1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
69 #include "coretypes.h"
72 #include "stor-layout.h"
73 #include "stringpool.h"
74 #include "print-tree.h"
75 #include "tree-inline.h"
76 #include "langhooks.h"
78 #include "diagnostic.h"
79 #include "gimple-pretty-print.h"
81 #include "tree-pass.h"
83 #include "basic-block.h"
84 #include "tree-ssa-alias.h"
85 #include "internal-fn.h"
86 #include "gimple-expr.h"
89 #include "gimple-iterator.h"
90 #include "gimple-ssa.h"
92 #include "tree-phinodes.h"
93 #include "ssa-iterators.h"
94 #include "tree-ssanames.h"
95 #include "tree-ssa-loop-niter.h"
96 #include "tree-ssa-loop.h"
98 #include "lto-streamer.h"
99 #include "data-streamer.h"
100 #include "tree-streamer.h"
101 #include "ipa-inline.h"
102 #include "alloc-pool.h"
104 #include "tree-scalar-evolution.h"
105 #include "ipa-utils.h"
107 #include "cfgexpand.h"
109 /* Estimate runtime of function can easilly run into huge numbers with many
110 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
111 integer. For anything larger we use gcov_type. */
112 #define MAX_TIME 500000
114 /* Number of bits in integer, but we really want to be stable across different
116 #define NUM_CONDITIONS 32
118 enum predicate_conditions
120 predicate_false_condition
= 0,
121 predicate_not_inlined_condition
= 1,
122 predicate_first_dynamic_condition
= 2
125 /* Special condition code we use to represent test that operand is compile time
127 #define IS_NOT_CONSTANT ERROR_MARK
128 /* Special condition code we use to represent test that operand is not changed
129 across invocation of the function. When operand IS_NOT_CONSTANT it is always
130 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
131 of executions even when they are not compile time constants. */
132 #define CHANGED IDENTIFIER_NODE
134 /* Holders of ipa cgraph hooks: */
135 static struct cgraph_node_hook_list
*function_insertion_hook_holder
;
136 static struct cgraph_node_hook_list
*node_removal_hook_holder
;
137 static struct cgraph_2node_hook_list
*node_duplication_hook_holder
;
138 static struct cgraph_2edge_hook_list
*edge_duplication_hook_holder
;
139 static struct cgraph_edge_hook_list
*edge_removal_hook_holder
;
140 static void inline_node_removal_hook (struct cgraph_node
*, void *);
141 static void inline_node_duplication_hook (struct cgraph_node
*,
142 struct cgraph_node
*, void *);
143 static void inline_edge_removal_hook (struct cgraph_edge
*, void *);
144 static void inline_edge_duplication_hook (struct cgraph_edge
*,
145 struct cgraph_edge
*, void *);
147 /* VECtor holding inline summaries.
148 In GGC memory because conditions might point to constant trees. */
149 vec
<inline_summary_t
, va_gc
> *inline_summary_vec
;
150 vec
<inline_edge_summary_t
> inline_edge_summary_vec
;
152 /* Cached node/edge growths. */
153 vec
<int> node_growth_cache
;
154 vec
<edge_growth_cache_entry
> edge_growth_cache
;
156 /* Edge predicates goes here. */
157 static alloc_pool edge_predicate_pool
;
159 /* Return true predicate (tautology).
160 We represent it by empty list of clauses. */
162 static inline struct predicate
163 true_predicate (void)
171 /* Return predicate testing single condition number COND. */
173 static inline struct predicate
174 single_cond_predicate (int cond
)
177 p
.clause
[0] = 1 << cond
;
183 /* Return false predicate. First clause require false condition. */
185 static inline struct predicate
186 false_predicate (void)
188 return single_cond_predicate (predicate_false_condition
);
192 /* Return true if P is (true). */
195 true_predicate_p (struct predicate
*p
)
197 return !p
->clause
[0];
201 /* Return true if P is (false). */
204 false_predicate_p (struct predicate
*p
)
206 if (p
->clause
[0] == (1 << predicate_false_condition
))
208 gcc_checking_assert (!p
->clause
[1]
209 && p
->clause
[0] == 1 << predicate_false_condition
);
216 /* Return predicate that is set true when function is not inlined. */
218 static inline struct predicate
219 not_inlined_predicate (void)
221 return single_cond_predicate (predicate_not_inlined_condition
);
224 /* Simple description of whether a memory load or a condition refers to a load
225 from an aggregate and if so, how and where from in the aggregate.
226 Individual fields have the same meaning like fields with the same name in
229 struct agg_position_info
231 HOST_WIDE_INT offset
;
236 /* Add condition to condition list CONDS. AGGPOS describes whether the used
237 oprand is loaded from an aggregate and where in the aggregate it is. It can
238 be NULL, which means this not a load from an aggregate. */
240 static struct predicate
241 add_condition (struct inline_summary
*summary
, int operand_num
,
242 struct agg_position_info
*aggpos
,
243 enum tree_code code
, tree val
)
247 struct condition new_cond
;
248 HOST_WIDE_INT offset
;
249 bool agg_contents
, by_ref
;
253 offset
= aggpos
->offset
;
254 agg_contents
= aggpos
->agg_contents
;
255 by_ref
= aggpos
->by_ref
;
260 agg_contents
= false;
264 gcc_checking_assert (operand_num
>= 0);
265 for (i
= 0; vec_safe_iterate (summary
->conds
, i
, &c
); i
++)
267 if (c
->operand_num
== operand_num
270 && c
->agg_contents
== agg_contents
271 && (!agg_contents
|| (c
->offset
== offset
&& c
->by_ref
== by_ref
)))
272 return single_cond_predicate (i
+ predicate_first_dynamic_condition
);
274 /* Too many conditions. Give up and return constant true. */
275 if (i
== NUM_CONDITIONS
- predicate_first_dynamic_condition
)
276 return true_predicate ();
278 new_cond
.operand_num
= operand_num
;
279 new_cond
.code
= code
;
281 new_cond
.agg_contents
= agg_contents
;
282 new_cond
.by_ref
= by_ref
;
283 new_cond
.offset
= offset
;
284 vec_safe_push (summary
->conds
, new_cond
);
285 return single_cond_predicate (i
+ predicate_first_dynamic_condition
);
289 /* Add clause CLAUSE into the predicate P. */
292 add_clause (conditions conditions
, struct predicate
*p
, clause_t clause
)
296 int insert_here
= -1;
303 /* False clause makes the whole predicate false. Kill the other variants. */
304 if (clause
== (1 << predicate_false_condition
))
306 p
->clause
[0] = (1 << predicate_false_condition
);
310 if (false_predicate_p (p
))
313 /* No one should be silly enough to add false into nontrivial clauses. */
314 gcc_checking_assert (!(clause
& (1 << predicate_false_condition
)));
316 /* Look where to insert the clause. At the same time prune out
317 clauses of P that are implied by the new clause and thus
319 for (i
= 0, i2
= 0; i
<= MAX_CLAUSES
; i
++)
321 p
->clause
[i2
] = p
->clause
[i
];
326 /* If p->clause[i] implies clause, there is nothing to add. */
327 if ((p
->clause
[i
] & clause
) == p
->clause
[i
])
329 /* We had nothing to add, none of clauses should've become
331 gcc_checking_assert (i
== i2
);
335 if (p
->clause
[i
] < clause
&& insert_here
< 0)
338 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
339 Otherwise the p->clause[i] has to stay. */
340 if ((p
->clause
[i
] & clause
) != clause
)
344 /* Look for clauses that are obviously true. I.e.
345 op0 == 5 || op0 != 5. */
346 for (c1
= predicate_first_dynamic_condition
; c1
< NUM_CONDITIONS
; c1
++)
349 if (!(clause
& (1 << c1
)))
351 cc1
= &(*conditions
)[c1
- predicate_first_dynamic_condition
];
352 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
353 and thus there is no point for looking for them. */
354 if (cc1
->code
== CHANGED
|| cc1
->code
== IS_NOT_CONSTANT
)
356 for (c2
= c1
+ 1; c2
< NUM_CONDITIONS
; c2
++)
357 if (clause
& (1 << c2
))
360 &(*conditions
)[c1
- predicate_first_dynamic_condition
];
362 &(*conditions
)[c2
- predicate_first_dynamic_condition
];
363 if (cc1
->operand_num
== cc2
->operand_num
364 && cc1
->val
== cc2
->val
365 && cc2
->code
!= IS_NOT_CONSTANT
366 && cc2
->code
!= CHANGED
367 && cc1
->code
== invert_tree_comparison
369 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1
->val
)))))
375 /* We run out of variants. Be conservative in positive direction. */
376 if (i2
== MAX_CLAUSES
)
378 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
379 p
->clause
[i2
+ 1] = 0;
380 if (insert_here
>= 0)
381 for (; i2
> insert_here
; i2
--)
382 p
->clause
[i2
] = p
->clause
[i2
- 1];
385 p
->clause
[insert_here
] = clause
;
391 static struct predicate
392 and_predicates (conditions conditions
,
393 struct predicate
*p
, struct predicate
*p2
)
395 struct predicate out
= *p
;
398 /* Avoid busy work. */
399 if (false_predicate_p (p2
) || true_predicate_p (p
))
401 if (false_predicate_p (p
) || true_predicate_p (p2
))
404 /* See how far predicates match. */
405 for (i
= 0; p
->clause
[i
] && p
->clause
[i
] == p2
->clause
[i
]; i
++)
407 gcc_checking_assert (i
< MAX_CLAUSES
);
410 /* Combine the predicates rest. */
411 for (; p2
->clause
[i
]; i
++)
413 gcc_checking_assert (i
< MAX_CLAUSES
);
414 add_clause (conditions
, &out
, p2
->clause
[i
]);
420 /* Return true if predicates are obviously equal. */
423 predicates_equal_p (struct predicate
*p
, struct predicate
*p2
)
426 for (i
= 0; p
->clause
[i
]; i
++)
428 gcc_checking_assert (i
< MAX_CLAUSES
);
429 gcc_checking_assert (p
->clause
[i
] > p
->clause
[i
+ 1]);
430 gcc_checking_assert (!p2
->clause
[i
]
431 || p2
->clause
[i
] > p2
->clause
[i
+ 1]);
432 if (p
->clause
[i
] != p2
->clause
[i
])
435 return !p2
->clause
[i
];
441 static struct predicate
442 or_predicates (conditions conditions
,
443 struct predicate
*p
, struct predicate
*p2
)
445 struct predicate out
= true_predicate ();
448 /* Avoid busy work. */
449 if (false_predicate_p (p2
) || true_predicate_p (p
))
451 if (false_predicate_p (p
) || true_predicate_p (p2
))
453 if (predicates_equal_p (p
, p2
))
456 /* OK, combine the predicates. */
457 for (i
= 0; p
->clause
[i
]; i
++)
458 for (j
= 0; p2
->clause
[j
]; j
++)
460 gcc_checking_assert (i
< MAX_CLAUSES
&& j
< MAX_CLAUSES
);
461 add_clause (conditions
, &out
, p
->clause
[i
] | p2
->clause
[j
]);
467 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
468 if predicate P is known to be false. */
471 evaluate_predicate (struct predicate
*p
, clause_t possible_truths
)
475 /* True remains true. */
476 if (true_predicate_p (p
))
479 gcc_assert (!(possible_truths
& (1 << predicate_false_condition
)));
481 /* See if we can find clause we can disprove. */
482 for (i
= 0; p
->clause
[i
]; i
++)
484 gcc_checking_assert (i
< MAX_CLAUSES
);
485 if (!(p
->clause
[i
] & possible_truths
))
491 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
492 instruction will be recomputed per invocation of the inlined call. */
495 predicate_probability (conditions conds
,
496 struct predicate
*p
, clause_t possible_truths
,
497 vec
<inline_param_summary
> inline_param_summary
)
500 int combined_prob
= REG_BR_PROB_BASE
;
502 /* True remains true. */
503 if (true_predicate_p (p
))
504 return REG_BR_PROB_BASE
;
506 if (false_predicate_p (p
))
509 gcc_assert (!(possible_truths
& (1 << predicate_false_condition
)));
511 /* See if we can find clause we can disprove. */
512 for (i
= 0; p
->clause
[i
]; i
++)
514 gcc_checking_assert (i
< MAX_CLAUSES
);
515 if (!(p
->clause
[i
] & possible_truths
))
521 if (!inline_param_summary
.exists ())
522 return REG_BR_PROB_BASE
;
523 for (i2
= 0; i2
< NUM_CONDITIONS
; i2
++)
524 if ((p
->clause
[i
] & possible_truths
) & (1 << i2
))
526 if (i2
>= predicate_first_dynamic_condition
)
529 &(*conds
)[i2
- predicate_first_dynamic_condition
];
530 if (c
->code
== CHANGED
532 (int) inline_param_summary
.length ()))
535 inline_param_summary
[c
->operand_num
].change_prob
;
536 this_prob
= MAX (this_prob
, iprob
);
539 this_prob
= REG_BR_PROB_BASE
;
542 this_prob
= REG_BR_PROB_BASE
;
544 combined_prob
= MIN (this_prob
, combined_prob
);
549 return combined_prob
;
553 /* Dump conditional COND. */
556 dump_condition (FILE *f
, conditions conditions
, int cond
)
559 if (cond
== predicate_false_condition
)
560 fprintf (f
, "false");
561 else if (cond
== predicate_not_inlined_condition
)
562 fprintf (f
, "not inlined");
565 c
= &(*conditions
)[cond
- predicate_first_dynamic_condition
];
566 fprintf (f
, "op%i", c
->operand_num
);
568 fprintf (f
, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
"]",
569 c
->by_ref
? "ref " : "", c
->offset
);
570 if (c
->code
== IS_NOT_CONSTANT
)
572 fprintf (f
, " not constant");
575 if (c
->code
== CHANGED
)
577 fprintf (f
, " changed");
580 fprintf (f
, " %s ", op_symbol_code (c
->code
));
581 print_generic_expr (f
, c
->val
, 1);
586 /* Dump clause CLAUSE. */
589 dump_clause (FILE *f
, conditions conds
, clause_t clause
)
596 for (i
= 0; i
< NUM_CONDITIONS
; i
++)
597 if (clause
& (1 << i
))
602 dump_condition (f
, conds
, i
);
608 /* Dump predicate PREDICATE. */
611 dump_predicate (FILE *f
, conditions conds
, struct predicate
*pred
)
614 if (true_predicate_p (pred
))
615 dump_clause (f
, conds
, 0);
617 for (i
= 0; pred
->clause
[i
]; i
++)
621 dump_clause (f
, conds
, pred
->clause
[i
]);
627 /* Dump inline hints. */
629 dump_inline_hints (FILE *f
, inline_hints hints
)
633 fprintf (f
, "inline hints:");
634 if (hints
& INLINE_HINT_indirect_call
)
636 hints
&= ~INLINE_HINT_indirect_call
;
637 fprintf (f
, " indirect_call");
639 if (hints
& INLINE_HINT_loop_iterations
)
641 hints
&= ~INLINE_HINT_loop_iterations
;
642 fprintf (f
, " loop_iterations");
644 if (hints
& INLINE_HINT_loop_stride
)
646 hints
&= ~INLINE_HINT_loop_stride
;
647 fprintf (f
, " loop_stride");
649 if (hints
& INLINE_HINT_same_scc
)
651 hints
&= ~INLINE_HINT_same_scc
;
652 fprintf (f
, " same_scc");
654 if (hints
& INLINE_HINT_in_scc
)
656 hints
&= ~INLINE_HINT_in_scc
;
657 fprintf (f
, " in_scc");
659 if (hints
& INLINE_HINT_cross_module
)
661 hints
&= ~INLINE_HINT_cross_module
;
662 fprintf (f
, " cross_module");
664 if (hints
