PR middle-end/81897
[official-gcc.git] / gcc / tree-ssa-uninit.c
blob382394762865f14b8834dcafa9fd8c801448a006
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "fold-const.h"
32 #include "gimple-iterator.h"
33 #include "tree-ssa.h"
34 #include "params.h"
35 #include "tree-cfg.h"
36 #include "cfghooks.h"
38 /* This implements the pass that does predicate aware warning on uses of
39 possibly uninitialized variables. The pass first collects the set of
40 possibly uninitialized SSA names. For each such name, it walks through
41 all its immediate uses. For each immediate use, it rebuilds the condition
42 expression (the predicate) that guards the use. The predicate is then
43 examined to see if the variable is always defined under that same condition.
44 This is done either by pruning the unrealizable paths that lead to the
45 default definitions or by checking if the predicate set that guards the
46 defining paths is a superset of the use predicate. */
48 /* Max PHI args we can handle in pass. */
49 const unsigned max_phi_args = 32;
51 /* Pointer set of potentially undefined ssa names, i.e.,
52 ssa names that are defined by phi with operands that
53 are not defined or potentially undefined. */
54 static hash_set<tree> *possibly_undefined_names = 0;
56 /* Bit mask handling macros. */
57 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
58 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
59 #define MASK_EMPTY(mask) (mask == 0)
61 /* Returns the first bit position (starting from LSB)
62 in mask that is non zero. Returns -1 if the mask is empty. */
63 static int
64 get_mask_first_set_bit (unsigned mask)
66 int pos = 0;
67 if (mask == 0)
68 return -1;
70 while ((mask & (1 << pos)) == 0)
71 pos++;
73 return pos;
75 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
77 /* Return true if T, an SSA_NAME, has an undefined value. */
78 static bool
79 has_undefined_value_p (tree t)
81 return (ssa_undefined_value_p (t)
82 || (possibly_undefined_names
83 && possibly_undefined_names->contains (t)));
86 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
87 is set on SSA_NAME_VAR. */
89 static inline bool
90 uninit_undefined_value_p (tree t)
92 if (!has_undefined_value_p (t))
93 return false;
94 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
95 return false;
96 return true;
99 /* Emit warnings for uninitialized variables. This is done in two passes.
101 The first pass notices real uses of SSA names with undefined values.
102 Such uses are unconditionally uninitialized, and we can be certain that
103 such a use is a mistake. This pass is run before most optimizations,
104 so that we catch as many as we can.
106 The second pass follows PHI nodes to find uses that are potentially
107 uninitialized. In this case we can't necessarily prove that the use
108 is really uninitialized. This pass is run after most optimizations,
109 so that we thread as many jumps and possible, and delete as much dead
110 code as possible, in order to reduce false positives. We also look
111 again for plain uninitialized variables, since optimization may have
112 changed conditionally uninitialized to unconditionally uninitialized. */
114 /* Emit a warning for EXPR based on variable VAR at the point in the
115 program T, an SSA_NAME, is used being uninitialized. The exact
116 warning text is in MSGID and DATA is the gimple stmt with info about
117 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
118 gives which argument of the phi node to take the location from. WC
119 is the warning code. */
121 static void
122 warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
123 const char *gmsgid, void *data, location_t phiarg_loc)
125 gimple *context = (gimple *) data;
126 location_t location, cfun_loc;
127 expanded_location xloc, floc;
129 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
130 turns in a COMPLEX_EXPR with the not initialized part being
131 set to its previous (undefined) value. */
132 if (is_gimple_assign (context)
133 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
134 return;
135 if (!has_undefined_value_p (t))
136 return;
138 /* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
139 can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR
140 created for conversion from scalar to complex. Use the underlying var of
141 the COMPLEX_EXPRs real part in that case. See PR71581. */
142 if (expr == NULL_TREE
143 && var == NULL_TREE
144 && SSA_NAME_VAR (t) == NULL_TREE
145 && is_gimple_assign (SSA_NAME_DEF_STMT (t))
146 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR)
148 tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t));
149 if (TREE_CODE (v) == SSA_NAME
150 && has_undefined_value_p (v)
151 && zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t))))
153 expr = SSA_NAME_VAR (v);
154 var = expr;
158 if (expr == NULL_TREE)
159 return;
161 /* TREE_NO_WARNING either means we already warned, or the front end
162 wishes to suppress the warning. */
163 if ((context
164 && (gimple_no_warning_p (context)
165 || (gimple_assign_single_p (context)
166 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
167 || TREE_NO_WARNING (expr))
168 return;
170 if (context != NULL && gimple_has_location (context))
171 location = gimple_location (context);
172 else if (phiarg_loc != UNKNOWN_LOCATION)
173 location = phiarg_loc;
174 else
175 location = DECL_SOURCE_LOCATION (var);
176 location = linemap_resolve_location (line_table, location,
177 LRK_SPELLING_LOCATION, NULL);
178 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
179 xloc = expand_location (location);
180 floc = expand_location (cfun_loc);
181 if (warning_at (location, wc, gmsgid, expr))
183 TREE_NO_WARNING (expr) = 1;
185 if (location == DECL_SOURCE_LOCATION (var))
186 return;
187 if (xloc.file != floc.file
188 || linemap_location_before_p (line_table, location, cfun_loc)
189 || linemap_location_before_p (line_table, cfun->function_end_locus,
190 location))
191 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
195 struct check_defs_data
197 /* If we found any may-defs besides must-def clobbers. */
198 bool found_may_defs;
201 /* Callback for walk_aliased_vdefs. */
203 static bool
204 check_defs (ao_ref *ref, tree vdef, void *data_)
206 check_defs_data *data = (check_defs_data *)data_;
207 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
208 /* If this is a clobber then if it is not a kill walk past it. */
209 if (gimple_clobber_p (def_stmt))
211 if (stmt_kills_ref_p (def_stmt, ref))
212 return true;
213 return false;
215 /* Found a may-def on this path. */
216 data->found_may_defs = true;
217 return true;
220 static unsigned int
221 warn_uninitialized_vars (bool warn_possibly_uninitialized)
223 gimple_stmt_iterator gsi;
224 basic_block bb;
225 unsigned int vdef_cnt = 0;
226 unsigned int oracle_cnt = 0;
227 unsigned limit = 0;
229 FOR_EACH_BB_FN (bb, cfun)
231 basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
232 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
233 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
235 gimple *stmt = gsi_stmt (gsi);
236 use_operand_p use_p;
237 ssa_op_iter op_iter;
238 tree use;
240 if (is_gimple_debug (stmt))
241 continue;
243 /* We only do data flow with SSA_NAMEs, so that's all we
244 can warn about. */
245 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
247 /* BIT_INSERT_EXPR first operand should not be considered
248 a use for the purpose of uninit warnings. */
249 if (gassign *ass = dyn_cast <gassign *> (stmt))
251 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
252 && use_p->use == gimple_assign_rhs1_ptr (ass))
253 continue;
255 use = USE_FROM_PTR (use_p);
256 if (always_executed)
257 warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
258 SSA_NAME_VAR (use),
259 "%qD is used uninitialized in this function", stmt,
260 UNKNOWN_LOCATION);
261 else if (warn_possibly_uninitialized)
262 warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
263 SSA_NAME_VAR (use),
264 "%qD may be used uninitialized in this function",
265 stmt, UNKNOWN_LOCATION);
268 /* For limiting the alias walk below we count all
269 vdefs in the function. */
270 if (gimple_vdef (stmt))
271 vdef_cnt++;
273 if (gimple_assign_load_p (stmt)
274 && gimple_has_location (stmt))
276 tree rhs = gimple_assign_rhs1 (stmt);
277 tree lhs = gimple_assign_lhs (stmt);
278 bool has_bit_insert = false;
279 use_operand_p luse_p;
280 imm_use_iterator liter;
282 if (TREE_NO_WARNING (rhs))
283 continue;
285 ao_ref ref;
286 ao_ref_init (&ref, rhs);
288 /* Do not warn if the base was marked so or this is a
289 hard register var. */
290 tree base = ao_ref_base (&ref);
291 if ((VAR_P (base)
292 && DECL_HARD_REGISTER (base))
293 || TREE_NO_WARNING (base))
294 continue;
296 /* Do not warn if the access is fully outside of the
297 variable. */
298 poly_int64 decl_size;
299 if (DECL_P (base)
300 && known_size_p (ref.size)
301 && ((known_eq (ref.max_size, ref.size)
302 && known_le (ref.offset + ref.size, 0))
303 || (known_ge (ref.offset, 0)
304 && DECL_SIZE (base)
305 && poly_int_tree_p (DECL_SIZE (base), &decl_size)
306 && known_le (decl_size, ref.offset))))
307 continue;
309 /* Do not warn if the access is then used for a BIT_INSERT_EXPR. */
310 if (TREE_CODE (lhs) == SSA_NAME)
311 FOR_EACH_IMM_USE_FAST (luse_p, liter, lhs)
313 gimple *use_stmt = USE_STMT (luse_p);
314 /* BIT_INSERT_EXPR first operand should not be considered
315 a use for the purpose of uninit warnings. */
316 if (gassign *ass = dyn_cast <gassign *> (use_stmt))
318 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
319 && luse_p->use == gimple_assign_rhs1_ptr (ass))
321 has_bit_insert = true;
322 break;
326 if (has_bit_insert)
327 continue;
329 /* Limit the walking to a constant number of stmts after
330 we overcommit quadratic behavior for small functions
331 and O(n) behavior. */
332 if (oracle_cnt > 128 * 128
333 && oracle_cnt > vdef_cnt * 2)
334 limit = 32;
335 check_defs_data data;
336 bool fentry_reached = false;
337 data.found_may_defs = false;
338 use = gimple_vuse (stmt);
339 int res = walk_aliased_vdefs (&ref, use,
340 check_defs, &data, NULL,
341 &fentry_reached, limit);
342 if (res == -1)
344 oracle_cnt += limit;
345 continue;
347 oracle_cnt += res;
348 if (data.found_may_defs)
349 continue;
350 /* Do not warn if it can be initialized outside this function.
