1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* TODO: Emit .debug_line header even when there are no functions, since
25 the file numbers are used by .debug_info. Alternately, leave
26 out locations for types and decls.
27 Avoid talking about ctors and op= for PODs.
28 Factor out common prologue sequences into multiple CIEs. */
30 /* The first part of this file deals with the DWARF 2 frame unwind
31 information, which is also used by the GCC efficient exception handling
32 mechanism. The second part, controlled only by an #ifdef
33 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
36 /* DWARF2 Abbreviation Glossary:
38 CFA = Canonical Frame Address
39 a fixed address on the stack which identifies a call frame.
40 We define it to be the value of SP just before the call insn.
41 The CFA register and offset, which may change during the course
42 of the function, are used to calculate its value at runtime.
44 CFI = Call Frame Instruction
45 an instruction for the DWARF2 abstract machine
47 CIE = Common Information Entry
48 information describing information common to one or more FDEs
50 DIE = Debugging Information Entry
52 FDE = Frame Description Entry
53 information describing the stack call frame, in particular,
54 how to restore registers
56 DW_CFA_... = DWARF2 CFA call frame instruction
57 DW_TAG_... = DWARF2 DIE tag */
61 #include "coretypes.h"
68 #include "hard-reg-set.h"
70 #include "insn-config.h"
78 #include "dwarf2out.h"
79 #include "dwarf2asm.h"
85 #include "diagnostic.h"
88 #include "langhooks.h"
93 #ifdef DWARF2_DEBUGGING_INFO
94 static void dwarf2out_source_line (unsigned int, const char *);
97 #ifndef DWARF2_FRAME_INFO
98 # ifdef DWARF2_DEBUGGING_INFO
99 # define DWARF2_FRAME_INFO \
100 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
102 # define DWARF2_FRAME_INFO 0
106 /* Map register numbers held in the call frame info that gcc has
107 collected using DWARF_FRAME_REGNUM to those that should be output in
108 .debug_frame and .eh_frame. */
109 #ifndef DWARF2_FRAME_REG_OUT
110 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
113 /* Decide whether we want to emit frame unwind information for the current
117 dwarf2out_do_frame (void)
119 /* We want to emit correct CFA location expressions or lists, so we
120 have to return true if we're going to output debug info, even if
121 we're not going to output frame or unwind info. */
122 return (write_symbols
== DWARF2_DEBUG
123 || write_symbols
== VMS_AND_DWARF2_DEBUG
125 #ifdef DWARF2_UNWIND_INFO
126 || (DWARF2_UNWIND_INFO
127 && (flag_unwind_tables
128 || (flag_exceptions
&& ! USING_SJLJ_EXCEPTIONS
)))
133 /* The size of the target's pointer type. */
135 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
138 /* Array of RTXes referenced by the debugging information, which therefore
139 must be kept around forever. */
140 static GTY(()) VEC(rtx
,gc
) *used_rtx_array
;
142 /* A pointer to the base of a list of incomplete types which might be
143 completed at some later time. incomplete_types_list needs to be a
144 VEC(tree,gc) because we want to tell the garbage collector about
146 static GTY(()) VEC(tree
,gc
) *incomplete_types
;
148 /* A pointer to the base of a table of references to declaration
149 scopes. This table is a display which tracks the nesting
150 of declaration scopes at the current scope and containing
151 scopes. This table is used to find the proper place to
152 define type declaration DIE's. */
153 static GTY(()) VEC(tree
,gc
) *decl_scope_table
;
155 /* Pointers to various DWARF2 sections. */
156 static GTY(()) section
*debug_info_section
;
157 static GTY(()) section
*debug_abbrev_section
;
158 static GTY(()) section
*debug_aranges_section
;
159 static GTY(()) section
*debug_macinfo_section
;
160 static GTY(()) section
*debug_line_section
;
161 static GTY(()) section
*debug_loc_section
;
162 static GTY(()) section
*debug_pubnames_section
;
163 static GTY(()) section
*debug_pubtypes_section
;
164 static GTY(()) section
*debug_str_section
;
165 static GTY(()) section
*debug_ranges_section
;
166 static GTY(()) section
*debug_frame_section
;
168 /* How to start an assembler comment. */
169 #ifndef ASM_COMMENT_START
170 #define ASM_COMMENT_START ";#"
173 typedef struct dw_cfi_struct
*dw_cfi_ref
;
174 typedef struct dw_fde_struct
*dw_fde_ref
;
175 typedef union dw_cfi_oprnd_struct
*dw_cfi_oprnd_ref
;
177 /* Call frames are described using a sequence of Call Frame
178 Information instructions. The register number, offset
179 and address fields are provided as possible operands;
180 their use is selected by the opcode field. */
182 enum dw_cfi_oprnd_type
{
184 dw_cfi_oprnd_reg_num
,
190 typedef union dw_cfi_oprnd_struct
GTY(())
192 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num
;
193 HOST_WIDE_INT
GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset
;
194 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr
;
195 struct dw_loc_descr_struct
* GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc
;
199 typedef struct dw_cfi_struct
GTY(())
201 dw_cfi_ref dw_cfi_next
;
202 enum dwarf_call_frame_info dw_cfi_opc
;
203 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
205 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
210 /* This is how we define the location of the CFA. We use to handle it
211 as REG + OFFSET all the time, but now it can be more complex.
212 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
213 Instead of passing around REG and OFFSET, we pass a copy
214 of this structure. */
215 typedef struct cfa_loc
GTY(())
217 HOST_WIDE_INT offset
;
218 HOST_WIDE_INT base_offset
;
220 int indirect
; /* 1 if CFA is accessed via a dereference. */
223 /* All call frame descriptions (FDE's) in the GCC generated DWARF
224 refer to a single Common Information Entry (CIE), defined at
225 the beginning of the .debug_frame section. This use of a single
226 CIE obviates the need to keep track of multiple CIE's
227 in the DWARF generation routines below. */
229 typedef struct dw_fde_struct
GTY(())
232 const char *dw_fde_begin
;
233 const char *dw_fde_current_label
;
234 const char *dw_fde_end
;
235 const char *dw_fde_hot_section_label
;
236 const char *dw_fde_hot_section_end_label
;
237 const char *dw_fde_unlikely_section_label
;
238 const char *dw_fde_unlikely_section_end_label
;
239 bool dw_fde_switched_sections
;
240 dw_cfi_ref dw_fde_cfi
;
241 unsigned funcdef_number
;
242 unsigned all_throwers_are_sibcalls
: 1;
243 unsigned nothrow
: 1;
244 unsigned uses_eh_lsda
: 1;
248 /* Maximum size (in bytes) of an artificially generated label. */
249 #define MAX_ARTIFICIAL_LABEL_BYTES 30
251 /* The size of addresses as they appear in the Dwarf 2 data.
252 Some architectures use word addresses to refer to code locations,
253 but Dwarf 2 info always uses byte addresses. On such machines,
254 Dwarf 2 addresses need to be larger than the architecture's
256 #ifndef DWARF2_ADDR_SIZE
257 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
260 /* The size in bytes of a DWARF field indicating an offset or length
261 relative to a debug info section, specified to be 4 bytes in the
262 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
265 #ifndef DWARF_OFFSET_SIZE
266 #define DWARF_OFFSET_SIZE 4
269 /* According to the (draft) DWARF 3 specification, the initial length
270 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
271 bytes are 0xffffffff, followed by the length stored in the next 8
274 However, the SGI/MIPS ABI uses an initial length which is equal to
275 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
277 #ifndef DWARF_INITIAL_LENGTH_SIZE
278 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
281 #define DWARF_VERSION 2
283 /* Round SIZE up to the nearest BOUNDARY. */
284 #define DWARF_ROUND(SIZE,BOUNDARY) \
285 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
287 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
288 #ifndef DWARF_CIE_DATA_ALIGNMENT
289 #ifdef STACK_GROWS_DOWNWARD
290 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
292 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
296 /* CIE identifier. */
297 #if HOST_BITS_PER_WIDE_INT >= 64
298 #define DWARF_CIE_ID \
299 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
301 #define DWARF_CIE_ID DW_CIE_ID
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table
;
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated
;
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use
;
314 /* Size (in elements) of increments by which we may expand the
316 #define FDE_TABLE_INCREMENT 256
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head
;
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde
;
329 struct indirect_string_node
GTY(())
332 unsigned int refcount
;
337 static GTY ((param_is (struct indirect_string_node
))) htab_t debug_str_hash
;
339 static GTY(()) int dw2_string_counter
;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
342 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
344 /* Forward declarations for functions defined in this file. */
346 static char *stripattributes (const char *);
347 static const char *dwarf_cfi_name (unsigned);
348 static dw_cfi_ref
new_cfi (void);
349 static void add_cfi (dw_cfi_ref
*, dw_cfi_ref
);
350 static void add_fde_cfi (const char *, dw_cfi_ref
);
351 static void lookup_cfa_1 (dw_cfi_ref
, dw_cfa_location
*);
352 static void lookup_cfa (dw_cfa_location
*);
353 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT
);
354 #ifdef DWARF2_UNWIND_INFO
355 static void initial_return_save (rtx
);
357 static HOST_WIDE_INT
stack_adjust_offset (const_rtx
);
358 static void output_cfi (dw_cfi_ref
, dw_fde_ref
, int);
359 static void output_call_frame_info (int);
360 static void dwarf2out_stack_adjust (rtx
, bool);
361 static void flush_queued_reg_saves (void);
362 static bool clobbers_queued_reg_save (const_rtx
);
363 static void dwarf2out_frame_debug_expr (rtx
, const char *);
365 /* Support for complex CFA locations. */
366 static void output_cfa_loc (dw_cfi_ref
);
367 static void get_cfa_from_loc_descr (dw_cfa_location
*,
368 struct dw_loc_descr_struct
*);
369 static struct dw_loc_descr_struct
*build_cfa_loc
370 (dw_cfa_location
*, HOST_WIDE_INT
);
371 static void def_cfa_1 (const char *, dw_cfa_location
*);
373 /* How to start an assembler comment. */
374 #ifndef ASM_COMMENT_START
375 #define ASM_COMMENT_START ";#"
378 /* Data and reference forms for relocatable data. */
379 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
380 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
382 #ifndef DEBUG_FRAME_SECTION
383 #define DEBUG_FRAME_SECTION ".debug_frame"
386 #ifndef FUNC_BEGIN_LABEL
387 #define FUNC_BEGIN_LABEL "LFB"
390 #ifndef FUNC_END_LABEL
391 #define FUNC_END_LABEL "LFE"
394 #ifndef FRAME_BEGIN_LABEL
395 #define FRAME_BEGIN_LABEL "Lframe"
397 #define CIE_AFTER_SIZE_LABEL "LSCIE"
398 #define CIE_END_LABEL "LECIE"
399 #define FDE_LABEL "LSFDE"
400 #define FDE_AFTER_SIZE_LABEL "LASFDE"
401 #define FDE_END_LABEL "LEFDE"
402 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
403 #define LINE_NUMBER_END_LABEL "LELT"
404 #define LN_PROLOG_AS_LABEL "LASLTP"
405 #define LN_PROLOG_END_LABEL "LELTP"
406 #define DIE_LABEL_PREFIX "DW"
408 /* The DWARF 2 CFA column which tracks the return address. Normally this
409 is the column for PC, or the first column after all of the hard
411 #ifndef DWARF_FRAME_RETURN_COLUMN
413 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
415 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
419 /* The mapping from gcc register number to DWARF 2 CFA column number. By
420 default, we just provide columns for all registers. */
421 #ifndef DWARF_FRAME_REGNUM
422 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
425 /* Hook used by __throw. */
428 expand_builtin_dwarf_sp_column (void)
430 unsigned int dwarf_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
431 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum
, 1));
434 /* Return a pointer to a copy of the section string name S with all
435 attributes stripped off, and an asterisk prepended (for assemble_name). */
438 stripattributes (const char *s
)
440 char *stripped
= XNEWVEC (char, strlen (s
) + 2);
445 while (*s
&& *s
!= ',')
452 /* MEM is a memory reference for the register size table, each element of
453 which has mode MODE. Initialize column C as a return address column. */
456 init_return_column_size (enum machine_mode mode
, rtx mem
, unsigned int c
)
458 HOST_WIDE_INT offset
= c
* GET_MODE_SIZE (mode
);
459 HOST_WIDE_INT size
= GET_MODE_SIZE (Pmode
);
460 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
463 /* Generate code to initialize the register size table. */
466 expand_builtin_init_dwarf_reg_sizes (tree address
)
469 enum machine_mode mode
= TYPE_MODE (char_type_node
);
470 rtx addr
= expand_normal (address
);
471 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
472 bool wrote_return_column
= false;
474 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
476 int rnum
= DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i
), 1);
478 if (rnum
< DWARF_FRAME_REGISTERS
)
480 HOST_WIDE_INT offset
= rnum
* GET_MODE_SIZE (mode
);
481 enum machine_mode save_mode
= reg_raw_mode
[i
];
484 if (HARD_REGNO_CALL_PART_CLOBBERED (i
, save_mode
))
485 save_mode
= choose_hard_reg_mode (i
, 1, true);
486 if (DWARF_FRAME_REGNUM (i
) == DWARF_FRAME_RETURN_COLUMN
)
488 if (save_mode
== VOIDmode
)
490 wrote_return_column
= true;
492 size
= GET_MODE_SIZE (save_mode
);
496 emit_move_insn (adjust_address (mem
, mode
, offset
),
497 gen_int_mode (size
, mode
));
501 if (!wrote_return_column
)
502 init_return_column_size (mode
, mem
, DWARF_FRAME_RETURN_COLUMN
);
504 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
505 init_return_column_size (mode
, mem
, DWARF_ALT_FRAME_RETURN_COLUMN
);
508 targetm
.init_dwarf_reg_sizes_extra (address
);
511 /* Convert a DWARF call frame info. operation to its string name */
514 dwarf_cfi_name (unsigned int cfi_opc
)
518 case DW_CFA_advance_loc
:
519 return "DW_CFA_advance_loc";
521 return "DW_CFA_offset";
523 return "DW_CFA_restore";
527 return "DW_CFA_set_loc";
528 case DW_CFA_advance_loc1
:
529 return "DW_CFA_advance_loc1";
530 case DW_CFA_advance_loc2
:
531 return "DW_CFA_advance_loc2";
532 case DW_CFA_advance_loc4
:
533 return "DW_CFA_advance_loc4";
534 case DW_CFA_offset_extended
:
535 return "DW_CFA_offset_extended";
536 case DW_CFA_restore_extended
:
537 return "DW_CFA_restore_extended";
538 case DW_CFA_undefined
:
539 return "DW_CFA_undefined";
540 case DW_CFA_same_value
:
541 return "DW_CFA_same_value";
542 case DW_CFA_register
:
543 return "DW_CFA_register";
544 case DW_CFA_remember_state
:
545 return "DW_CFA_remember_state";
546 case DW_CFA_restore_state
:
547 return "DW_CFA_restore_state";
549 return "DW_CFA_def_cfa";
550 case DW_CFA_def_cfa_register
:
551 return "DW_CFA_def_cfa_register";
552 case DW_CFA_def_cfa_offset
:
553 return "DW_CFA_def_cfa_offset";
556 case DW_CFA_def_cfa_expression
:
557 return "DW_CFA_def_cfa_expression";
558 case DW_CFA_expression
:
559 return "DW_CFA_expression";
560 case DW_CFA_offset_extended_sf
:
561 return "DW_CFA_offset_extended_sf";
562 case DW_CFA_def_cfa_sf
:
563 return "DW_CFA_def_cfa_sf";
564 case DW_CFA_def_cfa_offset_sf
:
565 return "DW_CFA_def_cfa_offset_sf";
567 /* SGI/MIPS specific */
568 case DW_CFA_MIPS_advance_loc8
:
569 return "DW_CFA_MIPS_advance_loc8";
572 case DW_CFA_GNU_window_save
:
573 return "DW_CFA_GNU_window_save";
574 case DW_CFA_GNU_args_size
:
575 return "DW_CFA_GNU_args_size";
576 case DW_CFA_GNU_negative_offset_extended
:
577 return "DW_CFA_GNU_negative_offset_extended";
580 return "DW_CFA_<unknown>";
584 /* Return a pointer to a newly allocated Call Frame Instruction. */
586 static inline dw_cfi_ref
589 dw_cfi_ref cfi
= ggc_alloc (sizeof (dw_cfi_node
));
591 cfi
->dw_cfi_next
= NULL
;
592 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
593 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
598 /* Add a Call Frame Instruction to list of instructions. */
601 add_cfi (dw_cfi_ref
*list_head
, dw_cfi_ref cfi
)
605 /* Find the end of the chain. */
606 for (p
= list_head
; (*p
) != NULL
; p
= &(*p
)->dw_cfi_next
)
612 /* Generate a new label for the CFI info to refer to. */
615 dwarf2out_cfi_label (void)
617 static char label
[20];
619 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", dwarf2out_cfi_label_num
++);
620 ASM_OUTPUT_LABEL (asm_out_file
, label
);
624 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
625 or to the CIE if LABEL is NULL. */
628 add_fde_cfi (const char *label
, dw_cfi_ref cfi
)
632 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
635 label
= dwarf2out_cfi_label ();
637 if (fde
->dw_fde_current_label
== NULL
638 || strcmp (label
, fde
->dw_fde_current_label
) != 0)
642 label
= xstrdup (label
);
644 /* Set the location counter to the new label. */
646 /* If we have a current label, advance from there, otherwise
647 set the location directly using set_loc. */
648 xcfi
->dw_cfi_opc
= fde
->dw_fde_current_label
649 ? DW_CFA_advance_loc4
651 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
652 add_cfi (&fde
->dw_fde_cfi
, xcfi
);
654 fde
->dw_fde_current_label
= label
;
657 add_cfi (&fde
->dw_fde_cfi
, cfi
);
661 add_cfi (&cie_cfi_head
, cfi
);
664 /* Subroutine of lookup_cfa. */
667 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
)
669 switch (cfi
->dw_cfi_opc
)
671 case DW_CFA_def_cfa_offset
:
672 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
674 case DW_CFA_def_cfa_offset_sf
:
676 = cfi
->dw_cfi_oprnd1
.dw_cfi_offset
* DWARF_CIE_DATA_ALIGNMENT
;
678 case DW_CFA_def_cfa_register
:
679 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
682 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
683 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
685 case DW_CFA_def_cfa_sf
:
686 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
688 = cfi
->dw_cfi_oprnd2
.dw_cfi_offset
* DWARF_CIE_DATA_ALIGNMENT
;
690 case DW_CFA_def_cfa_expression
:
691 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
698 /* Find the previous value for the CFA. */
701 lookup_cfa (dw_cfa_location
*loc
)
705 loc
->reg
= INVALID_REGNUM
;
708 loc
->base_offset
= 0;
710 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
711 lookup_cfa_1 (cfi
, loc
);
713 if (fde_table_in_use
)
715 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
716 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
717 lookup_cfa_1 (cfi
, loc
);
721 /* The current rule for calculating the DWARF2 canonical frame address. */
722 static dw_cfa_location cfa
;
724 /* The register used for saving registers to the stack, and its offset
726 static dw_cfa_location cfa_store
;
728 /* The running total of the size of arguments pushed onto the stack. */
729 static HOST_WIDE_INT args_size
;
731 /* The last args_size we actually output. */
732 static HOST_WIDE_INT old_args_size
;
734 /* Entry point to update the canonical frame address (CFA).
735 LABEL is passed to add_fde_cfi. The value of CFA is now to be
736 calculated from REG+OFFSET. */
739 dwarf2out_def_cfa (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
746 def_cfa_1 (label
, &loc
);
749 /* Determine if two dw_cfa_location structures define the same data. */
752 cfa_equal_p (const dw_cfa_location
*loc1
, const dw_cfa_location
*loc2
)
754 return (loc1
->reg
== loc2
->reg
755 && loc1
->offset
== loc2
->offset
756 && loc1
->indirect
== loc2
->indirect
757 && (loc1
->indirect
== 0
758 || loc1
->base_offset
== loc2
->base_offset
));
761 /* This routine does the actual work. The CFA is now calculated from
762 the dw_cfa_location structure. */
765 def_cfa_1 (const char *label
, dw_cfa_location
*loc_p
)
768 dw_cfa_location old_cfa
, loc
;
773 if (cfa_store
.reg
== loc
.reg
&& loc
.indirect
== 0)
774 cfa_store
.offset
= loc
.offset
;
776 loc
.reg
= DWARF_FRAME_REGNUM (loc
.reg
);
777 lookup_cfa (&old_cfa
);
779 /* If nothing changed, no need to issue any call frame instructions. */
780 if (cfa_equal_p (&loc
, &old_cfa
))
785 if (loc
.reg
== old_cfa
.reg
&& !loc
.indirect
)
787 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
788 the CFA register did not change but the offset did. */
791 HOST_WIDE_INT f_offset
= loc
.offset
/ DWARF_CIE_DATA_ALIGNMENT
;
792 gcc_assert (f_offset
* DWARF_CIE_DATA_ALIGNMENT
== loc
.offset
);
794 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset_sf
;
795 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= f_offset
;
799 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
800 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= loc
.offset
;
804 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
805 else if (loc
.offset
== old_cfa
.offset
806 && old_cfa
.reg
!= INVALID_REGNUM
809 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
810 indicating the CFA register has changed to <register> but the
811 offset has not changed. */
812 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
813 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
817 else if (loc
.indirect
== 0)
819 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
820 indicating the CFA register has changed to <register> with
821 the specified offset. */
824 HOST_WIDE_INT f_offset
= loc
.offset
/ DWARF_CIE_DATA_ALIGNMENT
;
825 gcc_assert (f_offset
* DWARF_CIE_DATA_ALIGNMENT
== loc
.offset
);
827 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_sf
;
828 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
829 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= f_offset
;
833 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
834 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
835 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= loc
.offset
;
840 /* Construct a DW_CFA_def_cfa_expression instruction to
841 calculate the CFA using a full location expression since no
842 register-offset pair is available. */
843 struct dw_loc_descr_struct
*loc_list
;
845 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
846 loc_list
= build_cfa_loc (&loc
, 0);
847 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
850 add_fde_cfi (label
, cfi
);
853 /* Add the CFI for saving a register. REG is the CFA column number.
854 LABEL is passed to add_fde_cfi.
855 If SREG is -1, the register is saved at OFFSET from the CFA;
856 otherwise it is saved in SREG. */
859 reg_save (const char *label
, unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
861 dw_cfi_ref cfi
= new_cfi ();
863 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
865 if (sreg
== INVALID_REGNUM
)
868 /* The register number won't fit in 6 bits, so we have to use
870 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
872 cfi
->dw_cfi_opc
= DW_CFA_offset
;
874 #ifdef ENABLE_CHECKING
876 /* If we get an offset that is not a multiple of
877 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
878 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
880 HOST_WIDE_INT check_offset
= offset
/ DWARF_CIE_DATA_ALIGNMENT
;
882 gcc_assert (check_offset
* DWARF_CIE_DATA_ALIGNMENT
== offset
);
885 offset
/= DWARF_CIE_DATA_ALIGNMENT
;
887 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
889 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
891 else if (sreg
== reg
)
892 cfi
->dw_cfi_opc
= DW_CFA_same_value
;
895 cfi
->dw_cfi_opc
= DW_CFA_register
;
896 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
899 add_fde_cfi (label
, cfi
);
902 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
903 This CFI tells the unwinder that it needs to restore the window registers
904 from the previous frame's window save area.
906 ??? Perhaps we should note in the CIE where windows are saved (instead of
907 assuming 0(cfa)) and what registers are in the window. */
910 dwarf2out_window_save (const char *label
)
912 dw_cfi_ref cfi
= new_cfi ();
914 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
915 add_fde_cfi (label
, cfi
);
918 /* Add a CFI to update the running total of the size of arguments
919 pushed onto the stack. */
922 dwarf2out_args_size (const char *label
, HOST_WIDE_INT size
)
926 if (size
== old_args_size
)
929 old_args_size
= size
;
932 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
933 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
934 add_fde_cfi (label
, cfi
);
937 /* Entry point for saving a register to the stack. REG is the GCC register
938 number. LABEL and OFFSET are passed to reg_save. */
941 dwarf2out_reg_save (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
943 reg_save (label
, DWARF_FRAME_REGNUM (reg
), INVALID_REGNUM
, offset
);
946 /* Entry point for saving the return address in the stack.
947 LABEL and OFFSET are passed to reg_save. */
950 dwarf2out_return_save (const char *label
, HOST_WIDE_INT offset
)
952 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, INVALID_REGNUM
, offset
);
955 /* Entry point for saving the return address in a register.