& INLINE_HINT_declared_inline
)
666 hints
&= ~INLINE_HINT_declared_inline
;
667 fprintf (f
, " declared_inline");
669 if (hints
& INLINE_HINT_array_index
)
671 hints
&= ~INLINE_HINT_array_index
;
672 fprintf (f
, " array_index");
678 /* Record SIZE and TIME under condition PRED into the inline summary. */
681 account_size_time (struct inline_summary
*summary
, int size
, int time
,
682 struct predicate
*pred
)
688 if (false_predicate_p (pred
))
691 /* We need to create initial empty unconitional clause, but otherwie
692 we don't need to account empty times and sizes. */
693 if (!size
&& !time
&& summary
->entry
)
696 /* Watch overflow that might result from insane profiles. */
697 if (time
> MAX_TIME
* INLINE_TIME_SCALE
)
698 time
= MAX_TIME
* INLINE_TIME_SCALE
;
699 gcc_assert (time
>= 0);
701 for (i
= 0; vec_safe_iterate (summary
->entry
, i
, &e
); i
++)
702 if (predicates_equal_p (&e
->predicate
, pred
))
711 e
= &(*summary
->entry
)[0];
712 gcc_assert (!e
->predicate
.clause
[0]);
713 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
715 "\t\tReached limit on number of entries, "
716 "ignoring the predicate.");
718 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && (time
|| size
))
721 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
722 ((double) size
) / INLINE_SIZE_SCALE
,
723 ((double) time
) / INLINE_TIME_SCALE
, found
? "" : "new ");
724 dump_predicate (dump_file
, summary
->conds
, pred
);
728 struct size_time_entry new_entry
;
729 new_entry
.size
= size
;
730 new_entry
.time
= time
;
731 new_entry
.predicate
= *pred
;
732 vec_safe_push (summary
->entry
, new_entry
);
738 if (e
->time
> MAX_TIME
* INLINE_TIME_SCALE
)
739 e
->time
= MAX_TIME
* INLINE_TIME_SCALE
;
743 /* Set predicate for edge E. */
746 edge_set_predicate (struct cgraph_edge
*e
, struct predicate
*predicate
)
748 struct inline_edge_summary
*es
= inline_edge_summary (e
);
749 if (predicate
&& !true_predicate_p (predicate
))
752 es
->predicate
= (struct predicate
*) pool_alloc (edge_predicate_pool
);
753 *es
->predicate
= *predicate
;
758 pool_free (edge_predicate_pool
, es
->predicate
);
759 es
->predicate
= NULL
;
763 /* Set predicate for hint *P. */
766 set_hint_predicate (struct predicate
**p
, struct predicate new_predicate
)
768 if (false_predicate_p (&new_predicate
) || true_predicate_p (&new_predicate
))
771 pool_free (edge_predicate_pool
, *p
);
777 *p
= (struct predicate
*) pool_alloc (edge_predicate_pool
);
783 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
784 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
785 Return clause of possible truths. When INLINE_P is true, assume that we are
788 ERROR_MARK means compile time invariant. */
791 evaluate_conditions_for_known_args (struct cgraph_node
*node
,
793 vec
<tree
> known_vals
,
794 vec
<ipa_agg_jump_function_p
>
797 clause_t clause
= inline_p
? 0 : 1 << predicate_not_inlined_condition
;
798 struct inline_summary
*info
= inline_summary (node
);
802 for (i
= 0; vec_safe_iterate (info
->conds
, i
, &c
); i
++)
807 /* We allow call stmt to have fewer arguments than the callee function
808 (especially for K&R style programs). So bound check here (we assume
809 known_aggs vector, if non-NULL, has the same length as
811 gcc_checking_assert (!known_aggs
.exists ()
812 || (known_vals
.length () == known_aggs
.length ()));
813 if (c
->operand_num
>= (int) known_vals
.length ())
815 clause
|= 1 << (i
+ predicate_first_dynamic_condition
);
821 struct ipa_agg_jump_function
*agg
;
823 if (c
->code
== CHANGED
825 && (known_vals
[c
->operand_num
] == error_mark_node
))
828 if (known_aggs
.exists ())
830 agg
= known_aggs
[c
->operand_num
];
831 val
= ipa_find_agg_cst_for_param (agg
, c
->offset
, c
->by_ref
);
838 val
= known_vals
[c
->operand_num
];
839 if (val
== error_mark_node
&& c
->code
!= CHANGED
)
845 clause
|= 1 << (i
+ predicate_first_dynamic_condition
);
848 if (c
->code
== IS_NOT_CONSTANT
|| c
->code
== CHANGED
)
850 res
= fold_binary_to_constant (c
->code
, boolean_type_node
, val
, c
->val
);
851 if (res
&& integer_zerop (res
))
853 clause
|= 1 << (i
+ predicate_first_dynamic_condition
);
859 /* Work out what conditions might be true at invocation of E. */
862 evaluate_properties_for_edge (struct cgraph_edge
*e
, bool inline_p
,
863 clause_t
*clause_ptr
,
864 vec
<tree
> *known_vals_ptr
,
865 vec
<tree
> *known_binfos_ptr
,
866 vec
<ipa_agg_jump_function_p
> *known_aggs_ptr
)
868 struct cgraph_node
*callee
=
869 cgraph_function_or_thunk_node (e
->callee
, NULL
);
870 struct inline_summary
*info
= inline_summary (callee
);
871 vec
<tree
> known_vals
= vNULL
;
872 vec
<ipa_agg_jump_function_p
> known_aggs
= vNULL
;
875 *clause_ptr
= inline_p
? 0 : 1 << predicate_not_inlined_condition
;
877 known_vals_ptr
->create (0);
878 if (known_binfos_ptr
)
879 known_binfos_ptr
->create (0);
881 if (ipa_node_params_vector
.exists ()
882 && !e
->call_stmt_cannot_inline_p
883 && ((clause_ptr
&& info
->conds
) || known_vals_ptr
|| known_binfos_ptr
))
885 struct ipa_node_params
*parms_info
;
886 struct ipa_edge_args
*args
= IPA_EDGE_REF (e
);
887 struct inline_edge_summary
*es
= inline_edge_summary (e
);
888 int i
, count
= ipa_get_cs_argument_count (args
);
890 if (e
->caller
->global
.inlined_to
)
891 parms_info
= IPA_NODE_REF (e
->caller
->global
.inlined_to
);
893 parms_info
= IPA_NODE_REF (e
->caller
);
895 if (count
&& (info
->conds
|| known_vals_ptr
))
896 known_vals
.safe_grow_cleared (count
);
897 if (count
&& (info
->conds
|| known_aggs_ptr
))
898 known_aggs
.safe_grow_cleared (count
);
899 if (count
&& known_binfos_ptr
)
900 known_binfos_ptr
->safe_grow_cleared (count
);
902 for (i
= 0; i
< count
; i
++)
904 struct ipa_jump_func
*jf
= ipa_get_ith_jump_func (args
, i
);
905 tree cst
= ipa_value_from_jfunc (parms_info
, jf
);
908 if (known_vals
.exists () && TREE_CODE (cst
) != TREE_BINFO
)
910 else if (known_binfos_ptr
!= NULL
911 && TREE_CODE (cst
) == TREE_BINFO
)
912 (*known_binfos_ptr
)[i
] = cst
;
914 else if (inline_p
&& !es
->param
[i
].change_prob
)
915 known_vals
[i
] = error_mark_node
;
916 /* TODO: When IPA-CP starts propagating and merging aggregate jump
917 functions, use its knowledge of the caller too, just like the
918 scalar case above. */
919 known_aggs
[i
] = &jf
->agg
;
924 *clause_ptr
= evaluate_conditions_for_known_args (callee
, inline_p
,
925 known_vals
, known_aggs
);
928 *known_vals_ptr
= known_vals
;
930 known_vals
.release ();
933 *known_aggs_ptr
= known_aggs
;
935 known_aggs
.release ();
939 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
942 inline_summary_alloc (void)
944 if (!node_removal_hook_holder
)
945 node_removal_hook_holder
=
946 cgraph_add_node_removal_hook (&inline_node_removal_hook
, NULL
);
947 if (!edge_removal_hook_holder
)
948 edge_removal_hook_holder
=
949 cgraph_add_edge_removal_hook (&inline_edge_removal_hook
, NULL
);
950 if (!node_duplication_hook_holder
)
951 node_duplication_hook_holder
=
952 cgraph_add_node_duplication_hook (&inline_node_duplication_hook
, NULL
);
953 if (!edge_duplication_hook_holder
)
954 edge_duplication_hook_holder
=
955 cgraph_add_edge_duplication_hook (&inline_edge_duplication_hook
, NULL
);
957 if (vec_safe_length (inline_summary_vec
) <= (unsigned) cgraph_max_uid
)
958 vec_safe_grow_cleared (inline_summary_vec
, cgraph_max_uid
+ 1);
959 if (inline_edge_summary_vec
.length () <= (unsigned) cgraph_edge_max_uid
)
960 inline_edge_summary_vec
.safe_grow_cleared (cgraph_edge_max_uid
+ 1);
961 if (!edge_predicate_pool
)
962 edge_predicate_pool
= create_alloc_pool ("edge predicates",
963 sizeof (struct predicate
), 10);
966 /* We are called multiple time for given function; clear
967 data from previous run so they are not cumulated. */
970 reset_inline_edge_summary (struct cgraph_edge
*e
)
972 if (e
->uid
< (int) inline_edge_summary_vec
.length ())
974 struct inline_edge_summary
*es
= inline_edge_summary (e
);
976 es
->call_stmt_size
= es
->call_stmt_time
= 0;
978 pool_free (edge_predicate_pool
, es
->predicate
);
979 es
->predicate
= NULL
;
980 es
->param
.release ();
984 /* We are called multiple time for given function; clear
985 data from previous run so they are not cumulated. */
988 reset_inline_summary (struct cgraph_node
*node
)
990 struct inline_summary
*info
= inline_summary (node
);
991 struct cgraph_edge
*e
;
993 info
->self_size
= info
->self_time
= 0;
994 info
->estimated_stack_size
= 0;
995 info
->estimated_self_stack_size
= 0;
996 info
->stack_frame_offset
= 0;
1001 if (info
->loop_iterations
)
1003 pool_free (edge_predicate_pool
, info
->loop_iterations
);
1004 info
->loop_iterations
= NULL
;
1006 if (info
->loop_stride
)
1008 pool_free (edge_predicate_pool
, info
->loop_stride
);
1009 info
->loop_stride
= NULL
;
1011 if (info
->array_index
)
1013 pool_free (edge_predicate_pool
, info
->array_index
);
1014 info
->array_index
= NULL
;
1016 vec_free (info
->conds
);
1017 vec_free (info
->entry
);
1018 for (e
= node
->callees
; e
; e
= e
->next_callee
)
1019 reset_inline_edge_summary (e
);
1020 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
1021 reset_inline_edge_summary (e
);
1024 /* Hook that is called by cgraph.c when a node is removed. */
1027 inline_node_removal_hook (struct cgraph_node
*node
,
1028 void *data ATTRIBUTE_UNUSED
)
1030 struct inline_summary
*info
;
1031 if (vec_safe_length (inline_summary_vec
) <= (unsigned) node
->uid
)
1033 info
= inline_summary (node
);
1034 reset_inline_summary (node
);
1035 memset (info
, 0, sizeof (inline_summary_t
));
1038 /* Remap predicate P of former function to be predicate of duplicated function.
1039 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1040 INFO is inline summary of the duplicated node. */
1042 static struct predicate
1043 remap_predicate_after_duplication (struct predicate
*p
,
1044 clause_t possible_truths
,
1045 struct inline_summary
*info
)
1047 struct predicate new_predicate
= true_predicate ();
1049 for (j
= 0; p
->clause
[j
]; j
++)
1050 if (!(possible_truths
& p
->clause
[j
]))
1052 new_predicate
= false_predicate ();
1056 add_clause (info
->conds
, &new_predicate
,
1057 possible_truths
& p
->clause
[j
]);
1058 return new_predicate
;
1061 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1062 Additionally care about allocating new memory slot for updated predicate
1063 and set it to NULL when it becomes true or false (and thus uninteresting).
1067 remap_hint_predicate_after_duplication (struct predicate
**p
,
1068 clause_t possible_truths
,
1069 struct inline_summary
*info
)
1071 struct predicate new_predicate
;
1076 new_predicate
= remap_predicate_after_duplication (*p
,
1077 possible_truths
, info
);
1078 /* We do not want to free previous predicate; it is used by node origin. */
1080 set_hint_predicate (p
, new_predicate
);
1084 /* Hook that is called by cgraph.c when a node is duplicated. */
1087 inline_node_duplication_hook (struct cgraph_node
*src
,
1088 struct cgraph_node
*dst
,
1089 ATTRIBUTE_UNUSED
void *data
)
1091 struct inline_summary
*info
;
1092 inline_summary_alloc ();
1093 info
= inline_summary (dst
);
1094 memcpy (info
, inline_summary (src
), sizeof (struct inline_summary
));
1095 /* TODO: as an optimization, we may avoid copying conditions
1096 that are known to be false or true. */
1097 info
->conds
= vec_safe_copy (info
->conds
);
1099 /* When there are any replacements in the function body, see if we can figure
1100 out that something was optimized out. */
1101 if (ipa_node_params_vector
.exists () && dst
->clone
.tree_map
)
1103 vec
<size_time_entry
, va_gc
> *entry
= info
->entry
;
1104 /* Use SRC parm info since it may not be copied yet. */
1105 struct ipa_node_params
*parms_info
= IPA_NODE_REF (src
);
1106 vec
<tree
> known_vals
= vNULL
;
1107 int count
= ipa_get_param_count (parms_info
);
1109 clause_t possible_truths
;
1110 struct predicate true_pred
= true_predicate ();
1112 int optimized_out_size
= 0;
1113 bool inlined_to_p
= false;
1114 struct cgraph_edge
*edge
;
1117 known_vals
.safe_grow_cleared (count
);
1118 for (i
= 0; i
< count
; i
++)
1120 struct ipa_replace_map
*r
;
1122 for (j
= 0; vec_safe_iterate (dst
->clone
.tree_map
, j
, &r
); j
++)
1124 if (((!r
->old_tree
&& r
->parm_num
== i
)
1125 || (r
->old_tree
&& r
->old_tree
== ipa_get_param (parms_info
, i
)))
1126 && r
->replace_p
&& !r
->ref_p
)
1128 known_vals
[i
] = r
->new_tree
;
1133 possible_truths
= evaluate_conditions_for_known_args (dst
, false,
1136 known_vals
.release ();
1138 account_size_time (info
, 0, 0, &true_pred
);
1140 /* Remap size_time vectors.
1141 Simplify the predicate by prunning out alternatives that are known
1143 TODO: as on optimization, we can also eliminate conditions known
1145 for (i
= 0; vec_safe_iterate (entry
, i
, &e
); i
++)
1147 struct predicate new_predicate
;
1148 new_predicate
= remap_predicate_after_duplication (&e
->predicate
,
1151 if (false_predicate_p (&new_predicate
))
1152 optimized_out_size
+= e
->size
;
1154 account_size_time (info
, e
->size
, e
->time
, &new_predicate
);
1157 /* Remap edge predicates with the same simplification as above.
1158 Also copy constantness arrays. */
1159 for (edge
= dst
->callees
; edge
; edge
= edge
->next_callee
)
1161 struct predicate new_predicate
;
1162 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1164 if (!edge
->inline_failed
)
1165 inlined_to_p
= true;
1168 new_predicate
= remap_predicate_after_duplication (es
->predicate
,
1171 if (false_predicate_p (&new_predicate
)
1172 && !false_predicate_p (es
->predicate
))
1174 optimized_out_size
+= es
->call_stmt_size
* INLINE_SIZE_SCALE
;
1175 edge
->frequency
= 0;
1177 edge_set_predicate (edge
, &new_predicate
);
1180 /* Remap indirect edge predicates with the same simplificaiton as above.