351 If we did not reach function entry then we found killing
352 clobbers on all paths to entry. */
353 if (fentry_reached
354 /* ??? We'd like to use ref_may_alias_global_p but that
355 excludes global readonly memory and thus we get bougs
356 warnings from p = cond ? "a" : "b" for example. */
357 && (!VAR_P (base)
358 || is_global_var (base)))
359 continue;
361 /* We didn't find any may-defs so on all paths either
362 reached function entry or a killing clobber. */
363 location_t location
364 = linemap_resolve_location (line_table, gimple_location (stmt),
365 LRK_SPELLING_LOCATION, NULL);
366 if (always_executed)
368 if (warning_at (location, OPT_Wuninitialized,
369 "%qE is used uninitialized in this function",
370 rhs))
371 /* ??? This is only effective for decls as in
372 gcc.dg/uninit-B-O0.c. Avoid doing this for
373 maybe-uninit uses as it may hide important
374 locations. */
375 TREE_NO_WARNING (rhs) = 1;
377 else if (warn_possibly_uninitialized)
378 warning_at (location, OPT_Wmaybe_uninitialized,
379 "%qE may be used uninitialized in this function",
380 rhs);
385 return 0;
388 /* Checks if the operand OPND of PHI is defined by
389 another phi with one operand defined by this PHI,
390 but the rest operands are all defined. If yes,
391 returns true to skip this operand as being
392 redundant. Can be enhanced to be more general. */
394 static bool
395 can_skip_redundant_opnd (tree opnd, gimple *phi)
397 gimple *op_def;
398 tree phi_def;
399 int i, n;
401 phi_def = gimple_phi_result (phi);
402 op_def = SSA_NAME_DEF_STMT (opnd);
403 if (gimple_code (op_def) != GIMPLE_PHI)
404 return false;
405 n = gimple_phi_num_args (op_def);
406 for (i = 0; i < n; ++i)
408 tree op = gimple_phi_arg_def (op_def, i);
409 if (TREE_CODE (op) != SSA_NAME)
410 continue;
411 if (op != phi_def && uninit_undefined_value_p (op))
412 return false;
415 return true;
418 /* Returns a bit mask holding the positions of arguments in PHI
419 that have empty (or possibly empty) definitions. */
421 static unsigned
422 compute_uninit_opnds_pos (gphi *phi)
424 size_t i, n;
425 unsigned uninit_opnds = 0;
427 n = gimple_phi_num_args (phi);
428 /* Bail out for phi with too many args. */
429 if (n > max_phi_args)
430 return 0;
432 for (i = 0; i < n; ++i)
434 tree op = gimple_phi_arg_def (phi, i);
435 if (TREE_CODE (op) == SSA_NAME
436 && uninit_undefined_value_p (op)
437 && !can_skip_redundant_opnd (op, phi))
439 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
441 /* Ignore SSA_NAMEs that appear on abnormal edges
442 somewhere. */
443 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
444 continue;
446 MASK_SET_BIT (uninit_opnds, i);
449 return uninit_opnds;
452 /* Find the immediate postdominator PDOM of the specified
453 basic block BLOCK. */
455 static inline basic_block
456 find_pdom (basic_block block)
458 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
459 return EXIT_BLOCK_PTR_FOR_FN (cfun);
460 else
462 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
463 if (!bb)
464 return EXIT_BLOCK_PTR_FOR_FN (cfun);
465 return bb;
469 /* Find the immediate DOM of the specified basic block BLOCK. */
471 static inline basic_block
472 find_dom (basic_block block)
474 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
475 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
476 else
478 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
479 if (!bb)
480 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
481 return bb;
485 /* Returns true if BB1 is postdominating BB2 and BB1 is
486 not a loop exit bb. The loop exit bb check is simple and does
487 not cover all cases. */
489 static bool
490 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
492 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
493 return false;
495 if (single_pred_p (bb1) && !single_succ_p (bb2))
496 return false;
498 return true;
501 /* Find the closest postdominator of a specified BB, which is control
502 equivalent to BB. */
504 static inline basic_block
505 find_control_equiv_block (basic_block bb)
507 basic_block pdom;
509 pdom = find_pdom (bb);
511 /* Skip the postdominating bb that is also loop exit. */
512 if (!is_non_loop_exit_postdominating (pdom, bb))
513 return NULL;
515 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
516 return pdom;
518 return NULL;
521 #define MAX_NUM_CHAINS 8
522 #define MAX_CHAIN_LEN 5
523 #define MAX_POSTDOM_CHECK 8
524 #define MAX_SWITCH_CASES 40
526 /* Computes the control dependence chains (paths of edges)
527 for DEP_BB up to the dominating basic block BB (the head node of a
528 chain should be dominated by it). CD_CHAINS is pointer to an
529 array holding the result chains. CUR_CD_CHAIN is the current
530 chain being computed. *NUM_CHAINS is total number of chains. The
531 function returns true if the information is successfully computed,
532 return false if there is no control dependence or not computed. */
534 static bool
535 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
536 vec<edge> *cd_chains,
537 size_t *num_chains,
538 vec<edge> *cur_cd_chain,
539 int *num_calls)
541 edge_iterator ei;
542 edge e;
543 size_t i;
544 bool found_cd_chain = false;
545 size_t cur_chain_len = 0;
547 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
548 return false;
549 ++*num_calls;
551 /* Could use a set instead. */
552 cur_chain_len = cur_cd_chain->length ();
553 if (cur_chain_len > MAX_CHAIN_LEN)
554 return false;
556 for (i = 0; i < cur_chain_len; i++)
558 edge e = (*cur_cd_chain)[i];
559 /* Cycle detected. */
560 if (e->src == bb)
561 return false;
564 FOR_EACH_EDGE (e, ei, bb->succs)
566 basic_block cd_bb;
567 int post_dom_check = 0;
568 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
569 continue;
571 cd_bb = e->dest;
572 cur_cd_chain->safe_push (e);
573 while (!is_non_loop_exit_postdominating (cd_bb, bb))
575 if (cd_bb == dep_bb)
577 /* Found a direct control dependence. */
578 if (*num_chains < MAX_NUM_CHAINS)
580 cd_chains[*num_chains] = cur_cd_chain->copy ();
581 (*num_chains)++;
583 found_cd_chain = true;
584 /* Check path from next edge. */
585 break;
588 /* Now check if DEP_BB is indirectly control dependent on BB. */
589 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
590 cur_cd_chain, num_calls))
592 found_cd_chain = true;
593 break;
596 cd_bb = find_pdom (cd_bb);
597 post_dom_check++;
598 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
599 || post_dom_check > MAX_POSTDOM_CHECK)
600 break;
602 cur_cd_chain->pop ();
603 gcc_assert (cur_cd_chain->length () == cur_chain_len);
605 gcc_assert (cur_cd_chain->length () == cur_chain_len);
607 return found_cd_chain;
610 /* The type to represent a simple predicate. */
612 struct pred_info
614 tree pred_lhs;
615 tree pred_rhs;
616 enum tree_code cond_code;
617 bool invert;
620 /* The type to represent a sequence of predicates grouped
621 with .AND. operation. */
623 typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
625 /* The type to represent a sequence of pred_chains grouped
626 with .OR. operation. */
628 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
630 /* Converts the chains of control dependence edges into a set of
631 predicates. A control dependence chain is represented by a vector
632 edges. DEP_CHAINS points to an array of dependence chains.
633 NUM_CHAINS is the size of the chain array. One edge in a dependence
634 chain is mapped to predicate expression represented by pred_info
635 type. One dependence chain is converted to a composite predicate that
636 is the result of AND operation of pred_info mapped to each edge.
637 A composite predicate is presented by a vector of pred_info. On
638 return, *PREDS points to the resulting array of composite predicates.
