c++: Implement C++23 P2266R1, Simpler implicit move [PR101165]
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blob74b221a973cc7128a15b4e1b164b42de53302c60
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
54 /*************************************************************************
55 Simple Loop Peeling Utilities
57 Utilities to support loop peeling for vectorization purposes.
58 *************************************************************************/
61 /* Renames the use *OP_P. */
63 static void
64 rename_use_op (use_operand_p op_p)
66 tree new_name;
68 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
69 return;
71 new_name = get_current_def (USE_FROM_PTR (op_p));
73 /* Something defined outside of the loop. */
74 if (!new_name)
75 return;
77 /* An ordinary ssa name defined in the loop. */
79 SET_USE (op_p, new_name);
83 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
84 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
85 true. */
87 static void
88 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
90 gimple *stmt;
91 use_operand_p use_p;
92 ssa_op_iter iter;
93 edge e;
94 edge_iterator ei;
95 class loop *loop = bb->loop_father;
96 class loop *outer_loop = NULL;
98 if (rename_from_outer_loop)
100 gcc_assert (loop);
101 outer_loop = loop_outer (loop);
104 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
105 gsi_next (&gsi))
107 stmt = gsi_stmt (gsi);
108 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
109 rename_use_op (use_p);
112 FOR_EACH_EDGE (e, ei, bb->preds)
114 if (!flow_bb_inside_loop_p (loop, e->src))
116 if (!rename_from_outer_loop)
117 continue;
118 if (e->src != outer_loop->header)
120 if (outer_loop->inner->next)
122 /* If outer_loop has 2 inner loops, allow there to
123 be an extra basic block which decides which of the
124 two loops to use using LOOP_VECTORIZED. */
125 if (!single_pred_p (e->src)
126 || single_pred (e->src) != outer_loop->header)
127 continue;
131 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
132 gsi_next (&gsi))
133 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
138 struct adjust_info
140 tree from, to;
141 basic_block bb;
144 /* A stack of values to be adjusted in debug stmts. We have to
145 process them LIFO, so that the closest substitution applies. If we
146 processed them FIFO, without the stack, we might substitute uses
147 with a PHI DEF that would soon become non-dominant, and when we got
148 to the suitable one, it wouldn't have anything to substitute any
149 more. */
150 static vec<adjust_info, va_heap> adjust_vec;
152 /* Adjust any debug stmts that referenced AI->from values to use the
153 loop-closed AI->to, if the references are dominated by AI->bb and
154 not by the definition of AI->from. */
156 static void
157 adjust_debug_stmts_now (adjust_info *ai)
159 basic_block bbphi = ai->bb;
160 tree orig_def = ai->from;
161 tree new_def = ai->to;
162 imm_use_iterator imm_iter;
163 gimple *stmt;
164 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
166 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
168 /* Adjust any debug stmts that held onto non-loop-closed
169 references. */
170 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
172 use_operand_p use_p;
173 basic_block bbuse;
175 if (!is_gimple_debug (stmt))
176 continue;
178 gcc_assert (gimple_debug_bind_p (stmt));
180 bbuse = gimple_bb (stmt);
182 if ((bbuse == bbphi
183 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
184 && !(bbuse == bbdef
185 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
187 if (new_def)
188 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
189 SET_USE (use_p, new_def);
190 else
192 gimple_debug_bind_reset_value (stmt);
193 update_stmt (stmt);
199 /* Adjust debug stmts as scheduled before. */
201 static void
202 adjust_vec_debug_stmts (void)
204 if (!MAY_HAVE_DEBUG_BIND_STMTS)
205 return;
207 gcc_assert (adjust_vec.exists ());
209 while (!adjust_vec.is_empty ())
211 adjust_debug_stmts_now (&adjust_vec.last ());
212 adjust_vec.pop ();
216 /* Adjust any debug stmts that referenced FROM values to use the
217 loop-closed TO, if the references are dominated by BB and not by
218 the definition of FROM. If adjust_vec is non-NULL, adjustments
219 will be postponed until adjust_vec_debug_stmts is called. */
221 static void
222 adjust_debug_stmts (tree from, tree to, basic_block bb)
224 adjust_info ai;
226 if (MAY_HAVE_DEBUG_BIND_STMTS
227 && TREE_CODE (from) == SSA_NAME
228 && ! SSA_NAME_IS_DEFAULT_DEF (from)
229 && ! virtual_operand_p (from))
231 ai.from = from;
232 ai.to = to;
233 ai.bb = bb;
235 if (adjust_vec.exists ())
236 adjust_vec.safe_push (ai);
237 else
238 adjust_debug_stmts_now (&ai);
242 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
243 to adjust any debug stmts that referenced the old phi arg,
244 presumably non-loop-closed references left over from other
245 transformations. */
247 static void
248 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
250 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
252 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
254 if (MAY_HAVE_DEBUG_BIND_STMTS)
255 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
256 gimple_bb (update_phi));
259 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
260 that the control should have during the first iteration and NEXT_CTRL is the
261 value that it should have on subsequent iterations. */
263 static void
264 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
265 tree next_ctrl)
267 gphi *phi = create_phi_node (ctrl, loop->header);
268 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
269 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
272 /* Add SEQ to the end of LOOP's preheader block. */
274 static void
275 add_preheader_seq (class loop *loop, gimple_seq seq)
277 if (seq)
279 edge pe = loop_preheader_edge (loop);
280 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
281 gcc_assert (!new_bb);
285 /* Add SEQ to the beginning of LOOP's header block. */
287 static void
288 add_header_seq (class loop *loop, gimple_seq seq)
290 if (seq)
292 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
293 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
297 /* Return true if the target can interleave elements of two vectors.
298 OFFSET is 0 if the first half of the vectors should be interleaved
299 or 1 if the second half should. When returning true, store the
300 associated permutation in INDICES. */
302 static bool
303 interleave_supported_p (vec_perm_indices *indices, tree vectype,
304 unsigned int offset)
306 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
307 poly_uint64 base = exact_div (nelts, 2) * offset;
308 vec_perm_builder sel (nelts, 2, 3);
309 for (unsigned int i = 0; i < 3; ++i)
311 sel.quick_push (base + i);
312 sel.quick_push (base + i + nelts);
314 indices->new_vector (sel, 2, nelts);
315 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
316 *indices);
319 /* Try to use permutes to define the masks in DEST_RGM using the masks
320 in SRC_RGM, given that the former has twice as many masks as the
321 latter. Return true on success, adding any new statements to SEQ. */
323 static bool
324 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
325 rgroup_controls *src_rgm)
327 tree src_masktype = src_rgm->type;
328 tree dest_masktype = dest_rgm->type;
329 machine_mode src_mode = TYPE_MODE (src_masktype);
330 insn_code icode1, icode2;
331 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
332 && (icode1 = optab_handler (vec_unpacku_hi_optab,
333 src_mode)) != CODE_FOR_nothing
334 && (icode2 = optab_handler (vec_unpacku_lo_optab,
335 src_mode)) != CODE_FOR_nothing)
337 /* Unpacking the source masks gives at least as many mask bits as
338 we need. We can then VIEW_CONVERT any excess bits away. */
339 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
340 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
341 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
342 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
344 tree src = src_rgm->controls[i / 2];
345 tree dest = dest_rgm->controls[i];
346 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
347 ? VEC_UNPACK_HI_EXPR
348 : VEC_UNPACK_LO_EXPR);
349 gassign *stmt;
350 if (dest_masktype == unpack_masktype)
351 stmt = gimple_build_assign (dest, code, src);
352 else
354 tree temp = make_ssa_name (unpack_masktype);
355 stmt = gimple_build_assign (temp, code, src);
356 gimple_seq_add_stmt (seq, stmt);
357 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
358 build1 (VIEW_CONVERT_EXPR,
359 dest_masktype, temp));
361 gimple_seq_add_stmt (seq, stmt);
363 return true;
365 vec_perm_indices indices[2];
366 if (dest_masktype == src_masktype
367 && interleave_supported_p (&indices[0], src_masktype, 0)
368 && interleave_supported_p (&indices[1], src_masktype, 1))
370 /* The destination requires twice as many mask bits as the source, so
371 we can use interleaving permutes to double up the number of bits. */
372 tree masks[2];
373 for (unsigned int i = 0; i < 2; ++i)
374 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
375 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
377 tree src = src_rgm->controls[i / 2];
378 tree dest = dest_rgm->controls[i];
379 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
380 src, src, masks[i & 1]);
381 gimple_seq_add_stmt (seq, stmt);
383 return true;
385 return false;
388 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
389 for all the rgroup controls in RGC and return a control that is nonzero
390 when the loop needs to iterate. Add any new preheader statements to
391 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
393 RGC belongs to loop LOOP. The loop originally iterated NITERS
394 times and has been vectorized according to LOOP_VINFO.
396 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
397 starts with NITERS_SKIP dummy iterations of the scalar loop before
398 the real work starts. The mask elements for these dummy iterations
399 must be 0, to ensure that the extra iterations do not have an effect.
401 It is known that:
403 NITERS * RGC->max_nscalars_per_iter * RGC->factor
405 does not overflow. However, MIGHT_WRAP_P says whether an induction
406 variable that starts at 0 and has step:
408 VF * RGC->max_nscalars_per_iter * RGC->factor
410 might overflow before hitting a value above:
412 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
414 This means that we cannot guarantee that such an induction variable
415 would ever hit a value that produces a set of all-false masks or zero
416 lengths for RGC.
418 Note: the cost of the code generated by this function is modeled
419 by vect_estimate_min_profitable_iters, so changes here may need
420 corresponding changes there. */
422 static tree
423 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
424 gimple_seq *preheader_seq,
425 gimple_seq *header_seq,
426 gimple_stmt_iterator loop_cond_gsi,
427 rgroup_controls *rgc, tree niters,
428 tree niters_skip, bool might_wrap_p)
430 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
431 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
432 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
434 tree ctrl_type = rgc->type;
435 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
436 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
437 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
438 tree length_limit = NULL_TREE;
439 /* For length, we need length_limit to ensure length in range. */
440 if (!use_masks_p)
441 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
443 /* Calculate the maximum number of item values that the rgroup
444 handles in total, the number that it handles for each iteration
445 of the vector loop, and the number that it should skip during the
446 first iteration of the vector loop. */
447 tree nitems_total = niters;
448 tree nitems_step = build_int_cst (iv_type, vf);
449 tree nitems_skip = niters_skip;
450 if (nitems_per_iter != 1)
452 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
453 these multiplications don't overflow. */
454 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
455 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
456 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
457 nitems_total, compare_factor);
458 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
459 nitems_step, iv_factor);
460 if (nitems_skip)
461 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
462 nitems_skip, compare_factor);
465 /* Create an induction variable that counts the number of items
466 processed. */
467 tree index_before_incr, index_after_incr;
468 gimple_stmt_iterator incr_gsi;
469 bool insert_after;
470 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
471 create_iv (build_int_cst (iv_type, 0), nitems_step, NULL_TREE, loop,
472 &incr_gsi, insert_after, &index_before_incr, &index_after_incr);
474 tree zero_index = build_int_cst (compare_type, 0);
475 tree test_index, test_limit, first_limit;
476 gimple_stmt_iterator *test_gsi;
477 if (might_wrap_p)
479 /* In principle the loop should stop iterating once the incremented
480 IV reaches a value greater than or equal to:
482 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
484 However, there's no guarantee that this addition doesn't overflow
485 the comparison type, or that the IV hits a value above it before
486 wrapping around. We therefore adjust the limit down by one
487 IV step:
489 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
490 -[infinite-prec] NITEMS_STEP
492 and compare the IV against this limit _before_ incrementing it.
