------------------------
958 function Invoked_With_Different_Arguments (N : Node_Id) return Boolean is
959 Subp : constant Entity_Id := Entity (Name (N));
961 Actual : Node_Id;
962 Formal : Entity_Id;
964 begin
965 -- Determine whether the formals of the invoked subprogram are not
966 -- used as actuals in the call.
968 Actual := First_Actual (Call);
969 Formal := First_Formal (Subp);
970 while Present (Actual) and then Present (Formal) loop
972 -- The current actual does not match the current formal
974 if not (Is_Entity_Name (Actual)
975 and then Entity (Actual) = Formal)
976 then
977 return True;
978 end if;
980 Next_Actual (Actual);
981 Next_Formal (Formal);
982 end loop;
984 return False;
985 end Invoked_With_Different_Arguments;
987 ------------------------------
988 -- Is_Conditional_Statement --
989 ------------------------------
991 function Is_Conditional_Statement (N : Node_Id) return Boolean is
992 begin
993 return
994 Nkind (N) in N_And_Then
995 | N_Case_Expression
996 | N_Case_Statement
997 | N_If_Expression
998 | N_If_Statement
999 | N_Or_Else;
1000 end Is_Conditional_Statement;
1002 -------------------------------
1003 -- Is_Control_Flow_Statement --
1004 -------------------------------
1006 function Is_Control_Flow_Statement (N : Node_Id) return Boolean is
1007 begin
1008 -- It is assumed that all statements may affect the control flow in
1009 -- some way. A raise statement may be expanded into a non-statement
1010 -- node.
1012 return Is_Statement (N) or else Is_Raise_Statement (N);
1013 end Is_Control_Flow_Statement;
1015 --------------------------------
1016 -- Is_Immediately_Within_Body --
1017 --------------------------------
1019 function Is_Immediately_Within_Body (N : Node_Id) return Boolean is
1020 HSS : constant Node_Id := Parent (N);
1022 begin
1023 return
1024 Nkind (HSS) = N_Handled_Sequence_Of_Statements
1025 and then Nkind (Parent (HSS)) in N_Entry_Body | N_Subprogram_Body
1026 and then Is_List_Member (N)
1027 and then List_Containing (N) = Statements (HSS);
1028 end Is_Immediately_Within_Body;
1030 --------------------
1031 -- Is_Raise_Idiom --
1032 --------------------
1034 function Is_Raise_Idiom (N : Node_Id) return Boolean is
1035 Raise_Stmt : Node_Id;
1036 Stmt : Node_Id;
1038 begin
1039 if Is_Immediately_Within_Body (N) then
1041 -- Assume that no raise statement has been seen yet
1043 Raise_Stmt := Empty;
1045 -- Examine the statements preceding the input node, skipping
1046 -- internally-generated constructs.
1048 Stmt := Prev (N);
1049 while Present (Stmt) loop
1051 -- Multiple raise statements violate the idiom
1053 if Is_Raise_Statement (Stmt) then
1054 if Present (Raise_Stmt) then
1055 return False;
1056 end if;
1058 Raise_Stmt := Stmt;
1060 elsif Comes_From_Source (Stmt) then
1061 exit;
1062 end if;
1064 Stmt := Prev (Stmt);
1065 end loop;
1067 -- At this point the node must be preceded by a raise statement,
1068 -- and the raise statement has to be the sole statement within
1069 -- the enclosing entry or subprogram body.
1071 return
1072 Present (Raise_Stmt) and then Is_Sole_Statement (Raise_Stmt);
1073 end if;
1075 return False;
1076 end Is_Raise_Idiom;
1078 ------------------------
1079 -- Is_Raise_Statement --
1080 ------------------------
1082 function Is_Raise_Statement (N : Node_Id) return Boolean is
1083 begin
1084 -- A raise statement may be transfomed into a Raise_xxx_Error node
1086 return
1087 Nkind (N) = N_Raise_Statement
1088 or else Nkind (N) in N_Raise_xxx_Error;
1089 end Is_Raise_Statement;
1091 -----------------------
1092 -- Is_Sole_Statement --
1093 -----------------------
1095 function Is_Sole_Statement (N : Node_Id) return Boolean is
1096 Stmt : Node_Id;
1098 begin
1099 -- The input node appears within the statements of an entry or
1100 -- subprogram body. Examine the statements preceding the node.
1102 if Is_Immediately_Within_Body (N) then
1103 Stmt := Prev (N);
1105 while Present (Stmt) loop
1107 -- The statement is preceded by another statement or a source
1108 -- construct. This indicates that the node does not appear by
1109 -- itself.
1111 if Is_Control_Flow_Statement (Stmt)
1112 or else Comes_From_Source (Stmt)
1113 then
1114 return False;
1115 end if;
1117 Stmt := Prev (Stmt);
1118 end loop;
1120 return True;
1121 end if;
1123 -- The input node is within a construct nested inside the entry or
1124 -- subprogram body.
1126 return False;
1127 end Is_Sole_Statement;
1129 ----------------------------------------
1130 -- Preceded_By_Control_Flow_Statement --
1131 ----------------------------------------
1133 function Preceded_By_Control_Flow_Statement
1134 (N : Node_Id) return Boolean
1136 Stmt : Node_Id;
1138 begin
1139 if Is_List_Member (N) then
1140 Stmt := Prev (N);
1142 -- Examine the statements preceding the input node
1144 while Present (Stmt) loop
1145 if Is_Control_Flow_Statement (Stmt) then
1146 return True;
1147 end if;
1149 Stmt := Prev (Stmt);
1150 end loop;
1152 return False;
1153 end if;
1155 -- Assume that the node is part of some control flow statement
1157 return True;
1158 end Preceded_By_Control_Flow_Statement;
1160 ----------------------------------
1161 -- Within_Conditional_Statement --
1162 ----------------------------------
1164 function Within_Conditional_Statement (N : Node_Id) return Boolean is
1165 Stmt : Node_Id;
1167 begin
1168 Stmt := Parent (N);
1169 while Present (Stmt) loop
1170 if Is_Conditional_Statement (Stmt) then
1171 return True;
1173 -- Prevent the search from going too far
1175 elsif Is_Body_Or_Package_Declaration (Stmt) then
1176 exit;
1177 end if;
1179 Stmt := Parent (Stmt);
1180 end loop;
1182 return False;
1183 end Within_Conditional_Statement;
1185 -- Local variables
1187 Call_Context : constant Node_Id :=
1188 Enclosing_Declaration_Or_Statement (Call);
1190 -- Start of processing for Check_Infinite_Recursion
1192 begin
1193 -- The call is assumed to be safe when the enclosing subprogram is
1194 -- invoked with actuals other than its formals.
1196 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1197 -- begin
1198 -- ...
1199 -- Proc (A1, A2, ..., AN);
1200 -- ...
1201 -- end Proc;
1203 if Invoked_With_Different_Arguments (Call) then
1204 return False;
1206 -- The call is assumed to be safe when the invocation of the enclosing
1207 -- subprogram depends on a conditional statement.
1209 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1210 -- begin
1211 -- ...
1212 -- if Some_Condition then
1213 -- Proc (F1, F2, ..., FN);
1214 -- end if;
1215 -- ...
1216 -- end Proc;
1218 elsif Within_Conditional_Statement (Call) then
1219 return False;
1221 -- The context of the call is assumed to be safe when the invocation of
1222 -- the enclosing subprogram is preceded by some control flow statement.
1224 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1225 -- begin
1226 -- ...
1227 -- if Some_Condition then
1228 -- ...
1229 -- end if;
1230 -- ...
1231 -- Proc (F1, F2, ..., FN);
1232 -- ...
1233 -- end Proc;
1235 elsif Preceded_By_Control_Flow_Statement (Call_Context) then
1236 return False;
1238 -- Detect an idiom where the context of the call is preceded by a single
1239 -- raise statement.
1241 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1242 -- begin
1243 -- raise ...;
1244 -- Proc (F1, F2, ..., FN);
1245 -- end Proc;
1247 elsif Is_Raise_Idiom (Call_Context) then
1248 return False;
1249 end if;
1251 -- At this point it is certain that infinite recursion will take place
1252 -- as long as the call is executed. Detect a case where the context of
1253 -- the call is the sole source statement within the subprogram body.
1255 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1256 -- begin
1257 -- Proc (F1, F2, ..., FN);
1258 -- end Proc;
1260 -- Install an explicit raise to prevent the infinite recursion.
1262 if Is_Sole_Statement (Call_Context) then
1263 Error_Msg_Warn := SPARK_Mode /= On;
1264 Error_Msg_N ("!infinite recursion<<", Call);
1265 Error_Msg_N ("\!Storage_Error [<<", Call);
1267 Insert_Action (Call,
1268 Make_Raise_Storage_Error (Sloc (Call),
1269 Reason => SE_Infinite_Recursion));
1271 -- Otherwise infinite recursion could take place, considering other flow
1272 -- control constructs such as gotos, exit statements, etc.
1274 else
1275 Error_Msg_Warn := SPARK_Mode /= On;
1276 Error_Msg_N ("!possible infinite recursion<<", Call);
1277 Error_Msg_N ("\!??Storage_Error ]<<", Call);
1278 end if;
1280 return True;
1281 end Check_Infinite_Recursion;
1283 ---------------------------------------
1284 -- Check_No_Direct_Boolean_Operators --
1285 ---------------------------------------
1287 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
1288 begin
1289 if Scope (Entity (N)) = Standard_Standard
1290 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
1291 then
1292 -- Restriction only applies to original source code
1294 if Comes_From_Source (N) then
1295 Check_Restriction (No_Direct_Boolean_Operators, N);
1296 end if;
1297 end if;
1299 -- Do style check (but skip if in instance, error is on template)
1301 if Style_Check then
1302 if not In_Instance then
1303 Check_Boolean_Operator (N);
1304 end if;
1305 end if;
1306 end Check_No_Direct_Boolean_Operators;
1308 ------------------------------
1309 -- Check_Parameterless_Call --
1310 ------------------------------
1312 procedure Check_Parameterless_Call (N : Node_Id) is
1313 Nam : Node_Id;
1315 function Prefix_Is_Access_Subp return Boolean;
1316 -- If the prefix is of an access_to_subprogram type, the node must be
1317 -- rewritten as a call. Ditto if the prefix is overloaded and all its
1318 -- interpretations are access to subprograms.
1320 ---------------------------
1321 -- Prefix_Is_Access_Subp --
1322 ---------------------------
1324 function Prefix_Is_Access_Subp return Boolean is
1325 I : Interp_Index;
1326 It : Interp;
1328 begin
1329 -- If the context is an attribute reference that can apply to
1330 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1332 if Nkind (Parent (N)) = N_Attribute_Reference
1333 and then Attribute_Name (Parent (N))
1334 in Name_Address | Name_Code_Address | Name_Access
1335 then
1336 return False;
1337 end if;
1339 if not Is_Overloaded (N) then
1340 return
1341 Ekind (Etype (N)) = E_Subprogram_Type
1342 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1343 else
1344 Get_First_Interp (N, I, It);
1345 while Present (It.Typ) loop
1346 if Ekind (It.Typ) /= E_Subprogram_Type
1347 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1348 then
1349 return False;
1350 end if;
1352 Get_Next_Interp (I, It);
1353 end loop;
1355 return True;
1356 end if;
1357 end Prefix_Is_Access_Subp;
1359 -- Start of processing for Check_Parameterless_Call
1361 begin
1362 -- Defend against junk stuff if errors already detected
1364 if Total_Errors_Detected /= 0 then
1365 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1366 return;
1367 elsif Nkind (N) in N_Has_Chars
1368 and then not Is_Valid_Name (Chars (N))
1369 then
1370 return;
1371 end if;
1373 Require_Entity (N);
1374 end if;
1376 -- If the context expects a value, and the name is a procedure, this is
1377 -- most likely a missing 'Access. Don't try to resolve the parameterless
1378 -- call, error will be caught when the outer call is analyzed.
1380 if Is_Entity_Name (N)
1381 and then Ekind (Entity (N)) = E_Procedure
1382 and then not Is_Overloaded (N)
1383 and then
1384 Nkind (Parent (N)) in N_Parameter_Association
1385 | N_Function_Call
1386 | N_Procedure_Call_Statement
1387 then
1388 return;
1389 end if;
1391 -- Rewrite as call if overloadable entity that is (or could be, in the
1392 -- overloaded case) a function call. If we know for sure that the entity
1393 -- is an enumeration literal, we do not rewrite it.
1395 -- If the entity is the name of an operator, it cannot be a call because
1396 -- operators cannot have default parameters. In this case, this must be
1397 -- a string whose contents coincide with an operator name. Set the kind
1398 -- of the node appropriately.
1400 if (Is_Entity_Name (N)
1401 and then Nkind (N) /= N_Operator_Symbol
1402 and then Is_Overloadable (Entity (N))
1403 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1404 or else Is_Overloaded (N)))
1406 -- Rewrite as call if it is an explicit dereference of an expression of
1407 -- a subprogram access type, and the subprogram type is not that of a
1408 -- procedure or entry.
1410 or else
1411 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1413 -- Rewrite as call if it is a selected component which is a function,
1414 -- this is the case of a call to a protected function (which may be
1415 -- overloaded with other protected operations).
1417 or else
1418 (Nkind (N) = N_Selected_Component
1419 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1420 or else
1421 (Ekind (Entity (Selector_Name (N))) in
1422 E_Entry | E_Procedure
1423 and then Is_Overloaded (Selector_Name (N)))))
1425 -- If one of the above three conditions is met, rewrite as call. Apply
1426 -- the rewriting only once.
1428 then
1429 if Nkind (Parent (N)) /= N_Function_Call
1430 or else N /= Name (Parent (N))
1431 then
1433 -- This may be a prefixed call that was not fully analyzed, e.g.
1434 -- an actual in an instance.
1436 if Ada_Version >= Ada_2005
1437 and then Nkind (N) = N_Selected_Component
1438 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1439 then
1440 Analyze_Selected_Component (N);
1442 if Nkind (N) /= N_Selected_Component then
1443 return;
1444 end if;
1445 end if;
1447 -- The node is the name of the parameterless call. Preserve its
1448 -- descendants, which may be complex expressions.
1450 Nam := Relocate_Node (N);
1452 -- If overloaded, overload set belongs to new copy
1454 Save_Interps (N, Nam);
1456 -- Change node to parameterless function call (note that the
1457 -- Parameter_Associations associations field is left set to Empty,
1458 -- its normal default value since there are no parameters)
1460 Change_Node (N, N_Function_Call);
1461 Set_Name (N, Nam);
1462 Set_Sloc (N, Sloc (Nam));
1463 Analyze_Call (N);
1464 end if;
1466 elsif Nkind (N) = N_Parameter_Association then
1467 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1469 elsif Nkind (N) = N_Operator_Symbol then
1470 Set_Etype (N, Empty);
1471 Set_Entity (N, Empty);
1472 Set_Is_Overloaded (N, False);
1473 Change_Operator_Symbol_To_String_Literal (N);
1474 Set_Etype (N, Any_String);
1475 end if;
1476 end Check_Parameterless_Call;
1478 --------------------------------
1479 -- Is_Atomic_Ref_With_Address --
1480 --------------------------------
1482 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1483 Pref : constant Node_Id := Prefix (N);
1485 begin
1486 if not Is_Entity_Name (Pref) then
1487 return False;
1489 else
1490 declare
1491 Pent : constant Entity_Id := Entity (Pref);
1492 Ptyp : constant Entity_Id := Etype (Pent);
1493 begin
1494 return not Is_Access_Type (Ptyp)
1495 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1496 and then Present (Address_Clause (Pent));
1497 end;
1498 end if;
1499 end Is_Atomic_Ref_With_Address;
1501 -----------------------------
1502 -- Is_Definite_Access_Type --
1503 -----------------------------
1505 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1506 Btyp : constant Entity_Id := Base_Type (E);
1507 begin
1508 return Ekind (Btyp) = E_Access_Type
1509 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1510 and then Comes_From_Source (Btyp));
1511 end Is_Definite_Access_Type;
1513 ----------------------
1514 -- Is_Predefined_Op --
1515 ----------------------
1517 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1518 begin
1519 -- Predefined operators are intrinsic subprograms
1521 if not Is_Intrinsic_Subprogram (Nam) then
1522 return False;
1523 end if;
1525 -- A call to a back-end builtin is never a predefined operator
1527 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1528 return False;
1529 end if;
1531 return not Is_Generic_Instance (Nam)
1532 and then Chars (Nam) in Any_Operator_Name
1533 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1534 end Is_Predefined_Op;
1536 -----------------------------
1537 -- Make_Call_Into_Operator --
1538 -----------------------------
1540 procedure Make_Call_Into_Operator
1541 (N : Node_Id;
1542 Typ : Entity_Id;
1543 Op_Id : Entity_Id)
1545 Op_Name : constant Name_Id := Chars (Op_Id);
1546 Act1 : Node_Id := First_Actual (N);
1547 Act2 : Node_Id := Next_Actual (Act1);
1548 Error : Boolean := False;
1549 Func : constant Entity_Id := Entity (Name (N));
1550 Is_Binary : constant Boolean := Present (Act2);
1551 Op_Node : Node_Id;
1552 Opnd_Type : Entity_Id := Empty;
1553 Orig_Type : Entity_Id := Empty;
1554 Pack : Entity_Id;
1556 type Kind_Test is access function (E : Entity_Id) return Boolean;
1558 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1559 -- If the operand is not universal, and the operator is given by an
1560 -- expanded name, verify that the operand has an interpretation with a
1561 -- type defined in the given scope of the operator.
1563 function Type_In_P (Test : Kind_Test) return Entity_Id;
1564 -- Find a type of the given class in package Pack that contains the
1565 -- operator.
1567 ---------------------------
1568 -- Operand_Type_In_Scope --
1569 ---------------------------
1571 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1572 Nod : constant Node_Id := Right_Opnd (Op_Node);
1573 I : Interp_Index;
1574 It : Interp;
1576 begin
1577 if not Is_Overloaded (Nod) then
1578 return Scope (Base_Type (Etype (Nod))) = S;
1580 else
1581 Get_First_Interp (Nod, I, It);
1582 while Present (It.Typ) loop
1583 if Scope (Base_Type (It.Typ)) = S then
1584 return True;
1585 end if;
1587 Get_Next_Interp (I, It);
1588 end loop;
1590 return False;
1591 end if;
1592 end Operand_Type_In_Scope;
1594 ---------------
1595 -- Type_In_P --
1596 ---------------
1598 function Type_In_P (Test : Kind_Test) return Entity_Id is
1599 E : Entity_Id;
1601 function In_Decl return Boolean;
1602 -- Verify that node is not part of the type declaration for the
1603 -- candidate type, which would otherwise be invisible.
1605 -------------
1606 -- In_Decl --
1607 -------------
1609 function In_Decl return Boolean is
1610 Decl_Node : constant Node_Id := Parent (E);
1611 N2 : Node_Id;
1613 begin
1614 N2 := N;
1616 if Etype (E) = Any_Type then
1617 return True;
1619 elsif No (Decl_Node) then
1620 return False;
1622 else
1623 while Present (N2)
1624 and then Nkind (N2) /= N_Compilation_Unit
1625 loop
1626 if N2 = Decl_Node then
1627 return True;
1628 else
1629 N2 := Parent (N2);
1630 end if;
1631 end loop;
1633 return False;
1634 end if;
1635 end In_Decl;
1637 -- Start of processing for Type_In_P
1639 begin
1640 -- If the context type is declared in the prefix package, this is the
1641 -- desired base type.
1643 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1644 return Base_Type (Typ);
1646 else
1647 E := First_Entity (Pack);
1648 while Present (E) loop
1649 if Test (E) and then not In_Decl then
1650 return E;
1651 end if;
1653 Next_Entity (E);
1654 end loop;
1656 return Empty;
1657 end if;
1658 end Type_In_P;
1660 -- Start of processing for Make_Call_Into_Operator
1662 begin
1663 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1665 -- Ensure that the corresponding operator has the same parent as the
1666 -- original call. This guarantees that parent traversals performed by
1667 -- the ABE mechanism succeed.
1669 Set_Parent (Op_Node, Parent (N));
1671 -- Binary operator
1673 if Is_Binary then
1674 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1675 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1676 Save_Interps (Act1, Left_Opnd (Op_Node));
1677 Save_Interps (Act2, Right_Opnd (Op_Node));
1678 Act1 := Left_Opnd (Op_Node);
1679 Act2 := Right_Opnd (Op_Node);
1681 -- Unary operator
1683 else
1684 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1685 Save_Interps (Act1, Right_Opnd (Op_Node));
1686 Act1 := Right_Opnd (Op_Node);
1687 end if;
1689 -- If the operator is denoted by an expanded name, and the prefix is
1690 -- not Standard, but the operator is a predefined one whose scope is
1691 -- Standard, then this is an implicit_operator, inserted as an
1692 -- interpretation by the procedure of the same name. This procedure
1693 -- overestimates the presence of implicit operators, because it does
1694 -- not examine the type of the operands. Verify now that the operand
1695 -- type appears in the given scope. If right operand is universal,
1696 -- check the other operand. In the case of concatenation, either
1697 -- argument can be the component type, so check the type of the result.
1698 -- If both arguments are literals, look for a type of the right kind
1699 -- defined in the given scope. This elaborate nonsense is brought to
1700 -- you courtesy of b33302a. The type itself must be frozen, so we must
1701 -- find the type of the proper class in the given scope.
1703 -- A final wrinkle is the multiplication operator for fixed point types,
1704 -- which is defined in Standard only, and not in the scope of the
1705 -- fixed point type itself.
1707 if Nkind (Name (N)) = N_Expanded_Name then
1708 Pack := Entity (Prefix (Name (N)));
1710 -- If this is a package renaming, get renamed entity, which will be
1711 -- the scope of the operands if operaton is type-correct.
1713 if Present (Renamed_Entity (Pack)) then
1714 Pack := Renamed_Entity (Pack);
1715 end if;
1717 -- If the entity being called is defined in the given package, it is
1718 -- a renaming of a predefined operator, and known to be legal.
1720 if Scope (Entity (Name (N))) = Pack
1721 and then Pack /= Standard_Standard
1722 then
1723 null;
1725 -- Visibility does not need to be checked in an instance: if the
1726 -- operator was not visible in the generic it has been diagnosed
1727 -- already, else there is an implicit copy of it in the instance.
1729 elsif In_Instance then
1730 null;
1732 elsif Op_Name in Name_Op_Multiply | Name_Op_Divide
1733 and then Is_Fixed_Point_Type (Etype (Act1))
1734 and then Is_Fixed_Point_Type (Etype (Act2))
1735 then
1736 if Pack /= Standard_Standard then
1737 Error := True;
1738 end if;
1740 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1741 -- available.
1743 elsif Ada_Version >= Ada_2005
1744 and then Op_Name in Name_Op_Eq | Name_Op_Ne
1745 and then (Is_Anonymous_Access_Type (Etype (Act1))
1746 or else Is_Anonymous_Access_Type (Etype (Act2)))
1747 then
1748 null;
1750 else
1751 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1753 if Op_Name = Name_Op_Concat then
1754 Opnd_Type := Base_Type (Typ);
1756 elsif (Scope (Opnd_Type) = Standard_Standard
1757 and then Is_Binary)
1758 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1759 and then Is_Binary
1760 and then not Comes_From_Source (Opnd_Type))
1761 then
1762 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1763 end if;
1765 if Scope (Opnd_Type) = Standard_Standard then
1767 -- Verify that the scope contains a type that corresponds to
1768 -- the given literal. Optimize the case where Pack is Standard.
1770 if Pack /= Standard_Standard then
1771 if Opnd_Type = Universal_Integer then
1772 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1774 elsif Opnd_Type = Universal_Real then
1775 Orig_Type := Type_In_P (Is_Real_Type'Access);
1777 elsif Opnd_Type = Any_String then
1778 Orig_Type := Type_In_P (Is_String_Type'Access);
1780 elsif Opnd_Type = Any_Access then
1781 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1783 elsif Opnd_Type = Any_Composite then
1784 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1786 if Present (Orig_Type) then
1787 if Has_Private_Component (Orig_Type) then
1788 Orig_Type := Empty;
1789 else
1790 Set_Etype (Act1, Orig_Type);
1792 if Is_Binary then
1793 Set_Etype (Act2, Orig_Type);
1794 end if;
1795 end if;
1796 end if;
1798 else
1799 Orig_Type := Empty;
1800 end if;
1802 Error := No (Orig_Type);
1803 end if;
1805 elsif Ekind (Opnd_Type) = E_Allocator_Type
1806 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1807 then
1808 Error := True;
1810 -- If the type is defined elsewhere, and the operator is not
1811 -- defined in the given scope (by a renaming declaration, e.g.)
1812 -- then this is an error as well. If an extension of System is
1813 -- present, and the type may be defined there, Pack must be
1814 -- System itself.
1816 elsif Scope (Opnd_Type) /= Pack
1817 and then Scope (Op_Id) /= Pack
1818 and then (No (System_Aux_Id)
1819 or else Scope (Opnd_Type) /= System_Aux_Id
1820 or else Pack /= Scope (System_Aux_Id))
1821 then
1822 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1823 Error := True;
1824 else
1825 Error := not Operand_Type_In_Scope (Pack);
1826 end if;
1828 elsif Pack = Standard_Standard
1829 and then not Operand_Type_In_Scope (Standard_Standard)
1830 then
1831 Error := True;
1832 end if;
1833 end if;
1835 if Error then
1836 Error_Msg_Node_2 := Pack;
1837 Error_Msg_NE
1838 ("& not declared in&", N, Selector_Name (Name (N)));
1839 Set_Etype (N, Any_Type);
1840 return;
1842 -- Detect a mismatch between the context type and the result type
1843 -- in the named package, which is otherwise not detected if the
1844 -- operands are universal. Check is only needed if source entity is
1845 -- an operator, not a function that renames an operator.
1847 elsif Nkind (Parent (N)) /= N_Type_Conversion
1848 and then Ekind (Entity (Name (N))) = E_Operator
1849 and then Is_Numeric_Type (Typ)
1850 and then not Is_Universal_Numeric_Type (Typ)
1851 and then Scope (Base_Type (Typ)) /= Pack
1852 and then not In_Instance
1853 then
1854 if Is_Fixed_Point_Type (Typ)
1855 and then Op_Name in Name_Op_Multiply | Name_Op_Divide
1856 then
1857 -- Already checked above
1859 null;
1861 -- Operator may be defined in an extension of System
1863 elsif Present (System_Aux_Id)
1864 and then Present (Opnd_Type)
1865 and then Scope (Opnd_Type) = System_Aux_Id
1866 then
1867 null;
1869 else
1870 -- Could we use Wrong_Type here??? (this would require setting
1871 -- Etype (N) to the actual type found where Typ was expected).
1873 Error_Msg_NE ("expect }", N, Typ);
1874 end if;
1875 end if;
1876 end if;
1878 Set_Chars (Op_Node, Op_Name);
1880 if not Is_Private_Type (Etype (N)) then
1881 Set_Etype (Op_Node, Base_Type (Etype (N)));
1882 else
1883 Set_Etype (Op_Node, Etype (N));
1884 end if;
1886 -- If this is a call to a function that renames a predefined equality,
1887 -- the renaming declaration provides a type that must be used to
1888 -- resolve the operands. This must be done now because resolution of
1889 -- the equality node will not resolve any remaining ambiguity, and it
1890 -- assumes that the first operand is not overloaded.
1892 if Op_Name in Name_Op_Eq | Name_Op_Ne
1893 and then Ekind (Func) = E_Function
1894 and then Is_Overloaded (Act1)
1895 then
1896 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1897 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1898 end if;
1900 Set_Entity (Op_Node, Op_Id);
1901 Generate_Reference (Op_Id, N, ' ');
1903 -- Do rewrite setting Comes_From_Source on the result if the original
1904 -- call came from source. Although it is not strictly the case that the
1905 -- operator as such comes from the source, logically it corresponds
1906 -- exactly to the function call in the source, so it should be marked
1907 -- this way (e.g. to make sure that validity checks work fine).
1909 declare
1910 CS : constant Boolean := Comes_From_Source (N);
1911 begin
1912 Rewrite (N, Op_Node);
1913 Set_Comes_From_Source (N, CS);
1914 end;
1916 -- If this is an arithmetic operator and the result type is private,
1917 -- the operands and the result must be wrapped in conversion to
1918 -- expose the underlying numeric type and expand the proper checks,
1919 -- e.g. on division.
1921 if Is_Private_Type (Typ) then
1922 case Nkind (N) is
1923 when N_Op_Add
1924 | N_Op_Divide
1925 | N_Op_Expon
1926 | N_Op_Mod
1927 | N_Op_Multiply
1928 | N_Op_Rem
1929 | N_Op_Subtract
1931 Resolve_Intrinsic_Operator (N, Typ);
1933 when N_Op_Abs
1934 | N_Op_Minus
1935 | N_Op_Plus
1937 Resolve_Intrinsic_Unary_Operator (N, Typ);
1939 when others =>
1940 Resolve (N, Typ);
1941 end case;
1942 else
1943 Resolve (N, Typ);
1944 end if;
1945 end Make_Call_Into_Operator;
1947 -------------------
1948 -- Operator_Kind --
1949 -------------------
1951 function Operator_Kind
1952 (Op_Name : Name_Id;
1953 Is_Binary : Boolean) return Node_Kind
1955 Kind : Node_Kind;
1957 begin
1958 -- Use CASE statement or array???
1960 if Is_Binary then
1961 if Op_Name = Name_Op_And then
1962 Kind := N_Op_And;
1963 elsif Op_Name = Name_Op_Or then
1964 Kind := N_Op_Or;
1965 elsif Op_Name = Name_Op_Xor then
1966 Kind := N_Op_Xor;
1967 elsif Op_Name = Name_Op_Eq then
1968 Kind := N_Op_Eq;
1969 elsif Op_Name = Name_Op_Ne then
1970 Kind := N_Op_Ne;
1971 elsif Op_Name = Name_Op_Lt then
1972 Kind := N_Op_Lt;
1973 elsif Op_Name = Name_Op_Le then
1974 Kind := N_Op_Le;
1975 elsif Op_Name = Name_Op_Gt then
1976 Kind := N_Op_Gt;
1977 elsif Op_Name = Name_Op_Ge then
1978 Kind := N_Op_Ge;
1979 elsif Op_Name = Name_Op_Add then
1980 Kind := N_Op_Add;
1981 elsif Op_Name = Name_Op_Subtract then
1982 Kind := N_Op_Subtract;
1983 elsif Op_Name = Name_Op_Concat then
1984 Kind := N_Op_Concat;
1985 elsif Op_Name = Name_Op_Multiply then
1986 Kind := N_Op_Multiply;
1987 elsif Op_Name = Name_Op_Divide then
1988 Kind := N_Op_Divide;
1989 elsif Op_Name = Name_Op_Mod then
1990 Kind := N_Op_Mod;
1991 elsif Op_Name = Name_Op_Rem then
1992 Kind := N_Op_Rem;
1993 elsif Op_Name = Name_Op_Expon then
1994 Kind := N_Op_Expon;
1995 else
1996 raise Program_Error;
1997 end if;
1999 -- Unary operators
2001 else
2002 if Op_Name = Name_Op_Add then
2003 Kind := N_Op_Plus;
2004 elsif Op_Name = Name_Op_Subtract then
2005 Kind := N_Op_Minus;
2006 elsif Op_Name = Name_Op_Abs then
2007 Kind := N_Op_Abs;
2008 elsif Op_Name = Name_Op_Not then
2009 Kind := N_Op_Not;
2010 else
2011 raise Program_Error;
2012 end if;
2013 end if;
2015 return Kind;
2016 end Operator_Kind;
2018 ----------------------------
2019 -- Preanalyze_And_Resolve --
2020 ----------------------------
2022 procedure Preanalyze_And_Resolve
2023 (N : Node_Id;
2024 T : Entity_Id;
2025 With_Freezing : Boolean)
2027 Save_Full_Analysis : constant Boolean := Full_Analysis;
2028 Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N);
2029 Save_Preanalysis_Count : constant Nat :=
2030 Inside_Preanalysis_Without_Freezing;
2031 begin
2032 pragma Assert (Nkind (N) in N_Subexpr);
2034 if not With_Freezing then
2035 Set_Must_Not_Freeze (N);
2036 Inside_Preanalysis_Without_Freezing :=
2037 Inside_Preanalysis_Without_Freezing + 1;
2038 end if;
2040 Full_Analysis := False;
2041 Expander_Mode_Save_And_Set (False);
2043 -- Normally, we suppress all checks for this preanalysis. There is no
2044 -- point in processing them now, since they will be applied properly
2045 -- and in the proper location when the default expressions reanalyzed
2046 -- and reexpanded later on. We will also have more information at that
2047 -- point for possible suppression of individual checks.
2049 -- However, in SPARK mode, most expansion is suppressed, and this
2050 -- later reanalysis and reexpansion may not occur. SPARK mode does
2051 -- require the setting of checking flags for proof purposes, so we
2052 -- do the SPARK preanalysis without suppressing checks.
2054 -- This special handling for SPARK mode is required for example in the
2055 -- case of Ada 2012 constructs such as quantified expressions, which are
2056 -- expanded in two separate steps.
2058 if GNATprove_Mode then
2059 Analyze_And_Resolve (N, T);
2060 else
2061 Analyze_And_Resolve (N, T, Suppress => All_Checks);
2062 end if;
2064 Expander_Mode_Restore;
2065 Full_Analysis := Save_Full_Analysis;
2067 if not With_Freezing then
2068 Set_Must_Not_Freeze (N, Save_Must_Not_Freeze);
2069 Inside_Preanalysis_Without_Freezing :=
2070 Inside_Preanalysis_Without_Freezing - 1;
2071 end if;
2073 pragma Assert
2074 (Inside_Preanalysis_Without_Freezing = Save_Preanalysis_Count);
2075 end Preanalyze_And_Resolve;
2077 ----------------------------
2078 -- Preanalyze_And_Resolve --
2079 ----------------------------
2081 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
2082 begin
2083 Preanalyze_And_Resolve (N, T, With_Freezing => False);
2084 end Preanalyze_And_Resolve;
2086 -- Version without context type
2088 procedure Preanalyze_And_Resolve (N : Node_Id) is
2089 Save_Full_Analysis : constant Boolean := Full_Analysis;
2091 begin
2092 Full_Analysis := False;
2093 Expander_Mode_Save_And_Set (False);
2095 Analyze (N);
2096 Resolve (N, Etype (N), Suppress => All_Checks);
2098 Expander_Mode_Restore;
2099 Full_Analysis := Save_Full_Analysis;
2100 end Preanalyze_And_Resolve;
2102 ------------------------------------------
2103 -- Preanalyze_With_Freezing_And_Resolve --
2104 ------------------------------------------
2106 procedure Preanalyze_With_Freezing_And_Resolve
2107 (N : Node_Id;
2108 T : Entity_Id)
2110 begin
2111 Preanalyze_And_Resolve (N, T, With_Freezing => True);
2112 end Preanalyze_With_Freezing_And_Resolve;
2114 ----------------------------------
2115 -- Replace_Actual_Discriminants --
2116 ----------------------------------
2118 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
2119 Loc : constant Source_Ptr := Sloc (N);
2120 Tsk : Node_Id := Empty;
2122 function Process_Discr (Nod : Node_Id) return Traverse_Result;
2123 -- Comment needed???
2125 -------------------
2126 -- Process_Discr --
2127 -------------------
2129 function Process_Discr (Nod : Node_Id) return Traverse_Result is
2130 Ent : Entity_Id;
2132 begin
2133 if Nkind (Nod) = N_Identifier then
2134 Ent := Entity (Nod);
2136 if Present (Ent)
2137 and then Ekind (Ent) = E_Discriminant
2138 then
2139 Rewrite (Nod,
2140 Make_Selected_Component (Loc,
2141 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
2142 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
2144 Set_Etype (Nod, Etype (Ent));
2145 end if;
2147 end if;
2149 return OK;
2150 end Process_Discr;
2152 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
2154 -- Start of processing for Replace_Actual_Discriminants
2156 begin
2157 if Expander_Active then
2158 null;
2160 -- Allow the replacement of concurrent discriminants in GNATprove even
2161 -- though this is a light expansion activity. Note that generic units
2162 -- are not modified.
2164 elsif GNATprove_Mode and not Inside_A_Generic then
2165 null;
2167 else
2168 return;
2169 end if;
2171 if Nkind (Name (N)) = N_Selected_Component then
2172 Tsk := Prefix (Name (N));
2174 elsif Nkind (Name (N)) = N_Indexed_Component then
2175 Tsk := Prefix (Prefix (Name (N)));
2176 end if;
2178 if Present (Tsk) then
2179 Replace_Discrs (Default);
2180 end if;
2181 end Replace_Actual_Discriminants;
2183 -------------
2184 -- Resolve --
2185 -------------
2187 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
2188 Ambiguous : Boolean := False;
2189 Ctx_Type : Entity_Id := Typ;
2190 Expr_Type : Entity_Id := Empty; -- prevent junk warning
2191 Err_Type : Entity_Id := Empty;
2192 Found : Boolean := False;
2193 From_Lib : Boolean;
2194 I : Interp_Index;
2195 I1 : Interp_Index := 0; -- prevent junk warning
2196 It : Interp;
2197 It1 : Interp;
2198 Seen : Entity_Id := Empty; -- prevent junk warning
2200 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
2201 -- Determine whether a node comes from a predefined library unit or
2202 -- Standard.
2204 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
2205 -- Try and fix up a literal so that it matches its expected type. New
2206 -- literals are manufactured if necessary to avoid cascaded errors.
2208 procedure Report_Ambiguous_Argument;
2209 -- Additional diagnostics when an ambiguous call has an ambiguous
2210 -- argument (typically a controlling actual).
2212 procedure Resolution_Failed;
2213 -- Called when attempt at resolving current expression fails
2215 ------------------------------------
2216 -- Comes_From_Predefined_Lib_Unit --
2217 -------------------------------------
2219 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
2220 begin
2221 return
2222 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
2223 end Comes_From_Predefined_Lib_Unit;
2225 --------------------
2226 -- Patch_Up_Value --
2227 --------------------
2229 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
2230 begin
2231 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
2232 Rewrite (N,
2233 Make_Real_Literal (Sloc (N),
2234 Realval => UR_From_Uint (Intval (N))));
2235 Set_Etype (N, Universal_Real);
2236 Set_Is_Static_Expression (N);
2238 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
2239 Rewrite (N,
2240 Make_Integer_Literal (Sloc (N),
2241 Intval => UR_To_Uint (Realval (N))));
2242 Set_Etype (N, Universal_Integer);
2243 Set_Is_Static_Expression (N);
2245 elsif Nkind (N) = N_String_Literal
2246 and then Is_Character_Type (Typ)
2247 then
2248 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
2249 Rewrite (N,
2250 Make_Character_Literal (Sloc (N),
2251 Chars => Name_Find,
2252 Char_Literal_Value =>
2253 UI_From_Int (Character'Pos ('A'))));
2254 Set_Etype (N, Any_Character);
2255 Set_Is_Static_Expression (N);
2257 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
2258 Rewrite (N,
2259 Make_String_Literal (Sloc (N),
2260 Strval => End_String));
2262 elsif Nkind (N) = N_Range then
2263 Patch_Up_Value (Low_Bound (N), Typ);
2264 Patch_Up_Value (High_Bound (N), Typ);
2265 end if;
2266 end Patch_Up_Value;
2268 -------------------------------
2269 -- Report_Ambiguous_Argument --
2270 -------------------------------
2272 procedure Report_Ambiguous_Argument is
2273 Arg : constant Node_Id := First (Parameter_Associations (N));
2274 I : Interp_Index;
2275 It : Interp;
2277 begin
2278 if Nkind (Arg) = N_Function_Call
2279 and then Is_Entity_Name (Name (Arg))
2280 and then Is_Overloaded (Name (Arg))
2281 then
2282 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
2284 -- Examine possible interpretations, and adapt the message
2285 -- for inherited subprograms declared by a type derivation.
2287 Get_First_Interp (Name (Arg), I, It);
2288 while Present (It.Nam) loop
2289 Error_Msg_Sloc := Sloc (It.Nam);
2291 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
2292 Error_Msg_N ("interpretation (inherited) #!", Arg);
2293 else
2294 Error_Msg_N ("interpretation #!", Arg);
2295 end if;
2297 Get_Next_Interp (I, It);
2298 end loop;
2299 end if;
2301 -- Additional message and hint if the ambiguity involves an Ada 2022
2302 -- container aggregate.
2304 Check_Ambiguous_Aggregate (N);
2305 end Report_Ambiguous_Argument;
2307 -----------------------
2308 -- Resolution_Failed --
2309 -----------------------
2311 procedure Resolution_Failed is
2312 begin
2313 Patch_Up_Value (N, Typ);
2315 -- Set the type to the desired one to minimize cascaded errors. Note
2316 -- that this is an approximation and does not work in all cases.
2318 Set_Etype (N, Typ);
2320 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2321 Set_Is_Overloaded (N, False);
2323 -- The caller will return without calling the expander, so we need
2324 -- to set the analyzed flag. Note that it is fine to set Analyzed
2325 -- to True even if we are in the middle of a shallow analysis,
2326 -- (see the spec of sem for more details) since this is an error
2327 -- situation anyway, and there is no point in repeating the
2328 -- analysis later (indeed it won't work to repeat it later, since
2329 -- we haven't got a clear resolution of which entity is being
2330 -- referenced.)
2332 Set_Analyzed (N, True);
2333 return;
2334 end Resolution_Failed;
2336 -- Start of processing for Resolve
2338 begin
2339 if N = Error then
2340 return;
2341 end if;
2343 -- Access attribute on remote subprogram cannot be used for a non-remote
2344 -- access-to-subprogram type.
2346 if Nkind (N) = N_Attribute_Reference
2347 and then Attribute_Name (N) in Name_Access
2348 | Name_Unrestricted_Access
2349 | Name_Unchecked_Access
2350 and then Comes_From_Source (N)
2351 and then Is_Entity_Name (Prefix (N))
2352 and then Is_Subprogram (Entity (Prefix (N)))
2353 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2354 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2355 then
2356 Error_Msg_N
2357 ("prefix must statically denote a non-remote subprogram", N);
2358 end if;
2360 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2362 -- If the context is a Remote_Access_To_Subprogram, access attributes
2363 -- must be resolved with the corresponding fat pointer. There is no need
2364 -- to check for the attribute name since the return type of an
2365 -- attribute is never a remote type.
2367 if Nkind (N) = N_Attribute_Reference
2368 and then Comes_From_Source (N)
2369 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2370 then
2371 declare
2372 Attr : constant Attribute_Id :=
2373 Get_Attribute_Id (Attribute_Name (N));
2374 Pref : constant Node_Id := Prefix (N);
2375 Decl : Node_Id;
2376 Spec : Node_Id;
2377 Is_Remote : Boolean := True;
2379 begin
2380 -- Check that Typ is a remote access-to-subprogram type
2382 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2384 -- Prefix (N) must statically denote a remote subprogram
2385 -- declared in a package specification.
2387 if Attr = Attribute_Access or else
2388 Attr = Attribute_Unchecked_Access or else
2389 Attr = Attribute_Unrestricted_Access
2390 then
2391 Decl := Unit_Declaration_Node (Entity (Pref));
2393 if Nkind (Decl) = N_Subprogram_Body then
2394 Spec := Corresponding_Spec (Decl);
2396 if Present (Spec) then
2397 Decl := Unit_Declaration_Node (Spec);
2398 end if;
2399 end if;
2401 Spec := Parent (Decl);
2403 if not Is_Entity_Name (Prefix (N))
2404 or else Nkind (Spec) /= N_Package_Specification
2405 or else
2406 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2407 then
2408 Is_Remote := False;
2409 Error_Msg_N
2410 ("prefix must statically denote a remote subprogram",
2412 end if;
2414 -- If we are generating code in distributed mode, perform
2415 -- semantic checks against corresponding remote entities.
2417 if Expander_Active
2418 and then Get_PCS_Name /= Name_No_DSA
2419 then
2420 Check_Subtype_Conformant
2421 (New_Id => Entity (Prefix (N)),
2422 Old_Id => Designated_Type
2423 (Corresponding_Remote_Type (Typ)),
2424 Err_Loc => N);
2426 if Is_Remote then
2427 Process_Remote_AST_Attribute (N, Typ);
2428 end if;
2429 end if;
2430 end if;
2431 end if;
2432 end;
2433 end if;
2435 Debug_A_Entry ("resolving ", N);
2437 if Debug_Flag_V then
2438 Write_Overloads (N);
2439 end if;
2441 if Comes_From_Source (N) then
2442 if Is_Fixed_Point_Type (Typ) then
2443 Check_Restriction (No_Fixed_Point, N);
2445 elsif Is_Floating_Point_Type (Typ)
2446 and then Typ /= Universal_Real
2447 and then Typ /= Any_Real
2448 then
2449 Check_Restriction (No_Floating_Point, N);
2450 end if;
2451 end if;
2453 -- Return if already analyzed
2455 if Analyzed (N) then
2456 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2457 Analyze_Dimension (N);
2458 return;
2460 -- Any case of Any_Type as the Etype value means that we had a
2461 -- previous error.
2463 elsif Etype (N) = Any_Type then
2464 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2465 return;
2466 end if;
2468 Check_Parameterless_Call (N);
2470 -- The resolution of an Expression_With_Actions is determined by
2471 -- its Expression, but if the node comes from source it is a
2472 -- Declare_Expression and requires scope management.
2474 if Nkind (N) = N_Expression_With_Actions then
2475 if Comes_From_Source (N) and then N = Original_Node (N) then
2476 Resolve_Declare_Expression (N, Typ);
2477 else
2478 Resolve (Expression (N), Typ);
2479 end if;
2481 Found := True;
2482 Expr_Type := Etype (Expression (N));
2484 -- If not overloaded, then we know the type, and all that needs doing
2485 -- is to check that this type is compatible with the context.
2487 elsif not Is_Overloaded (N) then
2488 Found := Covers (Typ, Etype (N));
2489 Expr_Type := Etype (N);
2491 -- In the overloaded case, we must select the interpretation that
2492 -- is compatible with the context (i.e. the type passed to Resolve)
2494 else
2495 -- Loop through possible interpretations
2497 Get_First_Interp (N, I, It);
2498 Interp_Loop : while Present (It.Typ) loop
2499 if Debug_Flag_V then
2500 Write_Str ("Interp: ");
2501 Write_Interp (It);
2502 end if;
2504 -- We are only interested in interpretations that are compatible
2505 -- with the expected type, any other interpretations are ignored.
2507 if not Covers (Typ, It.Typ) then
2508 if Debug_Flag_V then
2509 Write_Str (" interpretation incompatible with context");
2510 Write_Eol;
2511 end if;
2513 else
2514 -- Skip the current interpretation if it is disabled by an
2515 -- abstract operator. This action is performed only when the
2516 -- type against which we are resolving is the same as the
2517 -- type of the interpretation.
2519 if Ada_Version >= Ada_2005
2520 and then It.Typ = Typ
2521 and then not Is_Universal_Numeric_Type (Typ)
2522 and then Present (It.Abstract_Op)
2523 then
2524 if Debug_Flag_V then
2525 Write_Line ("Skip.");
2526 end if;
2528 goto Continue;
2529 end if;
2531 -- First matching interpretation
2533 if not Found then
2534 Found := True;
2535 I1 := I;
2536 Seen := It.Nam;
2537 Expr_Type := It.Typ;
2539 -- Matching interpretation that is not the first, maybe an
2540 -- error, but there are some cases where preference rules are
2541 -- used to choose between the two possibilities. These and
2542 -- some more obscure cases are handled in Disambiguate.
2544 else
2545 -- If the current statement is part of a predefined library
2546 -- unit, then all interpretations which come from user level
2547 -- packages should not be considered. Check previous and
2548 -- current one.
2550 if From_Lib then
2551 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2552 goto Continue;
2554 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2556 -- Previous interpretation must be discarded
2558 I1 := I;
2559 Seen := It.Nam;
2560 Expr_Type := It.Typ;
2561 Set_Entity (N, Seen);
2562 goto Continue;
2563 end if;
2564 end if;
2566 -- Otherwise apply further disambiguation steps
2568 Error_Msg_Sloc := Sloc (Seen);
2569 It1 := Disambiguate (N, I1, I, Typ);
2571 -- Disambiguation has succeeded. Skip the remaining
2572 -- interpretations.
2574 if It1 /= No_Interp then
2575 Seen := It1.Nam;
2576 Expr_Type := It1.Typ;
2578 while Present (It.Typ) loop
2579 Get_Next_Interp (I, It);
2580 end loop;
2582 else
2583 -- Before we issue an ambiguity complaint, check for the
2584 -- case of a subprogram call where at least one of the
2585 -- arguments is Any_Type, and if so suppress the message,
2586 -- since it is a cascaded error. This can also happen for
2587 -- a generalized indexing operation.
2589 if Nkind (N) in N_Subprogram_Call
2590 or else (Nkind (N) = N_Indexed_Component
2591 and then Present (Generalized_Indexing (N)))
2592 then
2593 declare
2594 A : Node_Id;
2595 E : Node_Id;
2597 begin
2598 if Nkind (N) = N_Indexed_Component then
2599 Rewrite (N, Generalized_Indexing (N));
2600 end if;
2602 A := First_Actual (N);
2603 while Present (A) loop
2604 E := A;
2606 if Nkind (E) = N_Parameter_Association then
2607 E := Explicit_Actual_Parameter (E);
2608 end if;
2610 if Etype (E) = Any_Type then
2611 if Debug_Flag_V then
2612 Write_Str ("Any_Type in call");
2613 Write_Eol;
2614 end if;
2616 exit Interp_Loop;
2617 end if;
2619 Next_Actual (A);
2620 end loop;
2621 end;
2623 elsif Nkind (N) in N_Binary_Op
2624 and then (Etype (Left_Opnd (N)) = Any_Type
2625 or else Etype (Right_Opnd (N)) = Any_Type)
2626 then
2627 exit Interp_Loop;
2629 elsif Nkind (N) in N_Unary_Op
2630 and then Etype (Right_Opnd (N)) = Any_Type
2631 then
2632 exit Interp_Loop;
2633 end if;
2635 -- Not that special case, so issue message using the flag
2636 -- Ambiguous to control printing of the header message
2637 -- only at the start of an ambiguous set.
2639 if not Ambiguous then
2640 if Nkind (N) = N_Function_Call
2641 and then Nkind (Name (N)) = N_Explicit_Dereference
2642 then
2643 Error_Msg_N
2644 ("ambiguous expression (cannot resolve indirect "
2645 & "call)!", N);
2646 else
2647 Error_Msg_NE -- CODEFIX
2648 ("ambiguous expression (cannot resolve&)!",
2649 N, It.Nam);
2650 end if;
2652 Ambiguous := True;
2654 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2655 Error_Msg_N
2656 ("\\possible interpretation (inherited)#!", N);
2657 else
2658 Error_Msg_N -- CODEFIX
2659 ("\\possible interpretation#!", N);
2660 end if;
2662 if Nkind (N) in N_Subprogram_Call
2663 and then Present (Parameter_Associations (N))
2664 then
2665 Report_Ambiguous_Argument;
2666 end if;
2667 end if;
2669 Error_Msg_Sloc := Sloc (It.Nam);
2671 -- By default, the error message refers to the candidate
2672 -- interpretation. But if it is a predefined operator, it
2673 -- is implicitly declared at the declaration of the type
2674 -- of the operand. Recover the sloc of that declaration
2675 -- for the error message.
2677 if Nkind (N) in N_Op
2678 and then Scope (It.Nam) = Standard_Standard
2679 and then not Is_Overloaded (Right_Opnd (N))
2680 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2681 Standard_Standard
2682 then
2683 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2685 if Comes_From_Source (Err_Type)
2686 and then Present (Parent (Err_Type))
2687 then
2688 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2689 end if;
2691 elsif Nkind (N) in N_Binary_Op
2692 and then Scope (It.Nam) = Standard_Standard
2693 and then not Is_Overloaded (Left_Opnd (N))
2694 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2695 Standard_Standard
2696 then
2697 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2699 if Comes_From_Source (Err_Type)
2700 and then Present (Parent (Err_Type))
2701 then
2702 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2703 end if;
2705 -- If this is an indirect call, use the subprogram_type
2706 -- in the message, to have a meaningful location. Also
2707 -- indicate if this is an inherited operation, created
2708 -- by a type declaration.
2710 elsif Nkind (N) = N_Function_Call
2711 and then Nkind (Name (N)) = N_Explicit_Dereference
2712 and then Is_Type (It.Nam)
2713 then
2714 Err_Type := It.Nam;
2715 Error_Msg_Sloc :=
2716 Sloc (Associated_Node_For_Itype (Err_Type));
2717 else
2718 Err_Type := Empty;
2719 end if;
2721 if Nkind (N) in N_Op
2722 and then Scope (It.Nam) = Standard_Standard
2723 and then Present (Err_Type)
2724 then
2725 -- Special-case the message for universal_fixed
2726 -- operators, which are not declared with the type
2727 -- of the operand, but appear forever in Standard.
2729 if It.Typ = Universal_Fixed
2730 and then Scope (It.Nam) = Standard_Standard
2731 then
2732 Error_Msg_N
2733 ("\\possible interpretation as universal_fixed "
2734 & "operation (RM 4.5.5 (19))", N);
2735 else
2736 Error_Msg_N
2737 ("\\possible interpretation (predefined)#!", N);
2738 end if;
2740 elsif
2741 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2742 then
2743 Error_Msg_N
2744 ("\\possible interpretation (inherited)#!", N);
2745 else
2746 Error_Msg_N -- CODEFIX
2747 ("\\possible interpretation#!", N);
2748 end if;
2750 end if;
2751 end if;
2753 -- We have a matching interpretation, Expr_Type is the type
2754 -- from this interpretation, and Seen is the entity.
2756 -- For an operator, just set the entity name. The type will be
2757 -- set by the specific operator resolution routine.