639 *NUM_PREDS is the number of composite predictes. */
641 static bool
642 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
643 size_t num_chains,
644 pred_chain_union *preds)
646 bool has_valid_pred = false;
647 size_t i, j;
648 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
649 return false;
651 /* Now convert the control dep chain into a set
652 of predicates. */
653 preds->reserve (num_chains);
655 for (i = 0; i < num_chains; i++)
657 vec<edge> one_cd_chain = dep_chains[i];
659 has_valid_pred = false;
660 pred_chain t_chain = vNULL;
661 for (j = 0; j < one_cd_chain.length (); j++)
663 gimple *cond_stmt;
664 gimple_stmt_iterator gsi;
665 basic_block guard_bb;
666 pred_info one_pred;
667 edge e;
669 e = one_cd_chain[j];
670 guard_bb = e->src;
671 gsi = gsi_last_bb (guard_bb);
672 /* Ignore empty BBs as they're basically forwarder blocks. */
673 if (empty_block_p (guard_bb) && single_succ_p (guard_bb))
674 continue;
675 cond_stmt = gsi_stmt (gsi);
676 if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
677 /* Ignore EH edge. Can add assertion on the other edge's flag. */
678 continue;
679 /* Skip if there is essentially one succesor. */
680 if (EDGE_COUNT (e->src->succs) == 2)
682 edge e1;
683 edge_iterator ei1;
684 bool skip = false;
686 FOR_EACH_EDGE (e1, ei1, e->src->succs)
688 if (EDGE_COUNT (e1->dest->succs) == 0)
690 skip = true;
691 break;
694 if (skip)
695 continue;
697 if (gimple_code (cond_stmt) == GIMPLE_COND)
699 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
700 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
701 one_pred.cond_code = gimple_cond_code (cond_stmt);
702 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
703 t_chain.safe_push (one_pred);
704 has_valid_pred = true;
706 else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
708 /* Avoid quadratic behavior. */
709 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
711 has_valid_pred = false;
712 break;
714 /* Find the case label. */
715 tree l = NULL_TREE;
716 unsigned idx;
717 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
719 tree tl = gimple_switch_label (gs, idx);
720 if (e->dest == label_to_block (CASE_LABEL (tl)))
722 if (!l)
723 l = tl;
724 else
726 l = NULL_TREE;
727 break;
731 /* If more than one label reaches this block or the case
732 label doesn't have a single value (like the default one)
733 fail. */
734 if (!l
735 || !CASE_LOW (l)
736 || (CASE_HIGH (l)
737 && !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
739 has_valid_pred = false;
740 break;
742 one_pred.pred_lhs = gimple_switch_index (gs);
743 one_pred.pred_rhs = CASE_LOW (l);
744 one_pred.cond_code = EQ_EXPR;
745 one_pred.invert = false;
746 t_chain.safe_push (one_pred);
747 has_valid_pred = true;
749 else
751 has_valid_pred = false;
752 break;
756 if (!has_valid_pred)
757 break;
758 else
759 preds->safe_push (t_chain);
761 return has_valid_pred;
764 /* Computes all control dependence chains for USE_BB. The control
765 dependence chains are then converted to an array of composite
766 predicates pointed to by PREDS. PHI_BB is the basic block of
767 the phi whose result is used in USE_BB. */
769 static bool
770 find_predicates (pred_chain_union *preds,
771 basic_block phi_bb,
772 basic_block use_bb)
774 size_t num_chains = 0, i;
775 int num_calls = 0;
776 vec<edge> dep_chains[MAX_NUM_CHAINS];
777 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
778 bool has_valid_pred = false;
779 basic_block cd_root = 0;
781 /* First find the closest bb that is control equivalent to PHI_BB
782 that also dominates USE_BB. */
783 cd_root = phi_bb;
784 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
786 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
787 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
788 cd_root = ctrl_eq_bb;
789 else
790 break;
793 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
794 &cur_chain, &num_calls);
796 has_valid_pred
797 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
798 for (i = 0; i < num_chains; i++)
799 dep_chains[i].release ();
800 return has_valid_pred;
803 /* Computes the set of incoming edges of PHI that have non empty
804 definitions of a phi chain. The collection will be done
805 recursively on operands that are defined by phis. CD_ROOT
806 is the control dependence root. *EDGES holds the result, and
807 VISITED_PHIS is a pointer set for detecting cycles. */
809 static void
810 collect_phi_def_edges (gphi *phi, basic_block cd_root,
811 auto_vec<edge> *edges,
812 hash_set<gimple *> *visited_phis)
814 size_t i, n;
815 edge opnd_edge;
816 tree opnd;
818 if (visited_phis->add (phi))
819 return;
821 n = gimple_phi_num_args (phi);
822 for (i = 0; i < n; i++)
824 opnd_edge = gimple_phi_arg_edge (phi, i);
825 opnd = gimple_phi_arg_def (phi, i);
827 if (TREE_CODE (opnd) != SSA_NAME)
829 if (dump_file && (dump_flags & TDF_DETAILS))
831 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
832 print_gimple_stmt (dump_file, phi, 0);
834 edges->safe_push (opnd_edge);
836 else
838 gimple *def = SSA_NAME_DEF_STMT (opnd);
840 if (gimple_code (def) == GIMPLE_PHI
841 && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
842 collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
843 visited_phis);
844 else if (!uninit_undefined_value_p (opnd))
846 if (dump_file && (dump_flags & TDF_DETAILS))
848 fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
849 (int) i);
850 print_gimple_stmt (dump_file, phi, 0);
852 edges->safe_push (opnd_edge);
858 /* For each use edge of PHI, computes all control dependence chains.
859 The control dependence chains are then converted to an array of
860 composite predicates pointed to by PREDS. */
862 static bool
863 find_def_preds (pred_chain_union *preds, gphi *phi)
865 size_t num_chains = 0, i, n;
866 vec<edge> dep_chains[MAX_NUM_CHAINS];
867 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
868 auto_vec<edge> def_edges;
869 bool has_valid_pred = false;
870 basic_block phi_bb, cd_root = 0;
872 phi_bb = gimple_bb (phi);
873 /* First find the closest dominating bb to be
874 the control dependence root. */
875 cd_root = find_dom (phi_bb);
876 if (!cd_root)
877 return false;
879 hash_set<gimple *> visited_phis;
880 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
882 n = def_edges.length ();
883 if (n == 0)
884 return false;
886 for (i = 0; i < n; i++)
888 size_t prev_nc, j;
889 int num_calls = 0;
890 edge opnd_edge;
892 opnd_edge = def_edges[i];
893 prev_nc = num_chains;
894 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
895 &num_chains, &cur_chain, &num_calls);
897 /* Now update the newly added chains with
898 the phi operand edge: */
899 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
901 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
902 dep_chains[num_chains++] = vNULL;
903 for (j = prev_nc; j < num_chains; j++)
904 dep_chains[j].safe_push (opnd_edge);
908 has_valid_pred
909 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
910 for (i = 0; i < num_chains; i++)
911 dep_chains[i].release ();
912 return has_valid_pred;
915 /* Dump a pred_info. */
917 static void
918 dump_pred_info (pred_info one_pred)
920 if (one_pred.invert)
921 fprintf (dump_file, " (.NOT.) ");
922 print_generic_expr (dump_file, one_pred.pred_lhs);
923 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
924 print_generic_expr (dump_file, one_pred.pred_rhs);
927 /* Dump a pred_chain. */
929 static void
930 dump_pred_chain (pred_chain one_pred_chain)
932 size_t np = one_pred_chain.length ();
933 for (size_t j = 0; j < np; j++)
935 dump_pred_info (one_pred_chain[j]);
936 if (j < np - 1)
937 fprintf (dump_file, " (.AND.) ");
938 else
939 fprintf (dump_file, "\n");
943 /* Dumps the predicates (PREDS) for USESTMT. */
945 static void
946 dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
948 fprintf (dump_file, "%s", msg);
949 if (usestmt)
951 print_gimple_stmt (dump_file, usestmt, 0);
952 fprintf (dump_file, "is guarded by :\n\n");
954 size_t num_preds = preds.length ();
955 for (size_t i = 0; i < num_preds; i++)
957 dump_pred_chain (preds[i]);
958 if (i < num_preds - 1)
959 fprintf (dump_file, "(.OR.)\n");
960 else
961 fprintf (dump_file, "\n\n");
965 /* Destroys the predicate set *PREDS. */
967 static void
968 destroy_predicate_vecs (pred_chain_union *preds)
970 size_t i;
972 size_t n = preds->length ();
973 for (i = 0; i < n; i++)
974 (*preds)[i].release ();
975 preds->release ();
978 /* Computes the 'normalized' conditional code with operand
979 swapping and condition inversion. */
981 static enum tree_code
982 get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
984 enum tree_code tc = orig_cmp_code;
986 if (swap_cond)
987 tc = swap_tree_comparison (orig_cmp_code);
988 if (invert)
989 tc = invert_tree_comparison (tc, false);
991 switch (tc)
993 case LT_EXPR:
994 case LE_EXPR:
995 case GT_EXPR:
996 case GE_EXPR:
997 case EQ_EXPR:
998 case NE_EXPR:
999 break;
1000 default:
1001 return ERROR_MARK;
1003 return tc;
1006 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
1007 all values in the range satisfies (x CMPC BOUNDARY) == true. */
1009 static bool
1010 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
1012 bool inverted = false;
1013 bool is_unsigned;
1014 bool result;
1016 /* Only handle integer constant here. */
1017 if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
1018 return true;
1020 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
1022 if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
1024 cmpc = invert_tree_comparison (cmpc, false);
1025 inverted = true;
1028 if (is_unsigned)
1030 if (cmpc == EQ_EXPR)
1031 result = tree_int_cst_equal (val, boundary);
1032 else if (cmpc == LT_EXPR)
1033 result = tree_int_cst_lt (val, boundary);
1034 else
1036 gcc_assert (cmpc == LE_EXPR);
1037 result = tree_int_cst_le (val, boundary);
1040 else
1042 if (cmpc == EQ_EXPR)
1043 result = tree_int_cst_equal (val, boundary);
1044 else if (cmpc == LT_EXPR)
1045 result = tree_int_cst_lt (val, boundary);
1046 else
1048 gcc_assert (cmpc == LE_EXPR);
1049 result = (tree_int_cst_equal (val, boundary)
1050 || tree_int_cst_lt (val, boundary));
1054 if (inverted)
1055 result ^= 1;
1057 return result;
1060 /* Returns true if PRED is common among all the predicate
1061 chains (PREDS) (and therefore can be factored out).
