* config/sparc/sparc.md (prefetch): New.
[official-gcc.git] / gcc / emit-rtl.c
blob4238b8c7762ca7c7647577d4d39ad0ad69d9cad3
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
60 /* Commonly used modes. */
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
71 static int label_num = 1;
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
77 static int last_label_num;
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
82 static int base_label_num;
84 /* Nonzero means do not generate NOTEs for source line numbers. */
86 static int no_line_numbers;
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these except perhaps the floating-point CONST_DOUBLEs
91 are unique; no other rtx-object will be equal to any of these. */
93 rtx global_rtl[GR_MAX];
95 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
99 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
101 rtx const_true_rtx;
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
108 /* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
119 should be used if it is being set, and frame_pointer_rtx otherwise. After
120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
122 same.
124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
126 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
146 static htab_t const_int_htab;
148 /* A hash table storing memory attribute structures. */
149 static htab_t mem_attrs_htab;
151 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
152 shortly thrown away. We use two mechanisms to prevent this waste:
154 For sizes up to 5 elements, we keep a SEQUENCE and its associated
155 rtvec for use by gen_sequence. One entry for each size is
156 sufficient because most cases are calls to gen_sequence followed by
157 immediately emitting the SEQUENCE. Reuse is safe since emitting a
158 sequence is destructive on the insn in it anyway and hence can't be
159 redone.
161 We do not bother to save this cached data over nested function calls.
162 Instead, we just reinitialize them. */
164 #define SEQUENCE_RESULT_SIZE 5
166 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
168 /* During RTL generation, we also keep a list of free INSN rtl codes. */
169 static rtx free_insn;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_linenum (cfun->emit->x_last_linenum)
175 #define last_filename (cfun->emit->x_last_filename)
176 #define first_label_num (cfun->emit->x_first_label_num)
178 static rtx make_jump_insn_raw PARAMS ((rtx));
179 static rtx make_call_insn_raw PARAMS ((rtx));
180 static rtx find_line_note PARAMS ((rtx));
181 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
182 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
183 int));
184 static void unshare_all_rtl_1 PARAMS ((rtx));
185 static void unshare_all_decls PARAMS ((tree));
186 static void reset_used_decls PARAMS ((tree));
187 static void mark_label_nuses PARAMS ((rtx));
188 static hashval_t const_int_htab_hash PARAMS ((const void *));
189 static int const_int_htab_eq PARAMS ((const void *,
190 const void *));
191 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
192 static int mem_attrs_htab_eq PARAMS ((const void *,
193 const void *));
194 static void mem_attrs_mark PARAMS ((const void *));
195 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
196 rtx, unsigned int,
197 enum machine_mode));
198 static tree component_ref_for_mem_expr PARAMS ((tree));
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
204 /* Returns a hash code for X (which is a really a CONST_INT). */
206 static hashval_t
207 const_int_htab_hash (x)
208 const void *x;
210 return (hashval_t) INTVAL ((const struct rtx_def *) x);
213 /* Returns non-zero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
217 static int
218 const_int_htab_eq (x, y)
219 const void *x;
220 const void *y;
222 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
225 /* Returns a hash code for X (which is a really a mem_attrs *). */
227 static hashval_t
228 mem_attrs_htab_hash (x)
229 const void *x;
231 mem_attrs *p = (mem_attrs *) x;
233 return (p->alias ^ (p->align * 1000)
234 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
235 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
236 ^ (size_t) p->expr);
239 /* Returns non-zero if the value represented by X (which is really a
240 mem_attrs *) is the same as that given by Y (which is also really a
241 mem_attrs *). */
243 static int
244 mem_attrs_htab_eq (x, y)
245 const void *x;
246 const void *y;
248 mem_attrs *p = (mem_attrs *) x;
249 mem_attrs *q = (mem_attrs *) y;
251 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
252 && p->size == q->size && p->align == q->align);
255 /* This routine is called when we determine that we need a mem_attrs entry.
256 It marks the associated decl and RTL as being used, if present. */
258 static void
259 mem_attrs_mark (x)
260 const void *x;
262 mem_attrs *p = (mem_attrs *) x;
264 if (p->expr)
265 ggc_mark_tree (p->expr);
267 if (p->offset)
268 ggc_mark_rtx (p->offset);
270 if (p->size)
271 ggc_mark_rtx (p->size);
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
278 static mem_attrs *
279 get_mem_attrs (alias, expr, offset, size, align, mode)
280 HOST_WIDE_INT alias;
281 tree expr;
282 rtx offset;
283 rtx size;
284 unsigned int align;
285 enum machine_mode mode;
287 mem_attrs attrs;
288 void **slot;
290 /* If everything is the default, we can just return zero. */
291 if (alias == 0 && expr == 0 && offset == 0
292 && (size == 0
293 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
294 && (align == BITS_PER_UNIT
295 || (mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
296 return 0;
298 attrs.alias = alias;
299 attrs.expr = expr;
300 attrs.offset = offset;
301 attrs.size = size;
302 attrs.align = align;
304 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305 if (*slot == 0)
307 *slot = ggc_alloc (sizeof (mem_attrs));
308 memcpy (*slot, &attrs, sizeof (mem_attrs));
311 return *slot;
314 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
315 don't attempt to share with the various global pieces of rtl (such as
316 frame_pointer_rtx). */
319 gen_raw_REG (mode, regno)
320 enum machine_mode mode;
321 int regno;
323 rtx x = gen_rtx_raw_REG (mode, regno);
324 ORIGINAL_REGNO (x) = regno;
325 return x;
328 /* There are some RTL codes that require special attention; the generation
329 functions do the raw handling. If you add to this list, modify
330 special_rtx in gengenrtl.c as well. */
333 gen_rtx_CONST_INT (mode, arg)
334 enum machine_mode mode ATTRIBUTE_UNUSED;
335 HOST_WIDE_INT arg;
337 void **slot;
339 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
340 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
342 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
343 if (const_true_rtx && arg == STORE_FLAG_VALUE)
344 return const_true_rtx;
345 #endif
347 /* Look up the CONST_INT in the hash table. */
348 slot = htab_find_slot_with_hash (const_int_htab, &arg,
349 (hashval_t) arg, INSERT);
350 if (*slot == 0)
351 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
353 return (rtx) *slot;
356 /* CONST_DOUBLEs needs special handling because their length is known
357 only at run-time. */
360 gen_rtx_CONST_DOUBLE (mode, arg0, arg1)
361 enum machine_mode mode;
362 HOST_WIDE_INT arg0, arg1;
364 rtx r = rtx_alloc (CONST_DOUBLE);
365 int i;
367 PUT_MODE (r, mode);
368 X0EXP (r, 0) = NULL_RTX;
369 XWINT (r, 1) = arg0;
370 XWINT (r, 2) = arg1;
372 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 2; --i)
373 XWINT (r, i) = 0;
375 return r;
379 gen_rtx_REG (mode, regno)
380 enum machine_mode mode;
381 int regno;
383 /* In case the MD file explicitly references the frame pointer, have
384 all such references point to the same frame pointer. This is
385 used during frame pointer elimination to distinguish the explicit
386 references to these registers from pseudos that happened to be
387 assigned to them.
389 If we have eliminated the frame pointer or arg pointer, we will
390 be using it as a normal register, for example as a spill
391 register. In such cases, we might be accessing it in a mode that
392 is not Pmode and therefore cannot use the pre-allocated rtx.
394 Also don't do this when we are making new REGs in reload, since
395 we don't want to get confused with the real pointers. */
397 if (mode == Pmode && !reload_in_progress)
399 if (regno == FRAME_POINTER_REGNUM)
400 return frame_pointer_rtx;
401 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
402 if (regno == HARD_FRAME_POINTER_REGNUM)
403 return hard_frame_pointer_rtx;
404 #endif
405 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
406 if (regno == ARG_POINTER_REGNUM)
407 return arg_pointer_rtx;
408 #endif
409 #ifdef RETURN_ADDRESS_POINTER_REGNUM
410 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
411 return return_address_pointer_rtx;
412 #endif
413 if (regno == STACK_POINTER_REGNUM)
414 return stack_pointer_rtx;
417 return gen_raw_REG (mode, regno);
421 gen_rtx_MEM (mode, addr)
422 enum machine_mode mode;
423 rtx addr;
425 rtx rt = gen_rtx_raw_MEM (mode, addr);
427 /* This field is not cleared by the mere allocation of the rtx, so
428 we clear it here. */
429 MEM_ATTRS (rt) = 0;
431 return rt;
435 gen_rtx_SUBREG (mode, reg, offset)
436 enum machine_mode mode;
437 rtx reg;
438 int offset;
440 /* This is the most common failure type.
441 Catch it early so we can see who does it. */
442 if ((offset % GET_MODE_SIZE (mode)) != 0)
443 abort ();
445 /* This check isn't usable right now because combine will
446 throw arbitrary crap like a CALL into a SUBREG in
447 gen_lowpart_for_combine so we must just eat it. */
448 #if 0
449 /* Check for this too. */
450 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
451 abort ();
452 #endif
453 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
456 /* Generate a SUBREG representing the least-significant part of REG if MODE
457 is smaller than mode of REG, otherwise paradoxical SUBREG. */
460 gen_lowpart_SUBREG (mode, reg)
461 enum machine_mode mode;
462 rtx reg;
464 enum machine_mode inmode;
466 inmode = GET_MODE (reg);
467 if (inmode == VOIDmode)
468 inmode = mode;
469 return gen_rtx_SUBREG (mode, reg,
470 subreg_lowpart_offset (mode, inmode));
473 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
475 ** This routine generates an RTX of the size specified by
476 ** <code>, which is an RTX code. The RTX structure is initialized
477 ** from the arguments <element1> through <elementn>, which are
478 ** interpreted according to the specific RTX type's format. The
479 ** special machine mode associated with the rtx (if any) is specified
480 ** in <mode>.
482 ** gen_rtx can be invoked in a way which resembles the lisp-like
483 ** rtx it will generate. For example, the following rtx structure:
485 ** (plus:QI (mem:QI (reg:SI 1))
486 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
488 ** ...would be generated by the following C code:
490 ** gen_rtx (PLUS, QImode,
491 ** gen_rtx (MEM, QImode,
492 ** gen_rtx (REG, SImode, 1)),
493 ** gen_rtx (MEM, QImode,
494 ** gen_rtx (PLUS, SImode,
495 ** gen_rtx (REG, SImode, 2),
496 ** gen_rtx (REG, SImode, 3)))),
499 /*VARARGS2*/
501 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
503 int i; /* Array indices... */
504 const char *fmt; /* Current rtx's format... */
505 rtx rt_val; /* RTX to return to caller... */
507 VA_OPEN (p, mode);
508 VA_FIXEDARG (p, enum rtx_code, code);
509 VA_FIXEDARG (p, enum machine_mode, mode);
511 switch (code)
513 case CONST_INT:
514 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
515 break;
517 case CONST_DOUBLE:
519 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
520 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
522 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1);
524 break;
526 case REG:
527 rt_val = gen_rtx_REG (mode, va_arg (p, int));
528 break;
530 case MEM:
531 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
532 break;
534 default:
535 rt_val = rtx_alloc (code); /* Allocate the storage space. */
536 rt_val->mode = mode; /* Store the machine mode... */
538 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
539 for (i = 0; i < GET_RTX_LENGTH (code); i++)
541 switch (*fmt++)
543 case '0': /* Unused field. */
544 break;
546 case 'i': /* An integer? */
547 XINT (rt_val, i) = va_arg (p, int);
548 break;
550 case 'w': /* A wide integer? */
551 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
552 break;
554 case 's': /* A string? */
555 XSTR (rt_val, i) = va_arg (p, char *);
556 break;
558 case 'e': /* An expression? */
559 case 'u': /* An insn? Same except when printing. */
560 XEXP (rt_val, i) = va_arg (p, rtx);
561 break;
563 case 'E': /* An RTX vector? */
564 XVEC (rt_val, i) = va_arg (p, rtvec);
565 break;
567 case 'b': /* A bitmap? */
568 XBITMAP (rt_val, i) = va_arg (p, bitmap);
569 break;
571 case 't': /* A tree? */
572 XTREE (rt_val, i) = va_arg (p, tree);
573 break;
575 default:
576 abort ();
579 break;
582 VA_CLOSE (p);
583 return rt_val;
586 /* gen_rtvec (n, [rt1, ..., rtn])
588 ** This routine creates an rtvec and stores within it the
589 ** pointers to rtx's which are its arguments.
592 /*VARARGS1*/
593 rtvec
594 gen_rtvec VPARAMS ((int n, ...))
596 int i, save_n;
597 rtx *vector;
599 VA_OPEN (p, n);
600 VA_FIXEDARG (p, int, n);
602 if (n == 0)
603 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
605 vector = (rtx *) alloca (n * sizeof (rtx));
607 for (i = 0; i < n; i++)
608 vector[i] = va_arg (p, rtx);
610 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
611 save_n = n;
612 VA_CLOSE (p);
614 return gen_rtvec_v (save_n, vector);
617 rtvec
618 gen_rtvec_v (n, argp)
619 int n;
620 rtx *argp;
622 int i;
623 rtvec rt_val;
625 if (n == 0)
626 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
628 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
630 for (i = 0; i < n; i++)
631 rt_val->elem[i] = *argp++;
633 return rt_val;
636 /* Generate a REG rtx for a new pseudo register of mode MODE.
637 This pseudo is assigned the next sequential register number. */
640 gen_reg_rtx (mode)
641 enum machine_mode mode;
643 struct function *f = cfun;
644 rtx val;
646 /* Don't let anything called after initial flow analysis create new
647 registers. */
648 if (no_new_pseudos)
649 abort ();
651 if (generating_concat_p
652 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
653 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
655 /* For complex modes, don't make a single pseudo.