956 LABEL and SREG are passed to reg_save. */
959 dwarf2out_return_reg (const char *label
, unsigned int sreg
)
961 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, DWARF_FRAME_REGNUM (sreg
), 0);
964 #ifdef DWARF2_UNWIND_INFO
965 /* Record the initial position of the return address. RTL is
966 INCOMING_RETURN_ADDR_RTX. */
969 initial_return_save (rtx rtl
)
971 unsigned int reg
= INVALID_REGNUM
;
972 HOST_WIDE_INT offset
= 0;
974 switch (GET_CODE (rtl
))
977 /* RA is in a register. */
978 reg
= DWARF_FRAME_REGNUM (REGNO (rtl
));
982 /* RA is on the stack. */
984 switch (GET_CODE (rtl
))
987 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
992 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
993 offset
= INTVAL (XEXP (rtl
, 1));
997 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
998 offset
= -INTVAL (XEXP (rtl
, 1));
1008 /* The return address is at some offset from any value we can
1009 actually load. For instance, on the SPARC it is in %i7+8. Just
1010 ignore the offset for now; it doesn't matter for unwinding frames. */
1011 gcc_assert (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
);
1012 initial_return_save (XEXP (rtl
, 0));
1019 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
1020 reg_save (NULL
, DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cfa
.offset
);
1024 /* Given a SET, calculate the amount of stack adjustment it
1027 static HOST_WIDE_INT
1028 stack_adjust_offset (const_rtx pattern
)
1030 const_rtx src
= SET_SRC (pattern
);
1031 const_rtx dest
= SET_DEST (pattern
);
1032 HOST_WIDE_INT offset
= 0;
1035 if (dest
== stack_pointer_rtx
)
1037 /* (set (reg sp) (plus (reg sp) (const_int))) */
1038 code
= GET_CODE (src
);
1039 if (! (code
== PLUS
|| code
== MINUS
)
1040 || XEXP (src
, 0) != stack_pointer_rtx
1041 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1044 offset
= INTVAL (XEXP (src
, 1));
1048 else if (MEM_P (dest
))
1050 /* (set (mem (pre_dec (reg sp))) (foo)) */
1051 src
= XEXP (dest
, 0);
1052 code
= GET_CODE (src
);
1058 if (XEXP (src
, 0) == stack_pointer_rtx
)
1060 rtx val
= XEXP (XEXP (src
, 1), 1);
1061 /* We handle only adjustments by constant amount. */
1062 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
1063 && GET_CODE (val
) == CONST_INT
);
1064 offset
= -INTVAL (val
);
1071 if (XEXP (src
, 0) == stack_pointer_rtx
)
1073 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1080 if (XEXP (src
, 0) == stack_pointer_rtx
)
1082 offset
= -GET_MODE_SIZE (GET_MODE (dest
));
1097 /* Check INSN to see if it looks like a push or a stack adjustment, and
1098 make a note of it if it does. EH uses this information to find out how
1099 much extra space it needs to pop off the stack. */
1102 dwarf2out_stack_adjust (rtx insn
, bool after_p
)
1104 HOST_WIDE_INT offset
;
1108 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1109 with this function. Proper support would require all frame-related
1110 insns to be marked, and to be able to handle saving state around
1111 epilogues textually in the middle of the function. */
1112 if (prologue_epilogue_contains (insn
) || sibcall_epilogue_contains (insn
))
1115 /* If only calls can throw, and we have a frame pointer,
1116 save up adjustments until we see the CALL_INSN. */
1117 if (!flag_asynchronous_unwind_tables
&& cfa
.reg
!= STACK_POINTER_REGNUM
)
1119 if (CALL_P (insn
) && !after_p
)
1121 /* Extract the size of the args from the CALL rtx itself. */
1122 insn
= PATTERN (insn
);
1123 if (GET_CODE (insn
) == PARALLEL
)
1124 insn
= XVECEXP (insn
, 0, 0);
1125 if (GET_CODE (insn
) == SET
)
1126 insn
= SET_SRC (insn
);
1127 gcc_assert (GET_CODE (insn
) == CALL
);
1128 dwarf2out_args_size ("", INTVAL (XEXP (insn
, 1)));
1133 if (CALL_P (insn
) && !after_p
)
1135 if (!flag_asynchronous_unwind_tables
)
1136 dwarf2out_args_size ("", args_size
);
1139 else if (BARRIER_P (insn
))
1141 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1142 the compiler will have already emitted a stack adjustment, but
1143 doesn't bother for calls to noreturn functions. */
1144 #ifdef STACK_GROWS_DOWNWARD
1145 offset
= -args_size
;
1150 else if (GET_CODE (PATTERN (insn
)) == SET
)
1151 offset
= stack_adjust_offset (PATTERN (insn
));
1152 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1153 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1155 /* There may be stack adjustments inside compound insns. Search
1157 for (offset
= 0, i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1158 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1159 offset
+= stack_adjust_offset (XVECEXP (PATTERN (insn
), 0, i
));
1167 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1168 cfa
.offset
+= offset
;
1170 #ifndef STACK_GROWS_DOWNWARD
1174 args_size
+= offset
;
1178 label
= dwarf2out_cfi_label ();
1179 def_cfa_1 (label
, &cfa
);
1180 if (flag_asynchronous_unwind_tables
)
1181 dwarf2out_args_size (label
, args_size
);
1186 /* We delay emitting a register save until either (a) we reach the end
1187 of the prologue or (b) the register is clobbered. This clusters
1188 register saves so that there are fewer pc advances. */
1190 struct queued_reg_save
GTY(())
1192 struct queued_reg_save
*next
;
1194 HOST_WIDE_INT cfa_offset
;
1198 static GTY(()) struct queued_reg_save
*queued_reg_saves
;
1200 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1201 struct reg_saved_in_data
GTY(()) {
1206 /* A list of registers saved in other registers.
1207 The list intentionally has a small maximum capacity of 4; if your
1208 port needs more than that, you might consider implementing a
1209 more efficient data structure. */
1210 static GTY(()) struct reg_saved_in_data regs_saved_in_regs
[4];
1211 static GTY(()) size_t num_regs_saved_in_regs
;
1213 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1214 static const char *last_reg_save_label
;
1216 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1217 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1220 queue_reg_save (const char *label
, rtx reg
, rtx sreg
, HOST_WIDE_INT offset
)
1222 struct queued_reg_save
*q
;
1224 /* Duplicates waste space, but it's also necessary to remove them
1225 for correctness, since the queue gets output in reverse
1227 for (q
= queued_reg_saves
; q
!= NULL
; q
= q
->next
)
1228 if (REGNO (q
->reg
) == REGNO (reg
))
1233 q
= ggc_alloc (sizeof (*q
));
1234 q
->next
= queued_reg_saves
;
1235 queued_reg_saves
= q
;
1239 q
->cfa_offset
= offset
;
1240 q
->saved_reg
= sreg
;
1242 last_reg_save_label
= label
;
1245 /* Output all the entries in QUEUED_REG_SAVES. */
1248 flush_queued_reg_saves (void)
1250 struct queued_reg_save
*q
;
1252 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1255 unsigned int reg
, sreg
;
1257 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1258 if (REGNO (regs_saved_in_regs
[i
].orig_reg
) == REGNO (q
->reg
))
1260 if (q
->saved_reg
&& i
== num_regs_saved_in_regs
)
1262 gcc_assert (i
!= ARRAY_SIZE (regs_saved_in_regs
));
1263 num_regs_saved_in_regs
++;
1265 if (i
!= num_regs_saved_in_regs
)
1267 regs_saved_in_regs
[i
].orig_reg
= q
->reg
;
1268 regs_saved_in_regs
[i
].saved_in_reg
= q
->saved_reg
;
1271 reg
= DWARF_FRAME_REGNUM (REGNO (q
->reg
));
1273 sreg
= DWARF_FRAME_REGNUM (REGNO (q
->saved_reg
));
1275 sreg
= INVALID_REGNUM
;
1276 reg_save (last_reg_save_label
, reg
, sreg
, q
->cfa_offset
);
1279 queued_reg_saves
= NULL
;
1280 last_reg_save_label
= NULL
;
1283 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1284 location for? Or, does it clobber a register which we've previously
1285 said that some other register is saved in, and for which we now
1286 have a new location for? */
1289 clobbers_queued_reg_save (const_rtx insn
)
1291 struct queued_reg_save
*q
;
1293 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1296 if (modified_in_p (q
->reg
, insn
))
1298 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1299 if (REGNO (q
->reg
) == REGNO (regs_saved_in_regs
[i
].orig_reg
)
1300 && modified_in_p (regs_saved_in_regs
[i
].saved_in_reg
, insn
))
1307 /* Entry point for saving the first register into the second. */
1310 dwarf2out_reg_save_reg (const char *label
, rtx reg
, rtx sreg
)
1313 unsigned int regno
, sregno
;
1315 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1316 if (REGNO (regs_saved_in_regs
[i
].orig_reg
) == REGNO (reg
))
1318 if (i
== num_regs_saved_in_regs
)
1320 gcc_assert (i
!= ARRAY_SIZE (regs_saved_in_regs
));
1321 num_regs_saved_in_regs
++;
1323 regs_saved_in_regs
[i
].orig_reg
= reg
;
1324 regs_saved_in_regs
[i
].saved_in_reg
= sreg
;
1326 regno
= DWARF_FRAME_REGNUM (REGNO (reg
));
1327 sregno
= DWARF_FRAME_REGNUM (REGNO (sreg
));
1328 reg_save (label
, regno
, sregno
, 0);
1331 /* What register, if any, is currently saved in REG? */
1334 reg_saved_in (rtx reg
)
1336 unsigned int regn
= REGNO (reg
);
1338 struct queued_reg_save
*q
;
1340 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1341 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1344 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1345 if (regs_saved_in_regs
[i
].saved_in_reg
1346 && regn
== REGNO (regs_saved_in_regs
[i
].saved_in_reg
))
1347 return regs_saved_in_regs
[i
].orig_reg
;
1353 /* A temporary register holding an integral value used in adjusting SP
1354 or setting up the store_reg. The "offset" field holds the integer
1355 value, not an offset. */
1356 static dw_cfa_location cfa_temp
;
1358 /* Record call frame debugging information for an expression EXPR,
1359 which either sets SP or FP (adjusting how we calculate the frame
1360 address) or saves a register to the stack or another register.
1361 LABEL indicates the address of EXPR.
1363 This function encodes a state machine mapping rtxes to actions on
1364 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1365 users need not read the source code.
1367 The High-Level Picture
1369 Changes in the register we use to calculate the CFA: Currently we
1370 assume that if you copy the CFA register into another register, we
1371 should take the other one as the new CFA register; this seems to
1372 work pretty well. If it's wrong for some target, it's simple
1373 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1375 Changes in the register we use for saving registers to the stack:
1376 This is usually SP, but not always. Again, we deduce that if you
1377 copy SP into another register (and SP is not the CFA register),
1378 then the new register is the one we will be using for register
1379 saves. This also seems to work.
1381 Register saves: There's not much guesswork about this one; if
1382 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1383 register save, and the register used to calculate the destination
1384 had better be the one we think we're using for this purpose.
1385 It's also assumed that a copy from a call-saved register to another
1386 register is saving that register if RTX_FRAME_RELATED_P is set on
1387 that instruction. If the copy is from a call-saved register to
1388 the *same* register, that means that the register is now the same
1389 value as in the caller.
1391 Except: If the register being saved is the CFA register, and the
1392 offset is nonzero, we are saving the CFA, so we assume we have to
1393 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1394 the intent is to save the value of SP from the previous frame.
1396 In addition, if a register has previously been saved to a different
1399 Invariants / Summaries of Rules
1401 cfa current rule for calculating the CFA. It usually
1402 consists of a register and an offset.
1403 cfa_store register used by prologue code to save things to the stack
1404 cfa_store.offset is the offset from the value of
1405 cfa_store.reg to the actual CFA
1406 cfa_temp register holding an integral value. cfa_temp.offset
1407 stores the value, which will be used to adjust the
1408 stack pointer. cfa_temp is also used like cfa_store,
1409 to track stores to the stack via fp or a temp reg.
1411 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1412 with cfa.reg as the first operand changes the cfa.reg and its
1413 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1416 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1417 expression yielding a constant. This sets cfa_temp.reg
1418 and cfa_temp.offset.
1420 Rule 5: Create a new register cfa_store used to save items to the
1423 Rules 10-14: Save a register to the stack. Define offset as the
1424 difference of the original location and cfa_store's
1425 location (or cfa_temp's location if cfa_temp is used).
1429 "{a,b}" indicates a choice of a xor b.
1430 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1433 (set <reg1> <reg2>:cfa.reg)
1434 effects: cfa.reg = <reg1>
1435 cfa.offset unchanged
1436 cfa_temp.reg = <reg1>
1437 cfa_temp.offset = cfa.offset
1440 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1441 {<const_int>,<reg>:cfa_temp.reg}))
1442 effects: cfa.reg = sp if fp used
1443 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1444 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1445 if cfa_store.reg==sp
1448 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1449 effects: cfa.reg = fp
1450 cfa_offset += +/- <const_int>
1453 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1454 constraints: <reg1> != fp
1456 effects: cfa.reg = <reg1>
1457 cfa_temp.reg = <reg1>
1458 cfa_temp.offset = cfa.offset
1461 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1462 constraints: <reg1> != fp
1464 effects: cfa_store.reg = <reg1>
1465 cfa_store.offset = cfa.offset - cfa_temp.offset
1468 (set <reg> <const_int>)
1469 effects: cfa_temp.reg = <reg>
1470 cfa_temp.offset = <const_int>
1473 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1474 effects: cfa_temp.reg = <reg1>
1475 cfa_temp.offset |= <const_int>
1478 (set <reg> (high <exp>))
1482 (set <reg> (lo_sum <exp> <const_int>))
1483 effects: cfa_temp.reg = <reg>
1484 cfa_temp.offset = <const_int>
1487 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1488 effects: cfa_store.offset -= <const_int>
1489 cfa.offset = cfa_store.offset if cfa.reg == sp
1491 cfa.base_offset = -cfa_store.offset
1494 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1495 effects: cfa_store.offset += -/+ mode_size(mem)
1496 cfa.offset = cfa_store.offset if cfa.reg == sp
1498 cfa.base_offset = -cfa_store.offset
1501 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1504 effects: cfa.reg = <reg1>
1505 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1508 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1509 effects: cfa.reg = <reg1>
1510 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1513 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1514 effects: cfa.reg = <reg1>
1515 cfa.base_offset = -cfa_temp.offset
1516 cfa_temp.offset -= mode_size(mem)
1519 (set <reg> {unspec, unspec_volatile})
1520 effects: target-dependent */
1523 dwarf2out_frame_debug_expr (rtx expr
, const char *label
)
1526 HOST_WIDE_INT offset
;
1528 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1529 the PARALLEL independently. The first element is always processed if
1530 it is a SET. This is for backward compatibility. Other elements
1531 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1532 flag is set in them. */
1533 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1536 int limit
= XVECLEN (expr
, 0);
1539 /* PARALLELs have strict read-modify-write semantics, so we
1540 ought to evaluate every rvalue before changing any lvalue.
1541 It's cumbersome to do that in general, but there's an
1542 easy approximation that is enough for all current users:
1543 handle register saves before register assignments. */
1544 if (GET_CODE (expr
) == PARALLEL
)
1545 for (par_index
= 0; par_index
< limit
; par_index
++)
1547 elem
= XVECEXP (expr
, 0, par_index
);
1548 if (GET_CODE (elem
) == SET
1549 && MEM_P (SET_DEST (elem
))
1550 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1551 dwarf2out_frame_debug_expr (elem
, label
);
1554 for (par_index
= 0; par_index
< limit
; par_index
++)
1556 elem
= XVECEXP (expr
, 0, par_index
);
1557 if (GET_CODE (elem
) == SET
1558 && (!MEM_P (SET_DEST (elem
)) || GET_CODE (expr
) == SEQUENCE
)
1559 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1560 dwarf2out_frame_debug_expr (elem
, label
);
1565 gcc_assert (GET_CODE (expr
) == SET
);
1567 src
= SET_SRC (expr
);
1568 dest
= SET_DEST (expr
);
1572 rtx rsi
= reg_saved_in (src
);
1577 switch (GET_CODE (dest
))
1580 switch (GET_CODE (src
))
1582 /* Setting FP from SP. */
1584 if (cfa
.reg
== (unsigned) REGNO (src
))
1587 /* Update the CFA rule wrt SP or FP. Make sure src is
1588 relative to the current CFA register.
1590 We used to require that dest be either SP or FP, but the
1591 ARM copies SP to a temporary register, and from there to
1592 FP. So we just rely on the backends to only set
1593 RTX_FRAME_RELATED_P on appropriate insns. */
1594 cfa
.reg
= REGNO (dest
);
1595 cfa_temp
.reg
= cfa
.reg
;
1596 cfa_temp
.offset
= cfa
.offset
;
1600 /* Saving a register in a register. */
1601 gcc_assert (!fixed_regs
[REGNO (dest
)]
1602 /* For the SPARC and its register window. */
1603 || (DWARF_FRAME_REGNUM (REGNO (src
))
1604 == DWARF_FRAME_RETURN_COLUMN
));
1605 queue_reg_save (label
, src
, dest
, 0);
1612 if (dest
== stack_pointer_rtx
)
1616 switch (GET_CODE (XEXP (src
, 1)))
1619 offset
= INTVAL (XEXP (src
, 1));
1622 gcc_assert ((unsigned) REGNO (XEXP (src
, 1))
1624 offset
= cfa_temp
.offset
;
1630 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1632 /* Restoring SP from FP in the epilogue. */
1633 gcc_assert (cfa
.reg
== (unsigned) HARD_FRAME_POINTER_REGNUM
);
1634 cfa
.reg
= STACK_POINTER_REGNUM
;
1636 else if (GET_CODE (src
) == LO_SUM
)
1637 /* Assume we've set the source reg of the LO_SUM from sp. */
1640 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1642 if (GET_CODE (src
) != MINUS
)
1644 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1645 cfa
.offset
+= offset
;
1646 if (cfa_store
.reg
== STACK_POINTER_REGNUM
)
1647 cfa_store
.offset
+= offset
;
1649 else if (dest
== hard_frame_pointer_rtx
)
1652 /* Either setting the FP from an offset of the SP,
1653 or adjusting the FP */
1654 gcc_assert (frame_pointer_needed
);
1656 gcc_assert (REG_P (XEXP (src
, 0))
1657 && (unsigned) REGNO (XEXP (src
, 0)) == cfa
.reg
1658 && GET_CODE (XEXP (src
, 1)) == CONST_INT
);
1659 offset
= INTVAL (XEXP (src
, 1));
1660 if (GET_CODE (src
) != MINUS
)
1662 cfa
.offset
+= offset
;
1663 cfa
.reg
= HARD_FRAME_POINTER_REGNUM
;
1667 gcc_assert (GET_CODE (src
) != MINUS
);
1670 if (REG_P (XEXP (src
, 0))
1671 && REGNO (XEXP (src
, 0)) == cfa
.reg
1672 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1674 /* Setting a temporary CFA register that will be copied
1675 into the FP later on. */
1676 offset
= - INTVAL (XEXP (src
, 1));
1677 cfa
.offset
+= offset
;
1678 cfa
.reg
= REGNO (dest
);
1679 /* Or used to save regs to the stack. */
1680 cfa_temp
.reg
= cfa
.reg
;
1681 cfa_temp
.offset
= cfa
.offset
;
1685 else if (REG_P (XEXP (src
, 0))
1686 && REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1687 && XEXP (src
, 1) == stack_pointer_rtx
)
1689 /* Setting a scratch register that we will use instead
1690 of SP for saving registers to the stack. */
1691 gcc_assert (cfa
.reg
== STACK_POINTER_REGNUM
);
1692 cfa_store
.reg
= REGNO (dest
);
1693 cfa_store
.offset
= cfa
.offset
- cfa_temp
.offset
;
1697 else if (GET_CODE (src
) == LO_SUM
1698 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1700 cfa_temp
.reg
= REGNO (dest
);
1701 cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1710 cfa_temp
.reg
= REGNO (dest
);
1711 cfa_temp
.offset
= INTVAL (src
);
1716 gcc_assert (REG_P (XEXP (src
, 0))
1717 && (unsigned) REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1718 && GET_CODE (XEXP (src
, 1)) == CONST_INT
);
1720 if ((unsigned) REGNO (dest
) != cfa_temp
.reg
)
1721 cfa_temp
.reg
= REGNO (dest
);
1722 cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1725 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1726 which will fill in all of the bits. */
1733 case UNSPEC_VOLATILE
:
1734 gcc_assert (targetm
.dwarf_handle_frame_unspec
);
1735 targetm
.dwarf_handle_frame_unspec (label
, expr
, XINT (src
, 1));
1742 def_cfa_1 (label
, &cfa
);
1746 gcc_assert (REG_P (src
));
1748 /* Saving a register to the stack. Make sure dest is relative to the
1750 switch (GET_CODE (XEXP (dest
, 0)))
1755 /* We can't handle variable size modifications. */
1756 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1))
1758 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1760 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1761 && cfa_store
.reg
== STACK_POINTER_REGNUM
);
1763 cfa_store
.offset
+= offset
;
1764 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1765 cfa
.offset
= cfa_store
.offset
;
1767 offset
= -cfa_store
.offset
;
1773 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1774 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1777 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1778 && cfa_store
.reg
== STACK_POINTER_REGNUM
);
1780 cfa_store
.offset
+= offset
;
1781 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1782 cfa
.offset
= cfa_store
.offset
;
1784 offset
= -cfa_store
.offset
;
1788 /* With an offset. */
1795 gcc_assert (GET_CODE (XEXP (XEXP (dest
, 0), 1)) == CONST_INT
1796 && REG_P (XEXP (XEXP (dest
, 0), 0)));
1797 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1798 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1801 regno
= REGNO (XEXP (XEXP (dest
, 0), 0));
1803 if (cfa_store
.reg
== (unsigned) regno
)
1804 offset
-= cfa_store
.offset
;
1807 gcc_assert (cfa_temp
.reg
== (unsigned) regno
);
1808 offset
-= cfa_temp
.offset
;
1814 /* Without an offset. */
1817 int regno
= REGNO (XEXP (dest
, 0));
1819 if (cfa_store
.reg
== (unsigned) regno
)
1820 offset
= -cfa_store
.offset
;
1823 gcc_assert (cfa_temp
.reg
== (unsigned) regno
);
1824 offset
= -cfa_temp
.offset
;
1831 gcc_assert (cfa_temp
.reg
1832 == (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)));
1833 offset
= -cfa_temp
.offset
;
1834 cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1841 if (REGNO (src
) != STACK_POINTER_REGNUM
1842 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1843 && (unsigned) REGNO (src
) == cfa
.reg
)
1845 /* We're storing the current CFA reg into the stack. */
1847 if (cfa
.offset
== 0)
1849 /* If the source register is exactly the CFA, assume
1850 we're saving SP like any other register; this happens
1852 def_cfa_1 (label
, &cfa
);
1853 queue_reg_save (label
, stack_pointer_rtx
, NULL_RTX
, offset
);
1858 /* Otherwise, we'll need to look in the stack to
1859 calculate the CFA. */
1860 rtx x
= XEXP (dest
, 0);
1864 gcc_assert (REG_P (x
));
1866 cfa
.reg
= REGNO (x
);
1867 cfa
.base_offset
= offset
;
1869 def_cfa_1 (label
, &cfa
);
1874 def_cfa_1 (label
, &cfa
);
1875 queue_reg_save (label
, src
, NULL_RTX
, offset
);
1883 /* Record call frame debugging information for INSN, which either
1884 sets SP or FP (adjusting how we calculate the frame address) or saves a
1885 register to the stack. If INSN is NULL_RTX, initialize our state.