1062 NUM_PRED_CHAIN is the size of array PREDS. */
1064 static bool
1065 find_matching_predicate_in_rest_chains (pred_info pred,
1066 pred_chain_union preds,
1067 size_t num_pred_chains)
1069 size_t i, j, n;
1071 /* Trival case. */
1072 if (num_pred_chains == 1)
1073 return true;
1075 for (i = 1; i < num_pred_chains; i++)
1077 bool found = false;
1078 pred_chain one_chain = preds[i];
1079 n = one_chain.length ();
1080 for (j = 0; j < n; j++)
1082 pred_info pred2 = one_chain[j];
1083 /* Can relax the condition comparison to not
1084 use address comparison. However, the most common
1085 case is that multiple control dependent paths share
1086 a common path prefix, so address comparison should
1087 be ok. */
1089 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
1090 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
1091 && pred2.invert == pred.invert)
1093 found = true;
1094 break;
1097 if (!found)
1098 return false;
1100 return true;
1103 /* Forward declaration. */
1104 static bool is_use_properly_guarded (gimple *use_stmt,
1105 basic_block use_bb,
1106 gphi *phi,
1107 unsigned uninit_opnds,
1108 pred_chain_union *def_preds,
1109 hash_set<gphi *> *visited_phis);
1111 /* Returns true if all uninitialized opnds are pruned. Returns false
1112 otherwise. PHI is the phi node with uninitialized operands,
1113 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
1114 FLAG_DEF is the statement defining the flag guarding the use of the
1115 PHI output, BOUNDARY_CST is the const value used in the predicate
1116 associated with the flag, CMP_CODE is the comparison code used in
1117 the predicate, VISITED_PHIS is the pointer set of phis visited, and
1118 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
1119 that are also phis.
1121 Example scenario:
1123 BB1:
1124 flag_1 = phi <0, 1> // (1)
1125 var_1 = phi <undef, some_val>
1128 BB2:
1129 flag_2 = phi <0, flag_1, flag_1> // (2)
1130 var_2 = phi <undef, var_1, var_1>
1131 if (flag_2 == 1)
1132 goto BB3;
1134 BB3:
1135 use of var_2 // (3)
1137 Because some flag arg in (1) is not constant, if we do not look into the
1138 flag phis recursively, it is conservatively treated as unknown and var_1
1139 is thought to be flowed into use at (3). Since var_1 is potentially
1140 uninitialized a false warning will be emitted.
1141 Checking recursively into (1), the compiler can find out that only some_val
1142 (which is defined) can flow into (3) which is OK. */
1144 static bool
1145 prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
1146 tree boundary_cst, enum tree_code cmp_code,
1147 hash_set<gphi *> *visited_phis,
1148 bitmap *visited_flag_phis)
1150 unsigned i;
1152 for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++)
1154 tree flag_arg;
1156 if (!MASK_TEST_BIT (uninit_opnds, i))
1157 continue;
1159 flag_arg = gimple_phi_arg_def (flag_def, i);
1160 if (!is_gimple_constant (flag_arg))
1162 gphi *flag_arg_def, *phi_arg_def;
1163 tree phi_arg;
1164 unsigned uninit_opnds_arg_phi;
1166 if (TREE_CODE (flag_arg) != SSA_NAME)
1167 return false;
1168 flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1169 if (!flag_arg_def)
1170 return false;
1172 phi_arg = gimple_phi_arg_def (phi, i);
1173 if (TREE_CODE (phi_arg) != SSA_NAME)
1174 return false;
1176 phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1177 if (!phi_arg_def)
1178 return false;
1180 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1181 return false;
1183 if (!*visited_flag_phis)
1184 *visited_flag_phis = BITMAP_ALLOC (NULL);
1186 tree phi_result = gimple_phi_result (flag_arg_def);
1187 if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
1188 return false;
1190 bitmap_set_bit (*visited_flag_phis,
1191 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1193 /* Now recursively prune the uninitialized phi args. */
1194 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
1195 if (!prune_uninit_phi_opnds
1196 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
1197 cmp_code, visited_phis, visited_flag_phis))
1198 return false;
1200 phi_result = gimple_phi_result (flag_arg_def);
1201 bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
1202 continue;
1205 /* Now check if the constant is in the guarded range. */
1206 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1208 tree opnd;
1209 gimple *opnd_def;
1211 /* Now that we know that this undefined edge is not
1212 pruned. If the operand is defined by another phi,
1213 we can further prune the incoming edges of that
1214 phi by checking the predicates of this operands. */
1216 opnd = gimple_phi_arg_def (phi, i);
1217 opnd_def = SSA_NAME_DEF_STMT (opnd);
1218 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
1220 edge opnd_edge;
1221 unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
1222 if (!MASK_EMPTY (uninit_opnds2))
1224 pred_chain_union def_preds = vNULL;
1225 bool ok;
1226 opnd_edge = gimple_phi_arg_edge (phi, i);
1227 ok = is_use_properly_guarded (phi,
1228 opnd_edge->src,
1229 opnd_def_phi,
1230 uninit_opnds2,
1231 &def_preds,
1232 visited_phis);
1233 destroy_predicate_vecs (&def_preds);
1234 if (!ok)
1235 return false;
1238 else
1239 return false;
1243 return true;
1246 /* A helper function that determines if the predicate set
1247 of the use is not overlapping with that of the uninit paths.
1248 The most common senario of guarded use is in Example 1:
1249 Example 1:
1250 if (some_cond)
1252 x = ...;
1253 flag = true;
1256 ... some code ...
1258 if (flag)
1259 use (x);
1261 The real world examples are usually more complicated, but similar
1262 and usually result from inlining:
1264 bool init_func (int * x)
1266 if (some_cond)
1267 return false;
1268 *x = ..
1269 return true;
1272 void foo (..)
1274 int x;
1276 if (!init_func (&x))
1277 return;
1279 .. some_code ...
1280 use (x);
1283 Another possible use scenario is in the following trivial example:
1285 Example 2:
1286 if (n > 0)
1287 x = 1;
1289 if (n > 0)
1291 if (m < 2)
1292 .. = x;
1295 Predicate analysis needs to compute the composite predicate:
1297 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1298 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1299 (the predicate chain for phi operand defs can be computed
1300 starting from a bb that is control equivalent to the phi's
1301 bb and is dominating the operand def.)
1303 and check overlapping:
1304 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1305 <==> false
1307 This implementation provides framework that can handle
1308 scenarios. (Note that many simple cases are handled properly
1309 without the predicate analysis -- this is due to jump threading
1310 transformation which eliminates the merge point thus makes
1311 path sensitive analysis unnecessary.)