1181 Also copy constantness arrays. */
1182 for (edge
= dst
->indirect_calls
; edge
; edge
= edge
->next_callee
)
1184 struct predicate new_predicate
;
1185 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1187 gcc_checking_assert (edge
->inline_failed
);
1190 new_predicate
= remap_predicate_after_duplication (es
->predicate
,
1193 if (false_predicate_p (&new_predicate
)
1194 && !false_predicate_p (es
->predicate
))
1196 optimized_out_size
+= es
->call_stmt_size
* INLINE_SIZE_SCALE
;
1197 edge
->frequency
= 0;
1199 edge_set_predicate (edge
, &new_predicate
);
1201 remap_hint_predicate_after_duplication (&info
->loop_iterations
,
1202 possible_truths
, info
);
1203 remap_hint_predicate_after_duplication (&info
->loop_stride
,
1204 possible_truths
, info
);
1205 remap_hint_predicate_after_duplication (&info
->array_index
,
1206 possible_truths
, info
);
1208 /* If inliner or someone after inliner will ever start producing
1209 non-trivial clones, we will get trouble with lack of information
1210 about updating self sizes, because size vectors already contains
1211 sizes of the calees. */
1212 gcc_assert (!inlined_to_p
|| !optimized_out_size
);
1216 info
->entry
= vec_safe_copy (info
->entry
);
1217 if (info
->loop_iterations
)
1219 predicate p
= *info
->loop_iterations
;
1220 info
->loop_iterations
= NULL
;
1221 set_hint_predicate (&info
->loop_iterations
, p
);
1223 if (info
->loop_stride
)
1225 predicate p
= *info
->loop_stride
;
1226 info
->loop_stride
= NULL
;
1227 set_hint_predicate (&info
->loop_stride
, p
);
1229 if (info
->array_index
)
1231 predicate p
= *info
->array_index
;
1232 info
->array_index
= NULL
;
1233 set_hint_predicate (&info
->array_index
, p
);
1236 inline_update_overall_summary (dst
);
1240 /* Hook that is called by cgraph.c when a node is duplicated. */
1243 inline_edge_duplication_hook (struct cgraph_edge
*src
,
1244 struct cgraph_edge
*dst
,
1245 ATTRIBUTE_UNUSED
void *data
)
1247 struct inline_edge_summary
*info
;
1248 struct inline_edge_summary
*srcinfo
;
1249 inline_summary_alloc ();
1250 info
= inline_edge_summary (dst
);
1251 srcinfo
= inline_edge_summary (src
);
1252 memcpy (info
, srcinfo
, sizeof (struct inline_edge_summary
));
1253 info
->predicate
= NULL
;
1254 edge_set_predicate (dst
, srcinfo
->predicate
);
1255 info
->param
= srcinfo
->param
.copy ();
1259 /* Keep edge cache consistent across edge removal. */
1262 inline_edge_removal_hook (struct cgraph_edge
*edge
,
1263 void *data ATTRIBUTE_UNUSED
)
1265 if (edge_growth_cache
.exists ())
1266 reset_edge_growth_cache (edge
);
1267 reset_inline_edge_summary (edge
);
1271 /* Initialize growth caches. */
1274 initialize_growth_caches (void)
1276 if (cgraph_edge_max_uid
)
1277 edge_growth_cache
.safe_grow_cleared (cgraph_edge_max_uid
);
1279 node_growth_cache
.safe_grow_cleared (cgraph_max_uid
);
1283 /* Free growth caches. */
1286 free_growth_caches (void)
1288 edge_growth_cache
.release ();
1289 node_growth_cache
.release ();
1293 /* Dump edge summaries associated to NODE and recursively to all clones.
1294 Indent by INDENT. */
1297 dump_inline_edge_summary (FILE *f
, int indent
, struct cgraph_node
*node
,
1298 struct inline_summary
*info
)
1300 struct cgraph_edge
*edge
;
1301 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
1303 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1304 struct cgraph_node
*callee
=
1305 cgraph_function_or_thunk_node (edge
->callee
, NULL
);
1309 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1310 " time: %2i callee size:%2i stack:%2i",
1311 indent
, "", callee
->name (), callee
->order
,
1312 !edge
->inline_failed
1313 ? "inlined" : cgraph_inline_failed_string (edge
-> inline_failed
),
1314 indent
, "", es
->loop_depth
, edge
->frequency
,
1315 es
->call_stmt_size
, es
->call_stmt_time
,
1316 (int) inline_summary (callee
)->size
/ INLINE_SIZE_SCALE
,
1317 (int) inline_summary (callee
)->estimated_stack_size
);
1321 fprintf (f
, " predicate: ");
1322 dump_predicate (f
, info
->conds
, es
->predicate
);
1326 if (es
->param
.exists ())
1327 for (i
= 0; i
< (int) es
->param
.length (); i
++)
1329 int prob
= es
->param
[i
].change_prob
;
1332 fprintf (f
, "%*s op%i is compile time invariant\n",
1334 else if (prob
!= REG_BR_PROB_BASE
)
1335 fprintf (f
, "%*s op%i change %f%% of time\n", indent
+ 2, "", i
,
1336 prob
* 100.0 / REG_BR_PROB_BASE
);
1338 if (!edge
->inline_failed
)
1340 fprintf (f
, "%*sStack frame offset %i, callee self size %i,"
1341 " callee size %i\n",
1343 (int) inline_summary (callee
)->stack_frame_offset
,
1344 (int) inline_summary (callee
)->estimated_self_stack_size
,
1345 (int) inline_summary (callee
)->estimated_stack_size
);
1346 dump_inline_edge_summary (f
, indent
+ 2, callee
, info
);
1349 for (edge
= node
->indirect_calls
; edge
; edge
= edge
->next_callee
)
1351 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1352 fprintf (f
, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1356 edge
->frequency
, es
->call_stmt_size
, es
->call_stmt_time
);
1359 fprintf (f
, "predicate: ");
1360 dump_predicate (f
, info
->conds
, es
->predicate
);
1369 dump_inline_summary (FILE *f
, struct cgraph_node
*node
)
1371 if (node
->definition
)
1373 struct inline_summary
*s
= inline_summary (node
);
1376 fprintf (f
, "Inline summary for %s/%i", node
->name (),
1378 if (DECL_DISREGARD_INLINE_LIMITS (node
->decl
))
1379 fprintf (f
, " always_inline");
1381 fprintf (f
, " inlinable");
1382 fprintf (f
, "\n self time: %i\n", s
->self_time
);
1383 fprintf (f
, " global time: %i\n", s
->time
);
1384 fprintf (f
, " self size: %i\n", s
->self_size
);
1385 fprintf (f
, " global size: %i\n", s
->size
);
1386 fprintf (f
, " self stack: %i\n",
1387 (int) s
->estimated_self_stack_size
);
1388 fprintf (f
, " global stack: %i\n", (int) s
->estimated_stack_size
);
1390 fprintf (f
, " estimated growth:%i\n", (int) s
->growth
);
1392 fprintf (f
, " In SCC: %i\n", (int) s
->scc_no
);
1393 for (i
= 0; vec_safe_iterate (s
->entry
, i
, &e
); i
++)
1395 fprintf (f
, " size:%f, time:%f, predicate:",
1396 (double) e
->size
/ INLINE_SIZE_SCALE
,
1397 (double) e
->time
/ INLINE_TIME_SCALE
);
1398 dump_predicate (f
, s
->conds
, &e
->predicate
);
1400 if (s
->loop_iterations
)
1402 fprintf (f
, " loop iterations:");
1403 dump_predicate (f
, s
->conds
, s
->loop_iterations
);
1407 fprintf (f
, " loop stride:");
1408 dump_predicate (f
, s
->conds
, s
->loop_stride
);
1412 fprintf (f
, " array index:");
1413 dump_predicate (f
, s
->conds
, s
->array_index
);
1415 fprintf (f
, " calls:\n");
1416 dump_inline_edge_summary (f
, 4, node
, s
);
1422 debug_inline_summary (struct cgraph_node
*node
)
1424 dump_inline_summary (stderr
, node
);
1428 dump_inline_summaries (FILE *f
)
1430 struct cgraph_node
*node
;
1432 FOR_EACH_DEFINED_FUNCTION (node
)
1433 if (!node
->global
.inlined_to
)
1434 dump_inline_summary (f
, node
);
1437 /* Give initial reasons why inlining would fail on EDGE. This gets either
1438 nullified or usually overwritten by more precise reasons later. */
1441 initialize_inline_failed (struct cgraph_edge
*e
)
1443 struct cgraph_node
*callee
= e
->callee
;
1445 if (e
->indirect_unknown_callee
)
1446 e
->inline_failed
= CIF_INDIRECT_UNKNOWN_CALL
;
1447 else if (!callee
->definition
)
1448 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
1449 else if (callee
->local
.redefined_extern_inline
)
1450 e
->inline_failed
= CIF_REDEFINED_EXTERN_INLINE
;
1451 else if (e
->call_stmt_cannot_inline_p
)
1452 e
->inline_failed
= CIF_MISMATCHED_ARGUMENTS
;
1453 else if (cfun
&& fn_contains_cilk_spawn_p (cfun
))
1454 /* We can't inline if the function is spawing a function. */
1455 e
->inline_failed
= CIF_FUNCTION_NOT_INLINABLE
;
1457 e
->inline_failed
= CIF_FUNCTION_NOT_CONSIDERED
;
1460 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1461 boolean variable pointed to by DATA. */
1464 mark_modified (ao_ref
*ao ATTRIBUTE_UNUSED
, tree vdef ATTRIBUTE_UNUSED
,
1467 bool *b
= (bool *) data
;
1472 /* If OP refers to value of function parameter, return the corresponding
1476 unmodified_parm_1 (gimple stmt
, tree op
)
1478 /* SSA_NAME referring to parm default def? */
1479 if (TREE_CODE (op
) == SSA_NAME
1480 && SSA_NAME_IS_DEFAULT_DEF (op
)
1481 && TREE_CODE (SSA_NAME_VAR (op
)) == PARM_DECL
)
1482 return SSA_NAME_VAR (op
);
1483 /* Non-SSA parm reference? */
1484 if (TREE_CODE (op
) == PARM_DECL
)
1486 bool modified
= false;
1489 ao_ref_init (&refd
, op
);
1490 walk_aliased_vdefs (&refd
, gimple_vuse (stmt
), mark_modified
, &modified
,
1498 /* If OP refers to value of function parameter, return the corresponding
1499 parameter. Also traverse chains of SSA register assignments. */
1502 unmodified_parm (gimple stmt
, tree op
)
1504 tree res
= unmodified_parm_1 (stmt
, op
);
1508 if (TREE_CODE (op
) == SSA_NAME
1509 && !SSA_NAME_IS_DEFAULT_DEF (op
)
1510 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op
)))
1511 return unmodified_parm (SSA_NAME_DEF_STMT (op
),
1512 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op
)));
1516 /* If OP refers to a value of a function parameter or value loaded from an
1517 aggregate passed to a parameter (either by value or reference), return TRUE
1518 and store the number of the parameter to *INDEX_P and information whether
1519 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1520 the function parameters, STMT is the statement in which OP is used or
1524 unmodified_parm_or_parm_agg_item (struct ipa_node_params
*info
,
1525 gimple stmt
, tree op
, int *index_p
,
1526 struct agg_position_info
*aggpos
)
1528 tree res
= unmodified_parm_1 (stmt
, op
);
1530 gcc_checking_assert (aggpos
);
1533 *index_p
= ipa_get_param_decl_index (info
, res
);
1536 aggpos
->agg_contents
= false;
1537 aggpos
->by_ref
= false;
1541 if (TREE_CODE (op
) == SSA_NAME
)
1543 if (SSA_NAME_IS_DEFAULT_DEF (op
)
1544 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op
)))
1546 stmt
= SSA_NAME_DEF_STMT (op
);
1547 op
= gimple_assign_rhs1 (stmt
);
1548 if (!REFERENCE_CLASS_P (op
))
1549 return unmodified_parm_or_parm_agg_item (info
, stmt
, op
, index_p
,
1553 aggpos
->agg_contents
= true;
1554 return ipa_load_from_parm_agg (info
, stmt
, op
, index_p
, &aggpos
->offset
,
1558 /* See if statement might disappear after inlining.
1559 0 - means not eliminated
1560 1 - half of statements goes away
1561 2 - for sure it is eliminated.
1562 We are not terribly sophisticated, basically looking for simple abstraction
1563 penalty wrappers. */
1566 eliminated_by_inlining_prob (gimple stmt
)
1568 enum gimple_code code
= gimple_code (stmt
);
1569 enum tree_code rhs_code
;
1579 if (gimple_num_ops (stmt
) != 2)
1582 rhs_code
= gimple_assign_rhs_code (stmt
);
1584 /* Casts of parameters, loads from parameters passed by reference
1585 and stores to return value or parameters are often free after
1586 inlining dua to SRA and further combining.
1587 Assume that half of statements goes away. */
1588 if (rhs_code
== CONVERT_EXPR
1589 || rhs_code
== NOP_EXPR
1590 || rhs_code
== VIEW_CONVERT_EXPR
1591 || rhs_code
== ADDR_EXPR
1592 || gimple_assign_rhs_class (stmt
) == GIMPLE_SINGLE_RHS
)
1594 tree rhs
= gimple_assign_rhs1 (stmt
);
1595 tree lhs
= gimple_assign_lhs (stmt
);
1596 tree inner_rhs
= get_base_address (rhs
);
1597 tree inner_lhs
= get_base_address (lhs
);
1598 bool rhs_free
= false;
1599 bool lhs_free
= false;
1606 /* Reads of parameter are expected to be free. */
1607 if (unmodified_parm (stmt
, inner_rhs
))
1609 /* Match expressions of form &this->field. Those will most likely
1610 combine with something upstream after inlining. */
1611 else if (TREE_CODE (inner_rhs
) == ADDR_EXPR
)
1613 tree op
= get_base_address (TREE_OPERAND (inner_rhs
, 0));
1614 if (TREE_CODE (op
) == PARM_DECL
)
1616 else if (TREE_CODE (op
) == MEM_REF
1617 && unmodified_parm (stmt
, TREE_OPERAND (op
, 0)))
1621 /* When parameter is not SSA register because its address is taken
1622 and it is just copied into one, the statement will be completely
1623 free after inlining (we will copy propagate backward). */
1624 if (rhs_free
&& is_gimple_reg (lhs
))
1627 /* Reads of parameters passed by reference
1628 expected to be free (i.e. optimized out after inlining). */
1629 if (TREE_CODE (inner_rhs
) == MEM_REF
1630 && unmodified_parm (stmt
, TREE_OPERAND (inner_rhs
, 0)))
1633 /* Copying parameter passed by reference into gimple register is
1634 probably also going to copy propagate, but we can't be quite
1636 if (rhs_free
&& is_gimple_reg (lhs
))
1639 /* Writes to parameters, parameters passed by value and return value
1640 (either dirrectly or passed via invisible reference) are free.
1642 TODO: We ought to handle testcase like
1643 struct a {int a,b;};
1645 retrurnsturct (void)
1651 This translate into:
1666 For that we either need to copy ipa-split logic detecting writes
1668 if (TREE_CODE (inner_lhs
) == PARM_DECL
1669 || TREE_CODE (inner_lhs
) == RESULT_DECL
1670 || (TREE_CODE (inner_lhs
) == MEM_REF
1671 && (unmodified_parm (stmt
, TREE_OPERAND (inner_lhs
, 0))
1672 || (TREE_CODE (TREE_OPERAND (inner_lhs
, 0)) == SSA_NAME
1673 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs
, 0))
1674 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1676 0))) == RESULT_DECL
))))
1679 && (is_gimple_reg (rhs
) || is_gimple_min_invariant (rhs
)))
1681 if (lhs_free
&& rhs_free
)
1691 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1692 predicates to the CFG edges. */
1695 set_cond_stmt_execution_predicate (struct ipa_node_params
*info
,
1696 struct inline_summary
*summary
,
1702 struct agg_position_info aggpos
;
1703 enum tree_code code
, inverted_code
;
1709 last
= last_stmt (bb
);
1710 if (!last
|| gimple_code (last
) != GIMPLE_COND
)
1712 if (!is_gimple_ip_invariant (gimple_cond_rhs (last
)))
1714 op
= gimple_cond_lhs (last
);
1715 /* TODO: handle conditionals like
1718 if (unmodified_parm_or_parm_agg_item (info
, last
, op
, &index
, &aggpos
))
1720 code
= gimple_cond_code (last
);
1722 = invert_tree_comparison (code
,
1723 HONOR_NANS (TYPE_MODE (TREE_TYPE (op
))));
1725 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1727 struct predicate p
= add_condition (summary
, index
, &aggpos
,
1728 e
->flags
& EDGE_TRUE_VALUE
1729 ? code
: inverted_code
,
1730 gimple_cond_rhs (last
));
1731 e
->aux
= pool_alloc (edge_predicate_pool
);
1732 *(struct predicate
*) e
->aux
= p
;
1736 if (TREE_CODE (op
) != SSA_NAME
)
1739 if (builtin_constant_p (op))
1743 Here we can predicate nonconstant_code. We can't
1744 really handle constant_code since we have no predicate
1745 for this and also the constant code is not known to be
1746 optimized away when inliner doen't see operand is constant.
