1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Einfo
; use Einfo
;
29 with Einfo
.Entities
; use Einfo
.Entities
;
30 with Einfo
.Utils
; use Einfo
.Utils
;
31 with Errout
; use Errout
;
33 with Lib
.Xref
; use Lib
.Xref
;
34 with Namet
; use Namet
;
35 with Nlists
; use Nlists
;
36 with Nmake
; use Nmake
;
38 with Restrict
; use Restrict
;
39 with Rident
; use Rident
;
40 with Rtsfind
; use Rtsfind
;
42 with Sem_Aux
; use Sem_Aux
;
43 with Sem_Ch5
; use Sem_Ch5
;
44 with Sem_Ch8
; use Sem_Ch8
;
45 with Sem_Ch13
; use Sem_Ch13
;
46 with Sem_Res
; use Sem_Res
;
47 with Sem_Util
; use Sem_Util
;
48 with Sem_Warn
; use Sem_Warn
;
49 with Sinfo
; use Sinfo
;
50 with Sinfo
.Nodes
; use Sinfo
.Nodes
;
51 with Sinfo
.Utils
; use Sinfo
.Utils
;
52 with Snames
; use Snames
;
53 with Stand
; use Stand
;
55 package body Sem_Ch11
is
57 -----------------------------------
58 -- Analyze_Exception_Declaration --
59 -----------------------------------
61 procedure Analyze_Exception_Declaration
(N
: Node_Id
) is
62 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
63 PF
: constant Boolean := Is_Pure
(Current_Scope
);
66 Generate_Definition
(Id
);
68 Mutate_Ekind
(Id
, E_Exception
);
69 Set_Etype
(Id
, Standard_Exception_Type
);
70 Set_Is_Statically_Allocated
(Id
);
73 if Has_Aspects
(N
) then
74 Analyze_Aspect_Specifications
(N
, Id
);
76 end Analyze_Exception_Declaration
;
78 --------------------------------
79 -- Analyze_Exception_Handlers --
80 --------------------------------
82 procedure Analyze_Exception_Handlers
(L
: List_Id
) is
86 H_Scope
: Entity_Id
:= Empty
;
88 procedure Check_Duplication
(Id
: Node_Id
);
89 -- Iterate through the identifiers in each handler to find duplicates
91 function Others_Present
return Boolean;
92 -- Returns True if others handler is present
94 -----------------------
95 -- Check_Duplication --
96 -----------------------
98 procedure Check_Duplication
(Id
: Node_Id
) is
101 Id_Entity
: Entity_Id
:= Entity
(Id
);
104 if Present
(Renamed_Entity
(Id_Entity
)) then
105 Id_Entity
:= Renamed_Entity
(Id_Entity
);
108 Handler
:= First_Non_Pragma
(L
);
109 while Present
(Handler
) loop
110 Id1
:= First
(Exception_Choices
(Handler
));
111 while Present
(Id1
) loop
113 -- Only check against the exception choices which precede
114 -- Id in the handler, since the ones that follow Id have not
115 -- been analyzed yet and will be checked in a subsequent call.
120 elsif Nkind
(Id1
) /= N_Others_Choice
122 (Id_Entity
= Entity
(Id1
)
123 or else (Id_Entity
= Renamed_Entity
(Entity
(Id1
))))
125 if Handler
/= Parent
(Id
) then
126 Error_Msg_Sloc
:= Sloc
(Id1
);
127 Error_Msg_NE
("exception choice duplicates &#", Id
, Id1
);
130 if Ada_Version
= Ada_83
131 and then Comes_From_Source
(Id
)
134 ("(Ada 83) duplicate exception choice&", Id
);
139 Next_Non_Pragma
(Id1
);
144 end Check_Duplication
;
150 function Others_Present
return Boolean is
155 while Present
(H
) loop
156 if Nkind
(H
) /= N_Pragma
157 and then Nkind
(First
(Exception_Choices
(H
))) = N_Others_Choice
168 -- Start of processing for Analyze_Exception_Handlers
171 Handler
:= First
(L
);
173 -- Pragma Restriction_Warnings has more related semantics than pragma
174 -- Restrictions in that it flags exception handlers as violators. Note
175 -- that the compiler must still generate handlers for certain critical
176 -- scenarios such as finalization. As a result, these handlers should
177 -- not be subjected to the restriction check when in warnings mode.