1313 PHI is the phi node whose incoming (undefined) paths need to be
1314 pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
1315 positions. VISITED_PHIS is the pointer set of phi stmts being
1316 checked. */
1318 static bool
1319 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
1320 gphi *phi, unsigned uninit_opnds,
1321 hash_set<gphi *> *visited_phis)
1323 unsigned int i, n;
1324 gimple *flag_def = 0;
1325 tree boundary_cst = 0;
1326 enum tree_code cmp_code;
1327 bool swap_cond = false;
1328 bool invert = false;
1329 pred_chain the_pred_chain = vNULL;
1330 bitmap visited_flag_phis = NULL;
1331 bool all_pruned = false;
1332 size_t num_preds = preds.length ();
1334 gcc_assert (num_preds > 0);
1335 /* Find within the common prefix of multiple predicate chains
1336 a predicate that is a comparison of a flag variable against
1337 a constant. */
1338 the_pred_chain = preds[0];
1339 n = the_pred_chain.length ();
1340 for (i = 0; i < n; i++)
1342 tree cond_lhs, cond_rhs, flag = 0;
1344 pred_info the_pred = the_pred_chain[i];
1346 invert = the_pred.invert;
1347 cond_lhs = the_pred.pred_lhs;
1348 cond_rhs = the_pred.pred_rhs;
1349 cmp_code = the_pred.cond_code;
1351 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1352 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1354 boundary_cst = cond_rhs;
1355 flag = cond_lhs;
1357 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1358 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1360 boundary_cst = cond_lhs;
1361 flag = cond_rhs;
1362 swap_cond = true;
1365 if (!flag)
1366 continue;
1368 flag_def = SSA_NAME_DEF_STMT (flag);
1370 if (!flag_def)
1371 continue;
1373 if ((gimple_code (flag_def) == GIMPLE_PHI)
1374 && (gimple_bb (flag_def) == gimple_bb (phi))
1375 && find_matching_predicate_in_rest_chains (the_pred, preds,
1376 num_preds))
1377 break;
1379 flag_def = 0;
1382 if (!flag_def)
1383 return false;
1385 /* Now check all the uninit incoming edge has a constant flag value
1386 that is in conflict with the use guard/predicate. */
1387 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1389 if (cmp_code == ERROR_MARK)
1390 return false;
1392 all_pruned = prune_uninit_phi_opnds
1393 (phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
1394 visited_phis, &visited_flag_phis);
1396 if (visited_flag_phis)
1397 BITMAP_FREE (visited_flag_phis);
1399 return all_pruned;
1402 /* The helper function returns true if two predicates X1 and X2
1403 are equivalent. It assumes the expressions have already
1404 properly re-associated. */
1406 static inline bool
1407 pred_equal_p (pred_info x1, pred_info x2)
1409 enum tree_code c1, c2;
1410 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1411 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1412 return false;
1414 c1 = x1.cond_code;
1415 if (x1.invert != x2.invert
1416 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
1417 c2 = invert_tree_comparison (x2.cond_code, false);
1418 else
1419 c2 = x2.cond_code;
1421 return c1 == c2;
1424 /* Returns true if the predication is testing !=. */
1426 static inline bool
1427 is_neq_relop_p (pred_info pred)
1430 return ((pred.cond_code == NE_EXPR && !pred.invert)
1431 || (pred.cond_code == EQ_EXPR && pred.invert));
1434 /* Returns true if pred is of the form X != 0. */
1436 static inline bool
1437 is_neq_zero_form_p (pred_info pred)
1439 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1440 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1441 return false;
1442 return true;
1445 /* The helper function returns true if two predicates X1
1446 is equivalent to X2 != 0. */
1448 static inline bool
1449 pred_expr_equal_p (pred_info x1, tree x2)
1451 if (!is_neq_zero_form_p (x1))
1452 return false;
1454 return operand_equal_p (x1.pred_lhs, x2, 0);
1457 /* Returns true of the domain of single predicate expression
1458 EXPR1 is a subset of that of EXPR2. Returns false if it
1459 can not be proved. */
1461 static bool
1462 is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
1464 enum tree_code code1, code2;
1466 if (pred_equal_p (expr1, expr2))
1467 return true;
1469 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1470 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1471 return false;
1473 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1474 return false;
1476 code1 = expr1.cond_code;
1477 if (expr1.invert)
1478 code1 = invert_tree_comparison (code1, false);
1479 code2 = expr2.cond_code;
1480 if (expr2.invert)
1481 code2 = invert_tree_comparison (code2, false);
1483 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR) && code2 == BIT_AND_EXPR)
1484 return (wi::to_wide (expr1.pred_rhs)
1485 == (wi::to_wide (expr1.pred_rhs) & wi::to_wide (expr2.pred_rhs)));
1487 if (code1 != code2 && code2 != NE_EXPR)
1488 return false;
1490 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1491 return true;
1493 return false;
1496 /* Returns true if the domain of PRED1 is a subset
1497 of that of PRED2. Returns false if it can not be proved so. */
1499 static bool
1500 is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
1502 size_t np1, np2, i1, i2;
1504 np1 = pred1.length ();
1505 np2 = pred2.length ();
1507 for (i2 = 0; i2 < np2; i2++)
1509 bool found = false;
1510 pred_info info2 = pred2[i2];
1511 for (i1 = 0; i1 < np1; i1++)
1513 pred_info info1 = pred1[i1];
1514 if (is_pred_expr_subset_of (info1, info2))
1516 found = true;
1517 break;
1520 if (!found)
1521 return false;
1523 return true;
1526 /* Returns true if the domain defined by
1527 one pred chain ONE_PRED is a subset of the domain
1528 of *PREDS. It returns false if ONE_PRED's domain is
1529 not a subset of any of the sub-domains of PREDS
1530 (corresponding to each individual chains in it), even
1531 though it may be still be a subset of whole domain
1532 of PREDS which is the union (ORed) of all its subdomains.
1533 In other words, the result is conservative. */
1535 static bool
1536 is_included_in (pred_chain one_pred, pred_chain_union preds)
1538 size_t i;
1539 size_t n = preds.length ();
1541 for (i = 0; i < n; i++)
1543 if (is_pred_chain_subset_of (one_pred, preds[i]))
1544 return true;
1547 return false;
1550 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1551 true if the domain defined by PREDS1 is a superset
1552 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1553 PREDS2 respectively. The implementation chooses not to build
1554 generic trees (and relying on the folding capability of the
1555 compiler), but instead performs brute force comparison of
1556 individual predicate chains (won't be a compile time problem
1557 as the chains are pretty short). When the function returns
1558 false, it does not necessarily mean *PREDS1 is not a superset
1559 of *PREDS2, but mean it may not be so since the analysis can
1560 not prove it. In such cases, false warnings may still be
1561 emitted. */
1563 static bool
1564 is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
1566 size_t i, n2;
1567 pred_chain one_pred_chain = vNULL;
1569 n2 = preds2.length ();
1571 for (i = 0; i < n2; i++)
1573 one_pred_chain = preds2[i];
1574 if (!is_included_in (one_pred_chain, preds1))
1575 return false;
1578 return true;
1581 /* Returns true if TC is AND or OR. */
1583 static inline bool
1584 is_and_or_or_p (enum tree_code tc, tree type)
1586 return (tc == BIT_IOR_EXPR
1587 || (tc == BIT_AND_EXPR
1588 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1591 /* Returns true if X1 is the negate of X2. */
1593 static inline bool
1594 pred_neg_p (pred_info x1, pred_info x2)
1596 enum tree_code c1, c2;
1597 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1598 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1599 return false;
1601 c1 = x1.cond_code;
1602 if (x1.invert == x2.invert)
1603 c2 = invert_tree_comparison (x2.cond_code, false);
1604 else
1605 c2 = x2.cond_code;
1607 return c1 == c2;
1610 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1611 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1612 3) X OR (!X AND Y) is equivalent to (X OR Y);
1613 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1614 (x != 0 AND y != 0)
1615 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1616 (X AND Y) OR Z
1618 PREDS is the predicate chains, and N is the number of chains. */
1620 /* Helper function to implement rule 1 above. ONE_CHAIN is
1621 the AND predication to be simplified. */
1623 static void
1624 simplify_pred (pred_chain *one_chain)
1626 size_t i, j, n;
1627 bool simplified = false;
1628 pred_chain s_chain = vNULL;
1630 n = one_chain->length ();
1632 for (i = 0; i < n; i++)
1634 pred_info *a_pred = &(*one_chain)[i];
1636 if (!a_pred->pred_lhs)
1637 continue;
1638 if (!is_neq_zero_form_p (*a_pred))
1639 continue;
1641 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1642 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1643 continue;
1644 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
1646 for (j = 0; j < n; j++)
1648 pred_info *b_pred = &(*one_chain)[j];
1650 if (!b_pred->pred_lhs)
1651 continue;
1652 if (!is_neq_zero_form_p (*b_pred))
1653 continue;
1655 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1656 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1658 /* Mark a_pred for removal. */
1659 a_pred->pred_lhs = NULL;
1660 a_pred->pred_rhs = NULL;
1661 simplified = true;
1662 break;
1668 if (!simplified)
1669 return;
1671 for (i = 0; i < n; i++)
1673 pred_info *a_pred = &(*one_chain)[i];
1674 if (!a_pred->pred_lhs)
1675 continue;
1676 s_chain.safe_push (*a_pred);
1679 one_chain->release ();
1680 *one_chain = s_chain;
1683 /* The helper function implements the rule 2 for the
1684 OR predicate PREDS.
1686 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1688 static bool
1689 simplify_preds_2 (pred_chain_union *preds)
1691 size_t i, j, n;
1692 bool simplified = false;
1693 pred_chain_union s_preds = vNULL;
1695 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1696 (X AND Y) OR (X AND !Y) is equivalent to X. */
1698 n = preds->length ();
1699 for (i = 0; i < n; i++)
1701 pred_info x, y;
1702 pred_chain *a_chain = &(*preds)[i];
1704 if (a_chain->length () != 2)
1705 continue;
1707 x = (*a_chain)[0];
1708 y = (*a_chain)[1];
1710 for (j = 0; j < n; j++)
1712 pred_chain *b_chain;
1713 pred_info x2, y2;
1715 if (j == i)
1716 continue;
1718 b_chain = &(*preds)[j];
1719 if (b_chain->length () != 2)
1720 continue;
1722 x2 = (*b_chain)[0];
1723 y2 = (*b_chain)[1];
1725 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1727 /* Kill a_chain. */
1728 a_chain->release ();
1729 b_chain->release ();
1730 b_chain->safe_push (x);
1731 simplified = true;
1732 break;
1734 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1736 /* Kill a_chain. */
1737 a_chain->release ();
1738 b_chain->release ();
1739 b_chain->safe_push (y);
1740 simplified = true;
1741 break;
1745 /* Now clean up the chain. */
1746 if (simplified)
1748 for (i = 0; i < n; i++)
1750 if ((*preds)[i].is_empty ())
1751 continue;
1752 s_preds.safe_push ((*preds)[i]);
1754 preds->release ();
1755 (*preds) = s_preds;
1756 s_preds = vNULL;
1759 return simplified;
1762 /* The helper function implements the rule 2 for the
1763 OR predicate PREDS.
1765 3) x OR (!x AND y) is equivalent to x OR y. */
1767 static bool
1768 simplify_preds_3 (pred_chain_union *preds)
1770 size_t i, j, n;
1771 bool simplified = false;
1773 /* Now iteratively simplify X OR (!X AND Z ..)