2759 if Nkind (N) in N_Op then
2760 Set_Entity (N, Seen);
2761 Generate_Reference (Seen, N);
2763 elsif Nkind (N) in N_Case_Expression
2764 | N_Character_Literal
2765 | N_Delta_Aggregate
2766 | N_If_Expression
2767 then
2768 Set_Etype (N, Expr_Type);
2770 -- AI05-0139-2: Expression is overloaded because type has
2771 -- implicit dereference. The context may be the one that
2772 -- requires implicit dereferemce.
2774 elsif Has_Implicit_Dereference (Expr_Type) then
2775 Set_Etype (N, Expr_Type);
2776 Set_Is_Overloaded (N, False);
2778 -- If the expression is an entity, generate a reference
2779 -- to it, as this is not done for an overloaded construct
2780 -- during analysis.
2782 if Is_Entity_Name (N)
2783 and then Comes_From_Source (N)
2784 then
2785 Generate_Reference (Entity (N), N);
2787 -- Examine access discriminants of entity type,
2788 -- to check whether one of them yields the
2789 -- expected type.
2791 declare
2792 Disc : Entity_Id :=
2793 First_Discriminant (Etype (Entity (N)));
2795 begin
2796 while Present (Disc) loop
2797 exit when Is_Access_Type (Etype (Disc))
2798 and then Has_Implicit_Dereference (Disc)
2799 and then Designated_Type (Etype (Disc)) = Typ;
2801 Next_Discriminant (Disc);
2802 end loop;
2804 if Present (Disc) then
2805 Build_Explicit_Dereference (N, Disc);
2806 end if;
2807 end;
2808 end if;
2810 exit Interp_Loop;
2812 elsif Is_Overloaded (N)
2813 and then Present (It.Nam)
2814 and then Ekind (It.Nam) = E_Discriminant
2815 and then Has_Implicit_Dereference (It.Nam)
2816 then
2817 -- If the node is a general indexing, the dereference is
2818 -- is inserted when resolving the rewritten form, else
2819 -- insert it now.
2821 if Nkind (N) /= N_Indexed_Component
2822 or else No (Generalized_Indexing (N))
2823 then
2824 Build_Explicit_Dereference (N, It.Nam);
2825 end if;
2827 -- For an explicit dereference, attribute reference, range,
2828 -- short-circuit form (which is not an operator node), or call
2829 -- with a name that is an explicit dereference, there is
2830 -- nothing to be done at this point.
2832 elsif Nkind (N) in N_Attribute_Reference
2833 | N_And_Then
2834 | N_Explicit_Dereference
2835 | N_Identifier
2836 | N_Indexed_Component
2837 | N_Or_Else
2838 | N_Range
2839 | N_Selected_Component
2840 | N_Slice
2841 or else Nkind (Name (N)) = N_Explicit_Dereference
2842 then
2843 null;
2845 -- For procedure or function calls, set the type of the name,
2846 -- and also the entity pointer for the prefix.
2848 elsif Nkind (N) in N_Subprogram_Call
2849 and then Is_Entity_Name (Name (N))
2850 then
2851 Set_Etype (Name (N), Expr_Type);
2852 Set_Entity (Name (N), Seen);
2853 Generate_Reference (Seen, Name (N));
2855 elsif Nkind (N) = N_Function_Call
2856 and then Nkind (Name (N)) = N_Selected_Component
2857 then
2858 Set_Etype (Name (N), Expr_Type);
2859 Set_Entity (Selector_Name (Name (N)), Seen);
2860 Generate_Reference (Seen, Selector_Name (Name (N)));
2862 -- For all other cases, just set the type of the Name
2864 else
2865 Set_Etype (Name (N), Expr_Type);
2866 end if;
2868 end if;
2870 <<Continue>>
2872 -- Move to next interpretation
2874 exit Interp_Loop when No (It.Typ);
2876 Get_Next_Interp (I, It);
2877 end loop Interp_Loop;
2878 end if;
2880 -- At this stage Found indicates whether or not an acceptable
2881 -- interpretation exists. If not, then we have an error, except that if
2882 -- the context is Any_Type as a result of some other error, then we
2883 -- suppress the error report.
2885 if not Found then
2886 if Typ /= Any_Type then
2888 -- If type we are looking for is Void, then this is the procedure
2889 -- call case, and the error is simply that what we gave is not a
2890 -- procedure name (we think of procedure calls as expressions with
2891 -- types internally, but the user doesn't think of them this way).
2893 if Typ = Standard_Void_Type then
2895 -- Special case message if function used as a procedure
2897 if Nkind (N) = N_Procedure_Call_Statement
2898 and then Is_Entity_Name (Name (N))
2899 and then Ekind (Entity (Name (N))) = E_Function
2900 then
2901 Error_Msg_NE
2902 ("cannot use call to function & as a statement",
2903 Name (N), Entity (Name (N)));
2904 Error_Msg_N
2905 ("\return value of a function call cannot be ignored",
2906 Name (N));
2908 -- Otherwise give general message (not clear what cases this
2909 -- covers, but no harm in providing for them).
2911 else
2912 Error_Msg_N ("expect procedure name in procedure call", N);
2913 end if;
2915 Found := True;
2917 -- Otherwise we do have a subexpression with the wrong type
2919 -- Check for the case of an allocator which uses an access type
2920 -- instead of the designated type. This is a common error and we
2921 -- specialize the message, posting an error on the operand of the
2922 -- allocator, complaining that we expected the designated type of
2923 -- the allocator.
2925 elsif Nkind (N) = N_Allocator
2926 and then Is_Access_Type (Typ)
2927 and then Is_Access_Type (Etype (N))
2928 and then Designated_Type (Etype (N)) = Typ
2929 then
2930 Wrong_Type (Expression (N), Designated_Type (Typ));
2931 Found := True;
2933 -- Check for view mismatch on Null in instances, for which the
2934 -- view-swapping mechanism has no identifier.
2936 elsif (In_Instance or else In_Inlined_Body)
2937 and then (Nkind (N) = N_Null)
2938 and then Is_Private_Type (Typ)
2939 and then Is_Access_Type (Full_View (Typ))
2940 then
2941 Resolve (N, Full_View (Typ));
2942 Set_Etype (N, Typ);
2943 return;
2945 -- Check for an aggregate. Sometimes we can get bogus aggregates
2946 -- from misuse of parentheses, and we are about to complain about
2947 -- the aggregate without even looking inside it.
2949 -- Instead, if we have an aggregate of type Any_Composite, then
2950 -- analyze and resolve the component fields, and then only issue
2951 -- another message if we get no errors doing this (otherwise
2952 -- assume that the errors in the aggregate caused the problem).
2954 elsif Nkind (N) = N_Aggregate
2955 and then Etype (N) = Any_Composite
2956 then
2957 if Ada_Version >= Ada_2022
2958 and then Has_Aspect (Typ, Aspect_Aggregate)
2959 then
2960 Resolve_Container_Aggregate (N, Typ);
2962 if Expander_Active then
2963 Expand (N);
2964 end if;
2965 return;
2966 end if;
2968 -- Disable expansion in any case. If there is a type mismatch
2969 -- it may be fatal to try to expand the aggregate. The flag
2970 -- would otherwise be set to false when the error is posted.
2972 Expander_Active := False;
2974 declare
2975 procedure Check_Aggr (Aggr : Node_Id);
2976 -- Check one aggregate, and set Found to True if we have a
2977 -- definite error in any of its elements
2979 procedure Check_Elmt (Aelmt : Node_Id);
2980 -- Check one element of aggregate and set Found to True if
2981 -- we definitely have an error in the element.
2983 ----------------
2984 -- Check_Aggr --
2985 ----------------
2987 procedure Check_Aggr (Aggr : Node_Id) is
2988 Elmt : Node_Id;
2990 begin
2991 if Present (Expressions (Aggr)) then
2992 Elmt := First (Expressions (Aggr));
2993 while Present (Elmt) loop
2994 Check_Elmt (Elmt);
2995 Next (Elmt);
2996 end loop;
2997 end if;
2999 if Present (Component_Associations (Aggr)) then
3000 Elmt := First (Component_Associations (Aggr));
3001 while Present (Elmt) loop
3003 -- If this is a default-initialized component, then
3004 -- there is nothing to check. The box will be
3005 -- replaced by the appropriate call during late
3006 -- expansion.
3008 if Nkind (Elmt) /= N_Iterated_Component_Association
3009 and then not Box_Present (Elmt)
3010 then
3011 Check_Elmt (Expression (Elmt));
3012 end if;
3014 Next (Elmt);
3015 end loop;
3016 end if;
3017 end Check_Aggr;
3019 ----------------
3020 -- Check_Elmt --
3021 ----------------
3023 procedure Check_Elmt (Aelmt : Node_Id) is
3024 begin
3025 -- If we have a nested aggregate, go inside it (to
3026 -- attempt a naked analyze-resolve of the aggregate can
3027 -- cause undesirable cascaded errors). Do not resolve
3028 -- expression if it needs a type from context, as for
3029 -- integer * fixed expression.
3031 if Nkind (Aelmt) = N_Aggregate then
3032 Check_Aggr (Aelmt);
3034 else
3035 Analyze (Aelmt);
3037 if not Is_Overloaded (Aelmt)
3038 and then Etype (Aelmt) /= Any_Fixed
3039 then
3040 Resolve (Aelmt);
3041 end if;
3043 if Etype (Aelmt) = Any_Type then
3044 Found := True;
3045 end if;
3046 end if;
3047 end Check_Elmt;
3049 begin
3050 Check_Aggr (N);
3051 end;
3052 end if;
3054 -- If node is a literal and context type has a user-defined
3055 -- literal aspect, rewrite node as a call to the corresponding
3056 -- function, which plays the role of an implicit conversion.
3058 if Nkind (N) in
3059 N_Numeric_Or_String_Literal | N_Identifier
3060 and then Has_Applicable_User_Defined_Literal (N, Typ)
3061 then
3062 Analyze_And_Resolve (N, Typ);
3063 return;
3064 end if;
3066 -- Looks like we have a type error, but check for special case
3067 -- of Address wanted, integer found, with the configuration pragma
3068 -- Allow_Integer_Address active. If we have this case, introduce
3069 -- an unchecked conversion to allow the integer expression to be
3070 -- treated as an Address. The reverse case of integer wanted,
3071 -- Address found, is treated in an analogous manner.
3073 if Address_Integer_Convert_OK (Typ, Etype (N)) then
3074 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
3075 Analyze_And_Resolve (N, Typ);
3076 return;
3078 -- Under relaxed RM semantics silently replace occurrences of null
3079 -- by System.Null_Address.
3081 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
3082 Replace_Null_By_Null_Address (N);
3083 Analyze_And_Resolve (N, Typ);
3084 return;
3085 end if;
3087 -- That special Allow_Integer_Address check did not apply, so we
3088 -- have a real type error. If an error message was issued already,
3089 -- Found got reset to True, so if it's still False, issue standard
3090 -- Wrong_Type message.
3092 if not Found then
3093 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
3094 declare
3095 Subp_Name : Node_Id;
3097 begin
3098 if Is_Entity_Name (Name (N)) then
3099 Subp_Name := Name (N);
3101 elsif Nkind (Name (N)) = N_Selected_Component then
3103 -- Protected operation: retrieve operation name
3105 Subp_Name := Selector_Name (Name (N));
3107 else
3108 raise Program_Error;
3109 end if;
3111 Error_Msg_Node_2 := Typ;
3112 Error_Msg_NE
3113 ("no visible interpretation of& matches expected type&",
3114 N, Subp_Name);
3115 end;
3117 if All_Errors_Mode then
3118 declare
3119 Index : Interp_Index;
3120 It : Interp;
3122 begin
3123 Error_Msg_N ("\\possible interpretations:", N);
3125 Get_First_Interp (Name (N), Index, It);
3126 while Present (It.Nam) loop
3127 Error_Msg_Sloc := Sloc (It.Nam);
3128 Error_Msg_Node_2 := It.Nam;
3129 Error_Msg_NE
3130 ("\\ type& for & declared#", N, It.Typ);
3131 Get_Next_Interp (Index, It);
3132 end loop;
3133 end;
3135 else
3136 Error_Msg_N ("\use -gnatf for details", N);
3137 end if;
3139 -- Recognize the case of a quantified expression being mistaken
3140 -- for an iterated component association because the user
3141 -- forgot the "all" or "some" keyword after "for". Because the
3142 -- error message starts with "missing ALL", we automatically
3143 -- benefit from the associated CODEFIX, which requires that
3144 -- the message is located on the identifier following "for"
3145 -- in order for the CODEFIX to insert "all" in the right place.
3147 elsif Nkind (N) = N_Aggregate
3148 and then List_Length (Component_Associations (N)) = 1
3149 and then Nkind (First (Component_Associations (N)))
3150 = N_Iterated_Component_Association
3151 and then Is_Boolean_Type (Typ)
3152 then
3153 Error_Msg_N -- CODEFIX
3154 ("missing ALL or SOME in quantified expression",
3155 Defining_Identifier (First (Component_Associations (N))));
3157 -- For an operator with no interpretation, check whether
3158 -- one of its operands may be a user-defined literal.
3160 elsif Nkind (N) in N_Op
3161 and then Try_User_Defined_Literal (N, Typ)
3162 then
3163 return;
3165 else
3166 Wrong_Type (N, Typ);
3167 end if;
3168 end if;
3169 end if;
3171 Resolution_Failed;
3172 return;
3174 -- Test if we have more than one interpretation for the context
3176 elsif Ambiguous then
3177 Resolution_Failed;
3178 return;
3180 -- Only one interpretation
3182 else
3183 -- Prevent implicit conversions between access-to-subprogram types
3184 -- with different strub modes. Explicit conversions are acceptable in
3185 -- some circumstances. We don't have to be concerned about data or
3186 -- access-to-data types. Conversions between data types can safely
3187 -- drop or add strub attributes from types, because strub effects are
3188 -- associated with the locations rather than values. E.g., converting
3189 -- a hypothetical Strub_Integer variable to Integer would load the
3190 -- value from the variable, enabling stack scrabbing for the
3191 -- enclosing subprogram, and then convert the value to Integer. As
3192 -- for conversions between access-to-data types, that's no different
3193 -- from any other case of type punning.
3195 if Is_Access_Type (Typ)
3196 and then Ekind (Designated_Type (Typ)) = E_Subprogram_Type
3197 and then Is_Access_Type (Expr_Type)
3198 and then Ekind (Designated_Type (Expr_Type)) = E_Subprogram_Type
3199 then
3200 Check_Same_Strub_Mode
3201 (Designated_Type (Typ), Designated_Type (Expr_Type));
3202 end if;
3204 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
3205 -- the "+" on T is abstract, and the operands are of universal type,
3206 -- the above code will have (incorrectly) resolved the "+" to the
3207 -- universal one in Standard. Therefore check for this case and give
3208 -- an error. We can't do this earlier, because it would cause legal
3209 -- cases to get errors (when some other type has an abstract "+").
3211 if Ada_Version >= Ada_2005
3212 and then Nkind (N) in N_Op
3213 and then Is_Overloaded (N)
3214 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
3215 then
3216 Get_First_Interp (N, I, It);
3217 while Present (It.Typ) loop
3218 if Present (It.Abstract_Op) and then
3219 Etype (It.Abstract_Op) = Typ
3220 then
3221 Error_Msg_NE
3222 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
3223 return;
3224 end if;
3226 Get_Next_Interp (I, It);
3227 end loop;
3228 end if;
3230 -- Here we have an acceptable interpretation for the context
3232 -- Propagate type information and normalize tree for various
3233 -- predefined operations. If the context only imposes a class of
3234 -- types, rather than a specific type, propagate the actual type
3235 -- downward.
3237 if Typ = Any_Integer or else
3238 Typ = Any_Boolean or else
3239 Typ = Any_Modular or else
3240 Typ = Any_Real or else
3241 Typ = Any_Discrete
3242 then
3243 Ctx_Type := Expr_Type;
3245 -- Any_Fixed is legal in a real context only if a specific fixed-
3246 -- point type is imposed. If Norman Cohen can be confused by this,
3247 -- it deserves a separate message.
3249 if Typ = Any_Real
3250 and then Expr_Type = Any_Fixed
3251 then
3252 Error_Msg_N ("illegal context for mixed mode operation", N);
3253 Set_Etype (N, Universal_Real);
3254 Ctx_Type := Universal_Real;
3255 end if;
3256 end if;
3258 -- A user-defined operator is transformed into a function call at
3259 -- this point, so that further processing knows that operators are
3260 -- really operators (i.e. are predefined operators). User-defined
3261 -- operators that are intrinsic are just renamings of the predefined
3262 -- ones, and need not be turned into calls either, but if they rename
3263 -- a different operator, we must transform the node accordingly.
3264 -- Instantiations of Unchecked_Conversion are intrinsic but are
3265 -- treated as functions, even if given an operator designator.
3267 if Nkind (N) in N_Op
3268 and then Present (Entity (N))
3269 and then Ekind (Entity (N)) /= E_Operator
3270 then
3271 if not Is_Predefined_Op (Entity (N)) then
3272 Rewrite_Operator_As_Call (N, Entity (N));
3274 elsif Present (Alias (Entity (N)))
3275 and then
3276 Nkind (Parent (Parent (Entity (N)))) =
3277 N_Subprogram_Renaming_Declaration
3278 then
3279 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
3281 -- If the node is rewritten, it will be fully resolved in
3282 -- Rewrite_Renamed_Operator.
3284 if Analyzed (N) then
3285 return;
3286 end if;
3287 end if;
3288 end if;
3290 case N_Subexpr'(Nkind (N)) is
3291 when N_Aggregate =>
3292 Resolve_Aggregate (N, Ctx_Type);
3294 when N_Allocator =>
3295 Resolve_Allocator (N, Ctx_Type);
3297 when N_Short_Circuit =>
3298 Resolve_Short_Circuit (N, Ctx_Type);
3300 when N_Attribute_Reference =>
3301 Resolve_Attribute (N, Ctx_Type);
3303 when N_Case_Expression =>
3304 Resolve_Case_Expression (N, Ctx_Type);
3306 when N_Character_Literal =>
3307 Resolve_Character_Literal (N, Ctx_Type);
3309 when N_Delta_Aggregate =>
3310 Resolve_Delta_Aggregate (N, Ctx_Type);
3312 when N_Expanded_Name =>
3313 Resolve_Entity_Name (N, Ctx_Type);
3315 when N_Explicit_Dereference =>
3316 Resolve_Explicit_Dereference (N, Ctx_Type);
3318 when N_Expression_With_Actions =>
3319 Resolve_Expression_With_Actions (N, Ctx_Type);
3321 when N_Extension_Aggregate =>
3322 Resolve_Extension_Aggregate (N, Ctx_Type);
3324 when N_Function_Call =>
3325 Resolve_Call (N, Ctx_Type);
3327 when N_Identifier =>
3328 Resolve_Entity_Name (N, Ctx_Type);
3330 when N_If_Expression =>
3331 Resolve_If_Expression (N, Ctx_Type);
3333 when N_Indexed_Component =>
3334 Resolve_Indexed_Component (N, Ctx_Type);
3336 when N_Integer_Literal =>
3337 Resolve_Integer_Literal (N, Ctx_Type);
3339 when N_Membership_Test =>
3340 Resolve_Membership_Op (N, Ctx_Type);
3342 when N_Null =>
3343 Resolve_Null (N, Ctx_Type);
3345 when N_Op_And
3346 | N_Op_Or
3347 | N_Op_Xor
3349 Resolve_Logical_Op (N, Ctx_Type);
3351 when N_Op_Eq
3352 | N_Op_Ne
3354 Resolve_Equality_Op (N, Ctx_Type);
3356 when N_Op_Ge
3357 | N_Op_Gt
3358 | N_Op_Le
3359 | N_Op_Lt
3361 Resolve_Comparison_Op (N, Ctx_Type);
3363 when N_Op_Not =>
3364 Resolve_Op_Not (N, Ctx_Type);
3366 when N_Op_Add
3367 | N_Op_Divide
3368 | N_Op_Mod
3369 | N_Op_Multiply
3370 | N_Op_Rem
3371 | N_Op_Subtract
3373 Resolve_Arithmetic_Op (N, Ctx_Type);
3375 when N_Op_Concat =>
3376 Resolve_Op_Concat (N, Ctx_Type);
3378 when N_Op_Expon =>
3379 Resolve_Op_Expon (N, Ctx_Type);
3381 when N_Op_Abs
3382 | N_Op_Minus
3383 | N_Op_Plus
3385 Resolve_Unary_Op (N, Ctx_Type);
3387 when N_Op_Shift =>
3388 Resolve_Shift (N, Ctx_Type);
3390 when N_Procedure_Call_Statement =>
3391 Resolve_Call (N, Ctx_Type);
3393 when N_Operator_Symbol =>
3394 Resolve_Operator_Symbol (N, Ctx_Type);
3396 when N_Qualified_Expression =>
3397 Resolve_Qualified_Expression (N, Ctx_Type);
3399 -- Why is the following null, needs a comment ???
3401 when N_Quantified_Expression =>
3402 null;
3404 when N_Raise_Expression =>
3405 Resolve_Raise_Expression (N, Ctx_Type);
3407 when N_Raise_xxx_Error =>
3408 Set_Etype (N, Ctx_Type);
3410 when N_Range =>
3411 Resolve_Range (N, Ctx_Type);
3413 when N_Real_Literal =>
3414 Resolve_Real_Literal (N, Ctx_Type);
3416 when N_Reference =>
3417 Resolve_Reference (N, Ctx_Type);
3419 when N_Selected_Component =>
3420 Resolve_Selected_Component (N, Ctx_Type);
3422 when N_Slice =>
3423 Resolve_Slice (N, Ctx_Type);
3425 when N_String_Literal =>
3426 Resolve_String_Literal (N, Ctx_Type);
3428 when N_Target_Name =>
3429 Resolve_Target_Name (N, Ctx_Type);
3431 when N_Type_Conversion =>
3432 Resolve_Type_Conversion (N, Ctx_Type);
3434 when N_Unchecked_Expression =>
3435 Resolve_Unchecked_Expression (N, Ctx_Type);
3437 when N_Unchecked_Type_Conversion =>
3438 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3439 end case;
3441 -- Mark relevant use-type and use-package clauses as effective using
3442 -- the original node because constant folding may have occured and
3443 -- removed references that need to be examined.
3445 if Nkind (Original_Node (N)) in N_Op then
3446 Mark_Use_Clauses (Original_Node (N));
3447 end if;
3449 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3450 -- expression of an anonymous access type that occurs in the context
3451 -- of a named general access type, except when the expression is that
3452 -- of a membership test. This ensures proper legality checking in
3453 -- terms of allowed conversions (expressions that would be illegal to
3454 -- convert implicitly are allowed in membership tests).
3456 if Ada_Version >= Ada_2012
3457 and then Ekind (Base_Type (Ctx_Type)) = E_General_Access_Type
3458 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3459 and then Nkind (Parent (N)) not in N_Membership_Test
3460 then
3461 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3462 Analyze_And_Resolve (N, Ctx_Type);
3463 end if;
3465 -- If the subexpression was replaced by a non-subexpression, then
3466 -- all we do is to expand it. The only legitimate case we know of
3467 -- is converting procedure call statement to entry call statements,
3468 -- but there may be others, so we are making this test general.
3470 if Nkind (N) not in N_Subexpr then
3471 Debug_A_Exit ("resolving ", N, " (done)");
3472 Expand (N);
3473 return;
3474 end if;
3476 -- The expression is definitely NOT overloaded at this point, so
3477 -- we reset the Is_Overloaded flag to avoid any confusion when
3478 -- reanalyzing the node.
3480 Set_Is_Overloaded (N, False);
3482 -- Freeze expression type, entity if it is a name, and designated
3483 -- type if it is an allocator (RM 13.14(10,11,13)).
3485 -- Now that the resolution of the type of the node is complete, and
3486 -- we did not detect an error, we can expand this node. We skip the
3487 -- expand call if we are in a default expression, see section
3488 -- "Handling of Default Expressions" in Sem spec.
3490 Debug_A_Exit ("resolving ", N, " (done)");
3492 -- We unconditionally freeze the expression, even if we are in
3493 -- default expression mode (the Freeze_Expression routine tests this
3494 -- flag and only freezes static types if it is set).
3496 -- Ada 2012 (AI05-177): The declaration of an expression function
3497 -- does not cause freezing, but we never reach here in that case.
3498 -- Here we are resolving the corresponding expanded body, so we do
3499 -- need to perform normal freezing.
3501 -- As elsewhere we do not emit freeze node within a generic.
3503 if not Inside_A_Generic then
3504 Freeze_Expression (N);
3505 end if;
3507 -- Now we can do the expansion
3509 Expand (N);
3510 end if;
3511 end Resolve;
3513 -------------
3514 -- Resolve --
3515 -------------
3517 -- Version with check(s) suppressed
3519 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3520 begin
3521 if Suppress = All_Checks then
3522 declare
3523 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3524 begin
3525 Scope_Suppress.Suppress := (others => True);
3526 Resolve (N, Typ);
3527 Scope_Suppress.Suppress := Sva;
3528 end;
3530 else
3531 declare
3532 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3533 begin
3534 Scope_Suppress.Suppress (Suppress) := True;
3535 Resolve (N, Typ);
3536 Scope_Suppress.Suppress (Suppress) := Svg;
3537 end;
3538 end if;
3539 end Resolve;
3541 -------------
3542 -- Resolve --
3543 -------------
3545 -- Version with implicit type
3547 procedure Resolve (N : Node_Id) is
3548 begin
3549 Resolve (N, Etype (N));
3550 end Resolve;
3552 ---------------------
3553 -- Resolve_Actuals --
3554 ---------------------
3556 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3557 Loc : constant Source_Ptr := Sloc (N);
3558 A : Node_Id;
3559 A_Typ : Entity_Id := Empty; -- init to avoid warning
3560 F : Entity_Id;
3561 F_Typ : Entity_Id;
3562 Prev : Node_Id := Empty;
3563 Orig_A : Node_Id;
3564 Real_F : Entity_Id := Empty; -- init to avoid warning
3566 Real_Subp : Entity_Id;
3567 -- If the subprogram being called is an inherited operation for
3568 -- a formal derived type in an instance, Real_Subp is the subprogram
3569 -- that will be called. It may have different formal names than the
3570 -- operation of the formal in the generic, so after actual is resolved
3571 -- the name of the actual in a named association must carry the name
3572 -- of the actual of the subprogram being called.
3574 procedure Check_Aliased_Parameter;
3575 -- Check rules on aliased parameters and related accessibility rules
3576 -- in (RM 3.10.2 (10.2-10.4)).
3578 procedure Check_Argument_Order;
3579 -- Performs a check for the case where the actuals are all simple
3580 -- identifiers that correspond to the formal names, but in the wrong
3581 -- order, which is considered suspicious and cause for a warning.
3583 procedure Check_Prefixed_Call;
3584 -- If the original node is an overloaded call in prefix notation,
3585 -- insert an 'Access or a dereference as needed over the first actual.
3586 -- Try_Object_Operation has already verified that there is a valid
3587 -- interpretation, but the form of the actual can only be determined
3588 -- once the primitive operation is identified.
3590 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3591 -- Emit an error concerning the illegal usage of an effectively volatile
3592 -- object for reading in interfering context (SPARK RM 7.1.3(10)).
3594 procedure Insert_Default;
3595 -- If the actual is missing in a call, insert in the actuals list
3596 -- an instance of the default expression. The insertion is always
3597 -- a named association.
3599 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3600 -- Check whether T1 and T2, or their full views, are derived from a
3601 -- common type. Used to enforce the restrictions on array conversions
3602 -- of AI95-00246.
3604 function Static_Concatenation (N : Node_Id) return Boolean;
3605 -- Predicate to determine whether an actual that is a concatenation
3606 -- will be evaluated statically and does not need a transient scope.
3607 -- This must be determined before the actual is resolved and expanded
3608 -- because if needed the transient scope must be introduced earlier.
3610 -----------------------------
3611 -- Check_Aliased_Parameter --
3612 -----------------------------
3614 procedure Check_Aliased_Parameter is
3615 Nominal_Subt : Entity_Id;
3617 begin
3618 if Is_Aliased (F) then
3619 if Is_Tagged_Type (A_Typ) then
3620 null;
3622 elsif Is_Aliased_View (A) then
3623 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3624 Nominal_Subt := Base_Type (A_Typ);
3625 else
3626 Nominal_Subt := A_Typ;
3627 end if;
3629 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3630 null;
3632 -- In a generic body assume the worst for generic formals:
3633 -- they can have a constrained partial view (AI05-041).
3635 elsif Has_Discriminants (F_Typ)
3636 and then not Is_Constrained (F_Typ)
3637 and then not Object_Type_Has_Constrained_Partial_View
3638 (Typ => F_Typ, Scop => Current_Scope)
3639 then
3640 null;
3642 else
3643 Error_Msg_NE ("untagged actual does not statically match "
3644 & "aliased formal&", A, F);
3645 end if;
3647 else
3648 Error_Msg_NE ("actual for aliased formal& must be "
3649 & "aliased object", A, F);
3650 end if;
3652 if Ekind (Nam) = E_Procedure then
3653 null;
3655 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3656 if Nkind (Parent (N)) = N_Type_Conversion
3657 and then Type_Access_Level (Etype (Parent (N)))
3658 < Static_Accessibility_Level (A, Object_Decl_Level)
3659 then
3660 Error_Msg_N ("aliased actual has wrong accessibility", A);
3661 end if;
3663 elsif Nkind (Parent (N)) = N_Qualified_Expression
3664 and then Nkind (Parent (Parent (N))) = N_Allocator
3665 and then Type_Access_Level (Etype (Parent (Parent (N))))
3666 < Static_Accessibility_Level (A, Object_Decl_Level)
3667 then
3668 Error_Msg_N
3669 ("aliased actual in allocator has wrong accessibility", A);
3670 end if;
3671 end if;
3672 end Check_Aliased_Parameter;
3674 --------------------------
3675 -- Check_Argument_Order --
3676 --------------------------
3678 procedure Check_Argument_Order is
3679 begin
3680 -- Nothing to do if no parameters, or original node is neither a
3681 -- function call nor a procedure call statement (happens in the
3682 -- operator-transformed-to-function call case), or the call is to an
3683 -- operator symbol (which is usually in infix form), or the call does
3684 -- not come from source, or this warning is off.
3686 if not Warn_On_Parameter_Order
3687 or else No (Parameter_Associations (N))
3688 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3689 or else (Nkind (Name (N)) = N_Identifier
3690 and then Present (Entity (Name (N)))
3691 and then Nkind (Entity (Name (N))) =
3692 N_Defining_Operator_Symbol)
3693 or else not Comes_From_Source (N)
3694 then
3695 return;
3696 end if;
3698 declare
3699 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3701 begin
3702 -- Nothing to do if only one parameter
3704 if Nargs < 2 then
3705 return;
3706 end if;
3708 -- Here if at least two arguments
3710 declare
3711 Actuals : array (1 .. Nargs) of Node_Id;
3712 Actual : Node_Id;
3713 Formal : Node_Id;
3715 Wrong_Order : Boolean := False;
3716 -- Set True if an out of order case is found
3718 begin
3719 -- Collect identifier names of actuals, fail if any actual is
3720 -- not a simple identifier, and record max length of name.
3722 Actual := First (Parameter_Associations (N));
3723 for J in Actuals'Range loop
3724 if Nkind (Actual) /= N_Identifier then
3725 return;
3726 else
3727 Actuals (J) := Actual;
3728 Next (Actual);
3729 end if;
3730 end loop;
3732 -- If we got this far, all actuals are identifiers and the list
3733 -- of their names is stored in the Actuals array.
3735 Formal := First_Formal (Nam);
3736 for J in Actuals'Range loop
3738 -- If we ran out of formals, that's odd, probably an error
3739 -- which will be detected elsewhere, but abandon the search.
3741 if No (Formal) then
3742 return;
3743 end if;
3745 -- If name matches and is in order OK
3747 if Chars (Formal) = Chars (Actuals (J)) then
3748 null;
3750 else
3751 -- If no match, see if it is elsewhere in list and if so
3752 -- flag potential wrong order if type is compatible.
3754 for K in Actuals'Range loop
3755 if Chars (Formal) = Chars (Actuals (K))
3756 and then
3757 Has_Compatible_Type (Actuals (K), Etype (Formal))
3758 then
3759 Wrong_Order := True;
3760 goto Continue;
3761 end if;
3762 end loop;
3764 -- No match
3766 return;
3767 end if;
3769 <<Continue>> Next_Formal (Formal);
3770 end loop;
3772 -- If Formals left over, also probably an error, skip warning
3774 if Present (Formal) then
3775 return;
3776 end if;
3778 -- Here we give the warning if something was out of order
3780 if Wrong_Order then
3781 Error_Msg_N
3782 ("?.p?actuals for this call may be in wrong order", N);
3783 end if;
3784 end;
3785 end;
3786 end Check_Argument_Order;
3788 -------------------------
3789 -- Check_Prefixed_Call --
3790 -------------------------
3792 procedure Check_Prefixed_Call is
3793 Act : constant Node_Id := First_Actual (N);
3794 A_Type : constant Entity_Id := Etype (Act);
3795 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3796 Orig : constant Node_Id := Original_Node (N);
3797 New_A : Node_Id;
3799 begin
3800 -- Check whether the call is a prefixed call, with or without
3801 -- additional actuals.
3803 if Nkind (Orig) = N_Selected_Component
3804 or else
3805 (Nkind (Orig) = N_Indexed_Component
3806 and then Nkind (Prefix (Orig)) = N_Selected_Component
3807 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3808 and then Is_Entity_Name (Act)
3809 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3810 then
3811 if Is_Access_Type (A_Type)
3812 and then not Is_Access_Type (F_Type)
3813 then
3814 -- Introduce dereference on object in prefix
3816 New_A :=
3817 Make_Explicit_Dereference (Sloc (Act),
3818 Prefix => Relocate_Node (Act));
3819 Rewrite (Act, New_A);
3820 Analyze (Act);
3822 elsif Is_Access_Type (F_Type)
3823 and then not Is_Access_Type (A_Type)
3824 then
3825 -- Introduce an implicit 'Access in prefix
3827 if not Is_Aliased_View (Act) then
3828 Error_Msg_NE
3829 ("object in prefixed call to& must be aliased "
3830 & "(RM 4.1.3 (13 1/2))",
3831 Prefix (Act), Nam);
3832 end if;
3834 Rewrite (Act,
3835 Make_Attribute_Reference (Loc,
3836 Attribute_Name => Name_Access,
3837 Prefix => Relocate_Node (Act)));
3838 end if;
3840 Analyze (Act);
3841 end if;
3842 end Check_Prefixed_Call;
3844 ---------------------------------------
3845 -- Flag_Effectively_Volatile_Objects --
3846 ---------------------------------------
3848 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3849 function Flag_Object (N : Node_Id) return Traverse_Result;
3850 -- Determine whether arbitrary node N denotes an effectively volatile
3851 -- object for reading and if it does, emit an error.
3853 -----------------
3854 -- Flag_Object --
3855 -----------------
3857 function Flag_Object (N : Node_Id) return Traverse_Result is
3858 Id : Entity_Id;
3860 begin
3861 case Nkind (N) is
3862 -- Do not consider nested function calls because they have
3863 -- already been processed during their own resolution.
3865 when N_Function_Call =>
3866 return Skip;
3868 when N_Identifier | N_Expanded_Name =>
3869 Id := Entity (N);
3871 if Present (Id)
3872 and then Is_Object (Id)
3873 and then Is_Effectively_Volatile_For_Reading (Id)
3874 and then
3875 not Is_OK_Volatile_Context (Context => Parent (N),
3876 Obj_Ref => N,
3877 Check_Actuals => True)
3878 then
3879 Error_Msg_N
3880 ("volatile object cannot appear in this context"
3881 & " (SPARK RM 7.1.3(10))", N);
3882 end if;
3884 return Skip;
3886 when others =>
3887 return OK;
3888 end case;
3889 end Flag_Object;
3891 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3893 -- Start of processing for Flag_Effectively_Volatile_Objects
3895 begin
3896 Flag_Objects (Expr);
3897 end Flag_Effectively_Volatile_Objects;
3899 --------------------
3900 -- Insert_Default --
3901 --------------------
3903 procedure Insert_Default is
3904 Actval : Node_Id;
3905 Assoc : Node_Id;
3907 begin
3908 -- Missing argument in call, nothing to insert
3910 if No (Default_Value (F)) then
3911 return;
3913 else
3914 -- Note that we do a full New_Copy_Tree, so that any associated
3915 -- Itypes are properly copied. This may not be needed any more,
3916 -- but it does no harm as a safety measure. Defaults of a generic
3917 -- formal may be out of bounds of the corresponding actual (see
3918 -- cc1311b) and an additional check may be required.
3920 Actval :=
3921 New_Copy_Tree
3922 (Default_Value (F),
3923 New_Scope => Current_Scope,
3924 New_Sloc => Loc);
3926 -- Propagate dimension information, if any.
3928 Copy_Dimensions (Default_Value (F), Actval);
3930 if Is_Concurrent_Type (Scope (Nam))
3931 and then Has_Discriminants (Scope (Nam))
3932 then
3933 Replace_Actual_Discriminants (N, Actval);
3934 end if;
3936 if Is_Overloadable (Nam)
3937 and then Present (Alias (Nam))
3938 then
3939 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3940 and then not Is_Tagged_Type (Etype (F))
3941 then
3942 -- If default is a real literal, do not introduce a
3943 -- conversion whose effect may depend on the run-time
3944 -- size of universal real.
3946 if Nkind (Actval) = N_Real_Literal then
3947 Set_Etype (Actval, Base_Type (Etype (F)));
3948 else
3949 Actval := Unchecked_Convert_To (Etype (F), Actval);
3950 end if;
3951 end if;
3953 if Is_Scalar_Type (Etype (F)) then
3954 Enable_Range_Check (Actval);
3955 end if;
3957 Set_Parent (Actval, N);
3959 -- Resolve aggregates with their base type, to avoid scope
3960 -- anomalies: the subtype was first built in the subprogram
3961 -- declaration, and the current call may be nested.
3963 if Nkind (Actval) = N_Aggregate then
3964 Analyze_And_Resolve (Actval, Etype (F));
3965 else
3966 Analyze_And_Resolve (Actval, Etype (Actval));
3967 end if;
3969 else
3970 Set_Parent (Actval, N);
3972 -- See note above concerning aggregates
3974 if Nkind (Actval) = N_Aggregate
3975 and then Has_Discriminants (Etype (Actval))
3976 then
3977 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3979 -- Resolve entities with their own type, which may differ from
3980 -- the type of a reference in a generic context (the view
3981 -- swapping mechanism did not anticipate the re-analysis of
3982 -- default values in calls).
3984 elsif Is_Entity_Name (Actval) then
3985 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3987 else
3988 Analyze_And_Resolve (Actval, Etype (Actval));
3989 end if;
3990 end if;
3992 -- If default is a tag indeterminate function call, propagate tag
3993 -- to obtain proper dispatching.
3995 if Is_Controlling_Formal (F)
3996 and then Nkind (Default_Value (F)) = N_Function_Call
3997 then
3998 Set_Is_Controlling_Actual (Actval);
3999 end if;
4000 end if;
4002 -- If the default expression raises constraint error, then just
4003 -- silently replace it with an N_Raise_Constraint_Error node, since
4004 -- we already gave the warning on the subprogram spec. If node is
4005 -- already a Raise_Constraint_Error leave as is, to prevent loops in
4006 -- the warnings removal machinery.
4008 if Raises_Constraint_Error (Actval)
4009 and then Nkind (Actval) /= N_Raise_Constraint_Error
4010 then
4011 Rewrite (Actval,
4012 Make_Raise_Constraint_Error (Loc,
4013 Reason => CE_Range_Check_Failed));
4015 Set_Raises_Constraint_Error (Actval);
4016 Set_Etype (Actval, Etype (F));
4017 end if;
4019 Assoc :=
4020 Make_Parameter_Association (Loc,
4021 Explicit_Actual_Parameter => Actval,
4022 Selector_Name => Make_Identifier (Loc, Chars (F)));
4024 -- Case of insertion is first named actual
4026 if No (Prev)
4027 or else Nkind (Parent (Prev)) /= N_Parameter_Association
4028 then
4029 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
4030 Set_First_Named_Actual (N, Actval);
4032 if No (Prev) then
4033 if No (Parameter_Associations (N)) then
4034 Set_Parameter_Associations (N, New_List (Assoc));
4035 else
4036 Append (Assoc, Parameter_Associations (N));
4037 end if;
4039 else
4040 Insert_After (Prev, Assoc);
4041 end if;
4043 -- Case of insertion is not first named actual
4045 else
4046 Set_Next_Named_Actual
4047 (Assoc, Next_Named_Actual (Parent (Prev)));
4048 Set_Next_Named_Actual (Parent (Prev), Actval);
4049 Append (Assoc, Parameter_Associations (N));
4050 end if;
4052 Mark_Rewrite_Insertion (Assoc);
4053 Mark_Rewrite_Insertion (Actval);
4055 Prev := Actval;
4056 end Insert_Default;
4058 -------------------
4059 -- Same_Ancestor --
4060 -------------------
4062 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
4063 FT1 : Entity_Id := T1;
4064 FT2 : Entity_Id := T2;
4066 begin
4067 if Is_Private_Type (T1)
4068 and then Present (Full_View (T1))
4069 then
4070 FT1 := Full_View (T1);
4071 end if;
4073 if Is_Private_Type (T2)
4074 and then Present (Full_View (T2))
4075 then
4076 FT2 := Full_View (T2);
4077 end if;
4079 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
4080 end Same_Ancestor;
4082 --------------------------
4083 -- Static_Concatenation --
4084 --------------------------
4086 function Static_Concatenation (N : Node_Id) return Boolean is
4087 begin
4088 case Nkind (N) is
4089 when N_String_Literal =>
4090 return True;
4092 when N_Op_Concat =>
4094 -- Concatenation is static when both operands are static and
4095 -- the concatenation operator is a predefined one.
4097 return Scope (Entity (N)) = Standard_Standard
4098 and then
4099 Static_Concatenation (Left_Opnd (N))
4100 and then
4101 Static_Concatenation (Right_Opnd (N));
4103 when others =>
4104 if Is_Entity_Name (N) then
4105 declare
4106 Ent : constant Entity_Id := Entity (N);
4107 begin
4108 return Ekind (Ent) = E_Constant
4109 and then Present (Constant_Value (Ent))
4110 and then
4111 Is_OK_Static_Expression (Constant_Value (Ent));
4112 end;
4114 else
4115 return False;
4116 end if;
4117 end case;
4118 end Static_Concatenation;
4120 -- Start of processing for Resolve_Actuals
4122 begin
4123 Check_Argument_Order;
4125 if Is_Overloadable (Nam)
4126 and then Is_Inherited_Operation (Nam)
4127 and then In_Instance
4128 and then Present (Alias (Nam))
4129 and then Present (Overridden_Operation (Alias (Nam)))
4130 then
4131 Real_Subp := Alias (Nam);
4132 else
4133 Real_Subp := Empty;
4134 end if;
4136 if Present (First_Actual (N)) then
4137 Check_Prefixed_Call;
4138 end if;
4140 A := First_Actual (N);
4141 F := First_Formal (Nam);
4143 if Present (Real_Subp) then
4144 Real_F := First_Formal (Real_Subp);
4145 end if;
4147 while Present (F) loop
4148 if No (A) and then Needs_No_Actuals (Nam) then
4149 null;
4151 -- If we have an error in any actual or formal, indicated by a type
4152 -- of Any_Type, then abandon resolution attempt, and set result type
4153 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
4154 -- type is imposed from context.
4156 elsif (Present (A) and then Etype (A) = Any_Type)
4157 or else Etype (F) = Any_Type
4158 then
4159 if Nkind (A) /= N_Raise_Expression then
4160 Set_Etype (N, Any_Type);
4161 return;
4162 end if;
4163 end if;
4165 -- Case where actual is present
4167 -- If the actual is an entity, generate a reference to it now. We
4168 -- do this before the actual is resolved, because a formal of some
4169 -- protected subprogram, or a task discriminant, will be rewritten
4170 -- during expansion, and the source entity reference may be lost.
4172 if Present (A)
4173 and then Is_Entity_Name (A)
4174 and then Comes_From_Source (A)
4175 then
4176 -- Annotate the tree by creating a variable reference marker when
4177 -- the actual denotes a variable reference, in case the reference
4178 -- is folded or optimized away. The variable reference marker is
4179 -- automatically saved for later examination by the ABE Processing
4180 -- phase. The status of the reference is set as follows:
4182 -- status mode
4183 -- read IN, IN OUT
4184 -- write IN OUT, OUT
4186 if Needs_Variable_Reference_Marker
4187 (N => A,
4188 Calls_OK => True)
4189 then
4190 Build_Variable_Reference_Marker
4191 (N => A,
4192 Read => Ekind (F) /= E_Out_Parameter,
4193 Write => Ekind (F) /= E_In_Parameter);
4194 end if;
4196 Orig_A := Entity (A);
4198 if Present (Orig_A) then
4199 if Is_Formal (Orig_A)
4200 and then Ekind (F) /= E_In_Parameter
4201 then
4202 Generate_Reference (Orig_A, A, 'm');
4204 elsif not Is_Overloaded (A) then
4205 if Ekind (F) /= E_Out_Parameter then
4206 Generate_Reference (Orig_A, A);
4208 -- RM 6.4.1(12): For an out parameter that is passed by
4209 -- copy, the formal parameter object is created, and:
4211 -- * For an access type, the formal parameter is initialized
4212 -- from the value of the actual, without checking that the
4213 -- value satisfies any constraint, any predicate, or any
4214 -- exclusion of the null value.
4216 -- * For a scalar type that has the Default_Value aspect
4217 -- specified, the formal parameter is initialized from the
4218 -- value of the actual, without checking that the value
4219 -- satisfies any constraint or any predicate.
4220 -- I do not understand why this case is included??? this is
4221 -- not a case where an OUT parameter is treated as IN OUT.
4223 -- * For a composite type with discriminants or that has
4224 -- implicit initial values for any subcomponents, the
4225 -- behavior is as for an in out parameter passed by copy.
4227 -- Hence for these cases we generate the read reference now
4228 -- (the write reference will be generated later by
4229 -- Note_Possible_Modification).
4231 elsif Is_By_Copy_Type (Etype (F))
4232 and then
4233 (Is_Access_Type (Etype (F))
4234 or else
4235 (Is_Scalar_Type (Etype (F))
4236 and then
4237 Present (Default_Aspect_Value (Etype (F))))
4238 or else
4239 (Is_Composite_Type (Etype (F))
4240 and then (Has_Discriminants (Etype (F))
4241 or else Is_Partially_Initialized_Type
4242 (Etype (F)))))
4243 then
4244 Generate_Reference (Orig_A, A);
4245 end if;
4246 end if;
4247 end if;
4248 end if;
4250 if Present (A)
4251 and then (Nkind (Parent (A)) /= N_Parameter_Association
4252 or else Chars (Selector_Name (Parent (A))) = Chars (F))
4253 then
4254 -- If style checking mode on, check match of formal name
4256 if Style_Check then
4257 if Nkind (Parent (A)) = N_Parameter_Association then
4258 Check_Identifier (Selector_Name (Parent (A)), F);
4259 end if;
4260 end if;
4262 -- If the formal is Out or In_Out, do not resolve and expand the
4263 -- conversion, because it is subsequently expanded into explicit
4264 -- temporaries and assignments. However, the object of the
4265 -- conversion can be resolved. An exception is the case of tagged
4266 -- type conversion with a class-wide actual. In that case we want
4267 -- the tag check to occur and no temporary will be needed (no
4268 -- representation change can occur) and the parameter is passed by
4269 -- reference, so we go ahead and resolve the type conversion.
4270 -- Another exception is the case of reference to component or
4271 -- subcomponent of a bit-packed array, in which case we want to
4272 -- defer expansion to the point the in and out assignments are
4273 -- performed.
4275 if Ekind (F) /= E_In_Parameter
4276 and then Nkind (A) = N_Type_Conversion
4277 and then not Is_Class_Wide_Type (Etype (Expression (A)))
4278 and then not Is_Interface (Etype (A))
4279 then
4280 declare
4281 Expr_Typ : constant Entity_Id := Etype (Expression (A));
4283 begin
4284 -- Check RM 4.6 (24.2/2)
4286 if Is_Array_Type (Etype (F))
4287 and then Is_View_Conversion (A)
4288 then
4289 -- In a view conversion, the conversion must be legal in
4290 -- both directions, and thus both component types must be
4291 -- aliased, or neither (4.6 (8)).
4293 -- Check RM 4.6 (24.8/2)
4295 if Has_Aliased_Components (Expr_Typ) /=
4296 Has_Aliased_Components (Etype (F))
4297 then
4298 -- This normally illegal conversion is legal in an
4299 -- expanded instance body because of RM 12.3(11).
4300 -- At runtime, conversion must create a new object.
4302 if not In_Instance then
4303 Error_Msg_N
4304 ("both component types in a view conversion must"
4305 & " be aliased, or neither", A);
4306 end if;
4308 -- Check RM 4.6 (24/3)
4310 elsif not Same_Ancestor (Etype (F), Expr_Typ) then
4311 -- Check view conv between unrelated by ref array
4312 -- types.
4314 if Is_By_Reference_Type (Etype (F))
4315 or else Is_By_Reference_Type (Expr_Typ)
4316 then
4317 Error_Msg_N
4318 ("view conversion between unrelated by reference "
4319 & "array types not allowed ('A'I-00246)", A);
4321 -- In Ada 2005 mode, check view conversion component
4322 -- type cannot be private, tagged, or volatile. Note
4323 -- that we only apply this to source conversions. The
4324 -- generated code can contain conversions which are
4325 -- not subject to this test, and we cannot extract the
4326 -- component type in such cases since it is not
4327 -- present.
4329 elsif Comes_From_Source (A)
4330 and then Ada_Version >= Ada_2005
4331 then
4332 declare
4333 Comp_Type : constant Entity_Id :=
4334 Component_Type (Expr_Typ);
4335 begin
4336 if (Is_Private_Type (Comp_Type)
4337 and then not Is_Generic_Type (Comp_Type))
4338 or else Is_Tagged_Type (Comp_Type)
4339 or else Is_Volatile (Comp_Type)
4340 then
4341 Error_Msg_N
4342 ("component type of a view conversion " &
4343 "cannot be private, tagged, or volatile" &
4344 " (RM 4.6 (24))",
4345 Expression (A));
4346 end if;
4347 end;
4348 end if;
4349 end if;
4351 -- AI12-0074 & AI12-0377
4352 -- Check 6.4.1: If the mode is out, the actual parameter is
4353 -- a view conversion, and the type of the formal parameter
4354 -- is a scalar type, then either:
4355 -- - the target and operand type both do not have the
4356 -- Default_Value aspect specified; or
4357 -- - the target and operand type both have the
4358 -- Default_Value aspect specified, and there shall exist
4359 -- a type (other than a root numeric type) that is an
4360 -- ancestor of both the target type and the operand
4361 -- type.
4363 elsif Ekind (F) = E_Out_Parameter
4364 and then Is_Scalar_Type (Etype (F))
4365 then
4366 if Has_Default_Aspect (Etype (F)) /=
4367 Has_Default_Aspect (Expr_Typ)
4368 then
4369 Error_Msg_N
4370 ("view conversion requires Default_Value on both " &
4371 "types (RM 6.4.1)", A);
4372 elsif Has_Default_Aspect (Expr_Typ)
4373 and then not Same_Ancestor (Etype (F), Expr_Typ)
4374 then
4375 Error_Msg_N
4376 ("view conversion between unrelated types with "
4377 & "Default_Value not allowed (RM 6.4.1)", A);
4378 end if;
4379 end if;
4380 end;
4382 -- Resolve expression if conversion is all OK
4384 if (Conversion_OK (A)
4385 or else Valid_Conversion (A, Etype (A), Expression (A)))
4386 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
4387 then
4388 Resolve (Expression (A));
4389 end if;
4391 -- If the actual is a function call that returns a limited
4392 -- unconstrained object that needs finalization, create a
4393 -- transient scope for it, so that it can receive the proper
4394 -- finalization list.
4396 elsif Expander_Active
4397 and then Nkind (A) = N_Function_Call
4398 and then Is_Limited_Record (Etype (F))
4399 and then not Is_Constrained (Etype (F))
4400 and then (Needs_Finalization (Etype (F))
4401 or else Has_Task (Etype (F)))
4402 then
4403 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
4404 Resolve (A, Etype (F));
4406 -- A small optimization: if one of the actuals is a concatenation
4407 -- create a block around a procedure call to recover stack space.
4408 -- This alleviates stack usage when several procedure calls in
4409 -- the same statement list use concatenation. We do not perform
4410 -- this wrapping for code statements, where the argument is a
4411 -- static string, and we want to preserve warnings involving
4412 -- sequences of such statements.
4414 elsif Expander_Active
4415 and then Nkind (A) = N_Op_Concat
4416 and then Nkind (N) = N_Procedure_Call_Statement
4417 and then not (Is_Intrinsic_Subprogram (Nam)
4418 and then Chars (Nam) = Name_Asm)
4419 and then not Static_Concatenation (A)
4420 then
4421 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
4422 Resolve (A, Etype (F));
4424 else
4425 if Nkind (A) = N_Type_Conversion
4426 and then Is_Array_Type (Etype (F))
4427 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
4428 and then
4429 (Is_Limited_Type (Etype (F))
4430 or else Is_Limited_Type (Etype (Expression (A))))
4431 then
4432 Error_Msg_N
4433 ("conversion between unrelated limited array types not "
4434 & "allowed ('A'I-00246)", A);
4436 if Is_Limited_Type (Etype (F)) then
4437 Explain_Limited_Type (Etype (F), A);
4438 end if;
4440 if Is_Limited_Type (Etype (Expression (A))) then
4441 Explain_Limited_Type (Etype (Expression (A)), A);
4442 end if;
4443 end if;
4445 -- (Ada 2005: AI-251): If the actual is an allocator whose
4446 -- directly designated type is a class-wide interface, we build
4447 -- an anonymous access type to use it as the type of the
4448 -- allocator. Later, when the subprogram call is expanded, if
4449 -- the interface has a secondary dispatch table the expander
4450 -- will add a type conversion to force the correct displacement
4451 -- of the pointer.