656 Instead, make a CONCAT of two pseudos.
657 This allows noncontiguous allocation of the real and imaginary parts,
658 which makes much better code. Besides, allocating DCmode
659 pseudos overstrains reload on some machines like the 386. */
660 rtx realpart, imagpart;
661 int size = GET_MODE_UNIT_SIZE (mode);
662 enum machine_mode partmode
663 = mode_for_size (size * BITS_PER_UNIT,
664 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
665 ? MODE_FLOAT : MODE_INT),
668 realpart = gen_reg_rtx (partmode);
669 imagpart = gen_reg_rtx (partmode);
670 return gen_rtx_CONCAT (mode, realpart, imagpart);
673 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
674 enough to have an element for this pseudo reg number. */
676 if (reg_rtx_no == f->emit->regno_pointer_align_length)
678 int old_size = f->emit->regno_pointer_align_length;
679 char *new;
680 rtx *new1;
681 tree *new2;
683 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
684 memset (new + old_size, 0, old_size);
685 f->emit->regno_pointer_align = (unsigned char *) new;
687 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
688 old_size * 2 * sizeof (rtx));
689 memset (new1 + old_size, 0, old_size * sizeof (rtx));
690 regno_reg_rtx = new1;
692 new2 = (tree *) xrealloc (f->emit->regno_decl,
693 old_size * 2 * sizeof (tree));
694 memset (new2 + old_size, 0, old_size * sizeof (tree));
695 f->emit->regno_decl = new2;
697 f->emit->regno_pointer_align_length = old_size * 2;
700 val = gen_raw_REG (mode, reg_rtx_no);
701 regno_reg_rtx[reg_rtx_no++] = val;
702 return val;
705 /* Identify REG (which may be a CONCAT) as a user register. */
707 void
708 mark_user_reg (reg)
709 rtx reg;
711 if (GET_CODE (reg) == CONCAT)
713 REG_USERVAR_P (XEXP (reg, 0)) = 1;
714 REG_USERVAR_P (XEXP (reg, 1)) = 1;
716 else if (GET_CODE (reg) == REG)
717 REG_USERVAR_P (reg) = 1;
718 else
719 abort ();
722 /* Identify REG as a probable pointer register and show its alignment
723 as ALIGN, if nonzero. */
725 void
726 mark_reg_pointer (reg, align)
727 rtx reg;
728 int align;
730 if (! REG_POINTER (reg))
732 REG_POINTER (reg) = 1;
734 if (align)
735 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
737 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
738 /* We can no-longer be sure just how aligned this pointer is */
739 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
742 /* Return 1 plus largest pseudo reg number used in the current function. */
745 max_reg_num ()
747 return reg_rtx_no;
750 /* Return 1 + the largest label number used so far in the current function. */
753 max_label_num ()
755 if (last_label_num && label_num == base_label_num)
756 return last_label_num;
757 return label_num;
760 /* Return first label number used in this function (if any were used). */
763 get_first_label_num ()
765 return first_label_num;
768 /* Return the final regno of X, which is a SUBREG of a hard
769 register. */
771 subreg_hard_regno (x, check_mode)
772 rtx x;
773 int check_mode;
775 enum machine_mode mode = GET_MODE (x);
776 unsigned int byte_offset, base_regno, final_regno;
777 rtx reg = SUBREG_REG (x);
779 /* This is where we attempt to catch illegal subregs
780 created by the compiler. */
781 if (GET_CODE (x) != SUBREG
782 || GET_CODE (reg) != REG)
783 abort ();
784 base_regno = REGNO (reg);
785 if (base_regno >= FIRST_PSEUDO_REGISTER)
786 abort ();
787 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
788 abort ();
790 /* Catch non-congruent offsets too. */
791 byte_offset = SUBREG_BYTE (x);
792 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
793 abort ();
795 final_regno = subreg_regno (x);
797 return final_regno;
800 /* Return a value representing some low-order bits of X, where the number
801 of low-order bits is given by MODE. Note that no conversion is done
802 between floating-point and fixed-point values, rather, the bit
803 representation is returned.
805 This function handles the cases in common between gen_lowpart, below,
806 and two variants in cse.c and combine.c. These are the cases that can
807 be safely handled at all points in the compilation.
809 If this is not a case we can handle, return 0. */
812 gen_lowpart_common (mode, x)
813 enum machine_mode mode;
814 rtx x;
816 int msize = GET_MODE_SIZE (mode);
817 int xsize = GET_MODE_SIZE (GET_MODE (x));
818 int offset = 0;
820 if (GET_MODE (x) == mode)
821 return x;
823 /* MODE must occupy no more words than the mode of X. */
824 if (GET_MODE (x) != VOIDmode
825 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
826 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
827 return 0;
829 offset = subreg_lowpart_offset (mode, GET_MODE (x));
831 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
832 && (GET_MODE_CLASS (mode) == MODE_INT
833 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
835 /* If we are getting the low-order part of something that has been
836 sign- or zero-extended, we can either just use the object being
837 extended or make a narrower extension. If we want an even smaller
838 piece than the size of the object being extended, call ourselves
839 recursively.
841 This case is used mostly by combine and cse. */
843 if (GET_MODE (XEXP (x, 0)) == mode)
844 return XEXP (x, 0);
845 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
846 return gen_lowpart_common (mode, XEXP (x, 0));
847 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
848 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
850 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
851 || GET_CODE (x) == CONCAT)
852 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
853 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
854 from the low-order part of the constant. */
855 else if ((GET_MODE_CLASS (mode) == MODE_INT
856 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
857 && GET_MODE (x) == VOIDmode
858 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
860 /* If MODE is twice the host word size, X is already the desired
861 representation. Otherwise, if MODE is wider than a word, we can't
862 do this. If MODE is exactly a word, return just one CONST_INT. */
864 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
865 return x;
866 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
867 return 0;
868 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
869 return (GET_CODE (x) == CONST_INT ? x
870 : GEN_INT (CONST_DOUBLE_LOW (x)));
871 else
873 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
874 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
875 : CONST_DOUBLE_LOW (x));
877 /* Sign extend to HOST_WIDE_INT. */
878 val = trunc_int_for_mode (val, mode);
880 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
881 : GEN_INT (val));
885 #ifndef REAL_ARITHMETIC
886 /* If X is an integral constant but we want it in floating-point, it
887 must be the case that we have a union of an integer and a floating-point
888 value. If the machine-parameters allow it, simulate that union here
889 and return the result. The two-word and single-word cases are
890 different. */
892 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
893 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
894 || flag_pretend_float)
895 && GET_MODE_CLASS (mode) == MODE_FLOAT
896 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
897 && GET_CODE (x) == CONST_INT
898 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
900 union {HOST_WIDE_INT i; float d; } u;
902 u.i = INTVAL (x);
903 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
905 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
907 || flag_pretend_float)
908 && GET_MODE_CLASS (mode) == MODE_FLOAT
909 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
910 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
911 && GET_MODE (x) == VOIDmode
912 && (sizeof (double) * HOST_BITS_PER_CHAR
913 == 2 * HOST_BITS_PER_WIDE_INT))
915 union {HOST_WIDE_INT i[2]; double d; } u;
916 HOST_WIDE_INT low, high;
918 if (GET_CODE (x) == CONST_INT)
919 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
920 else
921 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
923 #ifdef HOST_WORDS_BIG_ENDIAN
924 u.i[0] = high, u.i[1] = low;
925 #else
926 u.i[0] = low, u.i[1] = high;
927 #endif
929 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
932 /* Similarly, if this is converting a floating-point value into a
933 single-word integer. Only do this is the host and target parameters are
934 compatible. */
936 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
937 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
938 || flag_pretend_float)
939 && (GET_MODE_CLASS (mode) == MODE_INT
940 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
941 && GET_CODE (x) == CONST_DOUBLE
942 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
943 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
944 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
946 /* Similarly, if this is converting a floating-point value into a
947 two-word integer, we can do this one word at a time and make an
948 integer. Only do this is the host and target parameters are
949 compatible. */
951 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
952 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
953 || flag_pretend_float)
954 && (GET_MODE_CLASS (mode) == MODE_INT
955 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
956 && GET_CODE (x) == CONST_DOUBLE
957 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
958 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
960 rtx lowpart, highpart;
962 lowpart = constant_subword (x,
963 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
964 GET_MODE (x));
965 highpart = constant_subword (x,
966 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
967 GET_MODE (x));
968 if (lowpart && GET_CODE (lowpart) == CONST_INT
969 && highpart && GET_CODE (highpart) == CONST_INT)
970 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
972 #else /* ifndef REAL_ARITHMETIC */
974 /* When we have a FP emulator, we can handle all conversions between
975 FP and integer operands. This simplifies reload because it
976 doesn't have to deal with constructs like (subreg:DI
977 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
978 /* Single-precision floats are always 32-bits and double-precision
979 floats are always 64-bits. */
981 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
982 && GET_MODE_BITSIZE (mode) == 32
983 && GET_CODE (x) == CONST_INT)
985 REAL_VALUE_TYPE r;
986 HOST_WIDE_INT i;
988 i = INTVAL (x);
989 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
990 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
992 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
993 && GET_MODE_BITSIZE (mode) == 64
994 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
995 && GET_MODE (x) == VOIDmode)
997 REAL_VALUE_TYPE r;
998 HOST_WIDE_INT i[2];
999 HOST_WIDE_INT low, high;
1001 if (GET_CODE (x) == CONST_INT)
1003 low = INTVAL (x);
1004 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1006 else
1008 low = CONST_DOUBLE_LOW (x);
1009 high = CONST_DOUBLE_HIGH (x);
1012 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1013 target machine. */
1014 if (WORDS_BIG_ENDIAN)
1015 i[0] = high, i[1] = low;
1016 else
1017 i[0] = low, i[1] = high;
1019 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1020 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1022 else if ((GET_MODE_CLASS (mode) == MODE_INT
1023 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1024 && GET_CODE (x) == CONST_DOUBLE
1025 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1027 REAL_VALUE_TYPE r;
1028 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1029 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1031 /* Convert 'r' into an array of four 32-bit words in target word
1032 order. */
1033 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1034 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1036 case 32:
1037 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1038 i[1] = 0;
1039 i[2] = 0;
1040 i[3 - 3 * endian] = 0;
1041 break;
1042 case 64:
1043 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1044 i[2 - 2 * endian] = 0;
1045 i[3 - 2 * endian] = 0;
1046 break;
1047 case 96:
1048 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1049 i[3 - 3 * endian] = 0;
1050 break;
1051 case 128:
1052 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1053 break;
1054 default:
1055 abort ();
1057 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1058 and return it. */
1059 #if HOST_BITS_PER_WIDE_INT == 32
1060 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1061 #else
1062 if (HOST_BITS_PER_WIDE_INT != 64)
1063 abort ();
1065 return immed_double_const ((((unsigned long) i[3 * endian])
1066 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1067 (((unsigned long) i[2 - endian])
1068 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1069 mode);
1070 #endif
1072 #endif /* ifndef REAL_ARITHMETIC */
1074 /* Otherwise, we can't do this. */
1075 return 0;
1078 /* Return the real part (which has mode MODE) of a complex value X.
1079 This always comes at the low address in memory. */
1082 gen_realpart (mode, x)
1083 enum machine_mode mode;
1084 rtx x;
1086 if (WORDS_BIG_ENDIAN
1087 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1088 && REG_P (x)
1089 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1090 internal_error
1091 ("can't access real part of complex value in hard register");
1092 else if (WORDS_BIG_ENDIAN)
1093 return gen_highpart (mode, x);
1094 else
1095 return gen_lowpart (mode, x);
1098 /* Return the imaginary part (which has mode MODE) of a complex value X.
1099 This always comes at the high address in memory. */
1102 gen_imagpart (mode, x)
1103 enum machine_mode mode;
1104 rtx x;
1106 if (WORDS_BIG_ENDIAN)
1107 return gen_lowpart (mode, x);
1108 else if (! WORDS_BIG_ENDIAN
1109 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1110 && REG_P (x)
1111 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1112 internal_error
1113 ("can't access imaginary part of complex value in hard register");
1114 else
1115 return gen_highpart (mode, x);
1118 /* Return 1 iff X, assumed to be a SUBREG,
1119 refers to the real part of the complex value in its containing reg.
1120 Complex values are always stored with the real part in the first word,
1121 regardless of WORDS_BIG_ENDIAN. */
1124 subreg_realpart_p (x)
1125 rtx x;
1127 if (GET_CODE (x) != SUBREG)
1128 abort ();
1130 return ((unsigned int) SUBREG_BYTE (x)
1131 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1134 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1135 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1136 least-significant part of X.
1137 MODE specifies how big a part of X to return;
1138 it usually should not be larger than a word.
1139 If X is a MEM whose address is a QUEUED, the value may be so also. */
1142 gen_lowpart (mode, x)
1143 enum machine_mode mode;
1144 rtx x;
1146 rtx result = gen_lowpart_common (mode, x);
1148 if (result)
1149 return result;
1150 else if (GET_CODE (x) == REG)
1152 /* Must be a hard reg that's not valid in MODE. */
1153 result = gen_lowpart_common (mode, copy_to_reg (x));
1154 if (result == 0)
1155 abort ();
1156 return result;
1158 else if (GET_CODE (x) == MEM)
1160 /* The only additional case we can do is MEM. */
1161 int offset = 0;
1162 if (WORDS_BIG_ENDIAN)
1163 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1166 if (BYTES_BIG_ENDIAN)
1167 /* Adjust the address so that the address-after-the-data
1168 is unchanged. */
1169 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1170 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1172 return adjust_address (x, mode, offset);
1174 else if (GET_CODE (x) == ADDRESSOF)
1175 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1176 else
1177 abort ();
1180 /* Like `gen_lowpart', but refer to the most significant part.
1181 This is used to access the imaginary part of a complex number. */
1184 gen_highpart (mode, x)
1185 enum machine_mode mode;
1186 rtx x;
1188 unsigned int msize = GET_MODE_SIZE (mode);
1189 rtx result;
1191 /* This case loses if X is a subreg. To catch bugs early,
1192 complain if an invalid MODE is used even in other cases. */
1193 if (msize > UNITS_PER_WORD
1194 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1195 abort ();
1197 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1198 subreg_highpart_offset (mode, GET_MODE (x)));
1200 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1201 the target if we have a MEM. gen_highpart must return a valid operand,
1202 emitting code if necessary to do so. */
1203 if (GET_CODE (result) == MEM)
1204 result = validize_mem (result);
1206 if (!result)
1207 abort ();
1208 return result;
1211 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1212 be VOIDmode constant. */
1214 gen_highpart_mode (outermode, innermode, exp)
1215 enum machine_mode outermode, innermode;
1216 rtx exp;
1218 if (GET_MODE (exp) != VOIDmode)
1220 if (GET_MODE (exp) != innermode)
1221 abort ();
1222 return gen_highpart (outermode, exp);
1224 return simplify_gen_subreg (outermode, exp, innermode,
1225 subreg_highpart_offset (outermode, innermode));
1227 /* Return offset in bytes to get OUTERMODE low part
1228 of the value in mode INNERMODE stored in memory in target format. */
1230 unsigned int
1231 subreg_lowpart_offset (outermode, innermode)
1232 enum machine_mode outermode, innermode;
1234 unsigned int offset = 0;
1235 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1237 if (difference > 0)
1239 if (WORDS_BIG_ENDIAN)
1240 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1241 if (BYTES_BIG_ENDIAN)
1242 offset += difference % UNITS_PER_WORD;
1245 return offset;
1248 /* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1250 unsigned int
1251 subreg_highpart_offset (outermode, innermode)
1252 enum machine_mode outermode, innermode;
1254 unsigned int offset = 0;
1255 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1258 abort ();
1260 if (difference > 0)
1262 if (! WORDS_BIG_ENDIAN)
1263 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1264 if (! BYTES_BIG_ENDIAN)
1265 offset += difference % UNITS_PER_WORD;
1268 return offset;
1271 /* Return 1 iff X, assumed to be a SUBREG,
1272 refers to the least significant part of its containing reg.