1774 into X OR (Z ...). */
1776 n = preds->length ();
1777 if (n < 2)
1778 return false;
1780 for (i = 0; i < n; i++)
1782 pred_info x;
1783 pred_chain *a_chain = &(*preds)[i];
1785 if (a_chain->length () != 1)
1786 continue;
1788 x = (*a_chain)[0];
1790 for (j = 0; j < n; j++)
1792 pred_chain *b_chain;
1793 pred_info x2;
1794 size_t k;
1796 if (j == i)
1797 continue;
1799 b_chain = &(*preds)[j];
1800 if (b_chain->length () < 2)
1801 continue;
1803 for (k = 0; k < b_chain->length (); k++)
1805 x2 = (*b_chain)[k];
1806 if (pred_neg_p (x, x2))
1808 b_chain->unordered_remove (k);
1809 simplified = true;
1810 break;
1815 return simplified;
1818 /* The helper function implements the rule 4 for the
1819 OR predicate PREDS.
1821 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1822 (x != 0 ANd y != 0). */
1824 static bool
1825 simplify_preds_4 (pred_chain_union *preds)
1827 size_t i, j, n;
1828 bool simplified = false;
1829 pred_chain_union s_preds = vNULL;
1830 gimple *def_stmt;
1832 n = preds->length ();
1833 for (i = 0; i < n; i++)
1835 pred_info z;
1836 pred_chain *a_chain = &(*preds)[i];
1838 if (a_chain->length () != 1)
1839 continue;
1841 z = (*a_chain)[0];
1843 if (!is_neq_zero_form_p (z))
1844 continue;
1846 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1847 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1848 continue;
1850 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1851 continue;
1853 for (j = 0; j < n; j++)
1855 pred_chain *b_chain;
1856 pred_info x2, y2;
1858 if (j == i)
1859 continue;
1861 b_chain = &(*preds)[j];
1862 if (b_chain->length () != 2)
1863 continue;
1865 x2 = (*b_chain)[0];
1866 y2 = (*b_chain)[1];
1867 if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
1868 continue;
1870 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1871 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1872 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1873 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1875 /* Kill a_chain. */
1876 a_chain->release ();
1877 simplified = true;
1878 break;
1882 /* Now clean up the chain. */
1883 if (simplified)
1885 for (i = 0; i < n; i++)
1887 if ((*preds)[i].is_empty ())
1888 continue;
1889 s_preds.safe_push ((*preds)[i]);
1892 preds->release ();
1893 (*preds) = s_preds;
1894 s_preds = vNULL;
1897 return simplified;
1900 /* This function simplifies predicates in PREDS. */
1902 static void
1903 simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
1905 size_t i, n;
1906 bool changed = false;
1908 if (dump_file && dump_flags & TDF_DETAILS)
1910 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1911 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
1914 for (i = 0; i < preds->length (); i++)
1915 simplify_pred (&(*preds)[i]);
1917 n = preds->length ();
1918 if (n < 2)
1919 return;
1923 changed = false;
1924 if (simplify_preds_2 (preds))
1925 changed = true;
1927 /* Now iteratively simplify X OR (!X AND Z ..)
1928 into X OR (Z ...). */
1929 if (simplify_preds_3 (preds))
1930 changed = true;
1932 if (simplify_preds_4 (preds))
1933 changed = true;
1935 while (changed);
1937 return;
1940 /* This is a helper function which attempts to normalize predicate chains
1941 by following UD chains. It basically builds up a big tree of either IOR
1942 operations or AND operations, and convert the IOR tree into a
1943 pred_chain_union or BIT_AND tree into a pred_chain.
1944 Example:
1946 _3 = _2 RELOP1 _1;
1947 _6 = _5 RELOP2 _4;
1948 _9 = _8 RELOP3 _7;
1949 _10 = _3 | _6;
1950 _12 = _9 | _0;
1951 _t = _10 | _12;
1953 then _t != 0 will be normalized into a pred_chain_union
1955 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1957 Similarly given,
1959 _3 = _2 RELOP1 _1;
1960 _6 = _5 RELOP2 _4;
1961 _9 = _8 RELOP3 _7;
1962 _10 = _3 & _6;
1963 _12 = _9 & _0;
1965 then _t != 0 will be normalized into a pred_chain:
1966 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1970 /* This is a helper function that stores a PRED into NORM_PREDS. */
1972 inline static void
1973 push_pred (pred_chain_union *norm_preds, pred_info pred)
1975 pred_chain pred_chain = vNULL;
1976 pred_chain.safe_push (pred);
1977 norm_preds->safe_push (pred_chain);
1980 /* A helper function that creates a predicate of the form
1981 OP != 0 and push it WORK_LIST. */
1983 inline static void
1984 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
1985 hash_set<tree> *mark_set)
1987 if (mark_set->contains (op))
1988 return;
1989 mark_set->add (op);
1991 pred_info arg_pred;
1992 arg_pred.pred_lhs = op;
1993 arg_pred.pred_rhs = integer_zero_node;
1994 arg_pred.cond_code = NE_EXPR;
1995 arg_pred.invert = false;
1996 work_list->safe_push (arg_pred);
1999 /* A helper that generates a pred_info from a gimple assignment
2000 CMP_ASSIGN with comparison rhs. */
2002 static pred_info
2003 get_pred_info_from_cmp (gimple *cmp_assign)
2005 pred_info n_pred;
2006 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
2007 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
2008 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
2009 n_pred.invert = false;
2010 return n_pred;
2013 /* Returns true if the PHI is a degenerated phi with
2014 all args with the same value (relop). In that case, *PRED
2015 will be updated to that value. */
2017 static bool
2018 is_degenerated_phi (gimple *phi, pred_info *pred_p)
2020 int i, n;
2021 tree op0;
2022 gimple *def0;
2023 pred_info pred0;
2025 n = gimple_phi_num_args (phi);
2026 op0 = gimple_phi_arg_def (phi, 0);
2028 if (TREE_CODE (op0) != SSA_NAME)
2029 return false;
2031 def0 = SSA_NAME_DEF_STMT (op0);
2032 if (gimple_code (def0) != GIMPLE_ASSIGN)
2033 return false;
2034 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
2035 return false;
2036 pred0 = get_pred_info_from_cmp (def0);
2038 for (i = 1; i < n; ++i)
2040 gimple *def;
2041 pred_info pred;
2042 tree op = gimple_phi_arg_def (phi, i);
2044 if (TREE_CODE (op) != SSA_NAME)
2045 return false;
2047 def = SSA_NAME_DEF_STMT (op);
2048 if (gimple_code (def) != GIMPLE_ASSIGN)
2049 return false;
2050 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
2051 return false;
2052 pred = get_pred_info_from_cmp (def);
2053 if (!pred_equal_p (pred, pred0))
2054 return false;
2057 *pred_p = pred0;
2058 return true;
2061 /* Normalize one predicate PRED
2062 1) if PRED can no longer be normlized, put it into NORM_PREDS.