1747 Other optimizers might think otherwise. */
1748 if (gimple_cond_code (last
) != NE_EXPR
1749 || !integer_zerop (gimple_cond_rhs (last
)))
1751 set_stmt
= SSA_NAME_DEF_STMT (op
);
1752 if (!gimple_call_builtin_p (set_stmt
, BUILT_IN_CONSTANT_P
)
1753 || gimple_call_num_args (set_stmt
) != 1)
1755 op2
= gimple_call_arg (set_stmt
, 0);
1756 if (!unmodified_parm_or_parm_agg_item
1757 (info
, set_stmt
, op2
, &index
, &aggpos
))
1759 FOR_EACH_EDGE (e
, ei
, bb
->succs
) if (e
->flags
& EDGE_FALSE_VALUE
)
1761 struct predicate p
= add_condition (summary
, index
, &aggpos
,
1762 IS_NOT_CONSTANT
, NULL_TREE
);
1763 e
->aux
= pool_alloc (edge_predicate_pool
);
1764 *(struct predicate
*) e
->aux
= p
;
1769 /* If BB ends by a switch we can turn into predicates, attach corresponding
1770 predicates to the CFG edges. */
1773 set_switch_stmt_execution_predicate (struct ipa_node_params
*info
,
1774 struct inline_summary
*summary
,
1780 struct agg_position_info aggpos
;
1786 last
= last_stmt (bb
);
1787 if (!last
|| gimple_code (last
) != GIMPLE_SWITCH
)
1789 op
= gimple_switch_index (last
);
1790 if (!unmodified_parm_or_parm_agg_item (info
, last
, op
, &index
, &aggpos
))
1793 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1795 e
->aux
= pool_alloc (edge_predicate_pool
);
1796 *(struct predicate
*) e
->aux
= false_predicate ();
1798 n
= gimple_switch_num_labels (last
);
1799 for (case_idx
= 0; case_idx
< n
; ++case_idx
)
1801 tree cl
= gimple_switch_label (last
, case_idx
);
1805 e
= find_edge (bb
, label_to_block (CASE_LABEL (cl
)));
1806 min
= CASE_LOW (cl
);
1807 max
= CASE_HIGH (cl
);
1809 /* For default we might want to construct predicate that none
1810 of cases is met, but it is bit hard to do not having negations
1811 of conditionals handy. */
1813 p
= true_predicate ();
1815 p
= add_condition (summary
, index
, &aggpos
, EQ_EXPR
, min
);
1818 struct predicate p1
, p2
;
1819 p1
= add_condition (summary
, index
, &aggpos
, GE_EXPR
, min
);
1820 p2
= add_condition (summary
, index
, &aggpos
, LE_EXPR
, max
);
1821 p
= and_predicates (summary
->conds
, &p1
, &p2
);
1823 *(struct predicate
*) e
->aux
1824 = or_predicates (summary
->conds
, &p
, (struct predicate
*) e
->aux
);
1829 /* For each BB in NODE attach to its AUX pointer predicate under
1830 which it is executable. */
1833 compute_bb_predicates (struct cgraph_node
*node
,
1834 struct ipa_node_params
*parms_info
,
1835 struct inline_summary
*summary
)
1837 struct function
*my_function
= DECL_STRUCT_FUNCTION (node
->decl
);
1841 FOR_EACH_BB_FN (bb
, my_function
)
1843 set_cond_stmt_execution_predicate (parms_info
, summary
, bb
);
1844 set_switch_stmt_execution_predicate (parms_info
, summary
, bb
);
1847 /* Entry block is always executable. */
1848 ENTRY_BLOCK_PTR_FOR_FN (my_function
)->aux
1849 = pool_alloc (edge_predicate_pool
);
1850 *(struct predicate
*) ENTRY_BLOCK_PTR_FOR_FN (my_function
)->aux
1851 = true_predicate ();
1853 /* A simple dataflow propagation of predicates forward in the CFG.
1854 TODO: work in reverse postorder. */
1858 FOR_EACH_BB_FN (bb
, my_function
)
1860 struct predicate p
= false_predicate ();
1863 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1867 struct predicate this_bb_predicate
1868 = *(struct predicate
*) e
->src
->aux
;
1871 = and_predicates (summary
->conds
, &this_bb_predicate
,
1872 (struct predicate
*) e
->aux
);
1873 p
= or_predicates (summary
->conds
, &p
, &this_bb_predicate
);
1874 if (true_predicate_p (&p
))
1878 if (false_predicate_p (&p
))
1879 gcc_assert (!bb
->aux
);
1885 bb
->aux
= pool_alloc (edge_predicate_pool
);
1886 *((struct predicate
*) bb
->aux
) = p
;
1888 else if (!predicates_equal_p (&p
, (struct predicate
*) bb
->aux
))
1890 /* This OR operation is needed to ensure monotonous data flow
1891 in the case we hit the limit on number of clauses and the
1892 and/or operations above give approximate answers. */
1893 p
= or_predicates (summary
->conds
, &p
, (struct predicate
*)bb
->aux
);
1894 if (!predicates_equal_p (&p
, (struct predicate
*) bb
->aux
))
1897 *((struct predicate
*) bb
->aux
) = p
;
1906 /* We keep info about constantness of SSA names. */
1908 typedef struct predicate predicate_t
;
1909 /* Return predicate specifying when the STMT might have result that is not
1910 a compile time constant. */
1912 static struct predicate
1913 will_be_nonconstant_expr_predicate (struct ipa_node_params
*info
,
1914 struct inline_summary
*summary
,
1916 vec
<predicate_t
> nonconstant_names
)
1921 while (UNARY_CLASS_P (expr
))
1922 expr
= TREE_OPERAND (expr
, 0);
1924 parm
= unmodified_parm (NULL
, expr
);
1925 if (parm
&& (index
= ipa_get_param_decl_index (info
, parm
)) >= 0)
1926 return add_condition (summary
, index
, NULL
, CHANGED
, NULL_TREE
);
1927 if (is_gimple_min_invariant (expr
))
1928 return false_predicate ();
1929 if (TREE_CODE (expr
) == SSA_NAME
)
1930 return nonconstant_names
[SSA_NAME_VERSION (expr
)];
1931 if (BINARY_CLASS_P (expr
) || COMPARISON_CLASS_P (expr
))
1933 struct predicate p1
= will_be_nonconstant_expr_predicate
1934 (info
, summary
, TREE_OPERAND (expr
, 0),
1936 struct predicate p2
;
1937 if (true_predicate_p (&p1
))
1939 p2
= will_be_nonconstant_expr_predicate (info
, summary
,
1940 TREE_OPERAND (expr
, 1),
1942 return or_predicates (summary
->conds
, &p1
, &p2
);
1944 else if (TREE_CODE (expr
) == COND_EXPR
)
1946 struct predicate p1
= will_be_nonconstant_expr_predicate
1947 (info
, summary
, TREE_OPERAND (expr
, 0),
1949 struct predicate p2
;
1950 if (true_predicate_p (&p1
))
1952 p2
= will_be_nonconstant_expr_predicate (info
, summary
,
1953 TREE_OPERAND (expr
, 1),
1955 if (true_predicate_p (&p2
))
1957 p1
= or_predicates (summary
->conds
, &p1
, &p2
);
1958 p2
= will_be_nonconstant_expr_predicate (info
, summary
,
1959 TREE_OPERAND (expr
, 2),
1961 return or_predicates (summary
->conds
, &p1
, &p2
);
1968 return false_predicate ();
1972 /* Return predicate specifying when the STMT might have result that is not
1973 a compile time constant. */
1975 static struct predicate
1976 will_be_nonconstant_predicate (struct ipa_node_params
*info
,
1977 struct inline_summary
*summary
,
1979 vec
<predicate_t
> nonconstant_names
)
1981 struct predicate p
= true_predicate ();
1984 struct predicate op_non_const
;
1987 struct agg_position_info aggpos
;
1989 /* What statments might be optimized away
1990 when their arguments are constant
1991 TODO: also trivial builtins.
1992 builtin_constant_p is already handled later. */
1993 if (gimple_code (stmt
) != GIMPLE_ASSIGN
1994 && gimple_code (stmt
) != GIMPLE_COND
1995 && gimple_code (stmt
) != GIMPLE_SWITCH
)
1998 /* Stores will stay anyway. */
1999 if (gimple_store_p (stmt
))
2002 is_load
= gimple_assign_load_p (stmt
);
2004 /* Loads can be optimized when the value is known. */
2008 gcc_assert (gimple_assign_single_p (stmt
));
2009 op
= gimple_assign_rhs1 (stmt
);
2010 if (!unmodified_parm_or_parm_agg_item (info
, stmt
, op
, &base_index
,
2017 /* See if we understand all operands before we start
2018 adding conditionals. */
2019 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
2021 tree parm
= unmodified_parm (stmt
, use
);
2022 /* For arguments we can build a condition. */
2023 if (parm
&& ipa_get_param_decl_index (info
, parm
) >= 0)
2025 if (TREE_CODE (use
) != SSA_NAME
)
2027 /* If we know when operand is constant,
2028 we still can say something useful. */
2029 if (!true_predicate_p (&nonconstant_names
[SSA_NAME_VERSION (use
)]))
2036 add_condition (summary
, base_index
, &aggpos
, CHANGED
, NULL
);
2038 op_non_const
= false_predicate ();
2039 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
2041 tree parm
= unmodified_parm (stmt
, use
);
2044 if (parm
&& (index
= ipa_get_param_decl_index (info
, parm
)) >= 0)
2046 if (index
!= base_index
)
2047 p
= add_condition (summary
, index
, NULL
, CHANGED
, NULL_TREE
);
2052 p
= nonconstant_names
[SSA_NAME_VERSION (use
)];
2053 op_non_const
= or_predicates (summary
->conds
, &p
, &op_non_const
);
2055 if (gimple_code (stmt
) == GIMPLE_ASSIGN
2056 && TREE_CODE (gimple_assign_lhs (stmt
)) == SSA_NAME
)
2057 nonconstant_names
[SSA_NAME_VERSION (gimple_assign_lhs (stmt
))]
2059 return op_non_const
;
2062 struct record_modified_bb_info
2068 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2069 set except for info->stmt. */
2072 record_modified (ao_ref
*ao ATTRIBUTE_UNUSED
, tree vdef
, void *data
)
2074 struct record_modified_bb_info
*info
=
2075 (struct record_modified_bb_info
*) data
;
2076 if (SSA_NAME_DEF_STMT (vdef
) == info
->stmt
)
2078 bitmap_set_bit (info
->bb_set
,
2079 SSA_NAME_IS_DEFAULT_DEF (vdef
)
2080 ? ENTRY_BLOCK_PTR_FOR_FN (cfun
)->index
2081 : gimple_bb (SSA_NAME_DEF_STMT (vdef
))->index
);
2085 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2086 will change since last invocation of STMT.
2088 Value 0 is reserved for compile time invariants.
2089 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2090 ought to be REG_BR_PROB_BASE / estimated_iters. */
2093 param_change_prob (gimple stmt
, int i
)
2095 tree op
= gimple_call_arg (stmt
, i
);
2096 basic_block bb
= gimple_bb (stmt
);
2099 /* Global invariants neve change. */
2100 if (is_gimple_min_invariant (op
))
2102 /* We would have to do non-trivial analysis to really work out what
2103 is the probability of value to change (i.e. when init statement
2104 is in a sibling loop of the call).
2106 We do an conservative estimate: when call is executed N times more often
2107 than the statement defining value, we take the frequency 1/N. */
2108 if (TREE_CODE (op
) == SSA_NAME
)
2113 return REG_BR_PROB_BASE
;
2115 if (SSA_NAME_IS_DEFAULT_DEF (op
))
2116 init_freq
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
;
2118 init_freq
= gimple_bb (SSA_NAME_DEF_STMT (op
))->frequency
;
2122 if (init_freq
< bb
->frequency
)
2123 return MAX (GCOV_COMPUTE_SCALE (init_freq
, bb
->frequency
), 1);
2125 return REG_BR_PROB_BASE
;
2128 base
= get_base_address (op
);
2133 struct record_modified_bb_info info
;
2136 tree init
= ctor_for_folding (base
);
2138 if (init
!= error_mark_node
)
2141 return REG_BR_PROB_BASE
;
2142 ao_ref_init (&refd
, op
);
2144 info
.bb_set
= BITMAP_ALLOC (NULL
);
2145 walk_aliased_vdefs (&refd
, gimple_vuse (stmt
), record_modified
, &info
,
2147 if (bitmap_bit_p (info
.bb_set
, bb
->index
))
2149 BITMAP_FREE (info
.bb_set
);
2150 return REG_BR_PROB_BASE
;
2153 /* Assume that every memory is initialized at entry.
2154 TODO: Can we easilly determine if value is always defined
2155 and thus we may skip entry block? */
2156 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
)
2157 max
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
;
2161 EXECUTE_IF_SET_IN_BITMAP (info
.bb_set
, 0, index
, bi
)
2162 max
= MIN (max
, BASIC_BLOCK_FOR_FN (cfun
, index
)->frequency
);
2164 BITMAP_FREE (info
.bb_set
);
2165 if (max
< bb
->frequency
)
2166 return MAX (GCOV_COMPUTE_SCALE (max
, bb
->frequency
), 1);
2168 return REG_BR_PROB_BASE
;
2170 return REG_BR_PROB_BASE
;
2173 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2174 sub-graph and if the predicate the condition depends on is known. If so,
2175 return true and store the pointer the predicate in *P. */
2178 phi_result_unknown_predicate (struct ipa_node_params
*info
,
2179 struct inline_summary
*summary
, basic_block bb
,
2180 struct predicate
*p
,
2181 vec
<predicate_t
> nonconstant_names
)
2185 basic_block first_bb
= NULL
;
2188 if (single_pred_p (bb
))
2190 *p
= false_predicate ();
2194 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2196 if (single_succ_p (e
->src
))
2198 if (!single_pred_p (e
->src
))
2201 first_bb
= single_pred (e
->src
);
2202 else if (single_pred (e
->src
) != first_bb
)
2209 else if (e
->src
!= first_bb
)
2217 stmt
= last_stmt (first_bb
);
2219 || gimple_code (stmt
) != GIMPLE_COND
2220 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt
)))
2223 *p
= will_be_nonconstant_expr_predicate (info
, summary
,
2224 gimple_cond_lhs (stmt
),
2226 if (true_predicate_p (p
))
2232 /* Given a PHI statement in a function described by inline properties SUMMARY
2233 and *P being the predicate describing whether the selected PHI argument is
2234 known, store a predicate for the result of the PHI statement into
2235 NONCONSTANT_NAMES, if possible. */
2238 predicate_for_phi_result (struct inline_summary
*summary
, gimple phi
,
2239 struct predicate
*p
,
2240 vec
<predicate_t
> nonconstant_names
)
2244 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2246 tree arg
= gimple_phi_arg (phi
, i
)->def
;
2247 if (!is_gimple_min_invariant (arg
))
2249 gcc_assert (TREE_CODE (arg
) == SSA_NAME
);
2250 *p
= or_predicates (summary
->conds
, p
,
2251 &nonconstant_names
[SSA_NAME_VERSION (arg
)]);
2252 if (true_predicate_p (p
))
2257 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2259 fprintf (dump_file
, "\t\tphi predicate: ");
2260 dump_predicate (dump_file
, summary
->conds
, p
);
2262 nonconstant_names
[SSA_NAME_VERSION (gimple_phi_result (phi
))] = *p
;
2265 /* Return predicate specifying when array index in access OP becomes non-constant. */
2267 static struct predicate
2268 array_index_predicate (struct inline_summary
*info
,
2269 vec
< predicate_t
> nonconstant_names
, tree op
)
2271 struct predicate p
= false_predicate ();
2272 while (handled_component_p (op
))
2274 if (TREE_CODE (op
) == ARRAY_REF
|| TREE_CODE (op
) == ARRAY_RANGE_REF
)
2276 if (TREE_CODE (TREE_OPERAND (op
, 1)) == SSA_NAME
)
2277 p
= or_predicates (info
->conds
, &p
,
2278 &nonconstant_names
[SSA_NAME_VERSION
2279 (TREE_OPERAND (op
, 1))]);
2281 op
= TREE_OPERAND (op
, 0);
2286 /* For a typical usage of __builtin_expect (a<b, 1), we
2287 may introduce an extra relation stmt:
2288 With the builtin, we have
2291 t3 = __builtin_expect (t2, 1);
2294 Without the builtin, we have
2297 This affects the size/time estimation and may have
2298 an impact on the earlier inlining.