1273 If X is not a SUBREG, always return 1 (it is its own low part!). */
1276 subreg_lowpart_p (x)
1277 rtx x;
1279 if (GET_CODE (x) != SUBREG)
1280 return 1;
1281 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1282 return 0;
1284 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1285 == SUBREG_BYTE (x));
1289 /* Helper routine for all the constant cases of operand_subword.
1290 Some places invoke this directly. */
1293 constant_subword (op, offset, mode)
1294 rtx op;
1295 int offset;
1296 enum machine_mode mode;
1298 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1299 HOST_WIDE_INT val;
1301 /* If OP is already an integer word, return it. */
1302 if (GET_MODE_CLASS (mode) == MODE_INT
1303 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1304 return op;
1306 #ifdef REAL_ARITHMETIC
1307 /* The output is some bits, the width of the target machine's word.
1308 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1309 host can't. */
1310 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1311 && GET_MODE_CLASS (mode) == MODE_FLOAT
1312 && GET_MODE_BITSIZE (mode) == 64
1313 && GET_CODE (op) == CONST_DOUBLE)
1315 long k[2];
1316 REAL_VALUE_TYPE rv;
1318 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1319 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1321 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1322 which the words are written depends on the word endianness.
1323 ??? This is a potential portability problem and should
1324 be fixed at some point.
1326 We must exercise caution with the sign bit. By definition there
1327 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1328 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1329 So we explicitly mask and sign-extend as necessary. */
1330 if (BITS_PER_WORD == 32)
1332 val = k[offset];
1333 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1334 return GEN_INT (val);
1336 #if HOST_BITS_PER_WIDE_INT >= 64
1337 else if (BITS_PER_WORD >= 64 && offset == 0)
1339 val = k[! WORDS_BIG_ENDIAN];
1340 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1341 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1342 return GEN_INT (val);
1344 #endif
1345 else if (BITS_PER_WORD == 16)
1347 val = k[offset >> 1];
1348 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1349 val >>= 16;
1350 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1351 return GEN_INT (val);
1353 else
1354 abort ();
1356 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1357 && GET_MODE_CLASS (mode) == MODE_FLOAT
1358 && GET_MODE_BITSIZE (mode) > 64
1359 && GET_CODE (op) == CONST_DOUBLE)
1361 long k[4];
1362 REAL_VALUE_TYPE rv;
1364 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1365 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1367 if (BITS_PER_WORD == 32)
1369 val = k[offset];
1370 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1371 return GEN_INT (val);
1373 #if HOST_BITS_PER_WIDE_INT >= 64
1374 else if (BITS_PER_WORD >= 64 && offset <= 1)
1376 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1377 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1378 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1379 return GEN_INT (val);
1381 #endif
1382 else
1383 abort ();
1385 #else /* no REAL_ARITHMETIC */
1386 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1387 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1388 || flag_pretend_float)
1389 && GET_MODE_CLASS (mode) == MODE_FLOAT
1390 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1391 && GET_CODE (op) == CONST_DOUBLE)
1393 /* The constant is stored in the host's word-ordering,
1394 but we want to access it in the target's word-ordering. Some
1395 compilers don't like a conditional inside macro args, so we have two
1396 copies of the return. */
1397 #ifdef HOST_WORDS_BIG_ENDIAN
1398 return GEN_INT (offset == WORDS_BIG_ENDIAN
1399 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1400 #else
1401 return GEN_INT (offset != WORDS_BIG_ENDIAN
1402 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1403 #endif
1405 #endif /* no REAL_ARITHMETIC */
1407 /* Single word float is a little harder, since single- and double-word
1408 values often do not have the same high-order bits. We have already
1409 verified that we want the only defined word of the single-word value. */
1410 #ifdef REAL_ARITHMETIC
1411 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1412 && GET_MODE_BITSIZE (mode) == 32
1413 && GET_CODE (op) == CONST_DOUBLE)
1415 long l;
1416 REAL_VALUE_TYPE rv;
1418 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1419 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1421 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1422 val = l;
1423 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1425 if (BITS_PER_WORD == 16)
1427 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1428 val >>= 16;
1429 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1432 return GEN_INT (val);
1434 #else
1435 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1436 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1437 || flag_pretend_float)
1438 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1439 && GET_MODE_CLASS (mode) == MODE_FLOAT
1440 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1441 && GET_CODE (op) == CONST_DOUBLE)
1443 double d;
1444 union {float f; HOST_WIDE_INT i; } u;
1446 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1448 u.f = d;
1449 return GEN_INT (u.i);
1451 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1452 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1453 || flag_pretend_float)
1454 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1455 && GET_MODE_CLASS (mode) == MODE_FLOAT
1456 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1457 && GET_CODE (op) == CONST_DOUBLE)
1459 double d;
1460 union {double d; HOST_WIDE_INT i; } u;
1462 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1464 u.d = d;
1465 return GEN_INT (u.i);
1467 #endif /* no REAL_ARITHMETIC */
1469 /* The only remaining cases that we can handle are integers.
1470 Convert to proper endianness now since these cases need it.
1471 At this point, offset == 0 means the low-order word.
1473 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1474 in general. However, if OP is (const_int 0), we can just return
1475 it for any word. */
1477 if (op == const0_rtx)
1478 return op;
1480 if (GET_MODE_CLASS (mode) != MODE_INT
1481 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1482 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1483 return 0;
1485 if (WORDS_BIG_ENDIAN)
1486 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1488 /* Find out which word on the host machine this value is in and get
1489 it from the constant. */
1490 val = (offset / size_ratio == 0
1491 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1492 : (GET_CODE (op) == CONST_INT
1493 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1495 /* Get the value we want into the low bits of val. */
1496 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1497 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1499 val = trunc_int_for_mode (val, word_mode);
1501 return GEN_INT (val);
1504 /* Return subword OFFSET of operand OP.
1505 The word number, OFFSET, is interpreted as the word number starting
1506 at the low-order address. OFFSET 0 is the low-order word if not
1507 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1509 If we cannot extract the required word, we return zero. Otherwise,
1510 an rtx corresponding to the requested word will be returned.
1512 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1513 reload has completed, a valid address will always be returned. After
1514 reload, if a valid address cannot be returned, we return zero.
1516 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1517 it is the responsibility of the caller.
1519 MODE is the mode of OP in case it is a CONST_INT.
1521 ??? This is still rather broken for some cases. The problem for the
1522 moment is that all callers of this thing provide no 'goal mode' to
1523 tell us to work with. This exists because all callers were written
1524 in a word based SUBREG world.
1525 Now use of this function can be deprecated by simplify_subreg in most
1526 cases.
1530 operand_subword (op, offset, validate_address, mode)
1531 rtx op;
1532 unsigned int offset;
1533 int validate_address;
1534 enum machine_mode mode;
1536 if (mode == VOIDmode)
1537 mode = GET_MODE (op);
1539 if (mode == VOIDmode)
1540 abort ();
1542 /* If OP is narrower than a word, fail. */
1543 if (mode != BLKmode
1544 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1545 return 0;
1547 /* If we want a word outside OP, return zero. */
1548 if (mode != BLKmode
1549 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1550 return const0_rtx;
1552 /* Form a new MEM at the requested address. */
1553 if (GET_CODE (op) == MEM)
1555 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1557 if (! validate_address)
1558 return new;
1560 else if (reload_completed)
1562 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1563 return 0;
1565 else
1566 return replace_equiv_address (new, XEXP (new, 0));
1569 /* Rest can be handled by simplify_subreg. */
1570 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1573 /* Similar to `operand_subword', but never return 0. If we can't extract
1574 the required subword, put OP into a register and try again. If that fails,
1575 abort. We always validate the address in this case.
1577 MODE is the mode of OP, in case it is CONST_INT. */
1580 operand_subword_force (op, offset, mode)
1581 rtx op;
1582 unsigned int offset;
1583 enum machine_mode mode;
1585 rtx result = operand_subword (op, offset, 1, mode);
1587 if (result)
1588 return result;
1590 if (mode != BLKmode && mode != VOIDmode)
1592 /* If this is a register which can not be accessed by words, copy it
1593 to a pseudo register. */
1594 if (GET_CODE (op) == REG)
1595 op = copy_to_reg (op);
1596 else
1597 op = force_reg (mode, op);
1600 result = operand_subword (op, offset, 1, mode);
1601 if (result == 0)
1602 abort ();
1604 return result;
1607 /* Given a compare instruction, swap the operands.
1608 A test instruction is changed into a compare of 0 against the operand. */
1610 void
1611 reverse_comparison (insn)
1612 rtx insn;
1614 rtx body = PATTERN (insn);
1615 rtx comp;
1617 if (GET_CODE (body) == SET)
1618 comp = SET_SRC (body);
1619 else
1620 comp = SET_SRC (XVECEXP (body, 0, 0));
1622 if (GET_CODE (comp) == COMPARE)
1624 rtx op0 = XEXP (comp, 0);
1625 rtx op1 = XEXP (comp, 1);
1626 XEXP (comp, 0) = op1;
1627 XEXP (comp, 1) = op0;
1629 else
1631 rtx new = gen_rtx_COMPARE (VOIDmode,
1632 CONST0_RTX (GET_MODE (comp)), comp);
1633 if (GET_CODE (body) == SET)
1634 SET_SRC (body) = new;
1635 else
1636 SET_SRC (XVECEXP (body, 0, 0)) = new;
1640 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1641 or (2) a component ref of something variable. Represent the later with
1642 a NULL expression. */
1644 static tree
1645 component_ref_for_mem_expr (ref)
1646 tree ref;
1648 tree inner = TREE_OPERAND (ref, 0);
1650 if (TREE_CODE (inner) == COMPONENT_REF)
1651 inner = component_ref_for_mem_expr (inner);
1652 else
1654 tree placeholder_ptr = 0;
1656 /* Now remove any conversions: they don't change what the underlying
1657 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1658 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1659 || TREE_CODE (inner) == NON_LVALUE_EXPR
1660 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1661 || TREE_CODE (inner) == SAVE_EXPR
1662 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1663 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1664 inner = find_placeholder (inner, &placeholder_ptr);
1665 else
1666 inner = TREE_OPERAND (inner, 0);
1668 if (! DECL_P (inner))
1669 inner = NULL_TREE;
1672 if (inner == TREE_OPERAND (ref, 0))
1673 return ref;
1674 else
1675 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1676 TREE_OPERAND (ref, 1));
1679 /* Given REF, a MEM, and T, either the type of X or the expression
1680 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1681 if we are making a new object of this type. */
1683 void
1684 set_mem_attributes (ref, t, objectp)
1685 rtx ref;
1686 tree t;
1687 int objectp;
1689 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1690 tree expr = MEM_EXPR (ref);
1691 rtx offset = MEM_OFFSET (ref);
1692 rtx size = MEM_SIZE (ref);
1693 unsigned int align = MEM_ALIGN (ref);
1694 tree type;
1696 /* It can happen that type_for_mode was given a mode for which there
1697 is no language-level type. In which case it returns NULL, which
1698 we can see here. */
1699 if (t == NULL_TREE)
1700 return;
1702 type = TYPE_P (t) ? t : TREE_TYPE (t);
1704 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1705 wrong answer, as it assumes that DECL_RTL already has the right alias
1706 info. Callers should not set DECL_RTL until after the call to
1707 set_mem_attributes. */
1708 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1709 abort ();
1711 /* Get the alias set from the expression or type (perhaps using a
1712 front-end routine) and use it. */
1713 alias = get_alias_set (t);
1715 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1716 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1717 RTX_UNCHANGING_P (ref)
1718 |= ((lang_hooks.honor_readonly
1719 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1720 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1722 /* If we are making an object of this type, or if this is a DECL, we know
1723 that it is a scalar if the type is not an aggregate. */
1724 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1725 MEM_SCALAR_P (ref) = 1;
1727 /* We can set the alignment from the type if we are making an object,
1728 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1729 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1730 align = MAX (align, TYPE_ALIGN (type));
1732 /* If the size is known, we can set that. */
1733 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1734 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1736 /* If T is not a type, we may be able to deduce some more information about
1737 the expression. */
1738 if (! TYPE_P (t))
1740 maybe_set_unchanging (ref, t);
1741 if (TREE_THIS_VOLATILE (t))
1742 MEM_VOLATILE_P (ref) = 1;
1744 /* Now remove any conversions: they don't change what the underlying
1745 object is. Likewise for SAVE_EXPR. */
1746 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1747 || TREE_CODE (t) == NON_LVALUE_EXPR
1748 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1749 || TREE_CODE (t) == SAVE_EXPR)
1750 t = TREE_OPERAND (t, 0);
1752 /* If this expression can't be addressed (e.g., it contains a reference
1753 to a non-addressable field), show we don't change its alias set. */
1754 if (! can_address_p (t))
1755 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1757 /* If this is a decl, set the attributes of the MEM from it. */
1758 if (DECL_P (t))
1760 expr = t;
1761 offset = const0_rtx;
1762 size = (DECL_SIZE_UNIT (t)
1763 && host_integerp (DECL_SIZE_UNIT (t), 1)
1764 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1765 align = DECL_ALIGN (t);
1768 /* If this is a constant, we know the alignment. */
1769 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1771 align = TYPE_ALIGN (type);
1772 #ifdef CONSTANT_ALIGNMENT
1773 align = CONSTANT_ALIGNMENT (t, align);
1774 #endif
1777 /* If this is a field reference and not a bit-field, record it. */
1778 /* ??? There is some information that can be gleened from bit-fields,
1779 such as the word offset in the structure that might be modified.
1780 But skip it for now. */
1781 else if (TREE_CODE (t) == COMPONENT_REF
1782 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1784 expr = component_ref_for_mem_expr (t);
1785 offset = const0_rtx;
1786 /* ??? Any reason the field size would be different than
1787 the size we got from the type? */
1790 /* If this is an array reference, look for an outer field reference. */
1791 else if (TREE_CODE (t) == ARRAY_REF)
1793 tree off_tree = size_zero_node;
1797 off_tree
1798 = fold (build (PLUS_EXPR, sizetype,
1799 fold (build (MULT_EXPR, sizetype,
1800 TREE_OPERAND (t, 1),
1801 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1802 off_tree));
1803 t = TREE_OPERAND (t, 0);
1805 while (TREE_CODE (t) == ARRAY_REF);
1807 if (TREE_CODE (t) == COMPONENT_REF)
1809 expr = component_ref_for_mem_expr (t);
1810 if (host_integerp (off_tree, 1))
1811 offset = GEN_INT (tree_low_cst (off_tree, 1));
1812 /* ??? Any reason the field size would be different than
1813 the size we got from the type? */
1818 /* Now set the attributes we computed above. */
1819 MEM_ATTRS (ref)
1820 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1822 /* If this is already known to be a scalar or aggregate, we are done. */
1823 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1824 return;
1826 /* If it is a reference into an aggregate, this is part of an aggregate.