2063 2) otherwise if PRED is of the form x != 0, follow x's definition
2064 and put normalized predicates into WORK_LIST. */
2066 static void
2067 normalize_one_pred_1 (pred_chain_union *norm_preds,
2068 pred_chain *norm_chain,
2069 pred_info pred,
2070 enum tree_code and_or_code,
2071 vec<pred_info, va_heap, vl_ptr> *work_list,
2072 hash_set<tree> *mark_set)
2074 if (!is_neq_zero_form_p (pred))
2076 if (and_or_code == BIT_IOR_EXPR)
2077 push_pred (norm_preds, pred);
2078 else
2079 norm_chain->safe_push (pred);
2080 return;
2083 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2085 if (gimple_code (def_stmt) == GIMPLE_PHI
2086 && is_degenerated_phi (def_stmt, &pred))
2087 work_list->safe_push (pred);
2088 else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
2090 int i, n;
2091 n = gimple_phi_num_args (def_stmt);
2093 /* If we see non zero constant, we should punt. The predicate
2094 * should be one guarding the phi edge. */
2095 for (i = 0; i < n; ++i)
2097 tree op = gimple_phi_arg_def (def_stmt, i);
2098 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
2100 push_pred (norm_preds, pred);
2101 return;
2105 for (i = 0; i < n; ++i)
2107 tree op = gimple_phi_arg_def (def_stmt, i);
2108 if (integer_zerop (op))
2109 continue;
2111 push_to_worklist (op, work_list, mark_set);
2114 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2116 if (and_or_code == BIT_IOR_EXPR)
2117 push_pred (norm_preds, pred);
2118 else
2119 norm_chain->safe_push (pred);
2121 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2123 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2124 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2126 /* But treat x & 3 as condition. */
2127 if (and_or_code == BIT_AND_EXPR)
2129 pred_info n_pred;
2130 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2131 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2132 n_pred.cond_code = and_or_code;
2133 n_pred.invert = false;
2134 norm_chain->safe_push (n_pred);
2137 else
2139 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2140 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2143 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2144 == tcc_comparison)
2146 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2147 if (and_or_code == BIT_IOR_EXPR)
2148 push_pred (norm_preds, n_pred);
2149 else
2150 norm_chain->safe_push (n_pred);
2152 else
2154 if (and_or_code == BIT_IOR_EXPR)
2155 push_pred (norm_preds, pred);
2156 else
2157 norm_chain->safe_push (pred);
2161 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2163 static void
2164 normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
2166 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2167 enum tree_code and_or_code = ERROR_MARK;
2168 pred_chain norm_chain = vNULL;
2170 if (!is_neq_zero_form_p (pred))
2172 push_pred (norm_preds, pred);
2173 return;
2176 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2177 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2178 and_or_code = gimple_assign_rhs_code (def_stmt);
2179 if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
2181 if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
2183 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2184 push_pred (norm_preds, n_pred);
2186 else
2187 push_pred (norm_preds, pred);
2188 return;
2191 work_list.safe_push (pred);
2192 hash_set<tree> mark_set;
2194 while (!work_list.is_empty ())
2196 pred_info a_pred = work_list.pop ();
2197 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
2198 &work_list, &mark_set);
2200 if (and_or_code == BIT_AND_EXPR)
2201 norm_preds->safe_push (norm_chain);
2203 work_list.release ();
2206 static void
2207 normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
2209 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2210 hash_set<tree> mark_set;
2211 pred_chain norm_chain = vNULL;
2212 size_t i;
2214 for (i = 0; i < one_chain.length (); i++)
2216 work_list.safe_push (one_chain[i]);
2217 mark_set.add (one_chain[i].pred_lhs);
2220 while (!work_list.is_empty ())
2222 pred_info a_pred = work_list.pop ();
2223 normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
2224 &mark_set);
2227 norm_preds->safe_push (norm_chain);
2228 work_list.release ();
2231 /* Normalize predicate chains PREDS and returns the normalized one. */
2233 static pred_chain_union
2234 normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
2236 pred_chain_union norm_preds = vNULL;
2237 size_t n = preds.length ();
2238 size_t i;
2240 if (dump_file && dump_flags & TDF_DETAILS)
2242 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2243 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2246 for (i = 0; i < n; i++)
2248 if (preds[i].length () != 1)
2249 normalize_one_pred_chain (&norm_preds, preds[i]);
2250 else
2252 normalize_one_pred (&norm_preds, preds[i][0]);
2253 preds[i].release ();
2257 if (dump_file)
2259 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2260 dump_predicates (use_or_def, norm_preds,
2261 is_use ? "[USE]:\n" : "[DEF]:\n");
2264 destroy_predicate_vecs (&preds);
2265 return norm_preds;
2268 /* Return TRUE if PREDICATE can be invalidated by any individual
2269 predicate in USE_GUARD. */
2271 static bool
2272 can_one_predicate_be_invalidated_p (pred_info predicate,
2273 pred_chain use_guard)
2275 if (dump_file && dump_flags & TDF_DETAILS)
2277 fprintf (dump_file, "Testing if this predicate: ");
2278 dump_pred_info (predicate);
2279 fprintf (dump_file, "\n...can be invalidated by a USE guard of: ");
2280 dump_pred_chain (use_guard);
2282 for (size_t i = 0; i < use_guard.length (); ++i)
2284 /* NOTE: This is a very simple check, and only understands an
2285 exact opposite. So, [i == 0] is currently only invalidated
2286 by [.NOT. i == 0] or [i != 0]. Ideally we should also
2287 invalidate with say [i > 5] or [i == 8]. There is certainly
2288 room for improvement here. */
2289 if (pred_neg_p (predicate, use_guard[i]))
2291 if (dump_file && dump_flags & TDF_DETAILS)
2293 fprintf (dump_file, " Predicate was invalidated by: ");
2294 dump_pred_info (use_guard[i]);
2295 fputc ('\n', dump_file);
2297 return true;
2300 return false;
2303 /* Return TRUE if all predicates in UNINIT_PRED are invalidated by
2304 USE_GUARD being true. */
2306 static bool
2307 can_chain_union_be_invalidated_p (pred_chain_union uninit_pred,
2308 pred_chain use_guard)
2310 if (uninit_pred.is_empty ())
2311 return false;
2312 if (dump_file && dump_flags & TDF_DETAILS)
2313 dump_predicates (NULL, uninit_pred,
2314 "Testing if anything here can be invalidated: ");
2315 for (size_t i = 0; i < uninit_pred.length (); ++i)
2317 pred_chain c = uninit_pred[i];
2318 size_t j;
2319 for (j = 0; j < c.length (); ++j)
2320 if (can_one_predicate_be_invalidated_p (c[j], use_guard))
2321 break;
2323 /* If we were unable to invalidate any predicate in C, then there
2324 is a viable path from entry to the PHI where the PHI takes
2325 an uninitialized value and continues to a use of the PHI. */
2326 if (j == c.length ())
2327 return false;
2329 return true;
2332 /* Return TRUE if none of the uninitialized operands in UNINT_OPNDS
2333 can actually happen if we arrived at a use for PHI.
2335 PHI_USE_GUARDS are the guard conditions for the use of the PHI. */
2337 static bool
2338 uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds,
2339 pred_chain_union phi_use_guards)
2341 unsigned phi_args = gimple_phi_num_args (phi);
2342 if (phi_args > max_phi_args)
2343 return false;
2345 /* PHI_USE_GUARDS are OR'ed together. If we have more than one
2346 possible guard, there's no way of knowing which guard was true.
2347 Since we need to be absolutely sure that the uninitialized
2348 operands will be invalidated, bail. */
2349 if (phi_use_guards.length () != 1)
2350 return false;
2352 /* Look for the control dependencies of all the uninitialized
2353 operands and build guard predicates describing them. */
2354 pred_chain_union uninit_preds;
2355 bool ret = true;
2356 for (unsigned i = 0; i < phi_args; ++i)
2358 if (!MASK_TEST_BIT (uninit_opnds, i))
2359 continue;
2361 edge e = gimple_phi_arg_edge (phi, i);
2362 vec<edge> dep_chains[MAX_NUM_CHAINS];
2363 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
2364 size_t num_chains = 0;
2365 int num_calls = 0;
2367 /* Build the control dependency chain for uninit operand `i'... */
2368 uninit_preds = vNULL;
2369 if (!compute_control_dep_chain (ENTRY_BLOCK_PTR_FOR_FN (cfun),
2370 e->src, dep_chains, &num_chains,
2371 &cur_chain, &num_calls))
2373 ret = false;
2374 break;
2376 /* ...and convert it into a set of predicates. */
2377 bool has_valid_preds
2378 = convert_control_dep_chain_into_preds (dep_chains, num_chains,
2379 &uninit_preds);
2380 for (size_t j = 0; j < num_chains; ++j)
2381 dep_chains[j].release ();
2382 if (!has_valid_preds)
2384 ret = false;
2385 break;
2387 simplify_preds (&uninit_preds, NULL, false);
2388 uninit_preds = normalize_preds (uninit_preds, NULL, false);
2390 /* Can the guard for this uninitialized operand be invalidated
2391 by the PHI use? */
2392 if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0]))
2394 ret = false;
2395 break;
2398 destroy_predicate_vecs (&uninit_preds);
2399 return ret;
2402 /* Computes the predicates that guard the use and checks
2403 if the incoming paths that have empty (or possibly
2404 empty) definition can be pruned/filtered. The function returns
2405 true if it can be determined that the use of PHI's def in
2406 USE_STMT is guarded with a predicate set not overlapping with
2407 predicate sets of all runtime paths that do not have a definition.
2409 Returns false if it is not or it can not be determined. USE_BB is
2410 the bb of the use (for phi operand use, the bb is not the bb of
2411 the phi stmt, but the src bb of the operand edge).
2413 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2414 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2415 set of phis being visited.