493 Since the comparison type is unsigned, we actually want the
494 subtraction to saturate at zero:
496 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
497 -[sat] NITEMS_STEP
499 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
501 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
503 where the rightmost subtraction can be done directly in
504 COMPARE_TYPE. */
505 test_index = index_before_incr;
506 tree adjust = gimple_convert (preheader_seq, compare_type,
507 nitems_step);
508 if (nitems_skip)
509 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
510 adjust, nitems_skip);
511 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
512 nitems_total, adjust);
513 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
514 test_limit, adjust);
515 test_gsi = &incr_gsi;
517 /* Get a safe limit for the first iteration. */
518 if (nitems_skip)
520 /* The first vector iteration can handle at most NITEMS_STEP
521 items. NITEMS_STEP <= CONST_LIMIT, and adding
522 NITEMS_SKIP to that cannot overflow. */
523 tree const_limit = build_int_cst (compare_type,
524 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
525 * nitems_per_iter);
526 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
527 nitems_total, const_limit);
528 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
529 first_limit, nitems_skip);
531 else
532 /* For the first iteration it doesn't matter whether the IV hits
533 a value above NITEMS_TOTAL. That only matters for the latch
534 condition. */
535 first_limit = nitems_total;
537 else
539 /* Test the incremented IV, which will always hit a value above
540 the bound before wrapping. */
541 test_index = index_after_incr;
542 test_limit = nitems_total;
543 if (nitems_skip)
544 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
545 test_limit, nitems_skip);
546 test_gsi = &loop_cond_gsi;
548 first_limit = test_limit;
551 /* Convert the IV value to the comparison type (either a no-op or
552 a demotion). */
553 gimple_seq test_seq = NULL;
554 test_index = gimple_convert (&test_seq, compare_type, test_index);
555 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
557 /* Provide a definition of each control in the group. */
558 tree next_ctrl = NULL_TREE;
559 tree ctrl;
560 unsigned int i;
561 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
563 /* Previous controls will cover BIAS items. This control covers the
564 next batch. */
565 poly_uint64 bias = nitems_per_ctrl * i;
566 tree bias_tree = build_int_cst (compare_type, bias);
568 /* See whether the first iteration of the vector loop is known
569 to have a full control. */
570 poly_uint64 const_limit;
571 bool first_iteration_full
572 = (poly_int_tree_p (first_limit, &const_limit)
573 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
575 /* Rather than have a new IV that starts at BIAS and goes up to
576 TEST_LIMIT, prefer to use the same 0-based IV for each control
577 and adjust the bound down by BIAS. */
578 tree this_test_limit = test_limit;
579 if (i != 0)
581 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
582 compare_type, this_test_limit,
583 bias_tree);
584 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
585 compare_type, this_test_limit,
586 bias_tree);
589 /* Create the initial control. First include all items that
590 are within the loop limit. */
591 tree init_ctrl = NULL_TREE;
592 if (!first_iteration_full)
594 tree start, end;
595 if (first_limit == test_limit)
597 /* Use a natural test between zero (the initial IV value)
598 and the loop limit. The "else" block would be valid too,
599 but this choice can avoid the need to load BIAS_TREE into
600 a register. */
601 start = zero_index;
602 end = this_test_limit;
604 else
606 /* FIRST_LIMIT is the maximum number of items handled by the
607 first iteration of the vector loop. Test the portion
608 associated with this control. */
609 start = bias_tree;
610 end = first_limit;
613 if (use_masks_p)
614 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
615 start, end, "max_mask");
616 else
618 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
619 gimple_seq seq = vect_gen_len (init_ctrl, start,
620 end, length_limit);
621 gimple_seq_add_seq (preheader_seq, seq);
625 /* Now AND out the bits that are within the number of skipped
626 items. */
627 poly_uint64 const_skip;
628 if (nitems_skip
629 && !(poly_int_tree_p (nitems_skip, &const_skip)
630 && known_le (const_skip, bias)))
632 gcc_assert (use_masks_p);
633 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
634 bias_tree, nitems_skip);
635 if (init_ctrl)
636 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
637 init_ctrl, unskipped_mask);
638 else
639 init_ctrl = unskipped_mask;
642 if (!init_ctrl)
644 /* First iteration is full. */
645 if (use_masks_p)
646 init_ctrl = build_minus_one_cst (ctrl_type);
647 else
648 init_ctrl = length_limit;
651 /* Get the control value for the next iteration of the loop. */
652 if (use_masks_p)
654 gimple_seq stmts = NULL;
655 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
656 this_test_limit, "next_mask");
657 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
659 else
661 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
662 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
663 length_limit);
664 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
667 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
670 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
671 if (partial_load_bias != 0)
673 tree adjusted_len = rgc->bias_adjusted_ctrl;
674 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
675 rgc->controls[0],
676 build_int_cst
677 (TREE_TYPE (rgc->controls[0]),
678 partial_load_bias));
679 gimple_seq_add_stmt (header_seq, minus);
682 return next_ctrl;
685 /* Set up the iteration condition and rgroup controls for LOOP, given
686 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
687 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
688 the number of iterations of the original scalar loop that should be
689 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
690 for vect_set_loop_condition.
692 Insert the branch-back condition before LOOP_COND_GSI and return the
693 final gcond. */
695 static gcond *
696 vect_set_loop_condition_partial_vectors (class loop *loop,
697 loop_vec_info loop_vinfo, tree niters,
698 tree final_iv, bool niters_maybe_zero,
699 gimple_stmt_iterator loop_cond_gsi)
701 gimple_seq preheader_seq = NULL;
702 gimple_seq header_seq = NULL;
704 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
705 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
706 unsigned int compare_precision = TYPE_PRECISION (compare_type);
707 tree orig_niters = niters;
709 /* Type of the initial value of NITERS. */
710 tree ni_actual_type = TREE_TYPE (niters);
711 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
712 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
714 /* Convert NITERS to the same size as the compare. */
715 if (compare_precision > ni_actual_precision
716 && niters_maybe_zero)
718 /* We know that there is always at least one iteration, so if the
719 count is zero then it must have wrapped. Cope with this by
720 subtracting 1 before the conversion and adding 1 to the result. */
721 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
722 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
723 niters, build_minus_one_cst (ni_actual_type));
724 niters = gimple_convert (&preheader_seq, compare_type, niters);
725 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
726 niters, build_one_cst (compare_type));
728 else
729 niters = gimple_convert (&preheader_seq, compare_type, niters);
731 /* Iterate over all the rgroups and fill in their controls. We could use
732 the first control from any rgroup for the loop condition; here we
733 arbitrarily pick the last. */
734 tree test_ctrl = NULL_TREE;
735 rgroup_controls *rgc;
736 unsigned int i;
737 auto_vec<rgroup_controls> *controls = use_masks_p
738 ? &LOOP_VINFO_MASKS (loop_vinfo)
739 : &LOOP_VINFO_LENS (loop_vinfo);
740 FOR_EACH_VEC_ELT (*controls, i, rgc)
741 if (!rgc->controls.is_empty ())
743 /* First try using permutes. This adds a single vector
744 instruction to the loop for each mask, but needs no extra
745 loop invariants or IVs. */
746 unsigned int nmasks = i + 1;
747 if (use_masks_p && (nmasks & 1) == 0)
749 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
750 if (!half_rgc->controls.is_empty ()
751 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
752 continue;
755 /* See whether zero-based IV would ever generate all-false masks
756 or zero length before wrapping around. */
757 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
759 /* Set up all controls for this group. */
760 test_ctrl = vect_set_loop_controls_directly (loop, loop_vinfo,
761 &preheader_seq,
762 &header_seq,
763 loop_cond_gsi, rgc,
764 niters, niters_skip,
765 might_wrap_p);
768 /* Emit all accumulated statements. */
769 add_preheader_seq (loop, preheader_seq);
770 add_header_seq (loop, header_seq);
772 /* Get a boolean result that tells us whether to iterate. */
773 edge exit_edge = single_exit (loop);
774 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
775 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
776 gcond *cond_stmt = gimple_build_cond (code, test_ctrl, zero_ctrl,
777 NULL_TREE, NULL_TREE);
778 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
780 /* The loop iterates (NITERS - 1) / VF + 1 times.
781 Subtract one from this to get the latch count. */
782 tree step = build_int_cst (compare_type,
783 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
784 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
785 build_minus_one_cst (compare_type));
786 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
787 niters_minus_one, step);
789 if (final_iv)
791 gassign *assign = gimple_build_assign (final_iv, orig_niters);
792 gsi_insert_on_edge_immediate (single_exit (loop), assign);
795 return cond_stmt;
798 /* Like vect_set_loop_condition, but handle the case in which the vector
799 loop handles exactly VF scalars per iteration. */
801 static gcond *
802 vect_set_loop_condition_normal (class loop *loop, tree niters, tree step,
803 tree final_iv, bool niters_maybe_zero,
804 gimple_stmt_iterator loop_cond_gsi)
806 tree indx_before_incr, indx_after_incr;
807 gcond *cond_stmt;
808 gcond *orig_cond;
809 edge pe = loop_preheader_edge (loop);
810 edge exit_edge = single_exit (loop);
811 gimple_stmt_iterator incr_gsi;
812 bool insert_after;
813 enum tree_code code;
814 tree niters_type = TREE_TYPE (niters);
816 orig_cond = get_loop_exit_condition (loop);
817 gcc_assert (orig_cond);
818 loop_cond_gsi = gsi_for_stmt (orig_cond);
820 tree init, limit;
821 if (!niters_maybe_zero && integer_onep (step))
823 /* In this case we can use a simple 0-based IV:
826 x = 0;
830 x += 1;
832 while (x < NITERS); */
833 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
834 init = build_zero_cst (niters_type);
835 limit = niters;
837 else
839 /* The following works for all values of NITERS except 0:
842 x = 0;
846 x += STEP;
848 while (x <= NITERS - STEP);
850 so that the loop continues to iterate if x + STEP - 1 < NITERS
851 but stops if x + STEP - 1 >= NITERS.
853 However, if NITERS is zero, x never hits a value above NITERS - STEP
854 before wrapping around. There are two obvious ways of dealing with
855 this:
857 - start at STEP - 1 and compare x before incrementing it
858 - start at -1 and compare x after incrementing it
860 The latter is simpler and is what we use. The loop in this case
861 looks like:
864 x = -1;
868 x += STEP;
870 while (x < NITERS - STEP);
872 In both cases the loop limit is NITERS - STEP. */
873 gimple_seq seq = NULL;
874 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
875 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
876 if (seq)
878 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
879 gcc_assert (!new_bb);
881 if (niters_maybe_zero)
883 /* Case C. */
884 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
885 init = build_all_ones_cst (niters_type);
887 else
889 /* Case B. */
890 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
891 init = build_zero_cst (niters_type);
895 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
896 create_iv (init, step, NULL_TREE, loop,
897 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
898 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
899 true, NULL_TREE, true,
900 GSI_SAME_STMT);
901 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
902 true, GSI_SAME_STMT);
904 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
905 NULL_TREE);
907 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
909 /* Record the number of latch iterations. */
910 if (limit == niters)
911 /* Case A: the loop iterates NITERS times. Subtract one to get the
912 latch count. */
913 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
914 build_int_cst (niters_type, 1));
915 else
916 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
917 Subtract one from this to get the latch count. */
918 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
919 limit, step);
921 if (final_iv)
923 gassign *assign;
924 edge exit = single_exit (loop);
925 gcc_assert (single_pred_p (exit->dest));
926 tree phi_dest
927 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
928 /* Make sure to maintain LC SSA form here and elide the subtraction
929 if the value is zero. */
930 gphi *phi = create_phi_node (phi_dest, exit->dest);
931 add_phi_arg (phi, indx_after_incr, exit, UNKNOWN_LOCATION);
932 if (!integer_zerop (init))
934 assign = gimple_build_assign (final_iv, MINUS_EXPR,
935 phi_dest, init);
936 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
937 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
941 return cond_stmt;
944 /* If we're using fully-masked loops, make LOOP iterate:
946 N == (NITERS - 1) / STEP + 1
948 times. When NITERS is zero, this is equivalent to making the loop
949 execute (1 << M) / STEP times, where M is the precision of NITERS.
950 NITERS_MAYBE_ZERO is true if this last case might occur.
952 If we're not using fully-masked loops, make LOOP iterate:
954 N == (NITERS - STEP) / STEP + 1
956 times, where NITERS is known to be outside the range [1, STEP - 1].
957 This is equivalent to making the loop execute NITERS / STEP times
958 when NITERS is nonzero and (1 << M) / STEP times otherwise.