1887 If AFTER_P is false, we're being called before the insn is emitted,
1888 otherwise after. Call instructions get invoked twice. */
1891 dwarf2out_frame_debug (rtx insn
, bool after_p
)
1896 if (insn
== NULL_RTX
)
1900 /* Flush any queued register saves. */
1901 flush_queued_reg_saves ();
1903 /* Set up state for generating call frame debug info. */
1906 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
));
1908 cfa
.reg
= STACK_POINTER_REGNUM
;
1911 cfa_temp
.offset
= 0;
1913 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1915 regs_saved_in_regs
[i
].orig_reg
= NULL_RTX
;
1916 regs_saved_in_regs
[i
].saved_in_reg
= NULL_RTX
;
1918 num_regs_saved_in_regs
= 0;
1922 if (!NONJUMP_INSN_P (insn
) || clobbers_queued_reg_save (insn
))
1923 flush_queued_reg_saves ();
1925 if (! RTX_FRAME_RELATED_P (insn
))
1927 if (!ACCUMULATE_OUTGOING_ARGS
)
1928 dwarf2out_stack_adjust (insn
, after_p
);
1932 label
= dwarf2out_cfi_label ();
1933 src
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
1935 insn
= XEXP (src
, 0);
1937 insn
= PATTERN (insn
);
1939 dwarf2out_frame_debug_expr (insn
, label
);
1944 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1945 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1946 (enum dwarf_call_frame_info cfi
);
1948 static enum dw_cfi_oprnd_type
1949 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi
)
1954 case DW_CFA_GNU_window_save
:
1955 return dw_cfi_oprnd_unused
;
1957 case DW_CFA_set_loc
:
1958 case DW_CFA_advance_loc1
:
1959 case DW_CFA_advance_loc2
:
1960 case DW_CFA_advance_loc4
:
1961 case DW_CFA_MIPS_advance_loc8
:
1962 return dw_cfi_oprnd_addr
;
1965 case DW_CFA_offset_extended
:
1966 case DW_CFA_def_cfa
:
1967 case DW_CFA_offset_extended_sf
:
1968 case DW_CFA_def_cfa_sf
:
1969 case DW_CFA_restore_extended
:
1970 case DW_CFA_undefined
:
1971 case DW_CFA_same_value
:
1972 case DW_CFA_def_cfa_register
:
1973 case DW_CFA_register
:
1974 return dw_cfi_oprnd_reg_num
;
1976 case DW_CFA_def_cfa_offset
:
1977 case DW_CFA_GNU_args_size
:
1978 case DW_CFA_def_cfa_offset_sf
:
1979 return dw_cfi_oprnd_offset
;
1981 case DW_CFA_def_cfa_expression
:
1982 case DW_CFA_expression
:
1983 return dw_cfi_oprnd_loc
;
1990 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1991 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1992 (enum dwarf_call_frame_info cfi
);
1994 static enum dw_cfi_oprnd_type
1995 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi
)
1999 case DW_CFA_def_cfa
:
2000 case DW_CFA_def_cfa_sf
:
2002 case DW_CFA_offset_extended_sf
:
2003 case DW_CFA_offset_extended
:
2004 return dw_cfi_oprnd_offset
;
2006 case DW_CFA_register
:
2007 return dw_cfi_oprnd_reg_num
;
2010 return dw_cfi_oprnd_unused
;
2014 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2016 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
2017 switch to the data section instead, and write out a synthetic label
2021 switch_to_eh_frame_section (void)
2025 #ifdef EH_FRAME_SECTION_NAME
2026 if (eh_frame_section
== 0)
2030 if (EH_TABLES_CAN_BE_READ_ONLY
)
2036 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2038 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2040 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2042 flags
= ((! flag_pic
2043 || ((fde_encoding
& 0x70) != DW_EH_PE_absptr
2044 && (fde_encoding
& 0x70) != DW_EH_PE_aligned
2045 && (per_encoding
& 0x70) != DW_EH_PE_absptr
2046 && (per_encoding
& 0x70) != DW_EH_PE_aligned
2047 && (lsda_encoding
& 0x70) != DW_EH_PE_absptr
2048 && (lsda_encoding
& 0x70) != DW_EH_PE_aligned
))
2049 ? 0 : SECTION_WRITE
);
2052 flags
= SECTION_WRITE
;
2053 eh_frame_section
= get_section (EH_FRAME_SECTION_NAME
, flags
, NULL
);
2057 if (eh_frame_section
)
2058 switch_to_section (eh_frame_section
);
2061 /* We have no special eh_frame section. Put the information in
2062 the data section and emit special labels to guide collect2. */
2063 switch_to_section (data_section
);
2064 label
= get_file_function_name ("F");
2065 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2066 targetm
.asm_out
.globalize_label (asm_out_file
,
2067 IDENTIFIER_POINTER (label
));
2068 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
2072 /* Output a Call Frame Information opcode and its operand(s). */
2075 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
2078 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
2079 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
2080 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
2081 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
2082 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
2083 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
2085 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2086 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
2087 "DW_CFA_offset, column 0x%lx", r
);
2088 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
2090 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
2092 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2093 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
2094 "DW_CFA_restore, column 0x%lx", r
);
2098 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
2099 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
2101 switch (cfi
->dw_cfi_opc
)
2103 case DW_CFA_set_loc
:
2105 dw2_asm_output_encoded_addr_rtx (
2106 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2107 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
2110 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
2111 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
2112 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2115 case DW_CFA_advance_loc1
:
2116 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2117 fde
->dw_fde_current_label
, NULL
);
2118 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2121 case DW_CFA_advance_loc2
:
2122 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2123 fde
->dw_fde_current_label
, NULL
);
2124 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2127 case DW_CFA_advance_loc4
:
2128 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2129 fde
->dw_fde_current_label
, NULL
);
2130 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2133 case DW_CFA_MIPS_advance_loc8
:
2134 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2135 fde
->dw_fde_current_label
, NULL
);
2136 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2139 case DW_CFA_offset_extended
:
2140 case DW_CFA_def_cfa
:
2141 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2142 dw2_asm_output_data_uleb128 (r
, NULL
);
2143 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
2146 case DW_CFA_offset_extended_sf
:
2147 case DW_CFA_def_cfa_sf
:
2148 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2149 dw2_asm_output_data_uleb128 (r
, NULL
);
2150 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
2153 case DW_CFA_restore_extended
:
2154 case DW_CFA_undefined
:
2155 case DW_CFA_same_value
:
2156 case DW_CFA_def_cfa_register
:
2157 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2158 dw2_asm_output_data_uleb128 (r
, NULL
);
2161 case DW_CFA_register
:
2162 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2163 dw2_asm_output_data_uleb128 (r
, NULL
);
2164 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
2165 dw2_asm_output_data_uleb128 (r
, NULL
);
2168 case DW_CFA_def_cfa_offset
:
2169 case DW_CFA_GNU_args_size
:
2170 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
2173 case DW_CFA_def_cfa_offset_sf
:
2174 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
2177 case DW_CFA_GNU_window_save
:
2180 case DW_CFA_def_cfa_expression
:
2181 case DW_CFA_expression
:
2182 output_cfa_loc (cfi
);
2185 case DW_CFA_GNU_negative_offset_extended
:
2186 /* Obsoleted by DW_CFA_offset_extended_sf. */
2195 /* Output the call frame information used to record information
2196 that relates to calculating the frame pointer, and records the
2197 location of saved registers. */
2200 output_call_frame_info (int for_eh
)
2205 char l1
[20], l2
[20], section_start_label
[20];
2206 bool any_lsda_needed
= false;
2207 char augmentation
[6];
2208 int augmentation_size
;
2209 int fde_encoding
= DW_EH_PE_absptr
;
2210 int per_encoding
= DW_EH_PE_absptr
;
2211 int lsda_encoding
= DW_EH_PE_absptr
;
2214 /* Don't emit a CIE if there won't be any FDEs. */
2215 if (fde_table_in_use
== 0)
2218 /* If we make FDEs linkonce, we may have to emit an empty label for
2219 an FDE that wouldn't otherwise be emitted. We want to avoid
2220 having an FDE kept around when the function it refers to is
2221 discarded. Example where this matters: a primary function
2222 template in C++ requires EH information, but an explicit
2223 specialization doesn't. */
2224 if (TARGET_USES_WEAK_UNWIND_INFO
2225 && ! flag_asynchronous_unwind_tables
2227 for (i
= 0; i
< fde_table_in_use
; i
++)
2228 if ((fde_table
[i
].nothrow
|| fde_table
[i
].all_throwers_are_sibcalls
)
2229 && !fde_table
[i
].uses_eh_lsda
2230 && ! DECL_WEAK (fde_table
[i
].decl
))
2231 targetm
.asm_out
.unwind_label (asm_out_file
, fde_table
[i
].decl
,
2232 for_eh
, /* empty */ 1);
2234 /* If we don't have any functions we'll want to unwind out of, don't
2235 emit any EH unwind information. Note that if exceptions aren't
2236 enabled, we won't have collected nothrow information, and if we
2237 asked for asynchronous tables, we always want this info. */
2240 bool any_eh_needed
= !flag_exceptions
|| flag_asynchronous_unwind_tables
;
2242 for (i
= 0; i
< fde_table_in_use
; i
++)
2243 if (fde_table
[i
].uses_eh_lsda
)
2244 any_eh_needed
= any_lsda_needed
= true;
2245 else if (TARGET_USES_WEAK_UNWIND_INFO
&& DECL_WEAK (fde_table
[i
].decl
))
2246 any_eh_needed
= true;
2247 else if (! fde_table
[i
].nothrow
2248 && ! fde_table
[i
].all_throwers_are_sibcalls
)
2249 any_eh_needed
= true;
2251 if (! any_eh_needed
)
2255 /* We're going to be generating comments, so turn on app. */
2260 switch_to_eh_frame_section ();
2263 if (!debug_frame_section
)
2264 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
2265 SECTION_DEBUG
, NULL
);
2266 switch_to_section (debug_frame_section
);
2269 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
2270 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
2272 /* Output the CIE. */
2273 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
2274 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
2275 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4 && !for_eh
)
2276 dw2_asm_output_data (4, 0xffffffff,
2277 "Initial length escape value indicating 64-bit DWARF extension");
2278 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2279 "Length of Common Information Entry");
2280 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2282 /* Now that the CIE pointer is PC-relative for EH,
2283 use 0 to identify the CIE. */
2284 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
2285 (for_eh
? 0 : DWARF_CIE_ID
),
2286 "CIE Identifier Tag");
2288 dw2_asm_output_data (1, DW_CIE_VERSION
, "CIE Version");
2290 augmentation
[0] = 0;
2291 augmentation_size
= 0;
2297 z Indicates that a uleb128 is present to size the
2298 augmentation section.
2299 L Indicates the encoding (and thus presence) of
2300 an LSDA pointer in the FDE augmentation.
2301 R Indicates a non-default pointer encoding for
2303 P Indicates the presence of an encoding + language
2304 personality routine in the CIE augmentation. */
2306 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2307 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2308 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2310 p
= augmentation
+ 1;
2311 if (eh_personality_libfunc
)
2314 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
2315 assemble_external_libcall (eh_personality_libfunc
);
2317 if (any_lsda_needed
)
2320 augmentation_size
+= 1;
2322 if (fde_encoding
!= DW_EH_PE_absptr
)
2325 augmentation_size
+= 1;
2327 if (p
> augmentation
+ 1)
2329 augmentation
[0] = 'z';
2333 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2334 if (eh_personality_libfunc
&& per_encoding
== DW_EH_PE_aligned
)
2336 int offset
= ( 4 /* Length */
2338 + 1 /* CIE version */
2339 + strlen (augmentation
) + 1 /* Augmentation */
2340 + size_of_uleb128 (1) /* Code alignment */
2341 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
2343 + 1 /* Augmentation size */
2344 + 1 /* Personality encoding */ );
2345 int pad
= -offset
& (PTR_SIZE
- 1);
2347 augmentation_size
+= pad
;
2349 /* Augmentations should be small, so there's scarce need to
2350 iterate for a solution. Die if we exceed one uleb128 byte. */
2351 gcc_assert (size_of_uleb128 (augmentation_size
) == 1);
2355 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
2356 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2357 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
2358 "CIE Data Alignment Factor");
2360 return_reg
= DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN
, for_eh
);
2361 if (DW_CIE_VERSION
== 1)
2362 dw2_asm_output_data (1, return_reg
, "CIE RA Column");
2364 dw2_asm_output_data_uleb128 (return_reg
, "CIE RA Column");
2366 if (augmentation
[0])
2368 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
2369 if (eh_personality_libfunc
)
2371 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
2372 eh_data_format_name (per_encoding
));
2373 dw2_asm_output_encoded_addr_rtx (per_encoding
,
2374 eh_personality_libfunc
,
2378 if (any_lsda_needed
)
2379 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
2380 eh_data_format_name (lsda_encoding
));
2382 if (fde_encoding
!= DW_EH_PE_absptr
)
2383 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
2384 eh_data_format_name (fde_encoding
));
2387 for (cfi
= cie_cfi_head
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2388 output_cfi (cfi
, NULL
, for_eh
);
2390 /* Pad the CIE out to an address sized boundary. */
2391 ASM_OUTPUT_ALIGN (asm_out_file
,
2392 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
2393 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2395 /* Loop through all of the FDE's. */
2396 for (i
= 0; i
< fde_table_in_use
; i
++)
2398 fde
= &fde_table
[i
];
2400 /* Don't emit EH unwind info for leaf functions that don't need it. */
2401 if (for_eh
&& !flag_asynchronous_unwind_tables
&& flag_exceptions
2402 && (fde
->nothrow
|| fde
->all_throwers_are_sibcalls
)
2403 && ! (TARGET_USES_WEAK_UNWIND_INFO
&& DECL_WEAK (fde_table
[i
].decl
))
2404 && !fde
->uses_eh_lsda
)
2407 targetm
.asm_out
.unwind_label (asm_out_file
, fde
->decl
, for_eh
, /* empty */ 0);
2408 targetm
.asm_out
.internal_label (asm_out_file
, FDE_LABEL
, for_eh
+ i
* 2);
2409 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ i
* 2);
2410 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ i
* 2);
2411 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4 && !for_eh
)
2412 dw2_asm_output_data (4, 0xffffffff,
2413 "Initial length escape value indicating 64-bit DWARF extension");
2414 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2416 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2419 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
2421 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
2422 debug_frame_section
, "FDE CIE offset");
2426 rtx sym_ref
= gen_rtx_SYMBOL_REF (Pmode
, fde
->dw_fde_begin
);
2427 SYMBOL_REF_FLAGS (sym_ref
) |= SYMBOL_FLAG_LOCAL
;
2428 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
2431 "FDE initial location");
2432 if (fde
->dw_fde_switched_sections
)
2434 rtx sym_ref2
= gen_rtx_SYMBOL_REF (Pmode
,
2435 fde
->dw_fde_unlikely_section_label
);
2436 rtx sym_ref3
= gen_rtx_SYMBOL_REF (Pmode
,
2437 fde
->dw_fde_hot_section_label
);
2438 SYMBOL_REF_FLAGS (sym_ref2
) |= SYMBOL_FLAG_LOCAL
;
2439 SYMBOL_REF_FLAGS (sym_ref3
) |= SYMBOL_FLAG_LOCAL
;
2440 dw2_asm_output_encoded_addr_rtx (fde_encoding
, sym_ref3
, false,
2441 "FDE initial location");
2442 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2443 fde
->dw_fde_hot_section_end_label
,
2444 fde
->dw_fde_hot_section_label
,
2445 "FDE address range");
2446 dw2_asm_output_encoded_addr_rtx (fde_encoding
, sym_ref2
, false,
2447 "FDE initial location");
2448 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2449 fde
->dw_fde_unlikely_section_end_label
,
2450 fde
->dw_fde_unlikely_section_label
,
2451 "FDE address range");
2454 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2455 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2456 "FDE address range");
2460 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
2461 "FDE initial location");
2462 if (fde
->dw_fde_switched_sections
)
2464 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
2465 fde
->dw_fde_hot_section_label
,
2466 "FDE initial location");
2467 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2468 fde
->dw_fde_hot_section_end_label
,
2469 fde
->dw_fde_hot_section_label
,
2470 "FDE address range");
2471 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
2472 fde
->dw_fde_unlikely_section_label
,
2473 "FDE initial location");
2474 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2475 fde
->dw_fde_unlikely_section_end_label
,
2476 fde
->dw_fde_unlikely_section_label
,
2477 "FDE address range");
2480 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2481 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2482 "FDE address range");
2485 if (augmentation
[0])
2487 if (any_lsda_needed
)
2489 int size
= size_of_encoded_value (lsda_encoding
);
2491 if (lsda_encoding
== DW_EH_PE_aligned
)
2493 int offset
= ( 4 /* Length */
2494 + 4 /* CIE offset */
2495 + 2 * size_of_encoded_value (fde_encoding
)
2496 + 1 /* Augmentation size */ );
2497 int pad
= -offset
& (PTR_SIZE
- 1);
2500 gcc_assert (size_of_uleb128 (size
) == 1);
2503 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
2505 if (fde
->uses_eh_lsda
)
2507 ASM_GENERATE_INTERNAL_LABEL (l1
, "LLSDA",
2508 fde
->funcdef_number
);
2509 dw2_asm_output_encoded_addr_rtx (
2510 lsda_encoding
, gen_rtx_SYMBOL_REF (Pmode
, l1
),
2511 false, "Language Specific Data Area");
2515 if (lsda_encoding
== DW_EH_PE_aligned
)
2516 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2518 (size_of_encoded_value (lsda_encoding
), 0,
2519 "Language Specific Data Area (none)");
2523 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2526 /* Loop through the Call Frame Instructions associated with
2528 fde
->dw_fde_current_label
= fde
->dw_fde_begin
;
2529 for (cfi
= fde
->dw_fde_cfi
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2530 output_cfi (cfi
, fde
, for_eh
);
2532 /* Pad the FDE out to an address sized boundary. */
2533 ASM_OUTPUT_ALIGN (asm_out_file
,
2534 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
2535 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2538 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
2539 dw2_asm_output_data (4, 0, "End of Table");
2540 #ifdef MIPS_DEBUGGING_INFO
2541 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2542 get a value of 0. Putting .align 0 after the label fixes it. */
2543 ASM_OUTPUT_ALIGN (asm_out_file
, 0);
2546 /* Turn off app to make assembly quicker. */
2551 /* Output a marker (i.e. a label) for the beginning of a function, before
2555 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED
,
2556 const char *file ATTRIBUTE_UNUSED
)
2558 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2562 current_function_func_begin_label
= NULL
;
2564 #ifdef TARGET_UNWIND_INFO
2565 /* ??? current_function_func_begin_label is also used by except.c
2566 for call-site information. We must emit this label if it might
2568 if ((! flag_exceptions
|| USING_SJLJ_EXCEPTIONS
)
2569 && ! dwarf2out_do_frame ())
2572 if (! dwarf2out_do_frame ())
2576 switch_to_section (function_section (current_function_decl
));
2577 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
2578 current_function_funcdef_no
);
2579 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
2580 current_function_funcdef_no
);
2581 dup_label
= xstrdup (label
);
2582 current_function_func_begin_label
= dup_label
;
2584 #ifdef TARGET_UNWIND_INFO
2585 /* We can elide the fde allocation if we're not emitting debug info. */
2586 if (! dwarf2out_do_frame ())
2590 /* Expand the fde table if necessary. */
2591 if (fde_table_in_use
== fde_table_allocated
)
2593 fde_table_allocated
+= FDE_TABLE_INCREMENT
;
2594 fde_table
= ggc_realloc (fde_table
,
2595 fde_table_allocated
* sizeof (dw_fde_node
));
2596 memset (fde_table
+ fde_table_in_use
, 0,
2597 FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2600 /* Record the FDE associated with this function. */
2601 current_funcdef_fde
= fde_table_in_use
;
2603 /* Add the new FDE at the end of the fde_table. */
2604 fde
= &fde_table
[fde_table_in_use
++];
2605 fde
->decl
= current_function_decl
;
2606 fde
->dw_fde_begin
= dup_label
;
2607 fde
->dw_fde_current_label
= dup_label
;
2608 fde
->dw_fde_hot_section_label
= NULL
;
2609 fde
->dw_fde_hot_section_end_label
= NULL
;
2610 fde
->dw_fde_unlikely_section_label
= NULL
;
2611 fde
->dw_fde_unlikely_section_end_label
= NULL
;
2612 fde
->dw_fde_switched_sections
= false;
2613 fde
->dw_fde_end
= NULL
;
2614 fde
->dw_fde_cfi
= NULL
;
2615 fde
->funcdef_number
= current_function_funcdef_no
;
2616 fde
->nothrow
= TREE_NOTHROW (current_function_decl
);
2617 fde
->uses_eh_lsda
= cfun
->uses_eh_lsda
;
2618 fde
->all_throwers_are_sibcalls
= cfun
->all_throwers_are_sibcalls
;
2620 args_size
= old_args_size
= 0;
2622 /* We only want to output line number information for the genuine dwarf2
2623 prologue case, not the eh frame case. */
2624 #ifdef DWARF2_DEBUGGING_INFO
2626 dwarf2out_source_line (line
, file
);
2630 /* Output a marker (i.e. a label) for the absolute end of the generated code
2631 for a function definition. This gets called *after* the epilogue code has
2635 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
2636 const char *file ATTRIBUTE_UNUSED
)
2639 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2641 /* Output a label to mark the endpoint of the code generated for this
2643 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
2644 current_function_funcdef_no
);
2645 ASM_OUTPUT_LABEL (asm_out_file
, label
);
2646 fde
= &fde_table
[fde_table_in_use
- 1];
2647 fde
->dw_fde_end
= xstrdup (label
);
2651 dwarf2out_frame_init (void)
2653 /* Allocate the initial hunk of the fde_table. */
2654 fde_table
= ggc_alloc_cleared (FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2655 fde_table_allocated
= FDE_TABLE_INCREMENT
;
2656 fde_table_in_use
= 0;
2658 /* Generate the CFA instructions common to all FDE's. Do it now for the
2659 sake of lookup_cfa. */
2661 /* On entry, the Canonical Frame Address is at SP. */
2662 dwarf2out_def_cfa (NULL
, STACK_POINTER_REGNUM
, INCOMING_FRAME_SP_OFFSET
);
2664 #ifdef DWARF2_UNWIND_INFO
2665 if (DWARF2_UNWIND_INFO
)
2666 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2671 dwarf2out_frame_finish (void)
2673 /* Output call frame information. */
2674 if (DWARF2_FRAME_INFO
)
2675 output_call_frame_info (0);
2677 #ifndef TARGET_UNWIND_INFO
2678 /* Output another copy for the unwinder. */
2679 if (! USING_SJLJ_EXCEPTIONS
&& (flag_unwind_tables
|| flag_exceptions
))
2680 output_call_frame_info (1);
2685 /* And now, the subset of the debugging information support code necessary
2686 for emitting location expressions. */
2688 /* Data about a single source file. */
2689 struct dwarf_file_data
GTY(())
2691 const char * filename
;
2695 /* We need some way to distinguish DW_OP_addr with a direct symbol
2696 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2697 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2700 typedef struct dw_val_struct
*dw_val_ref
;
2701 typedef struct die_struct
*dw_die_ref
;
2702 typedef const struct die_struct
*const_dw_die_ref
;
2703 typedef struct dw_loc_descr_struct
*dw_loc_descr_ref
;
2704 typedef struct dw_loc_list_struct
*dw_loc_list_ref
;
2706 /* Each DIE may have a series of attribute/value pairs. Values
2707 can take on several forms. The forms that are used in this
2708 implementation are listed below. */
2713 dw_val_class_offset
,
2715 dw_val_class_loc_list
,
2716 dw_val_class_range_list
,
2718 dw_val_class_unsigned_const
,
2719 dw_val_class_long_long
,
2722 dw_val_class_die_ref
,
2723 dw_val_class_fde_ref
,
2724 dw_val_class_lbl_id
,
2725 dw_val_class_lineptr
,
2727 dw_val_class_macptr
,
2731 /* Describe a double word constant value. */
2732 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2734 typedef struct dw_long_long_struct
GTY(())
2741 /* Describe a floating point constant value, or a vector constant value. */
2743 typedef struct dw_vec_struct
GTY(())
2745 unsigned char * GTY((length ("%h.length"))) array
;
2751 /* The dw_val_node describes an attribute's value, as it is
2752 represented internally. */
2754 typedef struct dw_val_struct
GTY(())
2756 enum dw_val_class val_class
;
2757 union dw_val_struct_union
2759 rtx
GTY ((tag ("dw_val_class_addr"))) val_addr
;
2760 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_offset"))) val_offset
;
2761 dw_loc_list_ref
GTY ((tag ("dw_val_class_loc_list"))) val_loc_list
;
2762 dw_loc_descr_ref
GTY ((tag ("dw_val_class_loc"))) val_loc
;
2763 HOST_WIDE_INT
GTY ((default)) val_int
;
2764 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned
;
2765 dw_long_long_const
GTY ((tag ("dw_val_class_long_long"))) val_long_long
;
2766 dw_vec_const
GTY ((tag ("dw_val_class_vec"))) val_vec
;
2767 struct dw_val_die_union
2771 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref
;
2772 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index
;
2773 struct indirect_string_node
* GTY ((tag ("dw_val_class_str"))) val_str
;
2774 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id
;
2775 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag
;
2776 struct dwarf_file_data
* GTY ((tag ("dw_val_class_file"))) val_file
;
2778 GTY ((desc ("%1.val_class"))) v
;
2782 /* Locations in memory are described using a sequence of stack machine
2785 typedef struct dw_loc_descr_struct
GTY(())
2787 dw_loc_descr_ref dw_loc_next
;
2788 enum dwarf_location_atom dw_loc_opc
;
2789 dw_val_node dw_loc_oprnd1
;
2790 dw_val_node dw_loc_oprnd2
;
2795 /* Location lists are ranges + location descriptions for that range,
2796 so you can track variables that are in different places over
2797 their entire life. */
2798 typedef struct dw_loc_list_struct
GTY(())
2800 dw_loc_list_ref dw_loc_next
;
2801 const char *begin
; /* Label for begin address of range */
2802 const char *end
; /* Label for end address of range */
2803 char *ll_symbol
; /* Label for beginning of location list.