179 if not Comes_From_Source
(Handler
)
180 and then (Restriction_Warnings
(No_Exception_Handlers
)
181 or else Restriction_Warnings
(No_Exception_Propagation
)
182 or else Restriction_Warnings
(No_Exceptions
))
187 Check_Restriction
(No_Exceptions
, Handler
);
188 Check_Restriction
(No_Exception_Handlers
, Handler
);
191 -- Kill current remembered values, since we don't know where we were
192 -- when the exception was raised.
196 -- Loop through handlers (which can include pragmas)
198 while Present
(Handler
) loop
200 -- If pragma just analyze it
202 if Nkind
(Handler
) = N_Pragma
then
205 -- Otherwise we have a real exception handler
208 -- Deal with choice parameter. The exception handler is a
209 -- declarative part for the choice parameter, so it constitutes a
210 -- scope for visibility purposes. We create an entity to denote
211 -- the whole exception part, and use it as the scope of all the
212 -- choices, which may even have the same name without conflict.
213 -- This scope plays no other role in expansion or code generation.
215 Choice
:= Choice_Parameter
(Handler
);
217 if Present
(Choice
) then
218 Set_Local_Raise_Not_OK
(Handler
);
220 if Comes_From_Source
(Choice
) then
221 Check_Restriction
(No_Exception_Propagation
, Choice
);
222 Set_Debug_Info_Needed
(Choice
);
228 (E_Block
, Current_Scope
, Sloc
(Choice
), 'E');
229 Set_Is_Exception_Handler
(H_Scope
);
232 Push_Scope
(H_Scope
);
233 Set_Etype
(H_Scope
, Standard_Void_Type
);
236 Mutate_Ekind
(Choice
, E_Variable
);
238 if RTE_Available
(RE_Exception_Occurrence
) then
239 Set_Etype
(Choice
, RTE
(RE_Exception_Occurrence
));
242 Generate_Definition
(Choice
);
244 -- Indicate that choice has an initial value, since in effect
245 -- this field is assigned an initial value by the exception.
246 -- We also consider that it is modified in the source.
248 Set_Has_Initial_Value
(Choice
, True);
249 Set_Never_Set_In_Source
(Choice
, False);
252 Id
:= First
(Exception_Choices
(Handler
));
253 while Present
(Id
) loop
254 if Nkind
(Id
) = N_Others_Choice
then
255 if Present
(Next
(Id
))
256 or else Present
(Next
(Handler
))
257 or else Present
(Prev
(Id
))
259 Error_Msg_N
("OTHERS must appear alone and last", Id
);
265 -- In most cases the choice has already been analyzed in
266 -- Analyze_Handled_Statement_Sequence, in order to expand
267 -- local handlers. This advance analysis does not take into
268 -- account the case in which a choice has the same name as
269 -- the choice parameter of the handler, which may hide an
270 -- outer exception. This pathological case appears in ACATS
271 -- B80001_3.adb, and requires an explicit check to verify
272 -- that the id is not hidden.
274 if not Is_Entity_Name
(Id
)
275 or else Ekind
(Entity
(Id
)) /= E_Exception
277 (Nkind
(Id
) = N_Identifier
278 and then Chars
(Id
) = Chars
(Choice
))
280 Error_Msg_N
("exception name expected", Id
);
283 -- Emit a warning at the declaration level when a local
284 -- exception is never raised explicitly.