959 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
961 If FINAL_IV is nonnull, it is an SSA name that should be set to
962 N * STEP on exit from the loop.
964 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
966 void
967 vect_set_loop_condition (class loop *loop, loop_vec_info loop_vinfo,
968 tree niters, tree step, tree final_iv,
969 bool niters_maybe_zero)
971 gcond *cond_stmt;
972 gcond *orig_cond = get_loop_exit_condition (loop);
973 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
975 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
976 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_vinfo,
977 niters, final_iv,
978 niters_maybe_zero,
979 loop_cond_gsi);
980 else
981 cond_stmt = vect_set_loop_condition_normal (loop, niters, step, final_iv,
982 niters_maybe_zero,
983 loop_cond_gsi);
985 /* Remove old loop exit test. */
986 stmt_vec_info orig_cond_info;
987 if (loop_vinfo
988 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
989 loop_vinfo->remove_stmt (orig_cond_info);
990 else
991 gsi_remove (&loop_cond_gsi, true);
993 if (dump_enabled_p ())
994 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
995 (gimple *) cond_stmt);
998 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
999 For all PHI arguments in FROM->dest and TO->dest from those
1000 edges ensure that TO->dest PHI arguments have current_def
1001 to that in from. */
1003 static void
1004 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
1006 gimple_stmt_iterator gsi_from, gsi_to;
1008 for (gsi_from = gsi_start_phis (from->dest),
1009 gsi_to = gsi_start_phis (to->dest);
1010 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
1012 gimple *from_phi = gsi_stmt (gsi_from);
1013 gimple *to_phi = gsi_stmt (gsi_to);
1014 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
1015 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
1016 if (virtual_operand_p (from_arg))
1018 gsi_next (&gsi_from);
1019 continue;
1021 if (virtual_operand_p (to_arg))
1023 gsi_next (&gsi_to);
1024 continue;
1026 if (TREE_CODE (from_arg) != SSA_NAME)
1027 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
1028 else if (TREE_CODE (to_arg) == SSA_NAME
1029 && from_arg != to_arg)
1031 if (get_current_def (to_arg) == NULL_TREE)
1033 gcc_assert (types_compatible_p (TREE_TYPE (to_arg),
1034 TREE_TYPE (get_current_def
1035 (from_arg))));
1036 set_current_def (to_arg, get_current_def (from_arg));
1039 gsi_next (&gsi_from);
1040 gsi_next (&gsi_to);
1043 gphi *from_phi = get_virtual_phi (from->dest);
1044 gphi *to_phi = get_virtual_phi (to->dest);
1045 if (from_phi)
1046 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
1047 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
1051 /* Given LOOP this function generates a new copy of it and puts it
1052 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1053 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1054 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1055 entry or exit of LOOP. */
1057 class loop *
1058 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop,
1059 class loop *scalar_loop, edge e)
1061 class loop *new_loop;
1062 basic_block *new_bbs, *bbs, *pbbs;
1063 bool at_exit;
1064 bool was_imm_dom;
1065 basic_block exit_dest;
1066 edge exit, new_exit;
1067 bool duplicate_outer_loop = false;
1069 exit = single_exit (loop);
1070 at_exit = (e == exit);
1071 if (!at_exit && e != loop_preheader_edge (loop))
1072 return NULL;
1074 if (scalar_loop == NULL)
1075 scalar_loop = loop;
1077 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1078 pbbs = bbs + 1;
1079 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1080 /* Allow duplication of outer loops. */
1081 if (scalar_loop->inner)
1082 duplicate_outer_loop = true;
1083 /* Check whether duplication is possible. */
1084 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
1086 free (bbs);
1087 return NULL;
1090 /* Generate new loop structure. */
1091 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1092 duplicate_subloops (scalar_loop, new_loop);
1094 exit_dest = exit->dest;
1095 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1096 exit_dest) == loop->header ?
1097 true : false);
1099 /* Also copy the pre-header, this avoids jumping through hoops to
1100 duplicate the loop entry PHI arguments. Create an empty
1101 pre-header unconditionally for this. */
1102 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1103 edge entry_e = single_pred_edge (preheader);
1104 bbs[0] = preheader;
1105 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1107 exit = single_exit (scalar_loop);
1108 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1109 &exit, 1, &new_exit, NULL,
1110 at_exit ? loop->latch : e->src, true);
1111 exit = single_exit (loop);
1112 basic_block new_preheader = new_bbs[0];
1114 /* Before installing PHI arguments make sure that the edges
1115 into them match that of the scalar loop we analyzed. This
1116 makes sure the SLP tree matches up between the main vectorized
1117 loop and the epilogue vectorized copies. */
1118 if (single_succ_edge (preheader)->dest_idx
1119 != single_succ_edge (new_bbs[0])->dest_idx)
1121 basic_block swap_bb = new_bbs[1];
1122 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1123 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1124 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1125 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1127 if (duplicate_outer_loop)
1129 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1130 if (loop_preheader_edge (scalar_loop)->dest_idx
1131 != loop_preheader_edge (new_inner_loop)->dest_idx)
1133 basic_block swap_bb = new_inner_loop->header;
1134 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1135 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1136 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1137 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1141 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1143 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1144 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1145 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1147 if (scalar_loop != loop)
1149 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1150 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1151 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1152 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1153 header) to have current_def set, so copy them over. */
1154 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
1155 exit);
1156 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
1158 EDGE_SUCC (loop->latch, 0));
1161 if (at_exit) /* Add the loop copy at exit. */
1163 if (scalar_loop != loop)
1165 gphi_iterator gsi;
1166 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1168 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
1169 gsi_next (&gsi))
1171 gphi *phi = gsi.phi ();
1172 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
1173 location_t orig_locus
1174 = gimple_phi_arg_location_from_edge (phi, e);
1176 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
1179 redirect_edge_and_branch_force (e, new_preheader);
1180 flush_pending_stmts (e);
1181 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
1182 if (was_imm_dom || duplicate_outer_loop)
1183 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1185 /* And remove the non-necessary forwarder again. Keep the other
1186 one so we have a proper pre-header for the loop at the exit edge. */
1187 redirect_edge_pred (single_succ_edge (preheader),
1188 single_pred (preheader));
1189 delete_basic_block (preheader);
1190 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1191 loop_preheader_edge (scalar_loop)->src);
1193 else /* Add the copy at entry. */
1195 if (scalar_loop != loop)
1197 /* Remove the non-necessary forwarder of scalar_loop again. */
1198 redirect_edge_pred (single_succ_edge (preheader),
1199 single_pred (preheader));
1200 delete_basic_block (preheader);
1201 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1202 loop_preheader_edge (scalar_loop)->src);
1203 preheader = split_edge (loop_preheader_edge (loop));
1204 entry_e = single_pred_edge (preheader);
1207 redirect_edge_and_branch_force (entry_e, new_preheader);
1208 flush_pending_stmts (entry_e);
1209 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1211 redirect_edge_and_branch_force (new_exit, preheader);
1212 flush_pending_stmts (new_exit);
1213 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1215 /* And remove the non-necessary forwarder again. Keep the other
1216 one so we have a proper pre-header for the loop at the exit edge. */
1217 redirect_edge_pred (single_succ_edge (new_preheader),
1218 single_pred (new_preheader));
1219 delete_basic_block (new_preheader);
1220 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1221 loop_preheader_edge (new_loop)->src);
1224 if (scalar_loop != loop)
1226 /* Update new_loop->header PHIs, so that on the preheader
1227 edge they are the ones from loop rather than scalar_loop. */
1228 gphi_iterator gsi_orig, gsi_new;
1229 edge orig_e = loop_preheader_edge (loop);
1230 edge new_e = loop_preheader_edge (new_loop);
1232 for (gsi_orig = gsi_start_phis (loop->header),
1233 gsi_new = gsi_start_phis (new_loop->header);
1234 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
1235 gsi_next (&gsi_orig), gsi_next (&gsi_new))
1237 gphi *orig_phi = gsi_orig.phi ();
1238 gphi *new_phi = gsi_new.phi ();
1239 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1240 location_t orig_locus
1241 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1243 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
1247 free (new_bbs);
1248 free (bbs);
1250 checking_verify_dominators (CDI_DOMINATORS);
1252 return new_loop;
1256 /* Given the condition expression COND, put it as the last statement of
1257 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1258 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1259 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1260 new edge as irreducible if IRREDUCIBLE_P is true. */
1262 static edge
1263 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1264 basic_block guard_to, basic_block dom_bb,
1265 profile_probability probability, bool irreducible_p)
1267 gimple_stmt_iterator gsi;
1268 edge new_e, enter_e;
1269 gcond *cond_stmt;
1270 gimple_seq gimplify_stmt_list = NULL;
1272 enter_e = EDGE_SUCC (guard_bb, 0);
1273 enter_e->flags &= ~EDGE_FALLTHRU;
1274 enter_e->flags |= EDGE_FALSE_VALUE;
1275 gsi = gsi_last_bb (guard_bb);
1277 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1278 is_gimple_condexpr_for_cond, NULL_TREE);
1279 if (gimplify_stmt_list)
1280 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1282 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1283 gsi = gsi_last_bb (guard_bb);
1284 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1286 /* Add new edge to connect guard block to the merge/loop-exit block. */
1287 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1289 new_e->probability = probability;
1290 if (irreducible_p)
1291 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1293 enter_e->probability = probability.invert ();
1294 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1296 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1297 if (enter_e->dest->loop_father->header == enter_e->dest)
1298 split_edge (enter_e);
1300 return new_e;
1304 /* This function verifies that the following restrictions apply to LOOP:
1305 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1306 for innermost loop and 5 basic blocks for outer-loop.
1307 (2) it is single entry, single exit
1308 (3) its exit condition is the last stmt in the header
1309 (4) E is the entry/exit edge of LOOP.
1312 bool
1313 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge e)
1315 edge exit_e = single_exit (loop);
1316 edge entry_e = loop_preheader_edge (loop);
1317 gcond *orig_cond = get_loop_exit_condition (loop);
1318 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1319 unsigned int num_bb = loop->inner? 5 : 2;
1321 /* All loops have an outer scope; the only case loop->outer is NULL is for
1322 the function itself. */
1323 if (!loop_outer (loop)
1324 || loop->num_nodes != num_bb
1325 || !empty_block_p (loop->latch)
1326 || !single_exit (loop)
1327 /* Verify that new loop exit condition can be trivially modified. */
1328 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1329 || (e != exit_e && e != entry_e))
1330 return false;
1332 return true;
1335 /* Function vect_get_loop_location.
1337 Extract the location of the loop in the source code.
1338 If the loop is not well formed for vectorization, an estimated
1339 location is calculated.
1340 Return the loop location if succeed and NULL if not. */
1342 dump_user_location_t
1343 find_loop_location (class loop *loop)
1345 gimple *stmt = NULL;
1346 basic_block bb;
1347 gimple_stmt_iterator si;
1349 if (!loop)
1350 return dump_user_location_t ();
1352 stmt = get_loop_exit_condition (loop);
1354 if (stmt
1355 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1356 return stmt;
1358 /* If we got here the loop is probably not "well formed",
1359 try to estimate the loop location */
1361 if (!loop->header)
1362 return dump_user_location_t ();
1364 bb = loop->header;
1366 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1368 stmt = gsi_stmt (si);
1369 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1370 return stmt;
1373 return dump_user_location_t ();
1376 /* Return true if the phi described by STMT_INFO defines an IV of the
1377 loop to be vectorized. */
1379 static bool
1380 iv_phi_p (stmt_vec_info stmt_info)
1382 gphi *phi = as_a <gphi *> (stmt_info->stmt);
1383 if (virtual_operand_p (PHI_RESULT (phi)))
1384 return false;
1386 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1387 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1388 return false;
1390 return true;
1393 /* Function vect_can_advance_ivs_p
1395 In case the number of iterations that LOOP iterates is unknown at compile
1396 time, an epilog loop will be generated, and the loop induction variables
1397 (IVs) will be "advanced" to the value they are supposed to take just before
1398 the epilog loop. Here we check that the access function of the loop IVs
1399 and the expression that represents the loop bound are simple enough.
1400 These restrictions will be relaxed in the future. */
1402 bool
1403 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1405 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1406 basic_block bb = loop->header;
1407 gphi_iterator gsi;
1409 /* Analyze phi functions of the loop header. */
1411 if (dump_enabled_p ())
1412 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1413 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1415 tree evolution_part;
1417 gphi *phi = gsi.phi ();
1418 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1419 if (dump_enabled_p ())
1420 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
1421 phi_info->stmt);
1423 /* Skip virtual phi's. The data dependences that are associated with
1424 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1426 Skip reduction phis. */
1427 if (!iv_phi_p (phi_info))
1429 if (dump_enabled_p ())
1430 dump_printf_loc (MSG_NOTE, vect_location,
1431 "reduc or virtual phi. skip.\n");
1432 continue;
1435 /* Analyze the evolution function. */
1437 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1438 if (evolution_part == NULL_TREE)
1440 if (dump_enabled_p ())
1441 dump_printf (MSG_MISSED_OPTIMIZATION,
1442 "No access function or evolution.\n");
1443 return false;
1446 /* FORNOW: We do not transform initial conditions of IVs
1447 which evolution functions are not invariants in the loop. */
1449 if (!expr_invariant_in_loop_p (loop, evolution_part))
1451 if (dump_enabled_p ())
1452 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1453 "evolution not invariant in loop.\n");
1454 return false;
1457 /* FORNOW: We do not transform initial conditions of IVs
1458 which evolution functions are a polynomial of degree >= 2. */
1460 if (tree_is_chrec (evolution_part))
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "evolution is chrec.\n");
1465 return false;
1469 return true;
1473 /* Function vect_update_ivs_after_vectorizer.
1475 "Advance" the induction variables of LOOP to the value they should take
1476 after the execution of LOOP. This is currently necessary because the
1477 vectorizer does not handle induction variables that are used after the
1478 loop. Such a situation occurs when the last iterations of LOOP are
1479 peeled, because:
1480 1. We introduced new uses after LOOP for IVs that were not originally used
1481 after LOOP: the IVs of LOOP are now used by an epilog loop.
1482 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1483 times, whereas the loop IVs should be bumped N times.
1485 Input:
1486 - LOOP - a loop that is going to be vectorized. The last few iterations
1487 of LOOP were peeled.
1488 - NITERS - the number of iterations that LOOP executes (before it is
1489 vectorized). i.e, the number of times the ivs should be bumped.
1490 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1491 coming out from LOOP on which there are uses of the LOOP ivs
1492 (this is the path from LOOP->exit to epilog_loop->preheader).
1494 The new definitions of the ivs are placed in LOOP->exit.
1495 The phi args associated with the edge UPDATE_E in the bb
1496 UPDATE_E->dest are updated accordingly.
1498 Assumption 1: Like the rest of the vectorizer, this function assumes
1499 a single loop exit that has a single predecessor.