1827 Otherwise we don't know. */
1828 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1829 || TREE_CODE (t) == ARRAY_RANGE_REF
1830 || TREE_CODE (t) == BIT_FIELD_REF)
1831 MEM_IN_STRUCT_P (ref) = 1;
1834 /* Set the alias set of MEM to SET. */
1836 void
1837 set_mem_alias_set (mem, set)
1838 rtx mem;
1839 HOST_WIDE_INT set;
1841 #ifdef ENABLE_CHECKING
1842 /* If the new and old alias sets don't conflict, something is wrong. */
1843 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1844 abort ();
1845 #endif
1847 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1848 MEM_SIZE (mem), MEM_ALIGN (mem),
1849 GET_MODE (mem));
1852 /* Set the alignment of MEM to ALIGN bits. */
1854 void
1855 set_mem_align (mem, align)
1856 rtx mem;
1857 unsigned int align;
1859 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1860 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1861 GET_MODE (mem));
1864 /* Set the expr for MEM to EXPR. */
1866 void
1867 set_mem_expr (mem, expr)
1868 rtx mem;
1869 tree expr;
1871 MEM_ATTRS (mem)
1872 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1873 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1876 /* Set the offset of MEM to OFFSET. */
1878 void
1879 set_mem_offset (mem, offset)
1880 rtx mem, offset;
1882 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1883 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1884 GET_MODE (mem));
1887 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1888 and its address changed to ADDR. (VOIDmode means don't change the mode.
1889 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1890 returned memory location is required to be valid. The memory
1891 attributes are not changed. */
1893 static rtx
1894 change_address_1 (memref, mode, addr, validate)
1895 rtx memref;
1896 enum machine_mode mode;
1897 rtx addr;
1898 int validate;
1900 rtx new;
1902 if (GET_CODE (memref) != MEM)
1903 abort ();
1904 if (mode == VOIDmode)
1905 mode = GET_MODE (memref);
1906 if (addr == 0)
1907 addr = XEXP (memref, 0);
1909 if (validate)
1911 if (reload_in_progress || reload_completed)
1913 if (! memory_address_p (mode, addr))
1914 abort ();
1916 else
1917 addr = memory_address (mode, addr);
1920 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1921 return memref;
1923 new = gen_rtx_MEM (mode, addr);
1924 MEM_COPY_ATTRIBUTES (new, memref);
1925 return new;
1928 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1929 way we are changing MEMREF, so we only preserve the alias set. */
1932 change_address (memref, mode, addr)
1933 rtx memref;
1934 enum machine_mode mode;
1935 rtx addr;
1937 rtx new = change_address_1 (memref, mode, addr, 1);
1938 enum machine_mode mmode = GET_MODE (new);
1940 MEM_ATTRS (new)
1941 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1942 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1943 (mmode == BLKmode ? BITS_PER_UNIT
1944 : GET_MODE_ALIGNMENT (mmode)),
1945 mmode);
1947 return new;
1950 /* Return a memory reference like MEMREF, but with its mode changed
1951 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1952 nonzero, the memory address is forced to be valid.
1953 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1954 and caller is responsible for adjusting MEMREF base register. */
1957 adjust_address_1 (memref, mode, offset, validate, adjust)
1958 rtx memref;
1959 enum machine_mode mode;
1960 HOST_WIDE_INT offset;
1961 int validate, adjust;
1963 rtx addr = XEXP (memref, 0);
1964 rtx new;
1965 rtx memoffset = MEM_OFFSET (memref);
1966 rtx size = 0;
1967 unsigned int memalign = MEM_ALIGN (memref);
1969 if (adjust == 0 || offset == 0)
1970 /* ??? Prefer to create garbage instead of creating shared rtl. */
1971 addr = copy_rtx (addr);
1972 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1973 object, we can merge it into the LO_SUM. */
1974 else if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1975 && offset >= 0
1976 && (unsigned HOST_WIDE_INT) offset
1977 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1978 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1979 plus_constant (XEXP (addr, 1), offset));
1980 else
1981 addr = plus_constant (addr, offset);
1983 new = change_address_1 (memref, mode, addr, validate);
1985 /* Compute the new values of the memory attributes due to this adjustment.
1986 We add the offsets and update the alignment. */
1987 if (memoffset)
1988 memoffset = GEN_INT (offset + INTVAL (memoffset));
1990 /* Compute the new alignment by taking the MIN of the alignment and the
1991 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1992 if zero. */
1993 if (offset != 0)
1994 memalign = MIN (memalign, (offset & -offset) * BITS_PER_UNIT);
1996 /* We can compute the size in a number of ways. */
1997 if (GET_MODE (new) != BLKmode)
1998 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1999 else if (MEM_SIZE (memref))
2000 size = plus_constant (MEM_SIZE (memref), -offset);
2002 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2003 memoffset, size, memalign, GET_MODE (new));
2005 /* At some point, we should validate that this offset is within the object,
2006 if all the appropriate values are known. */
2007 return new;
2010 /* Return a memory reference like MEMREF, but with its mode changed
2011 to MODE and its address changed to ADDR, which is assumed to be
2012 MEMREF offseted by OFFSET bytes. If VALIDATE is
2013 nonzero, the memory address is forced to be valid. */
2016 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2017 rtx memref;
2018 enum machine_mode mode;
2019 rtx addr;
2020 HOST_WIDE_INT offset;
2021 int validate;
2023 memref = change_address_1 (memref, VOIDmode, addr, validate);
2024 return adjust_address_1 (memref, mode, offset, validate, 0);
2027 /* Return a memory reference like MEMREF, but whose address is changed by
2028 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2029 known to be in OFFSET (possibly 1). */
2032 offset_address (memref, offset, pow2)
2033 rtx memref;
2034 rtx offset;
2035 HOST_WIDE_INT pow2;
2037 rtx new = change_address_1 (memref, VOIDmode,
2038 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
2039 force_reg (Pmode, offset)), 1);
2041 /* Update the alignment to reflect the offset. Reset the offset, which
2042 we don't know. */
2043 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2044 0, 0, MIN (MEM_ALIGN (memref),
2045 pow2 * BITS_PER_UNIT),
2046 GET_MODE (new));
2047 return new;
2050 /* Return a memory reference like MEMREF, but with its address changed to
2051 ADDR. The caller is asserting that the actual piece of memory pointed
2052 to is the same, just the form of the address is being changed, such as
2053 by putting something into a register. */
2056 replace_equiv_address (memref, addr)
2057 rtx memref;
2058 rtx addr;
2060 /* change_address_1 copies the memory attribute structure without change
2061 and that's exactly what we want here. */
2062 update_temp_slot_address (XEXP (memref, 0), addr);
2063 return change_address_1 (memref, VOIDmode, addr, 1);
2066 /* Likewise, but the reference is not required to be valid. */
2069 replace_equiv_address_nv (memref, addr)
2070 rtx memref;
2071 rtx addr;
2073 return change_address_1 (memref, VOIDmode, addr, 0);
2076 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2079 gen_label_rtx ()
2081 rtx label;
2083 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
2084 NULL_RTX, label_num++, NULL, NULL);
2086 LABEL_NUSES (label) = 0;
2087 LABEL_ALTERNATE_NAME (label) = NULL;
2088 return label;
2091 /* For procedure integration. */
2093 /* Install new pointers to the first and last insns in the chain.
2094 Also, set cur_insn_uid to one higher than the last in use.
2095 Used for an inline-procedure after copying the insn chain. */
2097 void
2098 set_new_first_and_last_insn (first, last)
2099 rtx first, last;
2101 rtx insn;
2103 first_insn = first;
2104 last_insn = last;
2105 cur_insn_uid = 0;
2107 for (insn = first; insn; insn = NEXT_INSN (insn))
2108 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2110 cur_insn_uid++;
2113 /* Set the range of label numbers found in the current function.
2114 This is used when belatedly compiling an inline function. */
2116 void
2117 set_new_first_and_last_label_num (first, last)
2118 int first, last;
2120 base_label_num = label_num;
2121 first_label_num = first;
2122 last_label_num = last;
2125 /* Set the last label number found in the current function.
2126 This is used when belatedly compiling an inline function. */
2128 void
2129 set_new_last_label_num (last)
2130 int last;
2132 base_label_num = label_num;
2133 last_label_num = last;
2136 /* Restore all variables describing the current status from the structure *P.
2137 This is used after a nested function. */
2139 void
2140 restore_emit_status (p)
2141 struct function *p ATTRIBUTE_UNUSED;
2143 last_label_num = 0;
2144 clear_emit_caches ();
2147 /* Clear out all parts of the state in F that can safely be discarded
2148 after the function has been compiled, to let garbage collection
2149 reclaim the memory. */
2151 void
2152 free_emit_status (f)
2153 struct function *f;
2155 free (f->emit->x_regno_reg_rtx);
2156 free (f->emit->regno_pointer_align);
2157 free (f->emit->regno_decl);
2158 free (f->emit);
2159 f->emit = NULL;
2162 /* Go through all the RTL insn bodies and copy any invalid shared
2163 structure. This routine should only be called once. */
2165 void
2166 unshare_all_rtl (fndecl, insn)
2167 tree fndecl;
2168 rtx insn;
2170 tree decl;
2172 /* Make sure that virtual parameters are not shared. */
2173 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2174 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2176 /* Make sure that virtual stack slots are not shared. */
2177 unshare_all_decls (DECL_INITIAL (fndecl));
2179 /* Unshare just about everything else. */
2180 unshare_all_rtl_1 (insn);
2182 /* Make sure the addresses of stack slots found outside the insn chain
2183 (such as, in DECL_RTL of a variable) are not shared
2184 with the insn chain.
2186 This special care is necessary when the stack slot MEM does not
2187 actually appear in the insn chain. If it does appear, its address
2188 is unshared from all else at that point. */
2189 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2192 /* Go through all the RTL insn bodies and copy any invalid shared
2193 structure, again. This is a fairly expensive thing to do so it
2194 should be done sparingly. */
2196 void
2197 unshare_all_rtl_again (insn)
2198 rtx insn;
2200 rtx p;
2201 tree decl;
2203 for (p = insn; p; p = NEXT_INSN (p))
2204 if (INSN_P (p))
2206 reset_used_flags (PATTERN (p));
2207 reset_used_flags (REG_NOTES (p));
2208 reset_used_flags (LOG_LINKS (p));
2211 /* Make sure that virtual stack slots are not shared. */
2212 reset_used_decls (DECL_INITIAL (cfun->decl));
2214 /* Make sure that virtual parameters are not shared. */
2215 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2216 reset_used_flags (DECL_RTL (decl));
2218 reset_used_flags (stack_slot_list);
2220 unshare_all_rtl (cfun->decl, insn);
2223 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2224 Assumes the mark bits are cleared at entry. */
2226 static void
2227 unshare_all_rtl_1 (insn)
2228 rtx insn;
2230 for (; insn; insn = NEXT_INSN (insn))
2231 if (INSN_P (insn))
2233 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2234 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2235 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2239 /* Go through all virtual stack slots of a function and copy any
2240 shared structure. */
2241 static void
2242 unshare_all_decls (blk)
2243 tree blk;
2245 tree t;
2247 /* Copy shared decls. */
2248 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2249 if (DECL_RTL_SET_P (t))
2250 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2252 /* Now process sub-blocks. */
2253 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2254 unshare_all_decls (t);
2257 /* Go through all virtual stack slots of a function and mark them as
2258 not shared. */
2259 static void
2260 reset_used_decls (blk)
2261 tree blk;
2263 tree t;
2265 /* Mark decls. */
2266 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2267 if (DECL_RTL_SET_P (t))
2268 reset_used_flags (DECL_RTL (t));
2270 /* Now process sub-blocks. */
2271 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2272 reset_used_decls (t);
2275 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2276 Recursively does the same for subexpressions. */
2279 copy_rtx_if_shared (orig)
2280 rtx orig;
2282 rtx x = orig;
2283 int i;
2284 enum rtx_code code;
2285 const char *format_ptr;
2286 int copied = 0;
2288 if (x == 0)
2289 return 0;
2291 code = GET_CODE (x);
2293 /* These types may be freely shared. */
2295 switch (code)
2297 case REG:
2298 case QUEUED:
2299 case CONST_INT:
2300 case CONST_DOUBLE:
2301 case SYMBOL_REF:
2302 case CODE_LABEL:
2303 case PC:
2304 case CC0:
2305 case SCRATCH:
2306 /* SCRATCH must be shared because they represent distinct values. */
2307 return x;
2309 case CONST:
2310 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2311 a LABEL_REF, it isn't sharable. */
2312 if (GET_CODE (XEXP (x, 0)) == PLUS
2313 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2314 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2315 return x;
2316 break;
2318 case INSN:
2319 case JUMP_INSN:
2320 case CALL_INSN:
2321 case NOTE:
2322 case BARRIER:
2323 /* The chain of insns is not being copied. */
2324 return x;
2326 case MEM:
2327 /* A MEM is allowed to be shared if its address is constant.
2329 We used to allow sharing of MEMs which referenced
2330 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2331 that can lose. instantiate_virtual_regs will not unshare
2332 the MEMs, and combine may change the structure of the address
2333 because it looks safe and profitable in one context, but
2334 in some other context it creates unrecognizable RTL. */
2335 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2336 return x;
2338 break;
2340 default:
2341 break;
2344 /* This rtx may not be shared. If it has already been seen,
2345 replace it with a copy of itself. */
2347 if (x->used)
2349 rtx copy;
2351 copy = rtx_alloc (code);
2352 memcpy (copy, x,
2353 (sizeof (*copy) - sizeof (copy->fld)
2354 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2355 x = copy;
2356 copied = 1;
2358 x->used = 1;
2360 /* Now scan the subexpressions recursively.