2804 Only on head of list */
2805 const char *section
; /* Section this loclist is relative to */
2806 dw_loc_descr_ref expr
;
2809 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2811 static const char *dwarf_stack_op_name (unsigned);
2812 static dw_loc_descr_ref
new_loc_descr (enum dwarf_location_atom
,
2813 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
);
2814 static void add_loc_descr (dw_loc_descr_ref
*, dw_loc_descr_ref
);
2815 static unsigned long size_of_loc_descr (dw_loc_descr_ref
);
2816 static unsigned long size_of_locs (dw_loc_descr_ref
);
2817 static void output_loc_operands (dw_loc_descr_ref
);
2818 static void output_loc_sequence (dw_loc_descr_ref
);
2820 /* Convert a DWARF stack opcode into its string name. */
2823 dwarf_stack_op_name (unsigned int op
)
2828 case INTERNAL_DW_OP_tls_addr
:
2829 return "DW_OP_addr";
2831 return "DW_OP_deref";
2833 return "DW_OP_const1u";
2835 return "DW_OP_const1s";
2837 return "DW_OP_const2u";
2839 return "DW_OP_const2s";
2841 return "DW_OP_const4u";
2843 return "DW_OP_const4s";
2845 return "DW_OP_const8u";
2847 return "DW_OP_const8s";
2849 return "DW_OP_constu";
2851 return "DW_OP_consts";
2855 return "DW_OP_drop";
2857 return "DW_OP_over";
2859 return "DW_OP_pick";
2861 return "DW_OP_swap";
2865 return "DW_OP_xderef";
2873 return "DW_OP_minus";
2885 return "DW_OP_plus";
2886 case DW_OP_plus_uconst
:
2887 return "DW_OP_plus_uconst";
2893 return "DW_OP_shra";
2911 return "DW_OP_skip";
2913 return "DW_OP_lit0";
2915 return "DW_OP_lit1";
2917 return "DW_OP_lit2";
2919 return "DW_OP_lit3";
2921 return "DW_OP_lit4";
2923 return "DW_OP_lit5";
2925 return "DW_OP_lit6";
2927 return "DW_OP_lit7";
2929 return "DW_OP_lit8";
2931 return "DW_OP_lit9";
2933 return "DW_OP_lit10";
2935 return "DW_OP_lit11";
2937 return "DW_OP_lit12";
2939 return "DW_OP_lit13";
2941 return "DW_OP_lit14";
2943 return "DW_OP_lit15";
2945 return "DW_OP_lit16";
2947 return "DW_OP_lit17";
2949 return "DW_OP_lit18";
2951 return "DW_OP_lit19";
2953 return "DW_OP_lit20";
2955 return "DW_OP_lit21";
2957 return "DW_OP_lit22";
2959 return "DW_OP_lit23";
2961 return "DW_OP_lit24";
2963 return "DW_OP_lit25";
2965 return "DW_OP_lit26";
2967 return "DW_OP_lit27";
2969 return "DW_OP_lit28";
2971 return "DW_OP_lit29";
2973 return "DW_OP_lit30";
2975 return "DW_OP_lit31";
2977 return "DW_OP_reg0";
2979 return "DW_OP_reg1";
2981 return "DW_OP_reg2";
2983 return "DW_OP_reg3";
2985 return "DW_OP_reg4";
2987 return "DW_OP_reg5";
2989 return "DW_OP_reg6";
2991 return "DW_OP_reg7";
2993 return "DW_OP_reg8";
2995 return "DW_OP_reg9";
2997 return "DW_OP_reg10";
2999 return "DW_OP_reg11";
3001 return "DW_OP_reg12";
3003 return "DW_OP_reg13";
3005 return "DW_OP_reg14";
3007 return "DW_OP_reg15";
3009 return "DW_OP_reg16";
3011 return "DW_OP_reg17";
3013 return "DW_OP_reg18";
3015 return "DW_OP_reg19";
3017 return "DW_OP_reg20";
3019 return "DW_OP_reg21";
3021 return "DW_OP_reg22";
3023 return "DW_OP_reg23";
3025 return "DW_OP_reg24";
3027 return "DW_OP_reg25";
3029 return "DW_OP_reg26";
3031 return "DW_OP_reg27";
3033 return "DW_OP_reg28";
3035 return "DW_OP_reg29";
3037 return "DW_OP_reg30";
3039 return "DW_OP_reg31";
3041 return "DW_OP_breg0";
3043 return "DW_OP_breg1";
3045 return "DW_OP_breg2";
3047 return "DW_OP_breg3";
3049 return "DW_OP_breg4";
3051 return "DW_OP_breg5";
3053 return "DW_OP_breg6";
3055 return "DW_OP_breg7";
3057 return "DW_OP_breg8";
3059 return "DW_OP_breg9";
3061 return "DW_OP_breg10";
3063 return "DW_OP_breg11";
3065 return "DW_OP_breg12";
3067 return "DW_OP_breg13";
3069 return "DW_OP_breg14";
3071 return "DW_OP_breg15";
3073 return "DW_OP_breg16";
3075 return "DW_OP_breg17";
3077 return "DW_OP_breg18";
3079 return "DW_OP_breg19";
3081 return "DW_OP_breg20";
3083 return "DW_OP_breg21";
3085 return "DW_OP_breg22";
3087 return "DW_OP_breg23";
3089 return "DW_OP_breg24";
3091 return "DW_OP_breg25";
3093 return "DW_OP_breg26";
3095 return "DW_OP_breg27";
3097 return "DW_OP_breg28";
3099 return "DW_OP_breg29";
3101 return "DW_OP_breg30";
3103 return "DW_OP_breg31";
3105 return "DW_OP_regx";
3107 return "DW_OP_fbreg";
3109 return "DW_OP_bregx";
3111 return "DW_OP_piece";
3112 case DW_OP_deref_size
:
3113 return "DW_OP_deref_size";
3114 case DW_OP_xderef_size
:
3115 return "DW_OP_xderef_size";
3118 case DW_OP_push_object_address
:
3119 return "DW_OP_push_object_address";
3121 return "DW_OP_call2";
3123 return "DW_OP_call4";
3124 case DW_OP_call_ref
:
3125 return "DW_OP_call_ref";
3126 case DW_OP_GNU_push_tls_address
:
3127 return "DW_OP_GNU_push_tls_address";
3128 case DW_OP_GNU_uninit
:
3129 return "DW_OP_GNU_uninit";
3131 return "OP_<unknown>";
3135 /* Return a pointer to a newly allocated location description. Location
3136 descriptions are simple expression terms that can be strung
3137 together to form more complicated location (address) descriptions. */
3139 static inline dw_loc_descr_ref
3140 new_loc_descr (enum dwarf_location_atom op
, unsigned HOST_WIDE_INT oprnd1
,
3141 unsigned HOST_WIDE_INT oprnd2
)
3143 dw_loc_descr_ref descr
= ggc_alloc_cleared (sizeof (dw_loc_descr_node
));
3145 descr
->dw_loc_opc
= op
;
3146 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
3147 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
3148 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
3149 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
3154 /* Add a location description term to a location description expression. */
3157 add_loc_descr (dw_loc_descr_ref
*list_head
, dw_loc_descr_ref descr
)
3159 dw_loc_descr_ref
*d
;
3161 /* Find the end of the chain. */
3162 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
3168 /* Return the size of a location descriptor. */
3170 static unsigned long
3171 size_of_loc_descr (dw_loc_descr_ref loc
)
3173 unsigned long size
= 1;
3175 switch (loc
->dw_loc_opc
)
3178 case INTERNAL_DW_OP_tls_addr
:
3179 size
+= DWARF2_ADDR_SIZE
;
3198 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3201 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3206 case DW_OP_plus_uconst
:
3207 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3245 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3248 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3251 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3254 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3255 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
3258 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3260 case DW_OP_deref_size
:
3261 case DW_OP_xderef_size
:
3270 case DW_OP_call_ref
:
3271 size
+= DWARF2_ADDR_SIZE
;
3280 /* Return the size of a series of location descriptors. */
3282 static unsigned long
3283 size_of_locs (dw_loc_descr_ref loc
)
3288 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3289 field, to avoid writing to a PCH file. */
3290 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
3292 if (l
->dw_loc_opc
== DW_OP_skip
|| l
->dw_loc_opc
== DW_OP_bra
)
3294 size
+= size_of_loc_descr (l
);
3299 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
3301 l
->dw_loc_addr
= size
;
3302 size
+= size_of_loc_descr (l
);
3308 /* Output location description stack opcode's operands (if any). */
3311 output_loc_operands (dw_loc_descr_ref loc
)
3313 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
3314 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
3316 switch (loc
->dw_loc_opc
)
3318 #ifdef DWARF2_DEBUGGING_INFO
3320 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
3324 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
3328 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
3332 gcc_assert (HOST_BITS_PER_LONG
>= 64);
3333 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
3340 gcc_assert (val1
->val_class
== dw_val_class_loc
);
3341 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
3343 dw2_asm_output_data (2, offset
, NULL
);
3356 /* We currently don't make any attempt to make sure these are
3357 aligned properly like we do for the main unwind info, so
3358 don't support emitting things larger than a byte if we're
3359 only doing unwinding. */
3364 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3367 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3370 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3373 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3375 case DW_OP_plus_uconst
:
3376 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3410 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3413 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3416 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3419 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3420 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
3423 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3425 case DW_OP_deref_size
:
3426 case DW_OP_xderef_size
:
3427 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3430 case INTERNAL_DW_OP_tls_addr
:
3431 if (targetm
.asm_out
.output_dwarf_dtprel
)
3433 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
,
3436 fputc ('\n', asm_out_file
);
3443 /* Other codes have no operands. */
3448 /* Output a sequence of location operations. */
3451 output_loc_sequence (dw_loc_descr_ref loc
)
3453 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
3455 /* Output the opcode. */
3456 dw2_asm_output_data (1, loc
->dw_loc_opc
,
3457 "%s", dwarf_stack_op_name (loc
->dw_loc_opc
));
3459 /* Output the operand(s) (if any). */
3460 output_loc_operands (loc
);
3464 /* This routine will generate the correct assembly data for a location
3465 description based on a cfi entry with a complex address. */
3468 output_cfa_loc (dw_cfi_ref cfi
)
3470 dw_loc_descr_ref loc
;
3473 /* Output the size of the block. */
3474 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3475 size
= size_of_locs (loc
);
3476 dw2_asm_output_data_uleb128 (size
, NULL
);
3478 /* Now output the operations themselves. */
3479 output_loc_sequence (loc
);
3482 /* This function builds a dwarf location descriptor sequence from a
3483 dw_cfa_location, adding the given OFFSET to the result of the
3486 static struct dw_loc_descr_struct
*
3487 build_cfa_loc (dw_cfa_location
*cfa
, HOST_WIDE_INT offset
)
3489 struct dw_loc_descr_struct
*head
, *tmp
;
3491 offset
+= cfa
->offset
;
3495 if (cfa
->base_offset
)
3498 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, cfa
->base_offset
, 0);
3500 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, cfa
->base_offset
);
3502 else if (cfa
->reg
<= 31)
3503 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
3505 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
3507 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
3508 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
3509 add_loc_descr (&head
, tmp
);
3512 tmp
= new_loc_descr (DW_OP_plus_uconst
, offset
, 0);
3513 add_loc_descr (&head
, tmp
);
3520 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
3522 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
3523 else if (cfa
->reg
<= 31)
3524 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, offset
, 0);
3526 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, offset
);
3532 /* This function fills in aa dw_cfa_location structure from a dwarf location
3533 descriptor sequence. */
3536 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_struct
*loc
)
3538 struct dw_loc_descr_struct
*ptr
;
3540 cfa
->base_offset
= 0;
3544 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
3546 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
3582 cfa
->reg
= op
- DW_OP_reg0
;
3585 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3619 cfa
->reg
= op
- DW_OP_breg0
;
3620 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3623 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3624 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
3629 case DW_OP_plus_uconst
:
3630 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
3633 internal_error ("DW_LOC_OP %s not implemented",
3634 dwarf_stack_op_name (ptr
->dw_loc_opc
));
3638 #endif /* .debug_frame support */
3640 /* And now, the support for symbolic debugging information. */
3641 #ifdef DWARF2_DEBUGGING_INFO
3643 /* .debug_str support. */
3644 static int output_indirect_string (void **, void *);
3646 static void dwarf2out_init (const char *);
3647 static void dwarf2out_finish (const char *);
3648 static void dwarf2out_define (unsigned int, const char *);
3649 static void dwarf2out_undef (unsigned int, const char *);
3650 static void dwarf2out_start_source_file (unsigned, const char *);
3651 static void dwarf2out_end_source_file (unsigned);
3652 static void dwarf2out_begin_block (unsigned, unsigned);
3653 static void dwarf2out_end_block (unsigned, unsigned);
3654 static bool dwarf2out_ignore_block (const_tree
);
3655 static void dwarf2out_global_decl (tree
);
3656 static void dwarf2out_type_decl (tree
, int);
3657 static void dwarf2out_imported_module_or_decl (tree
, tree
);
3658 static void dwarf2out_abstract_function (tree
);
3659 static void dwarf2out_var_location (rtx
);
3660 static void dwarf2out_begin_function (tree
);
3661 static void dwarf2out_switch_text_section (void);
3663 /* The debug hooks structure. */
3665 const struct gcc_debug_hooks dwarf2_debug_hooks
=
3671 dwarf2out_start_source_file
,
3672 dwarf2out_end_source_file
,
3673 dwarf2out_begin_block
,
3674 dwarf2out_end_block
,
3675 dwarf2out_ignore_block
,
3676 dwarf2out_source_line
,
3677 dwarf2out_begin_prologue
,
3678 debug_nothing_int_charstar
, /* end_prologue */
3679 dwarf2out_end_epilogue
,
3680 dwarf2out_begin_function
,
3681 debug_nothing_int
, /* end_function */
3682 dwarf2out_decl
, /* function_decl */
3683 dwarf2out_global_decl
,
3684 dwarf2out_type_decl
, /* type_decl */
3685 dwarf2out_imported_module_or_decl
,
3686 debug_nothing_tree
, /* deferred_inline_function */
3687 /* The DWARF 2 backend tries to reduce debugging bloat by not
3688 emitting the abstract description of inline functions until
3689 something tries to reference them. */
3690 dwarf2out_abstract_function
, /* outlining_inline_function */
3691 debug_nothing_rtx
, /* label */
3692 debug_nothing_int
, /* handle_pch */
3693 dwarf2out_var_location
,
3694 dwarf2out_switch_text_section
,
3695 1 /* start_end_main_source_file */
3699 /* NOTE: In the comments in this file, many references are made to
3700 "Debugging Information Entries". This term is abbreviated as `DIE'
3701 throughout the remainder of this file. */
3703 /* An internal representation of the DWARF output is built, and then
3704 walked to generate the DWARF debugging info. The walk of the internal
3705 representation is done after the entire program has been compiled.
3706 The types below are used to describe the internal representation. */
3708 /* Various DIE's use offsets relative to the beginning of the
3709 .debug_info section to refer to each other. */
3711 typedef long int dw_offset
;
3713 /* Define typedefs here to avoid circular dependencies. */
3715 typedef struct dw_attr_struct
*dw_attr_ref
;
3716 typedef struct dw_line_info_struct
*dw_line_info_ref
;
3717 typedef struct dw_separate_line_info_struct
*dw_separate_line_info_ref
;
3718 typedef struct pubname_struct
*pubname_ref
;
3719 typedef struct dw_ranges_struct
*dw_ranges_ref
;
3720 typedef struct dw_ranges_by_label_struct
*dw_ranges_by_label_ref
;
3722 /* Each entry in the line_info_table maintains the file and
3723 line number associated with the label generated for that
3724 entry. The label gives the PC value associated with
3725 the line number entry. */
3727 typedef struct dw_line_info_struct
GTY(())
3729 unsigned long dw_file_num
;
3730 unsigned long dw_line_num
;
3734 /* Line information for functions in separate sections; each one gets its
3736 typedef struct dw_separate_line_info_struct
GTY(())
3738 unsigned long dw_file_num
;
3739 unsigned long dw_line_num
;
3740 unsigned long function
;
3742 dw_separate_line_info_entry
;
3744 /* Each DIE attribute has a field specifying the attribute kind,
3745 a link to the next attribute in the chain, and an attribute value.
3746 Attributes are typically linked below the DIE they modify. */
3748 typedef struct dw_attr_struct
GTY(())
3750 enum dwarf_attribute dw_attr
;
3751 dw_val_node dw_attr_val
;
3755 DEF_VEC_O(dw_attr_node
);
3756 DEF_VEC_ALLOC_O(dw_attr_node
,gc
);
3758 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3759 The children of each node form a circular list linked by
3760 die_sib. die_child points to the node *before* the "first" child node. */
3762 typedef struct die_struct
GTY(())
3764 enum dwarf_tag die_tag
;
3766 VEC(dw_attr_node
,gc
) * die_attr
;
3767 dw_die_ref die_parent
;
3768 dw_die_ref die_child
;
3770 dw_die_ref die_definition
; /* ref from a specification to its definition */
3771 dw_offset die_offset
;
3772 unsigned long die_abbrev
;
3774 /* Die is used and must not be pruned as unused. */
3775 int die_perennial_p
;
3776 unsigned int decl_id
;
3780 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3781 #define FOR_EACH_CHILD(die, c, expr) do { \
3782 c = die->die_child; \
3786 } while (c != die->die_child); \
3789 /* The pubname structure */
3791 typedef struct pubname_struct
GTY(())
3798 DEF_VEC_O(pubname_entry
);
3799 DEF_VEC_ALLOC_O(pubname_entry
, gc
);
3801 struct dw_ranges_struct
GTY(())
3803 /* If this is positive, it's a block number, otherwise it's a
3804 bitwise-negated index into dw_ranges_by_label. */
3808 struct dw_ranges_by_label_struct
GTY(())
3814 /* The limbo die list structure. */
3815 typedef struct limbo_die_struct
GTY(())
3819 struct limbo_die_struct
*next
;
3823 /* How to start an assembler comment. */
3824 #ifndef ASM_COMMENT_START
3825 #define ASM_COMMENT_START ";#"
3828 /* Define a macro which returns nonzero for a TYPE_DECL which was
3829 implicitly generated for a tagged type.
3831 Note that unlike the gcc front end (which generates a NULL named
3832 TYPE_DECL node for each complete tagged type, each array type, and
3833 each function type node created) the g++ front end generates a
3834 _named_ TYPE_DECL node for each tagged type node created.
3835 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3836 generate a DW_TAG_typedef DIE for them. */
3838 #define TYPE_DECL_IS_STUB(decl) \
3839 (DECL_NAME (decl) == NULL_TREE \
3840 || (DECL_ARTIFICIAL (decl) \
3841 && is_tagged_type (TREE_TYPE (decl)) \
3842 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3843 /* This is necessary for stub decls that \
3844 appear in nested inline functions. */ \
3845 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3846 && (decl_ultimate_origin (decl) \
3847 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3849 /* Information concerning the compilation unit's programming
3850 language, and compiler version. */
3852 /* Fixed size portion of the DWARF compilation unit header. */
3853 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3854 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3856 /* Fixed size portion of public names info. */
3857 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3859 /* Fixed size portion of the address range info. */
3860 #define DWARF_ARANGES_HEADER_SIZE \
3861 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3862 DWARF2_ADDR_SIZE * 2) \
3863 - DWARF_INITIAL_LENGTH_SIZE)
3865 /* Size of padding portion in the address range info. It must be
3866 aligned to twice the pointer size. */
3867 #define DWARF_ARANGES_PAD_SIZE \
3868 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3869 DWARF2_ADDR_SIZE * 2) \
3870 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3872 /* Use assembler line directives if available. */
3873 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3874 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3875 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3877 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3881 /* Minimum line offset in a special line info. opcode.
3882 This value was chosen to give a reasonable range of values. */
3883 #define DWARF_LINE_BASE -10
3885 /* First special line opcode - leave room for the standard opcodes. */
3886 #define DWARF_LINE_OPCODE_BASE 10
3888 /* Range of line offsets in a special line info. opcode. */
3889 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3891 /* Flag that indicates the initial value of the is_stmt_start flag.
3892 In the present implementation, we do not mark any lines as
3893 the beginning of a source statement, because that information
3894 is not made available by the GCC front-end. */
3895 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3897 #ifdef DWARF2_DEBUGGING_INFO
3898 /* This location is used by calc_die_sizes() to keep track
3899 the offset of each DIE within the .debug_info section. */
3900 static unsigned long next_die_offset
;
3903 /* Record the root of the DIE's built for the current compilation unit. */
3904 static GTY(()) dw_die_ref comp_unit_die
;
3906 /* A list of DIEs with a NULL parent waiting to be relocated. */
3907 static GTY(()) limbo_die_node
*limbo_die_list
;
3909 /* Filenames referenced by this compilation unit. */
3910 static GTY((param_is (struct dwarf_file_data
))) htab_t file_table
;
3912 /* A hash table of references to DIE's that describe declarations.
3913 The key is a DECL_UID() which is a unique number identifying each decl. */
3914 static GTY ((param_is (struct die_struct
))) htab_t decl_die_table
;
3916 /* Node of the variable location list. */
3917 struct var_loc_node
GTY ((chain_next ("%h.next")))
3919 rtx
GTY (()) var_loc_note
;
3920 const char * GTY (()) label
;
3921 const char * GTY (()) section_label
;
3922 struct var_loc_node
* GTY (()) next
;
3925 /* Variable location list. */
3926 struct var_loc_list_def
GTY (())
3928 struct var_loc_node
* GTY (()) first
;
3930 /* Do not mark the last element of the chained list because
3931 it is marked through the chain. */
3932 struct var_loc_node
* GTY ((skip ("%h"))) last
;
3934 /* DECL_UID of the variable decl. */
3935 unsigned int decl_id
;
3937 typedef struct var_loc_list_def var_loc_list
;
3940 /* Table of decl location linked lists. */
3941 static GTY ((param_is (var_loc_list
))) htab_t decl_loc_table
;
3943 /* A pointer to the base of a list of references to DIE's that
3944 are uniquely identified by their tag, presence/absence of
3945 children DIE's, and list of attribute/value pairs. */
3946 static GTY((length ("abbrev_die_table_allocated")))
3947 dw_die_ref
*abbrev_die_table
;
3949 /* Number of elements currently allocated for abbrev_die_table. */
3950 static GTY(()) unsigned abbrev_die_table_allocated
;
3952 /* Number of elements in type_die_table currently in use. */
3953 static GTY(()) unsigned abbrev_die_table_in_use
;
3955 /* Size (in elements) of increments by which we may expand the
3956 abbrev_die_table. */
3957 #define ABBREV_DIE_TABLE_INCREMENT 256
3959 /* A pointer to the base of a table that contains line information
3960 for each source code line in .text in the compilation unit. */
3961 static GTY((length ("line_info_table_allocated")))
3962 dw_line_info_ref line_info_table
;
3964 /* Number of elements currently allocated for line_info_table. */
3965 static GTY(()) unsigned line_info_table_allocated
;
3967 /* Number of elements in line_info_table currently in use. */
3968 static GTY(()) unsigned line_info_table_in_use
;
3970 /* True if the compilation unit places functions in more than one section. */
3971 static GTY(()) bool have_multiple_function_sections
= false;
3973 /* A pointer to the base of a table that contains line information
3974 for each source code line outside of .text in the compilation unit. */
3975 static GTY ((length ("separate_line_info_table_allocated")))
3976 dw_separate_line_info_ref separate_line_info_table
;
3978 /* Number of elements currently allocated for separate_line_info_table. */
3979 static GTY(()) unsigned separate_line_info_table_allocated
;
3981 /* Number of elements in separate_line_info_table currently in use. */
3982 static GTY(()) unsigned separate_line_info_table_in_use
;
3984 /* Size (in elements) of increments by which we may expand the
3986 #define LINE_INFO_TABLE_INCREMENT 1024
3988 /* A pointer to the base of a table that contains a list of publicly
3989 accessible names. */
3990 static GTY (()) VEC (pubname_entry
, gc
) * pubname_table
;
3992 /* A pointer to the base of a table that contains a list of publicly
3993 accessible types. */
3994 static GTY (()) VEC (pubname_entry
, gc
) * pubtype_table
;
3996 /* Array of dies for which we should generate .debug_arange info. */
3997 static GTY((length ("arange_table_allocated"))) dw_die_ref
*arange_table
;
3999 /* Number of elements currently allocated for arange_table. */
4000 static GTY(()) unsigned arange_table_allocated
;
4002 /* Number of elements in arange_table currently in use. */
4003 static GTY(()) unsigned arange_table_in_use
;
4005 /* Size (in elements) of increments by which we may expand the
4007 #define ARANGE_TABLE_INCREMENT 64
4009 /* Array of dies for which we should generate .debug_ranges info. */
4010 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table
;
4012 /* Number of elements currently allocated for ranges_table. */
4013 static GTY(()) unsigned ranges_table_allocated
;
4015 /* Number of elements in ranges_table currently in use. */
4016 static GTY(()) unsigned ranges_table_in_use
;
4018 /* Array of pairs of labels referenced in ranges_table. */
4019 static GTY ((length ("ranges_by_label_allocated")))
4020 dw_ranges_by_label_ref ranges_by_label
;
4022 /* Number of elements currently allocated for ranges_by_label. */
4023 static GTY(()) unsigned ranges_by_label_allocated
;
4025 /* Number of elements in ranges_by_label currently in use. */
4026 static GTY(()) unsigned ranges_by_label_in_use
;
4028 /* Size (in elements) of increments by which we may expand the
4030 #define RANGES_TABLE_INCREMENT 64
4032 /* Whether we have location lists that need outputting */
4033 static GTY(()) bool have_location_lists
;
4035 /* Unique label counter. */
4036 static GTY(()) unsigned int loclabel_num
;
4038 #ifdef DWARF2_DEBUGGING_INFO
4039 /* Record whether the function being analyzed contains inlined functions. */
4040 static int current_function_has_inlines
;
4042 #if 0 && defined (MIPS_DEBUGGING_INFO)
4043 static int comp_unit_has_inlines
;
4046 /* The last file entry emitted by maybe_emit_file(). */
4047 static GTY(()) struct dwarf_file_data
* last_emitted_file
;
4049 /* Number of internal labels generated by gen_internal_sym(). */
4050 static GTY(()) int label_num
;
4052 /* Cached result of previous call to lookup_filename. */
4053 static GTY(()) struct dwarf_file_data
* file_table_last_lookup
;
4055 /* Whether the default text and cold text sections have been used at
4058 static GTY(()) bool text_section_used
= false;
4059 static GTY(()) bool cold_text_section_used
= false;
4061 /* The default cold text section. */
4062 static GTY(()) section
*cold_text_section
;
4064 #ifdef DWARF2_DEBUGGING_INFO
4066 /* Offset from the "steady-state frame pointer" to the frame base,
4067 within the current function. */
4068 static HOST_WIDE_INT frame_pointer_fb_offset
;
4070 /* Forward declarations for functions defined in this file. */
4072 static int is_pseudo_reg (const_rtx
);
4073 static tree
type_main_variant (tree
);
4074 static int is_tagged_type (const_tree
);
4075 static const char *dwarf_tag_name (unsigned);
4076 static const char *dwarf_attr_name (unsigned);
4077 static const char *dwarf_form_name (unsigned);
4078 static tree
decl_ultimate_origin (const_tree
);
4079 static tree
block_ultimate_origin (const_tree
);
4080 static tree
decl_class_context (tree
);
4081 static void add_dwarf_attr (dw_die_ref
, dw_attr_ref
);
4082 static inline enum dw_val_class
AT_class (dw_attr_ref
);
4083 static void add_AT_flag (dw_die_ref
, enum dwarf_attribute
, unsigned);
4084 static inline unsigned AT_flag (dw_attr_ref
);
4085 static void add_AT_int (dw_die_ref
, enum dwarf_attribute
, HOST_WIDE_INT
);
4086 static inline HOST_WIDE_INT
AT_int (dw_attr_ref
);
4087 static void add_AT_unsigned (dw_die_ref
, enum dwarf_attribute
, unsigned HOST_WIDE_INT
);
4088 static inline unsigned HOST_WIDE_INT
AT_unsigned (dw_attr_ref
);
4089 static void add_AT_long_long (dw_die_ref
, enum dwarf_attribute
, unsigned long,
4091 static inline void add_AT_vec (dw_die_ref
, enum dwarf_attribute
, unsigned int,
4092 unsigned int, unsigned char *);
4093 static hashval_t
debug_str_do_hash (const void *);
4094 static int debug_str_eq (const void *, const void *);
4095 static void add_AT_string (dw_die_ref
, enum dwarf_attribute
, const char *);
4096 static inline const char *AT_string (dw_attr_ref
);
4097 static int AT_string_form (dw_attr_ref
);
4098 static void add_AT_die_ref (dw_die_ref
, enum dwarf_attribute
, dw_die_ref
);
4099 static void add_AT_specification (dw_die_ref
, dw_die_ref
);
4100 static inline dw_die_ref
AT_ref (dw_attr_ref
);
4101 static inline int AT_ref_external (dw_attr_ref
);
4102 static inline void set_AT_ref_external (dw_attr_ref
, int);
4103 static void add_AT_fde_ref (dw_die_ref
, enum dwarf_attribute
, unsigned);
4104 static void add_AT_loc (dw_die_ref
, enum dwarf_attribute
, dw_loc_descr_ref
);
4105 static inline dw_loc_descr_ref