1501 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1502 organized in the same order.
1504 Assumption 3: The access function of the ivs is simple enough (see
1505 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1507 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1508 coming out of LOOP on which the ivs of LOOP are used (this is the path
1509 that leads to the epilog loop; other paths skip the epilog loop). This
1510 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1511 needs to have its phis updated.
1514 static void
1515 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
1516 tree niters, edge update_e)
1518 gphi_iterator gsi, gsi1;
1519 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1520 basic_block update_bb = update_e->dest;
1521 basic_block exit_bb = single_exit (loop)->dest;
1523 /* Make sure there exists a single-predecessor exit bb: */
1524 gcc_assert (single_pred_p (exit_bb));
1525 gcc_assert (single_succ_edge (exit_bb) == update_e);
1527 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1528 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1529 gsi_next (&gsi), gsi_next (&gsi1))
1531 tree init_expr;
1532 tree step_expr, off;
1533 tree type;
1534 tree var, ni, ni_name;
1535 gimple_stmt_iterator last_gsi;
1537 gphi *phi = gsi.phi ();
1538 gphi *phi1 = gsi1.phi ();
1539 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1540 if (dump_enabled_p ())
1541 dump_printf_loc (MSG_NOTE, vect_location,
1542 "vect_update_ivs_after_vectorizer: phi: %G",
1543 (gimple *) phi);
1545 /* Skip reduction and virtual phis. */
1546 if (!iv_phi_p (phi_info))
1548 if (dump_enabled_p ())
1549 dump_printf_loc (MSG_NOTE, vect_location,
1550 "reduc or virtual phi. skip.\n");
1551 continue;
1554 type = TREE_TYPE (gimple_phi_result (phi));
1555 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1556 step_expr = unshare_expr (step_expr);
1558 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1559 of degree >= 2 or exponential. */
1560 gcc_assert (!tree_is_chrec (step_expr));
1562 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1563 gimple_seq stmts = NULL;
1564 enum vect_induction_op_type induction_type
1565 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
1567 if (induction_type == vect_step_op_add)
1569 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1570 fold_convert (TREE_TYPE (step_expr), niters),
1571 step_expr);
1572 if (POINTER_TYPE_P (type))
1573 ni = fold_build_pointer_plus (init_expr, off);
1574 else
1575 ni = fold_build2 (PLUS_EXPR, type,
1576 init_expr, fold_convert (type, off));
1578 /* Don't bother call vect_peel_nonlinear_iv_init. */
1579 else if (induction_type == vect_step_op_neg)
1580 ni = init_expr;
1581 else
1582 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
1583 niters, step_expr,
1584 induction_type);
1586 var = create_tmp_var (type, "tmp");
1588 last_gsi = gsi_last_bb (exit_bb);
1589 gimple_seq new_stmts = NULL;
1590 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
1591 /* Exit_bb shouldn't be empty. */
1592 if (!gsi_end_p (last_gsi))
1594 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
1595 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
1597 else
1599 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
1600 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
1603 /* Fix phi expressions in the successor bb. */
1604 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1608 /* Return a gimple value containing the misalignment (measured in vector
1609 elements) for the loop described by LOOP_VINFO, i.e. how many elements
1610 it is away from a perfectly aligned address. Add any new statements
1611 to SEQ. */
1613 static tree
1614 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
1616 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1617 stmt_vec_info stmt_info = dr_info->stmt;
1618 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1620 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
1621 unsigned HOST_WIDE_INT target_align_c;
1622 tree target_align_minus_1;
1624 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1625 size_zero_node) < 0;
1626 tree offset = (negative
1627 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
1628 * TREE_INT_CST_LOW
1629 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
1630 : size_zero_node);
1631 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
1632 stmt_info, seq,
1633 offset);
1634 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1635 if (target_align.is_constant (&target_align_c))
1636 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
1637 else
1639 tree vla = build_int_cst (type, target_align);
1640 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
1641 fold_build2 (MINUS_EXPR, type,
1642 build_int_cst (type, 0), vla));
1643 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
1644 build_int_cst (type, 1));
1647 HOST_WIDE_INT elem_size
1648 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1649 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1651 /* Create: misalign_in_bytes = addr & (target_align - 1). */
1652 tree int_start_addr = fold_convert (type, start_addr);
1653 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
1654 target_align_minus_1);
1656 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
1657 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
1658 elem_size_log);
1660 return misalign_in_elems;
1663 /* Function vect_gen_prolog_loop_niters
1665 Generate the number of iterations which should be peeled as prolog for the
1666 loop represented by LOOP_VINFO. It is calculated as the misalignment of
1667 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
1668 As a result, after the execution of this loop, the data reference DR will
1669 refer to an aligned location. The following computation is generated:
1671 If the misalignment of DR is known at compile time:
1672 addr_mis = int mis = DR_MISALIGNMENT (dr);
1673 Else, compute address misalignment in bytes:
1674 addr_mis = addr & (target_align - 1)
1676 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
1678 (elem_size = element type size; an element is the scalar element whose type
1679 is the inner type of the vectype)
1681 The computations will be emitted at the end of BB. We also compute and
1682 store upper bound (included) of the result in BOUND.
1684 When the step of the data-ref in the loop is not 1 (as in interleaved data
1685 and SLP), the number of iterations of the prolog must be divided by the step
1686 (which is equal to the size of interleaved group).
1688 The above formulas assume that VF == number of elements in the vector. This
1689 may not hold when there are multiple-types in the loop.
1690 In this case, for some data-references in the loop the VF does not represent
1691 the number of elements that fit in the vector. Therefore, instead of VF we
1692 use TYPE_VECTOR_SUBPARTS. */
1694 static tree
1695 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
1696 basic_block bb, int *bound)
1698 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1699 tree var;
1700 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
1701 gimple_seq stmts = NULL, new_stmts = NULL;
1702 tree iters, iters_name;
1703 stmt_vec_info stmt_info = dr_info->stmt;
1704 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1705 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
1707 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1709 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1711 if (dump_enabled_p ())
1712 dump_printf_loc (MSG_NOTE, vect_location,
1713 "known peeling = %d.\n", npeel);
1715 iters = build_int_cst (niters_type, npeel);
1716 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1718 else
1720 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
1721 tree type = TREE_TYPE (misalign_in_elems);
1722 HOST_WIDE_INT elem_size
1723 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1724 /* We only do prolog peeling if the target alignment is known at compile
1725 time. */
1726 poly_uint64 align_in_elems =
1727 exact_div (target_align, elem_size);
1728 tree align_in_elems_minus_1 =
1729 build_int_cst (type, align_in_elems - 1);
1730 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
1732 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1733 & (align_in_elems - 1)). */
1734 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1735 size_zero_node) < 0;
1736 if (negative)
1737 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1738 align_in_elems_tree);
1739 else
1740 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1741 misalign_in_elems);
1742 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1743 iters = fold_convert (niters_type, iters);
1744 unsigned HOST_WIDE_INT align_in_elems_c;
1745 if (align_in_elems.is_constant (&align_in_elems_c))
1746 *bound = align_in_elems_c - 1;
1747 else
1748 *bound = -1;
1751 if (dump_enabled_p ())
1752 dump_printf_loc (MSG_NOTE, vect_location,
1753 "niters for prolog loop: %T\n", iters);
1755 var = create_tmp_var (niters_type, "prolog_loop_niters");
1756 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1758 if (new_stmts)
1759 gimple_seq_add_seq (&stmts, new_stmts);
1760 if (stmts)
1762 gcc_assert (single_succ_p (bb));
1763 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1764 if (gsi_end_p (gsi))
1765 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1766 else
1767 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1769 return iters_name;
1773 /* Function vect_update_init_of_dr
1775 If CODE is PLUS, the vector loop starts NITERS iterations after the
1776 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
1777 iterations before the scalar one (using masking to skip inactive
1778 elements). This function updates the information recorded in DR to
1779 account for the difference. Specifically, it updates the OFFSET
1780 field of DR_INFO. */
1782 static void
1783 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
1785 struct data_reference *dr = dr_info->dr;
1786 tree offset = dr_info->offset;
1787 if (!offset)
1788 offset = build_zero_cst (sizetype);
1790 niters = fold_build2 (MULT_EXPR, sizetype,
1791 fold_convert (sizetype, niters),
1792 fold_convert (sizetype, DR_STEP (dr)));
1793 offset = fold_build2 (code, sizetype,
1794 fold_convert (sizetype, offset), niters);
1795 dr_info->offset = offset;
1799 /* Function vect_update_inits_of_drs
1801 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
1802 CODE and NITERS are as for vect_update_inits_of_dr. */
1804 void
1805 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
1806 tree_code code)
1808 unsigned int i;
1809 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1810 struct data_reference *dr;
1812 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
1814 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
1815 here, but since we might use these niters to update the epilogues niters
1816 and data references we can't insert them here as this definition might not
1817 always dominate its uses. */
1818 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1819 niters = fold_convert (sizetype, niters);
1821 FOR_EACH_VEC_ELT (datarefs, i, dr)
1823 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1824 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
1825 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
1826 vect_update_init_of_dr (dr_info, niters, code);
1830 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
1831 by masking. This involves calculating the number of iterations to
1832 be peeled and then aligning all memory references appropriately. */
1834 void
1835 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
1837 tree misalign_in_elems;
1838 tree type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
1840 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
1842 /* From the information recorded in LOOP_VINFO get the number of iterations
1843 that need to be skipped via masking. */
1844 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1846 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1847 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1848 misalign_in_elems = build_int_cst (type, misalign);
1850 else
1852 gimple_seq seq1 = NULL, seq2 = NULL;
1853 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
1854 misalign_in_elems = fold_convert (type, misalign_in_elems);
1855 misalign_in_elems = force_gimple_operand (misalign_in_elems,
1856 &seq2, true, NULL_TREE);
1857 gimple_seq_add_seq (&seq1, seq2);
1858 if (seq1)
1860 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1861 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
1862 gcc_assert (!new_bb);
1866 if (dump_enabled_p ())
1867 dump_printf_loc (MSG_NOTE, vect_location,
1868 "misalignment for fully-masked loop: %T\n",
1869 misalign_in_elems);
1871 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
1873 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
1876 /* This function builds ni_name = number of iterations. Statements
1877 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1878 it to TRUE if new ssa_var is generated. */
1880 tree
1881 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1883 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1884 if (TREE_CODE (ni) == INTEGER_CST)
1885 return ni;
1886 else
1888 tree ni_name, var;
1889 gimple_seq stmts = NULL;
1890 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1892 var = create_tmp_var (TREE_TYPE (ni), "niters");
1893 ni_name = force_gimple_operand (ni, &stmts, false, var);
1894 if (stmts)
1896 gsi_insert_seq_on_edge_immediate (pe, stmts);
1897 if (new_var_p != NULL)
1898 *new_var_p = true;
1901 return ni_name;
1905 /* Calculate the number of iterations above which vectorized loop will be
1906 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1907 of prolog loop. If it's integer const, the integer number is also passed
1908 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
1909 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
1910 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
1911 threshold below which the scalar (rather than vectorized) loop will be
1912 executed. This function stores the upper bound (inclusive) of the result
1913 in BOUND_SCALAR. */
1915 static tree
1916 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1917 int bound_prolog, poly_int64 bound_epilog, int th,
1918 poly_uint64 *bound_scalar,
1919 bool check_profitability)
1921 tree type = TREE_TYPE (niters_prolog);
1922 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1923 build_int_cst (type, bound_epilog));
1925 *bound_scalar = bound_prolog + bound_epilog;
1926 if (check_profitability)
1928 /* TH indicates the minimum niters of vectorized loop, while we
1929 compute the maximum niters of scalar loop. */
1930 th--;
1931 /* Peeling for constant times. */
1932 if (int_niters_prolog >= 0)
1934 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
1935 return build_int_cst (type, *bound_scalar);
1937 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
1938 and BOUND_EPILOG are inclusive upper bounds. */
1939 if (known_ge (th, bound_prolog + bound_epilog))
1941 *bound_scalar = th;
1942 return build_int_cst (type, th);
1944 /* Need to do runtime comparison. */
1945 else if (maybe_gt (th, bound_epilog))
1947 *bound_scalar = upper_bound (*bound_scalar, th);
1948 return fold_build2 (MAX_EXPR, type,
1949 build_int_cst (type, th), niters);
1952 return niters;
1955 /* NITERS is the number of times that the original scalar loop executes
1956 after peeling. Work out the maximum number of iterations N that can
1957 be handled by the vectorized form of the loop and then either:
1959 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
1961 niters_vector = N
1963 b) set *STEP_VECTOR_PTR to one and generate:
1965 niters_vector = N / vf
1967 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
1968 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
1969 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
1971 void
1972 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1973 tree *niters_vector_ptr, tree *step_vector_ptr,
1974 bool niters_no_overflow)
1976 tree ni_minus_gap, var;
1977 tree niters_vector, step_vector, type = TREE_TYPE (niters);
1978 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1979 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1980 tree log_vf = NULL_TREE;
1982 /* If epilogue loop is required because of data accesses with gaps, we
1983 subtract one iteration from the total number of iterations here for
1984 correct calculation of RATIO. */
1985 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1987 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1988 build_one_cst (type));
1989 if (!is_gimple_val (ni_minus_gap))
1991 var = create_tmp_var (type, "ni_gap");
1992 gimple *stmts = NULL;
1993 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1994 true, var);
1995 gsi_insert_seq_on_edge_immediate (pe, stmts);
1998 else
1999 ni_minus_gap = niters;
2001 /* To silence some unexpected warnings, simply initialize to 0. */
2002 unsigned HOST_WIDE_INT const_vf = 0;
2003 if (vf.is_constant (&const_vf)
2004 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2006 /* Create: niters >> log2(vf) */
2007 /* If it's known that niters == number of latch executions + 1 doesn't
2008 overflow, we can generate niters >> log2(vf); otherwise we generate
2009 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2010 will be at least one. */
2011 log_vf = build_int_cst (type, exact_log2 (const_vf));
2012 if (niters_no_overflow)
2013 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2014 else
2015 niters_vector
2016 = fold_build2 (PLUS_EXPR, type,
2017 fold_build2 (RSHIFT_EXPR, type,
2018 fold_build2 (MINUS_EXPR, type,
2019 ni_minus_gap,
2020 build_int_cst (type, vf)),
2021 log_vf),
2022 build_int_cst (type, 1));
2023 step_vector = build_one_cst (type);
2025 else
2027 niters_vector = ni_minus_gap;
2028 step_vector = build_int_cst (type, vf);
2031 if (!is_gimple_val (niters_vector))
2033 var = create_tmp_var (type, "bnd");
2034 gimple_seq stmts = NULL;
2035 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2036 gsi_insert_seq_on_edge_immediate (pe, stmts);
2037 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2038 we set range information to make niters analyzer's life easier.