2361 We can store any replaced subexpressions directly into X
2362 since we know X is not shared! Any vectors in X
2363 must be copied if X was copied. */
2365 format_ptr = GET_RTX_FORMAT (code);
2367 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2369 switch (*format_ptr++)
2371 case 'e':
2372 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2373 break;
2375 case 'E':
2376 if (XVEC (x, i) != NULL)
2378 int j;
2379 int len = XVECLEN (x, i);
2381 if (copied && len > 0)
2382 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2383 for (j = 0; j < len; j++)
2384 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2386 break;
2389 return x;
2392 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2393 to look for shared sub-parts. */
2395 void
2396 reset_used_flags (x)
2397 rtx x;
2399 int i, j;
2400 enum rtx_code code;
2401 const char *format_ptr;
2403 if (x == 0)
2404 return;
2406 code = GET_CODE (x);
2408 /* These types may be freely shared so we needn't do any resetting
2409 for them. */
2411 switch (code)
2413 case REG:
2414 case QUEUED:
2415 case CONST_INT:
2416 case CONST_DOUBLE:
2417 case SYMBOL_REF:
2418 case CODE_LABEL:
2419 case PC:
2420 case CC0:
2421 return;
2423 case INSN:
2424 case JUMP_INSN:
2425 case CALL_INSN:
2426 case NOTE:
2427 case LABEL_REF:
2428 case BARRIER:
2429 /* The chain of insns is not being copied. */
2430 return;
2432 default:
2433 break;
2436 x->used = 0;
2438 format_ptr = GET_RTX_FORMAT (code);
2439 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2441 switch (*format_ptr++)
2443 case 'e':
2444 reset_used_flags (XEXP (x, i));
2445 break;
2447 case 'E':
2448 for (j = 0; j < XVECLEN (x, i); j++)
2449 reset_used_flags (XVECEXP (x, i, j));
2450 break;
2455 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2456 Return X or the rtx for the pseudo reg the value of X was copied into.
2457 OTHER must be valid as a SET_DEST. */
2460 make_safe_from (x, other)
2461 rtx x, other;
2463 while (1)
2464 switch (GET_CODE (other))
2466 case SUBREG:
2467 other = SUBREG_REG (other);
2468 break;
2469 case STRICT_LOW_PART:
2470 case SIGN_EXTEND:
2471 case ZERO_EXTEND:
2472 other = XEXP (other, 0);
2473 break;
2474 default:
2475 goto done;
2477 done:
2478 if ((GET_CODE (other) == MEM
2479 && ! CONSTANT_P (x)
2480 && GET_CODE (x) != REG
2481 && GET_CODE (x) != SUBREG)
2482 || (GET_CODE (other) == REG
2483 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2484 || reg_mentioned_p (other, x))))
2486 rtx temp = gen_reg_rtx (GET_MODE (x));
2487 emit_move_insn (temp, x);
2488 return temp;
2490 return x;
2493 /* Emission of insns (adding them to the doubly-linked list). */
2495 /* Return the first insn of the current sequence or current function. */
2498 get_insns ()
2500 return first_insn;
2503 /* Return the last insn emitted in current sequence or current function. */
2506 get_last_insn ()
2508 return last_insn;
2511 /* Specify a new insn as the last in the chain. */
2513 void
2514 set_last_insn (insn)
2515 rtx insn;
2517 if (NEXT_INSN (insn) != 0)
2518 abort ();
2519 last_insn = insn;
2522 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2525 get_last_insn_anywhere ()
2527 struct sequence_stack *stack;
2528 if (last_insn)
2529 return last_insn;
2530 for (stack = seq_stack; stack; stack = stack->next)
2531 if (stack->last != 0)
2532 return stack->last;
2533 return 0;
2536 /* Return a number larger than any instruction's uid in this function. */
2539 get_max_uid ()
2541 return cur_insn_uid;
2544 /* Renumber instructions so that no instruction UIDs are wasted. */
2546 void
2547 renumber_insns (stream)
2548 FILE *stream;
2550 rtx insn;
2552 /* If we're not supposed to renumber instructions, don't. */
2553 if (!flag_renumber_insns)
2554 return;
2556 /* If there aren't that many instructions, then it's not really
2557 worth renumbering them. */
2558 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2559 return;
2561 cur_insn_uid = 1;
2563 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2565 if (stream)
2566 fprintf (stream, "Renumbering insn %d to %d\n",
2567 INSN_UID (insn), cur_insn_uid);
2568 INSN_UID (insn) = cur_insn_uid++;
2572 /* Return the next insn. If it is a SEQUENCE, return the first insn
2573 of the sequence. */
2576 next_insn (insn)
2577 rtx insn;
2579 if (insn)
2581 insn = NEXT_INSN (insn);
2582 if (insn && GET_CODE (insn) == INSN
2583 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2584 insn = XVECEXP (PATTERN (insn), 0, 0);
2587 return insn;
2590 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2591 of the sequence. */
2594 previous_insn (insn)
2595 rtx insn;
2597 if (insn)
2599 insn = PREV_INSN (insn);
2600 if (insn && GET_CODE (insn) == INSN
2601 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2602 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2605 return insn;
2608 /* Return the next insn after INSN that is not a NOTE. This routine does not
2609 look inside SEQUENCEs. */
2612 next_nonnote_insn (insn)
2613 rtx insn;
2615 while (insn)
2617 insn = NEXT_INSN (insn);
2618 if (insn == 0 || GET_CODE (insn) != NOTE)
2619 break;
2622 return insn;
2625 /* Return the previous insn before INSN that is not a NOTE. This routine does
2626 not look inside SEQUENCEs. */
2629 prev_nonnote_insn (insn)
2630 rtx insn;
2632 while (insn)
2634 insn = PREV_INSN (insn);
2635 if (insn == 0 || GET_CODE (insn) != NOTE)
2636 break;
2639 return insn;
2642 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2643 or 0, if there is none. This routine does not look inside
2644 SEQUENCEs. */
2647 next_real_insn (insn)
2648 rtx insn;
2650 while (insn)
2652 insn = NEXT_INSN (insn);
2653 if (insn == 0 || GET_CODE (insn) == INSN
2654 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2655 break;
2658 return insn;
2661 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2662 or 0, if there is none. This routine does not look inside
2663 SEQUENCEs. */
2666 prev_real_insn (insn)
2667 rtx insn;
2669 while (insn)
2671 insn = PREV_INSN (insn);
2672 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2673 || GET_CODE (insn) == JUMP_INSN)
2674 break;
2677 return insn;
2680 /* Find the next insn after INSN that really does something. This routine
2681 does not look inside SEQUENCEs. Until reload has completed, this is the
2682 same as next_real_insn. */
2685 active_insn_p (insn)
2686 rtx insn;
2688 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2689 || (GET_CODE (insn) == INSN
2690 && (! reload_completed
2691 || (GET_CODE (PATTERN (insn)) != USE
2692 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2696 next_active_insn (insn)
2697 rtx insn;
2699 while (insn)
2701 insn = NEXT_INSN (insn);
2702 if (insn == 0 || active_insn_p (insn))
2703 break;
2706 return insn;
2709 /* Find the last insn before INSN that really does something. This routine
2710 does not look inside SEQUENCEs. Until reload has completed, this is the
2711 same as prev_real_insn. */
2714 prev_active_insn (insn)
2715 rtx insn;
2717 while (insn)
2719 insn = PREV_INSN (insn);
2720 if (insn == 0 || active_insn_p (insn))
2721 break;
2724 return insn;
2727 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2730 next_label (insn)
2731 rtx insn;
2733 while (insn)
2735 insn = NEXT_INSN (insn);
2736 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2737 break;
2740 return insn;
2743 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2746 prev_label (insn)
2747 rtx insn;
2749 while (insn)
2751 insn = PREV_INSN (insn);
2752 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2753 break;
2756 return insn;
2759 #ifdef HAVE_cc0
2760 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2761 and REG_CC_USER notes so we can find it. */
2763 void
2764 link_cc0_insns (insn)
2765 rtx insn;
2767 rtx user = next_nonnote_insn (insn);
2769 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2770 user = XVECEXP (PATTERN (user), 0, 0);
2772 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2773 REG_NOTES (user));
2774 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2777 /* Return the next insn that uses CC0 after INSN, which is assumed to
2778 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2779 applied to the result of this function should yield INSN).
2781 Normally, this is simply the next insn. However, if a REG_CC_USER note
2782 is present, it contains the insn that uses CC0.
2784 Return 0 if we can't find the insn. */
2787 next_cc0_user (insn)
2788 rtx insn;
2790 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2792 if (note)
2793 return XEXP (note, 0);
2795 insn = next_nonnote_insn (insn);
2796 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2797 insn = XVECEXP (PATTERN (insn), 0, 0);
2799 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2800 return insn;
2802 return 0;
2805 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2806 note, it is the previous insn. */
2809 prev_cc0_setter (insn)
2810 rtx insn;
2812 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2814 if (note)
2815 return XEXP (note, 0);
2817 insn = prev_nonnote_insn (insn);
2818 if (! sets_cc0_p (PATTERN (insn)))
2819 abort ();
2821 return insn;
2823 #endif
2825 /* Increment the label uses for all labels present in rtx. */
2827 static void
2828 mark_label_nuses(x)
2829 rtx x;
2831 enum rtx_code code;
2832 int i, j;
2833 const char *fmt;
2835 code = GET_CODE (x);
2836 if (code == LABEL_REF)
2837 LABEL_NUSES (XEXP (x, 0))++;
2839 fmt = GET_RTX_FORMAT (code);
2840 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2842 if (fmt[i] == 'e')
2843 mark_label_nuses (XEXP (x, i));
2844 else if (fmt[i] == 'E')
2845 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2846 mark_label_nuses (XVECEXP (x, i, j));
2851 /* Try splitting insns that can be split for better scheduling.
2852 PAT is the pattern which might split.
2853 TRIAL is the insn providing PAT.
2854 LAST is non-zero if we should return the last insn of the sequence produced.
2856 If this routine succeeds in splitting, it returns the first or last
2857 replacement insn depending on the value of LAST. Otherwise, it
2858 returns TRIAL. If the insn to be returned can be split, it will be. */
2861 try_split (pat, trial, last)
2862 rtx pat, trial;
2863 int last;
2865 rtx before = PREV_INSN (trial);
2866 rtx after = NEXT_INSN (trial);
2867 int has_barrier = 0;
2868 rtx tem;
2869 rtx note, seq;
2870 int probability;
2872 if (any_condjump_p (trial)
2873 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2874 split_branch_probability = INTVAL (XEXP (note, 0));
2875 probability = split_branch_probability;
2877 seq = split_insns (pat, trial);
2879 split_branch_probability = -1;
2881 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2882 We may need to handle this specially. */
2883 if (after && GET_CODE (after) == BARRIER)
2885 has_barrier = 1;
2886 after = NEXT_INSN (after);
2889 if (seq)
2891 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2892 The latter case will normally arise only when being done so that
2893 it, in turn, will be split (SFmode on the 29k is an example). */
2894 if (GET_CODE (seq) == SEQUENCE)
2896 int i, njumps = 0;
2898 /* Avoid infinite loop if any insn of the result matches
2899 the original pattern. */
2900 for (i = 0; i < XVECLEN (seq, 0); i++)
2901 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2902 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2903 return trial;
2905 /* Mark labels. */
2906 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2907 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2909 rtx insn = XVECEXP (seq, 0, i);
2910 mark_jump_label (PATTERN (insn),
2911 XVECEXP (seq, 0, i), 0);
2912 njumps++;
2913 if (probability != -1
2914 && any_condjump_p (insn)
2915 && !find_reg_note (insn, REG_BR_PROB, 0))
2917 /* We can preserve the REG_BR_PROB notes only if exactly
2918 one jump is created, otherwise the machine description
2919 is responsible for this step using
2920 split_branch_probability variable. */
2921 if (njumps != 1)
2922 abort ();
2923 REG_NOTES (insn)
2924 = gen_rtx_EXPR_LIST (REG_BR_PROB,
2925 GEN_INT (probability),
2926 REG_NOTES (insn));
2930 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2931 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2932 if (GET_CODE (trial) == CALL_INSN)
2933 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2934 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2935 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2936 = CALL_INSN_FUNCTION_USAGE (trial);
2938 /* Copy notes, particularly those related to the CFG. */
2939 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
2941 switch (REG_NOTE_KIND (note))
2943 case REG_EH_REGION:
2944 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2946 rtx insn = XVECEXP (seq, 0, i);
2947 if (GET_CODE (insn) == CALL_INSN
2948 || (flag_non_call_exceptions
2949 && may_trap_p (PATTERN (insn))))
2950 REG_NOTES (insn)
2951 = gen_rtx_EXPR_LIST (REG_EH_REGION,
2952 XEXP (note, 0),
2953 REG_NOTES (insn));
2955 break;
2957 case REG_NORETURN:
2958 case REG_SETJMP:
2959 case REG_ALWAYS_RETURN:
2960 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2962 rtx insn = XVECEXP (seq, 0, i);
2963 if (GET_CODE (insn) == CALL_INSN)
2964 REG_NOTES (insn)
2965 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2966 XEXP (note, 0),
2967 REG_NOTES (insn));
2969 break;
2971 case REG_NON_LOCAL_GOTO:
2972 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2974 rtx insn = XVECEXP (seq, 0, i);
2975 if (GET_CODE (insn) == JUMP_INSN)
2976 REG_NOTES (insn)
2977 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2978 XEXP (note, 0),
2979 REG_NOTES (insn));
2981 break;
2983 default:
2984 break;
2988 /* If there are LABELS inside the split insns increment the
2989 usage count so we don't delete the label. */
2990 if (GET_CODE (trial) == INSN)
2991 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2992 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2993 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2995 tem = emit_insn_after (seq, trial);
2997 delete_related_insns (trial);
2998 if (has_barrier)
2999 emit_barrier_after (tem);
3001 /* Recursively call try_split for each new insn created; by the
3002 time control returns here that insn will be fully split, so
3003 set LAST and continue from the insn after the one returned.
3004 We can't use next_active_insn here since AFTER may be a note.
3005 Ignore deleted insns, which can be occur if not optimizing. */
3006 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3007 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3008 tem = try_split (PATTERN (tem), tem, 1);
3010 /* Avoid infinite loop if the result matches the original pattern. */
3011 else if (rtx_equal_p (seq, pat))
3012 return trial;
3013 else
3015 PATTERN (trial) = seq;
3016 INSN_CODE (trial) = -1;
3017 try_split (seq, trial, last);
3020 /* Return either the first or the last insn, depending on which was
3021 requested. */
3022 return last
3023 ? (after ? PREV_INSN (after) : last_insn)
3024 : NEXT_INSN (before);
3027 return trial;
3030 /* Make and return an INSN rtx, initializing all its slots.