4453 if Nkind (A) = N_Allocator then
4454 declare
4455 DDT : constant Entity_Id :=
4456 Directly_Designated_Type (Base_Type (Etype (F)));
4458 begin
4459 -- Displace the pointer to the object to reference its
4460 -- secondary dispatch table.
4462 if Is_Class_Wide_Type (DDT)
4463 and then Is_Interface (DDT)
4464 then
4465 Rewrite (A, Convert_To (Etype (F), Relocate_Node (A)));
4466 Analyze_And_Resolve (A, Etype (F),
4467 Suppress => Access_Check);
4468 end if;
4470 -- Ada 2005, AI-162:If the actual is an allocator, the
4471 -- innermost enclosing statement is the master of the
4472 -- created object. This needs to be done with expansion
4473 -- enabled only, otherwise the transient scope will not
4474 -- be removed in the expansion of the wrapped construct.
4476 if Expander_Active
4477 and then (Needs_Finalization (DDT)
4478 or else Has_Task (DDT))
4479 then
4480 Establish_Transient_Scope
4481 (A, Manage_Sec_Stack => False);
4482 end if;
4483 end;
4485 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4486 Check_Restriction (No_Access_Parameter_Allocators, A);
4487 end if;
4488 end if;
4490 -- (Ada 2005): The call may be to a primitive operation of a
4491 -- tagged synchronized type, declared outside of the type. In
4492 -- this case the controlling actual must be converted to its
4493 -- corresponding record type, which is the formal type. The
4494 -- actual may be a subtype, either because of a constraint or
4495 -- because it is a generic actual, so use base type to locate
4496 -- concurrent type.
4498 F_Typ := Base_Type (Etype (F));
4500 if Is_Tagged_Type (F_Typ)
4501 and then (Is_Concurrent_Type (F_Typ)
4502 or else Is_Concurrent_Record_Type (F_Typ))
4503 then
4504 -- If the actual is overloaded, look for an interpretation
4505 -- that has a synchronized type.
4507 if not Is_Overloaded (A) then
4508 A_Typ := Base_Type (Etype (A));
4510 else
4511 declare
4512 Index : Interp_Index;
4513 It : Interp;
4515 begin
4516 Get_First_Interp (A, Index, It);
4517 while Present (It.Typ) loop
4518 if Is_Concurrent_Type (It.Typ)
4519 or else Is_Concurrent_Record_Type (It.Typ)
4520 then
4521 A_Typ := Base_Type (It.Typ);
4522 exit;
4523 end if;
4525 Get_Next_Interp (Index, It);
4526 end loop;
4527 end;
4528 end if;
4530 declare
4531 Full_A_Typ : Entity_Id;
4533 begin
4534 if Present (Full_View (A_Typ)) then
4535 Full_A_Typ := Base_Type (Full_View (A_Typ));
4536 else
4537 Full_A_Typ := A_Typ;
4538 end if;
4540 -- Tagged synchronized type (case 1): the actual is a
4541 -- concurrent type.
4543 if Is_Concurrent_Type (A_Typ)
4544 and then Corresponding_Record_Type (A_Typ) = F_Typ
4545 then
4546 Rewrite (A,
4547 Unchecked_Convert_To
4548 (Corresponding_Record_Type (A_Typ), A));
4549 Resolve (A, Etype (F));
4551 -- Tagged synchronized type (case 2): the formal is a
4552 -- concurrent type.
4554 elsif Ekind (Full_A_Typ) = E_Record_Type
4555 and then Present
4556 (Corresponding_Concurrent_Type (Full_A_Typ))
4557 and then Is_Concurrent_Type (F_Typ)
4558 and then Present (Corresponding_Record_Type (F_Typ))
4559 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4560 then
4561 Resolve (A, Corresponding_Record_Type (F_Typ));
4563 -- Common case
4565 else
4566 Resolve (A, Etype (F));
4567 end if;
4568 end;
4570 -- Not a synchronized operation
4572 else
4573 Resolve (A, Etype (F));
4574 end if;
4575 end if;
4577 A_Typ := Etype (A);
4578 F_Typ := Etype (F);
4580 -- An actual cannot be an untagged formal incomplete type
4582 if Ekind (A_Typ) = E_Incomplete_Type
4583 and then not Is_Tagged_Type (A_Typ)
4584 and then Is_Generic_Type (A_Typ)
4585 then
4586 Error_Msg_N
4587 ("invalid use of untagged formal incomplete type", A);
4588 end if;
4590 -- has warnings suppressed, then we reset Never_Set_In_Source for
4591 -- the calling entity. The reason for this is to catch cases like
4592 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4593 -- uses trickery to modify an IN parameter.
4595 if Ekind (F) = E_In_Parameter
4596 and then Is_Entity_Name (A)
4597 and then Present (Entity (A))
4598 and then Ekind (Entity (A)) = E_Variable
4599 and then Has_Warnings_Off (F_Typ)
4600 then
4601 Set_Never_Set_In_Source (Entity (A), False);
4602 end if;
4604 -- Perform error checks for IN and IN OUT parameters
4606 if Ekind (F) /= E_Out_Parameter then
4608 -- Check unset reference. For scalar parameters, it is clearly
4609 -- wrong to pass an uninitialized value as either an IN or
4610 -- IN-OUT parameter. For composites, it is also clearly an
4611 -- error to pass a completely uninitialized value as an IN
4612 -- parameter, but the case of IN OUT is trickier. We prefer
4613 -- not to give a warning here. For example, suppose there is
4614 -- a routine that sets some component of a record to False.
4615 -- It is perfectly reasonable to make this IN-OUT and allow
4616 -- either initialized or uninitialized records to be passed
4617 -- in this case.
4619 -- For partially initialized composite values, we also avoid
4620 -- warnings, since it is quite likely that we are passing a
4621 -- partially initialized value and only the initialized fields
4622 -- will in fact be read in the subprogram.
4624 if Is_Scalar_Type (A_Typ)
4625 or else (Ekind (F) = E_In_Parameter
4626 and then not Is_Partially_Initialized_Type (A_Typ))
4627 then
4628 Check_Unset_Reference (A);
4629 end if;
4631 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4632 -- actual to a nested call, since this constitutes a reading of
4633 -- the parameter, which is not allowed.
4635 if Ada_Version = Ada_83
4636 and then Is_Entity_Name (A)
4637 and then Ekind (Entity (A)) = E_Out_Parameter
4638 then
4639 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4640 end if;
4641 end if;
4643 -- In -gnatd.q mode, forget that a given array is constant when
4644 -- it is passed as an IN parameter to a foreign-convention
4645 -- subprogram. This is in case the subprogram evilly modifies the
4646 -- object. Of course, correct code would use IN OUT.
4648 if Debug_Flag_Dot_Q
4649 and then Ekind (F) = E_In_Parameter
4650 and then Has_Foreign_Convention (Nam)
4651 and then Is_Array_Type (F_Typ)
4652 and then Nkind (A) in N_Has_Entity
4653 and then Present (Entity (A))
4654 then
4655 Set_Is_True_Constant (Entity (A), False);
4656 end if;
4658 -- Case of OUT or IN OUT parameter
4660 if Ekind (F) /= E_In_Parameter then
4662 -- For an Out parameter, check for useless assignment. Note
4663 -- that we can't set Last_Assignment this early, because we may
4664 -- kill current values in Resolve_Call, and that call would
4665 -- clobber the Last_Assignment field.
4667 -- Note: call Warn_On_Useless_Assignment before doing the check
4668 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4669 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4670 -- reflects the last assignment, not this one.
4672 if Ekind (F) = E_Out_Parameter then
4673 if Warn_On_Modified_As_Out_Parameter (F)
4674 and then Is_Entity_Name (A)
4675 and then Present (Entity (A))
4676 and then Comes_From_Source (N)
4677 then
4678 Warn_On_Useless_Assignment (Entity (A), A);
4679 end if;
4680 end if;
4682 -- Validate the form of the actual. Note that the call to
4683 -- Is_OK_Variable_For_Out_Formal generates the required
4684 -- reference in this case.
4686 -- A call to an initialization procedure for an aggregate
4687 -- component may initialize a nested component of a constant
4688 -- designated object. In this context the object is variable.
4690 if not Is_OK_Variable_For_Out_Formal (A)
4691 and then not Is_Init_Proc (Nam)
4692 then
4693 Error_Msg_NE ("actual for& must be a variable", A, F);
4695 if Is_Subprogram (Current_Scope) then
4696 if Is_Invariant_Procedure (Current_Scope)
4697 or else Is_Partial_Invariant_Procedure (Current_Scope)
4698 then
4699 Error_Msg_N
4700 ("function used in invariant cannot modify its "
4701 & "argument", F);
4703 elsif Is_Predicate_Function (Current_Scope) then
4704 Error_Msg_N
4705 ("function used in predicate cannot modify its "
4706 & "argument", F);
4707 end if;
4708 end if;
4709 end if;
4711 -- What's the following about???
4713 if Is_Entity_Name (A) then
4714 Kill_Checks (Entity (A));
4715 else
4716 Kill_All_Checks;
4717 end if;
4718 end if;
4720 if A_Typ = Any_Type then
4721 Set_Etype (N, Any_Type);
4722 return;
4723 end if;
4725 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4727 if Ekind (F) in E_In_Parameter | E_In_Out_Parameter then
4729 -- Apply predicate tests except in certain special cases. Note
4730 -- that it might be more consistent to apply these only when
4731 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4732 -- for the outbound predicate tests ??? In any case indicate
4733 -- the function being called, for better warnings if the call
4734 -- leads to an infinite recursion.
4736 if Predicate_Tests_On_Arguments (Nam) then
4737 Apply_Predicate_Check (A, F_Typ, Nam);
4738 end if;
4740 -- Apply required constraint checks
4742 if Is_Scalar_Type (A_Typ) then
4743 Apply_Scalar_Range_Check (A, F_Typ);
4745 elsif Is_Array_Type (A_Typ) then
4746 Apply_Length_Check (A, F_Typ);
4748 elsif Is_Record_Type (F_Typ)
4749 and then Has_Discriminants (F_Typ)
4750 and then Is_Constrained (F_Typ)
4751 and then (not Is_Derived_Type (F_Typ)
4752 or else Comes_From_Source (Nam))
4753 then
4754 Apply_Discriminant_Check (A, F_Typ);
4756 -- For view conversions of a discriminated object, apply
4757 -- check to object itself, the conversion alreay has the
4758 -- proper type.
4760 if Nkind (A) = N_Type_Conversion
4761 and then Is_Constrained (Etype (Expression (A)))
4762 then
4763 Apply_Discriminant_Check (Expression (A), F_Typ);
4764 end if;
4766 elsif Is_Access_Type (F_Typ)
4767 and then Is_Array_Type (Designated_Type (F_Typ))
4768 and then Is_Constrained (Designated_Type (F_Typ))
4769 then
4770 Apply_Length_Check (A, F_Typ);
4772 elsif Is_Access_Type (F_Typ)
4773 and then Has_Discriminants (Designated_Type (F_Typ))
4774 and then Is_Constrained (Designated_Type (F_Typ))
4775 then
4776 Apply_Discriminant_Check (A, F_Typ);
4778 else
4779 Apply_Range_Check (A, F_Typ);
4780 end if;
4782 -- Ada 2005 (AI-231): Note that the controlling parameter case
4783 -- already existed in Ada 95, which is partially checked
4784 -- elsewhere (see Checks), and we don't want the warning
4785 -- message to differ.
4787 if Is_Access_Type (F_Typ)
4788 and then Can_Never_Be_Null (F_Typ)
4789 and then Known_Null (A)
4790 then
4791 if Is_Controlling_Formal (F) then
4792 Apply_Compile_Time_Constraint_Error
4793 (N => A,
4794 Msg => "null value not allowed here??",
4795 Reason => CE_Access_Check_Failed);
4797 elsif Ada_Version >= Ada_2005 then
4798 Apply_Compile_Time_Constraint_Error
4799 (N => A,
4800 Msg => "(Ada 2005) NULL not allowed in "
4801 & "null-excluding formal??",
4802 Reason => CE_Null_Not_Allowed);
4803 end if;
4804 end if;
4805 end if;
4807 -- Checks for OUT parameters and IN OUT parameters
4809 if Ekind (F) in E_Out_Parameter | E_In_Out_Parameter then
4811 -- If there is a type conversion, make sure the return value
4812 -- meets the constraints of the variable before the conversion.
4814 if Nkind (A) = N_Type_Conversion then
4815 if Is_Scalar_Type (A_Typ) then
4817 -- Special case here tailored to Exp_Ch6.Is_Legal_Copy,
4818 -- which would prevent the check from being generated.
4819 -- This is for Starlet only though, so long obsolete.
4821 if Mechanism (F) = By_Reference
4822 and then Ekind (Nam) = E_Procedure
4823 and then Is_Valued_Procedure (Nam)
4824 then
4825 null;
4826 else
4827 Apply_Scalar_Range_Check
4828 (Expression (A), Etype (Expression (A)), A_Typ);
4829 end if;
4831 -- In addition the return value must meet the constraints
4832 -- of the object type (see the comment below).
4834 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4836 else
4837 Apply_Range_Check
4838 (Expression (A), Etype (Expression (A)), A_Typ);
4839 end if;
4841 -- If no conversion, apply scalar range checks and length check
4842 -- based on the subtype of the actual (NOT that of the formal).
4843 -- This indicates that the check takes place on return from the
4844 -- call. During expansion the required constraint checks are
4845 -- inserted. In GNATprove mode, in the absence of expansion,
4846 -- the flag indicates that the returned value is valid.
4848 else
4849 if Is_Scalar_Type (F_Typ) then
4850 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4852 elsif Is_Array_Type (F_Typ)
4853 and then Ekind (F) = E_Out_Parameter
4854 then
4855 Apply_Length_Check (A, F_Typ);
4857 else
4858 Apply_Range_Check (A, A_Typ, F_Typ);
4859 end if;
4860 end if;
4862 -- Note: we do not apply the predicate checks for the case of
4863 -- OUT and IN OUT parameters. They are instead applied in the
4864 -- Expand_Actuals routine in Exp_Ch6.
4865 end if;
4867 -- If the formal is of an unconstrained array subtype with fixed
4868 -- lower bound, then sliding to that bound may be needed.
4870 if Is_Fixed_Lower_Bound_Array_Subtype (F_Typ) then
4871 Expand_Sliding_Conversion (A, F_Typ);
4872 end if;
4874 -- An actual associated with an access parameter is implicitly
4875 -- converted to the anonymous access type of the formal and must
4876 -- satisfy the legality checks for access conversions.
4878 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4879 if not Valid_Conversion (A, F_Typ, A) then
4880 Error_Msg_N
4881 ("invalid implicit conversion for access parameter", A);
4882 end if;
4884 -- If the actual is an access selected component of a variable,
4885 -- the call may modify its designated object. It is reasonable
4886 -- to treat this as a potential modification of the enclosing
4887 -- record, to prevent spurious warnings that it should be
4888 -- declared as a constant, because intuitively programmers
4889 -- regard the designated subcomponent as part of the record.
4891 if Nkind (A) = N_Selected_Component
4892 and then Is_Entity_Name (Prefix (A))
4893 and then not Is_Constant_Object (Entity (Prefix (A)))
4894 then
4895 Note_Possible_Modification (A, Sure => False);
4896 end if;
4897 end if;
4899 -- Check illegal cases of atomic/volatile/VFA actual (RM C.6(12))
4901 if (Is_By_Reference_Type (F_Typ) or else Is_Aliased (F))
4902 and then Comes_From_Source (N)
4903 then
4904 if Is_Atomic_Object (A)
4905 and then not Is_Atomic (F_Typ)
4906 then
4907 Error_Msg_NE
4908 ("cannot pass atomic object to nonatomic formal&",
4909 A, F);
4910 Error_Msg_N
4911 ("\which is passed by reference (RM C.6(12))", A);
4913 elsif Is_Volatile_Object_Ref (A)
4914 and then not Is_Volatile (F_Typ)
4915 then
4916 Error_Msg_NE
4917 ("cannot pass volatile object to nonvolatile formal&",
4918 A, F);
4919 Error_Msg_N
4920 ("\which is passed by reference (RM C.6(12))", A);
4922 elsif Is_Volatile_Full_Access_Object_Ref (A)
4923 and then not Is_Volatile_Full_Access (F_Typ)
4924 then
4925 Error_Msg_NE
4926 ("cannot pass full access object to nonfull access "
4927 & "formal&", A, F);
4928 Error_Msg_N
4929 ("\which is passed by reference (RM C.6(12))", A);
4930 end if;
4932 -- Check for nonatomic subcomponent of a full access object
4933 -- in Ada 2022 (RM C.6 (12)).
4935 if Ada_Version >= Ada_2022
4936 and then Is_Subcomponent_Of_Full_Access_Object (A)
4937 and then not Is_Atomic_Object (A)
4938 then
4939 Error_Msg_N
4940 ("cannot pass nonatomic subcomponent of full access "
4941 & "object", A);
4942 Error_Msg_NE
4943 ("\to formal & which is passed by reference (RM C.6(12))",
4944 A, F);
4945 end if;
4946 end if;
4948 -- Check that subprograms don't have improper controlling
4949 -- arguments (RM 3.9.2 (9)).
4951 -- A primitive operation may have an access parameter of an
4952 -- incomplete tagged type, but a dispatching call is illegal
4953 -- if the type is still incomplete.
4955 if Is_Controlling_Formal (F) then
4956 Set_Is_Controlling_Actual (A);
4958 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4959 declare
4960 Desig : constant Entity_Id := Designated_Type (F_Typ);
4961 begin
4962 if Ekind (Desig) = E_Incomplete_Type
4963 and then No (Full_View (Desig))
4964 and then No (Non_Limited_View (Desig))
4965 then
4966 Error_Msg_NE
4967 ("premature use of incomplete type& "
4968 & "in dispatching call", A, Desig);
4969 end if;
4970 end;
4971 end if;
4973 elsif Nkind (A) = N_Explicit_Dereference then
4974 Validate_Remote_Access_To_Class_Wide_Type (A);
4975 end if;
4977 -- Apply legality rule 3.9.2 (9/1)
4979 -- Skip this check on helpers and indirect-call wrappers built to
4980 -- support class-wide preconditions.
4982 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4983 and then not Is_Class_Wide_Type (F_Typ)
4984 and then not Is_Controlling_Formal (F)
4985 and then not In_Instance
4986 and then (not Is_Subprogram (Nam)
4987 or else No (Class_Preconditions_Subprogram (Nam)))
4988 then
4989 Error_Msg_N ("class-wide argument not allowed here!", A);
4991 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4992 Error_Msg_Node_2 := F_Typ;
4993 Error_Msg_NE
4994 ("& is not a dispatching operation of &!", A, Nam);
4995 end if;
4997 -- Apply the checks described in 3.10.2(27): if the context is a
4998 -- specific access-to-object, the actual cannot be class-wide.
4999 -- Use base type to exclude access_to_subprogram cases.
5001 elsif Is_Access_Type (A_Typ)
5002 and then Is_Access_Type (F_Typ)
5003 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
5004 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
5005 or else (Nkind (A) = N_Attribute_Reference
5006 and then
5007 Is_Class_Wide_Type (Etype (Prefix (A)))))
5008 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
5009 and then not Is_Controlling_Formal (F)
5011 -- Disable these checks for call to imported C++ subprograms
5013 and then not
5014 (Is_Entity_Name (Name (N))
5015 and then Is_Imported (Entity (Name (N)))
5016 and then Convention (Entity (Name (N))) = Convention_CPP)
5017 then
5018 Error_Msg_N
5019 ("access to class-wide argument not allowed here!", A);
5021 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
5022 Error_Msg_Node_2 := Designated_Type (F_Typ);
5023 Error_Msg_NE
5024 ("& is not a dispatching operation of &!", A, Nam);
5025 end if;
5026 end if;
5028 Check_Aliased_Parameter;
5030 Eval_Actual (A);
5032 -- If it is a named association, treat the selector_name as a
5033 -- proper identifier, and mark the corresponding entity.
5035 if Nkind (Parent (A)) = N_Parameter_Association
5037 -- Ignore reference in SPARK mode, as it refers to an entity not
5038 -- in scope at the point of reference, so the reference should
5039 -- be ignored for computing effects of subprograms.
5041 and then not GNATprove_Mode
5042 then
5043 -- If subprogram is overridden, use name of formal that
5044 -- is being called.
5046 if Present (Real_Subp) then
5047 Set_Entity (Selector_Name (Parent (A)), Real_F);
5048 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
5050 else
5051 Set_Entity (Selector_Name (Parent (A)), F);
5052 Generate_Reference (F, Selector_Name (Parent (A)));
5053 Set_Etype (Selector_Name (Parent (A)), F_Typ);
5054 Generate_Reference (F_Typ, N, ' ');
5055 end if;
5056 end if;
5058 Prev := A;
5060 if Ekind (F) /= E_Out_Parameter then
5061 Check_Unset_Reference (A);
5062 end if;
5064 -- The following checks are only relevant when SPARK_Mode is on as
5065 -- they are not standard Ada legality rule. Internally generated
5066 -- temporaries are ignored.
5068 if SPARK_Mode = On and then Comes_From_Source (A) then
5070 -- Inspect the expression and flag each effectively volatile
5071 -- object for reading as illegal because it appears within
5072 -- an interfering context. Note that this is usually done
5073 -- in Resolve_Entity_Name, but when the effectively volatile
5074 -- object for reading appears as an actual in a call, the call
5075 -- must be resolved first.
5077 Flag_Effectively_Volatile_Objects (A);
5078 end if;
5080 -- A formal parameter of a specific tagged type whose related
5081 -- subprogram is subject to pragma Extensions_Visible with value
5082 -- "False" cannot act as an actual in a subprogram with value
5083 -- "True" (SPARK RM 6.1.7(3)).
5085 -- No check needed for helpers and indirect-call wrappers built to
5086 -- support class-wide preconditions.
5088 if Is_EVF_Expression (A)
5089 and then Extensions_Visible_Status (Nam) =
5090 Extensions_Visible_True
5091 and then No (Class_Preconditions_Subprogram (Current_Scope))
5092 then
5093 Error_Msg_N
5094 ("formal parameter cannot act as actual parameter when "
5095 & "Extensions_Visible is False", A);
5096 Error_Msg_NE
5097 ("\subprogram & has Extensions_Visible True", A, Nam);
5098 end if;
5100 -- The actual parameter of a Ghost subprogram whose formal is of
5101 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
5103 if Comes_From_Source (Nam)
5104 and then Is_Ghost_Entity (Nam)
5105 and then Ekind (F) in E_In_Out_Parameter | E_Out_Parameter
5106 and then Is_Entity_Name (A)
5107 and then Present (Entity (A))
5108 and then not Is_Ghost_Entity (Entity (A))
5109 then
5110 Error_Msg_NE
5111 ("non-ghost variable & cannot appear as actual in call to "
5112 & "ghost procedure", A, Entity (A));
5114 if Ekind (F) = E_In_Out_Parameter then
5115 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
5116 else
5117 Error_Msg_N ("\corresponding formal has mode OUT", A);
5118 end if;
5119 end if;
5121 -- (AI12-0397): The target of a subprogram call that occurs within
5122 -- the expression of an Default_Initial_Condition aspect and has
5123 -- an actual that is the current instance of the type must be
5124 -- either a primitive of the type or a class-wide subprogram,
5125 -- because the type of the current instance in such an aspect is
5126 -- considered to be a notional formal derived type whose only
5127 -- operations correspond to the primitives of the enclosing type.
5128 -- Nonprimitives can be called, but the current instance must be
5129 -- converted rather than passed directly. Note that a current
5130 -- instance of a type with DIC will occur as a reference to an
5131 -- in-mode formal of an enclosing DIC procedure or partial DIC
5132 -- procedure. (It seems that this check should perhaps also apply
5133 -- to calls within Type_Invariant'Class, but not Type_Invariant,
5134 -- aspects???)
5136 if Nkind (A) = N_Identifier
5137 and then Ekind (Entity (A)) = E_In_Parameter
5139 and then Is_Subprogram (Scope (Entity (A)))
5140 and then Is_DIC_Procedure (Scope (Entity (A)))
5142 -- We check Comes_From_Source to exclude inherited primitives
5143 -- from being flagged, because such subprograms turn out to not
5144 -- always have the Is_Primitive flag set. ???
5146 and then Comes_From_Source (Nam)
5148 and then not Is_Primitive (Nam)
5149 and then not Is_Class_Wide_Type (F_Typ)
5150 then
5151 Error_Msg_NE
5152 ("call to nonprimitive & with current instance not allowed " &
5153 "for aspect", A, Nam);
5154 end if;
5156 Next_Actual (A);
5158 -- Case where actual is not present
5160 else
5161 Insert_Default;
5162 end if;
5164 Next_Formal (F);
5166 if Present (Real_Subp) then
5167 Next_Formal (Real_F);
5168 end if;
5169 end loop;
5170 end Resolve_Actuals;
5172 -----------------------
5173 -- Resolve_Allocator --
5174 -----------------------
5176 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
5177 Desig_T : constant Entity_Id := Designated_Type (Typ);
5178 E : constant Node_Id := Expression (N);
5179 Subtyp : Entity_Id;
5180 Discrim : Entity_Id;
5181 Constr : Node_Id;
5182 Aggr : Node_Id;
5183 Assoc : Node_Id := Empty;
5184 Disc_Exp : Node_Id;
5186 procedure Check_Allocator_Discrim_Accessibility
5187 (Disc_Exp : Node_Id;
5188 Alloc_Typ : Entity_Id);
5189 -- Check that accessibility level associated with an access discriminant
5190 -- initialized in an allocator by the expression Disc_Exp is not deeper
5191 -- than the level of the allocator type Alloc_Typ. An error message is
5192 -- issued if this condition is violated. Specialized checks are done for
5193 -- the cases of a constraint expression which is an access attribute or
5194 -- an access discriminant.
5196 procedure Check_Allocator_Discrim_Accessibility_Exprs
5197 (Curr_Exp : Node_Id;
5198 Alloc_Typ : Entity_Id);
5199 -- Dispatch checks performed by Check_Allocator_Discrim_Accessibility
5200 -- across all expressions within a given conditional expression.
5202 function In_Dispatching_Context return Boolean;
5203 -- If the allocator is an actual in a call, it is allowed to be class-
5204 -- wide when the context is not because it is a controlling actual.
5206 -------------------------------------------
5207 -- Check_Allocator_Discrim_Accessibility --
5208 -------------------------------------------
5210 procedure Check_Allocator_Discrim_Accessibility
5211 (Disc_Exp : Node_Id;
5212 Alloc_Typ : Entity_Id)
5214 begin
5215 if Type_Access_Level (Etype (Disc_Exp)) >
5216 Deepest_Type_Access_Level (Alloc_Typ)
5217 then
5218 Error_Msg_N
5219 ("operand type has deeper level than allocator type", Disc_Exp);
5221 -- When the expression is an Access attribute the level of the prefix
5222 -- object must not be deeper than that of the allocator's type.
5224 elsif Nkind (Disc_Exp) = N_Attribute_Reference
5225 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
5226 Attribute_Access
5227 and then Static_Accessibility_Level
5228 (Disc_Exp, Zero_On_Dynamic_Level)
5229 > Deepest_Type_Access_Level (Alloc_Typ)
5230 then
5231 Error_Msg_N
5232 ("prefix of attribute has deeper level than allocator type",
5233 Disc_Exp);
5235 -- When the expression is an access discriminant the check is against
5236 -- the level of the prefix object.
5238 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
5239 and then Nkind (Disc_Exp) = N_Selected_Component
5240 and then Static_Accessibility_Level
5241 (Disc_Exp, Zero_On_Dynamic_Level)
5242 > Deepest_Type_Access_Level (Alloc_Typ)
5243 then
5244 Error_Msg_N
5245 ("access discriminant has deeper level than allocator type",
5246 Disc_Exp);
5248 -- All other cases are legal
5250 else
5251 null;
5252 end if;
5253 end Check_Allocator_Discrim_Accessibility;
5255 -------------------------------------------------
5256 -- Check_Allocator_Discrim_Accessibility_Exprs --
5257 -------------------------------------------------
5259 procedure Check_Allocator_Discrim_Accessibility_Exprs
5260 (Curr_Exp : Node_Id;
5261 Alloc_Typ : Entity_Id)
5263 Alt : Node_Id;
5264 Expr : Node_Id;
5265 Disc_Exp : constant Node_Id := Original_Node (Curr_Exp);
5266 begin
5267 -- When conditional expressions are constant folded we know at
5268 -- compile time which expression to check - so don't bother with
5269 -- the rest of the cases.
5271 if Nkind (Curr_Exp) = N_Attribute_Reference then
5272 Check_Allocator_Discrim_Accessibility (Curr_Exp, Alloc_Typ);
5274 -- Non-constant-folded if expressions
5276 elsif Nkind (Disc_Exp) = N_If_Expression then
5277 -- Check both expressions if they are still present in the face
5278 -- of expansion.
5280 Expr := Next (First (Expressions (Disc_Exp)));
5281 if Present (Expr) then
5282 Check_Allocator_Discrim_Accessibility_Exprs (Expr, Alloc_Typ);
5283 Next (Expr);
5284 if Present (Expr) then
5285 Check_Allocator_Discrim_Accessibility_Exprs
5286 (Expr, Alloc_Typ);
5287 end if;
5288 end if;
5290 -- Non-constant-folded case expressions
5292 elsif Nkind (Disc_Exp) = N_Case_Expression then
5293 -- Check all alternatives
5295 Alt := First (Alternatives (Disc_Exp));
5296 while Present (Alt) loop
5297 Check_Allocator_Discrim_Accessibility_Exprs
5298 (Expression (Alt), Alloc_Typ);
5300 Next (Alt);
5301 end loop;
5303 -- Base case, check the accessibility of the original node of the
5304 -- expression.
5306 else
5307 Check_Allocator_Discrim_Accessibility (Disc_Exp, Alloc_Typ);
5308 end if;
5309 end Check_Allocator_Discrim_Accessibility_Exprs;
5311 ----------------------------
5312 -- In_Dispatching_Context --
5313 ----------------------------
5315 function In_Dispatching_Context return Boolean is
5316 Par : constant Node_Id := Parent (N);
5318 begin
5319 return Nkind (Par) in N_Subprogram_Call
5320 and then Is_Entity_Name (Name (Par))
5321 and then Is_Dispatching_Operation (Entity (Name (Par)));
5322 end In_Dispatching_Context;
5324 -- Start of processing for Resolve_Allocator
5326 begin
5327 -- Replace general access with specific type
5329 if Ekind (Etype (N)) = E_Allocator_Type then
5330 Set_Etype (N, Base_Type (Typ));
5331 end if;
5333 if Is_Abstract_Type (Typ) then
5334 Error_Msg_N ("type of allocator cannot be abstract", N);
5335 end if;
5337 -- For qualified expression, resolve the expression using the given
5338 -- subtype (nothing to do for type mark, subtype indication)
5340 if Nkind (E) = N_Qualified_Expression then
5341 if Is_Class_Wide_Type (Etype (E))
5342 and then not Is_Class_Wide_Type (Desig_T)
5343 and then not In_Dispatching_Context
5344 then
5345 Error_Msg_N
5346 ("class-wide allocator not allowed for this access type", N);
5347 end if;
5349 -- Do a full resolution to apply constraint and predicate checks
5351 Resolve_Qualified_Expression (E, Etype (E));
5352 Check_Unset_Reference (Expression (E));
5354 -- Allocators generated by the build-in-place expansion mechanism
5355 -- are explicitly marked as coming from source but do not need to be
5356 -- checked for limited initialization. To exclude this case, ensure
5357 -- that the parent of the allocator is a source node.
5358 -- The return statement constructed for an Expression_Function does
5359 -- not come from source but requires a limited check.
5361 if Is_Limited_Type (Etype (E))
5362 and then Comes_From_Source (N)
5363 and then
5364 (Comes_From_Source (Parent (N))
5365 or else
5366 (Ekind (Current_Scope) = E_Function
5367 and then Nkind (Original_Node (Unit_Declaration_Node
5368 (Current_Scope))) = N_Expression_Function))
5369 and then not In_Instance_Body
5370 then
5371 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
5372 if Nkind (Parent (N)) = N_Assignment_Statement then
5373 Error_Msg_N
5374 ("illegal expression for initialized allocator of a "
5375 & "limited type (RM 7.5 (2.7/2))", N);
5376 else
5377 Error_Msg_N
5378 ("initialization not allowed for limited types", N);
5379 end if;
5381 Explain_Limited_Type (Etype (E), N);
5382 end if;
5383 end if;
5385 -- Calls to build-in-place functions are not currently supported in
5386 -- allocators for access types associated with a simple storage pool.
5387 -- Supporting such allocators may require passing additional implicit
5388 -- parameters to build-in-place functions (or a significant revision
5389 -- of the current b-i-p implementation to unify the handling for
5390 -- multiple kinds of storage pools). ???
5392 if Is_Limited_View (Desig_T)
5393 and then Nkind (Expression (E)) = N_Function_Call
5394 then
5395 declare
5396 Pool : constant Entity_Id :=
5397 Associated_Storage_Pool (Root_Type (Typ));
5398 begin
5399 if Present (Pool)
5400 and then
5401 Present (Get_Rep_Pragma
5402 (Etype (Pool), Name_Simple_Storage_Pool_Type))
5403 then
5404 Error_Msg_N
5405 ("limited function calls not yet supported in simple "
5406 & "storage pool allocators", Expression (E));
5407 end if;
5408 end;
5409 end if;
5411 -- A special accessibility check is needed for allocators that
5412 -- constrain access discriminants. The level of the type of the
5413 -- expression used to constrain an access discriminant cannot be
5414 -- deeper than the type of the allocator (in contrast to access
5415 -- parameters, where the level of the actual can be arbitrary).
5417 -- We can't use Valid_Conversion to perform this check because in
5418 -- general the type of the allocator is unrelated to the type of
5419 -- the access discriminant.
5421 if Ekind (Typ) /= E_Anonymous_Access_Type
5422 or else Is_Local_Anonymous_Access (Typ)
5423 then
5424 Subtyp := Entity (Subtype_Mark (E));
5426 Aggr := Original_Node (Expression (E));
5428 if Has_Discriminants (Subtyp)
5429 and then Nkind (Aggr) in N_Aggregate | N_Extension_Aggregate
5430 then
5431 Discrim := First_Discriminant (Base_Type (Subtyp));
5433 -- Get the first component expression of the aggregate
5435 if Present (Expressions (Aggr)) then
5436 Disc_Exp := First (Expressions (Aggr));
5438 elsif Present (Component_Associations (Aggr)) then
5439 Assoc := First (Component_Associations (Aggr));
5441 if Present (Assoc) then
5442 Disc_Exp := Expression (Assoc);
5443 else
5444 Disc_Exp := Empty;
5445 end if;
5447 else
5448 Disc_Exp := Empty;
5449 end if;
5451 while Present (Discrim) and then Present (Disc_Exp) loop
5452 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5453 Check_Allocator_Discrim_Accessibility_Exprs
5454 (Disc_Exp, Typ);
5455 end if;
5457 Next_Discriminant (Discrim);
5459 if Present (Discrim) then
5460 if Present (Assoc) then
5461 Next (Assoc);
5462 Disc_Exp := Expression (Assoc);
5464 elsif Present (Next (Disc_Exp)) then
5465 Next (Disc_Exp);
5467 else
5468 Assoc := First (Component_Associations (Aggr));
5470 if Present (Assoc) then
5471 Disc_Exp := Expression (Assoc);
5472 else
5473 Disc_Exp := Empty;
5474 end if;
5475 end if;
5476 end if;
5477 end loop;
5478 end if;
5479 end if;
5481 -- For a subtype mark or subtype indication, freeze the subtype
5483 else
5484 Freeze_Expression (E);
5486 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
5487 Error_Msg_N
5488 ("initialization required for access-to-constant allocator", N);
5489 end if;
5491 -- A special accessibility check is needed for allocators that
5492 -- constrain access discriminants. The level of the type of the
5493 -- expression used to constrain an access discriminant cannot be
5494 -- deeper than the type of the allocator (in contrast to access
5495 -- parameters, where the level of the actual can be arbitrary).
5496 -- We can't use Valid_Conversion to perform this check because
5497 -- in general the type of the allocator is unrelated to the type
5498 -- of the access discriminant.
5500 if Nkind (Original_Node (E)) = N_Subtype_Indication
5501 and then (Ekind (Typ) /= E_Anonymous_Access_Type
5502 or else Is_Local_Anonymous_Access (Typ))
5503 then
5504 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
5506 if Has_Discriminants (Subtyp) then
5507 Discrim := First_Discriminant (Base_Type (Subtyp));
5508 Constr := First (Constraints (Constraint (Original_Node (E))));
5509 while Present (Discrim) and then Present (Constr) loop
5510 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5511 if Nkind (Constr) = N_Discriminant_Association then
5512 Disc_Exp := Expression (Constr);
5513 else
5514 Disc_Exp := Constr;
5515 end if;
5517 Check_Allocator_Discrim_Accessibility_Exprs
5518 (Disc_Exp, Typ);
5519 end if;
5521 Next_Discriminant (Discrim);
5522 Next (Constr);
5523 end loop;
5524 end if;
5525 end if;
5526 end if;
5528 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5529 -- check that the level of the type of the created object is not deeper
5530 -- than the level of the allocator's access type, since extensions can
5531 -- now occur at deeper levels than their ancestor types. This is a
5532 -- static accessibility level check; a run-time check is also needed in
5533 -- the case of an initialized allocator with a class-wide argument (see
5534 -- Expand_Allocator_Expression).
5536 if Ada_Version >= Ada_2005
5537 and then Is_Class_Wide_Type (Desig_T)
5538 then
5539 declare
5540 Exp_Typ : Entity_Id;
5542 begin
5543 if Nkind (E) = N_Qualified_Expression then
5544 Exp_Typ := Etype (E);
5545 elsif Nkind (E) = N_Subtype_Indication then
5546 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5547 else
5548 Exp_Typ := Entity (E);
5549 end if;
5551 if Type_Access_Level (Exp_Typ) >
5552 Deepest_Type_Access_Level (Typ)
5553 then
5554 if In_Instance_Body then
5555 Error_Msg_Warn := SPARK_Mode /= On;
5556 Error_Msg_N
5557 ("type in allocator has deeper level than designated "
5558 & "class-wide type<<", E);
5559 Error_Msg_N ("\Program_Error [<<", E);
5561 Rewrite (N,
5562 Make_Raise_Program_Error (Sloc (N),
5563 Reason => PE_Accessibility_Check_Failed));
5564 Set_Etype (N, Typ);
5566 -- Do not apply Ada 2005 accessibility checks on a class-wide
5567 -- allocator if the type given in the allocator is a formal
5568 -- type or within a formal package. A run-time check will be
5569 -- performed in the instance.
5571 elsif not Is_Generic_Type (Exp_Typ)
5572 and then not In_Generic_Formal_Package (Exp_Typ)
5573 then
5574 Error_Msg_N
5575 ("type in allocator has deeper level than designated "
5576 & "class-wide type", E);
5577 end if;
5578 end if;
5579 end;
5580 end if;
5582 -- Check for allocation from an empty storage pool. But do not complain
5583 -- if it's a return statement for a build-in-place function, because the
5584 -- allocator is there just in case the caller uses an allocator. If the
5585 -- caller does use an allocator, it will be caught at the call site.
5587 if No_Pool_Assigned (Typ)
5588 and then not Alloc_For_BIP_Return (N)
5589 then
5590 Error_Msg_N ("allocation from empty storage pool!", N);
5592 -- If the context is an unchecked conversion, as may happen within an
5593 -- inlined subprogram, the allocator is being resolved with its own
5594 -- anonymous type. In that case, if the target type has a specific
5595 -- storage pool, it must be inherited explicitly by the allocator type.
5597 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5598 and then No (Associated_Storage_Pool (Typ))
5599 then
5600 Set_Associated_Storage_Pool
5601 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5602 end if;
5604 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5605 Check_Restriction (No_Anonymous_Allocators, N);
5606 end if;
5608 -- Check that an allocator with task parts isn't for a nested access
5609 -- type when restriction No_Task_Hierarchy applies.
5611 if not Is_Library_Level_Entity (Base_Type (Typ))
5612 and then Has_Task (Base_Type (Desig_T))
5613 then
5614 Check_Restriction (No_Task_Hierarchy, N);
5615 end if;
5617 -- An illegal allocator may be rewritten as a raise Program_Error
5618 -- statement.
5620 if Nkind (N) = N_Allocator then
5622 -- Avoid coextension processing for an allocator that is the
5623 -- expansion of a build-in-place function call.
5625 if Nkind (Original_Node (N)) = N_Allocator
5626 and then Nkind (Expression (Original_Node (N))) =
5627 N_Qualified_Expression
5628 and then Nkind (Expression (Expression (Original_Node (N)))) =
5629 N_Function_Call
5630 and then Is_Expanded_Build_In_Place_Call
5631 (Expression (Expression (Original_Node (N))))
5632 then
5633 null; -- b-i-p function call case
5635 else
5636 -- An anonymous access discriminant is the definition of a
5637 -- coextension.
5639 if Ekind (Typ) = E_Anonymous_Access_Type
5640 and then Nkind (Associated_Node_For_Itype (Typ)) =
5641 N_Discriminant_Specification
5642 then
5643 declare
5644 Discr : constant Entity_Id :=
5645 Defining_Identifier (Associated_Node_For_Itype (Typ));
5647 begin
5648 Check_Restriction (No_Coextensions, N);
5650 -- Ada 2012 AI05-0052: If the designated type of the
5651 -- allocator is limited, then the allocator shall not
5652 -- be used to define the value of an access discriminant
5653 -- unless the discriminated type is immutably limited.
5655 if Ada_Version >= Ada_2012
5656 and then Is_Limited_Type (Desig_T)
5657 and then not Is_Limited_View (Scope (Discr))
5658 then
5659 Error_Msg_N
5660 ("only immutably limited types can have anonymous "
5661 & "access discriminants designating a limited type",
5663 end if;
5664 end;
5666 -- Avoid marking an allocator as a dynamic coextension if it is
5667 -- within a static construct.
5669 if not Is_Static_Coextension (N) then
5670 Set_Is_Dynamic_Coextension (N);
5672 -- Finalization and deallocation of coextensions utilizes an
5673 -- approximate implementation which does not directly adhere
5674 -- to the semantic rules. Warn on potential issues involving
5675 -- coextensions.
5677 if Is_Controlled (Desig_T) then
5678 Error_Msg_N
5679 ("??coextension will not be finalized when its "
5680 & "associated owner is deallocated or finalized", N);
5681 else
5682 Error_Msg_N
5683 ("??coextension will not be deallocated when its "
5684 & "associated owner is deallocated", N);
5685 end if;
5686 end if;
5688 -- Cleanup for potential static coextensions
5690 else
5691 Set_Is_Dynamic_Coextension (N, False);
5692 Set_Is_Static_Coextension (N, False);
5694 -- Anonymous access-to-controlled objects are not finalized on
5695 -- time because this involves run-time ownership and currently
5696 -- this property is not available. In rare cases the object may
5697 -- not be finalized at all. Warn on potential issues involving
5698 -- anonymous access-to-controlled objects.
5700 if Ekind (Typ) = E_Anonymous_Access_Type
5701 and then Is_Controlled_Active (Desig_T)
5702 then
5703 Error_Msg_N
5704 ("??object designated by anonymous access object might "
5705 & "not be finalized until its enclosing library unit "
5706 & "goes out of scope", N);
5707 Error_Msg_N ("\use named access type instead", N);
5708 end if;
5709 end if;
5710 end if;
5711 end if;
5713 -- Report a simple error: if the designated object is a local task,
5714 -- its body has not been seen yet, and its activation will fail an
5715 -- elaboration check.
5717 if Is_Task_Type (Desig_T)
5718 and then Scope (Base_Type (Desig_T)) = Current_Scope
5719 and then Is_Compilation_Unit (Current_Scope)
5720 and then Ekind (Current_Scope) = E_Package
5721 and then not In_Package_Body (Current_Scope)
5722 then
5723 Error_Msg_Warn := SPARK_Mode /= On;
5724 Error_Msg_N ("cannot activate task before body seen<<", N);
5725 Error_Msg_N ("\Program_Error [<<", N);
5726 end if;
5728 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5729 -- type with a task component on a subpool. This action must raise
5730 -- Program_Error at runtime.
5732 if Ada_Version >= Ada_2012
5733 and then Nkind (N) = N_Allocator
5734 and then Present (Subpool_Handle_Name (N))
5735 and then Has_Task (Desig_T)
5736 then
5737 Error_Msg_Warn := SPARK_Mode /= On;
5738 Error_Msg_N ("cannot allocate task on subpool<<", N);
5739 Error_Msg_N ("\Program_Error [<<", N);
5741 Rewrite (N,
5742 Make_Raise_Program_Error (Sloc (N),
5743 Reason => PE_Explicit_Raise));
5744 Set_Etype (N, Typ);
5745 end if;
5746 end Resolve_Allocator;
5748 ---------------------------
5749 -- Resolve_Arithmetic_Op --
5750 ---------------------------
5752 -- Used for resolving all arithmetic operators except exponentiation
5754 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5755 L : constant Node_Id := Left_Opnd (N);
5756 R : constant Node_Id := Right_Opnd (N);
5757 TL : constant Entity_Id := Base_Type (Etype (L));
5758 TR : constant Entity_Id := Base_Type (Etype (R));
5759 T : Entity_Id;
5760 Rop : Node_Id;
5762 B_Typ : constant Entity_Id := Base_Type (Typ);
5763 -- We do the resolution using the base type, because intermediate values
5764 -- in expressions always are of the base type, not a subtype of it.
5766 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5767 -- Returns True if N is in a context that expects "any real type"
5769 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5770 -- Return True iff given type is Integer or universal real/integer
5772 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5773 -- Choose type of integer literal in fixed-point operation to conform
5774 -- to available fixed-point type. T is the type of the other operand,
5775 -- which is needed to determine the expected type of N.
5777 procedure Set_Operand_Type (N : Node_Id);
5778 -- Set operand type to T if universal
5780 -------------------------------
5781 -- Expected_Type_Is_Any_Real --
5782 -------------------------------
5784 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5785 begin
5786 -- N is the expression after "delta" in a fixed_point_definition;
5787 -- see RM-3.5.9(6):
5789 return Nkind (Parent (N)) in N_Ordinary_Fixed_Point_Definition
5790 | N_Decimal_Fixed_Point_Definition
5792 -- N is one of the bounds in a real_range_specification;
5793 -- see RM-3.5.7(5):
5795 | N_Real_Range_Specification
5797 -- N is the expression of a delta_constraint;
5798 -- see RM-J.3(3):
5800 | N_Delta_Constraint;
5801 end Expected_Type_Is_Any_Real;
5803 -----------------------------
5804 -- Is_Integer_Or_Universal --
5805 -----------------------------
5807 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5808 T : Entity_Id;
5809 Index : Interp_Index;
5810 It : Interp;
5812 begin
5813 if not Is_Overloaded (N) then
5814 T := Etype (N);
5815 return Base_Type (T) = Base_Type (Standard_Integer)
5816 or else Is_Universal_Numeric_Type (T);
5817 else
5818 Get_First_Interp (N, Index, It);
5819 while Present (It.Typ) loop
5820 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5821 or else Is_Universal_Numeric_Type (It.Typ)
5822 then
5823 return True;
5824 end if;
5826 Get_Next_Interp (Index, It);
5827 end loop;
5828 end if;
5830 return False;
5831 end Is_Integer_Or_Universal;
5833 ----------------------------
5834 -- Set_Mixed_Mode_Operand --
5835 ----------------------------
5837 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5838 Index : Interp_Index;
5839 It : Interp;
5841 begin
5842 if Universal_Interpretation (N) = Universal_Integer then
5844 -- A universal integer literal is resolved as standard integer
5845 -- except in the case of a fixed-point result, where we leave it
5846 -- as universal (to be handled by Exp_Fixd later on)
5848 if Is_Fixed_Point_Type (T) then
5849 Resolve (N, Universal_Integer);
5850 else
5851 Resolve (N, Standard_Integer);
5852 end if;
5854 elsif Universal_Interpretation (N) = Universal_Real
5855 and then (T = Base_Type (Standard_Integer)
5856 or else Is_Universal_Numeric_Type (T))
5857 then
5858 -- A universal real can appear in a fixed-type context. We resolve
5859 -- the literal with that context, even though this might raise an
5860 -- exception prematurely (the other operand may be zero).
5862 Resolve (N, B_Typ);
5864 elsif Etype (N) = Base_Type (Standard_Integer)
5865 and then T = Universal_Real
5866 and then Is_Overloaded (N)
5867 then
5868 -- Integer arg in mixed-mode operation. Resolve with universal
5869 -- type, in case preference rule must be applied.
5871 Resolve (N, Universal_Integer);
5873 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5875 -- If the operand is part of a fixed multiplication operation,
5876 -- a conversion will be applied to each operand, so resolve it
5877 -- with its own type.
5879 if Nkind (Parent (N)) in N_Op_Divide | N_Op_Multiply then
5880 Resolve (N);
5882 else
5883 -- Not a mixed-mode operation, resolve with context
5885 Resolve (N, B_Typ);
5886 end if;
5888 elsif Etype (N) = Any_Fixed then
5890 -- N may itself be a mixed-mode operation, so use context type
5892 Resolve (N, B_Typ);
5894 elsif Is_Fixed_Point_Type (T)
5895 and then B_Typ = Universal_Fixed
5896 and then Is_Overloaded (N)
5897 then
5898 -- Must be (fixed * fixed) operation, operand must have one
5899 -- compatible interpretation.
5901 Resolve (N, Any_Fixed);
5903 elsif Is_Fixed_Point_Type (B_Typ)
5904 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5905 and then Is_Overloaded (N)
5906 then
5907 -- C * F(X) in a fixed context, where C is a real literal or a
5908 -- fixed-point expression. F must have either a fixed type
5909 -- interpretation or an integer interpretation, but not both.
5911 Get_First_Interp (N, Index, It);
5912 while Present (It.Typ) loop
5913 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5914 if Analyzed (N) then
5915 Error_Msg_N ("ambiguous operand in fixed operation", N);
5916 else
5917 Resolve (N, Standard_Integer);
5918 end if;
5920 elsif Is_Fixed_Point_Type (It.Typ) then
5921 if Analyzed (N) then
5922 Error_Msg_N ("ambiguous operand in fixed operation", N);
5923 else
5924 Resolve (N, It.Typ);
5925 end if;
5926 end if;
5928 Get_Next_Interp (Index, It);
5929 end loop;
5931 -- Reanalyze the literal with the fixed type of the context. If
5932 -- context is Universal_Fixed, we are within a conversion, leave
5933 -- the literal as a universal real because there is no usable
5934 -- fixed type, and the target of the conversion plays no role in
5935 -- the resolution.
5937 declare
5938 Op2 : Node_Id;
5939 T2 : Entity_Id;
5941 begin
5942 if N = L then
5943 Op2 := R;
5944 else
5945 Op2 := L;
5946 end if;
5948 if B_Typ = Universal_Fixed
5949 and then Nkind (Op2) = N_Real_Literal
5950 then
5951 T2 := Universal_Real;
5952 else
5953 T2 := B_Typ;
5954 end if;
5956 Set_Analyzed (Op2, False);
5957 Resolve (Op2, T2);
5958 end;
5960 -- A universal real conditional expression can appear in a fixed-type
5961 -- context and must be resolved with that context to facilitate the
5962 -- code generation in the back end. However, If the context is
5963 -- Universal_fixed (i.e. as an operand of a multiplication/division
5964 -- involving a fixed-point operand) the conditional expression must
5965 -- resolve to a unique visible fixed_point type, normally Duration.
5967 elsif Nkind (N) in N_Case_Expression | N_If_Expression
5968 and then Etype (N) = Universal_Real
5969 and then Is_Fixed_Point_Type (B_Typ)
5970 then
5971 if B_Typ = Universal_Fixed then
5972 Resolve (N, Unique_Fixed_Point_Type (N));
5974 else
5975 Resolve (N, B_Typ);
5976 end if;
5978 else
5979 Resolve (N);
5980 end if;
5981 end Set_Mixed_Mode_Operand;
5983 ----------------------
5984 -- Set_Operand_Type --
5985 ----------------------
5987 procedure Set_Operand_Type (N : Node_Id) is
5988 begin
5989 if Is_Universal_Numeric_Type (Etype (N)) then
5990 Set_Etype (N, T);
5991 end if;
5992 end Set_Operand_Type;
5994 -- Start of processing for Resolve_Arithmetic_Op
5996 begin
5997 if Comes_From_Source (N)
5998 and then Ekind (Entity (N)) = E_Function
5999 and then Is_Imported (Entity (N))
6000 and then Is_Intrinsic_Subprogram (Entity (N))
6001 then
6002 Resolve_Intrinsic_Operator (N, Typ);
6003 return;
6005 -- Special-case for mixed-mode universal expressions or fixed point type
6006 -- operation: each argument is resolved separately. The same treatment
6007 -- is required if one of the operands of a fixed point operation is
6008 -- universal real, since in this case we don't do a conversion to a
6009 -- specific fixed-point type (instead the expander handles the case).
6011 -- Set the type of the node to its universal interpretation because
6012 -- legality checks on an exponentiation operand need the context.