2039 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2040 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2041 if (stmts != NULL && log_vf)
2043 if (niters_no_overflow)
2045 value_range vr (type,
2046 wi::one (TYPE_PRECISION (type)),
2047 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2048 TYPE_SIGN (type)),
2049 exact_log2 (const_vf),
2050 TYPE_SIGN (type)));
2051 set_range_info (niters_vector, vr);
2053 /* For VF == 1 the vector IV might also overflow so we cannot
2054 assert a minimum value of 1. */
2055 else if (const_vf > 1)
2057 value_range vr (type,
2058 wi::one (TYPE_PRECISION (type)),
2059 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2060 TYPE_SIGN (type))
2061 - (const_vf - 1),
2062 exact_log2 (const_vf), TYPE_SIGN (type))
2063 + 1);
2064 set_range_info (niters_vector, vr);
2068 *niters_vector_ptr = niters_vector;
2069 *step_vector_ptr = step_vector;
2071 return;
2074 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2075 loop specified by LOOP_VINFO after vectorization, compute the number
2076 of iterations before vectorization (niters_vector * vf) and store it
2077 to NITERS_VECTOR_MULT_VF_PTR. */
2079 static void
2080 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2081 tree niters_vector,
2082 tree *niters_vector_mult_vf_ptr)
2084 /* We should be using a step_vector of VF if VF is variable. */
2085 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2086 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2087 tree type = TREE_TYPE (niters_vector);
2088 tree log_vf = build_int_cst (type, exact_log2 (vf));
2089 basic_block exit_bb = single_exit (loop)->dest;
2091 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2092 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2093 niters_vector, log_vf);
2094 if (!is_gimple_val (niters_vector_mult_vf))
2096 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2097 gimple_seq stmts = NULL;
2098 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2099 &stmts, true, var);
2100 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2101 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2103 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2106 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2107 this function searches for the corresponding lcssa phi node in exit
2108 bb of LOOP. If it is found, return the phi result; otherwise return
2109 NULL. */
2111 static tree
2112 find_guard_arg (class loop *loop, class loop *epilog ATTRIBUTE_UNUSED,
2113 gphi *lcssa_phi)
2115 gphi_iterator gsi;
2116 edge e = single_exit (loop);
2118 gcc_assert (single_pred_p (e->dest));
2119 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2121 gphi *phi = gsi.phi ();
2122 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
2123 PHI_ARG_DEF (lcssa_phi, 0), 0))
2124 return PHI_RESULT (phi);
2126 return NULL_TREE;
2129 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2130 from SECOND/FIRST and puts it at the original loop's preheader/exit
2131 edge, the two loops are arranged as below:
2133 preheader_a:
2134 first_loop:
2135 header_a:
2136 i_1 = PHI<i_0, i_2>;
2138 i_2 = i_1 + 1;
2139 if (cond_a)
2140 goto latch_a;
2141 else
2142 goto between_bb;
2143 latch_a:
2144 goto header_a;
2146 between_bb:
2147 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2149 second_loop:
2150 header_b:
2151 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2152 or with i_2 if no LCSSA phi is created
2153 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2155 i_4 = i_3 + 1;
2156 if (cond_b)
2157 goto latch_b;
2158 else
2159 goto exit_bb;
2160 latch_b:
2161 goto header_b;
2163 exit_bb:
2165 This function creates loop closed SSA for the first loop; update the
2166 second loop's PHI nodes by replacing argument on incoming edge with the
2167 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2168 is false, Loop closed ssa phis will only be created for non-iv phis for
2169 the first loop.
2171 This function assumes exit bb of the first loop is preheader bb of the
2172 second loop, i.e, between_bb in the example code. With PHIs updated,
2173 the second loop will execute rest iterations of the first. */
2175 static void
2176 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
2177 class loop *first, class loop *second,
2178 bool create_lcssa_for_iv_phis)
2180 gphi_iterator gsi_update, gsi_orig;
2181 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2183 edge first_latch_e = EDGE_SUCC (first->latch, 0);
2184 edge second_preheader_e = loop_preheader_edge (second);
2185 basic_block between_bb = single_exit (first)->dest;
2187 gcc_assert (between_bb == second_preheader_e->src);
2188 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
2189 /* Either the first loop or the second is the loop to be vectorized. */
2190 gcc_assert (loop == first || loop == second);
2192 for (gsi_orig = gsi_start_phis (first->header),
2193 gsi_update = gsi_start_phis (second->header);
2194 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2195 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2197 gphi *orig_phi = gsi_orig.phi ();
2198 gphi *update_phi = gsi_update.phi ();
2200 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
2201 /* Generate lcssa PHI node for the first loop. */
2202 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
2203 stmt_vec_info vect_phi_info = loop_vinfo->lookup_stmt (vect_phi);
2204 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi_info))
2206 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2207 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
2208 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
2209 arg = new_res;
2212 /* Update PHI node in the second loop by replacing arg on the loop's
2213 incoming edge. */
2214 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
2217 /* For epilogue peeling we have to make sure to copy all LC PHIs
2218 for correct vectorization of live stmts. */
2219 if (loop == first)
2221 basic_block orig_exit = single_exit (second)->dest;
2222 for (gsi_orig = gsi_start_phis (orig_exit);
2223 !gsi_end_p (gsi_orig); gsi_next (&gsi_orig))
2225 gphi *orig_phi = gsi_orig.phi ();
2226 tree orig_arg = PHI_ARG_DEF (orig_phi, 0);
2227 if (TREE_CODE (orig_arg) != SSA_NAME || virtual_operand_p (orig_arg))
2228 continue;
2230 /* Already created in the above loop. */
2231 if (find_guard_arg (first, second, orig_phi))
2232 continue;
2234 tree new_res = copy_ssa_name (orig_arg);
2235 gphi *lcphi = create_phi_node (new_res, between_bb);
2236 add_phi_arg (lcphi, orig_arg, single_exit (first), UNKNOWN_LOCATION);
2241 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2242 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2243 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2244 appear like below:
2246 guard_bb:
2247 if (cond)
2248 goto merge_bb;
2249 else
2250 goto skip_loop;
2252 skip_loop:
2253 header_a:
2254 i_1 = PHI<i_0, i_2>;
2256 i_2 = i_1 + 1;
2257 if (cond_a)
2258 goto latch_a;
2259 else
2260 goto exit_a;
2261 latch_a:
2262 goto header_a;
2264 exit_a:
2265 i_5 = PHI<i_2>;
2267 merge_bb:
2268 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2270 update_loop:
2271 header_b:
2272 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2274 i_4 = i_3 + 1;
2275 if (cond_b)
2276 goto latch_b;
2277 else
2278 goto exit_bb;
2279 latch_b:
2280 goto header_b;
2282 exit_bb:
2284 This function creates PHI nodes at merge_bb and replaces the use of i_5
2285 in the update_loop's PHI node with the result of new PHI result. */
2287 static void
2288 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2289 class loop *update_loop,
2290 edge guard_edge, edge merge_edge)
2292 location_t merge_loc, guard_loc;
2293 edge orig_e = loop_preheader_edge (skip_loop);
2294 edge update_e = loop_preheader_edge (update_loop);
2295 gphi_iterator gsi_orig, gsi_update;
2297 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2298 gsi_update = gsi_start_phis (update_loop->header));
2299 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2300 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2302 gphi *orig_phi = gsi_orig.phi ();
2303 gphi *update_phi = gsi_update.phi ();
2305 /* Generate new phi node at merge bb of the guard. */
2306 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2307 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2309 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2310 args in NEW_PHI for these edges. */
2311 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2312 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2313 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2314 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2315 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2316 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2318 /* Update phi in UPDATE_PHI. */
2319 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2323 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2324 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2325 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2326 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2327 The CFG looks like:
2329 loop:
2330 header_a:
2331 i_1 = PHI<i_0, i_2>;
2333 i_2 = i_1 + 1;
2334 if (cond_a)
2335 goto latch_a;
2336 else
2337 goto exit_a;
2338 latch_a:
2339 goto header_a;
2341 exit_a:
2343 guard_bb:
2344 if (cond)
2345 goto merge_bb;
2346 else
2347 goto epilog_loop;
2349 ;; fall_through_bb
2351 epilog_loop:
2352 header_b:
2353 i_3 = PHI<i_2, i_4>;
2355 i_4 = i_3 + 1;
2356 if (cond_b)
2357 goto latch_b;
2358 else
2359 goto merge_bb;
2360 latch_b:
2361 goto header_b;
2363 merge_bb:
2364 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2366 exit_bb:
2367 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2369 For each name used out side EPILOG (i.e - for each name that has a lcssa
2370 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2371 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2372 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2373 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2374 in exit_bb will also be updated. */
2376 static void
2377 slpeel_update_phi_nodes_for_guard2 (class loop *loop, class loop *epilog,
2378 edge guard_edge, edge merge_edge)
2380 gphi_iterator gsi;
2381 basic_block merge_bb = guard_edge->dest;
2383 gcc_assert (single_succ_p (merge_bb));
2384 edge e = single_succ_edge (merge_bb);
2385 basic_block exit_bb = e->dest;
2386 gcc_assert (single_pred_p (exit_bb));
2387 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
2389 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2391 gphi *update_phi = gsi.phi ();
2392 tree old_arg = PHI_ARG_DEF (update_phi, 0);
2394 tree merge_arg = NULL_TREE;
2396 /* If the old argument is a SSA_NAME use its current_def. */
2397 if (TREE_CODE (old_arg) == SSA_NAME)
2398 merge_arg = get_current_def (old_arg);
2399 /* If it's a constant or doesn't have a current_def, just use the old
2400 argument. */
2401 if (!merge_arg)
2402 merge_arg = old_arg;
2404 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
2405 /* If the var is live after loop but not a reduction, we simply
2406 use the old arg. */
2407 if (!guard_arg)
2408 guard_arg = old_arg;
2410 /* Create new phi node in MERGE_BB: */
2411 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
2412 gphi *merge_phi = create_phi_node (new_res, merge_bb);
2414 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2415 the two PHI args in merge_phi for these edges. */
2416 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
2417 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
2419 /* Update the original phi in exit_bb. */
2420 adjust_phi_and_debug_stmts (update_phi, e, new_res);
2424 /* EPILOG loop is duplicated from the original loop for vectorizing,
2425 the arg of its loop closed ssa PHI needs to be updated. */
2427 static void
2428 slpeel_update_phi_nodes_for_lcssa (class loop *epilog)
2430 gphi_iterator gsi;
2431 basic_block exit_bb = single_exit (epilog)->dest;
2433 gcc_assert (single_pred_p (exit_bb));
2434 edge e = EDGE_PRED (exit_bb, 0);
2435 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2436 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
2439 /* EPILOGUE_VINFO is an epilogue loop that we now know would need to
2440 iterate exactly CONST_NITERS times. Make a final decision about
2441 whether the epilogue loop should be used, returning true if so. */
2443 static bool
2444 vect_update_epilogue_niters (loop_vec_info epilogue_vinfo,
2445 unsigned HOST_WIDE_INT const_niters)
2447 /* Avoid wrap-around when computing const_niters - 1. Also reject
2448 using an epilogue loop for a single scalar iteration, even if
2449 we could in principle implement that using partial vectors. */
2450 unsigned int gap_niters = LOOP_VINFO_PEELING_FOR_GAPS (epilogue_vinfo);
2451 if (const_niters <= gap_niters + 1)
2452 return false;
2454 /* Install the number of iterations. */
2455 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (epilogue_vinfo));
2456 tree niters_tree = build_int_cst (niters_type, const_niters);
2457 tree nitersm1_tree = build_int_cst (niters_type, const_niters - 1);
2459 LOOP_VINFO_NITERS (epilogue_vinfo) = niters_tree;
2460 LOOP_VINFO_NITERSM1 (epilogue_vinfo) = nitersm1_tree;
2462 /* Decide what to do if the number of epilogue iterations is not
2463 a multiple of the epilogue loop's vectorization factor. */
2464 return vect_determine_partial_vectors_and_peeling (epilogue_vinfo, true);
2467 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2468 Return a value that equals:
2470 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2471 - SKIP_VALUE when the main loop is skipped. */
2473 tree
2474 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2475 tree skip_value)
2477 gcc_assert (loop_vinfo->main_loop_edge);
2479 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2480 basic_block bb = loop_vinfo->main_loop_edge->dest;
2481 gphi *new_phi = create_phi_node (phi_result, bb);
2482 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2483 UNKNOWN_LOCATION);
2484 add_phi_arg (new_phi, skip_value,
2485 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2486 return phi_result;
2489 /* Function vect_do_peeling.