AT_loc (dw_attr_ref
);
4106 static void add_AT_loc_list (dw_die_ref
, enum dwarf_attribute
,
4108 static inline dw_loc_list_ref
AT_loc_list (dw_attr_ref
);
4109 static void add_AT_addr (dw_die_ref
, enum dwarf_attribute
, rtx
);
4110 static inline rtx
AT_addr (dw_attr_ref
);
4111 static void add_AT_lbl_id (dw_die_ref
, enum dwarf_attribute
, const char *);
4112 static void add_AT_lineptr (dw_die_ref
, enum dwarf_attribute
, const char *);
4113 static void add_AT_macptr (dw_die_ref
, enum dwarf_attribute
, const char *);
4114 static void add_AT_offset (dw_die_ref
, enum dwarf_attribute
,
4115 unsigned HOST_WIDE_INT
);
4116 static void add_AT_range_list (dw_die_ref
, enum dwarf_attribute
,
4118 static inline const char *AT_lbl (dw_attr_ref
);
4119 static dw_attr_ref
get_AT (dw_die_ref
, enum dwarf_attribute
);
4120 static const char *get_AT_low_pc (dw_die_ref
);
4121 static const char *get_AT_hi_pc (dw_die_ref
);
4122 static const char *get_AT_string (dw_die_ref
, enum dwarf_attribute
);
4123 static int get_AT_flag (dw_die_ref
, enum dwarf_attribute
);
4124 static unsigned get_AT_unsigned (dw_die_ref
, enum dwarf_attribute
);
4125 static inline dw_die_ref
get_AT_ref (dw_die_ref
, enum dwarf_attribute
);
4126 static bool is_c_family (void);
4127 static bool is_cxx (void);
4128 static bool is_java (void);
4129 static bool is_fortran (void);
4130 static bool is_ada (void);
4131 static void remove_AT (dw_die_ref
, enum dwarf_attribute
);
4132 static void remove_child_TAG (dw_die_ref
, enum dwarf_tag
);
4133 static void add_child_die (dw_die_ref
, dw_die_ref
);
4134 static dw_die_ref
new_die (enum dwarf_tag
, dw_die_ref
, tree
);
4135 static dw_die_ref
lookup_type_die (tree
);
4136 static void equate_type_number_to_die (tree
, dw_die_ref
);
4137 static hashval_t
decl_die_table_hash (const void *);
4138 static int decl_die_table_eq (const void *, const void *);
4139 static dw_die_ref
lookup_decl_die (tree
);
4140 static hashval_t
decl_loc_table_hash (const void *);
4141 static int decl_loc_table_eq (const void *, const void *);
4142 static var_loc_list
*lookup_decl_loc (const_tree
);
4143 static void equate_decl_number_to_die (tree
, dw_die_ref
);
4144 static void add_var_loc_to_decl (tree
, struct var_loc_node
*);
4145 static void print_spaces (FILE *);
4146 static void print_die (dw_die_ref
, FILE *);
4147 static void print_dwarf_line_table (FILE *);
4148 static dw_die_ref
push_new_compile_unit (dw_die_ref
, dw_die_ref
);
4149 static dw_die_ref
pop_compile_unit (dw_die_ref
);
4150 static void loc_checksum (dw_loc_descr_ref
, struct md5_ctx
*);
4151 static void attr_checksum (dw_attr_ref
, struct md5_ctx
*, int *);
4152 static void die_checksum (dw_die_ref
, struct md5_ctx
*, int *);
4153 static int same_loc_p (dw_loc_descr_ref
, dw_loc_descr_ref
, int *);
4154 static int same_dw_val_p (const dw_val_node
*, const dw_val_node
*, int *);
4155 static int same_attr_p (dw_attr_ref
, dw_attr_ref
, int *);
4156 static int same_die_p (dw_die_ref
, dw_die_ref
, int *);
4157 static int same_die_p_wrap (dw_die_ref
, dw_die_ref
);
4158 static void compute_section_prefix (dw_die_ref
);
4159 static int is_type_die (dw_die_ref
);
4160 static int is_comdat_die (dw_die_ref
);
4161 static int is_symbol_die (dw_die_ref
);
4162 static void assign_symbol_names (dw_die_ref
);
4163 static void break_out_includes (dw_die_ref
);
4164 static hashval_t
htab_cu_hash (const void *);
4165 static int htab_cu_eq (const void *, const void *);
4166 static void htab_cu_del (void *);
4167 static int check_duplicate_cu (dw_die_ref
, htab_t
, unsigned *);
4168 static void record_comdat_symbol_number (dw_die_ref
, htab_t
, unsigned);
4169 static void add_sibling_attributes (dw_die_ref
);
4170 static void build_abbrev_table (dw_die_ref
);
4171 static void output_location_lists (dw_die_ref
);
4172 static int constant_size (long unsigned);
4173 static unsigned long size_of_die (dw_die_ref
);
4174 static void calc_die_sizes (dw_die_ref
);
4175 static void mark_dies (dw_die_ref
);
4176 static void unmark_dies (dw_die_ref
);
4177 static void unmark_all_dies (dw_die_ref
);
4178 static unsigned long size_of_pubnames (VEC (pubname_entry
,gc
) *);
4179 static unsigned long size_of_aranges (void);
4180 static enum dwarf_form
value_format (dw_attr_ref
);
4181 static void output_value_format (dw_attr_ref
);
4182 static void output_abbrev_section (void);
4183 static void output_die_symbol (dw_die_ref
);
4184 static void output_die (dw_die_ref
);
4185 static void output_compilation_unit_header (void);
4186 static void output_comp_unit (dw_die_ref
, int);
4187 static const char *dwarf2_name (tree
, int);
4188 static void add_pubname (tree
, dw_die_ref
);
4189 static void add_pubtype (tree
, dw_die_ref
);
4190 static void output_pubnames (VEC (pubname_entry
,gc
) *);
4191 static void add_arange (tree
, dw_die_ref
);
4192 static void output_aranges (void);
4193 static unsigned int add_ranges_num (int);
4194 static unsigned int add_ranges (const_tree
);
4195 static unsigned int add_ranges_by_labels (const char *, const char *);
4196 static void output_ranges (void);
4197 static void output_line_info (void);
4198 static void output_file_names (void);
4199 static dw_die_ref
base_type_die (tree
);
4200 static int is_base_type (tree
);
4201 static bool is_subrange_type (const_tree
);
4202 static dw_die_ref
subrange_type_die (tree
, dw_die_ref
);
4203 static dw_die_ref
modified_type_die (tree
, int, int, dw_die_ref
);
4204 static int type_is_enum (const_tree
);
4205 static unsigned int dbx_reg_number (const_rtx
);
4206 static void add_loc_descr_op_piece (dw_loc_descr_ref
*, int);
4207 static dw_loc_descr_ref
reg_loc_descriptor (rtx
, enum var_init_status
);
4208 static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int,
4209 enum var_init_status
);
4210 static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx
, rtx
,
4211 enum var_init_status
);
4212 static dw_loc_descr_ref
int_loc_descriptor (HOST_WIDE_INT
);
4213 static dw_loc_descr_ref
based_loc_descr (rtx
, HOST_WIDE_INT
,
4214 enum var_init_status
);
4215 static int is_based_loc (const_rtx
);
4216 static dw_loc_descr_ref
mem_loc_descriptor (rtx
, enum machine_mode mode
,
4217 enum var_init_status
);
4218 static dw_loc_descr_ref
concat_loc_descriptor (rtx
, rtx
,
4219 enum var_init_status
);
4220 static dw_loc_descr_ref
loc_descriptor (rtx
, enum var_init_status
);
4221 static dw_loc_descr_ref
loc_descriptor_from_tree_1 (tree
, int);
4222 static dw_loc_descr_ref
loc_descriptor_from_tree (tree
);
4223 static HOST_WIDE_INT
ceiling (HOST_WIDE_INT
, unsigned int);
4224 static tree
field_type (const_tree
);
4225 static unsigned int simple_type_align_in_bits (const_tree
);
4226 static unsigned int simple_decl_align_in_bits (const_tree
);
4227 static unsigned HOST_WIDE_INT
simple_type_size_in_bits (const_tree
);
4228 static HOST_WIDE_INT
field_byte_offset (const_tree
);
4229 static void add_AT_location_description (dw_die_ref
, enum dwarf_attribute
,
4231 static void add_data_member_location_attribute (dw_die_ref
, tree
);
4232 static void add_const_value_attribute (dw_die_ref
, rtx
);
4233 static void insert_int (HOST_WIDE_INT
, unsigned, unsigned char *);
4234 static HOST_WIDE_INT
extract_int (const unsigned char *, unsigned);
4235 static void insert_float (const_rtx
, unsigned char *);
4236 static rtx
rtl_for_decl_location (tree
);
4237 static void add_location_or_const_value_attribute (dw_die_ref
, tree
,
4238 enum dwarf_attribute
);
4239 static void tree_add_const_value_attribute (dw_die_ref
, tree
);
4240 static void add_name_attribute (dw_die_ref
, const char *);
4241 static void add_comp_dir_attribute (dw_die_ref
);
4242 static void add_bound_info (dw_die_ref
, enum dwarf_attribute
, tree
);
4243 static void add_subscript_info (dw_die_ref
, tree
);
4244 static void add_byte_size_attribute (dw_die_ref
, tree
);
4245 static void add_bit_offset_attribute (dw_die_ref
, tree
);
4246 static void add_bit_size_attribute (dw_die_ref
, tree
);
4247 static void add_prototyped_attribute (dw_die_ref
, tree
);
4248 static void add_abstract_origin_attribute (dw_die_ref
, tree
);
4249 static void add_pure_or_virtual_attribute (dw_die_ref
, tree
);
4250 static void add_src_coords_attributes (dw_die_ref
, tree
);
4251 static void add_name_and_src_coords_attributes (dw_die_ref
, tree
);
4252 static void push_decl_scope (tree
);
4253 static void pop_decl_scope (void);
4254 static dw_die_ref
scope_die_for (tree
, dw_die_ref
);
4255 static inline int local_scope_p (dw_die_ref
);
4256 static inline int class_or_namespace_scope_p (dw_die_ref
);
4257 static void add_type_attribute (dw_die_ref
, tree
, int, int, dw_die_ref
);
4258 static void add_calling_convention_attribute (dw_die_ref
, tree
);
4259 static const char *type_tag (const_tree
);
4260 static tree
member_declared_type (const_tree
);
4262 static const char *decl_start_label (tree
);
4264 static void gen_array_type_die (tree
, dw_die_ref
);
4266 static void gen_entry_point_die (tree
, dw_die_ref
);
4268 static void gen_inlined_enumeration_type_die (tree
, dw_die_ref
);
4269 static void gen_inlined_structure_type_die (tree
, dw_die_ref
);
4270 static void gen_inlined_union_type_die (tree
, dw_die_ref
);
4271 static dw_die_ref
gen_enumeration_type_die (tree
, dw_die_ref
);
4272 static dw_die_ref
gen_formal_parameter_die (tree
, dw_die_ref
);
4273 static void gen_unspecified_parameters_die (tree
, dw_die_ref
);
4274 static void gen_formal_types_die (tree
, dw_die_ref
);
4275 static void gen_subprogram_die (tree
, dw_die_ref
);
4276 static void gen_variable_die (tree
, dw_die_ref
);
4277 static void gen_label_die (tree
, dw_die_ref
);
4278 static void gen_lexical_block_die (tree
, dw_die_ref
, int);
4279 static void gen_inlined_subroutine_die (tree
, dw_die_ref
, int);
4280 static void gen_field_die (tree
, dw_die_ref
);
4281 static void gen_ptr_to_mbr_type_die (tree
, dw_die_ref
);
4282 static dw_die_ref
gen_compile_unit_die (const char *);
4283 static void gen_inheritance_die (tree
, tree
, dw_die_ref
);
4284 static void gen_member_die (tree
, dw_die_ref
);
4285 static void gen_struct_or_union_type_die (tree
, dw_die_ref
,
4286 enum debug_info_usage
);
4287 static void gen_subroutine_type_die (tree
, dw_die_ref
);
4288 static void gen_typedef_die (tree
, dw_die_ref
);
4289 static void gen_type_die (tree
, dw_die_ref
);
4290 static void gen_tagged_type_instantiation_die (tree
, dw_die_ref
);
4291 static void gen_block_die (tree
, dw_die_ref
, int);
4292 static void decls_for_scope (tree
, dw_die_ref
, int);
4293 static int is_redundant_typedef (const_tree
);
4294 static void gen_namespace_die (tree
);
4295 static void gen_decl_die (tree
, dw_die_ref
);
4296 static dw_die_ref
force_decl_die (tree
);
4297 static dw_die_ref
force_type_die (tree
);
4298 static dw_die_ref
setup_namespace_context (tree
, dw_die_ref
);
4299 static void declare_in_namespace (tree
, dw_die_ref
);
4300 static struct dwarf_file_data
* lookup_filename (const char *);
4301 static void retry_incomplete_types (void);
4302 static void gen_type_die_for_member (tree
, tree
, dw_die_ref
);
4303 static void splice_child_die (dw_die_ref
, dw_die_ref
);
4304 static int file_info_cmp (const void *, const void *);
4305 static dw_loc_list_ref
new_loc_list (dw_loc_descr_ref
, const char *,
4306 const char *, const char *, unsigned);
4307 static void add_loc_descr_to_loc_list (dw_loc_list_ref
*, dw_loc_descr_ref
,
4308 const char *, const char *,
4310 static void output_loc_list (dw_loc_list_ref
);
4311 static char *gen_internal_sym (const char *);
4313 static void prune_unmark_dies (dw_die_ref
);
4314 static void prune_unused_types_mark (dw_die_ref
, int);
4315 static void prune_unused_types_walk (dw_die_ref
);
4316 static void prune_unused_types_walk_attribs (dw_die_ref
);
4317 static void prune_unused_types_prune (dw_die_ref
);
4318 static void prune_unused_types (void);
4319 static int maybe_emit_file (struct dwarf_file_data
*fd
);
4321 /* Section names used to hold DWARF debugging information. */
4322 #ifndef DEBUG_INFO_SECTION
4323 #define DEBUG_INFO_SECTION ".debug_info"
4325 #ifndef DEBUG_ABBREV_SECTION
4326 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4328 #ifndef DEBUG_ARANGES_SECTION
4329 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4331 #ifndef DEBUG_MACINFO_SECTION
4332 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4334 #ifndef DEBUG_LINE_SECTION
4335 #define DEBUG_LINE_SECTION ".debug_line"
4337 #ifndef DEBUG_LOC_SECTION
4338 #define DEBUG_LOC_SECTION ".debug_loc"
4340 #ifndef DEBUG_PUBNAMES_SECTION
4341 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4343 #ifndef DEBUG_STR_SECTION
4344 #define DEBUG_STR_SECTION ".debug_str"
4346 #ifndef DEBUG_RANGES_SECTION
4347 #define DEBUG_RANGES_SECTION ".debug_ranges"
4350 /* Standard ELF section names for compiled code and data. */
4351 #ifndef TEXT_SECTION_NAME
4352 #define TEXT_SECTION_NAME ".text"
4355 /* Section flags for .debug_str section. */
4356 #define DEBUG_STR_SECTION_FLAGS \
4357 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4358 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4361 /* Labels we insert at beginning sections we can reference instead of
4362 the section names themselves. */
4364 #ifndef TEXT_SECTION_LABEL
4365 #define TEXT_SECTION_LABEL "Ltext"
4367 #ifndef COLD_TEXT_SECTION_LABEL
4368 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4370 #ifndef DEBUG_LINE_SECTION_LABEL
4371 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4373 #ifndef DEBUG_INFO_SECTION_LABEL
4374 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4376 #ifndef DEBUG_ABBREV_SECTION_LABEL
4377 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4379 #ifndef DEBUG_LOC_SECTION_LABEL
4380 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4382 #ifndef DEBUG_RANGES_SECTION_LABEL
4383 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4385 #ifndef DEBUG_MACINFO_SECTION_LABEL
4386 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4389 /* Definitions of defaults for formats and names of various special
4390 (artificial) labels which may be generated within this file (when the -g
4391 options is used and DWARF2_DEBUGGING_INFO is in effect.
4392 If necessary, these may be overridden from within the tm.h file, but
4393 typically, overriding these defaults is unnecessary. */
4395 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4396 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4397 static char cold_text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4398 static char cold_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4399 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4400 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4401 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4402 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4403 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4404 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
4406 #ifndef TEXT_END_LABEL
4407 #define TEXT_END_LABEL "Letext"
4409 #ifndef COLD_END_LABEL
4410 #define COLD_END_LABEL "Letext_cold"
4412 #ifndef BLOCK_BEGIN_LABEL
4413 #define BLOCK_BEGIN_LABEL "LBB"
4415 #ifndef BLOCK_END_LABEL
4416 #define BLOCK_END_LABEL "LBE"
4418 #ifndef LINE_CODE_LABEL
4419 #define LINE_CODE_LABEL "LM"
4421 #ifndef SEPARATE_LINE_CODE_LABEL
4422 #define SEPARATE_LINE_CODE_LABEL "LSM"
4426 /* We allow a language front-end to designate a function that is to be
4427 called to "demangle" any name before it is put into a DIE. */
4429 static const char *(*demangle_name_func
) (const char *);
4432 dwarf2out_set_demangle_name_func (const char *(*func
) (const char *))
4434 demangle_name_func
= func
;
4437 /* Test if rtl node points to a pseudo register. */
4440 is_pseudo_reg (const_rtx rtl
)
4442 return ((REG_P (rtl
) && REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
4443 || (GET_CODE (rtl
) == SUBREG
4444 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
4447 /* Return a reference to a type, with its const and volatile qualifiers
4451 type_main_variant (tree type
)
4453 type
= TYPE_MAIN_VARIANT (type
);
4455 /* ??? There really should be only one main variant among any group of
4456 variants of a given type (and all of the MAIN_VARIANT values for all
4457 members of the group should point to that one type) but sometimes the C
4458 front-end messes this up for array types, so we work around that bug
4460 if (TREE_CODE (type
) == ARRAY_TYPE
)
4461 while (type
!= TYPE_MAIN_VARIANT (type
))
4462 type
= TYPE_MAIN_VARIANT (type
);
4467 /* Return nonzero if the given type node represents a tagged type. */
4470 is_tagged_type (const_tree type
)
4472 enum tree_code code
= TREE_CODE (type
);
4474 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
4475 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
4478 /* Convert a DIE tag into its string name. */
4481 dwarf_tag_name (unsigned int tag
)
4485 case DW_TAG_padding
:
4486 return "DW_TAG_padding";
4487 case DW_TAG_array_type
:
4488 return "DW_TAG_array_type";
4489 case DW_TAG_class_type
:
4490 return "DW_TAG_class_type";
4491 case DW_TAG_entry_point
:
4492 return "DW_TAG_entry_point";
4493 case DW_TAG_enumeration_type
:
4494 return "DW_TAG_enumeration_type";
4495 case DW_TAG_formal_parameter
:
4496 return "DW_TAG_formal_parameter";
4497 case DW_TAG_imported_declaration
:
4498 return "DW_TAG_imported_declaration";
4500 return "DW_TAG_label";
4501 case DW_TAG_lexical_block
:
4502 return "DW_TAG_lexical_block";
4504 return "DW_TAG_member";
4505 case DW_TAG_pointer_type
:
4506 return "DW_TAG_pointer_type";
4507 case DW_TAG_reference_type
:
4508 return "DW_TAG_reference_type";
4509 case DW_TAG_compile_unit
:
4510 return "DW_TAG_compile_unit";
4511 case DW_TAG_string_type
:
4512 return "DW_TAG_string_type";
4513 case DW_TAG_structure_type
:
4514 return "DW_TAG_structure_type";
4515 case DW_TAG_subroutine_type
:
4516 return "DW_TAG_subroutine_type";
4517 case DW_TAG_typedef
:
4518 return "DW_TAG_typedef";
4519 case DW_TAG_union_type
:
4520 return "DW_TAG_union_type";
4521 case DW_TAG_unspecified_parameters
:
4522 return "DW_TAG_unspecified_parameters";
4523 case DW_TAG_variant
:
4524 return "DW_TAG_variant";
4525 case DW_TAG_common_block
:
4526 return "DW_TAG_common_block";
4527 case DW_TAG_common_inclusion
:
4528 return "DW_TAG_common_inclusion";
4529 case DW_TAG_inheritance
:
4530 return "DW_TAG_inheritance";
4531 case DW_TAG_inlined_subroutine
:
4532 return "DW_TAG_inlined_subroutine";
4534 return "DW_TAG_module";
4535 case DW_TAG_ptr_to_member_type
:
4536 return "DW_TAG_ptr_to_member_type";
4537 case DW_TAG_set_type
:
4538 return "DW_TAG_set_type";
4539 case DW_TAG_subrange_type
:
4540 return "DW_TAG_subrange_type";
4541 case DW_TAG_with_stmt
:
4542 return "DW_TAG_with_stmt";
4543 case DW_TAG_access_declaration
:
4544 return "DW_TAG_access_declaration";
4545 case DW_TAG_base_type
:
4546 return "DW_TAG_base_type";
4547 case DW_TAG_catch_block
:
4548 return "DW_TAG_catch_block";
4549 case DW_TAG_const_type
:
4550 return "DW_TAG_const_type";
4551 case DW_TAG_constant
:
4552 return "DW_TAG_constant";
4553 case DW_TAG_enumerator
:
4554 return "DW_TAG_enumerator";
4555 case DW_TAG_file_type
:
4556 return "DW_TAG_file_type";
4558 return "DW_TAG_friend";
4559 case DW_TAG_namelist
:
4560 return "DW_TAG_namelist";
4561 case DW_TAG_namelist_item
:
4562 return "DW_TAG_namelist_item";
4563 case DW_TAG_namespace
:
4564 return "DW_TAG_namespace";
4565 case DW_TAG_packed_type
:
4566 return "DW_TAG_packed_type";
4567 case DW_TAG_subprogram
:
4568 return "DW_TAG_subprogram";
4569 case DW_TAG_template_type_param
:
4570 return "DW_TAG_template_type_param";
4571 case DW_TAG_template_value_param
:
4572 return "DW_TAG_template_value_param";
4573 case DW_TAG_thrown_type
:
4574 return "DW_TAG_thrown_type";
4575 case DW_TAG_try_block
:
4576 return "DW_TAG_try_block";
4577 case DW_TAG_variant_part
:
4578 return "DW_TAG_variant_part";
4579 case DW_TAG_variable
:
4580 return "DW_TAG_variable";
4581 case DW_TAG_volatile_type
:
4582 return "DW_TAG_volatile_type";
4583 case DW_TAG_imported_module
:
4584 return "DW_TAG_imported_module";
4585 case DW_TAG_MIPS_loop
:
4586 return "DW_TAG_MIPS_loop";
4587 case DW_TAG_format_label
:
4588 return "DW_TAG_format_label";
4589 case DW_TAG_function_template
:
4590 return "DW_TAG_function_template";
4591 case DW_TAG_class_template
:
4592 return "DW_TAG_class_template";
4593 case DW_TAG_GNU_BINCL
:
4594 return "DW_TAG_GNU_BINCL";
4595 case DW_TAG_GNU_EINCL
:
4596 return "DW_TAG_GNU_EINCL";
4598 return "DW_TAG_<unknown>";
4602 /* Convert a DWARF attribute code into its string name. */
4605 dwarf_attr_name (unsigned int attr
)
4610 return "DW_AT_sibling";
4611 case DW_AT_location
:
4612 return "DW_AT_location";
4614 return "DW_AT_name";
4615 case DW_AT_ordering
:
4616 return "DW_AT_ordering";
4617 case DW_AT_subscr_data
:
4618 return "DW_AT_subscr_data";
4619 case DW_AT_byte_size
:
4620 return "DW_AT_byte_size";
4621 case DW_AT_bit_offset
:
4622 return "DW_AT_bit_offset";
4623 case DW_AT_bit_size
:
4624 return "DW_AT_bit_size";
4625 case DW_AT_element_list
:
4626 return "DW_AT_element_list";
4627 case DW_AT_stmt_list
:
4628 return "DW_AT_stmt_list";
4630 return "DW_AT_low_pc";
4632 return "DW_AT_high_pc";
4633 case DW_AT_language
:
4634 return "DW_AT_language";
4636 return "DW_AT_member";
4638 return "DW_AT_discr";
4639 case DW_AT_discr_value
:
4640 return "DW_AT_discr_value";
4641 case DW_AT_visibility
:
4642 return "DW_AT_visibility";
4644 return "DW_AT_import";
4645 case DW_AT_string_length
:
4646 return "DW_AT_string_length";
4647 case DW_AT_common_reference
:
4648 return "DW_AT_common_reference";
4649 case DW_AT_comp_dir
:
4650 return "DW_AT_comp_dir";
4651 case DW_AT_const_value
:
4652 return "DW_AT_const_value";
4653 case DW_AT_containing_type
:
4654 return "DW_AT_containing_type";
4655 case DW_AT_default_value
:
4656 return "DW_AT_default_value";
4658 return "DW_AT_inline";
4659 case DW_AT_is_optional
:
4660 return "DW_AT_is_optional";
4661 case DW_AT_lower_bound
:
4662 return "DW_AT_lower_bound";
4663 case DW_AT_producer
:
4664 return "DW_AT_producer";
4665 case DW_AT_prototyped
:
4666 return "DW_AT_prototyped";
4667 case DW_AT_return_addr
:
4668 return "DW_AT_return_addr";
4669 case DW_AT_start_scope
:
4670 return "DW_AT_start_scope";
4671 case DW_AT_stride_size
:
4672 return "DW_AT_stride_size";
4673 case DW_AT_upper_bound
:
4674 return "DW_AT_upper_bound";
4675 case DW_AT_abstract_origin
:
4676 return "DW_AT_abstract_origin";
4677 case DW_AT_accessibility
:
4678 return "DW_AT_accessibility";
4679 case DW_AT_address_class
:
4680 return "DW_AT_address_class";
4681 case DW_AT_artificial
:
4682 return "DW_AT_artificial";
4683 case DW_AT_base_types
:
4684 return "DW_AT_base_types";
4685 case DW_AT_calling_convention
:
4686 return "DW_AT_calling_convention";
4688 return "DW_AT_count";
4689 case DW_AT_data_member_location
:
4690 return "DW_AT_data_member_location";
4691 case DW_AT_decl_column
:
4692 return "DW_AT_decl_column";
4693 case DW_AT_decl_file
:
4694 return "DW_AT_decl_file";
4695 case DW_AT_decl_line
:
4696 return "DW_AT_decl_line";
4697 case DW_AT_declaration
:
4698 return "DW_AT_declaration";
4699 case DW_AT_discr_list
:
4700 return "DW_AT_discr_list";
4701 case DW_AT_encoding
:
4702 return "DW_AT_encoding";
4703 case DW_AT_external
:
4704 return "DW_AT_external";
4705 case DW_AT_frame_base
:
4706 return "DW_AT_frame_base";
4708 return "DW_AT_friend";
4709 case DW_AT_identifier_case
:
4710 return "DW_AT_identifier_case";
4711 case DW_AT_macro_info
:
4712 return "DW_AT_macro_info";
4713 case DW_AT_namelist_items
:
4714 return "DW_AT_namelist_items";
4715 case DW_AT_priority
:
4716 return "DW_AT_priority";
4718 return "DW_AT_segment";
4719 case DW_AT_specification
:
4720 return "DW_AT_specification";
4721 case DW_AT_static_link
:
4722 return "DW_AT_static_link";
4724 return "DW_AT_type";
4725 case DW_AT_use_location
:
4726 return "DW_AT_use_location";
4727 case DW_AT_variable_parameter
:
4728 return "DW_AT_variable_parameter";
4729 case DW_AT_virtuality
:
4730 return "DW_AT_virtuality";
4731 case DW_AT_vtable_elem_location
:
4732 return "DW_AT_vtable_elem_location";
4734 case DW_AT_allocated
:
4735 return "DW_AT_allocated";
4736 case DW_AT_associated
:
4737 return "DW_AT_associated";
4738 case DW_AT_data_location
:
4739 return "DW_AT_data_location";
4741 return "DW_AT_stride";
4742 case DW_AT_entry_pc
:
4743 return "DW_AT_entry_pc";
4744 case DW_AT_use_UTF8
:
4745 return "DW_AT_use_UTF8";
4746 case DW_AT_extension
:
4747 return "DW_AT_extension";
4749 return "DW_AT_ranges";
4750 case DW_AT_trampoline
:
4751 return "DW_AT_trampoline";
4752 case DW_AT_call_column
:
4753 return "DW_AT_call_column";
4754 case DW_AT_call_file
:
4755 return "DW_AT_call_file";
4756 case DW_AT_call_line
:
4757 return "DW_AT_call_line";
4759 case DW_AT_MIPS_fde
:
4760 return "DW_AT_MIPS_fde";
4761 case DW_AT_MIPS_loop_begin
:
4762 return "DW_AT_MIPS_loop_begin";
4763 case DW_AT_MIPS_tail_loop_begin
:
4764 return "DW_AT_MIPS_tail_loop_begin";
4765 case DW_AT_MIPS_epilog_begin
:
4766 return "DW_AT_MIPS_epilog_begin";
4767 case DW_AT_MIPS_loop_unroll_factor
:
4768 return "DW_AT_MIPS_loop_unroll_factor";
4769 case DW_AT_MIPS_software_pipeline_depth
:
4770 return "DW_AT_MIPS_software_pipeline_depth";
4771 case DW_AT_MIPS_linkage_name
:
4772 return "DW_AT_MIPS_linkage_name";
4773 case DW_AT_MIPS_stride
:
4774 return "DW_AT_MIPS_stride";
4775 case DW_AT_MIPS_abstract_name
:
4776 return "DW_AT_MIPS_abstract_name";
4777 case DW_AT_MIPS_clone_origin
:
4778 return "DW_AT_MIPS_clone_origin";
4779 case DW_AT_MIPS_has_inlines
:
4780 return "DW_AT_MIPS_has_inlines";
4782 case DW_AT_sf_names
:
4783 return "DW_AT_sf_names";
4784 case DW_AT_src_info
:
4785 return "DW_AT_src_info";
4786 case DW_AT_mac_info
:
4787 return "DW_AT_mac_info";
4788 case DW_AT_src_coords
:
4789 return "DW_AT_src_coords";
4790 case DW_AT_body_begin
:
4791 return "DW_AT_body_begin";
4792 case DW_AT_body_end
:
4793 return "DW_AT_body_end";
4794 case DW_AT_GNU_vector
:
4795 return "DW_AT_GNU_vector";
4797 case DW_AT_VMS_rtnbeg_pd_address
:
4798 return "DW_AT_VMS_rtnbeg_pd_address";
4801 return "DW_AT_<unknown>";
4805 /* Convert a DWARF value form code into its string name. */
4808 dwarf_form_name (unsigned int form
)
4813 return "DW_FORM_addr";
4814 case DW_FORM_block2
:
4815 return "DW_FORM_block2";
4816 case DW_FORM_block4
:
4817 return "DW_FORM_block4";
4819 return "DW_FORM_data2";
4821 return "DW_FORM_data4";
4823 return "DW_FORM_data8";
4824 case DW_FORM_string
:
4825 return "DW_FORM_string";
4827 return "DW_FORM_block";
4828 case DW_FORM_block1
:
4829 return "DW_FORM_block1";
4831 return "DW_FORM_data1";
4833 return "DW_FORM_flag";
4835 return "DW_FORM_sdata";
4837 return "DW_FORM_strp";
4839 return "DW_FORM_udata";
4840 case DW_FORM_ref_addr
:
4841 return "DW_FORM_ref_addr";
4843 return "DW_FORM_ref1";
4845 return "DW_FORM_ref2";
4847 return "DW_FORM_ref4";
4849 return "DW_FORM_ref8";
4850 case DW_FORM_ref_udata
:
4851 return "DW_FORM_ref_udata";
4852 case DW_FORM_indirect
:
4853 return "DW_FORM_indirect";
4855 return "DW_FORM_<unknown>";
4859 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4860 instance of an inlined instance of a decl which is local to an inline
4861 function, so we have to trace all of the way back through the origin chain
4862 to find out what sort of node actually served as the original seed for the
4866 decl_ultimate_origin (const_tree decl
)
4868 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl
), TS_DECL_COMMON
))
4871 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4872 nodes in the function to point to themselves; ignore that if
4873 we're trying to output the abstract instance of this function. */
4874 if (DECL_ABSTRACT (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4877 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4878 most distant ancestor, this should never happen. */
4879 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl
)));
4881 return DECL_ABSTRACT_ORIGIN (decl
);
4884 /* Determine the "ultimate origin" of a block. The block may be an inlined
4885 instance of an inlined instance of a block which is local to an inline
4886 function, so we have to trace all of the way back through the origin chain
4887 to find out what sort of node actually served as the original seed for the
4891 block_ultimate_origin (const_tree block
)
4893 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
4895 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4896 nodes in the function to point to themselves; ignore that if
4897 we're trying to output the abstract instance of this function. */
4898 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
4901 if (immediate_origin
== NULL_TREE
)
4906 tree lookahead
= immediate_origin
;
4910 ret_val
= lookahead
;
4911 lookahead
= (TREE_CODE (ret_val
) == BLOCK
4912 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
4914 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
4916 /* The block's abstract origin chain may not be the *ultimate* origin of
4917 the block. It could lead to a DECL that has an abstract origin set.