3031 Store PATTERN in the pattern slots. */
3034 make_insn_raw (pattern)
3035 rtx pattern;
3037 rtx insn;
3039 insn = rtx_alloc (INSN);
3041 INSN_UID (insn) = cur_insn_uid++;
3042 PATTERN (insn) = pattern;
3043 INSN_CODE (insn) = -1;
3044 LOG_LINKS (insn) = NULL;
3045 REG_NOTES (insn) = NULL;
3047 #ifdef ENABLE_RTL_CHECKING
3048 if (insn
3049 && INSN_P (insn)
3050 && (returnjump_p (insn)
3051 || (GET_CODE (insn) == SET
3052 && SET_DEST (insn) == pc_rtx)))
3054 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3055 debug_rtx (insn);
3057 #endif
3059 return insn;
3062 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
3064 static rtx
3065 make_jump_insn_raw (pattern)
3066 rtx pattern;
3068 rtx insn;
3070 insn = rtx_alloc (JUMP_INSN);
3071 INSN_UID (insn) = cur_insn_uid++;
3073 PATTERN (insn) = pattern;
3074 INSN_CODE (insn) = -1;
3075 LOG_LINKS (insn) = NULL;
3076 REG_NOTES (insn) = NULL;
3077 JUMP_LABEL (insn) = NULL;
3079 return insn;
3082 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
3084 static rtx
3085 make_call_insn_raw (pattern)
3086 rtx pattern;
3088 rtx insn;
3090 insn = rtx_alloc (CALL_INSN);
3091 INSN_UID (insn) = cur_insn_uid++;
3093 PATTERN (insn) = pattern;
3094 INSN_CODE (insn) = -1;
3095 LOG_LINKS (insn) = NULL;
3096 REG_NOTES (insn) = NULL;
3097 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3099 return insn;
3102 /* Add INSN to the end of the doubly-linked list.
3103 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3105 void
3106 add_insn (insn)
3107 rtx insn;
3109 PREV_INSN (insn) = last_insn;
3110 NEXT_INSN (insn) = 0;
3112 if (NULL != last_insn)
3113 NEXT_INSN (last_insn) = insn;
3115 if (NULL == first_insn)
3116 first_insn = insn;
3118 last_insn = insn;
3121 /* Add INSN into the doubly-linked list after insn AFTER. This and
3122 the next should be the only functions called to insert an insn once
3123 delay slots have been filled since only they know how to update a
3124 SEQUENCE. */
3126 void
3127 add_insn_after (insn, after)
3128 rtx insn, after;
3130 rtx next = NEXT_INSN (after);
3131 basic_block bb;
3133 if (optimize && INSN_DELETED_P (after))
3134 abort ();
3136 NEXT_INSN (insn) = next;
3137 PREV_INSN (insn) = after;
3139 if (next)
3141 PREV_INSN (next) = insn;
3142 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3143 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3145 else if (last_insn == after)
3146 last_insn = insn;
3147 else
3149 struct sequence_stack *stack = seq_stack;
3150 /* Scan all pending sequences too. */
3151 for (; stack; stack = stack->next)
3152 if (after == stack->last)
3154 stack->last = insn;
3155 break;
3158 if (stack == 0)
3159 abort ();
3162 if (basic_block_for_insn
3163 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3164 && (bb = BLOCK_FOR_INSN (after)))
3166 set_block_for_insn (insn, bb);
3167 /* Should not happen as first in the BB is always
3168 either NOTE or LABEL. */
3169 if (bb->end == after
3170 /* Avoid clobbering of structure when creating new BB. */
3171 && GET_CODE (insn) != BARRIER
3172 && (GET_CODE (insn) != NOTE
3173 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3174 bb->end = insn;
3177 NEXT_INSN (after) = insn;
3178 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3180 rtx sequence = PATTERN (after);
3181 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3185 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3186 the previous should be the only functions called to insert an insn once
3187 delay slots have been filled since only they know how to update a
3188 SEQUENCE. */
3190 void
3191 add_insn_before (insn, before)
3192 rtx insn, before;
3194 rtx prev = PREV_INSN (before);
3195 basic_block bb;
3197 if (optimize && INSN_DELETED_P (before))
3198 abort ();
3200 PREV_INSN (insn) = prev;
3201 NEXT_INSN (insn) = before;
3203 if (prev)
3205 NEXT_INSN (prev) = insn;
3206 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3208 rtx sequence = PATTERN (prev);
3209 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3212 else if (first_insn == before)
3213 first_insn = insn;
3214 else
3216 struct sequence_stack *stack = seq_stack;
3217 /* Scan all pending sequences too. */
3218 for (; stack; stack = stack->next)
3219 if (before == stack->first)
3221 stack->first = insn;
3222 break;
3225 if (stack == 0)
3226 abort ();
3229 if (basic_block_for_insn
3230 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3231 && (bb = BLOCK_FOR_INSN (before)))
3233 set_block_for_insn (insn, bb);
3234 /* Should not happen as first in the BB is always
3235 either NOTE or LABEl. */
3236 if (bb->head == insn
3237 /* Avoid clobbering of structure when creating new BB. */
3238 && GET_CODE (insn) != BARRIER
3239 && (GET_CODE (insn) != NOTE
3240 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3241 abort ();
3244 PREV_INSN (before) = insn;
3245 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3246 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3249 /* Remove an insn from its doubly-linked list. This function knows how
3250 to handle sequences. */
3251 void
3252 remove_insn (insn)
3253 rtx insn;
3255 rtx next = NEXT_INSN (insn);
3256 rtx prev = PREV_INSN (insn);
3257 basic_block bb;
3259 if (prev)
3261 NEXT_INSN (prev) = next;
3262 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3264 rtx sequence = PATTERN (prev);
3265 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3268 else if (first_insn == insn)
3269 first_insn = next;
3270 else
3272 struct sequence_stack *stack = seq_stack;
3273 /* Scan all pending sequences too. */
3274 for (; stack; stack = stack->next)
3275 if (insn == stack->first)
3277 stack->first = next;
3278 break;
3281 if (stack == 0)
3282 abort ();
3285 if (next)
3287 PREV_INSN (next) = prev;
3288 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3289 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3291 else if (last_insn == insn)
3292 last_insn = prev;
3293 else
3295 struct sequence_stack *stack = seq_stack;
3296 /* Scan all pending sequences too. */
3297 for (; stack; stack = stack->next)
3298 if (insn == stack->last)
3300 stack->last = prev;
3301 break;
3304 if (stack == 0)
3305 abort ();
3307 if (basic_block_for_insn
3308 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3309 && (bb = BLOCK_FOR_INSN (insn)))
3311 if (bb->head == insn)
3313 /* Never ever delete the basic block note without deleting whole basic
3314 block. */
3315 if (GET_CODE (insn) == NOTE)
3316 abort ();
3317 bb->head = next;
3319 if (bb->end == insn)
3320 bb->end = prev;
3324 /* Delete all insns made since FROM.
3325 FROM becomes the new last instruction. */
3327 void
3328 delete_insns_since (from)
3329 rtx from;
3331 if (from == 0)
3332 first_insn = 0;
3333 else
3334 NEXT_INSN (from) = 0;
3335 last_insn = from;
3338 /* This function is deprecated, please use sequences instead.
3340 Move a consecutive bunch of insns to a different place in the chain.
3341 The insns to be moved are those between FROM and TO.
3342 They are moved to a new position after the insn AFTER.
3343 AFTER must not be FROM or TO or any insn in between.
3345 This function does not know about SEQUENCEs and hence should not be
3346 called after delay-slot filling has been done. */
3348 void
3349 reorder_insns_nobb (from, to, after)
3350 rtx from, to, after;
3352 /* Splice this bunch out of where it is now. */
3353 if (PREV_INSN (from))
3354 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3355 if (NEXT_INSN (to))
3356 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3357 if (last_insn == to)
3358 last_insn = PREV_INSN (from);
3359 if (first_insn == from)
3360 first_insn = NEXT_INSN (to);
3362 /* Make the new neighbors point to it and it to them. */
3363 if (NEXT_INSN (after))
3364 PREV_INSN (NEXT_INSN (after)) = to;
3366 NEXT_INSN (to) = NEXT_INSN (after);
3367 PREV_INSN (from) = after;
3368 NEXT_INSN (after) = from;
3369 if (after == last_insn)
3370 last_insn = to;
3373 /* Same as function above, but take care to update BB boundaries. */
3374 void
3375 reorder_insns (from, to, after)
3376 rtx from, to, after;
3378 rtx prev = PREV_INSN (from);
3379 basic_block bb, bb2;
3381 reorder_insns_nobb (from, to, after);
3383 if (basic_block_for_insn
3384 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3385 && (bb = BLOCK_FOR_INSN (after)))
3387 rtx x;
3389 if (basic_block_for_insn
3390 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3391 && (bb2 = BLOCK_FOR_INSN (from)))
3393 if (bb2->end == to)
3394 bb2->end = prev;
3397 if (bb->end == after)
3398 bb->end = to;
3400 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3401 set_block_for_insn (x, bb);
3405 /* Return the line note insn preceding INSN. */
3407 static rtx
3408 find_line_note (insn)
3409 rtx insn;
3411 if (no_line_numbers)
3412 return 0;
3414 for (; insn; insn = PREV_INSN (insn))
3415 if (GET_CODE (insn) == NOTE
3416 && NOTE_LINE_NUMBER (insn) >= 0)
3417 break;
3419 return insn;
3422 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3423 of the moved insns when debugging. This may insert a note between AFTER
3424 and FROM, and another one after TO. */
3426 void
3427 reorder_insns_with_line_notes (from, to, after)
3428 rtx from, to, after;
3430 rtx from_line = find_line_note (from);
3431 rtx after_line = find_line_note (after);
3433 reorder_insns (from, to, after);
3435 if (from_line == after_line)
3436 return;
3438 if (from_line)
3439 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3440 NOTE_LINE_NUMBER (from_line),
3441 after);
3442 if (after_line)
3443 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3444 NOTE_LINE_NUMBER (after_line),
3445 to);
3448 /* Remove unnecessary notes from the instruction stream. */
3450 void
3451 remove_unnecessary_notes ()
3453 rtx block_stack = NULL_RTX;
3454 rtx eh_stack = NULL_RTX;
3455 rtx insn;
3456 rtx next;
3457 rtx tmp;
3459 /* We must not remove the first instruction in the function because
3460 the compiler depends on the first instruction being a note. */
3461 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3463 /* Remember what's next. */
3464 next = NEXT_INSN (insn);
3466 /* We're only interested in notes. */
3467 if (GET_CODE (insn) != NOTE)
3468 continue;
3470 switch (NOTE_LINE_NUMBER (insn))
3472 case NOTE_INSN_DELETED:
3473 remove_insn (insn);
3474 break;
3476 case NOTE_INSN_EH_REGION_BEG:
3477 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3478 break;
3480 case NOTE_INSN_EH_REGION_END:
3481 /* Too many end notes. */
3482 if (eh_stack == NULL_RTX)
3483 abort ();
3484 /* Mismatched nesting. */
3485 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3486 abort ();
3487 tmp = eh_stack;
3488 eh_stack = XEXP (eh_stack, 1);
3489 free_INSN_LIST_node (tmp);
3490 break;
3492 case NOTE_INSN_BLOCK_BEG:
3493 /* By now, all notes indicating lexical blocks should have
3494 NOTE_BLOCK filled in. */
3495 if (NOTE_BLOCK (insn) == NULL_TREE)
3496 abort ();
3497 block_stack = alloc_INSN_LIST (insn, block_stack);
3498 break;
3500 case NOTE_INSN_BLOCK_END:
3501 /* Too many end notes. */
3502 if (block_stack == NULL_RTX)
3503 abort ();
3504 /* Mismatched nesting. */
3505 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3506 abort ();
3507 tmp = block_stack;
3508 block_stack = XEXP (block_stack, 1);
3509 free_INSN_LIST_node (tmp);
3511 /* Scan back to see if there are any non-note instructions
3512 between INSN and the beginning of this block. If not,
3513 then there is no PC range in the generated code that will
3514 actually be in this block, so there's no point in
3515 remembering the existence of the block. */
3516 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3518 /* This block contains a real instruction. Note that we
3519 don't include labels; if the only thing in the block
3520 is a label, then there are still no PC values that
3521 lie within the block. */
3522 if (INSN_P (tmp))
3523 break;
3525 /* We're only interested in NOTEs. */
3526 if (GET_CODE (tmp) != NOTE)
3527 continue;
3529 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3531 /* We just verified that this BLOCK matches us with
3532 the block_stack check above. Never delete the
3533 BLOCK for the outermost scope of the function; we
3534 can refer to names from that scope even if the
3535 block notes are messed up. */
3536 if (! is_body_block (NOTE_BLOCK (insn))
3537 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3539 remove_insn (tmp);
3540 remove_insn (insn);
3542 break;
3544 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3545 /* There's a nested block. We need to leave the
3546 current block in place since otherwise the debugger
3547 wouldn't be able to show symbols from our block in
3548 the nested block. */
3549 break;
3554 /* Too many begin notes. */
3555 if (block_stack || eh_stack)
3556 abort ();
3560 /* Emit an insn of given code and pattern
3561 at a specified place within the doubly-linked list. */
3563 /* Make an instruction with body PATTERN
3564 and output it before the instruction BEFORE. */
3567 emit_insn_before (pattern, before)
3568 rtx pattern, before;
3570 rtx insn = before;
3572 if (GET_CODE (pattern) == SEQUENCE)
3574 int i;
3576 for (i = 0; i < XVECLEN (pattern, 0); i++)
3578 insn = XVECEXP (pattern, 0, i);
3579 add_insn_before (insn, before);
3582 else
3584 insn = make_insn_raw (pattern);
3585 add_insn_before (insn, before);
3588 return insn;
3591 /* Make an instruction with body PATTERN and code JUMP_INSN
3592 and output it before the instruction BEFORE. */
3595 emit_jump_insn_before (pattern, before)
3596 rtx pattern, before;
3598 rtx insn;
3600 if (GET_CODE (pattern) == SEQUENCE)
3601 insn = emit_insn_before (pattern, before);
3602 else
3604 insn = make_jump_insn_raw (pattern);
3605 add_insn_before (insn, before);
3608 return insn;
3611 /* Make an instruction with body PATTERN and code CALL_INSN
3612 and output it before the instruction BEFORE. */
3615 emit_call_insn_before (pattern, before)
3616 rtx pattern, before;
3618 rtx insn;
3620 if (GET_CODE (pattern) == SEQUENCE)
3621 insn = emit_insn_before (pattern, before);
3622 else
3624 insn = make_call_insn_raw (pattern);
3625 add_insn_before (insn, before);
3626 PUT_CODE (insn, CALL_INSN);
3629 return insn;
3632 /* Make an insn of code BARRIER
3633 and output it before the insn BEFORE. */
3636 emit_barrier_before (before)
3637 rtx before;
3639 rtx insn = rtx_alloc (BARRIER);
3641 INSN_UID (insn) = cur_insn_uid++;
3643 add_insn_before (insn, before);
3644 return insn;
3647 /* Emit the label LABEL before the insn BEFORE. */
3650 emit_label_before (label, before)
3651 rtx label, before;
3653 /* This can be called twice for the same label as a result of the
3654 confusion that follows a syntax error! So make it harmless. */
3655 if (INSN_UID (label) == 0)
3657 INSN_UID (label) = cur_insn_uid++;
3658 add_insn_before (label, before);
3661 return label;
3664 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3667 emit_note_before (subtype, before)
3668 int subtype;
3669 rtx before;
3671 rtx note = rtx_alloc (NOTE);
3672 INSN_UID (note) = cur_insn_uid++;
3673 NOTE_SOURCE_FILE (note) = 0;
3674 NOTE_LINE_NUMBER (note) = subtype;
3676 add_insn_before (note, before);
3677 return note;
3680 /* Make an insn of code INSN with body PATTERN
3681 and output it after the insn AFTER. */
3684 emit_insn_after (pattern, after)
3685 rtx pattern, after;
3687 rtx insn = after;
3689 if (GET_CODE (pattern) == SEQUENCE)
3691 int i;
3693 for (i = 0; i < XVECLEN (pattern, 0); i++)
3695 insn = XVECEXP (pattern, 0, i);
3696 add_insn_after (insn, after);
3697 after = insn;
3700 else
3702 insn = make_insn_raw (pattern);
3703 add_insn_after (insn, after);
3706 return insn;
3709 /* Similar to emit_insn_after, except that line notes are to be inserted so
3710 as to act as if this insn were at FROM. */
3712 void
3713 emit_insn_after_with_line_notes (pattern, after, from)
3714 rtx pattern, after, from;
3716 rtx from_line = find_line_note (from);
3717 rtx after_line = find_line_note (after);
3718 rtx insn = emit_insn_after (pattern, after);
3720 if (from_line)
3721 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3722 NOTE_LINE_NUMBER (from_line),
3723 after);
3725 if (after_line)
3726 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3727 NOTE_LINE_NUMBER (after_line),
3728 insn);
3731 /* Make an insn of code JUMP_INSN with body PATTERN
3732 and output it after the insn AFTER. */
3735 emit_jump_insn_after (pattern, after)
3736 rtx pattern, after;
3738 rtx insn;
3740 if (GET_CODE (pattern) == SEQUENCE)
3741 insn = emit_insn_after (pattern, after);
3742 else
3744 insn = make_jump_insn_raw (pattern);
3745 add_insn_after (insn, after);
3748 return insn;
3751 /* Make an insn of code BARRIER
3752 and output it after the insn AFTER. */
3755 emit_barrier_after (after)
3756 rtx after;
3758 rtx insn = rtx_alloc (BARRIER);
3760 INSN_UID (insn) = cur_insn_uid++;
3762 add_insn_after (insn, after);
3763 return insn;
3766 /* Emit the label LABEL after the insn AFTER. */
3769 emit_label_after (label, after)
3770 rtx label, after;
3772 /* This can be called twice for the same label
3773 as a result of the confusion that follows a syntax error!