6014 elsif Is_Universal_Numeric_Type (B_Typ)
6015 and then Present (Universal_Interpretation (L))
6016 and then Present (Universal_Interpretation (R))
6017 then
6018 Set_Etype (N, B_Typ);
6019 Resolve (L, Universal_Interpretation (L));
6020 Resolve (R, Universal_Interpretation (R));
6022 elsif (B_Typ = Universal_Real
6023 or else Etype (N) = Universal_Fixed
6024 or else (Etype (N) = Any_Fixed
6025 and then Is_Fixed_Point_Type (B_Typ))
6026 or else (Is_Fixed_Point_Type (B_Typ)
6027 and then (Is_Integer_Or_Universal (L)
6028 or else
6029 Is_Integer_Or_Universal (R))))
6030 and then Nkind (N) in N_Op_Multiply | N_Op_Divide
6031 then
6032 if TL = Universal_Integer or else TR = Universal_Integer then
6033 Check_For_Visible_Operator (N, B_Typ);
6034 end if;
6036 -- If context is a fixed type and one operand is integer, the other
6037 -- is resolved with the type of the context.
6039 if Is_Fixed_Point_Type (B_Typ)
6040 and then (Base_Type (TL) = Base_Type (Standard_Integer)
6041 or else TL = Universal_Integer)
6042 then
6043 Resolve (R, B_Typ);
6044 Resolve (L, TL);
6046 elsif Is_Fixed_Point_Type (B_Typ)
6047 and then (Base_Type (TR) = Base_Type (Standard_Integer)
6048 or else TR = Universal_Integer)
6049 then
6050 Resolve (L, B_Typ);
6051 Resolve (R, TR);
6053 -- If both operands are universal and the context is a floating
6054 -- point type, the operands are resolved to the type of the context.
6056 elsif Is_Floating_Point_Type (B_Typ) then
6057 Resolve (L, B_Typ);
6058 Resolve (R, B_Typ);
6060 else
6061 Set_Mixed_Mode_Operand (L, TR);
6062 Set_Mixed_Mode_Operand (R, TL);
6063 end if;
6065 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
6066 -- multiplying operators from being used when the expected type is
6067 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
6068 -- some cases where the expected type is actually Any_Real;
6069 -- Expected_Type_Is_Any_Real takes care of that case.
6071 if Etype (N) = Universal_Fixed
6072 or else Etype (N) = Any_Fixed
6073 then
6074 if B_Typ = Universal_Fixed
6075 and then not Expected_Type_Is_Any_Real (N)
6076 and then Nkind (Parent (N)) not in
6077 N_Type_Conversion | N_Unchecked_Type_Conversion
6078 then
6079 Error_Msg_N ("type cannot be determined from context!", N);
6080 Error_Msg_N ("\explicit conversion to result type required", N);
6082 Set_Etype (L, Any_Type);
6083 Set_Etype (R, Any_Type);
6085 else
6086 if Ada_Version = Ada_83
6087 and then Etype (N) = Universal_Fixed
6088 and then Nkind (Parent (N)) not in
6089 N_Type_Conversion | N_Unchecked_Type_Conversion
6090 then
6091 Error_Msg_N
6092 ("(Ada 83) fixed-point operation needs explicit "
6093 & "conversion", N);
6094 end if;
6096 -- The expected type is "any real type" in contexts like
6098 -- type T is delta <universal_fixed-expression> ...
6100 -- in which case we need to set the type to Universal_Real
6101 -- so that static expression evaluation will work properly.
6103 if Expected_Type_Is_Any_Real (N) then
6104 Set_Etype (N, Universal_Real);
6105 else
6106 Set_Etype (N, B_Typ);
6107 end if;
6108 end if;
6110 elsif Is_Fixed_Point_Type (B_Typ)
6111 and then (Is_Integer_Or_Universal (L)
6112 or else Nkind (L) = N_Real_Literal
6113 or else Nkind (R) = N_Real_Literal
6114 or else Is_Integer_Or_Universal (R))
6115 then
6116 Set_Etype (N, B_Typ);
6118 elsif Etype (N) = Any_Fixed then
6120 -- If no previous errors, this is only possible if one operand is
6121 -- overloaded and the context is universal. Resolve as such.
6123 Set_Etype (N, B_Typ);
6124 end if;
6126 else
6127 if Is_Universal_Numeric_Type (TL)
6128 and then
6129 Is_Universal_Numeric_Type (TR)
6130 then
6131 Check_For_Visible_Operator (N, B_Typ);
6132 end if;
6134 -- If the context is Universal_Fixed and the operands are also
6135 -- universal fixed, this is an error, unless there is only one
6136 -- applicable fixed_point type (usually Duration).
6138 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
6139 T := Unique_Fixed_Point_Type (N);
6141 if T = Any_Type then
6142 Set_Etype (N, T);
6143 return;
6144 else
6145 Resolve (L, T);
6146 Resolve (R, T);
6147 end if;
6149 else
6150 Resolve (L, B_Typ);
6151 Resolve (R, B_Typ);
6152 end if;
6154 -- If one of the arguments was resolved to a non-universal type.
6155 -- label the result of the operation itself with the same type.
6156 -- Do the same for the universal argument, if any.
6158 T := Intersect_Types (L, R);
6159 Set_Etype (N, Base_Type (T));
6160 Set_Operand_Type (L);
6161 Set_Operand_Type (R);
6162 end if;
6164 Generate_Operator_Reference (N, Typ);
6165 Analyze_Dimension (N);
6166 Eval_Arithmetic_Op (N);
6168 -- Set overflow and division checking bit
6170 if Nkind (N) in N_Op then
6171 if not Overflow_Checks_Suppressed (Etype (N)) then
6172 Enable_Overflow_Check (N);
6173 end if;
6175 -- Give warning if explicit division by zero
6177 if Nkind (N) in N_Op_Divide | N_Op_Rem | N_Op_Mod
6178 and then not Division_Checks_Suppressed (Etype (N))
6179 then
6180 Rop := Right_Opnd (N);
6182 if Compile_Time_Known_Value (Rop)
6183 and then ((Is_Integer_Type (Etype (Rop))
6184 and then Expr_Value (Rop) = Uint_0)
6185 or else
6186 (Is_Real_Type (Etype (Rop))
6187 and then Expr_Value_R (Rop) = Ureal_0))
6188 then
6189 -- Specialize the warning message according to the operation.
6190 -- When SPARK_Mode is On, force a warning instead of an error
6191 -- in that case, as this likely corresponds to deactivated
6192 -- code. The following warnings are for the case
6194 case Nkind (N) is
6195 when N_Op_Divide =>
6197 -- For division, we have two cases, for float division
6198 -- of an unconstrained float type, on a machine where
6199 -- Machine_Overflows is false, we don't get an exception
6200 -- at run-time, but rather an infinity or Nan. The Nan
6201 -- case is pretty obscure, so just warn about infinities.
6203 if Is_Floating_Point_Type (Typ)
6204 and then not Is_Constrained (Typ)
6205 and then not Machine_Overflows_On_Target
6206 then
6207 Error_Msg_N
6208 ("float division by zero, may generate "
6209 & "'+'/'- infinity??", Right_Opnd (N));
6211 -- For all other cases, we get a Constraint_Error
6213 else
6214 Apply_Compile_Time_Constraint_Error
6215 (N, "division by zero??", CE_Divide_By_Zero,
6216 Loc => Sloc (Right_Opnd (N)),
6217 Warn => SPARK_Mode = On);
6218 end if;
6220 when N_Op_Rem =>
6221 Apply_Compile_Time_Constraint_Error
6222 (N, "rem with zero divisor??", CE_Divide_By_Zero,
6223 Loc => Sloc (Right_Opnd (N)),
6224 Warn => SPARK_Mode = On);
6226 when N_Op_Mod =>
6227 Apply_Compile_Time_Constraint_Error
6228 (N, "mod with zero divisor??", CE_Divide_By_Zero,
6229 Loc => Sloc (Right_Opnd (N)),
6230 Warn => SPARK_Mode = On);
6232 -- Division by zero can only happen with division, rem,
6233 -- and mod operations.
6235 when others =>
6236 raise Program_Error;
6237 end case;
6239 -- Otherwise just set the flag to check at run time
6241 else
6242 Activate_Division_Check (N);
6243 end if;
6244 end if;
6246 -- If Restriction No_Implicit_Conditionals is active, then it is
6247 -- violated if either operand can be negative for mod, or for rem
6248 -- if both operands can be negative.
6250 if Restriction_Check_Required (No_Implicit_Conditionals)
6251 and then Nkind (N) in N_Op_Rem | N_Op_Mod
6252 then
6253 declare
6254 Lo : Uint;
6255 Hi : Uint;
6256 OK : Boolean;
6258 LNeg : Boolean;
6259 RNeg : Boolean;
6260 -- Set if corresponding operand might be negative
6262 begin
6263 Determine_Range
6264 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6265 LNeg := (not OK) or else Lo < 0;
6267 Determine_Range
6268 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6269 RNeg := (not OK) or else Lo < 0;
6271 -- Check if we will be generating conditionals. There are two
6272 -- cases where that can happen, first for REM, the only case
6273 -- is largest negative integer mod -1, where the division can
6274 -- overflow, but we still have to give the right result. The
6275 -- front end generates a test for this annoying case. Here we
6276 -- just test if both operands can be negative (that's what the
6277 -- expander does, so we match its logic here).
6279 -- The second case is mod where either operand can be negative.
6280 -- In this case, the back end has to generate additional tests.
6282 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
6283 or else
6284 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
6285 then
6286 Check_Restriction (No_Implicit_Conditionals, N);
6287 end if;
6288 end;
6289 end if;
6290 end if;
6292 Check_Unset_Reference (L);
6293 Check_Unset_Reference (R);
6294 end Resolve_Arithmetic_Op;
6296 ------------------
6297 -- Resolve_Call --
6298 ------------------
6300 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
6301 Loc : constant Source_Ptr := Sloc (N);
6302 Subp : constant Node_Id := Name (N);
6303 Body_Id : Entity_Id;
6304 I : Interp_Index;
6305 It : Interp;
6306 Nam : Entity_Id;
6307 Nam_Decl : Node_Id;
6308 Nam_UA : Entity_Id;
6309 Norm_OK : Boolean;
6310 Rtype : Entity_Id;
6311 Scop : Entity_Id;
6313 begin
6314 -- Preserve relevant elaboration-related attributes of the context which
6315 -- are no longer available or very expensive to recompute once analysis,
6316 -- resolution, and expansion are over.
6318 Mark_Elaboration_Attributes
6319 (N_Id => N,
6320 Checks => True,
6321 Modes => True,
6322 Warnings => True);
6324 -- The context imposes a unique interpretation with type Typ on a
6325 -- procedure or function call. Find the entity of the subprogram that
6326 -- yields the expected type, and propagate the corresponding formal
6327 -- constraints on the actuals. The caller has established that an
6328 -- interpretation exists, and emitted an error if not unique.
6330 -- First deal with the case of a call to an access-to-subprogram,
6331 -- dereference made explicit in Analyze_Call.
6333 if Ekind (Etype (Subp)) = E_Subprogram_Type then
6334 if not Is_Overloaded (Subp) then
6335 Nam := Etype (Subp);
6337 else
6338 -- Find the interpretation whose type (a subprogram type) has a
6339 -- return type that is compatible with the context. Analysis of
6340 -- the node has established that one exists.
6342 Nam := Empty;
6344 Get_First_Interp (Subp, I, It);
6345 while Present (It.Typ) loop
6346 if Covers (Typ, Etype (It.Typ)) then
6347 Nam := It.Typ;
6348 exit;
6349 end if;
6351 Get_Next_Interp (I, It);
6352 end loop;
6354 if No (Nam) then
6355 raise Program_Error;
6356 end if;
6357 end if;
6359 -- If the prefix is not an entity, then resolve it
6361 if not Is_Entity_Name (Subp) then
6362 Resolve (Subp, Nam);
6363 end if;
6365 -- For an indirect call, we always invalidate checks, since we do not
6366 -- know whether the subprogram is local or global. Yes we could do
6367 -- better here, e.g. by knowing that there are no local subprograms,
6368 -- but it does not seem worth the effort. Similarly, we kill all
6369 -- knowledge of current constant values.
6371 Kill_Current_Values;
6373 -- If this is a procedure call which is really an entry call, do
6374 -- the conversion of the procedure call to an entry call. Protected
6375 -- operations use the same circuitry because the name in the call
6376 -- can be an arbitrary expression with special resolution rules.
6378 elsif Nkind (Subp) in N_Selected_Component | N_Indexed_Component
6379 or else (Is_Entity_Name (Subp) and then Is_Entry (Entity (Subp)))
6380 then
6381 Resolve_Entry_Call (N, Typ);
6383 if Legacy_Elaboration_Checks then
6384 Check_Elab_Call (N);
6385 end if;
6387 -- Annotate the tree by creating a call marker in case the original
6388 -- call is transformed by expansion. The call marker is automatically
6389 -- saved for later examination by the ABE Processing phase.
6391 Build_Call_Marker (N);
6393 -- Kill checks and constant values, as above for indirect case
6394 -- Who knows what happens when another task is activated?
6396 Kill_Current_Values;
6397 return;
6399 -- Normal subprogram call with name established in Resolve
6401 elsif not Is_Type (Entity (Subp)) then
6402 Nam := Entity (Subp);
6403 Set_Entity_With_Checks (Subp, Nam);
6405 -- Otherwise we must have the case of an overloaded call
6407 else
6408 pragma Assert (Is_Overloaded (Subp));
6410 -- Initialize Nam to prevent warning (we know it will be assigned
6411 -- in the loop below, but the compiler does not know that).
6413 Nam := Empty;
6415 Get_First_Interp (Subp, I, It);
6416 while Present (It.Typ) loop
6417 if Covers (Typ, It.Typ) then
6418 Nam := It.Nam;
6419 Set_Entity_With_Checks (Subp, Nam);
6420 exit;
6421 end if;
6423 Get_Next_Interp (I, It);
6424 end loop;
6425 end if;
6427 -- Check that a call to Current_Task does not occur in an entry body
6429 if Is_RTE (Nam, RE_Current_Task) then
6430 declare
6431 P : Node_Id;
6433 begin
6434 P := N;
6435 loop
6436 P := Parent (P);
6438 -- Exclude calls that occur within the default of a formal
6439 -- parameter of the entry, since those are evaluated outside
6440 -- of the body.
6442 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
6444 if Nkind (P) = N_Entry_Body
6445 or else (Nkind (P) = N_Subprogram_Body
6446 and then Is_Entry_Barrier_Function (P))
6447 then
6448 Rtype := Etype (N);
6449 Error_Msg_Warn := SPARK_Mode /= On;
6450 Error_Msg_NE
6451 ("& should not be used in entry body (RM C.7(17))<<",
6452 N, Nam);
6453 Error_Msg_NE ("\Program_Error [<<", N, Nam);
6454 Rewrite (N,
6455 Make_Raise_Program_Error (Loc,
6456 Reason => PE_Current_Task_In_Entry_Body));
6457 Set_Etype (N, Rtype);
6458 return;
6459 end if;
6460 end loop;
6461 end;
6462 end if;
6464 -- Check that a procedure call does not occur in the context of the
6465 -- entry call statement of a conditional or timed entry call. Note that
6466 -- the case of a call to a subprogram renaming of an entry will also be
6467 -- rejected. The test for N not being an N_Entry_Call_Statement is
6468 -- defensive, covering the possibility that the processing of entry
6469 -- calls might reach this point due to later modifications of the code
6470 -- above.
6472 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6473 and then Nkind (N) /= N_Entry_Call_Statement
6474 and then Entry_Call_Statement (Parent (N)) = N
6475 then
6476 if Ada_Version < Ada_2005 then
6477 Error_Msg_N ("entry call required in select statement", N);
6479 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6480 -- for a procedure_or_entry_call, the procedure_name or
6481 -- procedure_prefix of the procedure_call_statement shall denote
6482 -- an entry renamed by a procedure, or (a view of) a primitive
6483 -- subprogram of a limited interface whose first parameter is
6484 -- a controlling parameter.
6486 elsif Nkind (N) = N_Procedure_Call_Statement
6487 and then not Is_Renamed_Entry (Nam)
6488 and then not Is_Controlling_Limited_Procedure (Nam)
6489 then
6490 Error_Msg_N
6491 ("entry call or dispatching primitive of interface required", N);
6492 end if;
6493 end if;
6495 -- Check that this is not a call to a protected procedure or entry from
6496 -- within a protected function.
6498 Check_Internal_Protected_Use (N, Nam);
6500 -- Freeze the subprogram name if not in a spec-expression. Note that
6501 -- we freeze procedure calls as well as function calls. Procedure calls
6502 -- are not frozen according to the rules (RM 13.14(14)) because it is
6503 -- impossible to have a procedure call to a non-frozen procedure in
6504 -- pure Ada, but in the code that we generate in the expander, this
6505 -- rule needs extending because we can generate procedure calls that
6506 -- need freezing.
6508 -- In Ada 2012, expression functions may be called within pre/post
6509 -- conditions of subsequent functions or expression functions. Such
6510 -- calls do not freeze when they appear within generated bodies,
6511 -- (including the body of another expression function) which would
6512 -- place the freeze node in the wrong scope. An expression function
6513 -- is frozen in the usual fashion, by the appearance of a real body,
6514 -- or at the end of a declarative part. However an implicit call to
6515 -- an expression function may appear when it is part of a default
6516 -- expression in a call to an initialization procedure, and must be
6517 -- frozen now, even if the body is inserted at a later point.
6518 -- Otherwise, the call freezes the expression if expander is active,
6519 -- for example as part of an object declaration.
6521 if Is_Entity_Name (Subp)
6522 and then not In_Spec_Expression
6523 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6524 and then
6525 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6526 or else Expander_Active)
6527 then
6528 if Is_Expression_Function (Entity (Subp)) then
6530 -- Force freeze of expression function in call
6532 Set_Comes_From_Source (Subp, True);
6533 Set_Must_Not_Freeze (Subp, False);
6534 end if;
6536 Freeze_Expression (Subp);
6537 end if;
6539 -- For a predefined operator, the type of the result is the type imposed
6540 -- by context, except for a predefined operation on universal fixed.
6541 -- Otherwise the type of the call is the type returned by the subprogram
6542 -- being called.
6544 if Is_Predefined_Op (Nam) then
6545 if Etype (N) /= Universal_Fixed then
6546 Set_Etype (N, Typ);
6547 end if;
6549 -- If the subprogram returns an array type, and the context requires the
6550 -- component type of that array type, the node is really an indexing of
6551 -- the parameterless call. Resolve as such. A pathological case occurs
6552 -- when the type of the component is an access to the array type. In
6553 -- this case the call is truly ambiguous. If the call is to an intrinsic
6554 -- subprogram, it can't be an indexed component. This check is necessary
6555 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6556 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6557 -- pointers to the same array), the compiler gets confused and does an
6558 -- infinite recursion.
6560 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6561 and then
6562 ((Is_Array_Type (Etype (Nam))
6563 and then Covers (Typ, Component_Type (Etype (Nam))))
6564 or else
6565 (Is_Access_Type (Etype (Nam))
6566 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6567 and then
6568 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6569 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6570 then
6571 declare
6572 Index_Node : Node_Id;
6573 New_Subp : Node_Id;
6574 Ret_Type : constant Entity_Id := Etype (Nam);
6576 begin
6577 -- If this is a parameterless call there is no ambiguity and the
6578 -- call has the type of the function.
6580 if No (First_Actual (N)) then
6581 Set_Etype (N, Etype (Nam));
6583 if Present (First_Formal (Nam)) then
6584 Resolve_Actuals (N, Nam);
6585 end if;
6587 -- Annotate the tree by creating a call marker in case the
6588 -- original call is transformed by expansion. The call marker
6589 -- is automatically saved for later examination by the ABE
6590 -- Processing phase.
6592 Build_Call_Marker (N);
6594 elsif Is_Access_Type (Ret_Type)
6596 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6597 then
6598 Error_Msg_N
6599 ("cannot disambiguate function call and indexing", N);
6600 else
6601 New_Subp := Relocate_Node (Subp);
6603 -- The called entity may be an explicit dereference, in which
6604 -- case there is no entity to set.
6606 if Nkind (New_Subp) /= N_Explicit_Dereference then
6607 Set_Entity (Subp, Nam);
6608 end if;
6610 if (Is_Array_Type (Ret_Type)
6611 and then Component_Type (Ret_Type) /= Any_Type)
6612 or else
6613 (Is_Access_Type (Ret_Type)
6614 and then
6615 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6616 then
6617 if Needs_No_Actuals (Nam) then
6619 -- Indexed call to a parameterless function
6621 Index_Node :=
6622 Make_Indexed_Component (Loc,
6623 Prefix =>
6624 Make_Function_Call (Loc, Name => New_Subp),
6625 Expressions => Parameter_Associations (N));
6626 else
6627 -- An Ada 2005 prefixed call to a primitive operation
6628 -- whose first parameter is the prefix. This prefix was
6629 -- prepended to the parameter list, which is actually a
6630 -- list of indexes. Remove the prefix in order to build
6631 -- the proper indexed component.
6633 Index_Node :=
6634 Make_Indexed_Component (Loc,
6635 Prefix =>
6636 Make_Function_Call (Loc,
6637 Name => New_Subp,
6638 Parameter_Associations =>
6639 New_List
6640 (Remove_Head (Parameter_Associations (N)))),
6641 Expressions => Parameter_Associations (N));
6642 end if;
6644 -- Preserve the parenthesis count of the node
6646 Set_Paren_Count (Index_Node, Paren_Count (N));
6648 -- Since we are correcting a node classification error made
6649 -- by the parser, we call Replace rather than Rewrite.
6651 Replace (N, Index_Node);
6653 Set_Etype (Prefix (N), Ret_Type);
6654 Set_Etype (N, Typ);
6656 if Legacy_Elaboration_Checks then
6657 Check_Elab_Call (Prefix (N));
6658 end if;
6660 -- Annotate the tree by creating a call marker in case
6661 -- the original call is transformed by expansion. The call
6662 -- marker is automatically saved for later examination by
6663 -- the ABE Processing phase.
6665 Build_Call_Marker (Prefix (N));
6667 Resolve_Indexed_Component (N, Typ);
6668 end if;
6669 end if;
6671 return;
6672 end;
6674 else
6675 -- If the called function is not declared in the main unit and it
6676 -- returns the limited view of type then use the available view (as
6677 -- is done in Try_Object_Operation) to prevent back-end confusion;
6678 -- for the function entity itself. The call must appear in a context
6679 -- where the nonlimited view is available. If the function entity is
6680 -- in the extended main unit then no action is needed, because the
6681 -- back end handles this case. In either case the type of the call
6682 -- is the nonlimited view.
6684 if From_Limited_With (Etype (Nam))
6685 and then Present (Available_View (Etype (Nam)))
6686 then
6687 Set_Etype (N, Available_View (Etype (Nam)));
6689 if not In_Extended_Main_Code_Unit (Nam) then
6690 Set_Etype (Nam, Available_View (Etype (Nam)));
6691 end if;
6693 else
6694 Set_Etype (N, Etype (Nam));
6695 end if;
6696 end if;
6698 -- In the case where the call is to an overloaded subprogram, Analyze
6699 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6700 -- such a case Normalize_Actuals needs to be called once more to order
6701 -- the actuals correctly. Otherwise the call will have the ordering
6702 -- given by the last overloaded subprogram whether this is the correct
6703 -- one being called or not.
6705 if Is_Overloaded (Subp) then
6706 Normalize_Actuals (N, Nam, False, Norm_OK);
6707 pragma Assert (Norm_OK);
6708 end if;
6710 -- In any case, call is fully resolved now. Reset Overload flag, to
6711 -- prevent subsequent overload resolution if node is analyzed again
6713 Set_Is_Overloaded (Subp, False);
6714 Set_Is_Overloaded (N, False);
6716 -- A Ghost entity must appear in a specific context
6718 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6719 Check_Ghost_Context (Nam, N);
6720 end if;
6722 -- If we are calling the current subprogram from immediately within its
6723 -- body, then that is the case where we can sometimes detect cases of
6724 -- infinite recursion statically. Do not try this in case restriction
6725 -- No_Recursion is in effect anyway, and do it only for source calls.
6727 if Comes_From_Source (N) then
6728 Scop := Current_Scope;
6730 -- Issue warning for possible infinite recursion in the absence
6731 -- of the No_Recursion restriction.
6733 if Same_Or_Aliased_Subprograms (Nam, Scop)
6734 and then not Restriction_Active (No_Recursion)
6735 and then not Is_Static_Function (Scop)
6736 and then Check_Infinite_Recursion (N)
6737 then
6738 -- Here we detected and flagged an infinite recursion, so we do
6739 -- not need to test the case below for further warnings. Also we
6740 -- are all done if we now have a raise SE node.
6742 if Nkind (N) = N_Raise_Storage_Error then
6743 return;
6744 end if;
6746 -- If call is to immediately containing subprogram, then check for
6747 -- the case of a possible run-time detectable infinite recursion.
6749 else
6750 Scope_Loop : while Scop /= Standard_Standard loop
6751 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6753 -- Ada 2022 (AI12-0075): Static functions are never allowed
6754 -- to make a recursive call, as specified by 6.8(5.4/5).
6756 if Is_Static_Function (Scop) then
6757 Error_Msg_N
6758 ("recursive call not allowed in static expression "
6759 & "function", N);
6761 Set_Error_Posted (Scop);
6763 exit Scope_Loop;
6764 end if;
6766 -- Although in general case, recursion is not statically
6767 -- checkable, the case of calling an immediately containing
6768 -- subprogram is easy to catch.
6770 if not Is_Ignored_Ghost_Entity (Nam) then
6771 Check_Restriction (No_Recursion, N);
6772 end if;
6774 -- If the recursive call is to a parameterless subprogram,
6775 -- then even if we can't statically detect infinite
6776 -- recursion, this is pretty suspicious, and we output a
6777 -- warning. Furthermore, we will try later to detect some
6778 -- cases here at run time by expanding checking code (see
6779 -- Detect_Infinite_Recursion in package Exp_Ch6).
6781 -- If the recursive call is within a handler, do not emit a
6782 -- warning, because this is a common idiom: loop until input
6783 -- is correct, catch illegal input in handler and restart.
6785 if No (First_Formal (Nam))
6786 and then Etype (Nam) = Standard_Void_Type
6787 and then not Error_Posted (N)
6788 and then Nkind (Parent (N)) /= N_Exception_Handler
6789 then
6790 -- For the case of a procedure call. We give the message
6791 -- only if the call is the first statement in a sequence
6792 -- of statements, or if all previous statements are
6793 -- simple assignments. This is simply a heuristic to
6794 -- decrease false positives, without losing too many good
6795 -- warnings. The idea is that these previous statements
6796 -- may affect global variables the procedure depends on.
6797 -- We also exclude raise statements, that may arise from
6798 -- constraint checks and are probably unrelated to the
6799 -- intended control flow.
6801 if Nkind (N) = N_Procedure_Call_Statement
6802 and then Is_List_Member (N)
6803 then
6804 declare
6805 P : Node_Id;
6806 begin
6807 P := Prev (N);
6808 while Present (P) loop
6809 if Nkind (P) not in N_Assignment_Statement
6810 | N_Raise_Constraint_Error
6811 then
6812 exit Scope_Loop;
6813 end if;
6815 Prev (P);
6816 end loop;
6817 end;
6818 end if;
6820 -- Do not give warning if we are in a conditional context
6822 declare
6823 K : constant Node_Kind := Nkind (Parent (N));
6824 begin
6825 if (K = N_Loop_Statement
6826 and then Present (Iteration_Scheme (Parent (N))))
6827 or else K = N_If_Statement
6828 or else K = N_Elsif_Part
6829 or else K = N_Case_Statement_Alternative
6830 then
6831 exit Scope_Loop;
6832 end if;
6833 end;
6835 -- Here warning is to be issued
6837 Set_Has_Recursive_Call (Nam);
6838 Error_Msg_Warn := SPARK_Mode /= On;
6839 Error_Msg_N ("possible infinite recursion<<!", N);
6840 Error_Msg_N ("\Storage_Error ]<<!", N);
6841 end if;
6843 exit Scope_Loop;
6844 end if;
6846 Scop := Scope (Scop);
6847 end loop Scope_Loop;
6848 end if;
6849 end if;
6851 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6853 Check_Obsolescent_2005_Entity (Nam, Subp);
6855 -- If subprogram name is a predefined operator, it was given in
6856 -- functional notation. Replace call node with operator node, so
6857 -- that actuals can be resolved appropriately.
6859 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6860 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6861 return;
6863 elsif Present (Alias (Nam))
6864 and then Is_Predefined_Op (Alias (Nam))
6865 then
6866 Resolve_Actuals (N, Nam);
6867 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6868 return;
6869 end if;
6871 -- Create a transient scope if the resulting type requires it
6873 -- There are several notable exceptions:
6875 -- a) In init procs, the transient scope overhead is not needed, and is
6876 -- even incorrect when the call is a nested initialization call for a
6877 -- component whose expansion may generate adjust calls. However, if the
6878 -- call is some other procedure call within an initialization procedure
6879 -- (for example a call to Create_Task in the init_proc of the task
6880 -- run-time record) a transient scope must be created around this call.
6882 -- b) Enumeration literal pseudo-calls need no transient scope
6884 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6885 -- functions) do not use the secondary stack even though the return
6886 -- type may be unconstrained.
6888 -- d) Calls to a build-in-place function, since such functions may
6889 -- allocate their result directly in a target object, and cases where
6890 -- the result does get allocated in the secondary stack are checked for
6891 -- within the specialized Exp_Ch6 procedures for expanding those
6892 -- build-in-place calls.
6894 -- e) Calls to inlinable expression functions do not use the secondary
6895 -- stack (since the call will be replaced by its returned object).
6897 -- f) If the subprogram is marked Inline_Always, then even if it returns
6898 -- an unconstrained type the call does not require use of the secondary
6899 -- stack. However, inlining will only take place if the body to inline
6900 -- is already present. It may not be available if e.g. the subprogram is
6901 -- declared in a child instance.
6903 -- g) If the subprogram is a static expression function and the call is
6904 -- a static call (the actuals are all static expressions), then we never
6905 -- want to create a transient scope (this could occur in the case of a
6906 -- static string-returning call).
6908 if Is_Inlined (Nam)
6909 and then Has_Pragma_Inline (Nam)
6910 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6911 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6912 then
6913 null;
6915 elsif Ekind (Nam) = E_Enumeration_Literal
6916 or else Is_Build_In_Place_Function (Nam)
6917 or else Is_Intrinsic_Subprogram (Nam)
6918 or else Is_Inlinable_Expression_Function (Nam)
6919 or else Is_Static_Function_Call (N)
6920 then
6921 null;
6923 -- A return statement from an ignored Ghost function does not use the
6924 -- secondary stack (or any other one).
6926 elsif Expander_Active
6927 and then Ekind (Nam) in E_Function | E_Subprogram_Type
6928 and then Requires_Transient_Scope (Etype (Nam))
6929 and then not Is_Ignored_Ghost_Entity (Nam)
6930 then
6931 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6933 -- If the call appears within the bounds of a loop, it will be
6934 -- rewritten and reanalyzed, nothing left to do here.
6936 if Nkind (N) /= N_Function_Call then
6937 return;
6938 end if;
6939 end if;
6941 -- A protected function cannot be called within the definition of the
6942 -- enclosing protected type, unless it is part of a pre/postcondition
6943 -- on another protected operation. This may appear in the entry wrapper
6944 -- created for an entry with preconditions.
6946 if Is_Protected_Type (Scope (Nam))
6947 and then In_Open_Scopes (Scope (Nam))
6948 and then not Has_Completion (Scope (Nam))
6949 and then not In_Spec_Expression
6950 and then not Is_Entry_Wrapper (Current_Scope)
6951 then
6952 Error_Msg_NE
6953 ("& cannot be called before end of protected definition", N, Nam);
6954 end if;
6956 -- Propagate interpretation to actuals, and add default expressions
6957 -- where needed.
6959 if Present (First_Formal (Nam)) then
6960 Resolve_Actuals (N, Nam);
6962 -- Overloaded literals are rewritten as function calls, for purpose of
6963 -- resolution. After resolution, we can replace the call with the
6964 -- literal itself.
6966 elsif Ekind (Nam) = E_Enumeration_Literal then
6967 Copy_Node (Subp, N);
6968 Resolve_Entity_Name (N, Typ);
6970 -- Avoid validation, since it is a static function call
6972 Generate_Reference (Nam, Subp);
6973 return;
6974 end if;
6976 -- If the subprogram is not global, then kill all saved values and
6977 -- checks. This is a bit conservative, since in many cases we could do
6978 -- better, but it is not worth the effort. Similarly, we kill constant
6979 -- values. However we do not need to do this for internal entities
6980 -- (unless they are inherited user-defined subprograms), since they
6981 -- are not in the business of molesting local values.
6983 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6984 -- kill all checks and values for calls to global subprograms. This
6985 -- takes care of the case where an access to a local subprogram is
6986 -- taken, and could be passed directly or indirectly and then called
6987 -- from almost any context.
6989 -- Note: we do not do this step till after resolving the actuals. That
6990 -- way we still take advantage of the current value information while
6991 -- scanning the actuals.
6993 -- We suppress killing values if we are processing the nodes associated
6994 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6995 -- type kills all the values as part of analyzing the code that
6996 -- initializes the dispatch tables.
6998 if Inside_Freezing_Actions = 0
6999 and then (not Is_Library_Level_Entity (Nam)
7000 or else Suppress_Value_Tracking_On_Call
7001 (Nearest_Dynamic_Scope (Current_Scope)))
7002 and then (Comes_From_Source (Nam)
7003 or else (Present (Alias (Nam))
7004 and then Comes_From_Source (Alias (Nam))))
7005 then
7006 Kill_Current_Values;
7007 end if;
7009 -- If we are warning about unread OUT parameters, this is the place to
7010 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
7011 -- after the above call to Kill_Current_Values (since that call clears
7012 -- the Last_Assignment field of all local variables).
7014 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
7015 and then Comes_From_Source (N)
7016 and then In_Extended_Main_Source_Unit (N)
7017 then
7018 declare
7019 F : Entity_Id;
7020 A : Node_Id;
7022 begin
7023 F := First_Formal (Nam);
7024 A := First_Actual (N);
7025 while Present (F) and then Present (A) loop
7026 if Ekind (F) in E_Out_Parameter | E_In_Out_Parameter
7027 and then Warn_On_Modified_As_Out_Parameter (F)
7028 and then Is_Entity_Name (A)
7029 and then Present (Entity (A))
7030 and then Comes_From_Source (N)
7031 and then Safe_To_Capture_Value (N, Entity (A))
7032 then
7033 Set_Last_Assignment (Entity (A), A);
7034 end if;
7036 Next_Formal (F);
7037 Next_Actual (A);
7038 end loop;
7039 end;
7040 end if;
7042 -- If the subprogram is a primitive operation, check whether or not
7043 -- it is a correct dispatching call.
7045 if Is_Overloadable (Nam)
7046 and then Is_Dispatching_Operation (Nam)
7047 then
7048 Check_Dispatching_Call (N);
7050 elsif Ekind (Nam) /= E_Subprogram_Type
7051 and then Is_Abstract_Subprogram (Nam)
7052 and then not In_Instance
7053 then
7054 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
7055 end if;
7057 -- If this is a dispatching call, generate the appropriate reference,
7058 -- for better source navigation in GNAT Studio.
7060 if Is_Overloadable (Nam)
7061 and then Present (Controlling_Argument (N))
7062 then
7063 Generate_Reference (Nam, Subp, 'R');
7065 -- Normal case, not a dispatching call: generate a call reference
7067 else
7068 Generate_Reference (Nam, Subp, 's');
7069 end if;
7071 if Is_Intrinsic_Subprogram (Nam) then
7072 Check_Intrinsic_Call (N);
7073 end if;
7075 -- Check for violation of restriction No_Specific_Termination_Handlers
7076 -- and warn on a potentially blocking call to Abort_Task.
7078 if Restriction_Check_Required (No_Specific_Termination_Handlers)
7079 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
7080 or else
7081 Is_RTE (Nam, RE_Specific_Handler))
7082 then
7083 Check_Restriction (No_Specific_Termination_Handlers, N);
7085 elsif Is_RTE (Nam, RE_Abort_Task) then
7086 Check_Potentially_Blocking_Operation (N);
7087 end if;
7089 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
7090 -- timing event violates restriction No_Relative_Delay (AI-0211). We
7091 -- need to check the second argument to determine whether it is an
7092 -- absolute or relative timing event.
7094 if Restriction_Check_Required (No_Relative_Delay)
7095 and then Is_RTE (Nam, RE_Set_Handler)
7096 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
7097 then
7098 Check_Restriction (No_Relative_Delay, N);
7099 end if;
7101 -- Issue an error for a call to an eliminated subprogram. This routine
7102 -- will not perform the check if the call appears within a default
7103 -- expression.
7105 Check_For_Eliminated_Subprogram (Subp, Nam);
7107 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
7108 -- class-wide and the call dispatches on result in a context that does
7109 -- not provide a tag, the call raises Program_Error.
7111 if Nkind (N) = N_Function_Call
7112 and then In_Instance
7113 and then Is_Generic_Actual_Type (Typ)
7114 and then Is_Class_Wide_Type (Typ)
7115 and then Has_Controlling_Result (Nam)
7116 and then Nkind (Parent (N)) = N_Object_Declaration
7117 then
7118 -- Verify that none of the formals are controlling
7120 declare
7121 Call_OK : Boolean := False;
7122 F : Entity_Id;
7124 begin
7125 F := First_Formal (Nam);
7126 while Present (F) loop
7127 if Is_Controlling_Formal (F) then
7128 Call_OK := True;
7129 exit;
7130 end if;
7132 Next_Formal (F);
7133 end loop;
7135 if not Call_OK then
7136 Error_Msg_Warn := SPARK_Mode /= On;
7137 Error_Msg_N ("!cannot determine tag of result<<", N);
7138 Error_Msg_N ("\Program_Error [<<!", N);
7139 Insert_Action (N,
7140 Make_Raise_Program_Error (Sloc (N),
7141 Reason => PE_Explicit_Raise));
7142 end if;
7143 end;
7144 end if;
7146 -- Check for calling a function with OUT or IN OUT parameter when the
7147 -- calling context (us right now) is not Ada 2012, so does not allow
7148 -- OUT or IN OUT parameters in function calls. Functions declared in
7149 -- a predefined unit are OK, as they may be called indirectly from a
7150 -- user-declared instantiation.
7152 if Ada_Version < Ada_2012
7153 and then Ekind (Nam) = E_Function
7154 and then Has_Out_Or_In_Out_Parameter (Nam)
7155 and then not In_Predefined_Unit (Nam)
7156 then
7157 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
7158 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
7159 end if;
7161 -- Check the dimensions of the actuals in the call. For function calls,
7162 -- propagate the dimensions from the returned type to N.
7164 Analyze_Dimension_Call (N, Nam);
7166 -- All done, evaluate call and deal with elaboration issues
7168 Eval_Call (N);
7170 if Legacy_Elaboration_Checks then
7171 Check_Elab_Call (N);
7172 end if;
7174 -- Annotate the tree by creating a call marker in case the original call
7175 -- is transformed by expansion. The call marker is automatically saved
7176 -- for later examination by the ABE Processing phase.
7178 Build_Call_Marker (N);
7180 Mark_Use_Clauses (Subp);
7182 Warn_On_Overlapping_Actuals (Nam, N);
7184 -- Ada 2022 (AI12-0075): If the call is a static call to a static
7185 -- expression function, then we want to "inline" the call, replacing
7186 -- it with the folded static result. This is not done if the checking
7187 -- for a potentially static expression is enabled or if an error has
7188 -- been posted on the call (which may be due to the check for recursive
7189 -- calls, in which case we don't want to fall into infinite recursion
7190 -- when doing the inlining).
7192 if not Checking_Potentially_Static_Expression
7193 and then Is_Static_Function_Call (N)
7194 and then not Is_Intrinsic_Subprogram (Ultimate_Alias (Nam))
7195 and then not Error_Posted (Ultimate_Alias (Nam))
7196 then
7197 Inline_Static_Function_Call (N, Ultimate_Alias (Nam));
7199 -- In GNATprove mode, expansion is disabled, but we want to inline some
7200 -- subprograms to facilitate formal verification. Indirect calls through
7201 -- a subprogram type or within a generic cannot be inlined. Inlining is
7202 -- performed only for calls subject to SPARK_Mode on.
7204 elsif GNATprove_Mode
7205 and then SPARK_Mode = On
7206 and then Is_Overloadable (Nam)
7207 and then not Inside_A_Generic
7208 then
7209 Nam_UA := Ultimate_Alias (Nam);
7210 Nam_Decl := Unit_Declaration_Node (Nam_UA);
7212 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
7213 Body_Id := Corresponding_Body (Nam_Decl);
7215 -- Nothing to do if the subprogram is not eligible for inlining in
7216 -- GNATprove mode, or inlining is disabled with switch -gnatdm
7218 if not Is_Inlined_Always (Nam_UA)
7219 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
7220 or else Debug_Flag_M
7221 then
7222 null;
7224 -- Calls cannot be inlined inside assertions, as GNATprove treats
7225 -- assertions as logic expressions. Only issue a message when the
7226 -- body has been seen, otherwise this leads to spurious messages
7227 -- on expression functions.
7229 elsif In_Assertion_Expr /= 0 then
7230 Cannot_Inline
7231 ("cannot inline & (in assertion expression)?", N, Nam_UA,
7232 Suppress_Info => No (Body_Id));
7234 -- Calls cannot be inlined inside default expressions
7236 elsif In_Default_Expr then
7237 Cannot_Inline
7238 ("cannot inline & (in default expression)?", N, Nam_UA);
7240 -- Calls cannot be inlined inside quantified expressions, which
7241 -- are left in expression form for GNATprove. Since these
7242 -- expressions are only preanalyzed, we need to detect the failure
7243 -- to inline outside of the case for Full_Analysis below.
7245 elsif In_Quantified_Expression (N) then
7246 Cannot_Inline
7247 ("cannot inline & (in quantified expression)?", N, Nam_UA);
7249 -- Inlining should not be performed during preanalysis
7251 elsif Full_Analysis then
7253 -- Do not inline calls inside expression functions or functions
7254 -- generated by the front end for subtype predicates, as this
7255 -- would prevent interpreting them as logical formulas in
7256 -- GNATprove. Only issue a message when the body has been seen,
7257 -- otherwise this leads to spurious messages on callees that
7258 -- are themselves expression functions.
7260 if Present (Current_Subprogram)
7261 and then
7262 (Is_Expression_Function_Or_Completion (Current_Subprogram)
7263 or else Is_Predicate_Function (Current_Subprogram)
7264 or else Is_Invariant_Procedure (Current_Subprogram)
7265 or else Is_DIC_Procedure (Current_Subprogram))
7266 then
7267 if Present (Body_Id)
7268 and then Present (Body_To_Inline (Nam_Decl))
7269 then
7270 if Is_Predicate_Function (Current_Subprogram) then
7271 Cannot_Inline
7272 ("cannot inline & (inside predicate)?",
7273 N, Nam_UA);
7275 elsif Is_Invariant_Procedure (Current_Subprogram) then
7276 Cannot_Inline
7277 ("cannot inline & (inside invariant)?",
7278 N, Nam_UA);
7280 elsif Is_DIC_Procedure (Current_Subprogram) then
7281 Cannot_Inline
7282 ("cannot inline & (inside Default_Initial_Condition)?",
7283 N, Nam_UA);
7285 else
7286 Cannot_Inline
7287 ("cannot inline & (inside expression function)?",
7288 N, Nam_UA);
7289 end if;
7290 end if;
7292 -- Cannot inline a call inside the definition of a record type,
7293 -- typically inside the constraints of the type. Calls in
7294 -- default expressions are also not inlined, but this is
7295 -- filtered out above when testing In_Default_Expr.
7297 elsif Is_Record_Type (Current_Scope) then
7298 Cannot_Inline
7299 ("cannot inline & (inside record type)?", N, Nam_UA);
7301 -- With the one-pass inlining technique, a call cannot be
7302 -- inlined if the corresponding body has not been seen yet.
7304 elsif No (Body_Id) then
7305 Cannot_Inline
7306 ("cannot inline & (body not seen yet)?", N, Nam_UA);
7308 -- Nothing to do if there is no body to inline, indicating that
7309 -- the subprogram is not suitable for inlining in GNATprove
7310 -- mode.
7312 elsif No (Body_To_Inline (Nam_Decl)) then
7313 null;
7315 -- Calls cannot be inlined inside potentially unevaluated
7316 -- expressions, as this would create complex actions inside
7317 -- expressions, that are not handled by GNATprove.
7319 elsif Is_Potentially_Unevaluated (N) then
7320 Cannot_Inline
7321 ("cannot inline & (in potentially unevaluated context)?",
7322 N, Nam_UA);
7324 -- Calls cannot be inlined inside the conditions of while
7325 -- loops, as this would create complex actions inside
7326 -- the condition, that are not handled by GNATprove.
7328 elsif In_While_Loop_Condition (N) then
7329 Cannot_Inline
7330 ("cannot inline & (in while loop condition)?", N, Nam_UA);
7332 -- Do not inline calls which would possibly lead to missing a
7333 -- type conversion check on an input parameter.
7335 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
7336 Cannot_Inline
7337 ("cannot inline & (possible check on input parameters)?",
7338 N, Nam_UA);
7340 -- Otherwise, inline the call, issuing an info message when
7341 -- -gnatd_f is set.
7343 else
7344 if Debug_Flag_Underscore_F then
7345 Error_Msg_NE
7346 ("info: analyzing call to & in context?", N, Nam_UA);
7347 end if;
7349 Expand_Inlined_Call (N, Nam_UA, Nam);
7350 end if;
7351 end if;
7352 end if;
7353 end if;
7354 end Resolve_Call;
7356 -----------------------------
7357 -- Resolve_Case_Expression --
7358 -----------------------------
7360 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
7361 Alt : Node_Id;
7362 Alt_Expr : Node_Id;
7363 Alt_Typ : Entity_Id;
7364 Is_Dyn : Boolean;
7366 begin
7367 Alt := First (Alternatives (N));
7368 while Present (Alt) loop
7369 Alt_Expr := Expression (Alt);
7371 if Error_Posted (Alt_Expr) then
7372 return;
7373 end if;
7375 Resolve (Alt_Expr, Typ);
7376 Alt_Typ := Etype (Alt_Expr);
7378 -- When the expression is of a scalar subtype different from the
7379 -- result subtype, then insert a conversion to ensure the generation
7380 -- of a constraint check.
7382 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
7383 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
7384 Analyze_And_Resolve (Alt_Expr, Typ);
7385 end if;
7387 Next (Alt);
7388 end loop;
7390 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
7391 -- dynamically tagged must be known statically.
7393 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
7394 Alt := First (Alternatives (N));
7395 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
7397 while Present (Alt) loop
7398 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
7399 Error_Msg_N
7400 ("all or none of the dependent expressions can be "
7401 & "dynamically tagged", N);
7402 end if;
7404 Next (Alt);
7405 end loop;
7406 end if;
7408 Set_Etype (N, Typ);
7409 Eval_Case_Expression (N);
7410 Analyze_Dimension (N);
7411 end Resolve_Case_Expression;
7413 -------------------------------
7414 -- Resolve_Character_Literal --
7415 -------------------------------
7417 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
7418 B_Typ : constant Entity_Id := Base_Type (Typ);
7419 C : Entity_Id;
7421 begin
7422 -- Verify that the character does belong to the type of the context
7424 Set_Etype (N, B_Typ);
7425 Eval_Character_Literal (N);
7427 -- Wide_Wide_Character literals must always be defined, since the set
7428 -- of wide wide character literals is complete, i.e. if a character
7429 -- literal is accepted by the parser, then it is OK for wide wide
7430 -- character (out of range character literals are rejected).
7432 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
7433 return;
7435 -- Always accept character literal for type Any_Character, which
7436 -- occurs in error situations and in comparisons of literals, both
7437 -- of which should accept all literals.
7439 elsif B_Typ = Any_Character then
7440 return;
7442 -- For Standard.Character or a type derived from it, check that the
7443 -- literal is in range.
7445 elsif Root_Type (B_Typ) = Standard_Character then
7446 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
7447 return;
7448 end if;
7450 -- For Standard.Wide_Character or a type derived from it, check that the
7451 -- literal is in range.
7453 elsif Root_Type (B_Typ) = Standard_Wide_Character then
7454 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
7455 return;
7456 end if;
7458 -- If the entity is already set, this has already been resolved in a
7459 -- generic context, or comes from expansion. Nothing else to do.
7461 elsif Present (Entity (N)) then
7462 return;
7464 -- Otherwise we have a user defined character type, and we can use the
7465 -- standard visibility mechanisms to locate the referenced entity.
7467 else
7468 C := Current_Entity (N);
7469 while Present (C) loop
7470 if Etype (C) = B_Typ then
7471 Set_Entity_With_Checks (N, C);
7472 Generate_Reference (C, N);
7473 return;
7474 end if;
7476 C := Homonym (C);
7477 end loop;
7478 end if;
7480 -- If we fall through, then the literal does not match any of the
7481 -- entries of the enumeration type. This isn't just a constraint error
7482 -- situation, it is an illegality (see RM 4.2).
7484 Error_Msg_NE
7485 ("character not defined for }", N, First_Subtype (B_Typ));
7486 end Resolve_Character_Literal;
7488 ---------------------------
7489 -- Resolve_Comparison_Op --
7490 ---------------------------
7492 -- Context requires a boolean type, and plays no role in resolution.
7493 -- Processing identical to that for equality operators. The result type is
7494 -- the base type, which matters when pathological subtypes of booleans with
7495 -- limited ranges are used.
7497 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
7498 L : constant Node_Id := Left_Opnd (N);
7499 R : constant Node_Id := Right_Opnd (N);
7500 T : Entity_Id;
7502 begin
7503 -- If this is an intrinsic operation which is not predefined, use the
7504 -- types of its declared arguments to resolve the possibly overloaded
7505 -- operands. Otherwise the operands are unambiguous and specify the
7506 -- expected type.
7508 if Scope (Entity (N)) /= Standard_Standard then
7509 T := Etype (First_Entity (Entity (N)));
7511 else
7512 T := Find_Unique_Type (L, R);
7514 if T = Any_Fixed then
7515 T := Unique_Fixed_Point_Type (L);
7516 end if;
7517 end if;
7519 Set_Etype (N, Base_Type (Typ));
7520 Generate_Reference (T, N, ' ');
7522 -- Skip remaining processing if already set to Any_Type
7524 if T = Any_Type then
7525 return;
7526 end if;
7528 -- Deal with other error cases
7530 if T = Any_String or else
7531 T = Any_Composite or else
7532 T = Any_Character
7533 then
7534 if T = Any_Character then
7535 Ambiguous_Character (L);
7536 else
7537 Error_Msg_N ("ambiguous operands for comparison", N);
7538 end if;
7540 Set_Etype (N, Any_Type);
7541 return;
7542 end if;
7544 -- Resolve the operands if types OK
7546 Resolve (L, T);
7547 Resolve (R, T);
7548 Check_Unset_Reference (L);
7549 Check_Unset_Reference (R);
7550 Generate_Operator_Reference (N, T);
7551 Check_Low_Bound_Tested (N);
7553 -- Check comparison on unordered enumeration
7555 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7556 Error_Msg_Sloc := Sloc (Etype (L));
7557 Error_Msg_NE
7558 ("comparison on unordered enumeration type& declared#?.u?",
7559 N, Etype (L));
7560 end if;
7562 Analyze_Dimension (N);
7564 Eval_Relational_Op (N);
7565 end Resolve_Comparison_Op;
7567 --------------------------------
7568 -- Resolve_Declare_Expression --
7569 --------------------------------
7571 procedure Resolve_Declare_Expression
7572 (N : Node_Id;
7573 Typ : Entity_Id)
7575 Expr : constant Node_Id := Expression (N);
7577 Decl : Node_Id;
7578 Local : Entity_Id := Empty;
7580 function Replace_Local (N : Node_Id) return Traverse_Result;
7581 -- Use a tree traversal to replace each ocurrence of the name of
7582 -- a local object declared in the construct, with the corresponding
7583 -- entity. This replaces the usual way to perform name capture by
7584 -- visibility, because it is not possible to place on the scope
7585 -- stack the fake scope created for the analysis of the local
7586 -- declarations; such a scope conflicts with the transient scopes
7587 -- that may be generated if the expression includes function calls
7588 -- requiring finalization.
7590 -------------------
7591 -- Replace_Local --
7592 -------------------
7594 function Replace_Local (N : Node_Id) return Traverse_Result is
7595 begin
7596 -- The identifier may be the prefix of a selected component,
7597 -- but not a selector name, because the local entities do not
7598 -- have a scope that can be named: a selected component whose
7599 -- selector is a homonym of a local entity must denote some
7600 -- global entity.
7602 if Nkind (N) = N_Identifier
7603 and then Chars (N) = Chars (Local)
7604 and then No (Entity (N))
7605 and then
7606 (Nkind (Parent (N)) /= N_Selected_Component
7607 or else N = Prefix (Parent (N)))
7608 then
7609 Set_Entity (N, Local);
7610 Set_Etype (N, Etype (Local));
7611 end if;
7613 return OK;
7614 end Replace_Local;
7616 procedure Replace_Local_Ref is new Traverse_Proc (Replace_Local);
7618 -- Start of processing for Resolve_Declare_Expression
7620 begin
7622 Decl := First (Actions (N));
7624 while Present (Decl) loop
7625 if Nkind (Decl) in
7626 N_Object_Declaration | N_Object_Renaming_Declaration
7627 and then Comes_From_Source (Defining_Identifier (Decl))
7628 then
7629 Local := Defining_Identifier (Decl);
7630 Replace_Local_Ref (Expr);
7631 end if;
7633 Next (Decl);
7634 end loop;
7636 -- The end of the declarative list is a freeze point for the
7637 -- local declarations.