4918 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4919 will give us if it has one). Note that DECL's abstract origins are
4920 supposed to be the most distant ancestor (or so decl_ultimate_origin
4921 claims), so we don't need to loop following the DECL origins. */
4922 if (DECL_P (ret_val
))
4923 return DECL_ORIGIN (ret_val
);
4929 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4930 of a virtual function may refer to a base class, so we check the 'this'
4934 decl_class_context (tree decl
)
4936 tree context
= NULL_TREE
;
4938 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4939 context
= DECL_CONTEXT (decl
);
4941 context
= TYPE_MAIN_VARIANT
4942 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4944 if (context
&& !TYPE_P (context
))
4945 context
= NULL_TREE
;
4950 /* Add an attribute/value pair to a DIE. */
4953 add_dwarf_attr (dw_die_ref die
, dw_attr_ref attr
)
4955 /* Maybe this should be an assert? */
4959 if (die
->die_attr
== NULL
)
4960 die
->die_attr
= VEC_alloc (dw_attr_node
, gc
, 1);
4961 VEC_safe_push (dw_attr_node
, gc
, die
->die_attr
, attr
);
4964 static inline enum dw_val_class
4965 AT_class (dw_attr_ref a
)
4967 return a
->dw_attr_val
.val_class
;
4970 /* Add a flag value attribute to a DIE. */
4973 add_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int flag
)
4977 attr
.dw_attr
= attr_kind
;
4978 attr
.dw_attr_val
.val_class
= dw_val_class_flag
;
4979 attr
.dw_attr_val
.v
.val_flag
= flag
;
4980 add_dwarf_attr (die
, &attr
);
4983 static inline unsigned
4984 AT_flag (dw_attr_ref a
)
4986 gcc_assert (a
&& AT_class (a
) == dw_val_class_flag
);
4987 return a
->dw_attr_val
.v
.val_flag
;
4990 /* Add a signed integer attribute value to a DIE. */
4993 add_AT_int (dw_die_ref die
, enum dwarf_attribute attr_kind
, HOST_WIDE_INT int_val
)
4997 attr
.dw_attr
= attr_kind
;
4998 attr
.dw_attr_val
.val_class
= dw_val_class_const
;
4999 attr
.dw_attr_val
.v
.val_int
= int_val
;
5000 add_dwarf_attr (die
, &attr
);
5003 static inline HOST_WIDE_INT
5004 AT_int (dw_attr_ref a
)
5006 gcc_assert (a
&& AT_class (a
) == dw_val_class_const
);
5007 return a
->dw_attr_val
.v
.val_int
;
5010 /* Add an unsigned integer attribute value to a DIE. */
5013 add_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5014 unsigned HOST_WIDE_INT unsigned_val
)
5018 attr
.dw_attr
= attr_kind
;
5019 attr
.dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
5020 attr
.dw_attr_val
.v
.val_unsigned
= unsigned_val
;
5021 add_dwarf_attr (die
, &attr
);
5024 static inline unsigned HOST_WIDE_INT
5025 AT_unsigned (dw_attr_ref a
)
5027 gcc_assert (a
&& AT_class (a
) == dw_val_class_unsigned_const
);
5028 return a
->dw_attr_val
.v
.val_unsigned
;
5031 /* Add an unsigned double integer attribute value to a DIE. */
5034 add_AT_long_long (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5035 long unsigned int val_hi
, long unsigned int val_low
)
5039 attr
.dw_attr
= attr_kind
;
5040 attr
.dw_attr_val
.val_class
= dw_val_class_long_long
;
5041 attr
.dw_attr_val
.v
.val_long_long
.hi
= val_hi
;
5042 attr
.dw_attr_val
.v
.val_long_long
.low
= val_low
;
5043 add_dwarf_attr (die
, &attr
);
5046 /* Add a floating point attribute value to a DIE and return it. */
5049 add_AT_vec (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5050 unsigned int length
, unsigned int elt_size
, unsigned char *array
)
5054 attr
.dw_attr
= attr_kind
;
5055 attr
.dw_attr_val
.val_class
= dw_val_class_vec
;
5056 attr
.dw_attr_val
.v
.val_vec
.length
= length
;
5057 attr
.dw_attr_val
.v
.val_vec
.elt_size
= elt_size
;
5058 attr
.dw_attr_val
.v
.val_vec
.array
= array
;
5059 add_dwarf_attr (die
, &attr
);
5062 /* Hash and equality functions for debug_str_hash. */
5065 debug_str_do_hash (const void *x
)
5067 return htab_hash_string (((const struct indirect_string_node
*)x
)->str
);
5071 debug_str_eq (const void *x1
, const void *x2
)
5073 return strcmp ((((const struct indirect_string_node
*)x1
)->str
),
5074 (const char *)x2
) == 0;
5077 /* Add a string attribute value to a DIE. */
5080 add_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *str
)
5083 struct indirect_string_node
*node
;
5086 if (! debug_str_hash
)
5087 debug_str_hash
= htab_create_ggc (10, debug_str_do_hash
,
5088 debug_str_eq
, NULL
);
5090 slot
= htab_find_slot_with_hash (debug_str_hash
, str
,
5091 htab_hash_string (str
), INSERT
);
5094 node
= (struct indirect_string_node
*)
5095 ggc_alloc_cleared (sizeof (struct indirect_string_node
));
5096 node
->str
= ggc_strdup (str
);
5100 node
= (struct indirect_string_node
*) *slot
;
5104 attr
.dw_attr
= attr_kind
;
5105 attr
.dw_attr_val
.val_class
= dw_val_class_str
;
5106 attr
.dw_attr_val
.v
.val_str
= node
;
5107 add_dwarf_attr (die
, &attr
);
5110 static inline const char *
5111 AT_string (dw_attr_ref a
)
5113 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
5114 return a
->dw_attr_val
.v
.val_str
->str
;
5117 /* Find out whether a string should be output inline in DIE
5118 or out-of-line in .debug_str section. */
5121 AT_string_form (dw_attr_ref a
)
5123 struct indirect_string_node
*node
;
5127 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
5129 node
= a
->dw_attr_val
.v
.val_str
;
5133 len
= strlen (node
->str
) + 1;
5135 /* If the string is shorter or equal to the size of the reference, it is
5136 always better to put it inline. */
5137 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
5138 return node
->form
= DW_FORM_string
;
5140 /* If we cannot expect the linker to merge strings in .debug_str
5141 section, only put it into .debug_str if it is worth even in this
5143 if ((debug_str_section
->common
.flags
& SECTION_MERGE
) == 0
5144 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
)
5145 return node
->form
= DW_FORM_string
;
5147 ASM_GENERATE_INTERNAL_LABEL (label
, "LASF", dw2_string_counter
);
5148 ++dw2_string_counter
;
5149 node
->label
= xstrdup (label
);
5151 return node
->form
= DW_FORM_strp
;
5154 /* Add a DIE reference attribute value to a DIE. */
5157 add_AT_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_die_ref targ_die
)
5161 attr
.dw_attr
= attr_kind
;
5162 attr
.dw_attr_val
.val_class
= dw_val_class_die_ref
;
5163 attr
.dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
5164 attr
.dw_attr_val
.v
.val_die_ref
.external
= 0;
5165 add_dwarf_attr (die
, &attr
);
5168 /* Add an AT_specification attribute to a DIE, and also make the back
5169 pointer from the specification to the definition. */
5172 add_AT_specification (dw_die_ref die
, dw_die_ref targ_die
)
5174 add_AT_die_ref (die
, DW_AT_specification
, targ_die
);
5175 gcc_assert (!targ_die
->die_definition
);
5176 targ_die
->die_definition
= die
;
5179 static inline dw_die_ref
5180 AT_ref (dw_attr_ref a
)
5182 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
5183 return a
->dw_attr_val
.v
.val_die_ref
.die
;
5187 AT_ref_external (dw_attr_ref a
)
5189 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
5190 return a
->dw_attr_val
.v
.val_die_ref
.external
;
5196 set_AT_ref_external (dw_attr_ref a
, int i
)
5198 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
5199 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
5202 /* Add an FDE reference attribute value to a DIE. */
5205 add_AT_fde_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int targ_fde
)
5209 attr
.dw_attr
= attr_kind
;
5210 attr
.dw_attr_val
.val_class
= dw_val_class_fde_ref
;
5211 attr
.dw_attr_val
.v
.val_fde_index
= targ_fde
;
5212 add_dwarf_attr (die
, &attr
);
5215 /* Add a location description attribute value to a DIE. */
5218 add_AT_loc (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_descr_ref loc
)
5222 attr
.dw_attr
= attr_kind
;
5223 attr
.dw_attr_val
.val_class
= dw_val_class_loc
;
5224 attr
.dw_attr_val
.v
.val_loc
= loc
;
5225 add_dwarf_attr (die
, &attr
);
5228 static inline dw_loc_descr_ref
5229 AT_loc (dw_attr_ref a
)
5231 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
5232 return a
->dw_attr_val
.v
.val_loc
;
5236 add_AT_loc_list (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_list_ref loc_list
)
5240 attr
.dw_attr
= attr_kind
;
5241 attr
.dw_attr_val
.val_class
= dw_val_class_loc_list
;
5242 attr
.dw_attr_val
.v
.val_loc_list
= loc_list
;
5243 add_dwarf_attr (die
, &attr
);
5244 have_location_lists
= true;
5247 static inline dw_loc_list_ref
5248 AT_loc_list (dw_attr_ref a
)
5250 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc_list
);
5251 return a
->dw_attr_val
.v
.val_loc_list
;
5254 /* Add an address constant attribute value to a DIE. */
5257 add_AT_addr (dw_die_ref die
, enum dwarf_attribute attr_kind
, rtx addr
)
5261 attr
.dw_attr
= attr_kind
;
5262 attr
.dw_attr_val
.val_class
= dw_val_class_addr
;
5263 attr
.dw_attr_val
.v
.val_addr
= addr
;
5264 add_dwarf_attr (die
, &attr
);
5267 /* Get the RTX from to an address DIE attribute. */
5270 AT_addr (dw_attr_ref a
)
5272 gcc_assert (a
&& AT_class (a
) == dw_val_class_addr
);
5273 return a
->dw_attr_val
.v
.val_addr
;
5276 /* Add a file attribute value to a DIE. */
5279 add_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5280 struct dwarf_file_data
*fd
)
5284 attr
.dw_attr
= attr_kind
;
5285 attr
.dw_attr_val
.val_class
= dw_val_class_file
;
5286 attr
.dw_attr_val
.v
.val_file
= fd
;
5287 add_dwarf_attr (die
, &attr
);
5290 /* Get the dwarf_file_data from a file DIE attribute. */
5292 static inline struct dwarf_file_data
*
5293 AT_file (dw_attr_ref a
)
5295 gcc_assert (a
&& AT_class (a
) == dw_val_class_file
);
5296 return a
->dw_attr_val
.v
.val_file
;
5299 /* Add a label identifier attribute value to a DIE. */
5302 add_AT_lbl_id (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *lbl_id
)
5306 attr
.dw_attr
= attr_kind
;
5307 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
5308 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
5309 add_dwarf_attr (die
, &attr
);
5312 /* Add a section offset attribute value to a DIE, an offset into the
5313 debug_line section. */
5316 add_AT_lineptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5321 attr
.dw_attr
= attr_kind
;
5322 attr
.dw_attr_val
.val_class
= dw_val_class_lineptr
;
5323 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
5324 add_dwarf_attr (die
, &attr
);
5327 /* Add a section offset attribute value to a DIE, an offset into the
5328 debug_macinfo section. */
5331 add_AT_macptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5336 attr
.dw_attr
= attr_kind
;
5337 attr
.dw_attr_val
.val_class
= dw_val_class_macptr
;
5338 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
5339 add_dwarf_attr (die
, &attr
);
5342 /* Add an offset attribute value to a DIE. */
5345 add_AT_offset (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5346 unsigned HOST_WIDE_INT offset
)
5350 attr
.dw_attr
= attr_kind
;
5351 attr
.dw_attr_val
.val_class
= dw_val_class_offset
;
5352 attr
.dw_attr_val
.v
.val_offset
= offset
;
5353 add_dwarf_attr (die
, &attr
);
5356 /* Add an range_list attribute value to a DIE. */
5359 add_AT_range_list (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5360 long unsigned int offset
)
5364 attr
.dw_attr
= attr_kind
;
5365 attr
.dw_attr_val
.val_class
= dw_val_class_range_list
;
5366 attr
.dw_attr_val
.v
.val_offset
= offset
;
5367 add_dwarf_attr (die
, &attr
);
5370 static inline const char *
5371 AT_lbl (dw_attr_ref a
)
5373 gcc_assert (a
&& (AT_class (a
) == dw_val_class_lbl_id
5374 || AT_class (a
) == dw_val_class_lineptr
5375 || AT_class (a
) == dw_val_class_macptr
));
5376 return a
->dw_attr_val
.v
.val_lbl_id
;
5379 /* Get the attribute of type attr_kind. */
5382 get_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5386 dw_die_ref spec
= NULL
;
5391 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
5392 if (a
->dw_attr
== attr_kind
)
5394 else if (a
->dw_attr
== DW_AT_specification
5395 || a
->dw_attr
== DW_AT_abstract_origin
)
5399 return get_AT (spec
, attr_kind
);
5404 /* Return the "low pc" attribute value, typically associated with a subprogram
5405 DIE. Return null if the "low pc" attribute is either not present, or if it
5406 cannot be represented as an assembler label identifier. */
5408 static inline const char *
5409 get_AT_low_pc (dw_die_ref die
)
5411 dw_attr_ref a
= get_AT (die
, DW_AT_low_pc
);
5413 return a
? AT_lbl (a
) : NULL
;
5416 /* Return the "high pc" attribute value, typically associated with a subprogram
5417 DIE. Return null if the "high pc" attribute is either not present, or if it
5418 cannot be represented as an assembler label identifier. */
5420 static inline const char *
5421 get_AT_hi_pc (dw_die_ref die
)
5423 dw_attr_ref a
= get_AT (die
, DW_AT_high_pc
);
5425 return a
? AT_lbl (a
) : NULL
;
5428 /* Return the value of the string attribute designated by ATTR_KIND, or
5429 NULL if it is not present. */
5431 static inline const char *
5432 get_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5434 dw_attr_ref a
= get_AT (die
, attr_kind
);
5436 return a
? AT_string (a
) : NULL
;
5439 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5440 if it is not present. */
5443 get_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5445 dw_attr_ref a
= get_AT (die
, attr_kind
);
5447 return a
? AT_flag (a
) : 0;
5450 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5451 if it is not present. */
5453 static inline unsigned
5454 get_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5456 dw_attr_ref a
= get_AT (die
, attr_kind
);
5458 return a
? AT_unsigned (a
) : 0;
5461 static inline dw_die_ref
5462 get_AT_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5464 dw_attr_ref a
= get_AT (die
, attr_kind
);
5466 return a
? AT_ref (a
) : NULL
;
5469 static inline struct dwarf_file_data
*
5470 get_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5472 dw_attr_ref a
= get_AT (die
, attr_kind
);
5474 return a
? AT_file (a
) : NULL
;
5477 /* Return TRUE if the language is C or C++. */
5482 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5484 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
|| lang
== DW_LANG_ObjC
5485 || lang
== DW_LANG_C99
5486 || lang
== DW_LANG_C_plus_plus
|| lang
== DW_LANG_ObjC_plus_plus
);
5489 /* Return TRUE if the language is C++. */
5494 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5496 return lang
== DW_LANG_C_plus_plus
|| lang
== DW_LANG_ObjC_plus_plus
;
5499 /* Return TRUE if the language is Fortran. */
5504 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5506 return (lang
== DW_LANG_Fortran77
5507 || lang
== DW_LANG_Fortran90
5508 || lang
== DW_LANG_Fortran95
);
5511 /* Return TRUE if the language is Java. */
5516 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5518 return lang
== DW_LANG_Java
;
5521 /* Return TRUE if the language is Ada. */
5526 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5528 return lang
== DW_LANG_Ada95
|| lang
== DW_LANG_Ada83
;
5531 /* Remove the specified attribute if present. */
5534 remove_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5542 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
5543 if (a
->dw_attr
== attr_kind
)
5545 if (AT_class (a
) == dw_val_class_str
)
5546 if (a
->dw_attr_val
.v
.val_str
->refcount
)
5547 a
->dw_attr_val
.v
.val_str
->refcount
--;
5549 /* VEC_ordered_remove should help reduce the number of abbrevs
5551 VEC_ordered_remove (dw_attr_node
, die
->die_attr
, ix
);
5556 /* Remove CHILD from its parent. PREV must have the property that
5557 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5560 remove_child_with_prev (dw_die_ref child
, dw_die_ref prev
)
5562 gcc_assert (child
->die_parent
== prev
->die_parent
);
5563 gcc_assert (prev
->die_sib
== child
);
5566 gcc_assert (child
->die_parent
->die_child
== child
);
5570 prev
->die_sib
= child
->die_sib
;
5571 if (child
->die_parent
->die_child
== child
)
5572 child
->die_parent
->die_child
= prev
;
5575 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5579 remove_child_TAG (dw_die_ref die
, enum dwarf_tag tag
)
5585 dw_die_ref prev
= c
;
5587 while (c
->die_tag
== tag
)
5589 remove_child_with_prev (c
, prev
);
5590 /* Might have removed every child. */
5591 if (c
== c
->die_sib
)
5595 } while (c
!= die
->die_child
);
5598 /* Add a CHILD_DIE as the last child of DIE. */
5601 add_child_die (dw_die_ref die
, dw_die_ref child_die
)
5603 /* FIXME this should probably be an assert. */
5604 if (! die
|| ! child_die
)
5606 gcc_assert (die
!= child_die
);
5608 child_die
->die_parent
= die
;
5611 child_die
->die_sib
= die
->die_child
->die_sib
;
5612 die
->die_child
->die_sib
= child_die
;
5615 child_die
->die_sib
= child_die
;
5616 die
->die_child
= child_die
;
5619 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5620 is the specification, to the end of PARENT's list of children.