2299 Here find this pattern and fix it up later. */
2302 find_foldable_builtin_expect (basic_block bb
)
2304 gimple_stmt_iterator bsi
;
2306 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2308 gimple stmt
= gsi_stmt (bsi
);
2309 if (gimple_call_builtin_p (stmt
, BUILT_IN_EXPECT
))
2311 tree var
= gimple_call_lhs (stmt
);
2312 tree arg
= gimple_call_arg (stmt
, 0);
2313 use_operand_p use_p
;
2320 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
2322 while (TREE_CODE (arg
) == SSA_NAME
)
2324 gimple stmt_tmp
= SSA_NAME_DEF_STMT (arg
);
2325 if (!is_gimple_assign (stmt_tmp
))
2327 switch (gimple_assign_rhs_code (stmt_tmp
))
2346 arg
= gimple_assign_rhs1 (stmt_tmp
);
2349 if (match
&& single_imm_use (var
, &use_p
, &use_stmt
)
2350 && gimple_code (use_stmt
) == GIMPLE_COND
)
2357 /* Return true when the basic blocks contains only clobbers followed by RESX.
2358 Such BBs are kept around to make removal of dead stores possible with
2359 presence of EH and will be optimized out by optimize_clobbers later in the
2362 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2363 that can be clobber only, too.. When it is false, the RESX is not necessary
2364 on the end of basic block. */
2367 clobber_only_eh_bb_p (basic_block bb
, bool need_eh
= true)
2369 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2375 if (gsi_end_p (gsi
))
2377 if (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RESX
)
2381 else if (!single_succ_p (bb
))
2384 for (; !gsi_end_p (gsi
); gsi_prev (&gsi
))
2386 gimple stmt
= gsi_stmt (gsi
);
2387 if (is_gimple_debug (stmt
))
2389 if (gimple_clobber_p (stmt
))
2391 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2396 /* See if all predecestors are either throws or clobber only BBs. */
2397 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2398 if (!(e
->flags
& EDGE_EH
)
2399 && !clobber_only_eh_bb_p (e
->src
, false))
2405 /* Compute function body size parameters for NODE.
2406 When EARLY is true, we compute only simple summaries without
2407 non-trivial predicates to drive the early inliner. */
2410 estimate_function_body_sizes (struct cgraph_node
*node
, bool early
)
2413 /* Estimate static overhead for function prologue/epilogue and alignment. */
2415 /* Benefits are scaled by probability of elimination that is in range
2418 gimple_stmt_iterator bsi
;
2419 struct function
*my_function
= DECL_STRUCT_FUNCTION (node
->decl
);
2421 struct inline_summary
*info
= inline_summary (node
);
2422 struct predicate bb_predicate
;
2423 struct ipa_node_params
*parms_info
= NULL
;
2424 vec
<predicate_t
> nonconstant_names
= vNULL
;
2427 predicate array_index
= true_predicate ();
2428 gimple fix_builtin_expect_stmt
;
2433 if (optimize
&& !early
)
2435 calculate_dominance_info (CDI_DOMINATORS
);
2436 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
2438 if (ipa_node_params_vector
.exists ())
2440 parms_info
= IPA_NODE_REF (node
);
2441 nonconstant_names
.safe_grow_cleared
2442 (SSANAMES (my_function
)->length ());
2447 fprintf (dump_file
, "\nAnalyzing function body size: %s\n",
2450 /* When we run into maximal number of entries, we assign everything to the
2451 constant truth case. Be sure to have it in list. */
2452 bb_predicate
= true_predicate ();
2453 account_size_time (info
, 0, 0, &bb_predicate
);
2455 bb_predicate
= not_inlined_predicate ();
2456 account_size_time (info
, 2 * INLINE_SIZE_SCALE
, 0, &bb_predicate
);
2458 gcc_assert (my_function
&& my_function
->cfg
);
2460 compute_bb_predicates (node
, parms_info
, info
);
2461 gcc_assert (cfun
== my_function
);
2462 order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
2463 nblocks
= pre_and_rev_post_order_compute (NULL
, order
, false);
2464 for (n
= 0; n
< nblocks
; n
++)
2466 bb
= BASIC_BLOCK_FOR_FN (cfun
, order
[n
]);
2467 freq
= compute_call_stmt_bb_frequency (node
->decl
, bb
);
2468 if (clobber_only_eh_bb_p (bb
))
2470 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2471 fprintf (dump_file
, "\n Ignoring BB %i;"
2472 " it will be optimized away by cleanup_clobbers\n",
2477 /* TODO: Obviously predicates can be propagated down across CFG. */
2481 bb_predicate
= *(struct predicate
*) bb
->aux
;
2483 bb_predicate
= false_predicate ();
2486 bb_predicate
= true_predicate ();
2488 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2490 fprintf (dump_file
, "\n BB %i predicate:", bb
->index
);
2491 dump_predicate (dump_file
, info
->conds
, &bb_predicate
);
2494 if (parms_info
&& nonconstant_names
.exists ())
2496 struct predicate phi_predicate
;
2497 bool first_phi
= true;
2499 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2502 && !phi_result_unknown_predicate (parms_info
, info
, bb
,
2507 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2509 fprintf (dump_file
, " ");
2510 print_gimple_stmt (dump_file
, gsi_stmt (bsi
), 0, 0);
2512 predicate_for_phi_result (info
, gsi_stmt (bsi
), &phi_predicate
,
2517 fix_builtin_expect_stmt
= find_foldable_builtin_expect (bb
);
2519 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2521 gimple stmt
= gsi_stmt (bsi
);
2522 int this_size
= estimate_num_insns (stmt
, &eni_size_weights
);
2523 int this_time
= estimate_num_insns (stmt
, &eni_time_weights
);
2525 struct predicate will_be_nonconstant
;
2527 /* This relation stmt should be folded after we remove
2528 buildin_expect call. Adjust the cost here. */
2529 if (stmt
== fix_builtin_expect_stmt
)
2535 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2537 fprintf (dump_file
, " ");
2538 print_gimple_stmt (dump_file
, stmt
, 0, 0);
2539 fprintf (dump_file
, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2540 ((double) freq
) / CGRAPH_FREQ_BASE
, this_size
,
2544 if (gimple_assign_load_p (stmt
) && nonconstant_names
.exists ())
2546 struct predicate this_array_index
;
2548 array_index_predicate (info
, nonconstant_names
,
2549 gimple_assign_rhs1 (stmt
));
2550 if (!false_predicate_p (&this_array_index
))
2552 and_predicates (info
->conds
, &array_index
,
2555 if (gimple_store_p (stmt
) && nonconstant_names
.exists ())
2557 struct predicate this_array_index
;
2559 array_index_predicate (info
, nonconstant_names
,
2560 gimple_get_lhs (stmt
));
2561 if (!false_predicate_p (&this_array_index
))
2563 and_predicates (info
->conds
, &array_index
,
2568 if (is_gimple_call (stmt
)
2569 && !gimple_call_internal_p (stmt
))
2571 struct cgraph_edge
*edge
= cgraph_edge (node
, stmt
);
2572 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
2574 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2575 resolved as constant. We however don't want to optimize
2576 out the cgraph edges. */
2577 if (nonconstant_names
.exists ()
2578 && gimple_call_builtin_p (stmt
, BUILT_IN_CONSTANT_P
)
2579 && gimple_call_lhs (stmt
)
2580 && TREE_CODE (gimple_call_lhs (stmt
)) == SSA_NAME
)
2582 struct predicate false_p
= false_predicate ();
2583 nonconstant_names
[SSA_NAME_VERSION (gimple_call_lhs (stmt
))]
2586 if (ipa_node_params_vector
.exists ())
2588 int count
= gimple_call_num_args (stmt
);
2592 es
->param
.safe_grow_cleared (count
);
2593 for (i
= 0; i
< count
; i
++)
2595 int prob
= param_change_prob (stmt
, i
);
2596 gcc_assert (prob
>= 0 && prob
<= REG_BR_PROB_BASE
);
2597 es
->param
[i
].change_prob
= prob
;
2601 es
->call_stmt_size
= this_size
;
2602 es
->call_stmt_time
= this_time
;
2603 es
->loop_depth
= bb_loop_depth (bb
);
2604 edge_set_predicate (edge
, &bb_predicate
);
2607 /* TODO: When conditional jump or swithc is known to be constant, but
2608 we did not translate it into the predicates, we really can account
2609 just maximum of the possible paths. */
2612 = will_be_nonconstant_predicate (parms_info
, info
,
2613 stmt
, nonconstant_names
);
2614 if (this_time
|| this_size
)
2620 prob
= eliminated_by_inlining_prob (stmt
);
2621 if (prob
== 1 && dump_file
&& (dump_flags
& TDF_DETAILS
))
2623 "\t\t50%% will be eliminated by inlining\n");
2624 if (prob
== 2 && dump_file
&& (dump_flags
& TDF_DETAILS
))
2625 fprintf (dump_file
, "\t\tWill be eliminated by inlining\n");
2628 p
= and_predicates (info
->conds
, &bb_predicate
,
2629 &will_be_nonconstant
);
2631 p
= true_predicate ();
2633 if (!false_predicate_p (&p
))
2637 if (time
> MAX_TIME
* INLINE_TIME_SCALE
)
2638 time
= MAX_TIME
* INLINE_TIME_SCALE
;
2641 /* We account everything but the calls. Calls have their own
2642 size/time info attached to cgraph edges. This is necessary
2643 in order to make the cost disappear after inlining. */
2644 if (!is_gimple_call (stmt
))
2648 struct predicate ip
= not_inlined_predicate ();
2649 ip
= and_predicates (info
->conds
, &ip
, &p
);
2650 account_size_time (info
, this_size
* prob
,
2651 this_time
* prob
, &ip
);
2654 account_size_time (info
, this_size
* (2 - prob
),
2655 this_time
* (2 - prob
), &p
);
2658 gcc_assert (time
>= 0);
2659 gcc_assert (size
>= 0);
2663 set_hint_predicate (&inline_summary (node
)->array_index
, array_index
);
2664 time
= (time
+ CGRAPH_FREQ_BASE
/ 2) / CGRAPH_FREQ_BASE
;
2665 if (time
> MAX_TIME
)
2669 if (!early
&& nonconstant_names
.exists ())
2672 predicate loop_iterations
= true_predicate ();
2673 predicate loop_stride
= true_predicate ();
2675 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2676 flow_loops_dump (dump_file
, NULL
, 0);
2678 FOR_EACH_LOOP (loop
, 0)
2683 struct tree_niter_desc niter_desc
;
2684 basic_block
*body
= get_loop_body (loop
);
2685 bb_predicate
= *(struct predicate
*) loop
->header
->aux
;
2687 exits
= get_loop_exit_edges (loop
);
2688 FOR_EACH_VEC_ELT (exits
, j
, ex
)
2689 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false)
2690 && !is_gimple_min_invariant (niter_desc
.niter
))
2692 predicate will_be_nonconstant
2693 = will_be_nonconstant_expr_predicate (parms_info
, info
,
2696 if (!true_predicate_p (&will_be_nonconstant
))
2697 will_be_nonconstant
= and_predicates (info
->conds
,
2699 &will_be_nonconstant
);
2700 if (!true_predicate_p (&will_be_nonconstant
)
2701 && !false_predicate_p (&will_be_nonconstant
))
2702 /* This is slightly inprecise. We may want to represent each
2703 loop with independent predicate. */
2705 and_predicates (info
->conds
, &loop_iterations
,
2706 &will_be_nonconstant
);
2710 for (i
= 0; i
< loop
->num_nodes
; i
++)
2712 gimple_stmt_iterator gsi
;
2713 bb_predicate
= *(struct predicate
*) body
[i
]->aux
;
2714 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
);
2717 gimple stmt
= gsi_stmt (gsi
);
2722 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
2724 predicate will_be_nonconstant
;
2727 (loop
, loop_containing_stmt (stmt
), use
, &iv
, true)
2728 || is_gimple_min_invariant (iv
.step
))
2731 = will_be_nonconstant_expr_predicate (parms_info
, info
,
2734 if (!true_predicate_p (&will_be_nonconstant
))
2736 = and_predicates (info
->conds
,
2738 &will_be_nonconstant
);
2739 if (!true_predicate_p (&will_be_nonconstant
)
2740 && !false_predicate_p (&will_be_nonconstant
))
2741 /* This is slightly inprecise. We may want to represent
2742 each loop with independent predicate. */
2744 and_predicates (info
->conds
, &loop_stride
,
2745 &will_be_nonconstant
);
2751 set_hint_predicate (&inline_summary (node
)->loop_iterations
,
2753 set_hint_predicate (&inline_summary (node
)->loop_stride
, loop_stride
);
2756 FOR_ALL_BB_FN (bb
, my_function
)
2762 pool_free (edge_predicate_pool
, bb
->aux
);
2764 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2767 pool_free (edge_predicate_pool
, e
->aux
);
2771 inline_summary (node
)->self_time
= time
;
2772 inline_summary (node
)->self_size
= size
;
2773 nonconstant_names
.release ();
2774 if (optimize
&& !early
)
2776 loop_optimizer_finalize ();
2777 free_dominance_info (CDI_DOMINATORS
);
2781 fprintf (dump_file
, "\n");
2782 dump_inline_summary (dump_file
, node
);
2787 /* Compute parameters of functions used by inliner.