7639 if Present (Local) then
7640 Decl := Parent (Local);
7641 Freeze_All (First_Entity (Scope (Local)), Decl);
7642 end if;
7644 Resolve (Expr, Typ);
7645 end Resolve_Declare_Expression;
7647 -----------------------------------------
7648 -- Resolve_Discrete_Subtype_Indication --
7649 -----------------------------------------
7651 procedure Resolve_Discrete_Subtype_Indication
7652 (N : Node_Id;
7653 Typ : Entity_Id)
7655 R : Node_Id;
7656 S : Entity_Id;
7658 begin
7659 Analyze (Subtype_Mark (N));
7660 S := Entity (Subtype_Mark (N));
7662 if Nkind (Constraint (N)) /= N_Range_Constraint then
7663 Error_Msg_N ("expect range constraint for discrete type", N);
7664 Set_Etype (N, Any_Type);
7666 else
7667 R := Range_Expression (Constraint (N));
7669 if R = Error then
7670 return;
7671 end if;
7673 Analyze (R);
7675 if Base_Type (S) /= Base_Type (Typ) then
7676 Error_Msg_NE
7677 ("expect subtype of }", N, First_Subtype (Typ));
7679 -- Rewrite the constraint as a range of Typ
7680 -- to allow compilation to proceed further.
7682 Set_Etype (N, Typ);
7683 Rewrite (Low_Bound (R),
7684 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7685 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7686 Attribute_Name => Name_First));
7687 Rewrite (High_Bound (R),
7688 Make_Attribute_Reference (Sloc (High_Bound (R)),
7689 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7690 Attribute_Name => Name_First));
7692 else
7693 Resolve (R, Typ);
7694 Set_Etype (N, Etype (R));
7696 -- Additionally, we must check that the bounds are compatible
7697 -- with the given subtype, which might be different from the
7698 -- type of the context.
7700 Apply_Range_Check (R, S);
7702 -- ??? If the above check statically detects a Constraint_Error
7703 -- it replaces the offending bound(s) of the range R with a
7704 -- Constraint_Error node. When the itype which uses these bounds
7705 -- is frozen the resulting call to Duplicate_Subexpr generates
7706 -- a new temporary for the bounds.
7708 -- Unfortunately there are other itypes that are also made depend
7709 -- on these bounds, so when Duplicate_Subexpr is called they get
7710 -- a forward reference to the newly created temporaries and Gigi
7711 -- aborts on such forward references. This is probably sign of a
7712 -- more fundamental problem somewhere else in either the order of
7713 -- itype freezing or the way certain itypes are constructed.
7715 -- To get around this problem we call Remove_Side_Effects right
7716 -- away if either bounds of R are a Constraint_Error.
7718 declare
7719 L : constant Node_Id := Low_Bound (R);
7720 H : constant Node_Id := High_Bound (R);
7722 begin
7723 if Nkind (L) = N_Raise_Constraint_Error then
7724 Remove_Side_Effects (L);
7725 end if;
7727 if Nkind (H) = N_Raise_Constraint_Error then
7728 Remove_Side_Effects (H);
7729 end if;
7730 end;
7732 Check_Unset_Reference (Low_Bound (R));
7733 Check_Unset_Reference (High_Bound (R));
7734 end if;
7735 end if;
7736 end Resolve_Discrete_Subtype_Indication;
7738 -------------------------
7739 -- Resolve_Entity_Name --
7740 -------------------------
7742 -- Used to resolve identifiers and expanded names
7744 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7745 function Is_Assignment_Or_Object_Expression
7746 (Context : Node_Id;
7747 Expr : Node_Id) return Boolean;
7748 -- Determine whether node Context denotes an assignment statement or an
7749 -- object declaration whose expression is node Expr.
7751 function Is_Attribute_Expression (Expr : Node_Id) return Boolean;
7752 -- Determine whether Expr is part of an N_Attribute_Reference
7753 -- expression.
7755 ----------------------------------------
7756 -- Is_Assignment_Or_Object_Expression --
7757 ----------------------------------------
7759 function Is_Assignment_Or_Object_Expression
7760 (Context : Node_Id;
7761 Expr : Node_Id) return Boolean
7763 begin
7764 if Nkind (Context) in N_Assignment_Statement | N_Object_Declaration
7765 and then Expression (Context) = Expr
7766 then
7767 return True;
7769 -- Check whether a construct that yields a name is the expression of
7770 -- an assignment statement or an object declaration.
7772 elsif (Nkind (Context) in N_Attribute_Reference
7773 | N_Explicit_Dereference
7774 | N_Indexed_Component
7775 | N_Selected_Component
7776 | N_Slice
7777 and then Prefix (Context) = Expr)
7778 or else
7779 (Nkind (Context) in N_Type_Conversion
7780 | N_Unchecked_Type_Conversion
7781 and then Expression (Context) = Expr)
7782 then
7783 return
7784 Is_Assignment_Or_Object_Expression
7785 (Context => Parent (Context),
7786 Expr => Context);
7788 -- Otherwise the context is not an assignment statement or an object
7789 -- declaration.
7791 else
7792 return False;
7793 end if;
7794 end Is_Assignment_Or_Object_Expression;
7796 -----------------------------
7797 -- Is_Attribute_Expression --
7798 -----------------------------
7800 function Is_Attribute_Expression (Expr : Node_Id) return Boolean is
7801 N : Node_Id := Expr;
7802 begin
7803 while Present (N) loop
7804 if Nkind (N) = N_Attribute_Reference then
7805 return True;
7807 -- Prevent the search from going too far
7809 elsif Is_Body_Or_Package_Declaration (N) then
7810 return False;
7811 end if;
7813 N := Parent (N);
7814 end loop;
7816 return False;
7817 end Is_Attribute_Expression;
7819 -- Local variables
7821 E : constant Entity_Id := Entity (N);
7822 Par : Node_Id;
7824 -- Start of processing for Resolve_Entity_Name
7826 begin
7827 -- If garbage from errors, set to Any_Type and return
7829 if No (E) and then Total_Errors_Detected /= 0 then
7830 Set_Etype (N, Any_Type);
7831 return;
7832 end if;
7834 -- Replace named numbers by corresponding literals. Note that this is
7835 -- the one case where Resolve_Entity_Name must reset the Etype, since
7836 -- it is currently marked as universal.
7838 if Ekind (E) = E_Named_Integer then
7839 Set_Etype (N, Typ);
7840 Eval_Named_Integer (N);
7842 elsif Ekind (E) = E_Named_Real then
7843 Set_Etype (N, Typ);
7844 Eval_Named_Real (N);
7846 -- For enumeration literals, we need to make sure that a proper style
7847 -- check is done, since such literals are overloaded, and thus we did
7848 -- not do a style check during the first phase of analysis.
7850 elsif Ekind (E) = E_Enumeration_Literal then
7851 Set_Entity_With_Checks (N, E);
7852 Eval_Entity_Name (N);
7854 -- Case of (sub)type name appearing in a context where an expression
7855 -- is expected. This is legal if occurrence is a current instance.
7856 -- See RM 8.6 (17/3). It is also legal if the expression is
7857 -- part of a choice pattern for a case stmt/expr having a
7858 -- non-discrete selecting expression.
7860 elsif Is_Type (E) then
7861 if Is_Current_Instance (N) or else Is_Case_Choice_Pattern (N) then
7862 null;
7864 -- Any other use is an error
7866 else
7867 Error_Msg_N
7868 ("invalid use of subtype mark in expression or call", N);
7869 end if;
7871 -- Check discriminant use if entity is discriminant in current scope,
7872 -- i.e. discriminant of record or concurrent type currently being
7873 -- analyzed. Uses in corresponding body are unrestricted.
7875 elsif Ekind (E) = E_Discriminant
7876 and then Scope (E) = Current_Scope
7877 and then not Has_Completion (Current_Scope)
7878 then
7879 Check_Discriminant_Use (N);
7881 -- A parameterless generic function cannot appear in a context that
7882 -- requires resolution.
7884 elsif Ekind (E) = E_Generic_Function then
7885 Error_Msg_N ("illegal use of generic function", N);
7887 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7888 -- array types (i.e. bounds and length) are legal.
7890 elsif Ekind (E) = E_Out_Parameter
7891 and then (Is_Scalar_Type (Etype (E))
7892 or else not Is_Attribute_Expression (Parent (N)))
7894 and then (Nkind (Parent (N)) in N_Op
7895 or else Nkind (Parent (N)) = N_Explicit_Dereference
7896 or else Is_Assignment_Or_Object_Expression
7897 (Context => Parent (N),
7898 Expr => N))
7899 then
7900 if Ada_Version = Ada_83 then
7901 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7902 end if;
7904 -- In all other cases, just do the possible static evaluation
7906 else
7907 -- A deferred constant that appears in an expression must have a
7908 -- completion, unless it has been removed by in-place expansion of
7909 -- an aggregate. A constant that is a renaming does not need
7910 -- initialization.
7912 if Ekind (E) = E_Constant
7913 and then Comes_From_Source (E)
7914 and then No (Constant_Value (E))
7915 and then Is_Frozen (Etype (E))
7916 and then not In_Spec_Expression
7917 and then not Is_Imported (E)
7918 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7919 then
7920 if No_Initialization (Parent (E))
7921 or else (Present (Full_View (E))
7922 and then No_Initialization (Parent (Full_View (E))))
7923 then
7924 null;
7925 else
7926 Error_Msg_N
7927 ("deferred constant is frozen before completion", N);
7928 end if;
7929 end if;
7931 Eval_Entity_Name (N);
7932 end if;
7934 Par := Parent (N);
7936 -- When the entity appears in a parameter association, retrieve the
7937 -- related subprogram call.
7939 if Nkind (Par) = N_Parameter_Association then
7940 Par := Parent (Par);
7941 end if;
7943 if Comes_From_Source (N) then
7945 -- The following checks are only relevant when SPARK_Mode is on as
7946 -- they are not standard Ada legality rules.
7948 if SPARK_Mode = On then
7950 -- An effectively volatile object for reading must appear in
7951 -- non-interfering context (SPARK RM 7.1.3(10)).
7953 if Is_Object (E)
7954 and then Is_Effectively_Volatile_For_Reading (E)
7955 and then
7956 not Is_OK_Volatile_Context (Par, N, Check_Actuals => False)
7957 then
7958 SPARK_Msg_N
7959 ("volatile object cannot appear in this context "
7960 & "(SPARK RM 7.1.3(10))", N);
7961 end if;
7963 -- Check for possible elaboration issues with respect to reads of
7964 -- variables. The act of renaming the variable is not considered a
7965 -- read as it simply establishes an alias.
7967 if Legacy_Elaboration_Checks
7968 and then Ekind (E) = E_Variable
7969 and then Dynamic_Elaboration_Checks
7970 and then Nkind (Par) /= N_Object_Renaming_Declaration
7971 then
7972 Check_Elab_Call (N);
7973 end if;
7974 end if;
7976 -- The variable may eventually become a constituent of a single
7977 -- protected/task type. Record the reference now and verify its
7978 -- legality when analyzing the contract of the variable
7979 -- (SPARK RM 9.3).
7981 if Ekind (E) = E_Variable then
7982 Record_Possible_Part_Of_Reference (E, N);
7983 end if;
7985 -- A Ghost entity must appear in a specific context
7987 if Is_Ghost_Entity (E) then
7988 Check_Ghost_Context (E, N);
7989 end if;
7990 end if;
7992 -- We may be resolving an entity within expanded code, so a reference to
7993 -- an entity should be ignored when calculating effective use clauses to
7994 -- avoid inappropriate marking.
7996 if Comes_From_Source (N) then
7997 Mark_Use_Clauses (E);
7998 end if;
7999 end Resolve_Entity_Name;
8001 -------------------
8002 -- Resolve_Entry --
8003 -------------------
8005 procedure Resolve_Entry (Entry_Name : Node_Id) is
8006 Loc : constant Source_Ptr := Sloc (Entry_Name);
8007 Nam : Entity_Id;
8008 New_N : Node_Id;
8009 S : Entity_Id;
8010 Tsk : Entity_Id;
8011 E_Name : Node_Id;
8012 Index : Node_Id;
8014 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
8015 -- If the bounds of the entry family being called depend on task
8016 -- discriminants, build a new index subtype where a discriminant is
8017 -- replaced with the value of the discriminant of the target task.
8018 -- The target task is the prefix of the entry name in the call.
8020 -----------------------
8021 -- Actual_Index_Type --
8022 -----------------------
8024 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
8025 Typ : constant Entity_Id := Entry_Index_Type (E);
8026 Tsk : constant Entity_Id := Scope (E);
8027 Lo : constant Node_Id := Type_Low_Bound (Typ);
8028 Hi : constant Node_Id := Type_High_Bound (Typ);
8029 New_T : Entity_Id;
8031 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
8032 -- If the bound is given by a discriminant, replace with a reference
8033 -- to the discriminant of the same name in the target task. If the
8034 -- entry name is the target of a requeue statement and the entry is
8035 -- in the current protected object, the bound to be used is the
8036 -- discriminal of the object (see Apply_Range_Check for details of
8037 -- the transformation).
8039 -----------------------------
8040 -- Actual_Discriminant_Ref --
8041 -----------------------------
8043 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
8044 Typ : constant Entity_Id := Etype (Bound);
8045 Ref : Node_Id;
8047 begin
8048 Remove_Side_Effects (Bound);
8050 if not Is_Entity_Name (Bound)
8051 or else Ekind (Entity (Bound)) /= E_Discriminant
8052 then
8053 return Bound;
8055 elsif Is_Protected_Type (Tsk)
8056 and then In_Open_Scopes (Tsk)
8057 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
8058 then
8059 -- Note: here Bound denotes a discriminant of the corresponding
8060 -- record type tskV, whose discriminal is a formal of the
8061 -- init-proc tskVIP. What we want is the body discriminal,
8062 -- which is associated to the discriminant of the original
8063 -- concurrent type tsk.
8065 return New_Occurrence_Of
8066 (Find_Body_Discriminal (Entity (Bound)), Loc);
8068 else
8069 Ref :=
8070 Make_Selected_Component (Loc,
8071 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
8072 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
8073 Analyze (Ref);
8074 Resolve (Ref, Typ);
8075 return Ref;
8076 end if;
8077 end Actual_Discriminant_Ref;
8079 -- Start of processing for Actual_Index_Type
8081 begin
8082 if not Has_Discriminants (Tsk)
8083 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
8084 then
8085 return Entry_Index_Type (E);
8087 else
8088 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
8089 Set_Etype (New_T, Base_Type (Typ));
8090 Set_Size_Info (New_T, Typ);
8091 Set_RM_Size (New_T, RM_Size (Typ));
8092 Set_Scalar_Range (New_T,
8093 Make_Range (Sloc (Entry_Name),
8094 Low_Bound => Actual_Discriminant_Ref (Lo),
8095 High_Bound => Actual_Discriminant_Ref (Hi)));
8097 return New_T;
8098 end if;
8099 end Actual_Index_Type;
8101 -- Start of processing for Resolve_Entry
8103 begin
8104 -- Find name of entry being called, and resolve prefix of name with its
8105 -- own type. The prefix can be overloaded, and the name and signature of
8106 -- the entry must be taken into account.
8108 if Nkind (Entry_Name) = N_Indexed_Component then
8110 -- Case of dealing with entry family within the current tasks
8112 E_Name := Prefix (Entry_Name);
8114 else
8115 E_Name := Entry_Name;
8116 end if;
8118 if Is_Entity_Name (E_Name) then
8120 -- Entry call to an entry (or entry family) in the current task. This
8121 -- is legal even though the task will deadlock. Rewrite as call to
8122 -- current task.
8124 -- This can also be a call to an entry in an enclosing task. If this
8125 -- is a single task, we have to retrieve its name, because the scope
8126 -- of the entry is the task type, not the object. If the enclosing
8127 -- task is a task type, the identity of the task is given by its own
8128 -- self variable.
8130 -- Finally this can be a requeue on an entry of the same task or
8131 -- protected object.
8133 S := Scope (Entity (E_Name));
8135 for J in reverse 0 .. Scope_Stack.Last loop
8136 if Is_Task_Type (Scope_Stack.Table (J).Entity)
8137 and then not Comes_From_Source (S)
8138 then
8139 -- S is an enclosing task or protected object. The concurrent
8140 -- declaration has been converted into a type declaration, and
8141 -- the object itself has an object declaration that follows
8142 -- the type in the same declarative part.
8144 Tsk := Next_Entity (S);
8145 while Etype (Tsk) /= S loop
8146 Next_Entity (Tsk);
8147 end loop;
8149 S := Tsk;
8150 exit;
8152 elsif S = Scope_Stack.Table (J).Entity then
8154 -- Call to current task. Will be transformed into call to Self
8156 exit;
8158 end if;
8159 end loop;
8161 New_N :=
8162 Make_Selected_Component (Loc,
8163 Prefix => New_Occurrence_Of (S, Loc),
8164 Selector_Name =>
8165 New_Occurrence_Of (Entity (E_Name), Loc));
8166 Rewrite (E_Name, New_N);
8167 Analyze (E_Name);
8169 elsif Nkind (Entry_Name) = N_Selected_Component
8170 and then Is_Overloaded (Prefix (Entry_Name))
8171 then
8172 -- Use the entry name (which must be unique at this point) to find
8173 -- the prefix that returns the corresponding task/protected type.
8175 declare
8176 Pref : constant Node_Id := Prefix (Entry_Name);
8177 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
8178 I : Interp_Index;
8179 It : Interp;
8181 begin
8182 Get_First_Interp (Pref, I, It);
8183 while Present (It.Typ) loop
8184 if Scope (Ent) = It.Typ then
8185 Set_Etype (Pref, It.Typ);
8186 exit;
8187 end if;
8189 Get_Next_Interp (I, It);
8190 end loop;
8191 end;
8192 end if;
8194 if Nkind (Entry_Name) = N_Selected_Component then
8195 Resolve (Prefix (Entry_Name));
8196 Resolve_Implicit_Dereference (Prefix (Entry_Name));
8198 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8199 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
8200 Resolve (Prefix (Prefix (Entry_Name)));
8201 Resolve_Implicit_Dereference (Prefix (Prefix (Entry_Name)));
8203 -- We do not resolve the prefix because an Entry_Family has no type,
8204 -- although it has the semantics of an array since it can be indexed.
8205 -- In order to perform the associated range check, we would need to
8206 -- build an array type on the fly and set it on the prefix, but this
8207 -- would be wasteful since only the index type matters. Therefore we
8208 -- attach this index type directly, so that Actual_Index_Expression
8209 -- can pick it up later in order to generate the range check.
8211 Set_Etype (Prefix (Entry_Name), Actual_Index_Type (Nam));
8213 Index := First (Expressions (Entry_Name));
8214 Resolve (Index, Entry_Index_Type (Nam));
8216 -- Generate a reference for the index when it denotes an entity
8218 if Is_Entity_Name (Index) then
8219 Generate_Reference (Entity (Index), Nam);
8220 end if;
8222 -- Up to this point the expression could have been the actual in a
8223 -- simple entry call, and be given by a named association.
8225 if Nkind (Index) = N_Parameter_Association then
8226 Error_Msg_N ("expect expression for entry index", Index);
8227 else
8228 Apply_Scalar_Range_Check (Index, Etype (Prefix (Entry_Name)));
8229 end if;
8230 end if;
8231 end Resolve_Entry;
8233 ------------------------
8234 -- Resolve_Entry_Call --
8235 ------------------------
8237 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
8238 Entry_Name : constant Node_Id := Name (N);
8239 Loc : constant Source_Ptr := Sloc (Entry_Name);
8241 Nam : Entity_Id;
8242 Norm_OK : Boolean;
8243 Obj : Node_Id;
8244 Was_Over : Boolean;
8246 begin
8247 -- We kill all checks here, because it does not seem worth the effort to
8248 -- do anything better, an entry call is a big operation.
8250 Kill_All_Checks;
8252 -- Processing of the name is similar for entry calls and protected
8253 -- operation calls. Once the entity is determined, we can complete
8254 -- the resolution of the actuals.
8256 -- The selector may be overloaded, in the case of a protected object
8257 -- with overloaded functions. The type of the context is used for
8258 -- resolution.
8260 if Nkind (Entry_Name) = N_Selected_Component
8261 and then Is_Overloaded (Selector_Name (Entry_Name))
8262 and then Typ /= Standard_Void_Type
8263 then
8264 declare
8265 I : Interp_Index;
8266 It : Interp;
8268 begin
8269 Get_First_Interp (Selector_Name (Entry_Name), I, It);
8270 while Present (It.Typ) loop
8271 if Covers (Typ, It.Typ) then
8272 Set_Entity (Selector_Name (Entry_Name), It.Nam);
8273 Set_Etype (Entry_Name, It.Typ);
8275 Generate_Reference (It.Typ, N, ' ');
8276 end if;
8278 Get_Next_Interp (I, It);
8279 end loop;
8280 end;
8281 end if;
8283 Resolve_Entry (Entry_Name);
8285 if Nkind (Entry_Name) = N_Selected_Component then
8287 -- Simple entry or protected operation call
8289 Nam := Entity (Selector_Name (Entry_Name));
8290 Obj := Prefix (Entry_Name);
8292 if Is_Subprogram (Nam) then
8293 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
8294 end if;
8296 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
8298 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8300 -- Call to member of entry family
8302 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
8303 Obj := Prefix (Prefix (Entry_Name));
8304 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
8305 end if;
8307 -- We cannot in general check the maximum depth of protected entry calls
8308 -- at compile time. But we can tell that any protected entry call at all
8309 -- violates a specified nesting depth of zero.
8311 if Is_Protected_Type (Scope (Nam)) then
8312 Check_Restriction (Max_Entry_Queue_Length, N);
8313 end if;
8315 -- Use context type to disambiguate a protected function that can be
8316 -- called without actuals and that returns an array type, and where the
8317 -- argument list may be an indexing of the returned value.
8319 if Ekind (Nam) = E_Function
8320 and then Needs_No_Actuals (Nam)
8321 and then Present (Parameter_Associations (N))
8322 and then
8323 ((Is_Array_Type (Etype (Nam))
8324 and then Covers (Typ, Component_Type (Etype (Nam))))
8326 or else (Is_Access_Type (Etype (Nam))
8327 and then Is_Array_Type (Designated_Type (Etype (Nam)))
8328 and then
8329 Covers
8330 (Typ,
8331 Component_Type (Designated_Type (Etype (Nam))))))
8332 then
8333 declare
8334 Index_Node : Node_Id;
8336 begin
8337 Index_Node :=
8338 Make_Indexed_Component (Loc,
8339 Prefix =>
8340 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
8341 Expressions => Parameter_Associations (N));
8343 -- Since we are correcting a node classification error made by the
8344 -- parser, we call Replace rather than Rewrite.
8346 Replace (N, Index_Node);
8347 Set_Etype (Prefix (N), Etype (Nam));
8348 Set_Etype (N, Typ);
8349 Resolve_Indexed_Component (N, Typ);
8350 return;
8351 end;
8352 end if;
8354 if Is_Entry (Nam)
8355 and then Present (Contract_Wrapper (Nam))
8356 and then Current_Scope /= Contract_Wrapper (Nam)
8357 then
8358 -- Note the entity being called before rewriting the call, so that
8359 -- it appears used at this point.
8361 Generate_Reference (Nam, Entry_Name, 'r');
8363 -- Rewrite as call to the precondition wrapper, adding the task
8364 -- object to the list of actuals. If the call is to a member of an
8365 -- entry family, include the index as well.
8367 declare
8368 New_Call : Node_Id;
8369 New_Actuals : List_Id;
8371 begin
8372 New_Actuals := New_List (Obj);
8374 if Nkind (Entry_Name) = N_Indexed_Component then
8375 Append_To (New_Actuals,
8376 New_Copy_Tree (First (Expressions (Entry_Name))));
8377 end if;
8379 Append_List (Parameter_Associations (N), New_Actuals);
8380 New_Call :=
8381 Make_Procedure_Call_Statement (Loc,
8382 Name =>
8383 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
8384 Parameter_Associations => New_Actuals);
8385 Rewrite (N, New_Call);
8387 -- Preanalyze and resolve new call. Current procedure is called
8388 -- from Resolve_Call, after which expansion will take place.
8390 Preanalyze_And_Resolve (N);
8391 return;
8392 end;
8393 end if;
8395 -- The operation name may have been overloaded. Order the actuals
8396 -- according to the formals of the resolved entity, and set the return
8397 -- type to that of the operation.
8399 if Was_Over then
8400 Normalize_Actuals (N, Nam, False, Norm_OK);
8401 pragma Assert (Norm_OK);
8402 Set_Etype (N, Etype (Nam));
8404 -- Reset the Is_Overloaded flag, since resolution is now completed
8406 -- Simple entry call
8408 if Nkind (Entry_Name) = N_Selected_Component then
8409 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
8411 -- Call to a member of an entry family
8413 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8414 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
8415 end if;
8416 end if;
8418 Resolve_Actuals (N, Nam);
8419 Check_Internal_Protected_Use (N, Nam);
8421 -- Create a call reference to the entry
8423 Generate_Reference (Nam, Entry_Name, 's');
8425 if Is_Entry (Nam) then
8426 Check_Potentially_Blocking_Operation (N);
8427 end if;
8429 -- Verify that a procedure call cannot masquerade as an entry
8430 -- call where an entry call is expected.
8432 if Ekind (Nam) = E_Procedure then
8433 if Nkind (Parent (N)) = N_Entry_Call_Alternative
8434 and then N = Entry_Call_Statement (Parent (N))
8435 then
8436 Error_Msg_N ("entry call required in select statement", N);
8438 elsif Nkind (Parent (N)) = N_Triggering_Alternative
8439 and then N = Triggering_Statement (Parent (N))
8440 then
8441 Error_Msg_N ("triggering statement cannot be procedure call", N);
8443 elsif Ekind (Scope (Nam)) = E_Task_Type
8444 and then not In_Open_Scopes (Scope (Nam))
8445 then
8446 Error_Msg_N ("task has no entry with this name", Entry_Name);
8447 end if;
8448 end if;
8450 -- After resolution, entry calls and protected procedure calls are
8451 -- changed into entry calls, for expansion. The structure of the node
8452 -- does not change, so it can safely be done in place. Protected
8453 -- function calls must keep their structure because they are
8454 -- subexpressions.
8456 if Ekind (Nam) /= E_Function then
8458 -- A protected operation that is not a function may modify the
8459 -- corresponding object, and cannot apply to a constant. If this
8460 -- is an internal call, the prefix is the type itself.
8462 if Is_Protected_Type (Scope (Nam))
8463 and then not Is_Variable (Obj)
8464 and then (not Is_Entity_Name (Obj)
8465 or else not Is_Type (Entity (Obj)))
8466 then
8467 Error_Msg_N
8468 ("prefix of protected procedure or entry call must be variable",
8469 Entry_Name);
8470 end if;
8472 declare
8473 Entry_Call : Node_Id;
8475 begin
8476 Entry_Call :=
8477 Make_Entry_Call_Statement (Loc,
8478 Name => Entry_Name,
8479 Parameter_Associations => Parameter_Associations (N));
8481 -- Inherit relevant attributes from the original call
8483 Set_First_Named_Actual
8484 (Entry_Call, First_Named_Actual (N));
8486 Set_Is_Elaboration_Checks_OK_Node
8487 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
8489 Set_Is_Elaboration_Warnings_OK_Node
8490 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
8492 Set_Is_SPARK_Mode_On_Node
8493 (Entry_Call, Is_SPARK_Mode_On_Node (N));
8495 Rewrite (N, Entry_Call);
8496 Set_Analyzed (N, True);
8497 end;
8499 -- Protected functions can return on the secondary stack, in which case
8500 -- we must trigger the transient scope mechanism.
8502 elsif Expander_Active
8503 and then Requires_Transient_Scope (Etype (Nam))
8504 then
8505 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
8506 end if;
8508 -- Now we know that this is not a call to a function that returns an
8509 -- array type; moreover, we know the name of the called entry. Detect
8510 -- overlapping actuals, just like for a subprogram call.
8512 Warn_On_Overlapping_Actuals (Nam, N);
8514 end Resolve_Entry_Call;
8516 -------------------------
8517 -- Resolve_Equality_Op --
8518 -------------------------
8520 -- Both arguments must have the same type, and the boolean context does
8521 -- not participate in the resolution. The first pass verifies that the
8522 -- interpretation is not ambiguous, and the type of the left argument is
8523 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
8524 -- are strings or aggregates, allocators, or Null, they are ambiguous even
8525 -- though they carry a single (universal) type. Diagnose this case here.
8527 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
8528 L : constant Node_Id := Left_Opnd (N);
8529 R : constant Node_Id := Right_Opnd (N);
8530 T : Entity_Id := Find_Unique_Type (L, R);
8532 procedure Check_If_Expression (Cond : Node_Id);
8533 -- The resolution rule for if expressions requires that each such must
8534 -- have a unique type. This means that if several dependent expressions
8535 -- are of a non-null anonymous access type, and the context does not
8536 -- impose an expected type (as can be the case in an equality operation)
8537 -- the expression must be rejected.
8539 procedure Explain_Redundancy (N : Node_Id);
8540 -- Attempt to explain the nature of a redundant comparison with True. If
8541 -- the expression N is too complex, this routine issues a general error
8542 -- message.
8544 function Find_Unique_Access_Type return Entity_Id;
8545 -- In the case of allocators and access attributes, the context must
8546 -- provide an indication of the specific access type to be used. If
8547 -- one operand is of such a "generic" access type, check whether there
8548 -- is a specific visible access type that has the same designated type.
8549 -- This is semantically dubious, and of no interest to any real code,
8550 -- but c48008a makes it all worthwhile.
8552 function Suspicious_Prio_For_Equality return Boolean;
8553 -- Returns True iff the parent node is a and/or/xor operation that
8554 -- could be the cause of confused priorities. Note that if the not is
8555 -- in parens, then False is returned.
8557 -------------------------
8558 -- Check_If_Expression --
8559 -------------------------
8561 procedure Check_If_Expression (Cond : Node_Id) is
8562 Then_Expr : Node_Id;
8563 Else_Expr : Node_Id;
8565 begin
8566 if Nkind (Cond) = N_If_Expression then
8567 Then_Expr := Next (First (Expressions (Cond)));
8568 Else_Expr := Next (Then_Expr);
8570 if Nkind (Then_Expr) /= N_Null
8571 and then Nkind (Else_Expr) /= N_Null
8572 then
8573 Error_Msg_N ("cannot determine type of if expression", Cond);
8574 end if;
8575 end if;
8576 end Check_If_Expression;
8578 ------------------------
8579 -- Explain_Redundancy --
8580 ------------------------
8582 procedure Explain_Redundancy (N : Node_Id) is
8583 Error : Name_Id;
8584 Val : Node_Id;
8585 Val_Id : Entity_Id;
8587 begin
8588 Val := N;
8590 -- Strip the operand down to an entity
8592 loop
8593 if Nkind (Val) = N_Selected_Component then
8594 Val := Selector_Name (Val);
8595 else
8596 exit;
8597 end if;
8598 end loop;
8600 -- The construct denotes an entity
8602 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
8603 Val_Id := Entity (Val);
8605 -- Do not generate an error message when the comparison is done
8606 -- against the enumeration literal Standard.True.
8608 if Ekind (Val_Id) /= E_Enumeration_Literal then
8610 -- Build a customized error message
8612 Name_Len := 0;
8613 Add_Str_To_Name_Buffer ("?r?");
8615 if Ekind (Val_Id) = E_Component then
8616 Add_Str_To_Name_Buffer ("component ");
8618 elsif Ekind (Val_Id) = E_Constant then
8619 Add_Str_To_Name_Buffer ("constant ");
8621 elsif Ekind (Val_Id) = E_Discriminant then
8622 Add_Str_To_Name_Buffer ("discriminant ");
8624 elsif Is_Formal (Val_Id) then
8625 Add_Str_To_Name_Buffer ("parameter ");
8627 elsif Ekind (Val_Id) = E_Variable then
8628 Add_Str_To_Name_Buffer ("variable ");
8629 end if;
8631 Add_Str_To_Name_Buffer ("& is always True!");
8632 Error := Name_Find;
8634 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
8635 end if;
8637 -- The construct is too complex to disect, issue a general message
8639 else
8640 Error_Msg_N ("?r?expression is always True!", Val);
8641 end if;
8642 end Explain_Redundancy;
8644 -----------------------------
8645 -- Find_Unique_Access_Type --
8646 -----------------------------
8648 function Find_Unique_Access_Type return Entity_Id is
8649 Acc : Entity_Id;
8650 E : Entity_Id;
8651 S : Entity_Id;
8653 begin
8654 if Ekind (Etype (R)) in E_Allocator_Type | E_Access_Attribute_Type
8655 then
8656 Acc := Designated_Type (Etype (R));
8658 elsif Ekind (Etype (L)) in E_Allocator_Type | E_Access_Attribute_Type
8659 then
8660 Acc := Designated_Type (Etype (L));
8661 else
8662 return Empty;
8663 end if;
8665 S := Current_Scope;
8666 while S /= Standard_Standard loop
8667 E := First_Entity (S);
8668 while Present (E) loop
8669 if Is_Type (E)
8670 and then Is_Access_Type (E)
8671 and then Ekind (E) /= E_Allocator_Type
8672 and then Designated_Type (E) = Base_Type (Acc)
8673 then
8674 return E;
8675 end if;
8677 Next_Entity (E);
8678 end loop;
8680 S := Scope (S);
8681 end loop;
8683 return Empty;
8684 end Find_Unique_Access_Type;
8686 ----------------------------------
8687 -- Suspicious_Prio_For_Equality --
8688 ----------------------------------
8690 function Suspicious_Prio_For_Equality return Boolean is
8691 Par : constant Node_Id := Parent (N);
8693 begin
8694 -- Check if parent node is one of and/or/xor, not parenthesized
8695 -- explicitly, and its own parent is not of this kind. Otherwise,
8696 -- it's a case of chained Boolean conditions which is likely well
8697 -- parenthesized.
8699 if Nkind (Par) in N_Op_And | N_Op_Or | N_Op_Xor
8700 and then Paren_Count (N) = 0
8701 and then Nkind (Parent (Par)) not in N_Op_And | N_Op_Or | N_Op_Xor
8702 then
8703 declare
8704 Compar : Node_Id :=
8705 (if Left_Opnd (Par) = N then
8706 Right_Opnd (Par)
8707 else
8708 Left_Opnd (Par));
8709 begin
8710 -- Compar may have been rewritten, for example from (a /= b)
8711 -- into not (a = b). Use the Original_Node instead.
8713 Compar := Original_Node (Compar);
8715 -- If the other argument of the and/or/xor is also a
8716 -- comparison, or another and/or/xor then most likely
8717 -- the priorities are correctly set.
8719 return Nkind (Compar) not in N_Op_Boolean;
8720 end;
8722 else
8723 return False;
8724 end if;
8725 end Suspicious_Prio_For_Equality;
8727 -- Start of processing for Resolve_Equality_Op
8729 begin
8730 Set_Etype (N, Base_Type (Typ));
8731 Generate_Reference (T, N, ' ');
8733 if T = Any_Fixed then
8734 T := Unique_Fixed_Point_Type (L);
8735 end if;
8737 if T /= Any_Type then
8738 if T = Any_String or else
8739 T = Any_Composite or else
8740 T = Any_Character
8741 then
8742 if T = Any_Character then
8743 Ambiguous_Character (L);
8744 else
8745 Error_Msg_N ("ambiguous operands for equality", N);
8746 end if;
8748 Set_Etype (N, Any_Type);
8749 return;
8751 elsif T = Any_Access
8752 or else Ekind (T) in E_Allocator_Type | E_Access_Attribute_Type
8753 then
8754 T := Find_Unique_Access_Type;
8756 if No (T) then
8757 Error_Msg_N ("ambiguous operands for equality", N);
8758 Set_Etype (N, Any_Type);
8759 return;
8760 end if;
8762 -- If expressions must have a single type, and if the context does
8763 -- not impose one the dependent expressions cannot be anonymous
8764 -- access types.
8766 -- Why no similar processing for case expressions???
8768 elsif Ada_Version >= Ada_2012
8769 and then Is_Anonymous_Access_Type (Etype (L))
8770 and then Is_Anonymous_Access_Type (Etype (R))
8771 then
8772 Check_If_Expression (L);
8773 Check_If_Expression (R);
8774 end if;
8776 Resolve (L, T);
8777 Resolve (R, T);
8779 -- If the unique type is a class-wide type then it will be expanded
8780 -- into a dispatching call to the predefined primitive. Therefore we
8781 -- check here for potential violation of such restriction.
8783 if Is_Class_Wide_Type (T) then
8784 Check_Restriction (No_Dispatching_Calls, N);
8785 end if;
8787 -- Only warn for redundant equality comparison to True for objects
8788 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8789 -- other expressions, it may be a matter of preference to write
8790 -- "Expr = True" or "Expr".
8792 if Warn_On_Redundant_Constructs
8793 and then Comes_From_Source (N)
8794 and then Comes_From_Source (R)
8795 and then Is_Entity_Name (R)
8796 and then Entity (R) = Standard_True
8797 and then
8798 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8799 or else
8800 Nkind (L) in N_Op)
8801 then
8802 Error_Msg_N -- CODEFIX
8803 ("?r?comparison with True is redundant!", N);
8804 Explain_Redundancy (Original_Node (R));
8805 end if;
8807 -- Warn on a (in)equality between boolean values which is not
8808 -- parenthesized when the parent expression is one of and/or/xor, as
8809 -- this is interpreted as (a = b) op c where most likely a = (b op c)
8810 -- was intended. Do not generate a warning in generic instances, as
8811 -- the problematic expression may be implicitly parenthesized in
8812 -- the generic itself if one of the operators is a generic formal.
8813 -- Also do not generate a warning for generated equality, for
8814 -- example from rewritting a membership test.
8816 if Warn_On_Questionable_Missing_Parens
8817 and then not In_Instance
8818 and then Comes_From_Source (N)
8819 and then Is_Boolean_Type (T)
8820 and then Suspicious_Prio_For_Equality
8821 then
8822 Error_Msg_N ("?q?equality should be parenthesized here!", N);
8823 end if;
8825 -- If the equality is overloaded and the operands have resolved
8826 -- properly, set the proper equality operator on the node. The
8827 -- current setting is the first one found during analysis, which
8828 -- is not necessarily the one to which the node has resolved.
8830 if Is_Overloaded (N) then
8831 declare
8832 I : Interp_Index;
8833 It : Interp;
8835 begin
8836 Get_First_Interp (N, I, It);
8838 -- If the equality is user-defined, the type of the operands
8839 -- matches that of the formals. For a predefined operator,
8840 -- it is the scope that matters, given that the predefined
8841 -- equality has Any_Type formals. In either case the result
8842 -- type (most often Boolean) must match the context. The scope
8843 -- is either that of the type, if there is a generated equality
8844 -- (when there is an equality for the component type), or else
8845 -- Standard otherwise.
8847 while Present (It.Typ) loop
8848 if Etype (It.Nam) = Typ
8849 and then
8850 (Etype (First_Entity (It.Nam)) = Etype (L)
8851 or else Scope (It.Nam) = Standard_Standard
8852 or else Scope (It.Nam) = Scope (T))
8853 then
8854 Set_Entity (N, It.Nam);
8856 Set_Is_Overloaded (N, False);
8857 exit;
8858 end if;
8860 Get_Next_Interp (I, It);
8861 end loop;
8863 -- If expansion is active and this is an inherited operation,
8864 -- replace it with its ancestor. This must not be done during
8865 -- preanalysis because the type may not be frozen yet, as when
8866 -- the context is a precondition or postcondition.
8868 if Present (Alias (Entity (N))) and then Expander_Active then
8869 Set_Entity (N, Alias (Entity (N)));
8870 end if;
8871 end;
8872 end if;
8874 Check_Unset_Reference (L);
8875 Check_Unset_Reference (R);
8876 Generate_Operator_Reference (N, T);
8877 Check_Low_Bound_Tested (N);
8879 -- If this is an inequality, it may be the implicit inequality
8880 -- created for a user-defined operation, in which case the corres-
8881 -- ponding equality operation is not intrinsic, and the operation
8882 -- cannot be constant-folded. Else fold.
8884 if Nkind (N) = N_Op_Eq
8885 or else Comes_From_Source (Entity (N))
8886 or else Ekind (Entity (N)) = E_Operator
8887 or else Is_Intrinsic_Subprogram
8888 (Corresponding_Equality (Entity (N)))
8889 then
8890 Analyze_Dimension (N);
8891 Eval_Relational_Op (N);
8893 elsif Nkind (N) = N_Op_Ne
8894 and then Is_Abstract_Subprogram (Entity (N))
8895 then
8896 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8897 end if;
8899 -- Ada 2005: If one operand is an anonymous access type, convert the
8900 -- other operand to it, to ensure that the underlying types match in
8901 -- the back-end. Same for access_to_subprogram, and the conversion
8902 -- verifies that the types are subtype conformant.
8904 -- We apply the same conversion in the case one of the operands is a
8905 -- private subtype of the type of the other.
8907 -- Why the Expander_Active test here ???
8909 if Expander_Active
8910 and then
8911 (Ekind (T) in E_Anonymous_Access_Type
8912 | E_Anonymous_Access_Subprogram_Type
8913 or else Is_Private_Type (T))
8914 then
8915 if Etype (L) /= T then
8916 Rewrite (L, Unchecked_Convert_To (T, L));
8917 Analyze_And_Resolve (L, T);
8918 end if;
8920 if (Etype (R)) /= T then
8921 Rewrite (R, Unchecked_Convert_To (Etype (L), R));
8922 Analyze_And_Resolve (R, T);
8923 end if;
8924 end if;
8925 end if;
8926 end Resolve_Equality_Op;
8928 ----------------------------------
8929 -- Resolve_Explicit_Dereference --
8930 ----------------------------------
8932 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8933 Loc : constant Source_Ptr := Sloc (N);
8934 New_N : Node_Id;
8935 P : constant Node_Id := Prefix (N);
8937 P_Typ : Entity_Id;
8938 -- The candidate prefix type, if overloaded
8940 I : Interp_Index;
8941 It : Interp;
8943 begin
8944 Check_Fully_Declared_Prefix (Typ, P);
8945 P_Typ := Empty;
8947 -- A useful optimization: check whether the dereference denotes an
8948 -- element of a container, and if so rewrite it as a call to the
8949 -- corresponding Element function.
8951 -- Disabled for now, on advice of ARG. A more restricted form of the
8952 -- predicate might be acceptable ???
8954 -- if Is_Container_Element (N) then
8955 -- return;
8956 -- end if;
8958 if Is_Overloaded (P) then
8960 -- Use the context type to select the prefix that has the correct
8961 -- designated type. Keep the first match, which will be the inner-
8962 -- most.
8964 Get_First_Interp (P, I, It);
8966 while Present (It.Typ) loop
8967 if Is_Access_Type (It.Typ)
8968 and then Covers (Typ, Designated_Type (It.Typ))
8969 then
8970 if No (P_Typ) then
8971 P_Typ := It.Typ;
8972 end if;
8974 -- Remove access types that do not match, but preserve access
8975 -- to subprogram interpretations, in case a further dereference
8976 -- is needed (see below).
8978 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8979 Remove_Interp (I);
8980 end if;
8982 Get_Next_Interp (I, It);
8983 end loop;
8985 if Present (P_Typ) then
8986 Resolve (P, P_Typ);
8987 Set_Etype (N, Designated_Type (P_Typ));
8989 else
8990 -- If no interpretation covers the designated type of the prefix,
8991 -- this is the pathological case where not all implementations of
8992 -- the prefix allow the interpretation of the node as a call. Now
8993 -- that the expected type is known, Remove other interpretations
8994 -- from prefix, rewrite it as a call, and resolve again, so that
8995 -- the proper call node is generated.
8997 Get_First_Interp (P, I, It);
8998 while Present (It.Typ) loop
8999 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
9000 Remove_Interp (I);
9001 end if;
9003 Get_Next_Interp (I, It);
9004 end loop;
9006 New_N :=
9007 Make_Function_Call (Loc,
9008 Name =>
9009 Make_Explicit_Dereference (Loc,
9010 Prefix => P),
9011 Parameter_Associations => New_List);
9013 Save_Interps (N, New_N);
9014 Rewrite (N, New_N);
9015 Analyze_And_Resolve (N, Typ);
9016 return;
9017 end if;
9019 -- If not overloaded, resolve P with its own type
9021 else
9022 Resolve (P);
9023 end if;
9025 -- If the prefix might be null, add an access check
9027 if Is_Access_Type (Etype (P))
9028 and then not Can_Never_Be_Null (Etype (P))
9029 then
9030 Apply_Access_Check (N);
9031 end if;
9033 -- If the designated type is a packed unconstrained array type, and the
9034 -- explicit dereference is not in the context of an attribute reference,
9035 -- then we must compute and set the actual subtype, since it is needed
9036 -- by Gigi. The reason we exclude the attribute case is that this is
9037 -- handled fine by Gigi, and in fact we use such attributes to build the
9038 -- actual subtype. We also exclude generated code (which builds actual
9039 -- subtypes directly if they are needed).
9041 if Is_Packed_Array (Etype (N))
9042 and then not Is_Constrained (Etype (N))
9043 and then Nkind (Parent (N)) /= N_Attribute_Reference
9044 and then Comes_From_Source (N)
9045 then
9046 Set_Etype (N, Get_Actual_Subtype (N));
9047 end if;
9049 Analyze_Dimension (N);
9051 -- Note: No Eval processing is required for an explicit dereference,
9052 -- because such a name can never be static.
9054 end Resolve_Explicit_Dereference;
9056 -------------------------------------
9057 -- Resolve_Expression_With_Actions --
9058 -------------------------------------
9060 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
9062 function OK_For_Static (Act : Node_Id) return Boolean;
9063 -- True if Act is an action of a declare_expression that is allowed in a
9064 -- static declare_expression.
9066 function All_OK_For_Static return Boolean;
9067 -- True if all actions of N are allowed in a static declare_expression.
9069 function Get_Literal (Expr : Node_Id) return Node_Id;
9070 -- Expr is an expression with compile-time-known value. This returns the
9071 -- literal node that reprsents that value.
9073 function OK_For_Static (Act : Node_Id) return Boolean is
9074 begin
9075 case Nkind (Act) is
9076 when N_Object_Declaration =>
9077 if Constant_Present (Act)
9078 and then Is_Static_Expression (Expression (Act))
9079 then
9080 return True;
9081 end if;
9083 when N_Object_Renaming_Declaration =>
9084 if Statically_Names_Object (Name (Act)) then
9085 return True;
9086 end if;
9088 when others =>
9089 -- No other declarations, nor even pragmas, are allowed in a
9090 -- declare expression, so if we see something else, it must be
9091 -- an internally generated expression_with_actions.
9092 null;
9093 end case;
9095 return False;
9096 end OK_For_Static;
9098 function All_OK_For_Static return Boolean is
9099 Act : Node_Id := First (Actions (N));
9100 begin
9101 while Present (Act) loop
9102 if not OK_For_Static (Act) then
9103 return False;
9104 end if;
9106 Next (Act);
9107 end loop;
9109 return True;
9110 end All_OK_For_Static;
9112 function Get_Literal (Expr : Node_Id) return Node_Id is
9113 pragma Assert (Compile_Time_Known_Value (Expr));
9114 Result : Node_Id;
9115 begin
9116 case Nkind (Expr) is
9117 when N_Has_Entity =>
9118 if Ekind (Entity (Expr)) = E_Enumeration_Literal then
9119 Result := Expr;
9120 else
9121 Result := Constant_Value (Entity (Expr));
9122 end if;
9123 when N_Numeric_Or_String_Literal =>
9124 Result := Expr;
9125 when others =>
9126 raise Program_Error;
9127 end case;
9129 pragma Assert
9130 (Nkind (Result) in N_Numeric_Or_String_Literal
9131 or else Ekind (Entity (Result)) = E_Enumeration_Literal);
9132 return Result;
9133 end Get_Literal;
9135 Loc : constant Source_Ptr := Sloc (N);
9137 begin
9138 Set_Etype (N, Typ);
9140 if Is_Empty_List (Actions (N)) then
9141 pragma Assert (All_OK_For_Static); null;
9142 end if;
9144 -- If the value of the expression is known at compile time, and all
9145 -- of the actions (if any) are suitable, then replace the declare
9146 -- expression with its expression. This allows the declare expression
9147 -- as a whole to be static if appropriate. See AI12-0368.
9149 if Compile_Time_Known_Value (Expression (N)) then
9150 if Is_Empty_List (Actions (N)) then
9151 Rewrite (N, Expression (N));
9152 elsif All_OK_For_Static then
9153 Rewrite
9154 (N, New_Copy_Tree
9155 (Get_Literal (Expression (N)), New_Sloc => Loc));
9156 end if;
9157 end if;
9158 end Resolve_Expression_With_Actions;
9160 ----------------------------------
9161 -- Resolve_Generalized_Indexing --
9162 ----------------------------------
9164 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
9165 Indexing : constant Node_Id := Generalized_Indexing (N);
9166 begin
9167 Rewrite (N, Indexing);
9168 Resolve (N, Typ);
9169 end Resolve_Generalized_Indexing;
9171 ---------------------------
9172 -- Resolve_If_Expression --
9173 ---------------------------
9175 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
9176 procedure Apply_Check (Expr : Node_Id);
9177 -- When a dependent expression is of a subtype different from
9178 -- the context subtype, then insert a qualification to ensure
9179 -- the generation of a constraint check. This was previously
9180 -- for scalar types. For array types apply a length check, given
9181 -- that the context in general allows sliding, while a qualified
9182 -- expression forces equality of bounds.
9184 Result_Type : Entity_Id := Typ;
9185 -- So in most cases the type of the If_Expression and of its
9186 -- dependent expressions is that of the context. However, if
9187 -- the expression is the index of an Indexed_Component, we must
9188 -- ensure that a proper index check is applied, rather than a
9189 -- range check on the index type (which might be discriminant
9190 -- dependent). In this case we resolve with the base type of the
9191 -- index type, and the index check is generated in the resolution
9192 -- of the indexed_component above.
9194 -----------------
9195 -- Apply_Check --
9196 -----------------
9198 procedure Apply_Check (Expr : Node_Id) is
9199 Expr_Typ : constant Entity_Id := Etype (Expr);
9200 Loc : constant Source_Ptr := Sloc (Expr);
9202 begin
9203 if Expr_Typ = Typ
9204 or else Is_Tagged_Type (Typ)
9205 or else Is_Access_Type (Typ)
9206 or else not Is_Constrained (Typ)
9207 or else Inside_A_Generic
9208 then
9209 null;
9211 elsif Is_Array_Type (Typ) then
9212 Apply_Length_Check (Expr, Typ);
9214 else
9215 Rewrite (Expr,
9216 Make_Qualified_Expression (Loc,
9217 Subtype_Mark => New_Occurrence_Of (Result_Type, Loc),
9218 Expression => Relocate_Node (Expr)));
9220 Analyze_And_Resolve (Expr, Result_Type);
9221 end if;
9222 end Apply_Check;
9224 -- Local variables
9226 Condition : constant Node_Id := First (Expressions (N));
9227 Else_Expr : Node_Id;
9228 Then_Expr : Node_Id;
9230 -- Start of processing for Resolve_If_Expression
9232 begin
9233 -- Defend against malformed expressions
9235 if No (Condition) then
9236 return;
9237 end if;
9239 if Present (Parent (N))
9240 and then (Nkind (Parent (N)) = N_Indexed_Component
9241 or else Nkind (Parent (Parent (N))) = N_Indexed_Component)
9242 then
9243 Result_Type := Base_Type (Typ);
9244 end if;
9246 Then_Expr := Next (Condition);
9248 if No (Then_Expr) then
9249 return;
9250 end if;
9252 Else_Expr := Next (Then_Expr);
9254 Resolve (Condition, Any_Boolean);
9255 Resolve (Then_Expr, Result_Type);
9256 Apply_Check (Then_Expr);
9258 -- If ELSE expression present, just resolve using the determined type
9259 -- If type is universal, resolve to any member of the class.
9261 if Present (Else_Expr) then
9262 if Typ = Universal_Integer then
9263 Resolve (Else_Expr, Any_Integer);
9265 elsif Typ = Universal_Real then
9266 Resolve (Else_Expr, Any_Real);
9268 else
9269 Resolve (Else_Expr, Result_Type);
9270 end if;
9272 Apply_Check (Else_Expr);
9274 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
9275 -- dynamically tagged must be known statically.
9277 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
9278 if Is_Dynamically_Tagged (Then_Expr) /=
9279 Is_Dynamically_Tagged (Else_Expr)
9280 then
9281 Error_Msg_N ("all or none of the dependent expressions "
9282 & "can be dynamically tagged", N);
9283 end if;
9284 end if;
9286 -- If no ELSE expression is present, root type must be Standard.Boolean
9287 -- and we provide a Standard.True result converted to the appropriate
9288 -- Boolean type (in case it is a derived boolean type).
9290 elsif Root_Type (Typ) = Standard_Boolean then
9291 Else_Expr :=
9292 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
9293 Analyze_And_Resolve (Else_Expr, Result_Type);
9294 Append_To (Expressions (N), Else_Expr);
9296 else
9297 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
9298 Append_To (Expressions (N), Error);
9299 end if;
9301 Set_Etype (N, Result_Type);
9303 if not Error_Posted (N) then
9304 Eval_If_Expression (N);
9305 end if;
9307 Analyze_Dimension (N);
9308 end Resolve_If_Expression;
9310 ----------------------------------
9311 -- Resolve_Implicit_Dereference --
9312 ----------------------------------
9314 procedure Resolve_Implicit_Dereference (P : Node_Id) is
9315 Desig_Typ : Entity_Id;
9317 begin
9318 -- In an instance the proper view may not always be correct for
9319 -- private types, see e.g. Sem_Type.Covers for similar handling.