2491 Input:
2492 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2494 preheader:
2495 LOOP:
2496 header_bb:
2497 loop_body
2498 if (exit_loop_cond) goto exit_bb
2499 else goto header_bb
2500 exit_bb:
2502 - NITERS: The number of iterations of the loop.
2503 - NITERSM1: The number of iterations of the loop's latch.
2504 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2505 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2506 CHECK_PROFITABILITY is true.
2507 Output:
2508 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2509 iterate after vectorization; see vect_set_loop_condition for details.
2510 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2511 should be set to the number of scalar iterations handled by the
2512 vector loop. The SSA name is only used on exit from the loop.
2514 This function peels prolog and epilog from the loop, adds guards skipping
2515 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2516 would look like:
2518 guard_bb_1:
2519 if (prefer_scalar_loop) goto merge_bb_1
2520 else goto guard_bb_2
2522 guard_bb_2:
2523 if (skip_prolog) goto merge_bb_2
2524 else goto prolog_preheader
2526 prolog_preheader:
2527 PROLOG:
2528 prolog_header_bb:
2529 prolog_body
2530 if (exit_prolog_cond) goto prolog_exit_bb
2531 else goto prolog_header_bb
2532 prolog_exit_bb:
2534 merge_bb_2:
2536 vector_preheader:
2537 VECTOR LOOP:
2538 vector_header_bb:
2539 vector_body
2540 if (exit_vector_cond) goto vector_exit_bb
2541 else goto vector_header_bb
2542 vector_exit_bb:
2544 guard_bb_3:
2545 if (skip_epilog) goto merge_bb_3
2546 else goto epilog_preheader
2548 merge_bb_1:
2550 epilog_preheader:
2551 EPILOG:
2552 epilog_header_bb:
2553 epilog_body
2554 if (exit_epilog_cond) goto merge_bb_3
2555 else goto epilog_header_bb
2557 merge_bb_3:
2559 Note this function peels prolog and epilog only if it's necessary,
2560 as well as guards.
2561 This function returns the epilogue loop if a decision was made to vectorize
2562 it, otherwise NULL.
2564 The analysis resulting in this epilogue loop's loop_vec_info was performed
2565 in the same vect_analyze_loop call as the main loop's. At that time
2566 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
2567 vectorization factors than the main loop. This list is stored in the main
2568 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
2569 vectorize the epilogue loop for a lower vectorization factor, the
2570 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
2571 updated and linked to the epilogue loop. This is later used to vectorize
2572 the epilogue. The reason the loop_vec_info needs updating is that it was
2573 constructed based on the original main loop, and the epilogue loop is a
2574 copy of this loop, so all links pointing to statements in the original loop
2575 need updating. Furthermore, these loop_vec_infos share the
2576 data_reference's records, which will also need to be updated.
2578 TODO: Guard for prefer_scalar_loop should be emitted along with
2579 versioning conditions if loop versioning is needed. */
2582 class loop *
2583 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
2584 tree *niters_vector, tree *step_vector,
2585 tree *niters_vector_mult_vf_var, int th,
2586 bool check_profitability, bool niters_no_overflow,
2587 tree *advance)
2589 edge e, guard_e;
2590 tree type = TREE_TYPE (niters), guard_cond;
2591 basic_block guard_bb, guard_to;
2592 profile_probability prob_prolog, prob_vector, prob_epilog;
2593 int estimated_vf;
2594 int prolog_peeling = 0;
2595 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
2596 bool vect_epilogues_updated_niters = false;
2597 /* We currently do not support prolog peeling if the target alignment is not
2598 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
2599 target alignment being constant. */
2600 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2601 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
2602 return NULL;
2604 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2605 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2607 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2608 poly_uint64 bound_epilog = 0;
2609 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2610 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2611 bound_epilog += vf - 1;
2612 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2613 bound_epilog += 1;
2614 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2615 poly_uint64 bound_scalar = bound_epilog;
2617 if (!prolog_peeling && !epilog_peeling)
2618 return NULL;
2620 /* Before doing any peeling make sure to reset debug binds outside of
2621 the loop refering to defs not in LC SSA. */
2622 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2623 for (unsigned i = 0; i < loop->num_nodes; ++i)
2625 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2626 imm_use_iterator ui;
2627 gimple *use_stmt;
2628 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2629 gsi_next (&gsi))
2631 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
2632 if (gimple_debug_bind_p (use_stmt)
2633 && loop != gimple_bb (use_stmt)->loop_father
2634 && !flow_loop_nested_p (loop,
2635 gimple_bb (use_stmt)->loop_father))
2637 gimple_debug_bind_reset_value (use_stmt);
2638 update_stmt (use_stmt);
2641 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2642 gsi_next (&gsi))
2644 ssa_op_iter op_iter;
2645 def_operand_p def_p;
2646 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
2647 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
2648 if (gimple_debug_bind_p (use_stmt)
2649 && loop != gimple_bb (use_stmt)->loop_father
2650 && !flow_loop_nested_p (loop,
2651 gimple_bb (use_stmt)->loop_father))
2653 gimple_debug_bind_reset_value (use_stmt);
2654 update_stmt (use_stmt);
2659 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
2660 estimated_vf = vect_vf_for_cost (loop_vinfo);
2661 if (estimated_vf == 2)
2662 estimated_vf = 3;
2663 prob_prolog = prob_epilog = profile_probability::guessed_always ()
2664 .apply_scale (estimated_vf - 1, estimated_vf);
2666 class loop *prolog, *epilog = NULL;
2667 class loop *first_loop = loop;
2668 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
2670 /* SSA form needs to be up-to-date since we are going to manually
2671 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
2672 update SSA state after that, so we have to make sure to not lose any
2673 pending update needs. */
2674 gcc_assert (!need_ssa_update_p (cfun));
2676 /* If we're vectorizing an epilogue loop, we have ensured that the
2677 virtual operand is in SSA form throughout the vectorized main loop.
2678 Normally it is possible to trace the updated
2679 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
2680 back to scalar-stmt vuses, meaning that the effect of the SSA update
2681 remains local to the main loop. However, there are rare cases in
2682 which the vectorized loop should have vdefs even when the original scalar
2683 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
2684 introduces clobbers of the temporary vector array, which in turn
2685 needs new vdefs. If the scalar loop doesn't write to memory, these
2686 new vdefs will be the only ones in the vector loop.
2687 We are currently defering updating virtual SSA form and creating
2688 of a virtual PHI for this case so we do not have to make sure the
2689 newly introduced virtual def is in LCSSA form. */
2691 if (MAY_HAVE_DEBUG_BIND_STMTS)
2693 gcc_assert (!adjust_vec.exists ());
2694 adjust_vec.create (32);
2696 initialize_original_copy_tables ();
2698 /* Record the anchor bb at which the guard should be placed if the scalar
2699 loop might be preferred. */
2700 basic_block anchor = loop_preheader_edge (loop)->src;
2702 /* Generate the number of iterations for the prolog loop. We do this here
2703 so that we can also get the upper bound on the number of iterations. */
2704 tree niters_prolog;
2705 int bound_prolog = 0;
2706 if (prolog_peeling)
2707 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2708 &bound_prolog);
2709 else
2710 niters_prolog = build_int_cst (type, 0);
2712 loop_vec_info epilogue_vinfo = NULL;
2713 if (vect_epilogues)
2715 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
2716 loop_vinfo->epilogue_vinfos.ordered_remove (0);
2719 tree niters_vector_mult_vf = NULL_TREE;
2720 /* Saving NITERs before the loop, as this may be changed by prologue. */
2721 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
2722 edge update_e = NULL, skip_e = NULL;
2723 unsigned int lowest_vf = constant_lower_bound (vf);
2724 /* If we know the number of scalar iterations for the main loop we should
2725 check whether after the main loop there are enough iterations left over
2726 for the epilogue. */
2727 if (vect_epilogues
2728 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2729 && prolog_peeling >= 0
2730 && known_eq (vf, lowest_vf))
2732 unsigned HOST_WIDE_INT eiters
2733 = (LOOP_VINFO_INT_NITERS (loop_vinfo)
2734 - LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
2736 eiters -= prolog_peeling;
2737 eiters
2738 = eiters % lowest_vf + LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
2740 while (!vect_update_epilogue_niters (epilogue_vinfo, eiters))
2742 delete epilogue_vinfo;
2743 epilogue_vinfo = NULL;
2744 if (loop_vinfo->epilogue_vinfos.length () == 0)
2746 vect_epilogues = false;
2747 break;
2749 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
2750 loop_vinfo->epilogue_vinfos.ordered_remove (0);
2752 vect_epilogues_updated_niters = true;
2754 /* Prolog loop may be skipped. */
2755 bool skip_prolog = (prolog_peeling != 0);
2756 /* Skip this loop to epilog when there are not enough iterations to enter this
2757 vectorized loop. If true we should perform runtime checks on the NITERS
2758 to check whether we should skip the current vectorized loop. If we know
2759 the number of scalar iterations we may choose to add a runtime check if
2760 this number "maybe" smaller than the number of iterations required
2761 when we know the number of scalar iterations may potentially
2762 be smaller than the number of iterations required to enter this loop, for
2763 this we use the upper bounds on the prolog and epilog peeling. When we
2764 don't know the number of iterations and don't require versioning it is
2765 because we have asserted that there are enough scalar iterations to enter
2766 the main loop, so this skip is not necessary. When we are versioning then
2767 we only add such a skip if we have chosen to vectorize the epilogue. */
2768 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2769 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2770 bound_prolog + bound_epilog)
2771 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2772 || vect_epilogues));
2773 /* Epilog loop must be executed if the number of iterations for epilog
2774 loop is known at compile time, otherwise we need to add a check at
2775 the end of vector loop and skip to the end of epilog loop. */
2776 bool skip_epilog = (prolog_peeling < 0
2777 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2778 || !vf.is_constant ());
2779 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
2780 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2781 skip_epilog = false;
2783 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2784 auto_vec<profile_count> original_counts;
2785 basic_block *original_bbs = NULL;
2787 if (skip_vector)
2789 split_edge (loop_preheader_edge (loop));
2791 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
2793 original_bbs = get_loop_body (loop);
2794 for (unsigned int i = 0; i < loop->num_nodes; i++)
2795 original_counts.safe_push(original_bbs[i]->count);
2798 /* Due to the order in which we peel prolog and epilog, we first
2799 propagate probability to the whole loop. The purpose is to
2800 avoid adjusting probabilities of both prolog and vector loops
2801 separately. Note in this case, the probability of epilog loop
2802 needs to be scaled back later. */
2803 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
2804 if (prob_vector.initialized_p ())
2806 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
2807 scale_loop_profile (loop, prob_vector, 0);
2811 dump_user_location_t loop_loc = find_loop_location (loop);
2812 if (vect_epilogues)
2813 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
2814 use the original scalar loop as remaining epilogue if necessary. */
2815 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
2816 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2818 if (prolog_peeling)
2820 e = loop_preheader_edge (loop);
2821 if (!slpeel_can_duplicate_loop_p (loop, e))
2823 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2824 "loop can't be duplicated to preheader edge.\n");
2825 gcc_unreachable ();
2827 /* Peel prolog and put it on preheader edge of loop. */
2828 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2829 if (!prolog)
2831 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2832 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2833 gcc_unreachable ();
2835 prolog->force_vectorize = false;
2836 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
2837 first_loop = prolog;
2838 reset_original_copy_tables ();
2840 /* Update the number of iterations for prolog loop. */
2841 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
2842 vect_set_loop_condition (prolog, NULL, niters_prolog,
2843 step_prolog, NULL_TREE, false);
2845 /* Skip the prolog loop. */
2846 if (skip_prolog)
2848 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2849 niters_prolog, build_int_cst (type, 0));
2850 guard_bb = loop_preheader_edge (prolog)->src;
2851 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
2852 guard_to = split_edge (loop_preheader_edge (loop));
2853 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2854 guard_to, guard_bb,
2855 prob_prolog.invert (),
2856 irred_flag);
2857 e = EDGE_PRED (guard_to, 0);
2858 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2859 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
2861 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
2862 scale_loop_profile (prolog, prob_prolog, bound_prolog);
2865 /* Update init address of DRs. */
2866 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
2867 /* Update niters for vector loop. */
2868 LOOP_VINFO_NITERS (loop_vinfo)
2869 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
2870 LOOP_VINFO_NITERSM1 (loop_vinfo)
2871 = fold_build2 (MINUS_EXPR, type,
2872 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
2873 bool new_var_p = false;
2874 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
2875 /* It's guaranteed that vector loop bound before vectorization is at
2876 least VF, so set range information for newly generated var. */
2877 if (new_var_p)
2879 value_range vr (type,
2880 wi::to_wide (build_int_cst (type, vf)),
2881 wi::to_wide (TYPE_MAX_VALUE (type)));
2882 set_range_info (niters, vr);
2885 /* Prolog iterates at most bound_prolog times, latch iterates at
2886 most bound_prolog - 1 times. */
2887 record_niter_bound (prolog, bound_prolog - 1, false, true);
2888 delete_update_ssa ();
2889 adjust_vec_debug_stmts ();
2890 scev_reset ();
2893 if (epilog_peeling)
2895 e = single_exit (loop);
2896 if (!slpeel_can_duplicate_loop_p (loop, e))
2898 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2899 "loop can't be duplicated to exit edge.\n");
2900 gcc_unreachable ();
2902 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
2903 said epilog then we should use a copy of the main loop as a starting
2904 point. This loop may have already had some preliminary transformations
2905 to allow for more optimal vectorization, for example if-conversion.