2788 EARLY is true when we compute parameters for the early inliner */
2791 compute_inline_parameters (struct cgraph_node
*node
, bool early
)
2793 HOST_WIDE_INT self_stack_size
;
2794 struct cgraph_edge
*e
;
2795 struct inline_summary
*info
;
2797 gcc_assert (!node
->global
.inlined_to
);
2799 inline_summary_alloc ();
2801 info
= inline_summary (node
);
2802 reset_inline_summary (node
);
2804 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2805 Once this happen, we will need to more curefully predict call
2807 if (node
->thunk
.thunk_p
)
2809 struct inline_edge_summary
*es
= inline_edge_summary (node
->callees
);
2810 struct predicate t
= true_predicate ();
2812 info
->inlinable
= 0;
2813 node
->callees
->call_stmt_cannot_inline_p
= true;
2814 node
->local
.can_change_signature
= false;
2815 es
->call_stmt_time
= 1;
2816 es
->call_stmt_size
= 1;
2817 account_size_time (info
, 0, 0, &t
);
2821 /* Even is_gimple_min_invariant rely on current_function_decl. */
2822 push_cfun (DECL_STRUCT_FUNCTION (node
->decl
));
2824 /* Estimate the stack size for the function if we're optimizing. */
2825 self_stack_size
= optimize
? estimated_stack_frame_size (node
) : 0;
2826 info
->estimated_self_stack_size
= self_stack_size
;
2827 info
->estimated_stack_size
= self_stack_size
;
2828 info
->stack_frame_offset
= 0;
2830 /* Can this function be inlined at all? */
2831 if (!optimize
&& !lookup_attribute ("always_inline",
2832 DECL_ATTRIBUTES (node
->decl
)))
2833 info
->inlinable
= false;
2835 info
->inlinable
= tree_inlinable_function_p (node
->decl
);
2837 /* Type attributes can use parameter indices to describe them. */
2838 if (TYPE_ATTRIBUTES (TREE_TYPE (node
->decl
)))
2839 node
->local
.can_change_signature
= false;
2842 /* Otherwise, inlinable functions always can change signature. */
2843 if (info
->inlinable
)
2844 node
->local
.can_change_signature
= true;
2847 /* Functions calling builtin_apply can not change signature. */
2848 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2850 tree
cdecl = e
->callee
->decl
;
2851 if (DECL_BUILT_IN (cdecl)
2852 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2853 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2854 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START
))
2857 node
->local
.can_change_signature
= !e
;
2860 estimate_function_body_sizes (node
, early
);
2862 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2863 if (symtab_comdat_local_p (e
->callee
))
2865 node
->calls_comdat_local
= (e
!= NULL
);
2867 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2868 info
->time
= info
->self_time
;
2869 info
->size
= info
->self_size
;
2870 info
->stack_frame_offset
= 0;
2871 info
->estimated_stack_size
= info
->estimated_self_stack_size
;
2872 #ifdef ENABLE_CHECKING
2873 inline_update_overall_summary (node
);
2874 gcc_assert (info
->time
== info
->self_time
&& info
->size
== info
->self_size
);
2881 /* Compute parameters of functions used by inliner using
2882 current_function_decl. */
2885 compute_inline_parameters_for_current (void)
2887 compute_inline_parameters (cgraph_get_node (current_function_decl
), true);
2893 const pass_data pass_data_inline_parameters
=
2895 GIMPLE_PASS
, /* type */
2896 "inline_param", /* name */
2897 OPTGROUP_INLINE
, /* optinfo_flags */
2898 false, /* has_gate */
2899 true, /* has_execute */
2900 TV_INLINE_PARAMETERS
, /* tv_id */
2901 0, /* properties_required */
2902 0, /* properties_provided */
2903 0, /* properties_destroyed */
2904 0, /* todo_flags_start */
2905 0, /* todo_flags_finish */
2908 class pass_inline_parameters
: public gimple_opt_pass
2911 pass_inline_parameters (gcc::context
*ctxt
)
2912 : gimple_opt_pass (pass_data_inline_parameters
, ctxt
)
2915 /* opt_pass methods: */
2916 opt_pass
* clone () { return new pass_inline_parameters (m_ctxt
); }
2917 unsigned int execute () {
2918 return compute_inline_parameters_for_current ();
2921 }; // class pass_inline_parameters
2926 make_pass_inline_parameters (gcc::context
*ctxt
)
2928 return new pass_inline_parameters (ctxt
);
2932 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
2936 estimate_edge_devirt_benefit (struct cgraph_edge
*ie
,
2937 int *size
, int *time
,
2938 vec
<tree
> known_vals
,
2939 vec
<tree
> known_binfos
,
2940 vec
<ipa_agg_jump_function_p
> known_aggs
)
2943 struct cgraph_node
*callee
;
2944 struct inline_summary
*isummary
;
2946 if (!known_vals
.exists () && !known_binfos
.exists ())
2948 if (!flag_indirect_inlining
)
2951 target
= ipa_get_indirect_edge_target (ie
, known_vals
, known_binfos
,
2956 /* Account for difference in cost between indirect and direct calls. */
2957 *size
-= (eni_size_weights
.indirect_call_cost
- eni_size_weights
.call_cost
);
2958 *time
-= (eni_time_weights
.indirect_call_cost
- eni_time_weights
.call_cost
);
2959 gcc_checking_assert (*time
>= 0);
2960 gcc_checking_assert (*size
>= 0);
2962 callee
= cgraph_get_node (target
);
2963 if (!callee
|| !callee
->definition
)
2965 isummary
= inline_summary (callee
);
2966 return isummary
->inlinable
;
2969 /* Increase SIZE and TIME for size and time needed to handle edge E. */
2972 estimate_edge_size_and_time (struct cgraph_edge
*e
, int *size
, int *time
,
2974 vec
<tree
> known_vals
,
2975 vec
<tree
> known_binfos
,
2976 vec
<ipa_agg_jump_function_p
> known_aggs
,
2977 inline_hints
*hints
)
2979 struct inline_edge_summary
*es
= inline_edge_summary (e
);
2980 int call_size
= es
->call_stmt_size
;
2981 int call_time
= es
->call_stmt_time
;
2983 && estimate_edge_devirt_benefit (e
, &call_size
, &call_time
,
2984 known_vals
, known_binfos
, known_aggs
)
2985 && hints
&& cgraph_maybe_hot_edge_p (e
))
2986 *hints
|= INLINE_HINT_indirect_call
;
2987 *size
+= call_size
* INLINE_SIZE_SCALE
;
2988 *time
+= apply_probability ((gcov_type
) call_time
, prob
)
2989 * e
->frequency
* (INLINE_TIME_SCALE
/ CGRAPH_FREQ_BASE
);
2990 if (*time
> MAX_TIME
* INLINE_TIME_SCALE
)
2991 *time
= MAX_TIME
* INLINE_TIME_SCALE
;
2996 /* Increase SIZE and TIME for size and time needed to handle all calls in NODE.
2997 POSSIBLE_TRUTHS, KNOWN_VALS and KNOWN_BINFOS describe context of the call
3001 estimate_calls_size_and_time (struct cgraph_node
*node
, int *size
, int *time
,
3002 inline_hints
*hints
,
3003 clause_t possible_truths
,
3004 vec
<tree
> known_vals
,
3005 vec
<tree
> known_binfos
,
3006 vec
<ipa_agg_jump_function_p
> known_aggs
)
3008 struct cgraph_edge
*e
;
3009 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3011 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3013 || evaluate_predicate (es
->predicate
, possible_truths
))
3015 if (e
->inline_failed
)
3017 /* Predicates of calls shall not use NOT_CHANGED codes,
3018 sowe do not need to compute probabilities. */
3019 estimate_edge_size_and_time (e
, size
, time
, REG_BR_PROB_BASE
,
3020 known_vals
, known_binfos
,
3024 estimate_calls_size_and_time (e
->callee
, size
, time
, hints
,
3026 known_vals
, known_binfos
,
3030 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3032 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3034 || evaluate_predicate (es
->predicate
, possible_truths
))
3035 estimate_edge_size_and_time (e
, size
, time
, REG_BR_PROB_BASE
,
3036 known_vals
, known_binfos
, known_aggs
,
3042 /* Estimate size and time needed to execute NODE assuming
3043 POSSIBLE_TRUTHS clause, and KNOWN_VALS and KNOWN_BINFOS information
3044 about NODE's arguments. */
3047 estimate_node_size_and_time (struct cgraph_node
*node
,
3048 clause_t possible_truths
,
3049 vec
<tree
> known_vals
,
3050 vec
<tree
> known_binfos
,
3051 vec
<ipa_agg_jump_function_p
> known_aggs
,
3052 int *ret_size
, int *ret_time
,
3053 inline_hints
*ret_hints
,
3054 vec
<inline_param_summary
>
3055 inline_param_summary
)
3057 struct inline_summary
*info
= inline_summary (node
);
3061 inline_hints hints
= 0;
3064 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3067 fprintf (dump_file
, " Estimating body: %s/%i\n"
3068 " Known to be false: ", node
->name (),
3071 for (i
= predicate_not_inlined_condition
;
3072 i
< (predicate_first_dynamic_condition
3073 + (int) vec_safe_length (info
->conds
)); i
++)
3074 if (!(possible_truths
& (1 << i
)))
3077 fprintf (dump_file
, ", ");
3079 dump_condition (dump_file
, info
->conds
, i
);
3083 for (i
= 0; vec_safe_iterate (info
->entry
, i
, &e
); i
++)
3084 if (evaluate_predicate (&e
->predicate
, possible_truths
))
3087 gcc_checking_assert (e
->time
>= 0);
3088 gcc_checking_assert (time
>= 0);
3089 if (!inline_param_summary
.exists ())
3093 int prob
= predicate_probability (info
->conds
,
3096 inline_param_summary
);
3097 gcc_checking_assert (prob
>= 0);
3098 gcc_checking_assert (prob
<= REG_BR_PROB_BASE
);
3099 time
+= apply_probability ((gcov_type
) e
->time
, prob
);
3101 if (time
> MAX_TIME
* INLINE_TIME_SCALE
)
3102 time
= MAX_TIME
* INLINE_TIME_SCALE
;
3103 gcc_checking_assert (time
>= 0);
3106 gcc_checking_assert (size
>= 0);
3107 gcc_checking_assert (time
>= 0);
3109 if (info
->loop_iterations
3110 && !evaluate_predicate (info
->loop_iterations
, possible_truths
))
3111 hints
|= INLINE_HINT_loop_iterations
;
3112 if (info
->loop_stride
3113 && !evaluate_predicate (info
->loop_stride
, possible_truths
))
3114 hints
|= INLINE_HINT_loop_stride
;
3115 if (info
->array_index
3116 && !evaluate_predicate (info
->array_index
, possible_truths
))
3117 hints
|= INLINE_HINT_array_index
;
3119 hints
|= INLINE_HINT_in_scc
;
3120 if (DECL_DECLARED_INLINE_P (node
->decl
))
3121 hints
|= INLINE_HINT_declared_inline
;
3123 estimate_calls_size_and_time (node
, &size
, &time
, &hints
, possible_truths
,
3124 known_vals
, known_binfos
, known_aggs
);
3125 gcc_checking_assert (size
>= 0);
3126 gcc_checking_assert (time
>= 0);
3127 time
= RDIV (time
, INLINE_TIME_SCALE
);
3128 size
= RDIV (size
, INLINE_SIZE_SCALE
);
3130 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3131 fprintf (dump_file
, "\n size:%i time:%i\n", (int) size
, (int) time
);
3142 /* Estimate size and time needed to execute callee of EDGE assuming that
3143 parameters known to be constant at caller of EDGE are propagated.
3144 KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
3145 and types for parameters. */
3148 estimate_ipcp_clone_size_and_time (struct cgraph_node
*node
,
3149 vec
<tree
> known_vals
,
3150 vec
<tree
> known_binfos
,
3151 vec
<ipa_agg_jump_function_p
> known_aggs
,
3152 int *ret_size
, int *ret_time
,
3153 inline_hints
*hints
)
3157 clause
= evaluate_conditions_for_known_args (node
, false, known_vals
,
3159 estimate_node_size_and_time (node
, clause
, known_vals
, known_binfos
,
3160 known_aggs
, ret_size
, ret_time
, hints
, vNULL
);
3163 /* Translate all conditions from callee representation into caller
3164 representation and symbolically evaluate predicate P into new predicate.
3166 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3167 is summary of function predicate P is from. OPERAND_MAP is array giving
3168 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3169 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3170 predicate under which callee is executed. OFFSET_MAP is an array of of
3171 offsets that need to be added to conditions, negative offset means that
3172 conditions relying on values passed by reference have to be discarded
3173 because they might not be preserved (and should be considered offset zero
3174 for other purposes). */
3176 static struct predicate
3177 remap_predicate (struct inline_summary
*info
,
3178 struct inline_summary
*callee_info
,
3179 struct predicate
*p
,
3180 vec
<int> operand_map
,
3181 vec
<int> offset_map
,
3182 clause_t possible_truths
, struct predicate
*toplev_predicate
)
3185 struct predicate out
= true_predicate ();
3187 /* True predicate is easy. */
3188 if (true_predicate_p (p
))
3189 return *toplev_predicate
;
3190 for (i
= 0; p
->clause
[i
]; i
++)
3192 clause_t clause
= p
->clause
[i
];
3194 struct predicate clause_predicate
= false_predicate ();
3196 gcc_assert (i
< MAX_CLAUSES
);
3198 for (cond
= 0; cond
< NUM_CONDITIONS
; cond
++)
3199 /* Do we have condition we can't disprove? */
3200 if (clause
& possible_truths
& (1 << cond
))
3202 struct predicate cond_predicate
;
3203 /* Work out if the condition can translate to predicate in the
3204 inlined function. */
3205 if (cond
>= predicate_first_dynamic_condition
)
3207 struct condition
*c
;
3209 c
= &(*callee_info
->conds
)[cond
3211 predicate_first_dynamic_condition
];
3212 /* See if we can remap condition operand to caller's operand.
3213 Otherwise give up. */
3214 if (!operand_map
.exists ()
3215 || (int) operand_map
.length () <= c
->operand_num
3216 || operand_map
[c
->operand_num
] == -1
3217 /* TODO: For non-aggregate conditions, adding an offset is
3218 basically an arithmetic jump function processing which
3219 we should support in future. */
3220 || ((!c
->agg_contents
|| !c
->by_ref
)
3221 && offset_map
[c
->operand_num
] > 0)
3222 || (c
->agg_contents
&& c
->by_ref
3223 && offset_map
[c
->operand_num
] < 0))
3224 cond_predicate
= true_predicate ();
3227 struct agg_position_info ap
;
3228 HOST_WIDE_INT offset_delta
= offset_map
[c
->operand_num
];
3229 if (offset_delta
< 0)
3231 gcc_checking_assert (!c
->agg_contents
|| !c
->by_ref
);
3234 gcc_assert (!c
->agg_contents
3235 || c
->by_ref
|| offset_delta
== 0);
3236 ap
.offset
= c
->offset
+ offset_delta
;
3237 ap
.agg_contents
= c
->agg_contents
;
3238 ap
.by_ref
= c
->by_ref
;
3239 cond_predicate
= add_condition (info
,
3240 operand_map
[c
->operand_num
],
3241 &ap
, c
->code
, c
->val
);
3244 /* Fixed conditions remains same, construct single
3245 condition predicate. */
3248 cond_predicate
.clause
[0] = 1 << cond
;
3249 cond_predicate
.clause
[1] = 0;
3251 clause_predicate
= or_predicates (info
->conds
, &clause_predicate
,
3254 out
= and_predicates (info
->conds
, &out
, &clause_predicate
);
3256 return and_predicates (info
->conds
, &out
, toplev_predicate
);
3260 /* Update summary information of inline clones after inlining.