3774 So make it harmless. */
3775 if (INSN_UID (label) == 0)
3777 INSN_UID (label) = cur_insn_uid++;
3778 add_insn_after (label, after);
3781 return label;
3784 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3787 emit_note_after (subtype, after)
3788 int subtype;
3789 rtx after;
3791 rtx note = rtx_alloc (NOTE);
3792 INSN_UID (note) = cur_insn_uid++;
3793 NOTE_SOURCE_FILE (note) = 0;
3794 NOTE_LINE_NUMBER (note) = subtype;
3795 add_insn_after (note, after);
3796 return note;
3799 /* Emit a line note for FILE and LINE after the insn AFTER. */
3802 emit_line_note_after (file, line, after)
3803 const char *file;
3804 int line;
3805 rtx after;
3807 rtx note;
3809 if (no_line_numbers && line > 0)
3811 cur_insn_uid++;
3812 return 0;
3815 note = rtx_alloc (NOTE);
3816 INSN_UID (note) = cur_insn_uid++;
3817 NOTE_SOURCE_FILE (note) = file;
3818 NOTE_LINE_NUMBER (note) = line;
3819 add_insn_after (note, after);
3820 return note;
3823 /* Make an insn of code INSN with pattern PATTERN
3824 and add it to the end of the doubly-linked list.
3825 If PATTERN is a SEQUENCE, take the elements of it
3826 and emit an insn for each element.
3828 Returns the last insn emitted. */
3831 emit_insn (pattern)
3832 rtx pattern;
3834 rtx insn = last_insn;
3836 if (GET_CODE (pattern) == SEQUENCE)
3838 int i;
3840 for (i = 0; i < XVECLEN (pattern, 0); i++)
3842 insn = XVECEXP (pattern, 0, i);
3843 add_insn (insn);
3846 else
3848 insn = make_insn_raw (pattern);
3849 add_insn (insn);
3852 return insn;
3855 /* Emit the insns in a chain starting with INSN.
3856 Return the last insn emitted. */
3859 emit_insns (insn)
3860 rtx insn;
3862 rtx last = 0;
3864 while (insn)
3866 rtx next = NEXT_INSN (insn);
3867 add_insn (insn);
3868 last = insn;
3869 insn = next;
3872 return last;
3875 /* Emit the insns in a chain starting with INSN and place them in front of
3876 the insn BEFORE. Return the last insn emitted. */
3879 emit_insns_before (insn, before)
3880 rtx insn;
3881 rtx before;
3883 rtx last = 0;
3885 while (insn)
3887 rtx next = NEXT_INSN (insn);
3888 add_insn_before (insn, before);
3889 last = insn;
3890 insn = next;
3893 return last;
3896 /* Emit the insns in a chain starting with FIRST and place them in back of
3897 the insn AFTER. Return the last insn emitted. */
3900 emit_insns_after (first, after)
3901 rtx first;
3902 rtx after;
3904 rtx last;
3905 rtx after_after;
3906 basic_block bb;
3908 if (!after)
3909 abort ();
3911 if (!first)
3912 return after;
3914 if (basic_block_for_insn
3915 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3916 && (bb = BLOCK_FOR_INSN (after)))
3918 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3919 set_block_for_insn (last, bb);
3920 set_block_for_insn (last, bb);
3921 if (bb->end == after)
3922 bb->end = last;
3924 else
3925 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3926 continue;
3928 after_after = NEXT_INSN (after);
3930 NEXT_INSN (after) = first;
3931 PREV_INSN (first) = after;
3932 NEXT_INSN (last) = after_after;
3933 if (after_after)
3934 PREV_INSN (after_after) = last;
3936 if (after == last_insn)
3937 last_insn = last;
3938 return last;
3941 /* Make an insn of code JUMP_INSN with pattern PATTERN
3942 and add it to the end of the doubly-linked list. */
3945 emit_jump_insn (pattern)
3946 rtx pattern;
3948 if (GET_CODE (pattern) == SEQUENCE)
3949 return emit_insn (pattern);
3950 else
3952 rtx insn = make_jump_insn_raw (pattern);
3953 add_insn (insn);
3954 return insn;
3958 /* Make an insn of code CALL_INSN with pattern PATTERN
3959 and add it to the end of the doubly-linked list. */
3962 emit_call_insn (pattern)
3963 rtx pattern;
3965 if (GET_CODE (pattern) == SEQUENCE)
3966 return emit_insn (pattern);
3967 else
3969 rtx insn = make_call_insn_raw (pattern);
3970 add_insn (insn);
3971 PUT_CODE (insn, CALL_INSN);
3972 return insn;
3976 /* Add the label LABEL to the end of the doubly-linked list. */
3979 emit_label (label)
3980 rtx label;
3982 /* This can be called twice for the same label
3983 as a result of the confusion that follows a syntax error!
3984 So make it harmless. */
3985 if (INSN_UID (label) == 0)
3987 INSN_UID (label) = cur_insn_uid++;
3988 add_insn (label);
3990 return label;
3993 /* Make an insn of code BARRIER
3994 and add it to the end of the doubly-linked list. */
3997 emit_barrier ()
3999 rtx barrier = rtx_alloc (BARRIER);
4000 INSN_UID (barrier) = cur_insn_uid++;
4001 add_insn (barrier);
4002 return barrier;
4005 /* Make an insn of code NOTE
4006 with data-fields specified by FILE and LINE
4007 and add it to the end of the doubly-linked list,
4008 but only if line-numbers are desired for debugging info. */
4011 emit_line_note (file, line)
4012 const char *file;
4013 int line;
4015 set_file_and_line_for_stmt (file, line);
4017 #if 0
4018 if (no_line_numbers)
4019 return 0;
4020 #endif
4022 return emit_note (file, line);
4025 /* Make an insn of code NOTE
4026 with data-fields specified by FILE and LINE
4027 and add it to the end of the doubly-linked list.
4028 If it is a line-number NOTE, omit it if it matches the previous one. */
4031 emit_note (file, line)
4032 const char *file;
4033 int line;
4035 rtx note;
4037 if (line > 0)
4039 if (file && last_filename && !strcmp (file, last_filename)
4040 && line == last_linenum)
4041 return 0;
4042 last_filename = file;
4043 last_linenum = line;
4046 if (no_line_numbers && line > 0)
4048 cur_insn_uid++;
4049 return 0;
4052 note = rtx_alloc (NOTE);
4053 INSN_UID (note) = cur_insn_uid++;
4054 NOTE_SOURCE_FILE (note) = file;
4055 NOTE_LINE_NUMBER (note) = line;
4056 add_insn (note);
4057 return note;
4060 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4063 emit_line_note_force (file, line)
4064 const char *file;
4065 int line;
4067 last_linenum = -1;
4068 return emit_line_note (file, line);
4071 /* Cause next statement to emit a line note even if the line number
4072 has not changed. This is used at the beginning of a function. */
4074 void
4075 force_next_line_note ()
4077 last_linenum = -1;
4080 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4081 note of this type already exists, remove it first. */
4084 set_unique_reg_note (insn, kind, datum)
4085 rtx insn;
4086 enum reg_note kind;
4087 rtx datum;
4089 rtx note = find_reg_note (insn, kind, NULL_RTX);
4091 switch (kind)
4093 case REG_EQUAL:
4094 case REG_EQUIV:
4095 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4096 has multiple sets (some callers assume single_set
4097 means the insn only has one set, when in fact it
4098 means the insn only has one * useful * set). */
4099 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4101 if (note)
4102 abort ();
4103 return NULL_RTX;
4106 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4107 It serves no useful purpose and breaks eliminate_regs. */
4108 if (GET_CODE (datum) == ASM_OPERANDS)
4109 return NULL_RTX;
4110 break;
4112 default:
4113 break;
4116 if (note)
4118 XEXP (note, 0) = datum;
4119 return note;
4122 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4123 return REG_NOTES (insn);
4126 /* Return an indication of which type of insn should have X as a body.
4127 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4129 enum rtx_code
4130 classify_insn (x)
4131 rtx x;
4133 if (GET_CODE (x) == CODE_LABEL)
4134 return CODE_LABEL;
4135 if (GET_CODE (x) == CALL)
4136 return CALL_INSN;
4137 if (GET_CODE (x) == RETURN)
4138 return JUMP_INSN;
4139 if (GET_CODE (x) == SET)
4141 if (SET_DEST (x) == pc_rtx)
4142 return JUMP_INSN;
4143 else if (GET_CODE (SET_SRC (x)) == CALL)
4144 return CALL_INSN;
4145 else
4146 return INSN;
4148 if (GET_CODE (x) == PARALLEL)
4150 int j;
4151 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4152 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4153 return CALL_INSN;
4154 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4155 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4156 return JUMP_INSN;
4157 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4158 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4159 return CALL_INSN;
4161 return INSN;
4164 /* Emit the rtl pattern X as an appropriate kind of insn.
4165 If X is a label, it is simply added into the insn chain. */
4168 emit (x)
4169 rtx x;
4171 enum rtx_code code = classify_insn (x);
4173 if (code == CODE_LABEL)
4174 return emit_label (x);
4175 else if (code == INSN)
4176 return emit_insn (x);
4177 else if (code == JUMP_INSN)
4179 rtx insn = emit_jump_insn (x);
4180 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4181 return emit_barrier ();
4182 return insn;
4184 else if (code == CALL_INSN)
4185 return emit_call_insn (x);
4186 else
4187 abort ();
4190 /* Begin emitting insns to a sequence which can be packaged in an
4191 RTL_EXPR. If this sequence will contain something that might cause
4192 the compiler to pop arguments to function calls (because those
4193 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4194 details), use do_pending_stack_adjust before calling this function.
4195 That will ensure that the deferred pops are not accidentally
4196 emitted in the middle of this sequence. */
4198 void
4199 start_sequence ()
4201 struct sequence_stack *tem;
4203 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
4205 tem->next = seq_stack;
4206 tem->first = first_insn;
4207 tem->last = last_insn;
4208 tem->sequence_rtl_expr = seq_rtl_expr;
4210 seq_stack = tem;
4212 first_insn = 0;
4213 last_insn = 0;
4216 /* Similarly, but indicate that this sequence will be placed in T, an
4217 RTL_EXPR. See the documentation for start_sequence for more
4218 information about how to use this function. */
4220 void
4221 start_sequence_for_rtl_expr (t)
4222 tree t;
4224 start_sequence ();
4226 seq_rtl_expr = t;
4229 /* Set up the insn chain starting with FIRST as the current sequence,
4230 saving the previously current one. See the documentation for
4231 start_sequence for more information about how to use this function. */
4233 void
4234 push_to_sequence (first)
4235 rtx first;
4237 rtx last;
4239 start_sequence ();
4241 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4243 first_insn = first;
4244 last_insn = last;
4247 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4249 void
4250 push_to_full_sequence (first, last)
4251 rtx first, last;
4253 start_sequence ();
4254 first_insn = first;
4255 last_insn = last;
4256 /* We really should have the end of the insn chain here. */
4257 if (last && NEXT_INSN (last))
4258 abort ();
4261 /* Set up the outer-level insn chain
4262 as the current sequence, saving the previously current one. */
4264 void
4265 push_topmost_sequence ()
4267 struct sequence_stack *stack, *top = NULL;
4269 start_sequence ();
4271 for (stack = seq_stack; stack; stack = stack->next)
4272 top = stack;
4274 first_insn = top->first;
4275 last_insn = top->last;
4276 seq_rtl_expr = top->sequence_rtl_expr;
4279 /* After emitting to the outer-level insn chain, update the outer-level
4280 insn chain, and restore the previous saved state. */
4282 void
4283 pop_topmost_sequence ()
4285 struct sequence_stack *stack, *top = NULL;
4287 for (stack = seq_stack; stack; stack = stack->next)
4288 top = stack;
4290 top->first = first_insn;
4291 top->last = last_insn;
4292 /* ??? Why don't we save seq_rtl_expr here? */
4294 end_sequence ();
4297 /* After emitting to a sequence, restore previous saved state.
4299 To get the contents of the sequence just made, you must call
4300 `gen_sequence' *before* calling here.