286 if Warn_On_Redundant_Constructs
287 and then not Is_Raised
(Entity
(Id
))
288 and then Scope
(Entity
(Id
)) = Current_Scope
291 ("exception & is never raised?r?", Entity
(Id
), Id
);
294 if Present
(Renamed_Entity
(Entity
(Id
))) then
295 if Entity
(Id
) = Standard_Numeric_Error
then
296 Check_Restriction
(No_Obsolescent_Features
, Id
);
298 if Warn_On_Obsolescent_Feature
then
300 ("Numeric_Error is an " &
301 "obsolescent feature (RM J.6(1))?j?", Id
);
303 ("\use Constraint_Error instead?j?", Id
);
308 Check_Duplication
(Id
);
310 -- Check for exception declared within generic formal
311 -- package (which is illegal, see RM 11.2(8))
314 Ent
: Entity_Id
:= Entity
(Id
);
318 if Present
(Renamed_Entity
(Ent
)) then
319 Ent
:= Renamed_Entity
(Ent
);
323 while Scop
/= Standard_Standard
324 and then Ekind
(Scop
) = E_Package
326 if Nkind
(Declaration_Node
(Scop
)) =
327 N_Package_Specification
329 Nkind
(Original_Node
(Parent
330 (Declaration_Node
(Scop
)))) =
331 N_Formal_Package_Declaration
334 ("exception& is declared in generic formal "
335 & "package", Id
, Ent
);
337 ("\and therefore cannot appear in handler "
338 & "(RM 11.2(8))", Id
);
341 -- If the exception is declared in an inner
342 -- instance, nothing else to check.
344 elsif Is_Generic_Instance
(Scop
) then
348 Scop
:= Scope
(Scop
);
357 -- Check for redundant handler (has only raise statement) and is
358 -- either an others handler, or is a specific handler when no
359 -- others handler is present.
361 if Warn_On_Redundant_Constructs
362 and then List_Length
(Statements
(Handler
)) = 1
363 and then Nkind
(First
(Statements
(Handler
))) = N_Raise_Statement
364 and then No
(Name
(First
(Statements
(Handler
))))
365 and then (not Others_Present
366 or else Nkind
(First
(Exception_Choices
(Handler
))) =
370 ("useless handler contains only a reraise statement?r?",
374 -- Now analyze the statements of this handler
376 Analyze_Statements
(Statements
(Handler
));
378 -- If a choice was present, we created a special scope for it, so
379 -- this is where we pop that special scope to get rid of it.
381 if Present
(Choice
) then
388 end Analyze_Exception_Handlers
;
390 --------------------------------
391 -- Analyze_Handled_Statements --
392 --------------------------------
394 procedure Analyze_Handled_Statements
(N
: Node_Id
) is
395 Handlers
: constant List_Id
:= Exception_Handlers
(N
);
400 if Present
(Handlers
) then
404 -- We are now going to analyze the statements and then the exception
405 -- handlers. We certainly need to do things in this order to get the
406 -- proper sequential semantics for various warnings.
408 -- However, there is a glitch. When we process raise statements, an
409 -- optimization is to look for local handlers and specialize the code
412 -- In order to detect if a handler is matching, we must have at least
413 -- analyzed the choices in the proper scope so that proper visibility
414 -- analysis is performed. Hence we analyze just the choices first,
415 -- before we analyze the statement sequence.
417 Handler
:= First_Non_Pragma
(Handlers
);
418 while Present
(Handler
) loop
419 Choice
:= First_Non_Pragma
(Exception_Choices
(Handler
));
420 while Present
(Choice
) loop
422 Next_Non_Pragma
(Choice
);
425 Next_Non_Pragma
(Handler
);
428 -- Analyze statements in sequence
430 Analyze_Statements
(Statements
(N
));
432 -- If the current scope is a subprogram, entry or task body or declare
433 -- block then this is the right place to check for hanging useless
434 -- assignments from the statement sequence. Skip this in the body of a
435 -- postcondition, since in that case there are no source references, and
436 -- we need to preserve deferred references from the enclosing scope.