3261 Compute peak stack usage. */
3264 inline_update_callee_summaries (struct cgraph_node
*node
, int depth
)
3266 struct cgraph_edge
*e
;
3267 struct inline_summary
*callee_info
= inline_summary (node
);
3268 struct inline_summary
*caller_info
= inline_summary (node
->callers
->caller
);
3271 callee_info
->stack_frame_offset
3272 = caller_info
->stack_frame_offset
3273 + caller_info
->estimated_self_stack_size
;
3274 peak
= callee_info
->stack_frame_offset
3275 + callee_info
->estimated_self_stack_size
;
3276 if (inline_summary (node
->global
.inlined_to
)->estimated_stack_size
< peak
)
3277 inline_summary (node
->global
.inlined_to
)->estimated_stack_size
= peak
;
3278 ipa_propagate_frequency (node
);
3279 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3281 if (!e
->inline_failed
)
3282 inline_update_callee_summaries (e
->callee
, depth
);
3283 inline_edge_summary (e
)->loop_depth
+= depth
;
3285 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3286 inline_edge_summary (e
)->loop_depth
+= depth
;
3289 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3290 When functoin A is inlined in B and A calls C with parameter that
3291 changes with probability PROB1 and C is known to be passthroug
3292 of argument if B that change with probability PROB2, the probability
3293 of change is now PROB1*PROB2. */
3296 remap_edge_change_prob (struct cgraph_edge
*inlined_edge
,
3297 struct cgraph_edge
*edge
)
3299 if (ipa_node_params_vector
.exists ())
3302 struct ipa_edge_args
*args
= IPA_EDGE_REF (edge
);
3303 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3304 struct inline_edge_summary
*inlined_es
3305 = inline_edge_summary (inlined_edge
);
3307 for (i
= 0; i
< ipa_get_cs_argument_count (args
); i
++)
3309 struct ipa_jump_func
*jfunc
= ipa_get_ith_jump_func (args
, i
);
3310 if (jfunc
->type
== IPA_JF_PASS_THROUGH
3311 && (ipa_get_jf_pass_through_formal_id (jfunc
)
3312 < (int) inlined_es
->param
.length ()))
3314 int jf_formal_id
= ipa_get_jf_pass_through_formal_id (jfunc
);
3315 int prob1
= es
->param
[i
].change_prob
;
3316 int prob2
= inlined_es
->param
[jf_formal_id
].change_prob
;
3317 int prob
= combine_probabilities (prob1
, prob2
);
3319 if (prob1
&& prob2
&& !prob
)
3322 es
->param
[i
].change_prob
= prob
;
3328 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3330 Remap predicates of callees of NODE. Rest of arguments match
3333 Also update change probabilities. */
3336 remap_edge_summaries (struct cgraph_edge
*inlined_edge
,
3337 struct cgraph_node
*node
,
3338 struct inline_summary
*info
,
3339 struct inline_summary
*callee_info
,
3340 vec
<int> operand_map
,
3341 vec
<int> offset_map
,
3342 clause_t possible_truths
,
3343 struct predicate
*toplev_predicate
)
3345 struct cgraph_edge
*e
;
3346 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3348 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3351 if (e
->inline_failed
)
3353 remap_edge_change_prob (inlined_edge
, e
);
3357 p
= remap_predicate (info
, callee_info
,
3358 es
->predicate
, operand_map
, offset_map
,
3359 possible_truths
, toplev_predicate
);
3360 edge_set_predicate (e
, &p
);
3361 /* TODO: We should remove the edge for code that will be
3362 optimized out, but we need to keep verifiers and tree-inline
3363 happy. Make it cold for now. */
3364 if (false_predicate_p (&p
))
3371 edge_set_predicate (e
, toplev_predicate
);
3374 remap_edge_summaries (inlined_edge
, e
->callee
, info
, callee_info
,
3375 operand_map
, offset_map
, possible_truths
,
3378 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3380 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3383 remap_edge_change_prob (inlined_edge
, e
);
3386 p
= remap_predicate (info
, callee_info
,
3387 es
->predicate
, operand_map
, offset_map
,
3388 possible_truths
, toplev_predicate
);
3389 edge_set_predicate (e
, &p
);
3390 /* TODO: We should remove the edge for code that will be optimized
3391 out, but we need to keep verifiers and tree-inline happy.
3392 Make it cold for now. */
3393 if (false_predicate_p (&p
))
3400 edge_set_predicate (e
, toplev_predicate
);
3404 /* Same as remap_predicate, but set result into hint *HINT. */
3407 remap_hint_predicate (struct inline_summary
*info
,
3408 struct inline_summary
*callee_info
,
3409 struct predicate
**hint
,
3410 vec
<int> operand_map
,
3411 vec
<int> offset_map
,
3412 clause_t possible_truths
,
3413 struct predicate
*toplev_predicate
)
3419 p
= remap_predicate (info
, callee_info
,
3421 operand_map
, offset_map
,
3422 possible_truths
, toplev_predicate
);
3423 if (!false_predicate_p (&p
) && !true_predicate_p (&p
))
3426 set_hint_predicate (hint
, p
);
3428 **hint
= and_predicates (info
->conds
, *hint
, &p
);
3432 /* We inlined EDGE. Update summary of the function we inlined into. */
3435 inline_merge_summary (struct cgraph_edge
*edge
)
3437 struct inline_summary
*callee_info
= inline_summary (edge
->callee
);
3438 struct cgraph_node
*to
= (edge
->caller
->global
.inlined_to
3439 ? edge
->caller
->global
.inlined_to
: edge
->caller
);
3440 struct inline_summary
*info
= inline_summary (to
);
3441 clause_t clause
= 0; /* not_inline is known to be false. */
3443 vec
<int> operand_map
= vNULL
;
3444 vec
<int> offset_map
= vNULL
;
3446 struct predicate toplev_predicate
;
3447 struct predicate true_p
= true_predicate ();
3448 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3451 toplev_predicate
= *es
->predicate
;
3453 toplev_predicate
= true_predicate ();
3455 if (ipa_node_params_vector
.exists () && callee_info
->conds
)
3457 struct ipa_edge_args
*args
= IPA_EDGE_REF (edge
);
3458 int count
= ipa_get_cs_argument_count (args
);
3461 evaluate_properties_for_edge (edge
, true, &clause
, NULL
, NULL
, NULL
);
3464 operand_map
.safe_grow_cleared (count
);
3465 offset_map
.safe_grow_cleared (count
);
3467 for (i
= 0; i
< count
; i
++)
3469 struct ipa_jump_func
*jfunc
= ipa_get_ith_jump_func (args
, i
);
3472 /* TODO: handle non-NOPs when merging. */
3473 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
3475 if (ipa_get_jf_pass_through_operation (jfunc
) == NOP_EXPR
)
3476 map
= ipa_get_jf_pass_through_formal_id (jfunc
);
3477 if (!ipa_get_jf_pass_through_agg_preserved (jfunc
))
3480 else if (jfunc
->type
== IPA_JF_ANCESTOR
)
3482 HOST_WIDE_INT offset
= ipa_get_jf_ancestor_offset (jfunc
);
3483 if (offset
>= 0 && offset
< INT_MAX
)
3485 map
= ipa_get_jf_ancestor_formal_id (jfunc
);
3486 if (!ipa_get_jf_ancestor_agg_preserved (jfunc
))
3488 offset_map
[i
] = offset
;
3491 operand_map
[i
] = map
;
3492 gcc_assert (map
< ipa_get_param_count (IPA_NODE_REF (to
)));
3495 for (i
= 0; vec_safe_iterate (callee_info
->entry
, i
, &e
); i
++)
3497 struct predicate p
= remap_predicate (info
, callee_info
,
3498 &e
->predicate
, operand_map
,
3501 if (!false_predicate_p (&p
))
3503 gcov_type add_time
= ((gcov_type
) e
->time
* edge
->frequency
3504 + CGRAPH_FREQ_BASE
/ 2) / CGRAPH_FREQ_BASE
;
3505 int prob
= predicate_probability (callee_info
->conds
,
3508 add_time
= apply_probability ((gcov_type
) add_time
, prob
);
3509 if (add_time
> MAX_TIME
* INLINE_TIME_SCALE
)
3510 add_time
= MAX_TIME
* INLINE_TIME_SCALE
;
3511 if (prob
!= REG_BR_PROB_BASE
3512 && dump_file
&& (dump_flags
& TDF_DETAILS
))
3514 fprintf (dump_file
, "\t\tScaling time by probability:%f\n",
3515 (double) prob
/ REG_BR_PROB_BASE
);
3517 account_size_time (info
, e
->size
, add_time
, &p
);
3520 remap_edge_summaries (edge
, edge
->callee
, info
, callee_info
, operand_map
,
3521 offset_map
, clause
, &toplev_predicate
);
3522 remap_hint_predicate (info
, callee_info
,
3523 &callee_info
->loop_iterations
,
3524 operand_map
, offset_map
, clause
, &toplev_predicate
);
3525 remap_hint_predicate (info
, callee_info
,
3526 &callee_info
->loop_stride
,
3527 operand_map
, offset_map
, clause
, &toplev_predicate
);
3528 remap_hint_predicate (info
, callee_info
,
3529 &callee_info
->array_index
,
3530 operand_map
, offset_map
, clause
, &toplev_predicate
);
3532 inline_update_callee_summaries (edge
->callee
,
3533 inline_edge_summary (edge
)->loop_depth
);
3535 /* We do not maintain predicates of inlined edges, free it. */
3536 edge_set_predicate (edge
, &true_p
);
3537 /* Similarly remove param summaries. */
3538 es
->param
.release ();
3539 operand_map
.release ();
3540 offset_map
.release ();
3543 /* For performance reasons inline_merge_summary is not updating overall size
3544 and time. Recompute it. */
3547 inline_update_overall_summary (struct cgraph_node
*node
)
3549 struct inline_summary
*info
= inline_summary (node
);
3555 for (i
= 0; vec_safe_iterate (info
->entry
, i
, &e
); i
++)
3557 info
->size
+= e
->size
, info
->time
+= e
->time
;
3558 if (info
->time
> MAX_TIME
* INLINE_TIME_SCALE
)
3559 info
->time
= MAX_TIME
* INLINE_TIME_SCALE
;
3561 estimate_calls_size_and_time (node
, &info
->size
, &info
->time
, NULL
,
3562 ~(clause_t
) (1 << predicate_false_condition
),
3563 vNULL
, vNULL
, vNULL
);
3564 info
->time
= (info
->time
+ INLINE_TIME_SCALE
/ 2) / INLINE_TIME_SCALE
;
3565 info
->size
= (info
->size
+ INLINE_SIZE_SCALE
/ 2) / INLINE_SIZE_SCALE
;
3568 /* Return hints derrived from EDGE. */
3570 simple_edge_hints (struct cgraph_edge
*edge
)
3573 struct cgraph_node
*to
= (edge
->caller
->global
.inlined_to
3574 ? edge
->caller
->global
.inlined_to
: edge
->caller
);
3575 if (inline_summary (to
)->scc_no
3576 && inline_summary (to
)->scc_no
== inline_summary (edge
->callee
)->scc_no
3577 && !cgraph_edge_recursive_p (edge
))
3578 hints
|= INLINE_HINT_same_scc
;
3580 if (to
->lto_file_data
&& edge
->callee
->lto_file_data
3581 && to
->lto_file_data
!= edge
->callee
->lto_file_data
)
3582 hints
|= INLINE_HINT_cross_module
;
3587 /* Estimate the time cost for the caller when inlining EDGE.
3588 Only to be called via estimate_edge_time, that handles the
3591 When caching, also update the cache entry. Compute both time and
3592 size, since we always need both metrics eventually. */
3595 do_estimate_edge_time (struct cgraph_edge
*edge
)
3600 struct cgraph_node
*callee
;
3602 vec
<tree
> known_vals
;
3603 vec
<tree
> known_binfos
;
3604 vec
<ipa_agg_jump_function_p
> known_aggs
;
3605 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3607 callee
= cgraph_function_or_thunk_node (edge
->callee
, NULL
);
3609 gcc_checking_assert (edge
->inline_failed
);
3610 evaluate_properties_for_edge (edge
, true,
3611 &clause
, &known_vals
, &known_binfos
,
3613 estimate_node_size_and_time (callee
, clause
, known_vals
, known_binfos
,
3614 known_aggs
, &size
, &time
, &hints
, es
->param
);
3615 known_vals
.release ();
3616 known_binfos
.release ();
3617 known_aggs
.release ();
3618 gcc_checking_assert (size
>= 0);
3619 gcc_checking_assert (time
>= 0);
3621 /* When caching, update the cache entry. */
3622 if (edge_growth_cache
.exists ())
3624 if ((int) edge_growth_cache
.length () <= edge
->uid
)
3625 edge_growth_cache
.safe_grow_cleared (cgraph_edge_max_uid
);
3626 edge_growth_cache
[edge
->uid
].time
= time
+ (time
>= 0);
3628 edge_growth_cache
[edge
->uid
].size
= size
+ (size
>= 0);
3629 hints
|= simple_edge_hints (edge
);
3630 edge_growth_cache
[edge
->uid
].hints
= hints
+ 1;
3636 /* Return estimated callee growth after inlining EDGE.
3637 Only to be called via estimate_edge_size. */
3640 do_estimate_edge_size (struct cgraph_edge
*edge
)
3643 struct cgraph_node
*callee
;
3645 vec
<tree
> known_vals
;
3646 vec
<tree
> known_binfos
;
3647 vec
<ipa_agg_jump_function_p
> known_aggs
;
3649 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3651 if (edge_growth_cache
.exists ())
3653 do_estimate_edge_time (edge
);
3654 size
= edge_growth_cache
[edge
->uid
].size
;
3655 gcc_checking_assert (size
);
3656 return size
- (size
> 0);
3659 callee
= cgraph_function_or_thunk_node (edge
->callee
, NULL
);
3661 /* Early inliner runs without caching, go ahead and do the dirty work. */
3662 gcc_checking_assert (edge
->inline_failed
);
3663 evaluate_properties_for_edge (edge
, true,
3664 &clause
, &known_vals
, &known_binfos
,
3666 estimate_node_size_and_time (callee
, clause
, known_vals
, known_binfos
,
3667 known_aggs
, &size
, NULL
, NULL
, vNULL
);
3668 known_vals
.release ();
3669 known_binfos
.release ();
3670 known_aggs
.release ();
3675 /* Estimate the growth of the caller when inlining EDGE.
3676 Only to be called via estimate_edge_size. */
3679 do_estimate_edge_hints (struct cgraph_edge
*edge
)
3682 struct cgraph_node
*callee
;
3684 vec
<tree
> known_vals
;
3685 vec
<tree
> known_binfos
;
3686 vec
<ipa_agg_jump_function_p
> known_aggs
;
3688 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3690 if (edge_growth_cache
.exists ())
3692 do_estimate_edge_time (edge
);
3693 hints
= edge_growth_cache
[edge
->uid
].hints
;
3694 gcc_checking_assert (hints
);
3698 callee
= cgraph_function_or_thunk_node (edge
->callee
, NULL
);
3700 /* Early inliner runs without caching, go ahead and do the dirty work. */
3701 gcc_checking_assert (edge
->inline_failed
);
3702 evaluate_properties_for_edge (edge
, true,
3703 &clause
, &known_vals
, &known_binfos
,
3705 estimate_node_size_and_time (callee
, clause
, known_vals
, known_binfos
,
3706 known_aggs
, NULL
, NULL
, &hints
, vNULL
);
3707 known_vals
.release ();
3708 known_binfos
.release ();
3709 known_aggs
.release ();
3710 hints
|= simple_edge_hints (edge
);
3715 /* Estimate self time of the function NODE after inlining EDGE. */
3718 estimate_time_after_inlining (struct cgraph_node
*node
,
3719 struct cgraph_edge
*edge
)
3721 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3722 if (!es
->predicate
|| !false_predicate_p (es
->predicate
))
3725 inline_summary (node
)->time
+ estimate_edge_time (edge
);
3728 if (time
> MAX_TIME
)
3732 return inline_summary (node
)->time
;
3736 /* Estimate the size of NODE after inlining EDGE which should be an
3737 edge to either NODE or a call inlined into NODE. */
3740 estimate_size_after_inlining (struct cgraph_node
*node
,
3741 struct cgraph_edge
*edge
)
3743 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3744 if (!es
->predicate
|| !false_predicate_p (es
->predicate
))
3746 int size
= inline_summary (node
)->size
+ estimate_edge_growth (edge
);
3747 gcc_assert (size
>= 0);
3750 return inline_summary (node
)->size
;
3756 struct cgraph_node
*node
;
3757 bool self_recursive
;
3762 /* Worker for do_estimate_growth. Collect growth for all callers. */
3765 do_estimate_growth_1 (struct cgraph_node
*node
, void *data
)
3767 struct cgraph_edge
*e
;
3768 struct growth_data
*d
= (struct growth_data
*) data
;
3770 for (e
= node
->callers
; e
; e
= e
->next_caller
)
3772 gcc_checking_assert (e
->inline_failed
);
3774 if (e
->caller
== d
->node
3775 || (e
->caller
->global
.inlined_to
3776 && e
->caller
->global
.inlined_to
== d
->node
))
3777 d
->self_recursive
= true;
3778 d
->growth
+= estimate_edge_growth (e
);
3784 /* Estimate the growth caused by inlining NODE into all callees. */
3787 do_estimate_growth (struct cgraph_node
*node
)
3789 struct growth_data d
= { node
, 0, false };
3790 struct inline_summary
*info
= inline_summary (node
);
3792 cgraph_for_node_and_aliases (node
, do_estimate_growth_1
, &d
, true);
3794 /* For self recursive functions the growth estimation really should be
3795 infinity. We don't want to return very large values because the growth
3796 plays various roles in badness computation fractions. Be sure to not
3797 return zero or negative growths. */
3798 if (d
.self_recursive
)
3799 d
.growth
= d
.growth
< info
->size
? info
->size
: d
.growth
;
3800 else if (DECL_EXTERNAL (node
->decl
))
3804 if (cgraph_will_be_removed_from_program_if_no_direct_calls (node
))
3805 d
.growth
-= info
->size
;
3806 /* COMDAT functions are very often not shared across multiple units
3807 since they come from various template instantiations.