2417 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2418 If *DEF_PREDS is the empty vector, the defining predicate chains of
2419 PHI will be computed and stored into *DEF_PREDS as needed.
2421 VISITED_PHIS is a pointer set of phis being visited. */
2423 static bool
2424 is_use_properly_guarded (gimple *use_stmt,
2425 basic_block use_bb,
2426 gphi *phi,
2427 unsigned uninit_opnds,
2428 pred_chain_union *def_preds,
2429 hash_set<gphi *> *visited_phis)
2431 basic_block phi_bb;
2432 pred_chain_union preds = vNULL;
2433 bool has_valid_preds = false;
2434 bool is_properly_guarded = false;
2436 if (visited_phis->add (phi))
2437 return false;
2439 phi_bb = gimple_bb (phi);
2441 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2442 return false;
2444 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
2446 if (!has_valid_preds)
2448 destroy_predicate_vecs (&preds);
2449 return false;
2452 /* Try to prune the dead incoming phi edges. */
2453 is_properly_guarded
2454 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2455 visited_phis);
2457 /* We might be able to prove that if the control dependencies
2458 for UNINIT_OPNDS are true, that the control dependencies for
2459 USE_STMT can never be true. */
2460 if (!is_properly_guarded)
2461 is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds,
2462 preds);
2464 if (is_properly_guarded)
2466 destroy_predicate_vecs (&preds);
2467 return true;
2470 if (def_preds->is_empty ())
2472 has_valid_preds = find_def_preds (def_preds, phi);
2474 if (!has_valid_preds)
2476 destroy_predicate_vecs (&preds);
2477 return false;
2480 simplify_preds (def_preds, phi, false);
2481 *def_preds = normalize_preds (*def_preds, phi, false);
2484 simplify_preds (&preds, use_stmt, true);
2485 preds = normalize_preds (preds, use_stmt, true);
2487 is_properly_guarded = is_superset_of (*def_preds, preds);
2489 destroy_predicate_vecs (&preds);
2490 return is_properly_guarded;
2493 /* Searches through all uses of a potentially
2494 uninitialized variable defined by PHI and returns a use
2495 statement if the use is not properly guarded. It returns
2496 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2497 holding the position(s) of uninit PHI operands. WORKLIST
2498 is the vector of candidate phis that may be updated by this
2499 function. ADDED_TO_WORKLIST is the pointer set tracking
2500 if the new phi is already in the worklist. */
2502 static gimple *
2503 find_uninit_use (gphi *phi, unsigned uninit_opnds,
2504 vec<gphi *> *worklist,
2505 hash_set<gphi *> *added_to_worklist)
2507 tree phi_result;
2508 use_operand_p use_p;
2509 gimple *use_stmt;
2510 imm_use_iterator iter;
2511 pred_chain_union def_preds = vNULL;
2512 gimple *ret = NULL;
2514 phi_result = gimple_phi_result (phi);
2516 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2518 basic_block use_bb;
2520 use_stmt = USE_STMT (use_p);
2521 if (is_gimple_debug (use_stmt))
2522 continue;
2524 if (gphi *use_phi = dyn_cast<gphi *> (use_stmt))
2525 use_bb = gimple_phi_arg_edge (use_phi,
2526 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2527 else
2528 use_bb = gimple_bb (use_stmt);
2530 hash_set<gphi *> visited_phis;
2531 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
2532 &def_preds, &visited_phis))
2533 continue;
2535 if (dump_file && (dump_flags & TDF_DETAILS))
2537 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2538 print_gimple_stmt (dump_file, use_stmt, 0);
2540 /* Found one real use, return. */
2541 if (gimple_code (use_stmt) != GIMPLE_PHI)
2543 ret = use_stmt;
2544 break;
2547 /* Found a phi use that is not guarded,
2548 add the phi to the worklist. */
2549 if (!added_to_worklist->add (as_a<gphi *> (use_stmt)))
2551 if (dump_file && (dump_flags & TDF_DETAILS))
2553 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2554 print_gimple_stmt (dump_file, use_stmt, 0);
2557 worklist->safe_push (as_a<gphi *> (use_stmt));
2558 possibly_undefined_names->add (phi_result);
2562 destroy_predicate_vecs (&def_preds);
2563 return ret;
2566 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2567 and gives warning if there exists a runtime path from the entry to a
2568 use of the PHI def that does not contain a definition. In other words,
2569 the warning is on the real use. The more dead paths that can be pruned
2570 by the compiler, the fewer false positives the warning is. WORKLIST
2571 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2572 a pointer set tracking if the new phi is added to the worklist or not. */
2574 static void
2575 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2576 hash_set<gphi *> *added_to_worklist)
2578 unsigned uninit_opnds;
2579 gimple *uninit_use_stmt = 0;
2580 tree uninit_op;
2581 int phiarg_index;
2582 location_t loc;
2584 /* Don't look at virtual operands. */
2585 if (virtual_operand_p (gimple_phi_result (phi)))
2586 return;
2588 uninit_opnds = compute_uninit_opnds_pos (phi);
2590 if (MASK_EMPTY (uninit_opnds))
2591 return;
2593 if (dump_file && (dump_flags & TDF_DETAILS))
2595 fprintf (dump_file, "[CHECK]: examining phi: ");
2596 print_gimple_stmt (dump_file, phi, 0);
2599 /* Now check if we have any use of the value without proper guard. */
2600 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2601 worklist, added_to_worklist);
2603 /* All uses are properly guarded. */
2604 if (!uninit_use_stmt)
2605 return;
2607 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2608 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
2609 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2610 return;
2611 if (gimple_phi_arg_has_location (phi, phiarg_index))
2612 loc = gimple_phi_arg_location (phi, phiarg_index);
2613 else
2614 loc = UNKNOWN_LOCATION;
2615 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2616 SSA_NAME_VAR (uninit_op),
2617 "%qD may be used uninitialized in this function",
2618 uninit_use_stmt, loc);
2621 static bool
2622 gate_warn_uninitialized (void)
2624 return warn_uninitialized || warn_maybe_uninitialized;
2627 namespace {
2629 const pass_data pass_data_late_warn_uninitialized =
2631 GIMPLE_PASS, /* type */
2632 "uninit", /* name */
2633 OPTGROUP_NONE, /* optinfo_flags */
2634 TV_NONE, /* tv_id */
2635 PROP_ssa, /* properties_required */
2636 0, /* properties_provided */
2637 0, /* properties_destroyed */
2638 0, /* todo_flags_start */
2639 0, /* todo_flags_finish */
2642 class pass_late_warn_uninitialized : public gimple_opt_pass
2644 public:
2645 pass_late_warn_uninitialized (gcc::context *ctxt)
2646 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2649 /* opt_pass methods: */
2650 opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2651 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2652 virtual unsigned int execute (function *);
2654 }; // class pass_late_warn_uninitialized
2656 unsigned int
2657 pass_late_warn_uninitialized::execute (function *fun)
2659 basic_block bb;
2660 gphi_iterator gsi;
2661 vec<gphi *> worklist = vNULL;
2663 calculate_dominance_info (CDI_DOMINATORS);
2664 calculate_dominance_info (CDI_POST_DOMINATORS);
2665 /* Re-do the plain uninitialized variable check, as optimization may have
2666 straightened control flow. Do this first so that we don't accidentally
2667 get a "may be" warning when we'd have seen an "is" warning later. */
2668 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2670 timevar_push (TV_TREE_UNINIT);
2672 possibly_undefined_names = new hash_set<tree>;
2673 hash_set<gphi *> added_to_worklist;
2675 /* Initialize worklist */
2676 FOR_EACH_BB_FN (bb, fun)
2677 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2679 gphi *phi = gsi.phi ();
2680 size_t n, i;
2682 n = gimple_phi_num_args (phi);
2684 /* Don't look at virtual operands. */
2685 if (virtual_operand_p (gimple_phi_result (phi)))
2686 continue;
2688 for (i = 0; i < n; ++i)
2690 tree op = gimple_phi_arg_def (phi, i);
2691 if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op))
2693 worklist.safe_push (phi);
2694 added_to_worklist.add (phi);
2695 if (dump_file && (dump_flags & TDF_DETAILS))
2697 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2698 print_gimple_stmt (dump_file, phi, 0);
2700 break;
2705 while (worklist.length () != 0)
2707 gphi *cur_phi = 0;
2708 cur_phi = worklist.pop ();
2709 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
2712 worklist.release ();
2713 delete possibly_undefined_names;
2714 possibly_undefined_names = NULL;
2715 free_dominance_info (CDI_POST_DOMINATORS);
2716 timevar_pop (TV_TREE_UNINIT);
2717 return 0;
2720 } // anon namespace
2722 gimple_opt_pass *
2723 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2725 return new pass_late_warn_uninitialized (ctxt);
2728 static unsigned int
2729 execute_early_warn_uninitialized (void)
2731 /* Currently, this pass runs always but
2732 execute_late_warn_uninitialized only runs with optimization. With
2733 optimization we want to warn about possible uninitialized as late
2734 as possible, thus don't do it here. However, without
2735 optimization we need to warn here about "may be uninitialized". */
2736 calculate_dominance_info (CDI_POST_DOMINATORS);
2738 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2740 /* Post-dominator information can not be reliably updated. Free it
2741 after the use. */
2743 free_dominance_info (CDI_POST_DOMINATORS);
2744 return 0;
2747 namespace {
2749 const pass_data pass_data_early_warn_uninitialized =
2751 GIMPLE_PASS, /* type */
2752 "*early_warn_uninitialized", /* name */
2753 OPTGROUP_NONE, /* optinfo_flags */
2754 TV_TREE_UNINIT, /* tv_id */
2755 PROP_ssa, /* properties_required */
2756 0, /* properties_provided */
2757 0, /* properties_destroyed */
2758 0, /* todo_flags_start */
2759 0, /* todo_flags_finish */
2762 class pass_early_warn_uninitialized : public gimple_opt_pass
2764 public:
2765 pass_early_warn_uninitialized (gcc::context *ctxt)
2766 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
2769 /* opt_pass methods: */
2770 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2771 virtual unsigned int execute (function *)
2773 return execute_early_warn_uninitialized ();
2776 }; // class pass_early_warn_uninitialized
2778 } // anon namespace
2780 gimple_opt_pass *
2781 make_pass_early_warn_uninitialized (gcc::context *ctxt)
2783 return new pass_early_warn_uninitialized (ctxt);