438 if (Is_Subprogram_Or_Entry
(Current_Scope
)
439 and then Chars
(Current_Scope
) /= Name_uPostconditions
)
440 or else Ekind
(Current_Scope
) in E_Block | E_Task_Type
442 Warn_On_Useless_Assignments
(Current_Scope
);
445 -- Deal with handlers or AT END proc
447 if Present
(Handlers
) then
448 Analyze_Exception_Handlers
(Handlers
);
449 elsif Present
(At_End_Proc
(N
)) then
450 Analyze
(At_End_Proc
(N
));
452 end Analyze_Handled_Statements
;
454 ------------------------------
455 -- Analyze_Raise_Expression --
456 ------------------------------
458 procedure Analyze_Raise_Expression
(N
: Node_Id
) is
459 Exception_Id
: constant Node_Id
:= Name
(N
);
460 Exception_Name
: Entity_Id
:= Empty
;
463 if Comes_From_Source
(N
) then
464 Check_Compiler_Unit
("raise expression", N
);
467 -- Check exception restrictions on the original source
469 if Comes_From_Source
(N
) then
470 Check_Restriction
(No_Exceptions
, N
);
473 Analyze
(Exception_Id
);
475 if Is_Entity_Name
(Exception_Id
) then
476 Exception_Name
:= Entity
(Exception_Id
);
479 if No
(Exception_Name
)
480 or else Ekind
(Exception_Name
) /= E_Exception
483 ("exception name expected in raise statement", Exception_Id
);
485 Set_Is_Raised
(Exception_Name
);
488 -- Deal with RAISE WITH case
490 if Present
(Expression
(N
)) then
491 Analyze_And_Resolve
(Expression
(N
), Standard_String
);
494 -- Check obsolescent use of Numeric_Error
496 if Exception_Name
= Standard_Numeric_Error
then
497 Check_Restriction
(No_Obsolescent_Features
, Exception_Id
);
500 -- Kill last assignment indication
502 Kill_Current_Values
(Last_Assignment_Only
=> True);
504 -- Raise_Type is compatible with all other types so that the raise
505 -- expression is legal in any expression context. It will be eventually
506 -- replaced by the concrete type imposed by the context.
508 Set_Etype
(N
, Raise_Type
);
509 end Analyze_Raise_Expression
;
511 -----------------------------
512 -- Analyze_Raise_Statement --
513 -----------------------------
515 procedure Analyze_Raise_Statement
(N
: Node_Id
) is
516 Exception_Id
: constant Node_Id
:= Name
(N
);
517 Exception_Name
: Entity_Id
:= Empty
;
522 Check_Unreachable_Code
(N
);
524 -- Check exception restrictions on the original source
526 if Comes_From_Source
(N
) then
527 Check_Restriction
(No_Exceptions
, N
);
530 -- Check for useless assignment to OUT or IN OUT scalar preceding the
531 -- raise. Right now only look at assignment statements, could do more???
533 if Is_List_Member
(N
) then
541 -- Skip past null statements and pragmas
544 and then Nkind
(P
) in N_Null_Statement | N_Pragma
549 -- See if preceding statement is an assignment
551 if Present
(P
) and then Nkind
(P
) = N_Assignment_Statement
then
554 -- Give warning for assignment to scalar formal
556 if Is_Scalar_Type
(Etype
(L
))
557 and then Is_Entity_Name
(L
)
558 and then Is_Formal
(Entity
(L
))
560 -- Do this only for parameters to the current subprogram.
561 -- This avoids some false positives for the nested case.
563 and then Nearest_Dynamic_Scope
(Current_Scope
) =
567 -- Don't give warning if we are covered by an exception
568 -- handler, since this may result in false positives, since
569 -- the handler may handle the exception and return normally.
571 -- First find the enclosing handled sequence of statements
572 -- (note, we could also look for a handler in an outer block
573 -- but currently we don't, and in that case we'll emit the
579 exit when Nkind
(Par
) = N_Handled_Sequence_Of_Statements
;
582 -- See if there is a handler, give message if not
584 if No
(Exception_Handlers
(Par
)) then
586 ("assignment to pass-by-copy formal "
587 & "may have no effect??", P
);
589 ("\RAISE statement may result in abnormal return "
590 & "(RM 6.4.1(17))??", P
);
599 if No
(Exception_Id
) then
601 while Nkind
(P
) not in
602 N_Exception_Handler | N_Subprogram_Body | N_Package_Body |
603 N_Task_Body | N_Entry_Body
608 if Nkind
(P
) /= N_Exception_Handler
then
610 ("reraise statement must appear directly in a handler", N
);
612 -- If a handler has a reraise, it cannot be the target of a local
613 -- raise (goto optimization is impossible), and if the no exception
614 -- propagation restriction is set, this is a violation.
617 Set_Local_Raise_Not_OK
(P
);
619 -- Do not check the restriction if the reraise statement is part
620 -- of the code generated for an AT-END handler. That's because
621 -- if the restriction is actually active, we never generate this
622 -- raise anyway, so the apparent violation is bogus.