3808 Take this into account. */
3809 else if (DECL_COMDAT (node
->decl
)
3810 && cgraph_can_remove_if_no_direct_calls_p (node
))
3811 d
.growth
-= (info
->size
3812 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY
))
3816 if (node_growth_cache
.exists ())
3818 if ((int) node_growth_cache
.length () <= node
->uid
)
3819 node_growth_cache
.safe_grow_cleared (cgraph_max_uid
);
3820 node_growth_cache
[node
->uid
] = d
.growth
+ (d
.growth
>= 0);
3826 /* This function performs intraprocedural analysis in NODE that is required to
3827 inline indirect calls. */
3830 inline_indirect_intraprocedural_analysis (struct cgraph_node
*node
)
3832 ipa_analyze_node (node
);
3833 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3835 ipa_print_node_params (dump_file
, node
);
3836 ipa_print_node_jump_functions (dump_file
, node
);
3841 /* Note function body size. */
3844 inline_analyze_function (struct cgraph_node
*node
)
3846 push_cfun (DECL_STRUCT_FUNCTION (node
->decl
));
3849 fprintf (dump_file
, "\nAnalyzing function: %s/%u\n",
3850 node
->name (), node
->order
);
3851 if (optimize
&& !node
->thunk
.thunk_p
)
3852 inline_indirect_intraprocedural_analysis (node
);
3853 compute_inline_parameters (node
, false);
3856 struct cgraph_edge
*e
;
3857 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3859 if (e
->inline_failed
== CIF_FUNCTION_NOT_CONSIDERED
)
3860 e
->inline_failed
= CIF_FUNCTION_NOT_OPTIMIZED
;
3861 e
->call_stmt_cannot_inline_p
= true;
3863 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3865 if (e
->inline_failed
== CIF_FUNCTION_NOT_CONSIDERED
)
3866 e
->inline_failed
= CIF_FUNCTION_NOT_OPTIMIZED
;
3867 e
->call_stmt_cannot_inline_p
= true;
3875 /* Called when new function is inserted to callgraph late. */
3878 add_new_function (struct cgraph_node
*node
, void *data ATTRIBUTE_UNUSED
)
3880 inline_analyze_function (node
);
3884 /* Note function body size. */
3887 inline_generate_summary (void)
3889 struct cgraph_node
*node
;
3891 /* When not optimizing, do not bother to analyze. Inlining is still done
3892 because edge redirection needs to happen there. */
3893 if (!optimize
&& !flag_lto
&& !flag_wpa
)
3896 function_insertion_hook_holder
=
3897 cgraph_add_function_insertion_hook (&add_new_function
, NULL
);
3899 ipa_register_cgraph_hooks ();
3900 inline_free_summary ();
3902 FOR_EACH_DEFINED_FUNCTION (node
)
3904 inline_analyze_function (node
);
3908 /* Read predicate from IB. */
3910 static struct predicate
3911 read_predicate (struct lto_input_block
*ib
)
3913 struct predicate out
;
3919 gcc_assert (k
<= MAX_CLAUSES
);
3920 clause
= out
.clause
[k
++] = streamer_read_uhwi (ib
);
3924 /* Zero-initialize the remaining clauses in OUT. */
3925 while (k
<= MAX_CLAUSES
)
3926 out
.clause
[k
++] = 0;
3932 /* Write inline summary for edge E to OB. */
3935 read_inline_edge_summary (struct lto_input_block
*ib
, struct cgraph_edge
*e
)
3937 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3941 es
->call_stmt_size
= streamer_read_uhwi (ib
);
3942 es
->call_stmt_time
= streamer_read_uhwi (ib
);
3943 es
->loop_depth
= streamer_read_uhwi (ib
);
3944 p
= read_predicate (ib
);
3945 edge_set_predicate (e
, &p
);
3946 length
= streamer_read_uhwi (ib
);
3949 es
->param
.safe_grow_cleared (length
);
3950 for (i
= 0; i
< length
; i
++)
3951 es
->param
[i
].change_prob
= streamer_read_uhwi (ib
);
3956 /* Stream in inline summaries from the section. */
3959 inline_read_section (struct lto_file_decl_data
*file_data
, const char *data
,
3962 const struct lto_function_header
*header
=
3963 (const struct lto_function_header
*) data
;
3964 const int cfg_offset
= sizeof (struct lto_function_header
);
3965 const int main_offset
= cfg_offset
+ header
->cfg_size
;
3966 const int string_offset
= main_offset
+ header
->main_size
;
3967 struct data_in
*data_in
;
3968 struct lto_input_block ib
;
3969 unsigned int i
, count2
, j
;
3970 unsigned int f_count
;
3972 LTO_INIT_INPUT_BLOCK (ib
, (const char *) data
+ main_offset
, 0,
3976 lto_data_in_create (file_data
, (const char *) data
+ string_offset
,
3977 header
->string_size
, vNULL
);
3978 f_count
= streamer_read_uhwi (&ib
);
3979 for (i
= 0; i
< f_count
; i
++)
3982 struct cgraph_node
*node
;
3983 struct inline_summary
*info
;
3984 lto_symtab_encoder_t encoder
;
3985 struct bitpack_d bp
;
3986 struct cgraph_edge
*e
;
3989 index
= streamer_read_uhwi (&ib
);
3990 encoder
= file_data
->symtab_node_encoder
;
3991 node
= cgraph (lto_symtab_encoder_deref (encoder
, index
));
3992 info
= inline_summary (node
);
3994 info
->estimated_stack_size
3995 = info
->estimated_self_stack_size
= streamer_read_uhwi (&ib
);
3996 info
->size
= info
->self_size
= streamer_read_uhwi (&ib
);
3997 info
->time
= info
->self_time
= streamer_read_uhwi (&ib
);
3999 bp
= streamer_read_bitpack (&ib
);
4000 info
->inlinable
= bp_unpack_value (&bp
, 1);
4002 count2
= streamer_read_uhwi (&ib
);
4003 gcc_assert (!info
->conds
);
4004 for (j
= 0; j
< count2
; j
++)
4007 c
.operand_num
= streamer_read_uhwi (&ib
);
4008 c
.code
= (enum tree_code
) streamer_read_uhwi (&ib
);
4009 c
.val
= stream_read_tree (&ib
, data_in
);
4010 bp
= streamer_read_bitpack (&ib
);
4011 c
.agg_contents
= bp_unpack_value (&bp
, 1);
4012 c
.by_ref
= bp_unpack_value (&bp
, 1);
4014 c
.offset
= streamer_read_uhwi (&ib
);
4015 vec_safe_push (info
->conds
, c
);
4017 count2
= streamer_read_uhwi (&ib
);
4018 gcc_assert (!info
->entry
);
4019 for (j
= 0; j
< count2
; j
++)
4021 struct size_time_entry e
;
4023 e
.size
= streamer_read_uhwi (&ib
);
4024 e
.time
= streamer_read_uhwi (&ib
);
4025 e
.predicate
= read_predicate (&ib
);
4027 vec_safe_push (info
->entry
, e
);
4030 p
= read_predicate (&ib
);
4031 set_hint_predicate (&info
->loop_iterations
, p
);
4032 p
= read_predicate (&ib
);
4033 set_hint_predicate (&info
->loop_stride
, p
);
4034 p
= read_predicate (&ib
);
4035 set_hint_predicate (&info
->array_index
, p
);
4036 for (e
= node
->callees
; e
; e
= e
->next_callee
)
4037 read_inline_edge_summary (&ib
, e
);
4038 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
4039 read_inline_edge_summary (&ib
, e
);
4042 lto_free_section_data (file_data
, LTO_section_inline_summary
, NULL
, data
,
4044 lto_data_in_delete (data_in
);
4048 /* Read inline summary. Jump functions are shared among ipa-cp
4049 and inliner, so when ipa-cp is active, we don't need to write them
4053 inline_read_summary (void)
4055 struct lto_file_decl_data
**file_data_vec
= lto_get_file_decl_data ();
4056 struct lto_file_decl_data
*file_data
;
4059 inline_summary_alloc ();
4061 while ((file_data
= file_data_vec
[j
++]))
4064 const char *data
= lto_get_section_data (file_data
,
4065 LTO_section_inline_summary
,
4068 inline_read_section (file_data
, data
, len
);
4070 /* Fatal error here. We do not want to support compiling ltrans units
4071 with different version of compiler or different flags than the WPA
4072 unit, so this should never happen. */
4073 fatal_error ("ipa inline summary is missing in input file");
4077 ipa_register_cgraph_hooks ();
4079 ipa_prop_read_jump_functions ();
4081 function_insertion_hook_holder
=
4082 cgraph_add_function_insertion_hook (&add_new_function
, NULL
);
4086 /* Write predicate P to OB. */
4089 write_predicate (struct output_block
*ob
, struct predicate
*p
)
4093 for (j
= 0; p
->clause
[j
]; j
++)
4095 gcc_assert (j
< MAX_CLAUSES
);
4096 streamer_write_uhwi (ob
, p
->clause
[j
]);
4098 streamer_write_uhwi (ob
, 0);
4102 /* Write inline summary for edge E to OB. */
4105 write_inline_edge_summary (struct output_block
*ob
, struct cgraph_edge
*e
)
4107 struct inline_edge_summary
*es
= inline_edge_summary (e
);
4110 streamer_write_uhwi (ob
, es
->call_stmt_size
);
4111 streamer_write_uhwi (ob
, es
->call_stmt_time
);
4112 streamer_write_uhwi (ob
, es
->loop_depth
);
4113 write_predicate (ob
, es
->predicate
);
4114 streamer_write_uhwi (ob
, es
->param
.length ());
4115 for (i
= 0; i
< (int) es
->param
.length (); i
++)
4116 streamer_write_uhwi (ob
, es
->param
[i
].change_prob
);
4120 /* Write inline summary for node in SET.
4121 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4122 active, we don't need to write them twice. */
4125 inline_write_summary (void)
4127 struct cgraph_node
*node
;
4128 struct output_block
*ob
= create_output_block (LTO_section_inline_summary
);
4129 lto_symtab_encoder_t encoder
= ob
->decl_state
->symtab_node_encoder
;
4130 unsigned int count
= 0;
4133 for (i
= 0; i
< lto_symtab_encoder_size (encoder
); i
++)
4135 symtab_node
*snode
= lto_symtab_encoder_deref (encoder
, i
);
4136 cgraph_node
*cnode
= dyn_cast
<cgraph_node
> (snode
);
4137 if (cnode
&& cnode
->definition
&& !cnode
->alias
)
4140 streamer_write_uhwi (ob
, count
);
4142 for (i
= 0; i
< lto_symtab_encoder_size (encoder
); i
++)
4144 symtab_node
*snode
= lto_symtab_encoder_deref (encoder
, i
);
4145 cgraph_node
*cnode
= dyn_cast
<cgraph_node
> (snode
);
4146 if (cnode
&& (node
= cnode
)->definition
&& !node
->alias
)
4148 struct inline_summary
*info
= inline_summary (node
);
4149 struct bitpack_d bp
;
4150 struct cgraph_edge
*edge
;
4153 struct condition
*c
;
4155 streamer_write_uhwi (ob
,
4156 lto_symtab_encoder_encode (encoder
,
4159 streamer_write_hwi (ob
, info
->estimated_self_stack_size
);
4160 streamer_write_hwi (ob
, info
->self_size
);
4161 streamer_write_hwi (ob
, info
->self_time
);
4162 bp
= bitpack_create (ob
->main_stream
);
4163 bp_pack_value (&bp
, info
->inlinable
, 1);
4164 streamer_write_bitpack (&bp
);
4165 streamer_write_uhwi (ob
, vec_safe_length (info
->conds
));
4166 for (i
= 0; vec_safe_iterate (info
->conds
, i
, &c
); i
++)
4168 streamer_write_uhwi (ob
, c
->operand_num
);
4169 streamer_write_uhwi (ob
, c
->code
);
4170 stream_write_tree (ob
, c
->val
, true);
4171 bp
= bitpack_create (ob
->main_stream
);
4172 bp_pack_value (&bp
, c
->agg_contents
, 1);
4173 bp_pack_value (&bp
, c
->by_ref
, 1);
4174 streamer_write_bitpack (&bp
);
4175 if (c
->agg_contents
)
4176 streamer_write_uhwi (ob
, c
->offset
);
4178 streamer_write_uhwi (ob
, vec_safe_length (info
->entry
));
4179 for (i
= 0; vec_safe_iterate (info
->entry
, i
, &e
); i
++)
4181 streamer_write_uhwi (ob
, e
->size
);
4182 streamer_write_uhwi (ob
, e
->time
);
4183 write_predicate (ob
, &e
->predicate
);
4185 write_predicate (ob
, info
->loop_iterations
);
4186 write_predicate (ob
, info
->loop_stride
);
4187 write_predicate (ob
, info
->array_index
);
4188 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
4189 write_inline_edge_summary (ob
, edge
);
4190 for (edge
= node
->indirect_calls
; edge
; edge
= edge
->next_callee
)
4191 write_inline_edge_summary (ob
, edge
);
4194 streamer_write_char_stream (ob
->main_stream
, 0);
4195 produce_asm (ob
, NULL
);
4196 destroy_output_block (ob
);
4198 if (optimize
&& !flag_ipa_cp
)
4199 ipa_prop_write_jump_functions ();
4203 /* Release inline summary. */
4206 inline_free_summary (void)
4208 struct cgraph_node
*node
;
4209 if (!inline_edge_summary_vec
.exists ())
4211 FOR_EACH_DEFINED_FUNCTION (node
)
4213 reset_inline_summary (node
);
4214 if (function_insertion_hook_holder
)
4215 cgraph_remove_function_insertion_hook (function_insertion_hook_holder
);
4216 function_insertion_hook_holder
= NULL
;
4217 if (node_removal_hook_holder
)
4218 cgraph_remove_node_removal_hook (node_removal_hook_holder
);
4219 node_removal_hook_holder
= NULL
;
4220 if (edge_removal_hook_holder
)
4221 cgraph_remove_edge_removal_hook (edge_removal_hook_holder
);
4222 edge_removal_hook_holder
= NULL
;
4223 if (node_duplication_hook_holder
)
4224 cgraph_remove_node_duplication_hook (node_duplication_hook_holder
);
4225 node_duplication_hook_holder
= NULL
;
4226 if (edge_duplication_hook_holder
)
4227 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder
);
4228 edge_duplication_hook_holder
= NULL
;
4229 vec_free (inline_summary_vec
);
4230 inline_edge_summary_vec
.release ();
4231 if (edge_predicate_pool
)
4232 free_alloc_pool (edge_predicate_pool
);
4233 edge_predicate_pool
= 0;