5621 This is done by removing and re-adding it. */
5624 splice_child_die (dw_die_ref parent
, dw_die_ref child
)
5628 /* We want the declaration DIE from inside the class, not the
5629 specification DIE at toplevel. */
5630 if (child
->die_parent
!= parent
)
5632 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5638 gcc_assert (child
->die_parent
== parent
5639 || (child
->die_parent
5640 == get_AT_ref (parent
, DW_AT_specification
)));
5642 for (p
= child
->die_parent
->die_child
; ; p
= p
->die_sib
)
5643 if (p
->die_sib
== child
)
5645 remove_child_with_prev (child
, p
);
5649 add_child_die (parent
, child
);
5652 /* Return a pointer to a newly created DIE node. */
5654 static inline dw_die_ref
5655 new_die (enum dwarf_tag tag_value
, dw_die_ref parent_die
, tree t
)
5657 dw_die_ref die
= ggc_alloc_cleared (sizeof (die_node
));
5659 die
->die_tag
= tag_value
;
5661 if (parent_die
!= NULL
)
5662 add_child_die (parent_die
, die
);
5665 limbo_die_node
*limbo_node
;
5667 limbo_node
= ggc_alloc_cleared (sizeof (limbo_die_node
));
5668 limbo_node
->die
= die
;
5669 limbo_node
->created_for
= t
;
5670 limbo_node
->next
= limbo_die_list
;
5671 limbo_die_list
= limbo_node
;
5677 /* Return the DIE associated with the given type specifier. */
5679 static inline dw_die_ref
5680 lookup_type_die (tree type
)
5682 return TYPE_SYMTAB_DIE (type
);
5685 /* Equate a DIE to a given type specifier. */
5688 equate_type_number_to_die (tree type
, dw_die_ref type_die
)
5690 TYPE_SYMTAB_DIE (type
) = type_die
;
5693 /* Returns a hash value for X (which really is a die_struct). */
5696 decl_die_table_hash (const void *x
)
5698 return (hashval_t
) ((const_dw_die_ref
) x
)->decl_id
;
5701 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5704 decl_die_table_eq (const void *x
, const void *y
)
5706 return (((const_dw_die_ref
) x
)->decl_id
== DECL_UID ((const_tree
) y
));
5709 /* Return the DIE associated with a given declaration. */
5711 static inline dw_die_ref
5712 lookup_decl_die (tree decl
)
5714 return htab_find_with_hash (decl_die_table
, decl
, DECL_UID (decl
));
5717 /* Returns a hash value for X (which really is a var_loc_list). */
5720 decl_loc_table_hash (const void *x
)
5722 return (hashval_t
) ((const var_loc_list
*) x
)->decl_id
;
5725 /* Return nonzero if decl_id of var_loc_list X is the same as
5729 decl_loc_table_eq (const void *x
, const void *y
)
5731 return (((const var_loc_list
*) x
)->decl_id
== DECL_UID ((const_tree
) y
));
5734 /* Return the var_loc list associated with a given declaration. */
5736 static inline var_loc_list
*
5737 lookup_decl_loc (const_tree decl
)
5739 return htab_find_with_hash (decl_loc_table
, decl
, DECL_UID (decl
));
5742 /* Equate a DIE to a particular declaration. */
5745 equate_decl_number_to_die (tree decl
, dw_die_ref decl_die
)
5747 unsigned int decl_id
= DECL_UID (decl
);
5750 slot
= htab_find_slot_with_hash (decl_die_table
, decl
, decl_id
, INSERT
);
5752 decl_die
->decl_id
= decl_id
;
5755 /* Add a variable location node to the linked list for DECL. */
5758 add_var_loc_to_decl (tree decl
, struct var_loc_node
*loc
)
5760 unsigned int decl_id
= DECL_UID (decl
);
5764 slot
= htab_find_slot_with_hash (decl_loc_table
, decl
, decl_id
, INSERT
);
5767 temp
= ggc_alloc_cleared (sizeof (var_loc_list
));
5768 temp
->decl_id
= decl_id
;
5776 /* If the current location is the same as the end of the list,
5777 and either both or neither of the locations is uninitialized,
5778 we have nothing to do. */
5779 if ((!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp
->last
->var_loc_note
),
5780 NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
)))
5781 || ((NOTE_VAR_LOCATION_STATUS (temp
->last
->var_loc_note
)
5782 != NOTE_VAR_LOCATION_STATUS (loc
->var_loc_note
))
5783 && ((NOTE_VAR_LOCATION_STATUS (temp
->last
->var_loc_note
)
5784 == VAR_INIT_STATUS_UNINITIALIZED
)
5785 || (NOTE_VAR_LOCATION_STATUS (loc
->var_loc_note
)
5786 == VAR_INIT_STATUS_UNINITIALIZED
))))
5788 /* Add LOC to the end of list and update LAST. */
5789 temp
->last
->next
= loc
;
5793 /* Do not add empty location to the beginning of the list. */
5794 else if (NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
) != NULL_RTX
)
5801 /* Keep track of the number of spaces used to indent the
5802 output of the debugging routines that print the structure of
5803 the DIE internal representation. */
5804 static int print_indent
;
5806 /* Indent the line the number of spaces given by print_indent. */
5809 print_spaces (FILE *outfile
)
5811 fprintf (outfile
, "%*s", print_indent
, "");
5814 /* Print the information associated with a given DIE, and its children.
5815 This routine is a debugging aid only. */
5818 print_die (dw_die_ref die
, FILE *outfile
)
5824 print_spaces (outfile
);
5825 fprintf (outfile
, "DIE %4ld: %s\n",
5826 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
5827 print_spaces (outfile
);
5828 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
5829 fprintf (outfile
, " offset: %ld\n", die
->die_offset
);
5831 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
5833 print_spaces (outfile
);
5834 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
5836 switch (AT_class (a
))
5838 case dw_val_class_addr
:
5839 fprintf (outfile
, "address");
5841 case dw_val_class_offset
:
5842 fprintf (outfile
, "offset");
5844 case dw_val_class_loc
:
5845 fprintf (outfile
, "location descriptor");
5847 case dw_val_class_loc_list
:
5848 fprintf (outfile
, "location list -> label:%s",
5849 AT_loc_list (a
)->ll_symbol
);
5851 case dw_val_class_range_list
:
5852 fprintf (outfile
, "range list");
5854 case dw_val_class_const
:
5855 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, AT_int (a
));
5857 case dw_val_class_unsigned_const
:
5858 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, AT_unsigned (a
));
5860 case dw_val_class_long_long
:
5861 fprintf (outfile
, "constant (%lu,%lu)",
5862 a
->dw_attr_val
.v
.val_long_long
.hi
,
5863 a
->dw_attr_val
.v
.val_long_long
.low
);
5865 case dw_val_class_vec
:
5866 fprintf (outfile
, "floating-point or vector constant");
5868 case dw_val_class_flag
:
5869 fprintf (outfile
, "%u", AT_flag (a
));
5871 case dw_val_class_die_ref
:
5872 if (AT_ref (a
) != NULL
)
5874 if (AT_ref (a
)->die_symbol
)
5875 fprintf (outfile
, "die -> label: %s", AT_ref (a
)->die_symbol
);
5877 fprintf (outfile
, "die -> %ld", AT_ref (a
)->die_offset
);
5880 fprintf (outfile
, "die -> <null>");
5882 case dw_val_class_lbl_id
:
5883 case dw_val_class_lineptr
:
5884 case dw_val_class_macptr
:
5885 fprintf (outfile
, "label: %s", AT_lbl (a
));
5887 case dw_val_class_str
:
5888 if (AT_string (a
) != NULL
)
5889 fprintf (outfile
, "\"%s\"", AT_string (a
));
5891 fprintf (outfile
, "<null>");
5893 case dw_val_class_file
:
5894 fprintf (outfile
, "\"%s\" (%d)", AT_file (a
)->filename
,
5895 AT_file (a
)->emitted_number
);
5901 fprintf (outfile
, "\n");
5904 if (die
->die_child
!= NULL
)
5907 FOR_EACH_CHILD (die
, c
, print_die (c
, outfile
));
5910 if (print_indent
== 0)
5911 fprintf (outfile
, "\n");
5914 /* Print the contents of the source code line number correspondence table.
5915 This routine is a debugging aid only. */
5918 print_dwarf_line_table (FILE *outfile
)
5921 dw_line_info_ref line_info
;
5923 fprintf (outfile
, "\n\nDWARF source line information\n");
5924 for (i
= 1; i
< line_info_table_in_use
; i
++)
5926 line_info
= &line_info_table
[i
];
5927 fprintf (outfile
, "%5d: %4ld %6ld\n", i
,
5928 line_info
->dw_file_num
,
5929 line_info
->dw_line_num
);
5932 fprintf (outfile
, "\n\n");
5935 /* Print the information collected for a given DIE. */
5938 debug_dwarf_die (dw_die_ref die
)
5940 print_die (die
, stderr
);
5943 /* Print all DWARF information collected for the compilation unit.
5944 This routine is a debugging aid only. */
5950 print_die (comp_unit_die
, stderr
);
5951 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
5952 print_dwarf_line_table (stderr
);
5955 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5956 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5957 DIE that marks the start of the DIEs for this include file. */
5960 push_new_compile_unit (dw_die_ref old_unit
, dw_die_ref bincl_die
)
5962 const char *filename
= get_AT_string (bincl_die
, DW_AT_name
);
5963 dw_die_ref new_unit
= gen_compile_unit_die (filename
);
5965 new_unit
->die_sib
= old_unit
;
5969 /* Close an include-file CU and reopen the enclosing one. */
5972 pop_compile_unit (dw_die_ref old_unit
)
5974 dw_die_ref new_unit
= old_unit
->die_sib
;
5976 old_unit
->die_sib
= NULL
;
5980 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5981 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5983 /* Calculate the checksum of a location expression. */
5986 loc_checksum (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
5988 CHECKSUM (loc
->dw_loc_opc
);
5989 CHECKSUM (loc
->dw_loc_oprnd1
);
5990 CHECKSUM (loc
->dw_loc_oprnd2
);
5993 /* Calculate the checksum of an attribute. */
5996 attr_checksum (dw_attr_ref at
, struct md5_ctx
*ctx
, int *mark
)
5998 dw_loc_descr_ref loc
;
6001 CHECKSUM (at
->dw_attr
);
6003 /* We don't care that this was compiled with a different compiler
6004 snapshot; if the output is the same, that's what matters. */
6005 if (at
->dw_attr
== DW_AT_producer
)
6008 switch (AT_class (at
))
6010 case dw_val_class_const
:
6011 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
6013 case dw_val_class_unsigned_const
:
6014 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
6016 case dw_val_class_long_long
:
6017 CHECKSUM (at
->dw_attr_val
.v
.val_long_long
);
6019 case dw_val_class_vec
:
6020 CHECKSUM (at
->dw_attr_val
.v
.val_vec
);
6022 case dw_val_class_flag
:
6023 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
6025 case dw_val_class_str
:
6026 CHECKSUM_STRING (AT_string (at
));
6029 case dw_val_class_addr
:
6031 gcc_assert (GET_CODE (r
) == SYMBOL_REF
);
6032 CHECKSUM_STRING (XSTR (r
, 0));
6035 case dw_val_class_offset
:
6036 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
6039 case dw_val_class_loc
:
6040 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
6041 loc_checksum (loc
, ctx
);
6044 case dw_val_class_die_ref
:
6045 die_checksum (AT_ref (at
), ctx
, mark
);
6048 case dw_val_class_fde_ref
:
6049 case dw_val_class_lbl_id
:
6050 case dw_val_class_lineptr
:
6051 case dw_val_class_macptr
:
6054 case dw_val_class_file
:
6055 CHECKSUM_STRING (AT_file (at
)->filename
);
6063 /* Calculate the checksum of a DIE. */
6066 die_checksum (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
6072 /* To avoid infinite recursion. */
6075 CHECKSUM (die
->die_mark
);
6078 die
->die_mark
= ++(*mark
);
6080 CHECKSUM (die
->die_tag
);
6082 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6083 attr_checksum (a
, ctx
, mark
);
6085 FOR_EACH_CHILD (die
, c
, die_checksum (c
, ctx
, mark
));
6089 #undef CHECKSUM_STRING
6091 /* Do the location expressions look same? */
6093 same_loc_p (dw_loc_descr_ref loc1
, dw_loc_descr_ref loc2
, int *mark
)
6095 return loc1
->dw_loc_opc
== loc2
->dw_loc_opc
6096 && same_dw_val_p (&loc1
->dw_loc_oprnd1
, &loc2
->dw_loc_oprnd1
, mark
)
6097 && same_dw_val_p (&loc1
->dw_loc_oprnd2
, &loc2
->dw_loc_oprnd2
, mark
);
6100 /* Do the values look the same? */
6102 same_dw_val_p (const dw_val_node
*v1
, const dw_val_node
*v2
, int *mark
)
6104 dw_loc_descr_ref loc1
, loc2
;
6107 if (v1
->val_class
!= v2
->val_class
)
6110 switch (v1
->val_class
)
6112 case dw_val_class_const
:
6113 return v1
->v
.val_int
== v2
->v
.val_int
;
6114 case dw_val_class_unsigned_const
:
6115 return v1
->v
.val_unsigned
== v2
->v
.val_unsigned
;
6116 case dw_val_class_long_long
:
6117 return v1
->v
.val_long_long
.hi
== v2
->v
.val_long_long
.hi
6118 && v1
->v
.val_long_long
.low
== v2
->v
.val_long_long
.low
;
6119 case dw_val_class_vec
:
6120 if (v1
->v
.val_vec
.length
!= v2
->v
.val_vec
.length
6121 || v1
->v
.val_vec
.elt_size
!= v2
->v
.val_vec
.elt_size
)
6123 if (memcmp (v1
->v
.val_vec
.array
, v2
->v
.val_vec
.array
,
6124 v1
->v
.val_vec
.length
* v1
->v
.val_vec
.elt_size
))
6127 case dw_val_class_flag
:
6128 return v1
->v
.val_flag
== v2
->v
.val_flag
;
6129 case dw_val_class_str
:
6130 return !strcmp(v1
->v
.val_str
->str
, v2
->v
.val_str
->str
);
6132 case dw_val_class_addr
:
6133 r1
= v1
->v
.val_addr
;
6134 r2
= v2
->v
.val_addr
;
6135 if (GET_CODE (r1
) != GET_CODE (r2
))
6137 gcc_assert (GET_CODE (r1
) == SYMBOL_REF
);
6138 return !strcmp (XSTR (r1
, 0), XSTR (r2
, 0));
6140 case dw_val_class_offset
:
6141 return v1
->v
.val_offset
== v2
->v
.val_offset
;
6143 case dw_val_class_loc
:
6144 for (loc1
= v1
->v
.val_loc
, loc2
= v2
->v
.val_loc
;
6146 loc1
= loc1
->dw_loc_next
, loc2
= loc2
->dw_loc_next
)
6147 if (!same_loc_p (loc1
, loc2
, mark
))
6149 return !loc1
&& !loc2
;
6151 case dw_val_class_die_ref
:
6152 return same_die_p (v1
->v
.val_die_ref
.die
, v2
->v
.val_die_ref
.die
, mark
);
6154 case dw_val_class_fde_ref
:
6155 case dw_val_class_lbl_id
:
6156 case dw_val_class_lineptr
:
6157 case dw_val_class_macptr
:
6160 case dw_val_class_file
:
6161 return v1
->v
.val_file
== v2
->v
.val_file
;
6168 /* Do the attributes look the same? */
6171 same_attr_p (dw_attr_ref at1
, dw_attr_ref at2
, int *mark
)
6173 if (at1
->dw_attr
!= at2
->dw_attr
)
6176 /* We don't care that this was compiled with a different compiler
6177 snapshot; if the output is the same, that's what matters. */
6178 if (at1
->dw_attr
== DW_AT_producer
)
6181 return same_dw_val_p (&at1
->dw_attr_val
, &at2
->dw_attr_val
, mark
);
6184 /* Do the dies look the same? */
6187 same_die_p (dw_die_ref die1
, dw_die_ref die2
, int *mark
)
6193 /* To avoid infinite recursion. */
6195 return die1
->die_mark
== die2
->die_mark
;
6196 die1
->die_mark
= die2
->die_mark
= ++(*mark
);
6198 if (die1
->die_tag
!= die2
->die_tag
)
6201 if (VEC_length (dw_attr_node
, die1
->die_attr
)
6202 != VEC_length (dw_attr_node
, die2
->die_attr
))
6205 for (ix
= 0; VEC_iterate (dw_attr_node
, die1
->die_attr
, ix
, a1
); ix
++)
6206 if (!same_attr_p (a1
, VEC_index (dw_attr_node
, die2
->die_attr
, ix
), mark
))
6209 c1
= die1
->die_child
;
6210 c2
= die2
->die_child
;
6219 if (!same_die_p (c1
, c2
, mark
))
6223 if (c1
== die1
->die_child
)
6225 if (c2
== die2
->die_child
)
6235 /* Do the dies look the same? Wrapper around same_die_p. */
6238 same_die_p_wrap (dw_die_ref die1
, dw_die_ref die2
)
6241 int ret
= same_die_p (die1
, die2
, &mark
);
6243 unmark_all_dies (die1
);
6244 unmark_all_dies (die2
);
6249 /* The prefix to attach to symbols on DIEs in the current comdat debug
6251 static char *comdat_symbol_id
;
6253 /* The index of the current symbol within the current comdat CU. */
6254 static unsigned int comdat_symbol_number
;
6256 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6257 children, and set comdat_symbol_id accordingly. */
6260 compute_section_prefix (dw_die_ref unit_die
)
6262 const char *die_name
= get_AT_string (unit_die
, DW_AT_name
);
6263 const char *base
= die_name
? lbasename (die_name
) : "anonymous";
6264 char *name
= alloca (strlen (base
) + 64);
6267 unsigned char checksum
[16];
6270 /* Compute the checksum of the DIE, then append part of it as hex digits to
6271 the name filename of the unit. */
6273 md5_init_ctx (&ctx
);
6275 die_checksum (unit_die
, &ctx
, &mark
);
6276 unmark_all_dies (unit_die
);
6277 md5_finish_ctx (&ctx
, checksum
);
6279 sprintf (name
, "%s.", base
);
6280 clean_symbol_name (name
);
6282 p
= name
+ strlen (name
);
6283 for (i
= 0; i
< 4; i
++)
6285 sprintf (p
, "%.2x", checksum
[i
]);
6289 comdat_symbol_id
= unit_die
->die_symbol
= xstrdup (name
);
6290 comdat_symbol_number
= 0;
6293 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6296 is_type_die (dw_die_ref die
)
6298 switch (die
->die_tag
)
6300 case DW_TAG_array_type
:
6301 case DW_TAG_class_type
:
6302 case DW_TAG_enumeration_type
:
6303 case DW_TAG_pointer_type
:
6304 case DW_TAG_reference_type
:
6305 case DW_TAG_string_type
:
6306 case DW_TAG_structure_type
:
6307 case DW_TAG_subroutine_type
:
6308 case DW_TAG_union_type
:
6309 case DW_TAG_ptr_to_member_type
:
6310 case DW_TAG_set_type
:
6311 case DW_TAG_subrange_type
:
6312 case DW_TAG_base_type
:
6313 case DW_TAG_const_type
:
6314 case DW_TAG_file_type
:
6315 case DW_TAG_packed_type
:
6316 case DW_TAG_volatile_type
:
6317 case DW_TAG_typedef
:
6324 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6325 Basically, we want to choose the bits that are likely to be shared between
6326 compilations (types) and leave out the bits that are specific to individual
6327 compilations (functions). */
6330 is_comdat_die (dw_die_ref c
)
6332 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6333 we do for stabs. The advantage is a greater likelihood of sharing between
6334 objects that don't include headers in the same order (and therefore would
6335 put the base types in a different comdat). jason 8/28/00 */
6337 if (c
->die_tag
== DW_TAG_base_type
)
6340 if (c
->die_tag
== DW_TAG_pointer_type
6341 || c
->die_tag
== DW_TAG_reference_type
6342 || c
->die_tag
== DW_TAG_const_type
6343 || c
->die_tag
== DW_TAG_volatile_type
)
6345 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
6347 return t
? is_comdat_die (t
) : 0;
6350 return is_type_die (c
);
6353 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6354 compilation unit. */
6357 is_symbol_die (dw_die_ref c
)
6359 return (is_type_die (c
)
6360 || (get_AT (c
, DW_AT_declaration
)
6361 && !get_AT (c
, DW_AT_specification
))
6362 || c
->die_tag
== DW_TAG_namespace
);
6366 gen_internal_sym (const char *prefix
)
6370 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
6371 return xstrdup (buf
);
6374 /* Assign symbols to all worthy DIEs under DIE. */
6377 assign_symbol_names (dw_die_ref die
)
6381 if (is_symbol_die (die
))
6383 if (comdat_symbol_id
)
6385 char *p
= alloca (strlen (comdat_symbol_id
) + 64);
6387 sprintf (p
, "%s.%s.%x", DIE_LABEL_PREFIX
,
6388 comdat_symbol_id
, comdat_symbol_number
++);
6389 die
->die_symbol
= xstrdup (p
);
6392 die
->die_symbol
= gen_internal_sym ("LDIE");
6395 FOR_EACH_CHILD (die
, c
, assign_symbol_names (c
));
6398 struct cu_hash_table_entry
6401 unsigned min_comdat_num
, max_comdat_num
;
6402 struct cu_hash_table_entry
*next
;
6405 /* Routines to manipulate hash table of CUs. */
6407 htab_cu_hash (const void *of
)
6409 const struct cu_hash_table_entry
*entry
= of
;
6411 return htab_hash_string (entry
->cu
->die_symbol
);
6415 htab_cu_eq (const void *of1
, const void *of2
)
6417 const struct cu_hash_table_entry
*entry1
= of1
;
6418 const struct die_struct
*entry2
= of2
;
6420 return !strcmp (entry1
->cu
->die_symbol
, entry2
->die_symbol
);
6424 htab_cu_del (void *what
)
6426 struct cu_hash_table_entry
*next
, *entry
= what
;
6436 /* Check whether we have already seen this CU and set up SYM_NUM
6439 check_duplicate_cu (dw_die_ref cu
, htab_t htable
, unsigned int *sym_num
)
6441 struct cu_hash_table_entry dummy
;
6442 struct cu_hash_table_entry
**slot
, *entry
, *last
= &dummy
;
6444 dummy
.max_comdat_num
= 0;
6446 slot
= (struct cu_hash_table_entry
**)
6447 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6451 for (; entry
; last
= entry
, entry
= entry
->next
)
6453 if (same_die_p_wrap (cu
, entry
->cu
))
6459 *sym_num
= entry
->min_comdat_num
;
6463 entry
= XCNEW (struct cu_hash_table_entry
);
6465 entry
->min_comdat_num
= *sym_num
= last
->max_comdat_num
;
6466 entry
->next
= *slot
;
6472 /* Record SYM_NUM to record of CU in HTABLE. */
6474 record_comdat_symbol_number (dw_die_ref cu
, htab_t htable
, unsigned int sym_num
)
6476 struct cu_hash_table_entry
**slot
, *entry
;
6478 slot
= (struct cu_hash_table_entry
**)
6479 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6483 entry
->max_comdat_num
= sym_num
;
6486 /* Traverse the DIE (which is always comp_unit_die), and set up
6487 additional compilation units for each of the include files we see
6488 bracketed by BINCL/EINCL. */
6491 break_out_includes (dw_die_ref die
)
6494 dw_die_ref unit
= NULL
;
6495 limbo_die_node
*node
, **pnode
;
6496 htab_t cu_hash_table
;
6500 dw_die_ref prev
= c
;
6502 while (c
->die_tag
== DW_TAG_GNU_BINCL
|| c
->die_tag
== DW_TAG_GNU_EINCL
6503 || (unit
&& is_comdat_die (c
)))
6505 dw_die_ref next
= c
->die_sib
;
6507 /* This DIE is for a secondary CU; remove it from the main one. */
6508 remove_child_with_prev (c
, prev
);
6510 if (c
->die_tag
== DW_TAG_GNU_BINCL
)
6511 unit
= push_new_compile_unit (unit
, c
);
6512 else if (c
->die_tag
== DW_TAG_GNU_EINCL
)
6513 unit
= pop_compile_unit (unit
);
6515 add_child_die (unit
, c
);
6517 if (c
== die
->die_child
)
6520 } while (c
!= die
->die_child
);
6523 /* We can only use this in debugging, since the frontend doesn't check
6524 to make sure that we leave every include file we enter. */
6528 assign_symbol_names (die
);
6529 cu_hash_table
= htab_create (10, htab_cu_hash
, htab_cu_eq
, htab_cu_del
);
6530 for (node
= limbo_die_list
, pnode
= &limbo_die_list
;
6536 compute_section_prefix (node
->die
);
6537 is_dupl
= check_duplicate_cu (node
->die
, cu_hash_table
,
6538 &comdat_symbol_number
);
6539 assign_symbol_names (node
->die
);
6541 *pnode
= node
->next
;
6544 pnode
= &node
->next
;
6545 record_comdat_symbol_number (node
->die
, cu_hash_table
,
6546 comdat_symbol_number
);
6549 htab_delete (cu_hash_table
);
6552 /* Traverse the DIE and add a sibling attribute if it may have the
6553 effect of speeding up access to siblings. To save some space,
6554 avoid generating sibling attributes for DIE's without children. */
6557 add_sibling_attributes (dw_die_ref die
)
6561 if (! die
->die_child
)
6564 if (die
->die_parent
&& die
!= die
->die_parent
->die_child
)
6565 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
6567 FOR_EACH_CHILD (die
, c
, add_sibling_attributes (c
));
6570 /* Output all location lists for the DIE and its children. */
6573 output_location_lists (dw_die_ref die
)
6579 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6580 if (AT_class (a
) == dw_val_class_loc_list
)
6581 output_loc_list (AT_loc_list (a
));
6583 FOR_EACH_CHILD (die
, c
, output_location_lists (c
));
6586 /* The format of each DIE (and its attribute value pairs) is encoded in an
6587 abbreviation table. This routine builds the abbreviation table and assigns
6588 a unique abbreviation id for each abbreviation entry. The children of each
6589 die are visited recursively. */
6592 build_abbrev_table (dw_die_ref die
)
6594 unsigned long abbrev_id
;
6595 unsigned int n_alloc
;
6600 /* Scan the DIE references, and mark as external any that refer to
6601 DIEs from other CUs (i.e. those which are not marked). */
6602 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6603 if (AT_class (a
) == dw_val_class_die_ref
6604 && AT_ref (a
)->die_mark
== 0)
6606 gcc_assert (AT_ref (a
)->die_symbol
);
6608 set_AT_ref_external (a
, 1);
6611 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6613 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6614 dw_attr_ref die_a
, abbrev_a
;
6618 if (abbrev
->die_tag
!= die
->die_tag
)
6620 if ((abbrev
->die_child
!= NULL
) != (die
->die_child
!= NULL
))
6623 if (VEC_length (dw_attr_node
, abbrev
->die_attr
)
6624 != VEC_length (dw_attr_node
, die
->die_attr
))
6627 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, die_a
); ix
++)
6629 abbrev_a
= VEC_index (dw_attr_node
, abbrev
->die_attr
, ix
);
6630 if ((abbrev_a
->dw_attr
!= die_a
->dw_attr
)
6631 || (value_format (abbrev_a
) != value_format (die_a
)))
6641 if (abbrev_id
>= abbrev_die_table_in_use
)
6643 if (abbrev_die_table_in_use
>= abbrev_die_table_allocated
)
6645 n_alloc
= abbrev_die_table_allocated
+ ABBREV_DIE_TABLE_INCREMENT
;
6646 abbrev_die_table
= ggc_realloc (abbrev_die_table
,
6647 sizeof (dw_die_ref
) * n_alloc
);
6649 memset (&abbrev_die_table
[abbrev_die_table_allocated
], 0,
6650 (n_alloc
- abbrev_die_table_allocated
) * sizeof (dw_die_ref
));
6651 abbrev_die_table_allocated
= n_alloc
;
6654 ++abbrev_die_table_in_use
;
6655 abbrev_die_table
[abbrev_id
] = die
;
6658 die
->die_abbrev
= abbrev_id
;
6659 FOR_EACH_CHILD (die
, c
, build_abbrev_table (c
));
6662 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6665 constant_size (long unsigned int value
)
6672 log
= floor_log2 (value
);
6675 log
= 1 << (floor_log2 (log
) + 1);
6680 /* Return the size of a DIE as it is represented in the
6681 .debug_info section. */
6683 static unsigned long
6684 size_of_die (dw_die_ref die
)
6686 unsigned long size
= 0;
6690 size
+= size_of_uleb128 (die
->die_abbrev
);
6691 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6693 switch (AT_class (a
))
6695 case dw_val_class_addr