2906 If we are not vectorizing the epilog then we should use the scalar loop
2907 as the transformations mentioned above make less or no sense when not
2908 vectorizing. */
2909 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
2910 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, epilog, e);
2911 if (!epilog)
2913 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2914 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2915 gcc_unreachable ();
2917 epilog->force_vectorize = false;
2918 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
2920 /* Scalar version loop may be preferred. In this case, add guard
2921 and skip to epilog. Note this only happens when the number of
2922 iterations of loop is unknown at compile time, otherwise this
2923 won't be vectorized. */
2924 if (skip_vector)
2926 /* Additional epilogue iteration is peeled if gap exists. */
2927 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
2928 bound_prolog, bound_epilog,
2929 th, &bound_scalar,
2930 check_profitability);
2931 /* Build guard against NITERSM1 since NITERS may overflow. */
2932 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
2933 guard_bb = anchor;
2934 guard_to = split_edge (loop_preheader_edge (epilog));
2935 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2936 guard_to, guard_bb,
2937 prob_vector.invert (),
2938 irred_flag);
2939 skip_e = guard_e;
2940 e = EDGE_PRED (guard_to, 0);
2941 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2942 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
2944 /* Simply propagate profile info from guard_bb to guard_to which is
2945 a merge point of control flow. */
2946 guard_to->count = guard_bb->count;
2948 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
2949 if (vect_epilogues || scalar_loop == NULL)
2951 gcc_assert(epilog->num_nodes == loop->num_nodes);
2952 basic_block *bbs = get_loop_body (epilog);
2953 for (unsigned int i = 0; i < epilog->num_nodes; i++)
2955 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
2956 bbs[i]->count = original_counts[i];
2958 free (bbs);
2959 free (original_bbs);
2963 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
2964 /* If loop is peeled for non-zero constant times, now niters refers to
2965 orig_niters - prolog_peeling, it won't overflow even the orig_niters
2966 overflows. */
2967 niters_no_overflow |= (prolog_peeling > 0);
2968 vect_gen_vector_loop_niters (loop_vinfo, niters,
2969 niters_vector, step_vector,
2970 niters_no_overflow);
2971 if (!integer_onep (*step_vector))
2973 /* On exit from the loop we will have an easy way of calcalating
2974 NITERS_VECTOR / STEP * STEP. Install a dummy definition
2975 until then. */
2976 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
2977 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
2978 *niters_vector_mult_vf_var = niters_vector_mult_vf;
2980 else
2981 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
2982 &niters_vector_mult_vf);
2983 /* Update IVs of original loop as if they were advanced by
2984 niters_vector_mult_vf steps. */
2985 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
2986 update_e = skip_vector ? e : loop_preheader_edge (epilog);
2987 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
2988 update_e);
2990 if (skip_epilog)
2992 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2993 niters, niters_vector_mult_vf);
2994 guard_bb = single_exit (loop)->dest;
2995 guard_to = split_edge (single_exit (epilog));
2996 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
2997 skip_vector ? anchor : guard_bb,
2998 prob_epilog.invert (),
2999 irred_flag);
3000 if (vect_epilogues)
3001 epilogue_vinfo->skip_this_loop_edge = guard_e;
3002 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
3003 single_exit (epilog));
3004 /* Only need to handle basic block before epilog loop if it's not
3005 the guard_bb, which is the case when skip_vector is true. */
3006 if (guard_bb != bb_before_epilog)
3008 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3010 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3012 scale_loop_profile (epilog, prob_epilog, 0);
3014 else
3015 slpeel_update_phi_nodes_for_lcssa (epilog);
3017 unsigned HOST_WIDE_INT bound;
3018 if (bound_scalar.is_constant (&bound))
3020 gcc_assert (bound != 0);
3021 /* -1 to convert loop iterations to latch iterations. */
3022 record_niter_bound (epilog, bound - 1, false, true);
3025 delete_update_ssa ();
3026 adjust_vec_debug_stmts ();
3027 scev_reset ();
3030 if (vect_epilogues)
3032 epilog->aux = epilogue_vinfo;
3033 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3035 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3037 /* We now must calculate the number of NITERS performed by the previous
3038 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3039 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3040 niters_prolog, niters_vector_mult_vf);
3042 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3043 determine whether we are coming from the previous vectorized loop
3044 using the update_e edge or the skip_vector basic block using the
3045 skip_e edge. */
3046 if (skip_vector)
3048 gcc_assert (update_e != NULL
3049 && skip_e != NULL
3050 && !vect_epilogues_updated_niters);
3051 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3052 update_e->dest);
3053 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3054 gimple *stmt = gimple_build_assign (new_ssa, niters);
3055 gimple_stmt_iterator gsi;
3056 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3057 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3059 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3060 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3062 else
3064 gsi = gsi_last_bb (update_e->src);
3065 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3068 niters = new_ssa;
3069 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3070 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3071 UNKNOWN_LOCATION);
3072 niters = PHI_RESULT (new_phi);
3073 epilogue_vinfo->main_loop_edge = update_e;
3074 epilogue_vinfo->skip_main_loop_edge = skip_e;
3077 /* Set ADVANCE to the number of iterations performed by the previous
3078 loop and its prologue. */
3079 *advance = niters;
3081 if (!vect_epilogues_updated_niters)
3083 /* Subtract the number of iterations performed by the vectorized loop
3084 from the number of total iterations. */
3085 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3086 before_loop_niters,
3087 niters);
3089 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3090 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3091 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3092 epilogue_niters,
3093 build_one_cst (TREE_TYPE (epilogue_niters)));
3095 /* Decide what to do if the number of epilogue iterations is not
3096 a multiple of the epilogue loop's vectorization factor.
3097 We should have rejected the loop during the analysis phase
3098 if this fails. */
3099 if (!vect_determine_partial_vectors_and_peeling (epilogue_vinfo,
3100 true))
3101 gcc_unreachable ();
3105 adjust_vec.release ();
3106 free_original_copy_tables ();
3108 return vect_epilogues ? epilog : NULL;
3111 /* Function vect_create_cond_for_niters_checks.
3113 Create a conditional expression that represents the run-time checks for
3114 loop's niter. The loop is guaranteed to terminate if the run-time
3115 checks hold.
3117 Input:
3118 COND_EXPR - input conditional expression. New conditions will be chained
3119 with logical AND operation. If it is NULL, then the function
3120 is used to return the number of alias checks.
3121 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3122 to be checked.
3124 Output:
3125 COND_EXPR - conditional expression.
3127 The returned COND_EXPR is the conditional expression to be used in the
3128 if statement that controls which version of the loop gets executed at
3129 runtime. */
3131 static void
3132 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3134 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3136 if (*cond_expr)
3137 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3138 *cond_expr, part_cond_expr);
3139 else
3140 *cond_expr = part_cond_expr;
3143 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3144 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3146 static void
3147 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3149 if (*cond_expr)
3150 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3151 *cond_expr, part_cond_expr);
3152 else
3153 *cond_expr = part_cond_expr;
3156 /* Function vect_create_cond_for_align_checks.
3158 Create a conditional expression that represents the alignment checks for
3159 all of data references (array element references) whose alignment must be
3160 checked at runtime.
3162 Input:
3163 COND_EXPR - input conditional expression. New conditions will be chained
3164 with logical AND operation.
3165 LOOP_VINFO - two fields of the loop information are used.
3166 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3167 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3169 Output:
3170 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3171 expression.
3172 The returned value is the conditional expression to be used in the if
3173 statement that controls which version of the loop gets executed at runtime.
3175 The algorithm makes two assumptions:
3176 1) The number of bytes "n" in a vector is a power of 2.
3177 2) An address "a" is aligned if a%n is zero and that this
3178 test can be done as a&(n-1) == 0. For example, for 16
3179 byte vectors the test is a&0xf == 0. */
3181 static void
3182 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3183 tree *cond_expr,
3184 gimple_seq *cond_expr_stmt_list)
3186 const vec<stmt_vec_info> &may_misalign_stmts
3187 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3188 stmt_vec_info stmt_info;
3189 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3190 tree mask_cst;
3191 unsigned int i;
3192 tree int_ptrsize_type;
3193 char tmp_name[20];
3194 tree or_tmp_name = NULL_TREE;
3195 tree and_tmp_name;
3196 gimple *and_stmt;
3197 tree ptrsize_zero;
3198 tree part_cond_expr;
3200 /* Check that mask is one less than a power of 2, i.e., mask is
3201 all zeros followed by all ones. */
3202 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3204 int_ptrsize_type = signed_type_for (ptr_type_node);
3206 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3207 of the first vector of the i'th data reference. */
3209 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3211 gimple_seq new_stmt_list = NULL;
3212 tree addr_base;
3213 tree addr_tmp_name;
3214 tree new_or_tmp_name;
3215 gimple *addr_stmt, *or_stmt;
3216 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3217 bool negative = tree_int_cst_compare
3218 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3219 tree offset = negative
3220 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3221 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3222 : size_zero_node;
3224 /* create: addr_tmp = (int)(address_of_first_vector) */
3225 addr_base =
3226 vect_create_addr_base_for_vector_ref (loop_vinfo,
3227 stmt_info, &new_stmt_list,
3228 offset);
3229 if (new_stmt_list != NULL)
3230 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3232 sprintf (tmp_name, "addr2int%d", i);
3233 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3234 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3235 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3237 /* The addresses are OR together. */
3239 if (or_tmp_name != NULL_TREE)
3241 /* create: or_tmp = or_tmp | addr_tmp */
3242 sprintf (tmp_name, "orptrs%d", i);
3243 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3244 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3245 or_tmp_name, addr_tmp_name);
3246 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3247 or_tmp_name = new_or_tmp_name;
3249 else
3250 or_tmp_name = addr_tmp_name;
3252 } /* end for i */
3254 mask_cst = build_int_cst (int_ptrsize_type, mask);
3256 /* create: and_tmp = or_tmp & mask */
3257 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3259 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3260 or_tmp_name, mask_cst);
3261 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3263 /* Make and_tmp the left operand of the conditional test against zero.
3264 if and_tmp has a nonzero bit then some address is unaligned. */
3265 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3266 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3267 and_tmp_name, ptrsize_zero);
3268 chain_cond_expr (cond_expr, part_cond_expr);
3271 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3272 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3273 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3274 and this new condition are true. Treat a null *COND_EXPR as "true". */
3276 static void
3277 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3279 const vec<vec_object_pair> &pairs
3280 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3281 unsigned int i;
3282 vec_object_pair *pair;
3283 FOR_EACH_VEC_ELT (pairs, i, pair)
3285 tree addr1 = build_fold_addr_expr (pair->first);
3286 tree addr2 = build_fold_addr_expr (pair->second);
3287 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3288 addr1, addr2);
3289 chain_cond_expr (cond_expr, part_cond_expr);
3293 /* Create an expression that is true when all lower-bound conditions for
3294 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3296 static void
3297 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3299 const vec<vec_lower_bound> &lower_bounds
3300 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3301 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3303 tree expr = lower_bounds[i].expr;
3304 tree type = unsigned_type_for (TREE_TYPE (expr));
3305 expr = fold_convert (type, expr);
3306 poly_uint64 bound = lower_bounds[i].min_value;
3307 if (!lower_bounds[i].unsigned_p)
3309 expr = fold_build2 (PLUS_EXPR, type, expr,
3310 build_int_cstu (type, bound - 1));
3311 bound += bound - 1;
3313 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3314 build_int_cstu (type, bound));
3315 chain_cond_expr (cond_expr, part_cond_expr);
3319 /* Function vect_create_cond_for_alias_checks.