9321 if Is_Private_Type (Etype (P))
9322 and then Present (Full_View (Etype (P)))
9323 and then Is_Access_Type (Full_View (Etype (P)))
9324 and then In_Instance
9325 then
9326 Set_Etype (P, Full_View (Etype (P)));
9327 end if;
9329 if Is_Access_Type (Etype (P)) then
9330 Desig_Typ := Implicitly_Designated_Type (Etype (P));
9331 Insert_Explicit_Dereference (P);
9332 Analyze_And_Resolve (P, Desig_Typ);
9333 end if;
9334 end Resolve_Implicit_Dereference;
9336 -------------------------------
9337 -- Resolve_Indexed_Component --
9338 -------------------------------
9340 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
9341 Pref : constant Node_Id := Prefix (N);
9342 Expr : Node_Id;
9343 Array_Type : Entity_Id := Empty; -- to prevent junk warning
9344 Index : Node_Id;
9346 begin
9347 if Present (Generalized_Indexing (N)) then
9348 Resolve_Generalized_Indexing (N, Typ);
9349 return;
9350 end if;
9352 if Is_Overloaded (Pref) then
9354 -- Use the context type to select the prefix that yields the correct
9355 -- component type.
9357 declare
9358 I : Interp_Index;
9359 It : Interp;
9360 I1 : Interp_Index := 0;
9361 Found : Boolean := False;
9363 begin
9364 Get_First_Interp (Pref, I, It);
9365 while Present (It.Typ) loop
9366 if (Is_Array_Type (It.Typ)
9367 and then Covers (Typ, Component_Type (It.Typ)))
9368 or else (Is_Access_Type (It.Typ)
9369 and then Is_Array_Type (Designated_Type (It.Typ))
9370 and then
9371 Covers
9372 (Typ,
9373 Component_Type (Designated_Type (It.Typ))))
9374 then
9375 if Found then
9376 It := Disambiguate (Pref, I1, I, Any_Type);
9378 if It = No_Interp then
9379 Error_Msg_N ("ambiguous prefix for indexing", N);
9380 Set_Etype (N, Typ);
9381 return;
9383 else
9384 Found := True;
9385 Array_Type := It.Typ;
9386 I1 := I;
9387 end if;
9389 else
9390 Found := True;
9391 Array_Type := It.Typ;
9392 I1 := I;
9393 end if;
9394 end if;
9396 Get_Next_Interp (I, It);
9397 end loop;
9398 end;
9400 else
9401 Array_Type := Etype (Pref);
9402 end if;
9404 Resolve (Pref, Array_Type);
9405 Array_Type := Get_Actual_Subtype_If_Available (Pref);
9407 -- If the prefix's type is an access type, get to the real array type.
9408 -- Note: we do not apply an access check because an explicit dereference
9409 -- will be introduced later, and the check will happen there.
9411 if Is_Access_Type (Array_Type) then
9412 Array_Type := Implicitly_Designated_Type (Array_Type);
9413 end if;
9415 -- If name was overloaded, set component type correctly now.
9416 -- If a misplaced call to an entry family (which has no index types)
9417 -- return. Error will be diagnosed from calling context.
9419 if Is_Array_Type (Array_Type) then
9420 Set_Etype (N, Component_Type (Array_Type));
9421 else
9422 return;
9423 end if;
9425 Index := First_Index (Array_Type);
9426 Expr := First (Expressions (N));
9428 -- The prefix may have resolved to a string literal, in which case its
9429 -- etype has a special representation. This is only possible currently
9430 -- if the prefix is a static concatenation, written in functional
9431 -- notation.
9433 if Ekind (Array_Type) = E_String_Literal_Subtype then
9434 Resolve (Expr, Standard_Positive);
9436 else
9437 while Present (Index) and then Present (Expr) loop
9438 Resolve (Expr, Etype (Index));
9439 Check_Unset_Reference (Expr);
9441 Apply_Scalar_Range_Check (Expr, Etype (Index));
9443 Next_Index (Index);
9444 Next (Expr);
9445 end loop;
9446 end if;
9448 Resolve_Implicit_Dereference (Pref);
9449 Analyze_Dimension (N);
9451 -- Do not generate the warning on suspicious index if we are analyzing
9452 -- package Ada.Tags; otherwise we will report the warning with the
9453 -- Prims_Ptr field of the dispatch table.
9455 if Scope (Etype (Pref)) = Standard_Standard
9456 or else not
9457 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Pref))), Ada_Tags)
9458 then
9459 Warn_On_Suspicious_Index (Pref, First (Expressions (N)));
9460 Eval_Indexed_Component (N);
9461 end if;
9463 -- If the array type is atomic and the component is not, then this is
9464 -- worth a warning before Ada 2022, since we have a situation where the
9465 -- access to the component may cause extra read/writes of the atomic
9466 -- object, or partial word accesses, both of which may be unexpected.
9468 if Nkind (N) = N_Indexed_Component
9469 and then Is_Atomic_Ref_With_Address (N)
9470 and then not (Has_Atomic_Components (Array_Type)
9471 or else (Is_Entity_Name (Pref)
9472 and then Has_Atomic_Components
9473 (Entity (Pref))))
9474 and then not Is_Atomic (Component_Type (Array_Type))
9475 and then Ada_Version < Ada_2022
9476 then
9477 Error_Msg_N
9478 ("??access to non-atomic component of atomic array", Pref);
9479 Error_Msg_N
9480 ("??\may cause unexpected accesses to atomic object", Pref);
9481 end if;
9482 end Resolve_Indexed_Component;
9484 -----------------------------
9485 -- Resolve_Integer_Literal --
9486 -----------------------------
9488 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
9489 begin
9490 Set_Etype (N, Typ);
9491 Eval_Integer_Literal (N);
9492 end Resolve_Integer_Literal;
9494 --------------------------------
9495 -- Resolve_Intrinsic_Operator --
9496 --------------------------------
9498 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
9499 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
9500 Op : Entity_Id;
9501 Arg1 : Node_Id;
9502 Arg2 : Node_Id;
9504 function Convert_Operand (Opnd : Node_Id) return Node_Id;
9505 -- If the operand is a literal, it cannot be the expression in a
9506 -- conversion. Use a qualified expression instead.
9508 ---------------------
9509 -- Convert_Operand --
9510 ---------------------
9512 function Convert_Operand (Opnd : Node_Id) return Node_Id is
9513 Loc : constant Source_Ptr := Sloc (Opnd);
9514 Res : Node_Id;
9516 begin
9517 if Nkind (Opnd) in N_Integer_Literal | N_Real_Literal then
9518 Res :=
9519 Make_Qualified_Expression (Loc,
9520 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
9521 Expression => Relocate_Node (Opnd));
9522 Analyze (Res);
9524 else
9525 Res := Unchecked_Convert_To (Btyp, Opnd);
9526 end if;
9528 return Res;
9529 end Convert_Operand;
9531 -- Start of processing for Resolve_Intrinsic_Operator
9533 begin
9534 -- We must preserve the original entity in a generic setting, so that
9535 -- the legality of the operation can be verified in an instance.
9537 if not Expander_Active then
9538 return;
9539 end if;
9541 Op := Entity (N);
9542 while Scope (Op) /= Standard_Standard loop
9543 Op := Homonym (Op);
9544 pragma Assert (Present (Op));
9545 end loop;
9547 Set_Entity (N, Op);
9548 Set_Is_Overloaded (N, False);
9550 -- If the result or operand types are private, rewrite with unchecked
9551 -- conversions on the operands and the result, to expose the proper
9552 -- underlying numeric type.
9554 if Is_Private_Type (Typ)
9555 or else Is_Private_Type (Etype (Left_Opnd (N)))
9556 or else Is_Private_Type (Etype (Right_Opnd (N)))
9557 then
9558 Arg1 := Convert_Operand (Left_Opnd (N));
9560 if Nkind (N) = N_Op_Expon then
9561 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
9562 else
9563 Arg2 := Convert_Operand (Right_Opnd (N));
9564 end if;
9566 if Nkind (Arg1) = N_Type_Conversion then
9567 Save_Interps (Left_Opnd (N), Expression (Arg1));
9568 end if;
9570 if Nkind (Arg2) = N_Type_Conversion then
9571 Save_Interps (Right_Opnd (N), Expression (Arg2));
9572 end if;
9574 Set_Left_Opnd (N, Arg1);
9575 Set_Right_Opnd (N, Arg2);
9577 Set_Etype (N, Btyp);
9578 Rewrite (N, Unchecked_Convert_To (Typ, N));
9579 Resolve (N, Typ);
9581 elsif Typ /= Etype (Left_Opnd (N))
9582 or else Typ /= Etype (Right_Opnd (N))
9583 then
9584 -- Add explicit conversion where needed, and save interpretations in
9585 -- case operands are overloaded.
9587 Arg1 := Convert_To (Typ, Left_Opnd (N));
9588 Arg2 := Convert_To (Typ, Right_Opnd (N));
9590 if Nkind (Arg1) = N_Type_Conversion then
9591 Save_Interps (Left_Opnd (N), Expression (Arg1));
9592 else
9593 Save_Interps (Left_Opnd (N), Arg1);
9594 end if;
9596 if Nkind (Arg2) = N_Type_Conversion then
9597 Save_Interps (Right_Opnd (N), Expression (Arg2));
9598 else
9599 Save_Interps (Right_Opnd (N), Arg2);
9600 end if;
9602 Rewrite (Left_Opnd (N), Arg1);
9603 Rewrite (Right_Opnd (N), Arg2);
9604 Analyze (Arg1);
9605 Analyze (Arg2);
9606 Resolve_Arithmetic_Op (N, Typ);
9608 else
9609 Resolve_Arithmetic_Op (N, Typ);
9610 end if;
9611 end Resolve_Intrinsic_Operator;
9613 --------------------------------------
9614 -- Resolve_Intrinsic_Unary_Operator --
9615 --------------------------------------
9617 procedure Resolve_Intrinsic_Unary_Operator
9618 (N : Node_Id;
9619 Typ : Entity_Id)
9621 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
9622 Op : Entity_Id;
9623 Arg2 : Node_Id;
9625 begin
9626 Op := Entity (N);
9627 while Scope (Op) /= Standard_Standard loop
9628 Op := Homonym (Op);
9629 pragma Assert (Present (Op));
9630 end loop;
9632 Set_Entity (N, Op);
9634 if Is_Private_Type (Typ) then
9635 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
9636 Save_Interps (Right_Opnd (N), Expression (Arg2));
9638 Set_Right_Opnd (N, Arg2);
9640 Set_Etype (N, Btyp);
9641 Rewrite (N, Unchecked_Convert_To (Typ, N));
9642 Resolve (N, Typ);
9644 else
9645 Resolve_Unary_Op (N, Typ);
9646 end if;
9647 end Resolve_Intrinsic_Unary_Operator;
9649 ------------------------
9650 -- Resolve_Logical_Op --
9651 ------------------------
9653 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
9654 B_Typ : Entity_Id;
9656 begin
9657 Check_No_Direct_Boolean_Operators (N);
9659 -- Predefined operations on scalar types yield the base type. On the
9660 -- other hand, logical operations on arrays yield the type of the
9661 -- arguments (and the context).
9663 if Is_Array_Type (Typ) then
9664 B_Typ := Typ;
9665 else
9666 B_Typ := Base_Type (Typ);
9667 end if;
9669 -- The following test is required because the operands of the operation
9670 -- may be literals, in which case the resulting type appears to be
9671 -- compatible with a signed integer type, when in fact it is compatible
9672 -- only with modular types. If the context itself is universal, the
9673 -- operation is illegal.
9675 if not Valid_Boolean_Arg (Typ) then
9676 Error_Msg_N ("invalid context for logical operation", N);
9677 Set_Etype (N, Any_Type);
9678 return;
9680 elsif Typ = Any_Modular then
9681 Error_Msg_N
9682 ("no modular type available in this context", N);
9683 Set_Etype (N, Any_Type);
9684 return;
9686 elsif Is_Modular_Integer_Type (Typ)
9687 and then Etype (Left_Opnd (N)) = Universal_Integer
9688 and then Etype (Right_Opnd (N)) = Universal_Integer
9689 then
9690 Check_For_Visible_Operator (N, B_Typ);
9691 end if;
9693 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
9694 -- is active and the result type is standard Boolean (do not mess with
9695 -- ops that return a nonstandard Boolean type, because something strange
9696 -- is going on).
9698 -- Note: you might expect this replacement to be done during expansion,
9699 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
9700 -- is used, no part of the right operand of an "and" or "or" operator
9701 -- should be executed if the left operand would short-circuit the
9702 -- evaluation of the corresponding "and then" or "or else". If we left
9703 -- the replacement to expansion time, then run-time checks associated
9704 -- with such operands would be evaluated unconditionally, due to being
9705 -- before the condition prior to the rewriting as short-circuit forms
9706 -- during expansion.
9708 if Short_Circuit_And_Or
9709 and then B_Typ = Standard_Boolean
9710 and then Nkind (N) in N_Op_And | N_Op_Or
9711 then
9712 -- Mark the corresponding putative SCO operator as truly a logical
9713 -- (and short-circuit) operator.
9715 if Generate_SCO and then Comes_From_Source (N) then
9716 Set_SCO_Logical_Operator (N);
9717 end if;
9719 if Nkind (N) = N_Op_And then
9720 Rewrite (N,
9721 Make_And_Then (Sloc (N),
9722 Left_Opnd => Relocate_Node (Left_Opnd (N)),
9723 Right_Opnd => Relocate_Node (Right_Opnd (N))));
9724 Analyze_And_Resolve (N, B_Typ);
9726 -- Case of OR changed to OR ELSE
9728 else
9729 Rewrite (N,
9730 Make_Or_Else (Sloc (N),
9731 Left_Opnd => Relocate_Node (Left_Opnd (N)),
9732 Right_Opnd => Relocate_Node (Right_Opnd (N))));
9733 Analyze_And_Resolve (N, B_Typ);
9734 end if;
9736 -- Return now, since analysis of the rewritten ops will take care of
9737 -- other reference bookkeeping and expression folding.
9739 return;
9740 end if;
9742 Resolve (Left_Opnd (N), B_Typ);
9743 Resolve (Right_Opnd (N), B_Typ);
9745 Check_Unset_Reference (Left_Opnd (N));
9746 Check_Unset_Reference (Right_Opnd (N));
9748 Set_Etype (N, B_Typ);
9749 Generate_Operator_Reference (N, B_Typ);
9750 Eval_Logical_Op (N);
9751 end Resolve_Logical_Op;
9753 ---------------------------
9754 -- Resolve_Membership_Op --
9755 ---------------------------
9757 -- The context can only be a boolean type, and does not determine the
9758 -- arguments. Arguments should be unambiguous, but the preference rule for
9759 -- universal types applies.
9761 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
9762 pragma Assert (Is_Boolean_Type (Typ));
9764 L : constant Node_Id := Left_Opnd (N);
9765 R : constant Node_Id := Right_Opnd (N);
9766 T : Entity_Id;
9768 procedure Resolve_Set_Membership;
9769 -- Analysis has determined a unique type for the left operand. Use it as
9770 -- the basis to resolve the disjuncts.
9772 ----------------------------
9773 -- Resolve_Set_Membership --
9774 ----------------------------
9776 procedure Resolve_Set_Membership is
9777 Alt : Node_Id;
9779 begin
9780 -- If the left operand is overloaded, find type compatible with not
9781 -- overloaded alternative of the right operand.
9783 Alt := First (Alternatives (N));
9784 if Is_Overloaded (L) then
9785 T := Empty;
9786 while Present (Alt) loop
9787 if not Is_Overloaded (Alt) then
9788 T := Intersect_Types (L, Alt);
9789 exit;
9790 else
9791 Next (Alt);
9792 end if;
9793 end loop;
9795 -- Unclear how to resolve expression if all alternatives are also
9796 -- overloaded.
9798 if No (T) then
9799 Error_Msg_N ("ambiguous expression", N);
9800 end if;
9802 else
9803 T := Intersect_Types (L, Alt);
9804 end if;
9806 Resolve (L, T);
9808 Alt := First (Alternatives (N));
9809 while Present (Alt) loop
9811 -- Alternative is an expression, a range
9812 -- or a subtype mark.
9814 if not Is_Entity_Name (Alt)
9815 or else not Is_Type (Entity (Alt))
9816 then
9817 Resolve (Alt, T);
9818 end if;
9820 Next (Alt);
9821 end loop;
9823 -- Check for duplicates for discrete case
9825 if Is_Discrete_Type (T) then
9826 declare
9827 type Ent is record
9828 Alt : Node_Id;
9829 Val : Uint;
9830 end record;
9832 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9833 Nalts : Nat;
9835 begin
9836 -- Loop checking duplicates. This is quadratic, but giant sets
9837 -- are unlikely in this context so it's a reasonable choice.
9839 Nalts := 0;
9840 Alt := First (Alternatives (N));
9841 while Present (Alt) loop
9842 if Is_OK_Static_Expression (Alt)
9843 and then Nkind (Alt) in N_Integer_Literal
9844 | N_Character_Literal
9845 | N_Has_Entity
9846 then
9847 Nalts := Nalts + 1;
9848 Alts (Nalts) := (Alt, Expr_Value (Alt));
9850 for J in 1 .. Nalts - 1 loop
9851 if Alts (J).Val = Alts (Nalts).Val then
9852 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9853 Error_Msg_N ("duplicate of value given#??", Alt);
9854 end if;
9855 end loop;
9856 end if;
9858 Next (Alt);
9859 end loop;
9860 end;
9861 end if;
9863 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9864 -- limited types, evaluation of a membership test uses the predefined
9865 -- equality for the type. This may be confusing to users, and the
9866 -- following warning appears useful for the most common case.
9868 if Is_Scalar_Type (Etype (L))
9869 and then Present (Get_User_Defined_Eq (Etype (L)))
9870 then
9871 Error_Msg_NE
9872 ("membership test on& uses predefined equality?", N, Etype (L));
9873 Error_Msg_N
9874 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9875 end if;
9876 end Resolve_Set_Membership;
9878 -- Start of processing for Resolve_Membership_Op
9880 begin
9881 if L = Error or else R = Error then
9882 return;
9883 end if;
9885 if Present (Alternatives (N)) then
9886 Resolve_Set_Membership;
9887 goto SM_Exit;
9889 elsif not Is_Overloaded (R)
9890 and then Is_Universal_Numeric_Type (Etype (R))
9891 and then Is_Overloaded (L)
9892 then
9893 T := Etype (R);
9895 -- Ada 2005 (AI-251): Support the following case:
9897 -- type I is interface;
9898 -- type T is tagged ...
9900 -- function Test (O : I'Class) is
9901 -- begin
9902 -- return O in T'Class.
9903 -- end Test;
9905 -- In this case we have nothing else to do. The membership test will be
9906 -- done at run time.
9908 elsif Ada_Version >= Ada_2005
9909 and then Is_Class_Wide_Type (Etype (L))
9910 and then Is_Interface (Etype (L))
9911 and then not Is_Interface (Etype (R))
9912 then
9913 return;
9914 else
9915 T := Intersect_Types (L, R);
9916 end if;
9918 -- If mixed-mode operations are present and operands are all literal,
9919 -- the only interpretation involves Duration, which is probably not
9920 -- the intention of the programmer.
9922 if T = Any_Fixed then
9923 T := Unique_Fixed_Point_Type (N);
9925 if T = Any_Type then
9926 return;
9927 end if;
9928 end if;
9930 Resolve (L, T);
9931 Check_Unset_Reference (L);
9933 if Nkind (R) = N_Range
9934 and then not Is_Scalar_Type (T)
9935 then
9936 Error_Msg_N ("scalar type required for range", R);
9937 end if;
9939 if Is_Entity_Name (R) then
9940 Freeze_Expression (R);
9941 else
9942 Resolve (R, T);
9943 Check_Unset_Reference (R);
9944 end if;
9946 -- Here after resolving membership operation
9948 <<SM_Exit>>
9950 Eval_Membership_Op (N);
9951 end Resolve_Membership_Op;
9953 ------------------
9954 -- Resolve_Null --
9955 ------------------
9957 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9958 Loc : constant Source_Ptr := Sloc (N);
9960 begin
9961 -- Handle restriction against anonymous null access values This
9962 -- restriction can be turned off using -gnatdj.
9964 -- Ada 2005 (AI-231): Remove restriction
9966 if Ada_Version < Ada_2005
9967 and then not Debug_Flag_J
9968 and then Ekind (Typ) = E_Anonymous_Access_Type
9969 and then Comes_From_Source (N)
9970 then
9971 -- In the common case of a call which uses an explicitly null value
9972 -- for an access parameter, give specialized error message.
9974 if Nkind (Parent (N)) in N_Subprogram_Call then
9975 Error_Msg_N
9976 ("NULL is not allowed as argument for an access parameter", N);
9978 -- Standard message for all other cases (are there any?)
9980 else
9981 Error_Msg_N
9982 ("NULL cannot be of an anonymous access type", N);
9983 end if;
9984 end if;
9986 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9987 -- assignment to a null-excluding object.
9989 if Ada_Version >= Ada_2005
9990 and then Can_Never_Be_Null (Typ)
9991 and then Nkind (Parent (N)) = N_Assignment_Statement
9992 then
9993 if Inside_Init_Proc then
9995 -- Decide whether to generate an if_statement around our
9996 -- null-excluding check to avoid them on certain internal object
9997 -- declarations by looking at the type the current Init_Proc
9998 -- belongs to.
10000 -- Generate:
10001 -- if T1b_skip_null_excluding_check then
10002 -- [constraint_error "access check failed"]
10003 -- end if;
10005 if Needs_Conditional_Null_Excluding_Check
10006 (Etype (First_Formal (Enclosing_Init_Proc)))
10007 then
10008 Insert_Action (N,
10009 Make_If_Statement (Loc,
10010 Condition =>
10011 Make_Identifier (Loc,
10012 New_External_Name
10013 (Chars (Typ), "_skip_null_excluding_check")),
10014 Then_Statements =>
10015 New_List (
10016 Make_Raise_Constraint_Error (Loc,
10017 Reason => CE_Access_Check_Failed))));
10019 -- Otherwise, simply create the check
10021 else
10022 Insert_Action (N,
10023 Make_Raise_Constraint_Error (Loc,
10024 Reason => CE_Access_Check_Failed));
10025 end if;
10026 else
10027 Insert_Action
10028 (Compile_Time_Constraint_Error (N,
10029 "(Ada 2005) NULL not allowed in null-excluding objects??"),
10030 Make_Raise_Constraint_Error (Loc,
10031 Reason => CE_Access_Check_Failed));
10032 end if;
10033 end if;
10035 -- In a distributed context, null for a remote access to subprogram may
10036 -- need to be replaced with a special record aggregate. In this case,
10037 -- return after having done the transformation.
10039 if (Ekind (Typ) = E_Record_Type
10040 or else Is_Remote_Access_To_Subprogram_Type (Typ))
10041 and then Remote_AST_Null_Value (N, Typ)
10042 then
10043 return;
10044 end if;
10046 -- The null literal takes its type from the context
10048 Set_Etype (N, Typ);
10049 end Resolve_Null;
10051 -----------------------
10052 -- Resolve_Op_Concat --
10053 -----------------------
10055 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
10057 -- We wish to avoid deep recursion, because concatenations are often
10058 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
10059 -- operands nonrecursively until we find something that is not a simple
10060 -- concatenation (A in this case). We resolve that, and then walk back
10061 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
10062 -- to do the rest of the work at each level. The Parent pointers allow
10063 -- us to avoid recursion, and thus avoid running out of memory. See also
10064 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
10066 NN : Node_Id := N;
10067 Op1 : Node_Id;
10069 begin
10070 -- The following code is equivalent to:
10072 -- Resolve_Op_Concat_First (NN, Typ);
10073 -- Resolve_Op_Concat_Arg (N, ...);
10074 -- Resolve_Op_Concat_Rest (N, Typ);
10076 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
10077 -- operand is a concatenation.
10079 -- Walk down left operands
10081 loop
10082 Resolve_Op_Concat_First (NN, Typ);
10083 Op1 := Left_Opnd (NN);
10084 exit when not (Nkind (Op1) = N_Op_Concat
10085 and then not Is_Array_Type (Component_Type (Typ))
10086 and then Entity (Op1) = Entity (NN));
10087 NN := Op1;
10088 end loop;
10090 -- Now (given the above example) NN is A&B and Op1 is A
10092 -- First resolve Op1 ...
10094 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
10096 -- ... then walk NN back up until we reach N (where we started), calling
10097 -- Resolve_Op_Concat_Rest along the way.
10099 loop
10100 Resolve_Op_Concat_Rest (NN, Typ);
10101 exit when NN = N;
10102 NN := Parent (NN);
10103 end loop;
10104 end Resolve_Op_Concat;
10106 ---------------------------
10107 -- Resolve_Op_Concat_Arg --
10108 ---------------------------
10110 procedure Resolve_Op_Concat_Arg
10111 (N : Node_Id;
10112 Arg : Node_Id;
10113 Typ : Entity_Id;
10114 Is_Comp : Boolean)
10116 Btyp : constant Entity_Id := Base_Type (Typ);
10117 Ctyp : constant Entity_Id := Component_Type (Typ);
10119 begin
10120 if In_Instance then
10121 if Is_Comp
10122 or else (not Is_Overloaded (Arg)
10123 and then Etype (Arg) /= Any_Composite
10124 and then Covers (Ctyp, Etype (Arg)))
10125 then
10126 Resolve (Arg, Ctyp);
10127 else
10128 Resolve (Arg, Btyp);
10129 end if;
10131 -- If both Array & Array and Array & Component are visible, there is a
10132 -- potential ambiguity that must be reported.
10134 elsif Has_Compatible_Type (Arg, Ctyp) then
10135 if Nkind (Arg) = N_Aggregate
10136 and then Is_Composite_Type (Ctyp)
10137 then
10138 if Is_Private_Type (Ctyp) then
10139 Resolve (Arg, Btyp);
10141 -- If the operation is user-defined and not overloaded use its
10142 -- profile. The operation may be a renaming, in which case it has
10143 -- been rewritten, and we want the original profile.
10145 elsif not Is_Overloaded (N)
10146 and then Comes_From_Source (Entity (Original_Node (N)))
10147 and then Ekind (Entity (Original_Node (N))) = E_Function
10148 then
10149 Resolve (Arg,
10150 Etype
10151 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
10152 return;
10154 -- Otherwise an aggregate may match both the array type and the
10155 -- component type.
10157 else
10158 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
10159 Set_Etype (Arg, Any_Type);
10160 end if;
10162 else
10163 if Is_Overloaded (Arg)
10164 and then Has_Compatible_Type (Arg, Typ)
10165 and then Etype (Arg) /= Any_Type
10166 then
10167 declare
10168 I : Interp_Index;
10169 It : Interp;
10170 Func : Entity_Id;
10172 begin
10173 Get_First_Interp (Arg, I, It);
10174 Func := It.Nam;
10175 Get_Next_Interp (I, It);
10177 -- Special-case the error message when the overloading is
10178 -- caused by a function that yields an array and can be
10179 -- called without parameters.
10181 if It.Nam = Func then
10182 Error_Msg_Sloc := Sloc (Func);
10183 Error_Msg_N ("ambiguous call to function#", Arg);
10184 Error_Msg_NE
10185 ("\\interpretation as call yields&", Arg, Typ);
10186 Error_Msg_NE
10187 ("\\interpretation as indexing of call yields&",
10188 Arg, Component_Type (Typ));
10190 else
10191 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
10193 Get_First_Interp (Arg, I, It);
10194 while Present (It.Nam) loop
10195 Error_Msg_Sloc := Sloc (It.Nam);
10197 if Base_Type (It.Typ) = Btyp
10198 or else
10199 Base_Type (It.Typ) = Base_Type (Ctyp)
10200 then
10201 Error_Msg_N -- CODEFIX
10202 ("\\possible interpretation#", Arg);
10203 end if;
10205 Get_Next_Interp (I, It);
10206 end loop;
10207 end if;
10208 end;
10209 end if;
10211 Resolve (Arg, Component_Type (Typ));
10213 if Nkind (Arg) = N_String_Literal then
10214 Set_Etype (Arg, Component_Type (Typ));
10215 end if;
10217 if Arg = Left_Opnd (N) then
10218 Set_Is_Component_Left_Opnd (N);
10219 else
10220 Set_Is_Component_Right_Opnd (N);
10221 end if;
10222 end if;
10224 else
10225 Resolve (Arg, Btyp);
10226 end if;
10228 Check_Unset_Reference (Arg);
10229 end Resolve_Op_Concat_Arg;
10231 -----------------------------
10232 -- Resolve_Op_Concat_First --
10233 -----------------------------
10235 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
10236 Btyp : constant Entity_Id := Base_Type (Typ);
10237 Op1 : constant Node_Id := Left_Opnd (N);
10238 Op2 : constant Node_Id := Right_Opnd (N);
10240 begin
10241 -- The parser folds an enormous sequence of concatenations of string
10242 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
10243 -- in the right operand. If the expression resolves to a predefined "&"
10244 -- operator, all is well. Otherwise, the parser's folding is wrong, so
10245 -- we give an error. See P_Simple_Expression in Par.Ch4.
10247 if Nkind (Op2) = N_String_Literal
10248 and then Is_Folded_In_Parser (Op2)
10249 and then Ekind (Entity (N)) = E_Function
10250 then
10251 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
10252 and then String_Length (Strval (Op1)) = 0);
10253 Error_Msg_N ("too many user-defined concatenations", N);
10254 return;
10255 end if;
10257 Set_Etype (N, Btyp);
10259 if Is_Limited_Composite (Btyp) then
10260 Error_Msg_N ("concatenation not available for limited array", N);
10261 Explain_Limited_Type (Btyp, N);
10262 end if;
10263 end Resolve_Op_Concat_First;
10265 ----------------------------
10266 -- Resolve_Op_Concat_Rest --
10267 ----------------------------
10269 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
10270 Op1 : constant Node_Id := Left_Opnd (N);
10271 Op2 : constant Node_Id := Right_Opnd (N);
10273 begin
10274 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
10276 Generate_Operator_Reference (N, Typ);
10278 if Is_String_Type (Typ) then
10279 Eval_Concatenation (N);
10280 end if;
10282 -- If this is not a static concatenation, but the result is a string
10283 -- type (and not an array of strings) ensure that static string operands
10284 -- have their subtypes properly constructed.
10286 if Nkind (N) /= N_String_Literal
10287 and then Is_Character_Type (Component_Type (Typ))
10288 then
10289 Set_String_Literal_Subtype (Op1, Typ);
10290 Set_String_Literal_Subtype (Op2, Typ);
10291 end if;
10292 end Resolve_Op_Concat_Rest;
10294 ----------------------
10295 -- Resolve_Op_Expon --
10296 ----------------------
10298 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
10299 B_Typ : constant Entity_Id := Base_Type (Typ);
10301 begin
10302 -- Catch attempts to do fixed-point exponentiation with universal
10303 -- operands, which is a case where the illegality is not caught during
10304 -- normal operator analysis. This is not done in preanalysis mode
10305 -- since the tree is not fully decorated during preanalysis.
10307 if Full_Analysis then
10308 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
10309 Error_Msg_N ("exponentiation not available for fixed point", N);
10310 return;
10312 elsif Nkind (Parent (N)) in N_Op
10313 and then Present (Etype (Parent (N)))
10314 and then Is_Fixed_Point_Type (Etype (Parent (N)))
10315 and then Etype (N) = Universal_Real
10316 and then Comes_From_Source (N)
10317 then
10318 Error_Msg_N ("exponentiation not available for fixed point", N);
10319 return;
10320 end if;
10321 end if;
10323 if Comes_From_Source (N)
10324 and then Ekind (Entity (N)) = E_Function
10325 and then Is_Imported (Entity (N))
10326 and then Is_Intrinsic_Subprogram (Entity (N))
10327 then
10328 Resolve_Intrinsic_Operator (N, Typ);
10329 return;
10330 end if;
10332 if Is_Universal_Numeric_Type (Etype (Left_Opnd (N))) then
10333 Check_For_Visible_Operator (N, B_Typ);
10334 end if;
10336 -- We do the resolution using the base type, because intermediate values
10337 -- in expressions are always of the base type, not a subtype of it.
10339 Resolve (Left_Opnd (N), B_Typ);
10340 Resolve (Right_Opnd (N), Standard_Integer);
10342 -- For integer types, right argument must be in Natural range
10344 if Is_Integer_Type (Typ) then
10345 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
10346 end if;
10348 Check_Unset_Reference (Left_Opnd (N));
10349 Check_Unset_Reference (Right_Opnd (N));
10351 Set_Etype (N, B_Typ);
10352 Generate_Operator_Reference (N, B_Typ);
10354 Analyze_Dimension (N);
10356 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
10357 -- Evaluate the exponentiation operator for dimensioned type
10359 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
10360 else
10361 Eval_Op_Expon (N);
10362 end if;
10364 -- Set overflow checking bit. Much cleverer code needed here eventually
10365 -- and perhaps the Resolve routines should be separated for the various
10366 -- arithmetic operations, since they will need different processing. ???
10368 if Nkind (N) in N_Op then
10369 if not Overflow_Checks_Suppressed (Etype (N)) then
10370 Enable_Overflow_Check (N);
10371 end if;
10372 end if;
10373 end Resolve_Op_Expon;
10375 --------------------
10376 -- Resolve_Op_Not --
10377 --------------------
10379 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
10380 function Parent_Is_Boolean return Boolean;
10381 -- This function determines if the parent node is a boolean operator or
10382 -- operation (comparison op, membership test, or short circuit form) and
10383 -- the not in question is the left operand of this operation. Note that
10384 -- if the not is in parens, then false is returned.
10386 -----------------------
10387 -- Parent_Is_Boolean --
10388 -----------------------
10390 function Parent_Is_Boolean return Boolean is
10391 begin
10392 return Paren_Count (N) = 0
10393 and then Nkind (Parent (N)) in N_Membership_Test
10394 | N_Op_Boolean
10395 | N_Short_Circuit
10396 and then Left_Opnd (Parent (N)) = N;
10397 end Parent_Is_Boolean;
10399 -- Local variables
10401 B_Typ : Entity_Id;
10403 -- Start of processing for Resolve_Op_Not
10405 begin
10406 -- Predefined operations on scalar types yield the base type. On the
10407 -- other hand, logical operations on arrays yield the type of the
10408 -- arguments (and the context).
10410 if Is_Array_Type (Typ) then
10411 B_Typ := Typ;
10412 else
10413 B_Typ := Base_Type (Typ);
10414 end if;
10416 -- Straightforward case of incorrect arguments
10418 if not Valid_Boolean_Arg (Typ) then
10419 Error_Msg_N ("invalid operand type for operator&", N);
10420 Set_Etype (N, Any_Type);
10421 return;
10423 -- Special case of probable missing parens
10425 elsif Typ = Universal_Integer or else Typ = Any_Modular then
10426 if Parent_Is_Boolean then
10427 Error_Msg_N
10428 ("operand of NOT must be enclosed in parentheses",
10429 Right_Opnd (N));
10430 else
10431 Error_Msg_N
10432 ("no modular type available in this context", N);
10433 end if;
10435 Set_Etype (N, Any_Type);
10436 return;
10438 -- OK resolution of NOT
10440 else
10441 -- Warn if non-boolean types involved. This is a case like not a < b
10442 -- where a and b are modular, where we will get (not a) < b and most
10443 -- likely not (a < b) was intended.
10445 if Warn_On_Questionable_Missing_Parens
10446 and then not Is_Boolean_Type (Typ)
10447 and then Parent_Is_Boolean
10448 then
10449 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
10450 end if;
10452 -- Warn on double negation if checking redundant constructs
10454 if Warn_On_Redundant_Constructs
10455 and then Comes_From_Source (N)
10456 and then Comes_From_Source (Right_Opnd (N))
10457 and then Root_Type (Typ) = Standard_Boolean
10458 and then Nkind (Right_Opnd (N)) = N_Op_Not
10459 then
10460 Error_Msg_N ("redundant double negation?r?", N);
10461 end if;
10463 -- Complete resolution and evaluation of NOT
10464 -- If argument is an equality and expected type is boolean, that
10465 -- expected type has no effect on resolution, and there are
10466 -- special rules for resolution of Eq, Neq in the presence of
10467 -- overloaded operands, so we directly call its resolution routines.
10469 declare
10470 Opnd : constant Node_Id := Right_Opnd (N);
10471 Op_Id : Entity_Id;
10473 begin
10474 if B_Typ = Standard_Boolean
10475 and then Nkind (Opnd) in N_Op_Eq | N_Op_Ne
10476 and then Is_Overloaded (Opnd)
10477 then
10478 Resolve_Equality_Op (Opnd, B_Typ);
10479 Op_Id := Entity (Opnd);
10481 if Ekind (Op_Id) = E_Function
10482 and then not Is_Intrinsic_Subprogram (Op_Id)
10483 then
10484 Rewrite_Operator_As_Call (Opnd, Op_Id);
10485 end if;
10487 if not Inside_A_Generic or else Is_Entity_Name (Opnd) then
10488 Freeze_Expression (Opnd);
10489 end if;
10491 Expand (Opnd);
10493 else
10494 Resolve (Opnd, B_Typ);
10495 end if;
10497 Check_Unset_Reference (Opnd);
10498 end;
10500 Set_Etype (N, B_Typ);
10501 Generate_Operator_Reference (N, B_Typ);
10502 Eval_Op_Not (N);
10503 end if;
10504 end Resolve_Op_Not;
10506 -----------------------------
10507 -- Resolve_Operator_Symbol --
10508 -----------------------------
10510 -- Nothing to be done, all resolved already
10512 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
10513 pragma Warnings (Off, N);
10514 pragma Warnings (Off, Typ);
10516 begin
10517 null;
10518 end Resolve_Operator_Symbol;
10520 ----------------------------------
10521 -- Resolve_Qualified_Expression --
10522 ----------------------------------
10524 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
10525 pragma Warnings (Off, Typ);
10527 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
10528 Expr : constant Node_Id := Expression (N);
10530 begin
10531 Resolve (Expr, Target_Typ);
10533 -- A qualified expression requires an exact match of the type, class-
10534 -- wide matching is not allowed. However, if the qualifying type is
10535 -- specific and the expression has a class-wide type, it may still be
10536 -- okay, since it can be the result of the expansion of a call to a
10537 -- dispatching function, so we also have to check class-wideness of the
10538 -- type of the expression's original node.
10540 if (Is_Class_Wide_Type (Target_Typ)
10541 or else
10542 (Is_Class_Wide_Type (Etype (Expr))
10543 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
10544 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
10545 then
10546 Wrong_Type (Expr, Target_Typ);
10547 end if;
10549 -- If the target type is unconstrained, then we reset the type of the
10550 -- result from the type of the expression. For other cases, the actual
10551 -- subtype of the expression is the target type. But we avoid doing it
10552 -- for an allocator since this is not needed and might be problematic.
10554 if Is_Composite_Type (Target_Typ)
10555 and then not Is_Constrained (Target_Typ)
10556 and then Nkind (Parent (N)) /= N_Allocator
10557 then
10558 Set_Etype (N, Etype (Expr));
10559 end if;
10561 Analyze_Dimension (N);
10562 Eval_Qualified_Expression (N);
10564 -- If we still have a qualified expression after the static evaluation,
10565 -- then apply a scalar range check if needed. The reason that we do this
10566 -- after the Eval call is that otherwise, the application of the range
10567 -- check may convert an illegal static expression and result in warning
10568 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
10570 if Nkind (N) = N_Qualified_Expression
10571 and then Is_Scalar_Type (Target_Typ)
10572 then
10573 Apply_Scalar_Range_Check (Expr, Target_Typ);
10574 end if;
10576 -- AI12-0100: Once the qualified expression is resolved, check whether
10577 -- operand statisfies a static predicate of the target subtype, if any.
10578 -- In the static expression case, a predicate check failure is an error.
10580 if Has_Predicates (Target_Typ) then
10581 Check_Expression_Against_Static_Predicate
10582 (Expr, Target_Typ, Static_Failure_Is_Error => True);
10583 end if;
10584 end Resolve_Qualified_Expression;
10586 ------------------------------
10587 -- Resolve_Raise_Expression --
10588 ------------------------------
10590 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
10591 begin
10592 if Typ = Raise_Type then
10593 Error_Msg_N ("cannot find unique type for raise expression", N);
10594 Set_Etype (N, Any_Type);
10596 else
10597 Set_Etype (N, Typ);
10599 -- Apply check for required parentheses in the enclosing
10600 -- context of raise_expressions (RM 11.3 (2)), including default
10601 -- expressions in contexts that can include aspect specifications,
10602 -- and ancestor parts of extension aggregates.
10604 declare
10605 Par : Node_Id := Parent (N);
10606 Parentheses_Found : Boolean := Paren_Count (N) > 0;
10608 begin
10609 while Present (Par)
10610 and then Nkind (Par) in N_Has_Etype
10611 loop
10612 if Paren_Count (Par) > 0 then
10613 Parentheses_Found := True;
10614 end if;
10616 if Nkind (Par) = N_Extension_Aggregate
10617 and then N = Ancestor_Part (Par)
10618 then
10619 exit;
10620 end if;
10622 Par := Parent (Par);
10623 end loop;
10625 if not Parentheses_Found
10626 and then Comes_From_Source (Par)
10627 and then
10628 ((Nkind (Par) in N_Modular_Type_Definition
10629 | N_Floating_Point_Definition
10630 | N_Ordinary_Fixed_Point_Definition
10631 | N_Decimal_Fixed_Point_Definition
10632 | N_Extension_Aggregate
10633 | N_Discriminant_Specification
10634 | N_Parameter_Specification
10635 | N_Formal_Object_Declaration)
10637 or else (Nkind (Par) = N_Object_Declaration
10638 and then
10639 Nkind (Parent (Par)) /= N_Extended_Return_Statement))
10640 then
10641 Error_Msg_N
10642 ("raise_expression must be parenthesized in this context",
10644 end if;
10645 end;
10646 end if;
10647 end Resolve_Raise_Expression;
10649 -------------------
10650 -- Resolve_Range --
10651 -------------------
10653 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
10654 L : constant Node_Id := Low_Bound (N);
10655 H : constant Node_Id := High_Bound (N);
10657 function First_Last_Ref return Boolean;
10658 -- Returns True if N is of the form X'First .. X'Last where X is the
10659 -- same entity for both attributes.
10661 --------------------
10662 -- First_Last_Ref --
10663 --------------------
10665 function First_Last_Ref return Boolean is
10666 Lorig : constant Node_Id := Original_Node (L);
10667 Horig : constant Node_Id := Original_Node (H);
10669 begin
10670 if Nkind (Lorig) = N_Attribute_Reference
10671 and then Nkind (Horig) = N_Attribute_Reference
10672 and then Attribute_Name (Lorig) = Name_First
10673 and then Attribute_Name (Horig) = Name_Last
10674 then
10675 declare
10676 PL : constant Node_Id := Prefix (Lorig);
10677 PH : constant Node_Id := Prefix (Horig);
10678 begin
10679 return Is_Entity_Name (PL)
10680 and then Is_Entity_Name (PH)
10681 and then Entity (PL) = Entity (PH);
10682 end;
10683 end if;
10685 return False;
10686 end First_Last_Ref;
10688 -- Start of processing for Resolve_Range
10690 begin
10691 Set_Etype (N, Typ);
10693 Resolve (L, Typ);
10694 Resolve (H, Typ);
10696 -- Reanalyze the lower bound after both bounds have been analyzed, so
10697 -- that the range is known to be static or not by now. This may trigger
10698 -- more compile-time evaluation, which is useful for static analysis
10699 -- with GNATprove. This is not needed for compilation or static analysis
10700 -- with CodePeer, as full expansion does that evaluation then.
10702 if GNATprove_Mode then
10703 Set_Analyzed (L, False);
10704 Resolve (L, Typ);
10705 end if;
10707 -- Check for inappropriate range on unordered enumeration type
10709 if Bad_Unordered_Enumeration_Reference (N, Typ)
10711 -- Exclude X'First .. X'Last if X is the same entity for both
10713 and then not First_Last_Ref
10714 then
10715 Error_Msg_Sloc := Sloc (Typ);
10716 Error_Msg_NE
10717 ("subrange of unordered enumeration type& declared#?.u?", N, Typ);
10718 end if;
10720 Check_Unset_Reference (L);
10721 Check_Unset_Reference (H);
10723 -- We have to check the bounds for being within the base range as
10724 -- required for a non-static context. Normally this is automatic and
10725 -- done as part of evaluating expressions, but the N_Range node is an
10726 -- exception, since in GNAT we consider this node to be a subexpression,
10727 -- even though in Ada it is not. The circuit in Sem_Eval could check for
10728 -- this, but that would put the test on the main evaluation path for
10729 -- expressions.
10731 Check_Non_Static_Context (L);
10732 Check_Non_Static_Context (H);
10734 -- Check for an ambiguous range over character literals. This will
10735 -- happen with a membership test involving only literals.
10737 if Typ = Any_Character then
10738 Ambiguous_Character (L);
10739 Set_Etype (N, Any_Type);
10740 return;
10741 end if;
10743 -- If bounds are static, constant-fold them, so size computations are
10744 -- identical between front-end and back-end. Do not perform this
10745 -- transformation while analyzing generic units, as type information
10746 -- would be lost when reanalyzing the constant node in the instance.
10748 if Is_Discrete_Type (Typ) and then Expander_Active then
10749 if Is_OK_Static_Expression (L) then
10750 Fold_Uint (L, Expr_Value (L), Static => True);
10751 end if;
10753 if Is_OK_Static_Expression (H) then
10754 Fold_Uint (H, Expr_Value (H), Static => True);
10755 end if;
10756 end if;
10757 end Resolve_Range;
10759 --------------------------
10760 -- Resolve_Real_Literal --
10761 --------------------------
10763 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
10764 Actual_Typ : constant Entity_Id := Etype (N);
10766 begin
10767 -- Special processing for fixed-point literals to make sure that the
10768 -- value is an exact multiple of the small where this is required. We
10769 -- skip this for the universal real case, and also for generic types.
10771 if Is_Fixed_Point_Type (Typ)
10772 and then Typ /= Universal_Fixed
10773 and then Typ /= Any_Fixed
10774 and then not Is_Generic_Type (Typ)
10775 then
10776 -- We must freeze the base type to get the proper value of the small
10778 if not Is_Frozen (Base_Type (Typ)) then
10779 Freeze_Fixed_Point_Type (Base_Type (Typ));
10780 end if;
10782 declare
10783 Val : constant Ureal := Realval (N);
10784 Cintr : constant Ureal := Val / Small_Value (Base_Type (Typ));
10785 Cint : constant Uint := UR_Trunc (Cintr);
10786 Den : constant Uint := Norm_Den (Cintr);
10787 Stat : Boolean;
10789 begin
10790 -- Case of literal is not an exact multiple of the Small
10792 if Den /= 1 then
10794 -- For a source program literal for a decimal fixed-point type,
10795 -- this is statically illegal (RM 4.9(36)).
10797 if Is_Decimal_Fixed_Point_Type (Typ)
10798 and then Actual_Typ = Universal_Real
10799 and then Comes_From_Source (N)
10800 then
10801 Error_Msg_N ("value has extraneous low order digits", N);
10802 end if;
10804 -- Generate a warning if literal from source
10806 if Is_OK_Static_Expression (N)
10807 and then Warn_On_Bad_Fixed_Value
10808 then
10809 Error_Msg_N
10810 ("?b?static fixed-point value is not a multiple of Small!",
10812 end if;
10814 -- Replace literal by a value that is the exact representation
10815 -- of a value of the type, i.e. a multiple of the small value,
10816 -- by truncation, since Machine_Rounds is false for all GNAT
10817 -- fixed-point types (RM 4.9(38)).
10819 Stat := Is_OK_Static_Expression (N);
10820 Rewrite (N,
10821 Make_Real_Literal (Sloc (N),
10822 Realval => Small_Value (Typ) * Cint));
10824 Set_Is_Static_Expression (N, Stat);
10825 end if;
10827 -- In all cases, set the corresponding integer field
10829 Set_Corresponding_Integer_Value (N, Cint);
10830 end;
10831 end if;
10833 -- Now replace the actual type by the expected type as usual
10835 Set_Etype (N, Typ);
10836 Eval_Real_Literal (N);
10837 end Resolve_Real_Literal;
10839 -----------------------
10840 -- Resolve_Reference --
10841 -----------------------
10843 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10844 P : constant Node_Id := Prefix (N);
10846 begin
10847 -- Replace general access with specific type
10849 if Ekind (Etype (N)) = E_Allocator_Type then
10850 Set_Etype (N, Base_Type (Typ));
10851 end if;
10853 Resolve (P, Designated_Type (Etype (N)));
10855 -- If we are taking the reference of a volatile entity, then treat it as
10856 -- a potential modification of this entity. This is too conservative,
10857 -- but necessary because remove side effects can cause transformations
10858 -- of normal assignments into reference sequences that otherwise fail to
10859 -- notice the modification.
10861 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10862 Note_Possible_Modification (P, Sure => False);
10863 end if;
10864 end Resolve_Reference;
10866 --------------------------------
10867 -- Resolve_Selected_Component --
10868 --------------------------------
10870 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10871 Comp : Entity_Id;
10872 Comp1 : Entity_Id := Empty; -- prevent junk warning
10873 P : constant Node_Id := Prefix (N);
10874 S : constant Node_Id := Selector_Name (N);
10875 T : Entity_Id := Etype (P);
10876 I : Interp_Index;
10877 I1 : Interp_Index := 0; -- prevent junk warning
10878 It : Interp;
10879 It1 : Interp;
10880 Found : Boolean;
10882 function Init_Component return Boolean;
10883 -- Check whether this is the initialization of a component within an
10884 -- init proc (by assignment or call to another init proc). If true,
10885 -- there is no need for a discriminant check.
10887 --------------------
10888 -- Init_Component --
10889 --------------------
10891 function Init_Component return Boolean is
10892 begin
10893 return Inside_Init_Proc
10894 and then Nkind (Prefix (N)) = N_Identifier
10895 and then Chars (Prefix (N)) = Name_uInit
10896 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10897 end Init_Component;
10899 -- Start of processing for Resolve_Selected_Component
10901 begin
10902 if Is_Overloaded (P) then
10904 -- Use the context type to select the prefix that has a selector
10905 -- of the correct name and type.
10907 Found := False;
10908 Get_First_Interp (P, I, It);
10910 Search : while Present (It.Typ) loop
10911 if Is_Access_Type (It.Typ) then
10912 T := Designated_Type (It.Typ);
10913 else
10914 T := It.Typ;
10915 end if;
10917 -- Locate selected component. For a private prefix the selector
10918 -- can denote a discriminant.
10920 if Is_Record_Type (T) or else Is_Private_Type (T) then
10922 -- The visible components of a class-wide type are those of
10923 -- the root type.
10925 if Is_Class_Wide_Type (T) then
10926 T := Etype (T);
10927 end if;
10929 Comp := First_Entity (T);
10930 while Present (Comp) loop
10931 if Chars (Comp) = Chars (S)
10932 and then Covers (Typ, Etype (Comp))
10933 then
10934 if not Found then
10935 Found := True;
10936 I1 := I;
10937 It1 := It;
10938 Comp1 := Comp;
10940 else
10941 It := Disambiguate (P, I1, I, Any_Type);
10943 if It = No_Interp then
10944 Error_Msg_N
10945 ("ambiguous prefix for selected component", N);
10946 Set_Etype (N, Typ);
10947 return;
10949 else
10950 It1 := It;
10952 -- There may be an implicit dereference. Retrieve
10953 -- designated record type.
10955 if Is_Access_Type (It1.Typ) then
10956 T := Designated_Type (It1.Typ);
10957 else
10958 T := It1.Typ;
10959 end if;
10961 if Scope (Comp1) /= T then
10963 -- Resolution chooses the new interpretation.
10964 -- Find the component with the right name.
10966 Comp1 := First_Entity (T);
10967 while Present (Comp1)
10968 and then Chars (Comp1) /= Chars (S)
10969 loop
10970 Next_Entity (Comp1);
10971 end loop;
10972 end if;
10974 exit Search;
10975 end if;
10976 end if;
10977 end if;
10979 Next_Entity (Comp);
10980 end loop;
10981 end if;
10983 Get_Next_Interp (I, It);
10984 end loop Search;
10986 -- There must be a legal interpretation at this point
10988 pragma Assert (Found);
10989 Resolve (P, It1.Typ);
10991 -- In general the expected type is the type of the context, not the
10992 -- type of the candidate selected component.
10994 Set_Etype (N, Typ);
10995 Set_Entity_With_Checks (S, Comp1);
10997 -- The type of the context and that of the component are
10998 -- compatible and in general identical, but if they are anonymous
10999 -- access-to-subprogram types, the relevant type is that of the
11000 -- component. This matters in Unnest_Subprograms mode, where the
11001 -- relevant context is the one in which the type is declared, not
11002 -- the point of use. This determines what activation record to use.
11004 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
11005 Set_Etype (N, Etype (Comp1));
11007 -- When the type of the component is an access to a class-wide type
11008 -- the relevant type is that of the component (since in such case we
11009 -- may need to generate implicit type conversions or dispatching
11010 -- calls).
11012 elsif Is_Access_Type (Typ)
11013 and then not Is_Class_Wide_Type (Designated_Type (Typ))
11014 and then Is_Class_Wide_Type (Designated_Type (Etype (Comp1)))
11015 then
11016 Set_Etype (N, Etype (Comp1));
11017 end if;
11019 else
11020 -- Resolve prefix with its type
11022 Resolve (P, T);
11023 end if;
11025 -- Generate cross-reference. We needed to wait until full overloading
11026 -- resolution was complete to do this, since otherwise we can't tell if
11027 -- we are an lvalue or not.
11029 if May_Be_Lvalue (N) then
11030 Generate_Reference (Entity (S), S, 'm');
11031 else
11032 Generate_Reference (Entity (S), S, 'r');
11033 end if;
11035 -- If the prefix's type is an access type, get to the real record type.
11036 -- Note: we do not apply an access check because an explicit dereference
11037 -- will be introduced later, and the check will happen there.
11039 if Is_Access_Type (Etype (P)) then
11040 T := Implicitly_Designated_Type (Etype (P));
11041 Check_Fully_Declared_Prefix (T, P);
11043 else
11044 T := Etype (P);
11046 -- If the prefix is an entity it may have a deferred reference set
11047 -- during analysis of the selected component. After resolution we
11048 -- can transform it into a proper reference. This prevents spurious
11049 -- warnings on useless assignments when the same selected component
11050 -- is the actual for an out parameter in a subsequent call.