624 if not From_At_End
(N
) then
625 Check_Restriction
(No_Exception_Propagation
, N
);
629 -- Normal case with exception id present
632 Analyze
(Exception_Id
);
634 if Is_Entity_Name
(Exception_Id
) then
635 Exception_Name
:= Entity
(Exception_Id
);
638 if No
(Exception_Name
)
639 or else Ekind
(Exception_Name
) /= E_Exception
642 ("exception name expected in raise statement", Exception_Id
);
644 Set_Is_Raised
(Exception_Name
);
647 -- Deal with RAISE WITH case
649 if Present
(Expression
(N
)) then
650 Analyze_And_Resolve
(Expression
(N
), Standard_String
);
654 -- Check obsolescent use of Numeric_Error
656 if Exception_Name
= Standard_Numeric_Error
then
657 Check_Restriction
(No_Obsolescent_Features
, Exception_Id
);
660 -- Kill last assignment indication
662 Kill_Current_Values
(Last_Assignment_Only
=> True);
663 end Analyze_Raise_Statement
;
665 ----------------------------------
666 -- Analyze_Raise_When_Statement --
667 ----------------------------------
669 procedure Analyze_Raise_When_Statement
(N
: Node_Id
) is
671 -- Verify the condition is a Boolean expression
673 Analyze_And_Resolve
(Condition
(N
), Any_Boolean
);
674 Check_Unset_Reference
(Condition
(N
));
675 end Analyze_Raise_When_Statement
;
677 -----------------------------
678 -- Analyze_Raise_xxx_Error --
679 -----------------------------
681 -- Normally, the Etype is already set (when this node is used within
682 -- an expression, since it is copied from the node which it rewrites).
683 -- If this node is used in a statement context, then we set the type
684 -- Standard_Void_Type. This is used both by Gigi and by the front end
685 -- to distinguish the statement use and the subexpression use.
687 -- The only other required processing is to take care of the Condition
688 -- field if one is present.
690 procedure Analyze_Raise_xxx_Error
(N
: Node_Id
) is
692 function Same_Expression
(C1
, C2
: Node_Id
) return Boolean;
693 -- It often occurs that two identical raise statements are generated in
694 -- succession (for example when dynamic elaboration checks take place on
695 -- separate expressions in a call). If the two statements are identical
696 -- according to the simple criterion that follows, the raise is
697 -- converted into a null statement.
699 ---------------------
700 -- Same_Expression --
701 ---------------------
703 function Same_Expression
(C1
, C2
: Node_Id
) return Boolean is
705 if No
(C1
) and then No
(C2
) then
708 elsif Is_Entity_Name
(C1
) and then Is_Entity_Name
(C2
) then
709 return Entity
(C1
) = Entity
(C2
);
711 elsif Nkind
(C1
) /= Nkind
(C2
) then
714 elsif Nkind
(C1
) in N_Unary_Op
then
715 return Same_Expression
(Right_Opnd
(C1
), Right_Opnd
(C2
));
717 elsif Nkind
(C1
) in N_Binary_Op
then
718 return Same_Expression
(Left_Opnd
(C1
), Left_Opnd
(C2
))
720 Same_Expression
(Right_Opnd
(C1
), Right_Opnd
(C2
));
722 elsif Nkind
(C1
) = N_Null
then
730 -- Start of processing for Analyze_Raise_xxx_Error
733 if No
(Etype
(N
)) then
734 Set_Etype
(N
, Standard_Void_Type
);
737 if Present
(Condition
(N
)) then
738 Analyze_And_Resolve
(Condition
(N
), Standard_Boolean
);
741 -- Deal with static cases in obvious manner
743 if Nkind
(Condition
(N
)) = N_Identifier
then
744 if Entity
(Condition
(N
)) = Standard_True
then
745 Set_Condition
(N
, Empty
);
747 elsif Entity
(Condition
(N
)) = Standard_False
then
748 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
752 -- Remove duplicate raise statements. Note that the previous one may
753 -- already have been removed as well.
755 if not Comes_From_Source
(N
)
756 and then Nkind
(N
) /= N_Null_Statement
757 and then Is_List_Member
(N
)
758 and then Present
(Prev
(N
))
759 and then Nkind
(N
) = Nkind
(Original_Node
(Prev
(N
)))
760 and then Same_Expression
761 (Condition
(N
), Condition
(Original_Node
(Prev
(N
))))
763 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
765 end Analyze_Raise_xxx_Error
;