3321 Create a conditional expression that represents the run-time checks for
3322 overlapping of address ranges represented by a list of data references
3323 relations passed as input.
3325 Input:
3326 COND_EXPR - input conditional expression. New conditions will be chained
3327 with logical AND operation. If it is NULL, then the function
3328 is used to return the number of alias checks.
3329 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3330 to be checked.
3332 Output:
3333 COND_EXPR - conditional expression.
3335 The returned COND_EXPR is the conditional expression to be used in the if
3336 statement that controls which version of the loop gets executed at runtime.
3339 void
3340 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3342 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3343 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3345 if (comp_alias_ddrs.is_empty ())
3346 return;
3348 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3349 &comp_alias_ddrs, cond_expr);
3350 if (dump_enabled_p ())
3351 dump_printf_loc (MSG_NOTE, vect_location,
3352 "created %u versioning for alias checks.\n",
3353 comp_alias_ddrs.length ());
3357 /* Function vect_loop_versioning.
3359 If the loop has data references that may or may not be aligned or/and
3360 has data reference relations whose independence was not proven then
3361 two versions of the loop need to be generated, one which is vectorized
3362 and one which isn't. A test is then generated to control which of the
3363 loops is executed. The test checks for the alignment of all of the
3364 data references that may or may not be aligned. An additional
3365 sequence of runtime tests is generated for each pairs of DDRs whose
3366 independence was not proven. The vectorized version of loop is
3367 executed only if both alias and alignment tests are passed.
3369 The test generated to check which version of loop is executed
3370 is modified to also check for profitability as indicated by the
3371 cost model threshold TH.
3373 The versioning precondition(s) are placed in *COND_EXPR and
3374 *COND_EXPR_STMT_LIST. */
3376 class loop *
3377 vect_loop_versioning (loop_vec_info loop_vinfo,
3378 gimple *loop_vectorized_call)
3380 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3381 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3382 basic_block condition_bb;
3383 gphi_iterator gsi;
3384 gimple_stmt_iterator cond_exp_gsi;
3385 basic_block merge_bb;
3386 basic_block new_exit_bb;
3387 edge new_exit_e, e;
3388 gphi *orig_phi, *new_phi;
3389 tree cond_expr = NULL_TREE;
3390 gimple_seq cond_expr_stmt_list = NULL;
3391 tree arg;
3392 profile_probability prob = profile_probability::likely ();
3393 gimple_seq gimplify_stmt_list = NULL;
3394 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3395 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3396 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3397 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3398 poly_uint64 versioning_threshold
3399 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3400 tree version_simd_if_cond
3401 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3402 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3404 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3405 && !ordered_p (th, versioning_threshold))
3406 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3407 build_int_cst (TREE_TYPE (scalar_loop_iters),
3408 th - 1));
3409 if (maybe_ne (versioning_threshold, 0U))
3411 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3412 build_int_cst (TREE_TYPE (scalar_loop_iters),
3413 versioning_threshold - 1));
3414 if (cond_expr)
3415 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3416 expr, cond_expr);
3417 else
3418 cond_expr = expr;
3421 tree cost_name = NULL_TREE;
3422 profile_probability prob2 = profile_probability::uninitialized ();
3423 if (cond_expr
3424 && !integer_truep (cond_expr)
3425 && (version_niter
3426 || version_align
3427 || version_alias
3428 || version_simd_if_cond))
3430 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3431 &cond_expr_stmt_list,
3432 is_gimple_val, NULL_TREE);
3433 /* Split prob () into two so that the overall probability of passing
3434 both the cost-model and versioning checks is the orig prob. */
3435 prob2 = prob.split (prob);
3438 if (version_niter)
3439 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3441 if (cond_expr)
3443 gimple_seq tem = NULL;
3444 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3445 &tem, is_gimple_condexpr_for_cond,
3446 NULL_TREE);
3447 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3450 if (version_align)
3451 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3452 &cond_expr_stmt_list);
3454 if (version_alias)
3456 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3457 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3458 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3461 if (version_simd_if_cond)
3463 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
3464 if (flag_checking)
3465 if (basic_block bb
3466 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
3467 gcc_assert (bb != loop->header
3468 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
3469 && (scalar_loop == NULL
3470 || (bb != scalar_loop->header
3471 && dominated_by_p (CDI_DOMINATORS,
3472 scalar_loop->header, bb))));
3473 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
3474 tree c = fold_build2 (NE_EXPR, boolean_type_node,
3475 version_simd_if_cond, zero);
3476 if (cond_expr)
3477 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3478 c, cond_expr);
3479 else
3480 cond_expr = c;
3481 if (dump_enabled_p ())
3482 dump_printf_loc (MSG_NOTE, vect_location,
3483 "created versioning for simd if condition check.\n");
3486 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3487 &gimplify_stmt_list,
3488 is_gimple_condexpr_for_cond, NULL_TREE);
3489 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3491 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
3492 invariant in. */
3493 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
3494 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
3495 !gsi_end_p (gsi); gsi_next (&gsi))
3497 gimple *stmt = gsi_stmt (gsi);
3498 update_stmt (stmt);
3499 ssa_op_iter iter;
3500 use_operand_p use_p;
3501 basic_block def_bb;
3502 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
3503 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
3504 && flow_bb_inside_loop_p (outermost, def_bb))
3505 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
3508 /* Search for the outermost loop we can version. Avoid versioning of
3509 non-perfect nests but allow if-conversion versioned loops inside. */
3510 class loop *loop_to_version = loop;
3511 if (flow_loop_nested_p (outermost, loop))
3513 if (dump_enabled_p ())
3514 dump_printf_loc (MSG_NOTE, vect_location,
3515 "trying to apply versioning to outer loop %d\n",
3516 outermost->num);
3517 if (outermost->num == 0)
3518 outermost = superloop_at_depth (loop, 1);
3519 /* And avoid applying versioning on non-perfect nests. */
3520 while (loop_to_version != outermost
3521 && (e = single_exit (loop_outer (loop_to_version)))
3522 && !(e->flags & EDGE_COMPLEX)
3523 && (!loop_outer (loop_to_version)->inner->next
3524 || vect_loop_vectorized_call (loop_to_version))
3525 && (!loop_outer (loop_to_version)->inner->next
3526 || !loop_outer (loop_to_version)->inner->next->next))
3527 loop_to_version = loop_outer (loop_to_version);
3530 /* Apply versioning. If there is already a scalar version created by
3531 if-conversion re-use that. Note we cannot re-use the copy of
3532 an if-converted outer-loop when vectorizing the inner loop only. */
3533 gcond *cond;
3534 if ((!loop_to_version->inner || loop == loop_to_version)
3535 && loop_vectorized_call)
3537 gcc_assert (scalar_loop);
3538 condition_bb = gimple_bb (loop_vectorized_call);
3539 cond = as_a <gcond *> (last_stmt (condition_bb));
3540 gimple_cond_set_condition_from_tree (cond, cond_expr);
3541 update_stmt (cond);
3543 if (cond_expr_stmt_list)
3545 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
3546 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3547 GSI_SAME_STMT);
3550 /* if-conversion uses profile_probability::always () for both paths,
3551 reset the paths probabilities appropriately. */
3552 edge te, fe;
3553 extract_true_false_edges_from_block (condition_bb, &te, &fe);
3554 te->probability = prob;
3555 fe->probability = prob.invert ();
3556 /* We can scale loops counts immediately but have to postpone
3557 scaling the scalar loop because we re-use it during peeling. */
3558 scale_loop_frequencies (loop_to_version, te->probability);
3559 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = fe->probability;
3561 nloop = scalar_loop;
3562 if (dump_enabled_p ())
3563 dump_printf_loc (MSG_NOTE, vect_location,
3564 "reusing %sloop version created by if conversion\n",
3565 loop_to_version != loop ? "outer " : "");
3567 else
3569 if (loop_to_version != loop
3570 && dump_enabled_p ())
3571 dump_printf_loc (MSG_NOTE, vect_location,
3572 "applying loop versioning to outer loop %d\n",
3573 loop_to_version->num);
3575 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
3577 initialize_original_copy_tables ();
3578 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
3579 prob, prob.invert (), prob, prob.invert (), true);
3580 gcc_assert (nloop);
3581 nloop = get_loop_copy (loop);
3583 /* For cycle vectorization with SLP we rely on the PHI arguments
3584 appearing in the same order as the SLP node operands which for the
3585 loop PHI nodes means the preheader edge dest index needs to remain
3586 the same for the analyzed loop which also becomes the vectorized one.
3587 Make it so in case the state after versioning differs by redirecting
3588 the first edge into the header to the same destination which moves
3589 it last. */
3590 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
3592 edge e = EDGE_PRED (loop->header, 0);
3593 ssa_redirect_edge (e, e->dest);
3594 flush_pending_stmts (e);
3596 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
3598 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
3599 reap those otherwise; they also refer to the original
3600 loops. */
3601 class loop *l = loop;
3602 while (gimple *call = vect_loop_vectorized_call (l))
3604 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
3605 fold_loop_internal_call (call, boolean_false_node);
3606 l = loop_outer (l);
3608 free_original_copy_tables ();
3610 if (cond_expr_stmt_list)
3612 cond_exp_gsi = gsi_last_bb (condition_bb);
3613 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3614 GSI_SAME_STMT);
3617 /* Loop versioning violates an assumption we try to maintain during
3618 vectorization - that the loop exit block has a single predecessor.
3619 After versioning, the exit block of both loop versions is the same
3620 basic block (i.e. it has two predecessors). Just in order to simplify
3621 following transformations in the vectorizer, we fix this situation
3622 here by adding a new (empty) block on the exit-edge of the loop,
3623 with the proper loop-exit phis to maintain loop-closed-form.
3624 If loop versioning wasn't done from loop, but scalar_loop instead,
3625 merge_bb will have already just a single successor. */
3627 merge_bb = single_exit (loop_to_version)->dest;
3628 if (EDGE_COUNT (merge_bb->preds) >= 2)
3630 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3631 new_exit_bb = split_edge (single_exit (loop_to_version));
3632 new_exit_e = single_exit (loop_to_version);
3633 e = EDGE_SUCC (new_exit_bb, 0);
3635 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
3636 gsi_next (&gsi))
3638 tree new_res;
3639 orig_phi = gsi.phi ();
3640 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
3641 new_phi = create_phi_node (new_res, new_exit_bb);
3642 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3643 add_phi_arg (new_phi, arg, new_exit_e,
3644 gimple_phi_arg_location_from_edge (orig_phi, e));
3645 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3649 update_ssa (TODO_update_ssa_no_phi);
3652 /* Split the cost model check off to a separate BB. Costing assumes
3653 this is the only thing we perform when we enter the scalar loop
3654 from a failed cost decision. */
3655 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
3657 gimple *def = SSA_NAME_DEF_STMT (cost_name);
3658 /* All uses of the cost check are 'true' after the check we
3659 are going to insert. */
3660 replace_uses_by (cost_name, boolean_true_node);
3661 /* And we're going to build the new single use of it. */
3662 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
3663 NULL_TREE, NULL_TREE);
3664 edge e = split_block (gimple_bb (def), def);
3665 gimple_stmt_iterator gsi = gsi_for_stmt (def);
3666 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
3667 edge true_e, false_e;
3668 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
3669 e->flags &= ~EDGE_FALLTHRU;
3670 e->flags |= EDGE_TRUE_VALUE;
3671 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
3672 e->probability = prob2;
3673 e2->probability = prob2.invert ();
3674 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
3675 auto_vec<basic_block, 3> adj;
3676 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
3677 son;
3678 son = next_dom_son (CDI_DOMINATORS, son))
3679 if (EDGE_COUNT (son->preds) > 1)
3680 adj.safe_push (son);
3681 for (auto son : adj)
3682 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
3685 if (version_niter)
3687 /* The versioned loop could be infinite, we need to clear existing
3688 niter information which is copied from the original loop. */
3689 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3690 vect_free_loop_info_assumptions (nloop);
3693 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
3694 && dump_enabled_p ())
3696 if (version_alias)
3697 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3698 vect_location,
3699 "loop versioned for vectorization because of "
3700 "possible aliasing\n");
3701 if (version_align)
3702 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3703 vect_location,
3704 "loop versioned for vectorization to enhance "
3705 "alignment\n");
3709 return nloop;