11052 if Is_Entity_Name (P)
11053 and then Has_Deferred_Reference (Entity (P))
11054 then
11055 if May_Be_Lvalue (N) then
11056 Generate_Reference (Entity (P), P, 'm');
11057 else
11058 Generate_Reference (Entity (P), P, 'r');
11059 end if;
11060 end if;
11061 end if;
11063 -- Set flag for expander if discriminant check required on a component
11064 -- appearing within a variant.
11066 if Has_Discriminants (T)
11067 and then Ekind (Entity (S)) = E_Component
11068 and then Present (Original_Record_Component (Entity (S)))
11069 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
11070 and then
11071 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
11072 and then not Discriminant_Checks_Suppressed (T)
11073 and then not Init_Component
11074 then
11075 Set_Do_Discriminant_Check (N);
11076 end if;
11078 if Ekind (Entity (S)) = E_Void then
11079 Error_Msg_N ("premature use of component", S);
11080 end if;
11082 -- If the prefix is a record conversion, this may be a renamed
11083 -- discriminant whose bounds differ from those of the original
11084 -- one, so we must ensure that a range check is performed.
11086 if Nkind (P) = N_Type_Conversion
11087 and then Ekind (Entity (S)) = E_Discriminant
11088 and then Is_Discrete_Type (Typ)
11089 then
11090 Set_Etype (N, Base_Type (Typ));
11091 end if;
11093 -- Eval_Selected_Component may e.g. fold statically known discriminants.
11095 Eval_Selected_Component (N);
11097 if Nkind (N) = N_Selected_Component then
11099 -- If the record type is atomic and the component is not, then this
11100 -- is worth a warning before Ada 2022, since we have a situation
11101 -- where the access to the component may cause extra read/writes of
11102 -- the atomic object, or partial word accesses, both of which may be
11103 -- unexpected.
11105 if Is_Atomic_Ref_With_Address (N)
11106 and then not Is_Atomic (Entity (S))
11107 and then not Is_Atomic (Etype (Entity (S)))
11108 and then Ada_Version < Ada_2022
11109 then
11110 Error_Msg_N
11111 ("??access to non-atomic component of atomic record",
11112 Prefix (N));
11113 Error_Msg_N
11114 ("\??may cause unexpected accesses to atomic object",
11115 Prefix (N));
11116 end if;
11118 Resolve_Implicit_Dereference (Prefix (N));
11119 Analyze_Dimension (N);
11120 end if;
11121 end Resolve_Selected_Component;
11123 -------------------
11124 -- Resolve_Shift --
11125 -------------------
11127 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
11128 B_Typ : constant Entity_Id := Base_Type (Typ);
11129 L : constant Node_Id := Left_Opnd (N);
11130 R : constant Node_Id := Right_Opnd (N);
11132 begin
11133 -- We do the resolution using the base type, because intermediate values
11134 -- in expressions always are of the base type, not a subtype of it.
11136 Resolve (L, B_Typ);
11137 Resolve (R, Standard_Natural);
11139 Check_Unset_Reference (L);
11140 Check_Unset_Reference (R);
11142 Set_Etype (N, B_Typ);
11143 Generate_Operator_Reference (N, B_Typ);
11144 Eval_Shift (N);
11145 end Resolve_Shift;
11147 ---------------------------
11148 -- Resolve_Short_Circuit --
11149 ---------------------------
11151 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
11152 B_Typ : constant Entity_Id := Base_Type (Typ);
11153 L : constant Node_Id := Left_Opnd (N);
11154 R : constant Node_Id := Right_Opnd (N);
11156 begin
11157 -- Ensure all actions associated with the left operand (e.g.
11158 -- finalization of transient objects) are fully evaluated locally within
11159 -- an expression with actions. This is particularly helpful for coverage
11160 -- analysis. However this should not happen in generics or if option
11161 -- Minimize_Expression_With_Actions is set.
11163 if Expander_Active and not Minimize_Expression_With_Actions then
11164 declare
11165 Reloc_L : constant Node_Id := Relocate_Node (L);
11166 begin
11167 Save_Interps (Old_N => L, New_N => Reloc_L);
11169 Rewrite (L,
11170 Make_Expression_With_Actions (Sloc (L),
11171 Actions => New_List,
11172 Expression => Reloc_L));
11174 -- Set Comes_From_Source on L to preserve warnings for unset
11175 -- reference.
11177 Preserve_Comes_From_Source (L, Reloc_L);
11178 end;
11179 end if;
11181 Resolve (L, B_Typ);
11182 Resolve (R, B_Typ);
11184 -- Check for issuing warning for always False assert/check, this happens
11185 -- when assertions are turned off, in which case the pragma Assert/Check
11186 -- was transformed into:
11188 -- if False and then <condition> then ...
11190 -- and we detect this pattern
11192 if Warn_On_Assertion_Failure
11193 and then Is_Entity_Name (R)
11194 and then Entity (R) = Standard_False
11195 and then Nkind (Parent (N)) = N_If_Statement
11196 and then Nkind (N) = N_And_Then
11197 and then Is_Entity_Name (L)
11198 and then Entity (L) = Standard_False
11199 then
11200 declare
11201 Orig : constant Node_Id := Original_Node (Parent (N));
11203 begin
11204 -- Special handling of Asssert pragma
11206 if Nkind (Orig) = N_Pragma
11207 and then Pragma_Name (Orig) = Name_Assert
11208 then
11209 declare
11210 Expr : constant Node_Id :=
11211 Original_Node
11212 (Expression
11213 (First (Pragma_Argument_Associations (Orig))));
11215 begin
11216 -- Don't warn if original condition is explicit False,
11217 -- since obviously the failure is expected in this case.
11219 if Is_Entity_Name (Expr)
11220 and then Entity (Expr) = Standard_False
11221 then
11222 null;
11224 -- Issue warning. We do not want the deletion of the
11225 -- IF/AND-THEN to take this message with it. We achieve this
11226 -- by making sure that the expanded code points to the Sloc
11227 -- of the expression, not the original pragma.
11229 else
11230 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
11231 -- The source location of the expression is not usually
11232 -- the best choice here. For example, it gets located on
11233 -- the last AND keyword in a chain of boolean expressiond
11234 -- AND'ed together. It is best to put the message on the
11235 -- first character of the assertion, which is the effect
11236 -- of the First_Node call here.
11238 Error_Msg_F
11239 ("?.a?assertion would fail at run time!",
11240 Expression
11241 (First (Pragma_Argument_Associations (Orig))));
11242 end if;
11243 end;
11245 -- Similar processing for Check pragma
11247 elsif Nkind (Orig) = N_Pragma
11248 and then Pragma_Name (Orig) = Name_Check
11249 then
11250 -- Don't want to warn if original condition is explicit False
11252 declare
11253 Expr : constant Node_Id :=
11254 Original_Node
11255 (Expression
11256 (Next (First (Pragma_Argument_Associations (Orig)))));
11257 begin
11258 if Is_Entity_Name (Expr)
11259 and then Entity (Expr) = Standard_False
11260 then
11261 null;
11263 -- Post warning
11265 else
11266 -- Again use Error_Msg_F rather than Error_Msg_N, see
11267 -- comment above for an explanation of why we do this.
11269 Error_Msg_F
11270 ("?.a?check would fail at run time!",
11271 Expression
11272 (Last (Pragma_Argument_Associations (Orig))));
11273 end if;
11274 end;
11275 end if;
11276 end;
11277 end if;
11279 -- Continue with processing of short circuit
11281 Check_Unset_Reference (L);
11282 Check_Unset_Reference (R);
11284 Set_Etype (N, B_Typ);
11285 Eval_Short_Circuit (N);
11286 end Resolve_Short_Circuit;
11288 -------------------
11289 -- Resolve_Slice --
11290 -------------------
11292 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
11293 Drange : constant Node_Id := Discrete_Range (N);
11294 Pref : constant Node_Id := Prefix (N);
11295 Array_Type : Entity_Id := Empty;
11296 Dexpr : Node_Id := Empty;
11297 Index_Type : Entity_Id;
11299 begin
11300 if Is_Overloaded (Pref) then
11302 -- Use the context type to select the prefix that yields the correct
11303 -- array type.
11305 declare
11306 I : Interp_Index;
11307 I1 : Interp_Index := 0;
11308 It : Interp;
11309 Found : Boolean := False;
11311 begin
11312 Get_First_Interp (Pref, I, It);
11313 while Present (It.Typ) loop
11314 if (Is_Array_Type (It.Typ)
11315 and then Covers (Typ, It.Typ))
11316 or else (Is_Access_Type (It.Typ)
11317 and then Is_Array_Type (Designated_Type (It.Typ))
11318 and then Covers (Typ, Designated_Type (It.Typ)))
11319 then
11320 if Found then
11321 It := Disambiguate (Pref, I1, I, Any_Type);
11323 if It = No_Interp then
11324 Error_Msg_N ("ambiguous prefix for slicing", N);
11325 Set_Etype (N, Typ);
11326 return;
11327 else
11328 Found := True;
11329 Array_Type := It.Typ;
11330 I1 := I;
11331 end if;
11332 else
11333 Found := True;
11334 Array_Type := It.Typ;
11335 I1 := I;
11336 end if;
11337 end if;
11339 Get_Next_Interp (I, It);
11340 end loop;
11341 end;
11343 else
11344 Array_Type := Etype (Pref);
11345 end if;
11347 Resolve (Pref, Array_Type);
11349 -- If the prefix's type is an access type, get to the real array type.
11350 -- Note: we do not apply an access check because an explicit dereference
11351 -- will be introduced later, and the check will happen there.
11353 if Is_Access_Type (Array_Type) then
11354 Array_Type := Implicitly_Designated_Type (Array_Type);
11356 -- If the prefix is an access to an unconstrained array, we must use
11357 -- the actual subtype of the object to perform the index checks. The
11358 -- object denoted by the prefix is implicit in the node, so we build
11359 -- an explicit representation for it in order to compute the actual
11360 -- subtype.
11362 if not Is_Constrained (Array_Type) then
11363 Remove_Side_Effects (Pref);
11365 declare
11366 Obj : constant Node_Id :=
11367 Make_Explicit_Dereference (Sloc (N),
11368 Prefix => New_Copy_Tree (Pref));
11369 begin
11370 Set_Etype (Obj, Array_Type);
11371 Set_Parent (Obj, Parent (N));
11372 Array_Type := Get_Actual_Subtype (Obj);
11373 end;
11374 end if;
11376 -- In CodePeer mode the attribute Image is not expanded, so when it
11377 -- acts as a prefix of a slice, we handle it like a call to function
11378 -- returning an unconstrained string. Same for the Wide variants of
11379 -- attribute Image.
11381 elsif Is_Entity_Name (Pref)
11382 or else Nkind (Pref) = N_Explicit_Dereference
11383 or else (Nkind (Pref) = N_Function_Call
11384 and then not Is_Constrained (Etype (Pref)))
11385 or else (CodePeer_Mode
11386 and then Nkind (Pref) = N_Attribute_Reference
11387 and then Attribute_Name (Pref) in Name_Image
11388 | Name_Wide_Image
11389 | Name_Wide_Wide_Image)
11390 then
11391 Array_Type := Get_Actual_Subtype (Pref);
11393 -- If the name is a selected component that depends on discriminants,
11394 -- build an actual subtype for it. This can happen only when the name
11395 -- itself is overloaded; otherwise the actual subtype is created when
11396 -- the selected component is analyzed.
11398 elsif Nkind (Pref) = N_Selected_Component
11399 and then Full_Analysis
11400 and then Depends_On_Discriminant (First_Index (Array_Type))
11401 then
11402 declare
11403 Act_Decl : constant Node_Id :=
11404 Build_Actual_Subtype_Of_Component (Array_Type, Pref);
11405 begin
11406 Insert_Action (N, Act_Decl);
11407 Array_Type := Defining_Identifier (Act_Decl);
11408 end;
11410 -- Maybe this should just be "else", instead of checking for the
11411 -- specific case of slice??? This is needed for the case where the
11412 -- prefix is an Image attribute, which gets expanded to a slice, and so
11413 -- has a constrained subtype which we want to use for the slice range
11414 -- check applied below (the range check won't get done if the
11415 -- unconstrained subtype of the 'Image is used).
11417 elsif Nkind (Pref) = N_Slice then
11418 Array_Type := Etype (Pref);
11419 end if;
11421 -- Obtain the type of the array index
11423 if Ekind (Array_Type) = E_String_Literal_Subtype then
11424 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
11425 else
11426 Index_Type := Etype (First_Index (Array_Type));
11427 end if;
11429 -- If name was overloaded, set slice type correctly now
11431 Set_Etype (N, Array_Type);
11433 -- Handle the generation of a range check that compares the array index
11434 -- against the discrete_range. The check is not applied to internally
11435 -- built nodes associated with the expansion of dispatch tables. Check
11436 -- that Ada.Tags has already been loaded to avoid extra dependencies on
11437 -- the unit.
11439 if Tagged_Type_Expansion
11440 and then RTU_Loaded (Ada_Tags)
11441 and then Nkind (Pref) = N_Selected_Component
11442 and then Present (Entity (Selector_Name (Pref)))
11443 and then Entity (Selector_Name (Pref)) =
11444 RTE_Record_Component (RE_Prims_Ptr)
11445 then
11446 null;
11448 -- The discrete_range is specified by a subtype name. Create an
11449 -- equivalent range attribute, apply checks to this attribute, but
11450 -- insert them into the range expression of the slice itself.
11452 elsif Is_Entity_Name (Drange) then
11453 Dexpr :=
11454 Make_Attribute_Reference
11455 (Sloc (Drange),
11456 Prefix =>
11457 New_Occurrence_Of (Entity (Drange), Sloc (Drange)),
11458 Attribute_Name => Name_Range);
11460 Analyze_And_Resolve (Dexpr, Etype (Drange));
11462 elsif Nkind (Drange) = N_Subtype_Indication then
11463 Dexpr := Range_Expression (Constraint (Drange));
11465 -- The discrete_range is a regular range (or a range attribute, which
11466 -- will be resolved into a regular range). Resolve the bounds and remove
11467 -- their side effects.
11469 else
11470 Resolve (Drange, Base_Type (Index_Type));
11472 if Nkind (Drange) = N_Range then
11473 Force_Evaluation (Low_Bound (Drange));
11474 Force_Evaluation (High_Bound (Drange));
11476 Dexpr := Drange;
11477 end if;
11478 end if;
11480 if Present (Dexpr) then
11481 Apply_Range_Check (Dexpr, Index_Type, Insert_Node => Drange);
11482 end if;
11484 Set_Slice_Subtype (N);
11486 -- Check bad use of type with predicates
11488 declare
11489 Subt : Entity_Id;
11491 begin
11492 if Nkind (Drange) = N_Subtype_Indication
11493 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
11494 then
11495 Subt := Entity (Subtype_Mark (Drange));
11496 else
11497 Subt := Etype (Drange);
11498 end if;
11500 if Has_Predicates (Subt) then
11501 Bad_Predicated_Subtype_Use
11502 ("subtype& has predicate, not allowed in slice", Drange, Subt);
11503 end if;
11504 end;
11506 -- Otherwise here is where we check suspicious indexes
11508 if Nkind (Drange) = N_Range then
11509 Warn_On_Suspicious_Index (Pref, Low_Bound (Drange));
11510 Warn_On_Suspicious_Index (Pref, High_Bound (Drange));
11511 end if;
11513 Resolve_Implicit_Dereference (Pref);
11514 Analyze_Dimension (N);
11515 Eval_Slice (N);
11516 end Resolve_Slice;
11518 ----------------------------
11519 -- Resolve_String_Literal --
11520 ----------------------------
11522 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
11523 C_Typ : constant Entity_Id := Component_Type (Typ);
11524 R_Typ : constant Entity_Id := Root_Type (C_Typ);
11525 Loc : constant Source_Ptr := Sloc (N);
11526 Str : constant String_Id := Strval (N);
11527 Strlen : constant Nat := String_Length (Str);
11528 Subtype_Id : Entity_Id;
11529 Need_Check : Boolean;
11531 begin
11532 -- For a string appearing in a concatenation, defer creation of the
11533 -- string_literal_subtype until the end of the resolution of the
11534 -- concatenation, because the literal may be constant-folded away. This
11535 -- is a useful optimization for long concatenation expressions.
11537 -- If the string is an aggregate built for a single character (which
11538 -- happens in a non-static context) or a is null string to which special
11539 -- checks may apply, we build the subtype. Wide strings must also get a
11540 -- string subtype if they come from a one character aggregate. Strings
11541 -- generated by attributes might be static, but it is often hard to
11542 -- determine whether the enclosing context is static, so we generate
11543 -- subtypes for them as well, thus losing some rarer optimizations ???
11544 -- Same for strings that come from a static conversion.
11546 Need_Check :=
11547 (Strlen = 0 and then Typ /= Standard_String)
11548 or else Nkind (Parent (N)) /= N_Op_Concat
11549 or else (N /= Left_Opnd (Parent (N))
11550 and then N /= Right_Opnd (Parent (N)))
11551 or else ((Typ = Standard_Wide_String
11552 or else Typ = Standard_Wide_Wide_String)
11553 and then Nkind (Original_Node (N)) /= N_String_Literal);
11555 -- If the resolving type is itself a string literal subtype, we can just
11556 -- reuse it, since there is no point in creating another.
11558 if Ekind (Typ) = E_String_Literal_Subtype then
11559 Subtype_Id := Typ;
11561 elsif Nkind (Parent (N)) = N_Op_Concat
11562 and then not Need_Check
11563 and then Nkind (Original_Node (N)) not in N_Character_Literal
11564 | N_Attribute_Reference
11565 | N_Qualified_Expression
11566 | N_Type_Conversion
11567 then
11568 Subtype_Id := Typ;
11570 -- Do not generate a string literal subtype for the default expression
11571 -- of a formal parameter in GNATprove mode. This is because the string
11572 -- subtype is associated with the freezing actions of the subprogram,
11573 -- however freezing is disabled in GNATprove mode and as a result the
11574 -- subtype is unavailable.
11576 elsif GNATprove_Mode
11577 and then Nkind (Parent (N)) = N_Parameter_Specification
11578 then
11579 Subtype_Id := Typ;
11581 -- Otherwise we must create a string literal subtype. Note that the
11582 -- whole idea of string literal subtypes is simply to avoid the need
11583 -- for building a full fledged array subtype for each literal.
11585 else
11586 Set_String_Literal_Subtype (N, Typ);
11587 Subtype_Id := Etype (N);
11588 end if;
11590 if Nkind (Parent (N)) /= N_Op_Concat
11591 or else Need_Check
11592 then
11593 Set_Etype (N, Subtype_Id);
11594 Eval_String_Literal (N);
11595 end if;
11597 if Is_Limited_Composite (Typ)
11598 or else Is_Private_Composite (Typ)
11599 then
11600 Error_Msg_N ("string literal not available for private array", N);
11601 Set_Etype (N, Any_Type);
11602 return;
11603 end if;
11605 -- The validity of a null string has been checked in the call to
11606 -- Eval_String_Literal.
11608 if Strlen = 0 then
11609 return;
11611 -- Always accept string literal with component type Any_Character, which
11612 -- occurs in error situations and in comparisons of literals, both of
11613 -- which should accept all literals.
11615 elsif R_Typ = Any_Character then
11616 return;
11618 -- If the type is bit-packed, then we always transform the string
11619 -- literal into a full fledged aggregate.
11621 elsif Is_Bit_Packed_Array (Typ) then
11622 null;
11624 -- Deal with cases of Wide_Wide_String, Wide_String, and String
11626 else
11627 -- For Standard.Wide_Wide_String, or any other type whose component
11628 -- type is Standard.Wide_Wide_Character, we know that all the
11629 -- characters in the string must be acceptable, since the parser
11630 -- accepted the characters as valid character literals.
11632 if R_Typ = Standard_Wide_Wide_Character then
11633 null;
11635 -- For the case of Standard.String, or any other type whose component
11636 -- type is Standard.Character, we must make sure that there are no
11637 -- wide characters in the string, i.e. that it is entirely composed
11638 -- of characters in range of type Character.
11640 -- If the string literal is the result of a static concatenation, the
11641 -- test has already been performed on the components, and need not be
11642 -- repeated.
11644 elsif R_Typ = Standard_Character
11645 and then Nkind (Original_Node (N)) /= N_Op_Concat
11646 then
11647 for J in 1 .. Strlen loop
11648 if not In_Character_Range (Get_String_Char (Str, J)) then
11650 -- If we are out of range, post error. This is one of the
11651 -- very few places that we place the flag in the middle of
11652 -- a token, right under the offending wide character. Not
11653 -- quite clear if this is right wrt wide character encoding
11654 -- sequences, but it's only an error message.
11656 Error_Msg
11657 ("literal out of range of type Standard.Character",
11658 Source_Ptr (Int (Loc) + J));
11659 return;
11660 end if;
11661 end loop;
11663 -- For the case of Standard.Wide_String, or any other type whose
11664 -- component type is Standard.Wide_Character, we must make sure that
11665 -- there are no wide characters in the string, i.e. that it is
11666 -- entirely composed of characters in range of type Wide_Character.
11668 -- If the string literal is the result of a static concatenation,
11669 -- the test has already been performed on the components, and need
11670 -- not be repeated.
11672 elsif R_Typ = Standard_Wide_Character
11673 and then Nkind (Original_Node (N)) /= N_Op_Concat
11674 then
11675 for J in 1 .. Strlen loop
11676 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
11678 -- If we are out of range, post error. This is one of the
11679 -- very few places that we place the flag in the middle of
11680 -- a token, right under the offending wide character.
11682 -- This is not quite right, because characters in general
11683 -- will take more than one character position ???
11685 Error_Msg
11686 ("literal out of range of type Standard.Wide_Character",
11687 Source_Ptr (Int (Loc) + J));
11688 return;
11689 end if;
11690 end loop;
11692 -- If the root type is not a standard character, then we will convert
11693 -- the string into an aggregate and will let the aggregate code do
11694 -- the checking. Standard Wide_Wide_Character is also OK here.
11696 else
11697 null;
11698 end if;
11700 -- See if the component type of the array corresponding to the string
11701 -- has compile time known bounds. If yes we can directly check
11702 -- whether the evaluation of the string will raise constraint error.
11703 -- Otherwise we need to transform the string literal into the
11704 -- corresponding character aggregate and let the aggregate code do
11705 -- the checking. We use the same transformation if the component
11706 -- type has a static predicate, which will be applied to each
11707 -- character when the aggregate is resolved.
11709 if Is_Standard_Character_Type (R_Typ) then
11711 -- Check for the case of full range, where we are definitely OK
11713 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
11714 return;
11715 end if;
11717 -- Here the range is not the complete base type range, so check
11719 declare
11720 Comp_Typ_Lo : constant Node_Id :=
11721 Type_Low_Bound (Component_Type (Typ));
11722 Comp_Typ_Hi : constant Node_Id :=
11723 Type_High_Bound (Component_Type (Typ));
11725 Char_Val : Int;
11727 begin
11728 if Compile_Time_Known_Value (Comp_Typ_Lo)
11729 and then Compile_Time_Known_Value (Comp_Typ_Hi)
11730 then
11731 for J in 1 .. Strlen loop
11732 Char_Val := Int (Get_String_Char (Str, J));
11734 if Char_Val < Expr_Value (Comp_Typ_Lo)
11735 or else Char_Val > Expr_Value (Comp_Typ_Hi)
11736 then
11737 Apply_Compile_Time_Constraint_Error
11738 (N, "character out of range??",
11739 CE_Range_Check_Failed,
11740 Loc => Source_Ptr (Int (Loc) + J));
11741 end if;
11742 end loop;
11744 if not Has_Static_Predicate (C_Typ) then
11745 return;
11746 end if;
11747 end if;
11748 end;
11749 end if;
11750 end if;
11752 -- If we got here we meed to transform the string literal into the
11753 -- equivalent qualified positional array aggregate. This is rather
11754 -- heavy artillery for this situation, but it is hard work to avoid.
11756 declare
11757 Lits : constant List_Id := New_List;
11758 P : Source_Ptr := Loc + 1;
11759 C : Char_Code;
11761 begin
11762 -- Build the character literals, we give them source locations that
11763 -- correspond to the string positions, which is a bit tricky given
11764 -- the possible presence of wide character escape sequences.
11766 for J in 1 .. Strlen loop
11767 C := Get_String_Char (Str, J);
11768 Set_Character_Literal_Name (C);
11770 Append_To (Lits,
11771 Make_Character_Literal (P,
11772 Chars => Name_Find,
11773 Char_Literal_Value => UI_From_CC (C)));
11775 if In_Character_Range (C) then
11776 P := P + 1;
11778 -- Should we have a call to Skip_Wide here ???
11780 -- ??? else
11781 -- Skip_Wide (P);
11783 end if;
11784 end loop;
11786 Rewrite (N,
11787 Make_Qualified_Expression (Loc,
11788 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
11789 Expression =>
11790 Make_Aggregate (Loc, Expressions => Lits)));
11792 Analyze_And_Resolve (N, Typ);
11793 end;
11794 end Resolve_String_Literal;
11796 -------------------------
11797 -- Resolve_Target_Name --
11798 -------------------------
11800 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
11801 begin
11802 Set_Etype (N, Typ);
11803 end Resolve_Target_Name;
11805 -----------------------------
11806 -- Resolve_Type_Conversion --
11807 -----------------------------
11809 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
11810 Conv_OK : constant Boolean := Conversion_OK (N);
11811 Operand : constant Node_Id := Expression (N);
11812 Operand_Typ : constant Entity_Id := Etype (Operand);
11813 Target_Typ : constant Entity_Id := Etype (N);
11814 Rop : Node_Id;
11815 Orig_N : Node_Id;
11816 Orig_T : Node_Id;
11818 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
11819 -- Set to False to suppress cases where we want to suppress the test
11820 -- for redundancy to avoid possible false positives on this warning.
11822 begin
11823 if not Conv_OK
11824 and then not Valid_Conversion (N, Target_Typ, Operand)
11825 then
11826 return;
11827 end if;
11829 -- If the Operand Etype is Universal_Fixed, then the conversion is
11830 -- never redundant. We need this check because by the time we have
11831 -- finished the rather complex transformation, the conversion looks
11832 -- redundant when it is not.
11834 if Operand_Typ = Universal_Fixed then
11835 Test_Redundant := False;
11837 -- If the operand is marked as Any_Fixed, then special processing is
11838 -- required. This is also a case where we suppress the test for a
11839 -- redundant conversion, since most certainly it is not redundant.
11841 elsif Operand_Typ = Any_Fixed then
11842 Test_Redundant := False;
11844 -- Mixed-mode operation involving a literal. Context must be a fixed
11845 -- type which is applied to the literal subsequently.
11847 -- Multiplication and division involving two fixed type operands must
11848 -- yield a universal real because the result is computed in arbitrary
11849 -- precision.
11851 if Is_Fixed_Point_Type (Typ)
11852 and then Nkind (Operand) in N_Op_Divide | N_Op_Multiply
11853 and then Etype (Left_Opnd (Operand)) = Any_Fixed
11854 and then Etype (Right_Opnd (Operand)) = Any_Fixed
11855 then
11856 Set_Etype (Operand, Universal_Real);
11858 elsif Is_Numeric_Type (Typ)
11859 and then Nkind (Operand) in N_Op_Multiply | N_Op_Divide
11860 and then (Etype (Right_Opnd (Operand)) = Universal_Real
11861 or else
11862 Etype (Left_Opnd (Operand)) = Universal_Real)
11863 then
11864 -- Return if expression is ambiguous
11866 if Unique_Fixed_Point_Type (N) = Any_Type then
11867 return;
11869 -- If nothing else, the available fixed type is Duration
11871 else
11872 Set_Etype (Operand, Standard_Duration);
11873 end if;
11875 -- Resolve the real operand with largest available precision
11877 if Etype (Right_Opnd (Operand)) = Universal_Real then
11878 Rop := New_Copy_Tree (Right_Opnd (Operand));
11879 else
11880 Rop := New_Copy_Tree (Left_Opnd (Operand));
11881 end if;
11883 Resolve (Rop, Universal_Real);
11885 -- If the operand is a literal (it could be a non-static and
11886 -- illegal exponentiation) check whether the use of Duration
11887 -- is potentially inaccurate.
11889 if Nkind (Rop) = N_Real_Literal
11890 and then Realval (Rop) /= Ureal_0
11891 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11892 then
11893 Error_Msg_N
11894 ("??universal real operand can only "
11895 & "be interpreted as Duration!", Rop);
11896 Error_Msg_N
11897 ("\??precision will be lost in the conversion!", Rop);
11898 end if;
11900 elsif Is_Numeric_Type (Typ)
11901 and then Nkind (Operand) in N_Op
11902 and then Unique_Fixed_Point_Type (N) /= Any_Type
11903 then
11904 Set_Etype (Operand, Standard_Duration);
11906 else
11907 Error_Msg_N ("invalid context for mixed mode operation", N);
11908 Set_Etype (Operand, Any_Type);
11909 return;
11910 end if;
11911 end if;
11913 Resolve (Operand);
11915 Analyze_Dimension (N);
11917 -- Note: we do the Eval_Type_Conversion call before applying the
11918 -- required checks for a subtype conversion. This is important, since
11919 -- both are prepared under certain circumstances to change the type
11920 -- conversion to a constraint error node, but in the case of
11921 -- Eval_Type_Conversion this may reflect an illegality in the static
11922 -- case, and we would miss the illegality (getting only a warning
11923 -- message), if we applied the type conversion checks first.
11925 Eval_Type_Conversion (N);
11927 -- Even when evaluation is not possible, we may be able to simplify the
11928 -- conversion or its expression. This needs to be done before applying
11929 -- checks, since otherwise the checks may use the original expression
11930 -- and defeat the simplifications. This is specifically the case for
11931 -- elimination of the floating-point Truncation attribute in
11932 -- float-to-int conversions.
11934 Simplify_Type_Conversion (N);
11936 -- If after evaluation we still have a type conversion, then we may need
11937 -- to apply checks required for a subtype conversion. But skip them if
11938 -- universal fixed operands are involved, since range checks are handled
11939 -- separately for these cases, after the expansion done by Exp_Fixd.
11941 if Nkind (N) = N_Type_Conversion
11942 and then not Is_Generic_Type (Root_Type (Target_Typ))
11943 and then Target_Typ /= Universal_Fixed
11944 and then Etype (Operand) /= Universal_Fixed
11945 then
11946 Apply_Type_Conversion_Checks (N);
11947 end if;
11949 -- Issue warning for conversion of simple object to its own type. We
11950 -- have to test the original nodes, since they may have been rewritten
11951 -- by various optimizations.
11953 Orig_N := Original_Node (N);
11955 -- Here we test for a redundant conversion if the warning mode is
11956 -- active (and was not locally reset), and we have a type conversion
11957 -- from source not appearing in a generic instance.
11959 if Test_Redundant
11960 and then Nkind (Orig_N) = N_Type_Conversion
11961 and then Comes_From_Source (Orig_N)
11962 and then not In_Instance
11963 then
11964 Orig_N := Original_Node (Expression (Orig_N));
11965 Orig_T := Target_Typ;
11967 -- If the node is part of a larger expression, the Target_Type
11968 -- may not be the original type of the node if the context is a
11969 -- condition. Recover original type to see if conversion is needed.
11971 if Is_Boolean_Type (Orig_T)
11972 and then Nkind (Parent (N)) in N_Op
11973 then
11974 Orig_T := Etype (Parent (N));
11975 end if;
11977 -- If we have an entity name, then give the warning if the entity
11978 -- is the right type, or if it is a loop parameter covered by the
11979 -- original type (that's needed because loop parameters have an
11980 -- odd subtype coming from the bounds).
11982 if (Is_Entity_Name (Orig_N)
11983 and then Present (Entity (Orig_N))
11984 and then
11985 (Etype (Entity (Orig_N)) = Orig_T
11986 or else
11987 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11988 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11990 -- If not an entity, then type of expression must match
11992 or else Etype (Orig_N) = Orig_T
11993 then
11994 -- One more check, do not give warning if the analyzed conversion
11995 -- has an expression with non-static bounds, and the bounds of the
11996 -- target are static. This avoids junk warnings in cases where the
11997 -- conversion is necessary to establish staticness, for example in
11998 -- a case statement.
12000 if not Is_OK_Static_Subtype (Operand_Typ)
12001 and then Is_OK_Static_Subtype (Target_Typ)
12002 then
12003 null;
12005 -- Finally, if this type conversion occurs in a context requiring
12006 -- a prefix, and the expression is a qualified expression then the
12007 -- type conversion is not redundant, since a qualified expression
12008 -- is not a prefix, whereas a type conversion is. For example, "X
12009 -- := T'(Funx(...)).Y;" is illegal because a selected component
12010 -- requires a prefix, but a type conversion makes it legal: "X :=
12011 -- T(T'(Funx(...))).Y;"
12013 -- In Ada 2012, a qualified expression is a name, so this idiom is
12014 -- no longer needed, but we still suppress the warning because it
12015 -- seems unfriendly for warnings to pop up when you switch to the
12016 -- newer language version.
12018 elsif Nkind (Orig_N) = N_Qualified_Expression
12019 and then Nkind (Parent (N)) in N_Attribute_Reference
12020 | N_Indexed_Component
12021 | N_Selected_Component
12022 | N_Slice
12023 | N_Explicit_Dereference
12024 then
12025 null;
12027 -- Never warn on conversion to Long_Long_Integer'Base since
12028 -- that is most likely an artifact of the extended overflow
12029 -- checking and comes from complex expanded code.
12031 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
12032 null;
12034 -- Here we give the redundant conversion warning. If it is an
12035 -- entity, give the name of the entity in the message. If not,
12036 -- just mention the expression.
12038 else
12039 if Is_Entity_Name (Orig_N) then
12040 Error_Msg_Node_2 := Orig_T;
12041 Error_Msg_NE -- CODEFIX
12042 ("?r?redundant conversion, & is of type &!",
12043 N, Entity (Orig_N));
12044 else
12045 Error_Msg_NE
12046 ("?r?redundant conversion, expression is of type&!",
12047 N, Orig_T);
12048 end if;
12049 end if;
12050 end if;
12051 end if;
12053 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
12054 -- No need to perform any interface conversion if the type of the
12055 -- expression coincides with the target type.
12057 if Ada_Version >= Ada_2005
12058 and then Expander_Active
12059 and then Operand_Typ /= Target_Typ
12060 then
12061 declare
12062 Opnd : Entity_Id := Operand_Typ;
12063 Target : Entity_Id := Target_Typ;
12065 begin
12066 -- If the type of the operand is a limited view, use nonlimited
12067 -- view when available. If it is a class-wide type, recover the
12068 -- class-wide type of the nonlimited view.
12070 if From_Limited_With (Opnd)
12071 and then Has_Non_Limited_View (Opnd)
12072 then
12073 Opnd := Non_Limited_View (Opnd);
12074 Set_Etype (Expression (N), Opnd);
12075 end if;
12077 -- It seems that Non_Limited_View should also be applied for
12078 -- Target when it has a limited view, but that leads to missing
12079 -- error checks on interface conversions further below. ???
12081 if Is_Access_Type (Opnd) then
12082 Opnd := Designated_Type (Opnd);
12084 -- If the type of the operand is a limited view, use nonlimited
12085 -- view when available. If it is a class-wide type, recover the
12086 -- class-wide type of the nonlimited view.
12088 if From_Limited_With (Opnd)
12089 and then Has_Non_Limited_View (Opnd)
12090 then
12091 Opnd := Non_Limited_View (Opnd);
12092 end if;
12093 end if;
12095 if Is_Access_Type (Target_Typ) then
12096 Target := Designated_Type (Target);
12098 -- If the target type is a limited view, use nonlimited view
12099 -- when available.
12101 if From_Limited_With (Target)
12102 and then Has_Non_Limited_View (Target)
12103 then
12104 Target := Non_Limited_View (Target);
12105 end if;
12106 end if;
12108 if Opnd = Target then
12109 null;
12111 -- Conversion from interface type
12113 -- It seems that it would be better for the error checks below
12114 -- to be performed as part of Validate_Conversion (and maybe some
12115 -- of the error checks above could be moved as well?). ???
12117 elsif Is_Interface (Opnd) then
12119 -- Ada 2005 (AI-217): Handle entities from limited views
12121 if From_Limited_With (Opnd) then
12122 Error_Msg_Qual_Level := 99;
12123 Error_Msg_NE -- CODEFIX
12124 ("missing WITH clause on package &", N,
12125 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
12126 Error_Msg_N
12127 ("type conversions require visibility of the full view",
12130 elsif From_Limited_With (Target)
12131 and then not
12132 (Is_Access_Type (Target_Typ)
12133 and then Present (Non_Limited_View (Etype (Target))))
12134 then
12135 Error_Msg_Qual_Level := 99;
12136 Error_Msg_NE -- CODEFIX
12137 ("missing WITH clause on package &", N,
12138 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
12139 Error_Msg_N
12140 ("type conversions require visibility of the full view",
12143 else
12144 Expand_Interface_Conversion (N);
12145 end if;
12147 -- Conversion to interface type
12149 elsif Is_Interface (Target) then
12151 -- Handle subtypes
12153 if Ekind (Opnd) in E_Protected_Subtype | E_Task_Subtype then
12154 Opnd := Etype (Opnd);
12155 end if;
12157 if Is_Class_Wide_Type (Opnd)
12158 or else Interface_Present_In_Ancestor
12159 (Typ => Opnd,
12160 Iface => Target)
12161 then
12162 Expand_Interface_Conversion (N);
12163 else
12164 Error_Msg_Name_1 := Chars (Etype (Target));
12165 Error_Msg_Name_2 := Chars (Opnd);
12166 Error_Msg_N
12167 ("wrong interface conversion (% is not a progenitor "
12168 & "of %)", N);
12169 end if;
12170 end if;
12171 end;
12172 end if;
12174 -- Ada 2012: Once the type conversion is resolved, check whether the
12175 -- operand statisfies a static predicate of the target subtype, if any.
12176 -- In the static expression case, a predicate check failure is an error.
12178 if Has_Predicates (Target_Typ) then
12179 Check_Expression_Against_Static_Predicate
12180 (N, Target_Typ, Static_Failure_Is_Error => True);
12181 end if;
12183 -- If at this stage we have a fixed to integer conversion, make sure the
12184 -- Do_Range_Check flag is set, because such conversions in general need
12185 -- a range check. We only need this if expansion is off, see above why.
12187 if Nkind (N) = N_Type_Conversion
12188 and then not Expander_Active
12189 and then Is_Integer_Type (Target_Typ)
12190 and then Is_Fixed_Point_Type (Operand_Typ)
12191 and then not Range_Checks_Suppressed (Target_Typ)
12192 and then not Range_Checks_Suppressed (Operand_Typ)
12193 then
12194 Set_Do_Range_Check (Operand);
12195 end if;
12197 -- Generating C code a type conversion of an access to constrained
12198 -- array type to access to unconstrained array type involves building
12199 -- a fat pointer which in general cannot be generated on the fly. We
12200 -- remove side effects in order to store the result of the conversion
12201 -- into a temporary.
12203 if Modify_Tree_For_C
12204 and then Nkind (N) = N_Type_Conversion
12205 and then Nkind (Parent (N)) /= N_Object_Declaration
12206 and then Is_Access_Type (Etype (N))
12207 and then Is_Array_Type (Designated_Type (Etype (N)))
12208 and then not Is_Constrained (Designated_Type (Etype (N)))
12209 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
12210 then
12211 Remove_Side_Effects (N);
12212 end if;
12213 end Resolve_Type_Conversion;
12215 ----------------------
12216 -- Resolve_Unary_Op --
12217 ----------------------
12219 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
12220 B_Typ : constant Entity_Id := Base_Type (Typ);
12221 R : constant Node_Id := Right_Opnd (N);
12222 OK : Boolean;
12223 Lo : Uint;
12224 Hi : Uint;
12226 begin
12227 -- Deal with intrinsic unary operators
12229 if Comes_From_Source (N)
12230 and then Ekind (Entity (N)) = E_Function
12231 and then Is_Imported (Entity (N))
12232 and then Is_Intrinsic_Subprogram (Entity (N))
12233 then
12234 Resolve_Intrinsic_Unary_Operator (N, Typ);
12235 return;
12236 end if;
12238 -- Deal with universal cases
12240 if Is_Universal_Numeric_Type (Etype (R)) then
12241 Check_For_Visible_Operator (N, B_Typ);
12242 end if;
12244 Set_Etype (N, B_Typ);
12245 Resolve (R, B_Typ);
12247 -- Generate warning for negative literal of a modular type, unless it is
12248 -- enclosed directly in a type qualification or a type conversion, as it
12249 -- is likely not what the user intended. We don't issue the warning for
12250 -- the common use of -1 to denote OxFFFF_FFFF...
12252 if Warn_On_Suspicious_Modulus_Value
12253 and then Nkind (N) = N_Op_Minus
12254 and then Nkind (R) = N_Integer_Literal
12255 and then Is_Modular_Integer_Type (B_Typ)
12256 and then Nkind (Parent (N)) not in N_Qualified_Expression
12257 | N_Type_Conversion
12258 and then Expr_Value (R) > Uint_1
12259 then
12260 Error_Msg_N
12261 ("?.m?negative literal of modular type is in fact positive", N);
12262 Error_Msg_Uint_1 := (-Expr_Value (R)) mod Modulus (B_Typ);
12263 Error_Msg_Uint_2 := Expr_Value (R);
12264 Error_Msg_N ("\do you really mean^ when writing -^ '?", N);
12265 Error_Msg_N
12266 ("\if you do, use qualification to avoid this warning", N);
12267 end if;
12269 -- Generate warning for expressions like abs (x mod 2)
12271 if Warn_On_Redundant_Constructs
12272 and then Nkind (N) = N_Op_Abs
12273 then
12274 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
12276 if OK and then Hi >= Lo and then Lo >= 0 then
12277 Error_Msg_N -- CODEFIX
12278 ("?r?abs applied to known non-negative value has no effect", N);
12279 end if;
12280 end if;
12282 -- Deal with reference generation
12284 Check_Unset_Reference (R);
12285 Generate_Operator_Reference (N, B_Typ);
12286 Analyze_Dimension (N);
12287 Eval_Unary_Op (N);
12289 -- Set overflow checking bit. Much cleverer code needed here eventually
12290 -- and perhaps the Resolve routines should be separated for the various
12291 -- arithmetic operations, since they will need different processing ???
12293 if Nkind (N) in N_Op then
12294 if not Overflow_Checks_Suppressed (Etype (N)) then
12295 Enable_Overflow_Check (N);
12296 end if;
12297 end if;
12299 -- Generate warning for expressions like -5 mod 3 for integers. No need
12300 -- to worry in the floating-point case, since parens do not affect the
12301 -- result so there is no point in giving in a warning.
12303 declare
12304 Norig : constant Node_Id := Original_Node (N);
12305 Rorig : Node_Id;
12306 Val : Uint;
12307 HB : Uint;
12308 LB : Uint;
12309 Lval : Uint;
12310 Opnd : Node_Id;
12312 begin
12313 if Warn_On_Questionable_Missing_Parens
12314 and then Comes_From_Source (Norig)
12315 and then Is_Integer_Type (Typ)
12316 and then Nkind (Norig) = N_Op_Minus
12317 then
12318 Rorig := Original_Node (Right_Opnd (Norig));
12320 -- We are looking for cases where the right operand is not
12321 -- parenthesized, and is a binary operator, multiply, divide, or
12322 -- mod. These are the cases where the grouping can affect results.
12324 if Paren_Count (Rorig) = 0
12325 and then Nkind (Rorig) in N_Op_Mod | N_Op_Multiply | N_Op_Divide
12326 then
12327 -- For mod, we always give the warning, since the value is
12328 -- affected by the parenthesization (e.g. (-5) mod 315 /=
12329 -- -(5 mod 315)). But for the other cases, the only concern is
12330 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
12331 -- overflows, but (-2) * 64 does not). So we try to give the
12332 -- message only when overflow is possible.
12334 if Nkind (Rorig) /= N_Op_Mod
12335 and then Compile_Time_Known_Value (R)
12336 then
12337 Val := Expr_Value (R);
12339 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
12340 HB := Expr_Value (Type_High_Bound (Typ));
12341 else
12342 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
12343 end if;
12345 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
12346 LB := Expr_Value (Type_Low_Bound (Typ));
12347 else
12348 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
12349 end if;
12351 -- Note that the test below is deliberately excluding the
12352 -- largest negative number, since that is a potentially
12353 -- troublesome case (e.g. -2 * x, where the result is the
12354 -- largest negative integer has an overflow with 2 * x).
12356 if Val > LB and then Val <= HB then
12357 return;
12358 end if;
12359 end if;
12361 -- For the multiplication case, the only case we have to worry
12362 -- about is when (-a)*b is exactly the largest negative number
12363 -- so that -(a*b) can cause overflow. This can only happen if
12364 -- a is a power of 2, and more generally if any operand is a
12365 -- constant that is not a power of 2, then the parentheses
12366 -- cannot affect whether overflow occurs. We only bother to
12367 -- test the left most operand
12369 -- Loop looking at left operands for one that has known value
12371 Opnd := Rorig;
12372 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
12373 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
12374 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
12376 -- Operand value of 0 or 1 skips warning
12378 if Lval <= 1 then
12379 return;
12381 -- Otherwise check power of 2, if power of 2, warn, if
12382 -- anything else, skip warning.
12384 else
12385 while Lval /= 2 loop
12386 if Lval mod 2 = 1 then
12387 return;
12388 else
12389 Lval := Lval / 2;
12390 end if;
12391 end loop;
12393 exit Opnd_Loop;
12394 end if;
12395 end if;
12397 -- Keep looking at left operands
12399 Opnd := Left_Opnd (Opnd);
12400 end loop Opnd_Loop;
12402 -- For rem or "/" we can only have a problematic situation
12403 -- if the divisor has a value of minus one or one. Otherwise
12404 -- overflow is impossible (divisor > 1) or we have a case of
12405 -- division by zero in any case.
12407 if Nkind (Rorig) in N_Op_Divide | N_Op_Rem
12408 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
12409 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
12410 then
12411 return;
12412 end if;
12414 -- If we fall through warning should be issued
12416 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
12418 Error_Msg_N
12419 ("??unary minus expression should be parenthesized here!", N);
12420 end if;
12421 end if;
12422 end;
12423 end Resolve_Unary_Op;
12425 ----------------------------------
12426 -- Resolve_Unchecked_Expression --
12427 ----------------------------------
12429 procedure Resolve_Unchecked_Expression
12430 (N : Node_Id;
12431 Typ : Entity_Id)
12433 begin
12434 Resolve (Expression (N), Typ, Suppress => All_Checks);
12435 Set_Etype (N, Typ);
12436 end Resolve_Unchecked_Expression;
12438 ---------------------------------------
12439 -- Resolve_Unchecked_Type_Conversion --
12440 ---------------------------------------
12442 procedure Resolve_Unchecked_Type_Conversion
12443 (N : Node_Id;
12444 Typ : Entity_Id)
12446 pragma Warnings (Off, Typ);
12448 Operand : constant Node_Id := Expression (N);
12449 Opnd_Type : constant Entity_Id := Etype (Operand);
12451 begin
12452 -- Resolve operand using its own type
12454 Resolve (Operand, Opnd_Type);
12456 -- If the expression is a conversion to universal integer of an
12457 -- an expression with an integer type, then we can eliminate the
12458 -- intermediate conversion to universal integer.
12460 if Nkind (Operand) = N_Type_Conversion
12461 and then Entity (Subtype_Mark (Operand)) = Universal_Integer
12462 and then Is_Integer_Type (Etype (Expression (Operand)))
12463 then
12464 Rewrite (Operand, Relocate_Node (Expression (Operand)));
12465 Analyze_And_Resolve (Operand);
12466 end if;
12468 -- In an inlined context, the unchecked conversion may be applied
12469 -- to a literal, in which case its type is the type of the context.
12470 -- (In other contexts conversions cannot apply to literals).
12472 if In_Inlined_Body
12473 and then (Opnd_Type = Any_Character or else
12474 Opnd_Type = Any_Integer or else
12475 Opnd_Type = Any_Real)
12476 then
12477 Set_Etype (Operand, Typ);
12478 end if;
12480 Analyze_Dimension (N);
12481 Eval_Unchecked_Conversion (N);
12482 end Resolve_Unchecked_Type_Conversion;
12484 ------------------------------
12485 -- Rewrite_Operator_As_Call --
12486 ------------------------------
12488 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
12489 Loc : constant Source_Ptr := Sloc (N);
12490 Actuals : constant List_Id := New_List;
12491 New_N : Node_Id;
12493 begin
12494 if Nkind (N) in N_Binary_Op then
12495 Append (Left_Opnd (N), Actuals);
12496 end if;
12498 Append (Right_Opnd (N), Actuals);
12500 New_N :=
12501 Make_Function_Call (Sloc => Loc,
12502 Name => New_Occurrence_Of (Nam, Loc),
12503 Parameter_Associations => Actuals);
12505 Preserve_Comes_From_Source (New_N, N);
12506 Preserve_Comes_From_Source (Name (New_N), N);
12507 Rewrite (N, New_N);
12508 Set_Etype (N, Etype (Nam));
12509 end Rewrite_Operator_As_Call;
12511 ------------------------------
12512 -- Rewrite_Renamed_Operator --
12513 ------------------------------
12515 procedure Rewrite_Renamed_Operator
12516 (N : Node_Id;
12517 Op : Entity_Id;
12518 Typ : Entity_Id)
12520 Nam : constant Name_Id := Chars (Op);
12521 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
12522 Op_Node : Node_Id;
12524 begin
12525 -- Do not perform this transformation within a pre/postcondition,
12526 -- because the expression will be reanalyzed, and the transformation
12527 -- might affect the visibility of the operator, e.g. in an instance.
12528 -- Note that fully analyzed and expanded pre/postconditions appear as
12529 -- pragma Check equivalents.
12531 if In_Pre_Post_Condition (N) then
12532 return;
12533 end if;
12535 -- Likewise when an expression function is being preanalyzed, since the
12536 -- expression will be reanalyzed as part of the generated body.
12538 if In_Spec_Expression then
12539 declare
12540 S : constant Entity_Id := Current_Scope_No_Loops;
12541 begin
12542 if Ekind (S) = E_Function
12543 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
12544 N_Expression_Function
12545 then
12546 return;
12547 end if;
12548 end;
12549 end if;
12551 -- Rewrite the operator node using the real operator, not its renaming.
12552 -- Exclude user-defined intrinsic operations of the same name, which are
12553 -- treated separately and rewritten as calls.
12555 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
12556 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
12557 Set_Chars (Op_Node, Nam);
12558 Set_Etype (Op_Node, Etype (N));
12559 Set_Entity (Op_Node, Op);
12560 Set_Right_Opnd (Op_Node, Right_Opnd (N));
12562 -- Indicate that both the original entity and its renaming are
12563 -- referenced at this point.
12565 Generate_Reference (Entity (N), N);
12566 Generate_Reference (Op, N);
12568 if Is_Binary then
12569 Set_Left_Opnd (Op_Node, Left_Opnd (N));
12570 end if;
12572 Rewrite (N, Op_Node);
12574 -- If the context type is private, add the appropriate conversions so
12575 -- that the operator is applied to the full view. This is done in the
12576 -- routines that resolve intrinsic operators.
12578 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
12579 case Nkind (N) is
12580 when N_Op_Add
12581 | N_Op_Divide
12582 | N_Op_Expon
12583 | N_Op_Mod
12584 | N_Op_Multiply
12585 | N_Op_Rem
12586 | N_Op_Subtract
12588 Resolve_Intrinsic_Operator (N, Typ);
12590 when N_Op_Abs
12591 | N_Op_Minus
12592 | N_Op_Plus
12594 Resolve_Intrinsic_Unary_Operator (N, Typ);
12596 when others =>
12597 Resolve (N, Typ);
12598 end case;
12599 end if;
12601 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
12603 -- Operator renames a user-defined operator of the same name. Use the
12604 -- original operator in the node, which is the one Gigi knows about.
12606 Set_Entity (N, Op);
12607 Set_Is_Overloaded (N, False);
12608 end if;
12609 end Rewrite_Renamed_Operator;
12611 -----------------------
12612 -- Set_Slice_Subtype --
12613 -----------------------
12615 -- Build an implicit subtype declaration to represent the type delivered by
12616 -- the slice. This is an abbreviated version of an array subtype. We define
12617 -- an index subtype for the slice, using either the subtype name or the
12618 -- discrete range of the slice. To be consistent with index usage elsewhere
12619 -- we create a list header to hold the single index. This list is not
12620 -- otherwise attached to the syntax tree.
12622 procedure Set_Slice_Subtype (N : Node_Id) is
12623 Loc : constant Source_Ptr := Sloc (N);
12624 Index_List : constant List_Id := New_List;
12625 Index : Node_Id;
12626 Index_Subtype : Entity_Id;
12627 Index_Type : Entity_Id;
12628 Slice_Subtype : Entity_Id;
12629 Drange : constant Node_Id := Discrete_Range (N);
12631 begin
12632 Index_Type := Base_Type (Etype (Drange));
12634 if Is_Entity_Name (Drange) then
12635 Index_Subtype := Entity (Drange);
12637 else
12638 -- We force the evaluation of a range. This is definitely needed in
12639 -- the renamed case, and seems safer to do unconditionally. Note in
12640 -- any case that since we will create and insert an Itype referring
12641 -- to this range, we must make sure any side effect removal actions
12642 -- are inserted before the Itype definition.
12644 if Nkind (Drange) = N_Range then
12645 Force_Evaluation (Low_Bound (Drange));
12646 Force_Evaluation (High_Bound (Drange));
12648 -- If the discrete range is given by a subtype indication, the
12649 -- type of the slice is the base of the subtype mark.