4302 If the compiler might have deferred popping arguments while
4303 generating this sequence, and this sequence will not be immediately
4304 inserted into the instruction stream, use do_pending_stack_adjust
4305 before calling gen_sequence. That will ensure that the deferred
4306 pops are inserted into this sequence, and not into some random
4307 location in the instruction stream. See INHIBIT_DEFER_POP for more
4308 information about deferred popping of arguments. */
4310 void
4311 end_sequence ()
4313 struct sequence_stack *tem = seq_stack;
4315 first_insn = tem->first;
4316 last_insn = tem->last;
4317 seq_rtl_expr = tem->sequence_rtl_expr;
4318 seq_stack = tem->next;
4320 free (tem);
4323 /* This works like end_sequence, but records the old sequence in FIRST
4324 and LAST. */
4326 void
4327 end_full_sequence (first, last)
4328 rtx *first, *last;
4330 *first = first_insn;
4331 *last = last_insn;
4332 end_sequence();
4335 /* Return 1 if currently emitting into a sequence. */
4338 in_sequence_p ()
4340 return seq_stack != 0;
4343 /* Generate a SEQUENCE rtx containing the insns already emitted
4344 to the current sequence.
4346 This is how the gen_... function from a DEFINE_EXPAND
4347 constructs the SEQUENCE that it returns. */
4350 gen_sequence ()
4352 rtx result;
4353 rtx tem;
4354 int i;
4355 int len;
4357 /* Count the insns in the chain. */
4358 len = 0;
4359 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4360 len++;
4362 /* If only one insn, return it rather than a SEQUENCE.
4363 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
4364 the case of an empty list.)
4365 We only return the pattern of an insn if its code is INSN and it
4366 has no notes. This ensures that no information gets lost. */
4367 if (len == 1
4368 && ! RTX_FRAME_RELATED_P (first_insn)
4369 && GET_CODE (first_insn) == INSN
4370 /* Don't throw away any reg notes. */
4371 && REG_NOTES (first_insn) == 0)
4372 return PATTERN (first_insn);
4374 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
4376 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4377 XVECEXP (result, 0, i) = tem;
4379 return result;
4382 /* Put the various virtual registers into REGNO_REG_RTX. */
4384 void
4385 init_virtual_regs (es)
4386 struct emit_status *es;
4388 rtx *ptr = es->x_regno_reg_rtx;
4389 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4390 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4391 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4392 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4393 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4396 void
4397 clear_emit_caches ()
4399 int i;
4401 /* Clear the start_sequence/gen_sequence cache. */
4402 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4403 sequence_result[i] = 0;
4404 free_insn = 0;
4407 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4408 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4409 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4410 static int copy_insn_n_scratches;
4412 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4413 copied an ASM_OPERANDS.
4414 In that case, it is the original input-operand vector. */
4415 static rtvec orig_asm_operands_vector;
4417 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4418 copied an ASM_OPERANDS.
4419 In that case, it is the copied input-operand vector. */
4420 static rtvec copy_asm_operands_vector;
4422 /* Likewise for the constraints vector. */
4423 static rtvec orig_asm_constraints_vector;
4424 static rtvec copy_asm_constraints_vector;
4426 /* Recursively create a new copy of an rtx for copy_insn.
4427 This function differs from copy_rtx in that it handles SCRATCHes and
4428 ASM_OPERANDs properly.
4429 Normally, this function is not used directly; use copy_insn as front end.
4430 However, you could first copy an insn pattern with copy_insn and then use
4431 this function afterwards to properly copy any REG_NOTEs containing
4432 SCRATCHes. */
4435 copy_insn_1 (orig)
4436 rtx orig;
4438 rtx copy;
4439 int i, j;
4440 RTX_CODE code;
4441 const char *format_ptr;
4443 code = GET_CODE (orig);
4445 switch (code)
4447 case REG:
4448 case QUEUED:
4449 case CONST_INT:
4450 case CONST_DOUBLE:
4451 case SYMBOL_REF:
4452 case CODE_LABEL:
4453 case PC:
4454 case CC0:
4455 case ADDRESSOF:
4456 return orig;
4458 case SCRATCH:
4459 for (i = 0; i < copy_insn_n_scratches; i++)
4460 if (copy_insn_scratch_in[i] == orig)
4461 return copy_insn_scratch_out[i];
4462 break;
4464 case CONST:
4465 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4466 a LABEL_REF, it isn't sharable. */
4467 if (GET_CODE (XEXP (orig, 0)) == PLUS
4468 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4469 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4470 return orig;
4471 break;
4473 /* A MEM with a constant address is not sharable. The problem is that
4474 the constant address may need to be reloaded. If the mem is shared,
4475 then reloading one copy of this mem will cause all copies to appear
4476 to have been reloaded. */
4478 default:
4479 break;
4482 copy = rtx_alloc (code);
4484 /* Copy the various flags, and other information. We assume that
4485 all fields need copying, and then clear the fields that should
4486 not be copied. That is the sensible default behavior, and forces
4487 us to explicitly document why we are *not* copying a flag. */
4488 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4490 /* We do not copy the USED flag, which is used as a mark bit during
4491 walks over the RTL. */
4492 copy->used = 0;
4494 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4495 if (GET_RTX_CLASS (code) == 'i')
4497 copy->jump = 0;
4498 copy->call = 0;
4499 copy->frame_related = 0;
4502 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4504 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4506 copy->fld[i] = orig->fld[i];
4507 switch (*format_ptr++)
4509 case 'e':
4510 if (XEXP (orig, i) != NULL)
4511 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4512 break;
4514 case 'E':
4515 case 'V':
4516 if (XVEC (orig, i) == orig_asm_constraints_vector)
4517 XVEC (copy, i) = copy_asm_constraints_vector;
4518 else if (XVEC (orig, i) == orig_asm_operands_vector)
4519 XVEC (copy, i) = copy_asm_operands_vector;
4520 else if (XVEC (orig, i) != NULL)
4522 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4523 for (j = 0; j < XVECLEN (copy, i); j++)
4524 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4526 break;
4528 case 't':
4529 case 'w':
4530 case 'i':
4531 case 's':
4532 case 'S':
4533 case 'u':
4534 case '0':
4535 /* These are left unchanged. */
4536 break;
4538 default:
4539 abort ();
4543 if (code == SCRATCH)
4545 i = copy_insn_n_scratches++;
4546 if (i >= MAX_RECOG_OPERANDS)
4547 abort ();
4548 copy_insn_scratch_in[i] = orig;
4549 copy_insn_scratch_out[i] = copy;
4551 else if (code == ASM_OPERANDS)
4553 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4554 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4555 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4556 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4559 return copy;
4562 /* Create a new copy of an rtx.
4563 This function differs from copy_rtx in that it handles SCRATCHes and
4564 ASM_OPERANDs properly.
4565 INSN doesn't really have to be a full INSN; it could be just the
4566 pattern. */
4568 copy_insn (insn)
4569 rtx insn;
4571 copy_insn_n_scratches = 0;
4572 orig_asm_operands_vector = 0;
4573 orig_asm_constraints_vector = 0;
4574 copy_asm_operands_vector = 0;
4575 copy_asm_constraints_vector = 0;
4576 return copy_insn_1 (insn);
4579 /* Initialize data structures and variables in this file
4580 before generating rtl for each function. */
4582 void
4583 init_emit ()
4585 struct function *f = cfun;
4587 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4588 first_insn = NULL;
4589 last_insn = NULL;
4590 seq_rtl_expr = NULL;
4591 cur_insn_uid = 1;
4592 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4593 last_linenum = 0;
4594 last_filename = 0;
4595 first_label_num = label_num;
4596 last_label_num = 0;
4597 seq_stack = NULL;
4599 clear_emit_caches ();
4601 /* Init the tables that describe all the pseudo regs. */
4603 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4605 f->emit->regno_pointer_align
4606 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4607 sizeof (unsigned char));
4609 regno_reg_rtx
4610 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4612 f->emit->regno_decl
4613 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
4615 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4616 init_virtual_regs (f->emit);
4618 /* Indicate that the virtual registers and stack locations are
4619 all pointers. */
4620 REG_POINTER (stack_pointer_rtx) = 1;
4621 REG_POINTER (frame_pointer_rtx) = 1;
4622 REG_POINTER (hard_frame_pointer_rtx) = 1;
4623 REG_POINTER (arg_pointer_rtx) = 1;
4625 REG_POINTER (virtual_incoming_args_rtx) = 1;
4626 REG_POINTER (virtual_stack_vars_rtx) = 1;
4627 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4628 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4629 REG_POINTER (virtual_cfa_rtx) = 1;
4631 #ifdef STACK_BOUNDARY
4632 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4633 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4634 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4635 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4637 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4638 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4639 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4640 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4641 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4642 #endif
4644 #ifdef INIT_EXPANDERS
4645 INIT_EXPANDERS;
4646 #endif
4649 /* Mark SS for GC. */
4651 static void
4652 mark_sequence_stack (ss)
4653 struct sequence_stack *ss;
4655 while (ss)
4657 ggc_mark_rtx (ss->first);
4658 ggc_mark_tree (ss->sequence_rtl_expr);
4659 ss = ss->next;
4663 /* Mark ES for GC. */
4665 void
4666 mark_emit_status (es)
4667 struct emit_status *es;
4669 rtx *r;
4670 tree *t;
4671 int i;
4673 if (es == 0)
4674 return;
4676 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4677 t = es->regno_decl;
4678 i > 0; --i, ++r, ++t)
4680 ggc_mark_rtx (*r);
4681 ggc_mark_tree (*t);
4684 mark_sequence_stack (es->sequence_stack);
4685 ggc_mark_tree (es->sequence_rtl_expr);
4686 ggc_mark_rtx (es->x_first_insn);
4689 /* Create some permanent unique rtl objects shared between all functions.
4690 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4692 void
4693 init_emit_once (line_numbers)
4694 int line_numbers;
4696 int i;
4697 enum machine_mode mode;
4698 enum machine_mode double_mode;
4700 /* Initialize the CONST_INT and memory attribute hash tables. */
4701 const_int_htab = htab_create (37, const_int_htab_hash,
4702 const_int_htab_eq, NULL);
4703 ggc_add_deletable_htab (const_int_htab, 0, 0);
4705 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4706 mem_attrs_htab_eq, NULL);
4707 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
4709 no_line_numbers = ! line_numbers;
4711 /* Compute the word and byte modes. */
4713 byte_mode = VOIDmode;
4714 word_mode = VOIDmode;
4715 double_mode = VOIDmode;
4717 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4718 mode = GET_MODE_WIDER_MODE (mode))
4720 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4721 && byte_mode == VOIDmode)
4722 byte_mode = mode;
4724 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4725 && word_mode == VOIDmode)
4726 word_mode = mode;
4729 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4730 mode = GET_MODE_WIDER_MODE (mode))
4732 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4733 && double_mode == VOIDmode)
4734 double_mode = mode;
4737 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4739 /* Assign register numbers to the globally defined register rtx.
4740 This must be done at runtime because the register number field
4741 is in a union and some compilers can't initialize unions. */
4743 pc_rtx = gen_rtx (PC, VOIDmode);
4744 cc0_rtx = gen_rtx (CC0, VOIDmode);
4745 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4746 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4747 if (hard_frame_pointer_rtx == 0)
4748 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4749 HARD_FRAME_POINTER_REGNUM);
4750 if (arg_pointer_rtx == 0)
4751 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4752 virtual_incoming_args_rtx =
4753 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4754 virtual_stack_vars_rtx =
4755 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4756 virtual_stack_dynamic_rtx =
4757 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4758 virtual_outgoing_args_rtx =
4759 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4760 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4762 /* These rtx must be roots if GC is enabled. */
4763 ggc_add_rtx_root (global_rtl, GR_MAX);
4765 #ifdef INIT_EXPANDERS
4766 /* This is to initialize {init|mark|free}_machine_status before the first
4767 call to push_function_context_to. This is needed by the Chill front
4768 end which calls push_function_context_to before the first call to
4769 init_function_start. */
4770 INIT_EXPANDERS;
4771 #endif
4773 /* Create the unique rtx's for certain rtx codes and operand values. */
4775 /* Don't use gen_rtx here since gen_rtx in this case
4776 tries to use these variables. */
4777 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4778 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4779 gen_rtx_raw_CONST_INT (VOIDmode, i);
4780 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4782 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4783 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4784 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4785 else
4786 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4788 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4789 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4790 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4791 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4793 for (i = 0; i <= 2; i++)
4795 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4796 mode = GET_MODE_WIDER_MODE (mode))
4798 rtx tem = rtx_alloc (CONST_DOUBLE);
4799 union real_extract u;
4801 /* Zero any holes in a structure. */
4802 memset ((char *) &u, 0, sizeof u);
4803 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4805 /* Avoid trailing garbage in the rtx. */
4806 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4807 CONST_DOUBLE_LOW (tem) = 0;
4808 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4809 CONST_DOUBLE_HIGH (tem) = 0;
4811 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4812 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4813 PUT_MODE (tem, mode);
4815 const_tiny_rtx[i][(int) mode] = tem;
4818 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4820 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4821 mode = GET_MODE_WIDER_MODE (mode))
4822 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4824 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4825 mode != VOIDmode;
4826 mode = GET_MODE_WIDER_MODE (mode))
4827 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4830 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4831 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4832 const_tiny_rtx[0][i] = const0_rtx;
4834 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4835 if (STORE_FLAG_VALUE == 1)
4836 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4838 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4839 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4840 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4841 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4842 ggc_add_rtx_root (&const_true_rtx, 1);
4844 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4845 return_address_pointer_rtx
4846 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4847 #endif
4849 #ifdef STRUCT_VALUE
4850 struct_value_rtx = STRUCT_VALUE;
4851 #else
4852 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4853 #endif
4855 #ifdef STRUCT_VALUE_INCOMING
4856 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4857 #else
4858 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4859 struct_value_incoming_rtx
4860 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4861 #else
4862 struct_value_incoming_rtx = struct_value_rtx;
4863 #endif
4864 #endif
4866 #ifdef STATIC_CHAIN_REGNUM
4867 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4869 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4870 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4871 static_chain_incoming_rtx
4872 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4873 else
4874 #endif
4875 static_chain_incoming_rtx = static_chain_rtx;
4876 #endif
4878 #ifdef STATIC_CHAIN
4879 static_chain_rtx = STATIC_CHAIN;
4881 #ifdef STATIC_CHAIN_INCOMING
4882 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4883 #else
4884 static_chain_incoming_rtx = static_chain_rtx;
4885 #endif
4886 #endif
4888 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4889 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4891 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4892 ggc_add_rtx_root (&struct_value_rtx, 1);
4893 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4894 ggc_add_rtx_root (&static_chain_rtx, 1);
4895 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4896 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4899 /* Query and clear/ restore no_line_numbers. This is used by the
4900 switch / case handling in stmt.c to give proper line numbers in
4901 warnings about unreachable code. */
4904 force_line_numbers ()
4906 int old = no_line_numbers;
4908 no_line_numbers = 0;
4909 if (old)
4910 force_next_line_note ();
4911 return old;
4914 void
4915 restore_line_number_status (old_value)
4916 int old_value;
4918 no_line_numbers = old_value;