12651 elsif Nkind (Drange) = N_Subtype_Indication then
12652 declare
12653 R : constant Node_Id := Range_Expression (Constraint (Drange));
12654 begin
12655 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
12656 Force_Evaluation (Low_Bound (R));
12657 Force_Evaluation (High_Bound (R));
12658 end;
12659 end if;
12661 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
12663 -- Take a new copy of Drange (where bounds have been rewritten to
12664 -- reference side-effect-free names). Using a separate tree ensures
12665 -- that further expansion (e.g. while rewriting a slice assignment
12666 -- into a FOR loop) does not attempt to remove side effects on the
12667 -- bounds again (which would cause the bounds in the index subtype
12668 -- definition to refer to temporaries before they are defined) (the
12669 -- reason is that some names are considered side effect free here
12670 -- for the subtype, but not in the context of a loop iteration
12671 -- scheme).
12673 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
12674 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
12675 Set_Etype (Index_Subtype, Index_Type);
12676 Set_Size_Info (Index_Subtype, Index_Type);
12677 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
12678 Set_Is_Constrained (Index_Subtype);
12679 end if;
12681 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
12683 Index := New_Occurrence_Of (Index_Subtype, Loc);
12684 Set_Etype (Index, Index_Subtype);
12685 Append (Index, Index_List);
12687 Set_First_Index (Slice_Subtype, Index);
12688 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
12689 Set_Is_Constrained (Slice_Subtype, True);
12691 Check_Compile_Time_Size (Slice_Subtype);
12693 -- The Etype of the existing Slice node is reset to this slice subtype.
12694 -- Its bounds are obtained from its first index.
12696 Set_Etype (N, Slice_Subtype);
12698 -- For bit-packed slice subtypes, freeze immediately (except in the case
12699 -- of being in a "spec expression" where we never freeze when we first
12700 -- see the expression).
12702 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
12703 Freeze_Itype (Slice_Subtype, N);
12705 -- For all other cases insert an itype reference in the slice's actions
12706 -- so that the itype is frozen at the proper place in the tree (i.e. at
12707 -- the point where actions for the slice are analyzed). Note that this
12708 -- is different from freezing the itype immediately, which might be
12709 -- premature (e.g. if the slice is within a transient scope). This needs
12710 -- to be done only if expansion is enabled.
12712 elsif Expander_Active then
12713 Ensure_Defined (Typ => Slice_Subtype, N => N);
12714 end if;
12715 end Set_Slice_Subtype;
12717 --------------------------------
12718 -- Set_String_Literal_Subtype --
12719 --------------------------------
12721 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
12722 Loc : constant Source_Ptr := Sloc (N);
12723 Low_Bound : constant Node_Id :=
12724 Type_Low_Bound (Etype (First_Index (Typ)));
12725 Subtype_Id : Entity_Id;
12727 begin
12728 if Nkind (N) /= N_String_Literal then
12729 return;
12730 end if;
12732 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
12733 Set_String_Literal_Length (Subtype_Id, UI_From_Int
12734 (String_Length (Strval (N))));
12735 Set_Etype (Subtype_Id, Base_Type (Typ));
12736 Set_Is_Constrained (Subtype_Id);
12737 Set_Etype (N, Subtype_Id);
12739 -- The low bound is set from the low bound of the corresponding index
12740 -- type. Note that we do not store the high bound in the string literal
12741 -- subtype, but it can be deduced if necessary from the length and the
12742 -- low bound.
12744 if Is_OK_Static_Expression (Low_Bound) then
12745 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
12747 -- If the lower bound is not static we create a range for the string
12748 -- literal, using the index type and the known length of the literal.
12749 -- If the length is 1, then the upper bound is set to a mere copy of
12750 -- the lower bound; or else, if the index type is a signed integer,
12751 -- then the upper bound is computed as Low_Bound + L - 1; otherwise,
12752 -- the upper bound is computed as T'Val (T'Pos (Low_Bound) + L - 1).
12754 else
12755 declare
12756 Length : constant Nat := String_Length (Strval (N));
12757 Index_List : constant List_Id := New_List;
12758 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
12759 Array_Subtype : Entity_Id;
12760 Drange : Node_Id;
12761 High_Bound : Node_Id;
12762 Index : Node_Id;
12763 Index_Subtype : Entity_Id;
12765 begin
12766 if Length = 1 then
12767 High_Bound := New_Copy_Tree (Low_Bound);
12769 elsif Is_Signed_Integer_Type (Index_Type) then
12770 High_Bound :=
12771 Make_Op_Add (Loc,
12772 Left_Opnd => New_Copy_Tree (Low_Bound),
12773 Right_Opnd => Make_Integer_Literal (Loc, Length - 1));
12775 else
12776 High_Bound :=
12777 Make_Attribute_Reference (Loc,
12778 Attribute_Name => Name_Val,
12779 Prefix =>
12780 New_Occurrence_Of (Index_Type, Loc),
12781 Expressions => New_List (
12782 Make_Op_Add (Loc,
12783 Left_Opnd =>
12784 Make_Attribute_Reference (Loc,
12785 Attribute_Name => Name_Pos,
12786 Prefix =>
12787 New_Occurrence_Of (Index_Type, Loc),
12788 Expressions =>
12789 New_List (New_Copy_Tree (Low_Bound))),
12790 Right_Opnd =>
12791 Make_Integer_Literal (Loc, Length - 1))));
12792 end if;
12794 if Is_Integer_Type (Index_Type) then
12795 Set_String_Literal_Low_Bound
12796 (Subtype_Id, Make_Integer_Literal (Loc, 1));
12798 else
12799 -- If the index type is an enumeration type, build bounds
12800 -- expression with attributes.
12802 Set_String_Literal_Low_Bound
12803 (Subtype_Id,
12804 Make_Attribute_Reference (Loc,
12805 Attribute_Name => Name_First,
12806 Prefix =>
12807 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
12808 end if;
12810 Analyze_And_Resolve
12811 (String_Literal_Low_Bound (Subtype_Id), Base_Type (Index_Type));
12813 -- Build bona fide subtype for the string, and wrap it in an
12814 -- unchecked conversion, because the back end expects the
12815 -- String_Literal_Subtype to have a static lower bound.
12817 Index_Subtype :=
12818 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
12819 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
12820 Set_Scalar_Range (Index_Subtype, Drange);
12821 Set_Parent (Drange, N);
12822 Analyze_And_Resolve (Drange, Index_Type);
12824 -- In this context, the Index_Type may already have a constraint,
12825 -- so use common base type on string subtype. The base type may
12826 -- be used when generating attributes of the string, for example
12827 -- in the context of a slice assignment.
12829 Set_Etype (Index_Subtype, Base_Type (Index_Type));
12830 Set_Size_Info (Index_Subtype, Index_Type);
12831 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
12833 Array_Subtype := Create_Itype (E_Array_Subtype, N);
12835 Index := New_Occurrence_Of (Index_Subtype, Loc);
12836 Set_Etype (Index, Index_Subtype);
12837 Append (Index, Index_List);
12839 Set_First_Index (Array_Subtype, Index);
12840 Set_Etype (Array_Subtype, Base_Type (Typ));
12841 Set_Is_Constrained (Array_Subtype, True);
12843 Rewrite (N, Unchecked_Convert_To (Array_Subtype, N));
12844 Set_Etype (N, Array_Subtype);
12845 end;
12846 end if;
12847 end Set_String_Literal_Subtype;
12849 ------------------------------
12850 -- Simplify_Type_Conversion --
12851 ------------------------------
12853 procedure Simplify_Type_Conversion (N : Node_Id) is
12854 begin
12855 if Nkind (N) = N_Type_Conversion then
12856 declare
12857 Operand : constant Node_Id := Expression (N);
12858 Target_Typ : constant Entity_Id := Etype (N);
12859 Opnd_Typ : constant Entity_Id := Etype (Operand);
12861 begin
12862 -- Special processing if the conversion is the expression of a
12863 -- Rounding or Truncation attribute reference. In this case we
12864 -- replace:
12866 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
12868 -- by
12870 -- ityp (x)
12872 -- with the Float_Truncate flag set to False or True respectively,
12873 -- which is more efficient. We reuse Rounding for Machine_Rounding
12874 -- as System.Fat_Gen, which is a permissible behavior.
12876 if Is_Floating_Point_Type (Opnd_Typ)
12877 and then
12878 (Is_Integer_Type (Target_Typ)
12879 or else (Is_Fixed_Point_Type (Target_Typ)
12880 and then Conversion_OK (N)))
12881 and then Nkind (Operand) = N_Attribute_Reference
12882 and then Attribute_Name (Operand) in Name_Rounding
12883 | Name_Machine_Rounding
12884 | Name_Truncation
12885 then
12886 declare
12887 Truncate : constant Boolean :=
12888 Attribute_Name (Operand) = Name_Truncation;
12889 begin
12890 Rewrite (Operand,
12891 Relocate_Node (First (Expressions (Operand))));
12892 Set_Float_Truncate (N, Truncate);
12893 end;
12895 -- Special processing for the conversion of an integer literal to
12896 -- a dynamic type: we first convert the literal to the root type
12897 -- and then convert the result to the target type, the goal being
12898 -- to avoid doing range checks in universal integer.
12900 elsif Is_Integer_Type (Target_Typ)
12901 and then not Is_Generic_Type (Root_Type (Target_Typ))
12902 and then Nkind (Operand) = N_Integer_Literal
12903 and then Opnd_Typ = Universal_Integer
12904 then
12905 Convert_To_And_Rewrite (Root_Type (Target_Typ), Operand);
12906 Analyze_And_Resolve (Operand);
12908 -- If the expression is a conversion to universal integer of an
12909 -- an expression with an integer type, then we can eliminate the
12910 -- intermediate conversion to universal integer.
12912 elsif Nkind (Operand) = N_Type_Conversion
12913 and then Entity (Subtype_Mark (Operand)) = Universal_Integer
12914 and then Is_Integer_Type (Etype (Expression (Operand)))
12915 then
12916 Rewrite (Operand, Relocate_Node (Expression (Operand)));
12917 Analyze_And_Resolve (Operand);
12918 end if;
12919 end;
12920 end if;
12921 end Simplify_Type_Conversion;
12923 ------------------------------
12924 -- Try_User_Defined_Literal --
12925 ------------------------------
12927 function Try_User_Defined_Literal
12928 (N : Node_Id;
12929 Typ : Entity_Id) return Boolean
12931 begin
12932 if Nkind (N) in N_Op_Add | N_Op_Divide | N_Op_Mod | N_Op_Multiply
12933 | N_Op_Rem | N_Op_Subtract
12934 then
12936 -- Both operands must have the same type as the context.
12937 -- (ignoring for now fixed-point and exponentiation ops).
12939 if Has_Applicable_User_Defined_Literal (Right_Opnd (N), Typ) then
12940 Resolve (Left_Opnd (N), Typ);
12941 Analyze_And_Resolve (N, Typ);
12942 return True;
12943 end if;
12946 Has_Applicable_User_Defined_Literal (Left_Opnd (N), Typ)
12947 then
12948 Resolve (Right_Opnd (N), Typ);
12949 Analyze_And_Resolve (N, Typ);
12950 return True;
12952 else
12953 return False;
12954 end if;
12956 elsif Nkind (N) in N_Binary_Op then
12957 -- For other operators the context does not impose a type on
12958 -- the operands, but their types must match.
12960 if (Nkind (Left_Opnd (N))
12961 not in N_Integer_Literal | N_String_Literal | N_Real_Literal)
12962 and then
12963 Has_Applicable_User_Defined_Literal
12964 (Right_Opnd (N), Etype (Left_Opnd (N)))
12965 then
12966 Analyze_And_Resolve (N, Typ);
12967 return True;
12969 elsif (Nkind (Right_Opnd (N))
12970 not in N_Integer_Literal | N_String_Literal | N_Real_Literal)
12971 and then
12972 Has_Applicable_User_Defined_Literal
12973 (Left_Opnd (N), Etype (Right_Opnd (N)))
12974 then
12975 Analyze_And_Resolve (N, Typ);
12976 return True;
12977 else
12978 return False;
12979 end if;
12981 elsif Nkind (N) in N_Unary_Op
12982 and then
12983 Has_Applicable_User_Defined_Literal (Right_Opnd (N), Typ)
12984 then
12985 Analyze_And_Resolve (N, Typ);
12986 return True;
12988 else -- Other operators
12989 return False;
12990 end if;
12991 end Try_User_Defined_Literal;
12993 -----------------------------
12994 -- Unique_Fixed_Point_Type --
12995 -----------------------------
12997 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
12998 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
12999 -- Give error messages for true ambiguity. Messages are posted on node
13000 -- N, and entities T1, T2 are the possible interpretations.
13002 -----------------------
13003 -- Fixed_Point_Error --
13004 -----------------------
13006 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
13007 begin
13008 Error_Msg_N ("ambiguous universal_fixed_expression", N);
13009 Error_Msg_NE ("\\possible interpretation as}", N, T1);
13010 Error_Msg_NE ("\\possible interpretation as}", N, T2);
13011 end Fixed_Point_Error;
13013 -- Local variables
13015 ErrN : Node_Id;
13016 Item : Node_Id;
13017 Scop : Entity_Id;
13018 T1 : Entity_Id;
13019 T2 : Entity_Id;
13021 -- Start of processing for Unique_Fixed_Point_Type
13023 begin
13024 -- The operations on Duration are visible, so Duration is always a
13025 -- possible interpretation.
13027 T1 := Standard_Duration;
13029 -- Look for fixed-point types in enclosing scopes
13031 Scop := Current_Scope;
13032 while Scop /= Standard_Standard loop
13033 T2 := First_Entity (Scop);
13034 while Present (T2) loop
13035 if Is_Fixed_Point_Type (T2)
13036 and then Current_Entity (T2) = T2
13037 and then Scope (Base_Type (T2)) = Scop
13038 then
13039 if Present (T1) then
13040 Fixed_Point_Error (T1, T2);
13041 return Any_Type;
13042 else
13043 T1 := T2;
13044 end if;
13045 end if;
13047 Next_Entity (T2);
13048 end loop;
13050 Scop := Scope (Scop);
13051 end loop;
13053 -- Look for visible fixed type declarations in the context
13055 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
13056 while Present (Item) loop
13057 if Nkind (Item) = N_With_Clause then
13058 Scop := Entity (Name (Item));
13059 T2 := First_Entity (Scop);
13060 while Present (T2) loop
13061 if Is_Fixed_Point_Type (T2)
13062 and then Scope (Base_Type (T2)) = Scop
13063 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
13064 then
13065 if Present (T1) then
13066 Fixed_Point_Error (T1, T2);
13067 return Any_Type;
13068 else
13069 T1 := T2;
13070 end if;
13071 end if;
13073 Next_Entity (T2);
13074 end loop;
13075 end if;
13077 Next (Item);
13078 end loop;
13080 if Nkind (N) = N_Real_Literal then
13081 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
13083 else
13084 -- When the context is a type conversion, issue the warning on the
13085 -- expression of the conversion because it is the actual operation.
13087 if Nkind (N) in N_Type_Conversion | N_Unchecked_Type_Conversion then
13088 ErrN := Expression (N);
13089 else
13090 ErrN := N;
13091 end if;
13093 Error_Msg_NE
13094 ("??universal_fixed expression interpreted as }!", ErrN, T1);
13095 end if;
13097 return T1;
13098 end Unique_Fixed_Point_Type;
13100 ----------------------
13101 -- Valid_Conversion --
13102 ----------------------
13104 function Valid_Conversion
13105 (N : Node_Id;
13106 Target : Entity_Id;
13107 Operand : Node_Id;
13108 Report_Errs : Boolean := True) return Boolean
13110 Target_Type : constant Entity_Id := Base_Type (Target);
13111 Opnd_Type : Entity_Id := Etype (Operand);
13112 Inc_Ancestor : Entity_Id;
13114 function Conversion_Check
13115 (Valid : Boolean;
13116 Msg : String) return Boolean;
13117 -- Little routine to post Msg if Valid is False, returns Valid value
13119 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
13120 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
13122 procedure Conversion_Error_NE
13123 (Msg : String;
13124 N : Node_Or_Entity_Id;
13125 E : Node_Or_Entity_Id);
13126 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
13128 function In_Instance_Code return Boolean;
13129 -- Return True if expression is within an instance but is not in one of
13130 -- the actuals of the instantiation. Type conversions within an instance
13131 -- are not rechecked because type visbility may lead to spurious errors,
13132 -- but conversions in an actual for a formal object must be checked.
13134 function Is_Discrim_Of_Bad_Access_Conversion_Argument
13135 (Expr : Node_Id) return Boolean;
13136 -- Implicit anonymous-to-named access type conversions are not allowed
13137 -- if the "statically deeper than" relationship does not apply to the
13138 -- type of the conversion operand. See RM 8.6(28.1) and AARM 8.6(28.d).
13139 -- We deal with most such cases elsewhere so that we can emit more
13140 -- specific error messages (e.g., if the operand is an access parameter
13141 -- or a saooaaat (stand-alone object of an anonymous access type)), but
13142 -- here is where we catch the case where the operand is an access
13143 -- discriminant selected from a dereference of another such "bad"
13144 -- conversion argument.
13146 function Valid_Tagged_Conversion
13147 (Target_Type : Entity_Id;
13148 Opnd_Type : Entity_Id) return Boolean;
13149 -- Specifically test for validity of tagged conversions
13151 function Valid_Array_Conversion return Boolean;
13152 -- Check index and component conformance, and accessibility levels if
13153 -- the component types are anonymous access types (Ada 2005).
13155 ----------------------
13156 -- Conversion_Check --
13157 ----------------------
13159 function Conversion_Check
13160 (Valid : Boolean;
13161 Msg : String) return Boolean
13163 begin
13164 if not Valid
13166 -- A generic unit has already been analyzed and we have verified
13167 -- that a particular conversion is OK in that context. Since the
13168 -- instance is reanalyzed without relying on the relationships
13169 -- established during the analysis of the generic, it is possible
13170 -- to end up with inconsistent views of private types. Do not emit
13171 -- the error message in such cases. The rest of the machinery in
13172 -- Valid_Conversion still ensures the proper compatibility of
13173 -- target and operand types.
13175 and then not In_Instance_Code
13176 then
13177 Conversion_Error_N (Msg, Operand);
13178 end if;
13180 return Valid;
13181 end Conversion_Check;
13183 ------------------------
13184 -- Conversion_Error_N --
13185 ------------------------
13187 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
13188 begin
13189 if Report_Errs then
13190 Error_Msg_N (Msg, N);
13191 end if;
13192 end Conversion_Error_N;
13194 -------------------------
13195 -- Conversion_Error_NE --
13196 -------------------------
13198 procedure Conversion_Error_NE
13199 (Msg : String;
13200 N : Node_Or_Entity_Id;
13201 E : Node_Or_Entity_Id)
13203 begin
13204 if Report_Errs then
13205 Error_Msg_NE (Msg, N, E);
13206 end if;
13207 end Conversion_Error_NE;
13209 ----------------------
13210 -- In_Instance_Code --
13211 ----------------------
13213 function In_Instance_Code return Boolean is
13214 Par : Node_Id;
13216 begin
13217 if not In_Instance then
13218 return False;
13220 else
13221 Par := Parent (N);
13222 while Present (Par) loop
13224 -- The expression is part of an actual object if it appears in
13225 -- the generated object declaration in the instance.
13227 if Nkind (Par) = N_Object_Declaration
13228 and then Present (Corresponding_Generic_Association (Par))
13229 then
13230 return False;
13232 else
13233 exit when
13234 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
13235 or else Nkind (Par) in N_Subprogram_Call
13236 or else Nkind (Par) in N_Declaration;
13237 end if;
13239 Par := Parent (Par);
13240 end loop;
13242 -- Otherwise the expression appears within the instantiated unit
13244 return True;
13245 end if;
13246 end In_Instance_Code;
13248 --------------------------------------------------
13249 -- Is_Discrim_Of_Bad_Access_Conversion_Argument --
13250 --------------------------------------------------
13252 function Is_Discrim_Of_Bad_Access_Conversion_Argument
13253 (Expr : Node_Id) return Boolean
13255 Exp_Type : Entity_Id := Base_Type (Etype (Expr));
13256 pragma Assert (Is_Access_Type (Exp_Type));
13258 Associated_Node : Node_Id;
13259 Deref_Prefix : Node_Id;
13260 begin
13261 if not Is_Anonymous_Access_Type (Exp_Type) then
13262 return False;
13263 end if;
13265 pragma Assert (Is_Itype (Exp_Type));
13266 Associated_Node := Associated_Node_For_Itype (Exp_Type);
13268 if Nkind (Associated_Node) /= N_Discriminant_Specification then
13269 return False; -- not the type of an access discriminant
13270 end if;
13272 -- return False if Expr not of form <prefix>.all.Some_Component
13274 if (Nkind (Expr) /= N_Selected_Component)
13275 or else (Nkind (Prefix (Expr)) /= N_Explicit_Dereference)
13276 then
13277 -- conditional expressions, declare expressions ???
13278 return False;
13279 end if;
13281 Deref_Prefix := Prefix (Prefix (Expr));
13282 Exp_Type := Base_Type (Etype (Deref_Prefix));
13284 -- The "statically deeper relationship" does not apply
13285 -- to generic formal access types, so a prefix of such
13286 -- a type is a "bad" prefix.
13288 if Is_Generic_Formal (Exp_Type) then
13289 return True;
13291 -- The "statically deeper relationship" does apply to
13292 -- any other named access type.
13294 elsif not Is_Anonymous_Access_Type (Exp_Type) then
13295 return False;
13296 end if;
13298 pragma Assert (Is_Itype (Exp_Type));
13299 Associated_Node := Associated_Node_For_Itype (Exp_Type);
13301 -- The "statically deeper relationship" applies to some
13302 -- anonymous access types and not to others. Return
13303 -- True for the cases where it does not apply. Also check
13304 -- recursively for the
13305 -- <prefix>.all.Access_Discrim.all.Access_Discrim case,
13306 -- where the correct result depends on <prefix>.
13308 return Nkind (Associated_Node) in
13309 N_Procedure_Specification | -- access parameter
13310 N_Function_Specification | -- access parameter
13311 N_Object_Declaration -- saooaaat
13312 or else Is_Discrim_Of_Bad_Access_Conversion_Argument (Deref_Prefix);
13313 end Is_Discrim_Of_Bad_Access_Conversion_Argument;
13315 ----------------------------
13316 -- Valid_Array_Conversion --
13317 ----------------------------
13319 function Valid_Array_Conversion return Boolean is
13320 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
13321 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
13323 Opnd_Index : Node_Id;
13324 Opnd_Index_Type : Entity_Id;
13326 Target_Comp_Type : constant Entity_Id :=
13327 Component_Type (Target_Type);
13328 Target_Comp_Base : constant Entity_Id :=
13329 Base_Type (Target_Comp_Type);
13331 Target_Index : Node_Id;
13332 Target_Index_Type : Entity_Id;
13334 begin
13335 -- Error if wrong number of dimensions
13338 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
13339 then
13340 Conversion_Error_N
13341 ("incompatible number of dimensions for conversion", Operand);
13342 return False;
13344 -- Number of dimensions matches
13346 else
13347 -- Loop through indexes of the two arrays
13349 Target_Index := First_Index (Target_Type);
13350 Opnd_Index := First_Index (Opnd_Type);
13351 while Present (Target_Index) and then Present (Opnd_Index) loop
13352 Target_Index_Type := Etype (Target_Index);
13353 Opnd_Index_Type := Etype (Opnd_Index);
13355 -- Error if index types are incompatible
13357 if not (Is_Integer_Type (Target_Index_Type)
13358 and then Is_Integer_Type (Opnd_Index_Type))
13359 and then (Root_Type (Target_Index_Type)
13360 /= Root_Type (Opnd_Index_Type))
13361 then
13362 Conversion_Error_N
13363 ("incompatible index types for array conversion",
13364 Operand);
13365 return False;
13366 end if;
13368 Next_Index (Target_Index);
13369 Next_Index (Opnd_Index);
13370 end loop;
13372 -- If component types have same base type, all set
13374 if Target_Comp_Base = Opnd_Comp_Base then
13375 null;
13377 -- Here if base types of components are not the same. The only
13378 -- time this is allowed is if we have anonymous access types.
13380 -- The conversion of arrays of anonymous access types can lead
13381 -- to dangling pointers. AI-392 formalizes the accessibility
13382 -- checks that must be applied to such conversions to prevent
13383 -- out-of-scope references.
13385 elsif Ekind (Target_Comp_Base) in
13386 E_Anonymous_Access_Type
13387 | E_Anonymous_Access_Subprogram_Type
13388 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
13389 and then
13390 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
13391 then
13392 if Type_Access_Level (Target_Type) <
13393 Deepest_Type_Access_Level (Opnd_Type)
13394 then
13395 if In_Instance_Body then
13396 Error_Msg_Warn := SPARK_Mode /= On;
13397 Conversion_Error_N
13398 ("source array type has deeper accessibility "
13399 & "level than target<<", Operand);
13400 Conversion_Error_N ("\Program_Error [<<", Operand);
13401 Rewrite (N,
13402 Make_Raise_Program_Error (Sloc (N),
13403 Reason => PE_Accessibility_Check_Failed));
13404 Set_Etype (N, Target_Type);
13405 return False;
13407 -- Conversion not allowed because of accessibility levels
13409 else
13410 Conversion_Error_N
13411 ("source array type has deeper accessibility "
13412 & "level than target", Operand);
13413 return False;
13414 end if;
13416 else
13417 null;
13418 end if;
13420 -- All other cases where component base types do not match
13422 else
13423 Conversion_Error_N
13424 ("incompatible component types for array conversion",
13425 Operand);
13426 return False;
13427 end if;
13429 -- Check that component subtypes statically match. For numeric
13430 -- types this means that both must be either constrained or
13431 -- unconstrained. For enumeration types the bounds must match.
13432 -- All of this is checked in Subtypes_Statically_Match.
13434 if not Subtypes_Statically_Match
13435 (Target_Comp_Type, Opnd_Comp_Type)
13436 then
13437 Conversion_Error_N
13438 ("component subtypes must statically match", Operand);
13439 return False;
13440 end if;
13441 end if;
13443 return True;
13444 end Valid_Array_Conversion;
13446 -----------------------------
13447 -- Valid_Tagged_Conversion --
13448 -----------------------------
13450 function Valid_Tagged_Conversion
13451 (Target_Type : Entity_Id;
13452 Opnd_Type : Entity_Id) return Boolean
13454 begin
13455 -- Upward conversions are allowed (RM 4.6(22))
13457 if Covers (Target_Type, Opnd_Type)
13458 or else Is_Ancestor (Target_Type, Opnd_Type)
13459 then
13460 return True;
13462 -- Downward conversion are allowed if the operand is class-wide
13463 -- (RM 4.6(23)).
13465 elsif Is_Class_Wide_Type (Opnd_Type)
13466 and then Covers (Opnd_Type, Target_Type)
13467 then
13468 return True;
13470 elsif Covers (Opnd_Type, Target_Type)
13471 or else Is_Ancestor (Opnd_Type, Target_Type)
13472 then
13473 return
13474 Conversion_Check (False,
13475 "downward conversion of tagged objects not allowed");
13477 -- Ada 2005 (AI-251): The conversion to/from interface types is
13478 -- always valid. The types involved may be class-wide (sub)types.
13480 elsif Is_Interface (Etype (Base_Type (Target_Type)))
13481 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
13482 then
13483 return True;
13485 -- If the operand is a class-wide type obtained through a limited_
13486 -- with clause, and the context includes the nonlimited view, use
13487 -- it to determine whether the conversion is legal.
13489 elsif Is_Class_Wide_Type (Opnd_Type)
13490 and then From_Limited_With (Opnd_Type)
13491 and then Present (Non_Limited_View (Etype (Opnd_Type)))
13492 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
13493 then
13494 return True;
13496 elsif Is_Access_Type (Opnd_Type)
13497 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
13498 then
13499 return True;
13501 else
13502 Conversion_Error_NE
13503 ("invalid tagged conversion, not compatible with}",
13504 N, First_Subtype (Opnd_Type));
13505 return False;
13506 end if;
13507 end Valid_Tagged_Conversion;
13509 -- Start of processing for Valid_Conversion
13511 begin
13512 Check_Parameterless_Call (Operand);
13514 if Is_Overloaded (Operand) then
13515 declare
13516 I : Interp_Index;
13517 I1 : Interp_Index;
13518 It : Interp;
13519 It1 : Interp;
13520 N1 : Entity_Id;
13521 T1 : Entity_Id;
13523 begin
13524 -- Remove procedure calls, which syntactically cannot appear in
13525 -- this context, but which cannot be removed by type checking,
13526 -- because the context does not impose a type.
13528 -- The node may be labelled overloaded, but still contain only one
13529 -- interpretation because others were discarded earlier. If this
13530 -- is the case, retain the single interpretation if legal.
13532 Get_First_Interp (Operand, I, It);
13533 Opnd_Type := It.Typ;
13534 Get_Next_Interp (I, It);
13536 if Present (It.Typ)
13537 and then Opnd_Type /= Standard_Void_Type
13538 then
13539 -- More than one candidate interpretation is available
13541 Get_First_Interp (Operand, I, It);
13542 while Present (It.Typ) loop
13543 if It.Typ = Standard_Void_Type then
13544 Remove_Interp (I);
13545 end if;
13547 -- When compiling for a system where Address is of a visible
13548 -- integer type, spurious ambiguities can be produced when
13549 -- arithmetic operations have a literal operand and return
13550 -- System.Address or a descendant of it. These ambiguities
13551 -- are usually resolved by the context, but for conversions
13552 -- there is no context type and the removal of the spurious
13553 -- operations must be done explicitly here.
13555 if not Address_Is_Private
13556 and then Is_Descendant_Of_Address (It.Typ)
13557 then
13558 Remove_Interp (I);
13559 end if;
13561 Get_Next_Interp (I, It);
13562 end loop;
13563 end if;
13565 Get_First_Interp (Operand, I, It);
13566 I1 := I;
13567 It1 := It;
13569 if No (It.Typ) then
13570 Conversion_Error_N ("illegal operand in conversion", Operand);
13571 return False;
13572 end if;
13574 Get_Next_Interp (I, It);
13576 if Present (It.Typ) then
13577 N1 := It1.Nam;
13578 T1 := It1.Typ;
13579 It1 := Disambiguate (Operand, I1, I, Any_Type);
13581 if It1 = No_Interp then
13582 Conversion_Error_N
13583 ("ambiguous operand in conversion", Operand);
13585 -- If the interpretation involves a standard operator, use
13586 -- the location of the type, which may be user-defined.
13588 if Sloc (It.Nam) = Standard_Location then
13589 Error_Msg_Sloc := Sloc (It.Typ);
13590 else
13591 Error_Msg_Sloc := Sloc (It.Nam);
13592 end if;
13594 Conversion_Error_N -- CODEFIX
13595 ("\\possible interpretation#!", Operand);
13597 if Sloc (N1) = Standard_Location then
13598 Error_Msg_Sloc := Sloc (T1);
13599 else
13600 Error_Msg_Sloc := Sloc (N1);
13601 end if;
13603 Conversion_Error_N -- CODEFIX
13604 ("\\possible interpretation#!", Operand);
13606 return False;
13607 end if;
13608 end if;
13610 Set_Etype (Operand, It1.Typ);
13611 Opnd_Type := It1.Typ;
13612 end;
13613 end if;
13615 -- Deal with conversion of integer type to address if the pragma
13616 -- Allow_Integer_Address is in effect. We convert the conversion to
13617 -- an unchecked conversion in this case and we are all done.
13619 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
13620 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
13621 Analyze_And_Resolve (N, Target_Type);
13622 return True;
13623 end if;
13625 -- If we are within a child unit, check whether the type of the
13626 -- expression has an ancestor in a parent unit, in which case it
13627 -- belongs to its derivation class even if the ancestor is private.
13628 -- See RM 7.3.1 (5.2/3).
13630 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
13632 -- Numeric types
13634 if Is_Numeric_Type (Target_Type) then
13636 -- A universal fixed expression can be converted to any numeric type
13638 if Opnd_Type = Universal_Fixed then
13639 return True;
13641 -- Also no need to check when in an instance or inlined body, because
13642 -- the legality has been established when the template was analyzed.
13643 -- Furthermore, numeric conversions may occur where only a private
13644 -- view of the operand type is visible at the instantiation point.
13645 -- This results in a spurious error if we check that the operand type
13646 -- is a numeric type.
13648 -- Note: in a previous version of this unit, the following tests were
13649 -- applied only for generated code (Comes_From_Source set to False),
13650 -- but in fact the test is required for source code as well, since
13651 -- this situation can arise in source code.
13653 elsif In_Instance_Code or else In_Inlined_Body then
13654 return True;
13656 -- Otherwise we need the conversion check
13658 else
13659 return Conversion_Check
13660 (Is_Numeric_Type (Opnd_Type)
13661 or else
13662 (Present (Inc_Ancestor)
13663 and then Is_Numeric_Type (Inc_Ancestor)),
13664 "illegal operand for numeric conversion");
13665 end if;
13667 -- Array types
13669 elsif Is_Array_Type (Target_Type) then
13670 if not Is_Array_Type (Opnd_Type)
13671 or else Opnd_Type = Any_Composite
13672 or else Opnd_Type = Any_String
13673 then
13674 Conversion_Error_N
13675 ("illegal operand for array conversion", Operand);
13676 return False;
13678 else
13679 return Valid_Array_Conversion;
13680 end if;
13682 -- Ada 2005 (AI-251): Internally generated conversions of access to
13683 -- interface types added to force the displacement of the pointer to
13684 -- reference the corresponding dispatch table.
13686 elsif not Comes_From_Source (N)
13687 and then Is_Access_Type (Target_Type)
13688 and then Is_Interface (Designated_Type (Target_Type))
13689 then
13690 return True;
13692 -- Ada 2005 (AI-251): Anonymous access types where target references an
13693 -- interface type.
13695 elsif Is_Access_Type (Opnd_Type)
13696 and then Ekind (Target_Type) in
13697 E_General_Access_Type | E_Anonymous_Access_Type
13698 and then Is_Interface (Directly_Designated_Type (Target_Type))
13699 then
13700 -- Check the static accessibility rule of 4.6(17). Note that the
13701 -- check is not enforced when within an instance body, since the
13702 -- RM requires such cases to be caught at run time.
13704 -- If the operand is a rewriting of an allocator no check is needed
13705 -- because there are no accessibility issues.
13707 if Nkind (Original_Node (N)) = N_Allocator then
13708 null;
13710 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
13711 if Type_Access_Level (Opnd_Type) >
13712 Deepest_Type_Access_Level (Target_Type)
13713 then
13714 -- In an instance, this is a run-time check, but one we know
13715 -- will fail, so generate an appropriate warning. The raise
13716 -- will be generated by Expand_N_Type_Conversion.
13718 if In_Instance_Body then
13719 Error_Msg_Warn := SPARK_Mode /= On;
13720 Conversion_Error_N
13721 ("cannot convert local pointer to non-local access type<<",
13722 Operand);
13723 Conversion_Error_N ("\Program_Error [<<", Operand);
13725 else
13726 Conversion_Error_N
13727 ("cannot convert local pointer to non-local access type",
13728 Operand);
13729 return False;
13730 end if;
13732 -- Special accessibility checks are needed in the case of access
13733 -- discriminants declared for a limited type.
13735 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
13736 and then not Is_Local_Anonymous_Access (Opnd_Type)
13737 then
13738 -- When the operand is a selected access discriminant the check
13739 -- needs to be made against the level of the object denoted by
13740 -- the prefix of the selected name (Accessibility_Level handles
13741 -- checking the prefix of the operand for this case).
13743 if Nkind (Operand) = N_Selected_Component
13744 and then Static_Accessibility_Level
13745 (Operand, Zero_On_Dynamic_Level)
13746 > Deepest_Type_Access_Level (Target_Type)
13747 then
13748 -- In an instance, this is a run-time check, but one we know
13749 -- will fail, so generate an appropriate warning. The raise
13750 -- will be generated by Expand_N_Type_Conversion.
13752 if In_Instance_Body then
13753 Error_Msg_Warn := SPARK_Mode /= On;
13754 Conversion_Error_N
13755 ("cannot convert access discriminant to non-local "
13756 & "access type<<", Operand);
13757 Conversion_Error_N ("\Program_Error [<<", Operand);
13759 -- Real error if not in instance body
13761 else
13762 Conversion_Error_N
13763 ("cannot convert access discriminant to non-local "
13764 & "access type", Operand);
13765 return False;
13766 end if;
13767 end if;
13769 -- The case of a reference to an access discriminant from
13770 -- within a limited type declaration (which will appear as
13771 -- a discriminal) is always illegal because the level of the
13772 -- discriminant is considered to be deeper than any (nameable)
13773 -- access type.
13775 if Is_Entity_Name (Operand)
13776 and then not Is_Local_Anonymous_Access (Opnd_Type)
13777 and then
13778 Ekind (Entity (Operand)) in E_In_Parameter | E_Constant
13779 and then Present (Discriminal_Link (Entity (Operand)))
13780 then
13781 Conversion_Error_N
13782 ("discriminant has deeper accessibility level than target",
13783 Operand);
13784 return False;
13785 end if;
13786 end if;
13787 end if;
13789 return True;
13791 -- General and anonymous access types
13793 elsif Ekind (Target_Type) in
13794 E_General_Access_Type | E_Anonymous_Access_Type
13795 and then
13796 Conversion_Check
13797 (Is_Access_Type (Opnd_Type)
13798 and then
13799 Ekind (Opnd_Type) not in
13800 E_Access_Subprogram_Type |
13801 E_Access_Protected_Subprogram_Type,
13802 "must be an access-to-object type")
13803 then
13804 if Is_Access_Constant (Opnd_Type)
13805 and then not Is_Access_Constant (Target_Type)
13806 then
13807 Conversion_Error_N
13808 ("access-to-constant operand type not allowed", Operand);
13809 return False;
13810 end if;
13812 -- Check the static accessibility rule of 4.6(17). Note that the
13813 -- check is not enforced when within an instance body, since the RM
13814 -- requires such cases to be caught at run time.
13816 if Ekind (Target_Type) /= E_Anonymous_Access_Type
13817 or else Is_Local_Anonymous_Access (Target_Type)
13818 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
13819 N_Object_Declaration
13820 then
13821 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
13822 -- conversions from an anonymous access type to a named general
13823 -- access type. Such conversions are not allowed in the case of
13824 -- access parameters and stand-alone objects of an anonymous
13825 -- access type. The implicit conversion case is recognized by
13826 -- testing that Comes_From_Source is False and that it's been
13827 -- rewritten. The Comes_From_Source test isn't sufficient because
13828 -- nodes in inlined calls to predefined library routines can have
13829 -- Comes_From_Source set to False. (Is there a better way to test
13830 -- for implicit conversions???).
13832 -- Do not treat a rewritten 'Old attribute reference like other
13833 -- rewrite substitutions. This makes a difference, for example,
13834 -- in the case where we are generating the expansion of a
13835 -- membership test of the form
13836 -- Saooaaat'Old in Named_Access_Type
13837 -- because in this case Valid_Conversion needs to return True
13838 -- (otherwise the expansion will be False - see the call site
13839 -- in exp_ch4.adb).
13841 if Ada_Version >= Ada_2012
13842 and then not Comes_From_Source (N)
13843 and then Is_Rewrite_Substitution (N)
13844 and then not Is_Attribute_Old (Original_Node (N))
13845 and then Ekind (Base_Type (Target_Type)) = E_General_Access_Type
13846 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
13847 then
13848 if Is_Itype (Opnd_Type) then
13850 -- When applying restriction No_Dynamic_Accessibility_Check,
13851 -- implicit conversions are allowed when the operand type is
13852 -- not deeper than the target type.
13854 if No_Dynamic_Accessibility_Checks_Enabled (N) then
13855 if Type_Access_Level (Opnd_Type)
13856 > Deepest_Type_Access_Level (Target_Type)
13857 then
13858 Conversion_Error_N
13859 ("operand has deeper level than target", Operand);
13860 end if;
13862 -- Implicit conversions aren't allowed for objects of an
13863 -- anonymous access type, since such objects have nonstatic
13864 -- levels in Ada 2012.
13866 elsif Nkind (Associated_Node_For_Itype (Opnd_Type))
13867 = N_Object_Declaration
13868 then
13869 Conversion_Error_N
13870 ("implicit conversion of stand-alone anonymous "
13871 & "access object not allowed", Operand);
13872 return False;
13874 -- Implicit conversions aren't allowed for anonymous access
13875 -- parameters. We exclude anonymous access results as well
13876 -- as universal_access "=".
13878 elsif not Is_Local_Anonymous_Access (Opnd_Type)
13879 and then Nkind (Associated_Node_For_Itype (Opnd_Type)) in
13880 N_Function_Specification |
13881 N_Procedure_Specification
13882 and then Nkind (Parent (N)) not in N_Op_Eq | N_Op_Ne
13883 then
13884 Conversion_Error_N
13885 ("implicit conversion of anonymous access parameter "
13886 & "not allowed", Operand);
13887 return False;
13889 -- Detect access discriminant values that are illegal
13890 -- implicit anonymous-to-named access conversion operands.
13892 elsif Is_Discrim_Of_Bad_Access_Conversion_Argument (Operand)
13893 then
13894 Conversion_Error_N
13895 ("implicit conversion of anonymous access value "
13896 & "not allowed", Operand);
13897 return False;
13899 -- In other cases, the level of the operand's type must be
13900 -- statically less deep than that of the target type, else
13901 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
13903 elsif Type_Access_Level (Opnd_Type) >
13904 Deepest_Type_Access_Level (Target_Type)
13905 then
13906 Conversion_Error_N
13907 ("implicit conversion of anonymous access value "
13908 & "violates accessibility", Operand);
13909 return False;
13910 end if;
13911 end if;
13913 -- Check if the operand is deeper than the target type, taking
13914 -- care to avoid the case where we are converting a result of a
13915 -- function returning an anonymous access type since the "master
13916 -- of the call" would be target type of the conversion unless
13917 -- the target type is anonymous access as well - see RM 3.10.2
13918 -- (10.3/3).
13920 -- Note that when the restriction No_Dynamic_Accessibility_Checks
13921 -- is in effect wei also want to proceed with the conversion check
13922 -- described above.
13924 elsif Type_Access_Level (Opnd_Type, Assoc_Ent => Operand)
13925 > Deepest_Type_Access_Level (Target_Type)
13926 and then (Nkind (Associated_Node_For_Itype (Opnd_Type))
13927 /= N_Function_Specification
13928 or else Ekind (Target_Type) in Anonymous_Access_Kind
13929 or else No_Dynamic_Accessibility_Checks_Enabled (N))
13931 -- Check we are not in a return value ???
13933 and then (not In_Return_Value (N)
13934 or else
13935 Nkind (Associated_Node_For_Itype (Target_Type))
13936 = N_Component_Declaration)
13937 then
13938 -- In an instance, this is a run-time check, but one we know
13939 -- will fail, so generate an appropriate warning. The raise
13940 -- will be generated by Expand_N_Type_Conversion.
13942 if In_Instance_Body then
13943 Error_Msg_Warn := SPARK_Mode /= On;
13944 Conversion_Error_N
13945 ("cannot convert local pointer to non-local access type<<",
13946 Operand);
13947 Conversion_Error_N ("\Program_Error [<<", Operand);
13949 -- If not in an instance body, this is a real error
13951 else
13952 -- Avoid generation of spurious error message
13954 if not Error_Posted (N) then
13955 Conversion_Error_N
13956 ("cannot convert local pointer to non-local access type",
13957 Operand);
13958 end if;
13960 return False;
13961 end if;
13963 -- Special accessibility checks are needed in the case of access
13964 -- discriminants declared for a limited type.
13966 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
13967 and then not Is_Local_Anonymous_Access (Opnd_Type)
13968 then
13969 -- When the operand is a selected access discriminant the check
13970 -- needs to be made against the level of the object denoted by
13971 -- the prefix of the selected name (Accessibility_Level handles
13972 -- checking the prefix of the operand for this case).
13974 if Nkind (Operand) = N_Selected_Component
13975 and then Static_Accessibility_Level
13976 (Operand, Zero_On_Dynamic_Level)
13977 > Deepest_Type_Access_Level (Target_Type)
13978 then
13979 -- In an instance, this is a run-time check, but one we know
13980 -- will fail, so generate an appropriate warning. The raise
13981 -- will be generated by Expand_N_Type_Conversion.
13983 if In_Instance_Body then
13984 Error_Msg_Warn := SPARK_Mode /= On;
13985 Conversion_Error_N
13986 ("cannot convert access discriminant to non-local "
13987 & "access type<<", Operand);
13988 Conversion_Error_N ("\Program_Error [<<", Operand);
13990 -- If not in an instance body, this is a real error
13992 else
13993 Conversion_Error_N
13994 ("cannot convert access discriminant to non-local "
13995 & "access type", Operand);
13996 return False;
13997 end if;
13998 end if;
14000 -- The case of a reference to an access discriminant from
14001 -- within a limited type declaration (which will appear as
14002 -- a discriminal) is always illegal because the level of the
14003 -- discriminant is considered to be deeper than any (nameable)
14004 -- access type.
14006 if Is_Entity_Name (Operand)
14007 and then
14008 Ekind (Entity (Operand)) in E_In_Parameter | E_Constant
14009 and then Present (Discriminal_Link (Entity (Operand)))
14010 then
14011 Conversion_Error_N
14012 ("discriminant has deeper accessibility level than target",
14013 Operand);
14014 return False;
14015 end if;
14016 end if;
14017 end if;
14019 -- In the presence of limited_with clauses we have to use nonlimited
14020 -- views, if available.
14022 Check_Limited : declare
14023 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
14024 -- Helper function to handle limited views
14026 --------------------------
14027 -- Full_Designated_Type --
14028 --------------------------
14030 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
14031 Desig : constant Entity_Id := Designated_Type (T);
14033 begin
14034 -- Handle the limited view of a type
14036 if From_Limited_With (Desig)
14037 and then Has_Non_Limited_View (Desig)
14038 then
14039 return Available_View (Desig);
14040 else
14041 return Desig;
14042 end if;
14043 end Full_Designated_Type;
14045 -- Local Declarations
14047 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
14048 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
14050 Same_Base : constant Boolean :=
14051 Base_Type (Target) = Base_Type (Opnd);
14053 -- Start of processing for Check_Limited
14055 begin
14056 if Is_Tagged_Type (Target) then
14057 return Valid_Tagged_Conversion (Target, Opnd);
14059 else
14060 if not Same_Base then
14061 Conversion_Error_NE
14062 ("target designated type not compatible with }",
14063 N, Base_Type (Opnd));
14064 return False;
14066 -- Ada 2005 AI-384: legality rule is symmetric in both
14067 -- designated types. The conversion is legal (with possible
14068 -- constraint check) if either designated type is
14069 -- unconstrained.
14071 elsif Subtypes_Statically_Match (Target, Opnd)
14072 or else
14073 (Has_Discriminants (Target)
14074 and then
14075 (not Is_Constrained (Opnd)
14076 or else not Is_Constrained (Target)))
14077 then
14078 -- Special case, if Value_Size has been used to make the
14079 -- sizes different, the conversion is not allowed even
14080 -- though the subtypes statically match.
14082 if Known_Static_RM_Size (Target)
14083 and then Known_Static_RM_Size (Opnd)
14084 and then RM_Size (Target) /= RM_Size (Opnd)
14085 then
14086 Conversion_Error_NE
14087 ("target designated subtype not compatible with }",
14088 N, Opnd);
14089 Conversion_Error_NE
14090 ("\because sizes of the two designated subtypes differ",
14091 N, Opnd);
14092 return False;
14094 -- Normal case where conversion is allowed
14096 else
14097 return True;
14098 end if;
14100 else
14101 Error_Msg_NE
14102 ("target designated subtype not compatible with }",
14103 N, Opnd);
14104 return False;
14105 end if;
14106 end if;
14107 end Check_Limited;
14109 -- Access to subprogram types. If the operand is an access parameter,
14110 -- the type has a deeper accessibility that any master, and cannot be
14111 -- assigned. We must make an exception if the conversion is part of an
14112 -- assignment and the target is the return object of an extended return
14113 -- statement, because in that case the accessibility check takes place
14114 -- after the return.
14116 elsif Is_Access_Subprogram_Type (Target_Type)
14118 -- Note: this test of Opnd_Type is there to prevent entering this
14119 -- branch in the case of a remote access to subprogram type, which
14120 -- is internally represented as an E_Record_Type.
14122 and then Is_Access_Type (Opnd_Type)
14123 then
14124 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
14125 and then Is_Entity_Name (Operand)
14126 and then Ekind (Entity (Operand)) = E_In_Parameter
14127 and then
14128 (Nkind (Parent (N)) /= N_Assignment_Statement
14129 or else not Is_Entity_Name (Name (Parent (N)))
14130 or else not Is_Return_Object (Entity (Name (Parent (N)))))
14131 then
14132 Conversion_Error_N
14133 ("illegal attempt to store anonymous access to subprogram",
14134 Operand);
14135 Conversion_Error_N
14136 ("\value has deeper accessibility than any master "
14137 & "(RM 3.10.2 (13))",
14138 Operand);
14140 Error_Msg_NE
14141 ("\use named access type for& instead of access parameter",
14142 Operand, Entity (Operand));
14143 end if;
14145 -- Check that the designated types are subtype conformant
14147 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
14148 Old_Id => Designated_Type (Opnd_Type),
14149 Err_Loc => N);
14151 -- Check the static accessibility rule of 4.6(20)
14153 if Type_Access_Level (Opnd_Type) >
14154 Deepest_Type_Access_Level (Target_Type)
14155 then
14156 Conversion_Error_N
14157 ("operand type has deeper accessibility level than target",
14158 Operand);
14160 -- Check that if the operand type is declared in a generic body,
14161 -- then the target type must be declared within that same body
14162 -- (enforces last sentence of 4.6(20)).
14164 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
14165 declare
14166 O_Gen : constant Node_Id :=
14167 Enclosing_Generic_Body (Opnd_Type);
14169 T_Gen : Node_Id;
14171 begin
14172 T_Gen := Enclosing_Generic_Body (Target_Type);
14173 while Present (T_Gen) and then T_Gen /= O_Gen loop
14174 T_Gen := Enclosing_Generic_Body (T_Gen);
14175 end loop;
14177 if T_Gen /= O_Gen then
14178 Conversion_Error_N
14179 ("target type must be declared in same generic body "
14180 & "as operand type", N);
14181 end if;
14182 end;
14183 end if;
14185 -- Check that the strub modes are compatible.
14186 -- We wish to reject explicit conversions only for
14187 -- incompatible modes.
14189 return Conversion_Check
14190 (Compatible_Strub_Modes
14191 (Designated_Type (Target_Type),
14192 Designated_Type (Opnd_Type)),
14193 "incompatible `strub` modes");
14195 -- Remote access to subprogram types
14197 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
14198 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
14199 then
14200 -- It is valid to convert from one RAS type to another provided
14201 -- that their specification statically match.
14203 -- Note: at this point, remote access to subprogram types have been
14204 -- expanded to their E_Record_Type representation, and we need to
14205 -- go back to the original access type definition using the
14206 -- Corresponding_Remote_Type attribute in order to check that the
14207 -- designated profiles match.
14209 pragma Assert (Ekind (Target_Type) = E_Record_Type);
14210 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
14212 Check_Subtype_Conformant
14213 (New_Id =>
14214 Designated_Type (Corresponding_Remote_Type (Target_Type)),
14215 Old_Id =>
14216 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
14217 Err_Loc =>
14220 -- Check that the strub modes are compatible.
14221 -- We wish to reject explicit conversions only for
14222 -- incompatible modes.
14224 return Conversion_Check
14225 (Compatible_Strub_Modes
14226 (Designated_Type (Target_Type),
14227 Designated_Type (Opnd_Type)),
14228 "incompatible `strub` modes");
14230 -- If it was legal in the generic, it's legal in the instance
14232 elsif In_Instance_Body then
14233 return True;
14235 -- If both are tagged types, check legality of view conversions
14237 elsif Is_Tagged_Type (Target_Type)
14238 and then
14239 Is_Tagged_Type (Opnd_Type)
14240 then
14241 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
14243 -- Types derived from the same root type are convertible
14245 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
14246 return True;
14248 -- In an instance or an inlined body, there may be inconsistent views of
14249 -- the same type, or of types derived from a common root.
14251 elsif (In_Instance or In_Inlined_Body)
14252 and then
14253 Root_Type (Underlying_Type (Target_Type)) =
14254 Root_Type (Underlying_Type (Opnd_Type))
14255 then
14256 return True;
14258 -- Special check for common access type error case
14260 elsif Ekind (Target_Type) = E_Access_Type
14261 and then Is_Access_Type (Opnd_Type)
14262 then
14263 Conversion_Error_N ("target type must be general access type!", N);
14264 Conversion_Error_NE -- CODEFIX
14265 ("\add ALL to }!", N, Target_Type);
14266 return False;
14268 -- Here we have a real conversion error
14270 else
14271 -- Check for missing regular with_clause when only a limited view of
14272 -- target is available.
14274 if From_Limited_With (Opnd_Type) and then In_Package_Body then
14275 Conversion_Error_NE
14276 ("invalid conversion, not compatible with limited view of }",
14277 N, Opnd_Type);
14278 Conversion_Error_NE
14279 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
14281 elsif Is_Access_Type (Opnd_Type)
14282 and then From_Limited_With (Designated_Type (Opnd_Type))
14283 and then In_Package_Body
14284 then
14285 Conversion_Error_NE
14286 ("invalid conversion, not compatible with }", N, Opnd_Type);
14287 Conversion_Error_NE
14288 ("\add with_clause for& to current unit!",
14289 N, Scope (Designated_Type (Opnd_Type)));
14291 else
14292 Conversion_Error_NE
14293 ("invalid conversion, not compatible with }", N, Opnd_Type);
14294 end if;
14296 return False;
14297 end if;
14298 end Valid_Conversion;
14300 end Sem_Res;