:
6696 size
+= DWARF2_ADDR_SIZE
;
6698 case dw_val_class_offset
:
6699 size
+= DWARF_OFFSET_SIZE
;
6701 case dw_val_class_loc
:
6703 unsigned long lsize
= size_of_locs (AT_loc (a
));
6706 size
+= constant_size (lsize
);
6710 case dw_val_class_loc_list
:
6711 size
+= DWARF_OFFSET_SIZE
;
6713 case dw_val_class_range_list
:
6714 size
+= DWARF_OFFSET_SIZE
;
6716 case dw_val_class_const
:
6717 size
+= size_of_sleb128 (AT_int (a
));
6719 case dw_val_class_unsigned_const
:
6720 size
+= constant_size (AT_unsigned (a
));
6722 case dw_val_class_long_long
:
6723 size
+= 1 + 2*HOST_BITS_PER_LONG
/HOST_BITS_PER_CHAR
; /* block */
6725 case dw_val_class_vec
:
6726 size
+= 1 + (a
->dw_attr_val
.v
.val_vec
.length
6727 * a
->dw_attr_val
.v
.val_vec
.elt_size
); /* block */
6729 case dw_val_class_flag
:
6732 case dw_val_class_die_ref
:
6733 if (AT_ref_external (a
))
6734 size
+= DWARF2_ADDR_SIZE
;
6736 size
+= DWARF_OFFSET_SIZE
;
6738 case dw_val_class_fde_ref
:
6739 size
+= DWARF_OFFSET_SIZE
;
6741 case dw_val_class_lbl_id
:
6742 size
+= DWARF2_ADDR_SIZE
;
6744 case dw_val_class_lineptr
:
6745 case dw_val_class_macptr
:
6746 size
+= DWARF_OFFSET_SIZE
;
6748 case dw_val_class_str
:
6749 if (AT_string_form (a
) == DW_FORM_strp
)
6750 size
+= DWARF_OFFSET_SIZE
;
6752 size
+= strlen (a
->dw_attr_val
.v
.val_str
->str
) + 1;
6754 case dw_val_class_file
:
6755 size
+= constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
));
6765 /* Size the debugging information associated with a given DIE. Visits the
6766 DIE's children recursively. Updates the global variable next_die_offset, on
6767 each time through. Uses the current value of next_die_offset to update the
6768 die_offset field in each DIE. */
6771 calc_die_sizes (dw_die_ref die
)
6775 die
->die_offset
= next_die_offset
;
6776 next_die_offset
+= size_of_die (die
);
6778 FOR_EACH_CHILD (die
, c
, calc_die_sizes (c
));
6780 if (die
->die_child
!= NULL
)
6781 /* Count the null byte used to terminate sibling lists. */
6782 next_die_offset
+= 1;
6785 /* Set the marks for a die and its children. We do this so
6786 that we know whether or not a reference needs to use FORM_ref_addr; only
6787 DIEs in the same CU will be marked. We used to clear out the offset
6788 and use that as the flag, but ran into ordering problems. */
6791 mark_dies (dw_die_ref die
)
6795 gcc_assert (!die
->die_mark
);
6798 FOR_EACH_CHILD (die
, c
, mark_dies (c
));
6801 /* Clear the marks for a die and its children. */
6804 unmark_dies (dw_die_ref die
)
6808 gcc_assert (die
->die_mark
);
6811 FOR_EACH_CHILD (die
, c
, unmark_dies (c
));
6814 /* Clear the marks for a die, its children and referred dies. */
6817 unmark_all_dies (dw_die_ref die
)
6827 FOR_EACH_CHILD (die
, c
, unmark_all_dies (c
));
6829 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6830 if (AT_class (a
) == dw_val_class_die_ref
)
6831 unmark_all_dies (AT_ref (a
));
6834 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6835 generated for the compilation unit. */
6837 static unsigned long
6838 size_of_pubnames (VEC (pubname_entry
, gc
) * names
)
6844 size
= DWARF_PUBNAMES_HEADER_SIZE
;
6845 for (i
= 0; VEC_iterate (pubname_entry
, names
, i
, p
); i
++)
6846 if (names
!= pubtype_table
6847 || p
->die
->die_offset
!= 0
6848 || !flag_eliminate_unused_debug_types
)
6849 size
+= strlen (p
->name
) + DWARF_OFFSET_SIZE
+ 1;
6851 size
+= DWARF_OFFSET_SIZE
;
6855 /* Return the size of the information in the .debug_aranges section. */
6857 static unsigned long
6858 size_of_aranges (void)
6862 size
= DWARF_ARANGES_HEADER_SIZE
;
6864 /* Count the address/length pair for this compilation unit. */
6865 if (text_section_used
)
6866 size
+= 2 * DWARF2_ADDR_SIZE
;
6867 if (cold_text_section_used
)
6868 size
+= 2 * DWARF2_ADDR_SIZE
;
6869 size
+= 2 * DWARF2_ADDR_SIZE
* arange_table_in_use
;
6871 /* Count the two zero words used to terminated the address range table. */
6872 size
+= 2 * DWARF2_ADDR_SIZE
;
6876 /* Select the encoding of an attribute value. */
6878 static enum dwarf_form
6879 value_format (dw_attr_ref a
)
6881 switch (a
->dw_attr_val
.val_class
)
6883 case dw_val_class_addr
:
6884 return DW_FORM_addr
;
6885 case dw_val_class_range_list
:
6886 case dw_val_class_offset
:
6887 case dw_val_class_loc_list
:
6888 switch (DWARF_OFFSET_SIZE
)
6891 return DW_FORM_data4
;
6893 return DW_FORM_data8
;
6897 case dw_val_class_loc
:
6898 switch (constant_size (size_of_locs (AT_loc (a
))))
6901 return DW_FORM_block1
;
6903 return DW_FORM_block2
;
6907 case dw_val_class_const
:
6908 return DW_FORM_sdata
;
6909 case dw_val_class_unsigned_const
:
6910 switch (constant_size (AT_unsigned (a
)))
6913 return DW_FORM_data1
;
6915 return DW_FORM_data2
;
6917 return DW_FORM_data4
;
6919 return DW_FORM_data8
;
6923 case dw_val_class_long_long
:
6924 return DW_FORM_block1
;
6925 case dw_val_class_vec
:
6926 return DW_FORM_block1
;
6927 case dw_val_class_flag
:
6928 return DW_FORM_flag
;
6929 case dw_val_class_die_ref
:
6930 if (AT_ref_external (a
))
6931 return DW_FORM_ref_addr
;
6934 case dw_val_class_fde_ref
:
6935 return DW_FORM_data
;
6936 case dw_val_class_lbl_id
:
6937 return DW_FORM_addr
;
6938 case dw_val_class_lineptr
:
6939 case dw_val_class_macptr
:
6940 return DW_FORM_data
;
6941 case dw_val_class_str
:
6942 return AT_string_form (a
);
6943 case dw_val_class_file
:
6944 switch (constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
)))
6947 return DW_FORM_data1
;
6949 return DW_FORM_data2
;
6951 return DW_FORM_data4
;
6961 /* Output the encoding of an attribute value. */
6964 output_value_format (dw_attr_ref a
)
6966 enum dwarf_form form
= value_format (a
);
6968 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
6971 /* Output the .debug_abbrev section which defines the DIE abbreviation
6975 output_abbrev_section (void)
6977 unsigned long abbrev_id
;
6979 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6981 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6985 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
6986 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
6987 dwarf_tag_name (abbrev
->die_tag
));
6989 if (abbrev
->die_child
!= NULL
)
6990 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
6992 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
6994 for (ix
= 0; VEC_iterate (dw_attr_node
, abbrev
->die_attr
, ix
, a_attr
);
6997 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
6998 dwarf_attr_name (a_attr
->dw_attr
));
6999 output_value_format (a_attr
);
7002 dw2_asm_output_data (1, 0, NULL
);
7003 dw2_asm_output_data (1, 0, NULL
);
7006 /* Terminate the table. */
7007 dw2_asm_output_data (1, 0, NULL
);
7010 /* Output a symbol we can use to refer to this DIE from another CU. */
7013 output_die_symbol (dw_die_ref die
)
7015 char *sym
= die
->die_symbol
;
7020 if (strncmp (sym
, DIE_LABEL_PREFIX
, sizeof (DIE_LABEL_PREFIX
) - 1) == 0)
7021 /* We make these global, not weak; if the target doesn't support
7022 .linkonce, it doesn't support combining the sections, so debugging
7024 targetm
.asm_out
.globalize_label (asm_out_file
, sym
);
7026 ASM_OUTPUT_LABEL (asm_out_file
, sym
);
7029 /* Return a new location list, given the begin and end range, and the
7030 expression. gensym tells us whether to generate a new internal symbol for
7031 this location list node, which is done for the head of the list only. */
7033 static inline dw_loc_list_ref
7034 new_loc_list (dw_loc_descr_ref expr
, const char *begin
, const char *end
,
7035 const char *section
, unsigned int gensym
)
7037 dw_loc_list_ref retlist
= ggc_alloc_cleared (sizeof (dw_loc_list_node
));
7039 retlist
->begin
= begin
;
7041 retlist
->expr
= expr
;
7042 retlist
->section
= section
;
7044 retlist
->ll_symbol
= gen_internal_sym ("LLST");
7049 /* Add a location description expression to a location list. */
7052 add_loc_descr_to_loc_list (dw_loc_list_ref
*list_head
, dw_loc_descr_ref descr
,
7053 const char *begin
, const char *end
,
7054 const char *section
)
7058 /* Find the end of the chain. */
7059 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
7062 /* Add a new location list node to the list. */
7063 *d
= new_loc_list (descr
, begin
, end
, section
, 0);
7066 /* Note that the current function section is being used for code. */
7069 dwarf2out_note_section_used (void)
7071 section
*sec
= current_function_section ();
7072 if (sec
== text_section
)
7073 text_section_used
= true;
7074 else if (sec
== cold_text_section
)
7075 cold_text_section_used
= true;
7079 dwarf2out_switch_text_section (void)
7085 fde
= &fde_table
[fde_table_in_use
- 1];
7086 fde
->dw_fde_switched_sections
= true;
7087 fde
->dw_fde_hot_section_label
= cfun
->hot_section_label
;
7088 fde
->dw_fde_hot_section_end_label
= cfun
->hot_section_end_label
;
7089 fde
->dw_fde_unlikely_section_label
= cfun
->cold_section_label
;
7090 fde
->dw_fde_unlikely_section_end_label
= cfun
->cold_section_end_label
;
7091 have_multiple_function_sections
= true;
7093 /* Reset the current label on switching text sections, so that we
7094 don't attempt to advance_loc4 between labels in different sections. */
7095 fde
->dw_fde_current_label
= NULL
;
7097 dwarf2out_note_section_used ();
7100 /* Output the location list given to us. */
7103 output_loc_list (dw_loc_list_ref list_head
)
7105 dw_loc_list_ref curr
= list_head
;
7107 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
7109 /* Walk the location list, and output each range + expression. */
7110 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
7113 /* Don't output an entry that starts and ends at the same address. */
7114 if (strcmp (curr
->begin
, curr
->end
) == 0)
7116 if (!have_multiple_function_sections
)
7118 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
7119 "Location list begin address (%s)",
7120 list_head
->ll_symbol
);
7121 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
7122 "Location list end address (%s)",
7123 list_head
->ll_symbol
);
7127 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
7128 "Location list begin address (%s)",
7129 list_head
->ll_symbol
);
7130 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
7131 "Location list end address (%s)",
7132 list_head
->ll_symbol
);
7134 size
= size_of_locs (curr
->expr
);
7136 /* Output the block length for this list of location operations. */
7137 gcc_assert (size
<= 0xffff);
7138 dw2_asm_output_data (2, size
, "%s", "Location expression size");
7140 output_loc_sequence (curr
->expr
);
7143 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
7144 "Location list terminator begin (%s)",
7145 list_head
->ll_symbol
);
7146 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
7147 "Location list terminator end (%s)",
7148 list_head
->ll_symbol
);
7151 /* Output the DIE and its attributes. Called recursively to generate
7152 the definitions of each child DIE. */
7155 output_die (dw_die_ref die
)
7162 /* If someone in another CU might refer to us, set up a symbol for
7163 them to point to. */
7164 if (die
->die_symbol
)
7165 output_die_symbol (die
);
7167 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (0x%lx) %s)",
7168 (unsigned long)die
->die_offset
,
7169 dwarf_tag_name (die
->die_tag
));
7171 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
7173 const char *name
= dwarf_attr_name (a
->dw_attr
);
7175 switch (AT_class (a
))
7177 case dw_val_class_addr
:
7178 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
7181 case dw_val_class_offset
:
7182 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
7186 case dw_val_class_range_list
:
7188 char *p
= strchr (ranges_section_label
, '\0');
7190 sprintf (p
, "+" HOST_WIDE_INT_PRINT_HEX
,
7191 a
->dw_attr_val
.v
.val_offset
);
7192 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
7193 debug_ranges_section
, "%s", name
);
7198 case dw_val_class_loc
:
7199 size
= size_of_locs (AT_loc (a
));
7201 /* Output the block length for this list of location operations. */
7202 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
7204 output_loc_sequence (AT_loc (a
));
7207 case dw_val_class_const
:
7208 /* ??? It would be slightly more efficient to use a scheme like is
7209 used for unsigned constants below, but gdb 4.x does not sign
7210 extend. Gdb 5.x does sign extend. */
7211 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
7214 case dw_val_class_unsigned_const
:
7215 dw2_asm_output_data (constant_size (AT_unsigned (a
)),
7216 AT_unsigned (a
), "%s", name
);
7219 case dw_val_class_long_long
:
7221 unsigned HOST_WIDE_INT first
, second
;
7223 dw2_asm_output_data (1,
7224 2 * HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
7227 if (WORDS_BIG_ENDIAN
)
7229 first
= a
->dw_attr_val
.v
.val_long_long
.hi
;
7230 second
= a
->dw_attr_val
.v
.val_long_long
.low
;
7234 first
= a
->dw_attr_val
.v
.val_long_long
.low
;
7235 second
= a
->dw_attr_val
.v
.val_long_long
.hi
;
7238 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
7239 first
, "long long constant");
7240 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
7245 case dw_val_class_vec
:
7247 unsigned int elt_size
= a
->dw_attr_val
.v
.val_vec
.elt_size
;
7248 unsigned int len
= a
->dw_attr_val
.v
.val_vec
.length
;
7252 dw2_asm_output_data (1, len
* elt_size
, "%s", name
);
7253 if (elt_size
> sizeof (HOST_WIDE_INT
))
7258 for (i
= 0, p
= a
->dw_attr_val
.v
.val_vec
.array
;
7261 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
7262 "fp or vector constant word %u", i
);
7266 case dw_val_class_flag
:
7267 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
7270 case dw_val_class_loc_list
:
7272 char *sym
= AT_loc_list (a
)->ll_symbol
;
7275 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, sym
, debug_loc_section
,
7280 case dw_val_class_die_ref
:
7281 if (AT_ref_external (a
))
7283 char *sym
= AT_ref (a
)->die_symbol
;
7286 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, sym
, debug_info_section
,
7291 gcc_assert (AT_ref (a
)->die_offset
);
7292 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
7297 case dw_val_class_fde_ref
:
7301 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
7302 a
->dw_attr_val
.v
.val_fde_index
* 2);
7303 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, debug_frame_section
,
7308 case dw_val_class_lbl_id
:
7309 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
7312 case dw_val_class_lineptr
:
7313 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
),
7314 debug_line_section
, "%s", name
);
7317 case dw_val_class_macptr
:
7318 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
),
7319 debug_macinfo_section
, "%s", name
);
7322 case dw_val_class_str
:
7323 if (AT_string_form (a
) == DW_FORM_strp
)
7324 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
7325 a
->dw_attr_val
.v
.val_str
->label
,
7327 "%s: \"%s\"", name
, AT_string (a
));
7329 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
7332 case dw_val_class_file
:
7334 int f
= maybe_emit_file (a
->dw_attr_val
.v
.val_file
);
7336 dw2_asm_output_data (constant_size (f
), f
, "%s (%s)", name
,
7337 a
->dw_attr_val
.v
.val_file
->filename
);
7346 FOR_EACH_CHILD (die
, c
, output_die (c
));
7348 /* Add null byte to terminate sibling list. */
7349 if (die
->die_child
!= NULL
)
7350 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7351 (unsigned long) die
->die_offset
);
7354 /* Output the compilation unit that appears at the beginning of the
7355 .debug_info section, and precedes the DIE descriptions. */
7358 output_compilation_unit_header (void)
7360 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7361 dw2_asm_output_data (4, 0xffffffff,
7362 "Initial length escape value indicating 64-bit DWARF extension");
7363 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
7364 next_die_offset
- DWARF_INITIAL_LENGTH_SIZE
,
7365 "Length of Compilation Unit Info");
7366 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF version number");
7367 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
7368 debug_abbrev_section
,
7369 "Offset Into Abbrev. Section");
7370 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
7373 /* Output the compilation unit DIE and its children. */
7376 output_comp_unit (dw_die_ref die
, int output_if_empty
)
7378 const char *secname
;
7381 /* Unless we are outputting main CU, we may throw away empty ones. */
7382 if (!output_if_empty
&& die
->die_child
== NULL
)
7385 /* Even if there are no children of this DIE, we must output the information
7386 about the compilation unit. Otherwise, on an empty translation unit, we
7387 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7388 will then complain when examining the file. First mark all the DIEs in
7389 this CU so we know which get local refs. */
7392 build_abbrev_table (die
);
7394 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7395 next_die_offset
= DWARF_COMPILE_UNIT_HEADER_SIZE
;
7396 calc_die_sizes (die
);
7398 oldsym
= die
->die_symbol
;
7401 tmp
= alloca (strlen (oldsym
) + 24);
7403 sprintf (tmp
, ".gnu.linkonce.wi.%s", oldsym
);
7405 die
->die_symbol
= NULL
;
7406 switch_to_section (get_section (secname
, SECTION_DEBUG
, NULL
));
7409 switch_to_section (debug_info_section
);
7411 /* Output debugging information. */
7412 output_compilation_unit_header ();
7415 /* Leave the marks on the main CU, so we can check them in
7420 die
->die_symbol
= oldsym
;
7424 /* Return the DWARF2/3 pubname associated with a decl. */
7427 dwarf2_name (tree decl
, int scope
)
7429 return lang_hooks
.dwarf_name (decl
, scope
? 1 : 0);
7432 /* Add a new entry to .debug_pubnames if appropriate. */
7435 add_pubname (tree decl
, dw_die_ref die
)
7439 if (! TREE_PUBLIC (decl
))
7443 e
.name
= xstrdup (dwarf2_name (decl
, 1));
7444 VEC_safe_push (pubname_entry
, gc
, pubname_table
, &e
);
7447 /* Add a new entry to .debug_pubtypes if appropriate. */
7450 add_pubtype (tree decl
, dw_die_ref die
)
7455 if ((TREE_PUBLIC (decl
)
7456 || die
->die_parent
== comp_unit_die
)
7457 && (die
->die_tag
== DW_TAG_typedef
|| COMPLETE_TYPE_P (decl
)))
7462 if (TYPE_NAME (decl
))
7464 if (TREE_CODE (TYPE_NAME (decl
)) == IDENTIFIER_NODE
)
7465 e
.name
= IDENTIFIER_POINTER (TYPE_NAME (decl
));
7466 else if (TREE_CODE (TYPE_NAME (decl
)) == TYPE_DECL
7467 && DECL_NAME (TYPE_NAME (decl
)))
7468 e
.name
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl
)));
7470 e
.name
= xstrdup ((const char *) get_AT_string (die
, DW_AT_name
));
7474 e
.name
= xstrdup (dwarf2_name (decl
, 1));
7476 /* If we don't have a name for the type, there's no point in adding
7478 if (e
.name
&& e
.name
[0] != '\0')
7479 VEC_safe_push (pubname_entry
, gc
, pubtype_table
, &e
);
7483 /* Output the public names table used to speed up access to externally
7484 visible names; or the public types table used to find type definitions. */
7487 output_pubnames (VEC (pubname_entry
, gc
) * names
)
7490 unsigned long pubnames_length
= size_of_pubnames (names
);
7493 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7494 dw2_asm_output_data (4, 0xffffffff,
7495 "Initial length escape value indicating 64-bit DWARF extension");
7496 if (names
== pubname_table
)
7497 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
7498 "Length of Public Names Info");
7500 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
7501 "Length of Public Type Names Info");
7502 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7503 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7505 "Offset of Compilation Unit Info");
7506 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
7507 "Compilation Unit Length");
7509 for (i
= 0; VEC_iterate (pubname_entry
, names
, i
, pub
); i
++)
7511 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7512 if (names
== pubname_table
)
7513 gcc_assert (pub
->die
->die_mark
);
7515 if (names
!= pubtype_table
7516 || pub
->die
->die_offset
!= 0
7517 || !flag_eliminate_unused_debug_types
)
7519 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pub
->die
->die_offset
,
7522 dw2_asm_output_nstring (pub
->name
, -1, "external name");
7526 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
7529 /* Add a new entry to .debug_aranges if appropriate. */
7532 add_arange (tree decl
, dw_die_ref die
)
7534 if (! DECL_SECTION_NAME (decl
))
7537 if (arange_table_in_use
== arange_table_allocated
)
7539 arange_table_allocated
+= ARANGE_TABLE_INCREMENT
;
7540 arange_table
= ggc_realloc (arange_table
,
7541 (arange_table_allocated
7542 * sizeof (dw_die_ref
)));
7543 memset (arange_table
+ arange_table_in_use
, 0,
7544 ARANGE_TABLE_INCREMENT
* sizeof (dw_die_ref
));
7547 arange_table
[arange_table_in_use
++] = die
;
7550 /* Output the information that goes into the .debug_aranges table.
7551 Namely, define the beginning and ending address range of the
7552 text section generated for this compilation unit. */
7555 output_aranges (void)
7558 unsigned long aranges_length
= size_of_aranges ();
7560 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7561 dw2_asm_output_data (4, 0xffffffff,
7562 "Initial length escape value indicating 64-bit DWARF extension");
7563 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
7564 "Length of Address Ranges Info");
7565 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7566 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7568 "Offset of Compilation Unit Info");
7569 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
7570 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7572 /* We need to align to twice the pointer size here. */
7573 if (DWARF_ARANGES_PAD_SIZE
)
7575 /* Pad using a 2 byte words so that padding is correct for any
7577 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7578 2 * DWARF2_ADDR_SIZE
);
7579 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
7580 dw2_asm_output_data (2, 0, NULL
);
7583 /* It is necessary not to output these entries if the sections were
7584 not used; if the sections were not used, the length will be 0 and
7585 the address may end up as 0 if the section is discarded by ld
7586 --gc-sections, leaving an invalid (0, 0) entry that can be
7587 confused with the terminator. */
7588 if (text_section_used
)
7590 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
7591 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
7592 text_section_label
, "Length");
7594 if (cold_text_section_used
)
7596 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, cold_text_section_label
,
7598 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, cold_end_label
,
7599 cold_text_section_label
, "Length");
7602 for (i
= 0; i
< arange_table_in_use
; i
++)
7604 dw_die_ref die
= arange_table
[i
];
7606 /* We shouldn't see aranges for DIEs outside of the main CU. */
7607 gcc_assert (die
->die_mark
);
7609 if (die
->die_tag
== DW_TAG_subprogram
)
7611 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, get_AT_low_pc (die
),
7613 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, get_AT_hi_pc (die
),
7614 get_AT_low_pc (die
), "Length");
7618 /* A static variable; extract the symbol from DW_AT_location.
7619 Note that this code isn't currently hit, as we only emit
7620 aranges for functions (jason 9/23/99). */
7621 dw_attr_ref a
= get_AT (die
, DW_AT_location
);
7622 dw_loc_descr_ref loc
;
7624 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
7627 gcc_assert (loc
->dw_loc_opc
== DW_OP_addr
);
7629 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
,
7630 loc
->dw_loc_oprnd1
.v
.val_addr
, "Address");
7631 dw2_asm_output_data (DWARF2_ADDR_SIZE
,
7632 get_AT_unsigned (die
, DW_AT_byte_size
),
7637 /* Output the terminator words. */
7638 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7639 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7642 /* Add a new entry to .debug_ranges. Return the offset at which it
7646 add_ranges_num (int num
)
7648 unsigned int in_use
= ranges_table_in_use
;
7650 if (in_use
== ranges_table_allocated
)
7652 ranges_table_allocated
+= RANGES_TABLE_INCREMENT
;
7654 = ggc_realloc (ranges_table
, (ranges_table_allocated
7655 * sizeof (struct dw_ranges_struct
)));
7656 memset (ranges_table
+ ranges_table_in_use
, 0,
7657 RANGES_TABLE_INCREMENT
* sizeof (struct dw_ranges_struct
));
7660 ranges_table
[in_use
].num
= num
;
7661 ranges_table_in_use
= in_use
+ 1;
7663 return in_use
* 2 * DWARF2_ADDR_SIZE
;
7666 /* Add a new entry to .debug_ranges corresponding to a block, or a
7667 range terminator if BLOCK is NULL. */
7670 add_ranges (const_tree block
)
7672 return add_ranges_num (block
? BLOCK_NUMBER (block
) : 0);
7675 /* Add a new entry to .debug_ranges corresponding to a pair of
7679 add_ranges_by_labels (const char *begin
, const char *end
)
7681 unsigned int in_use
= ranges_by_label_in_use
;
7683 if (in_use
== ranges_by_label_allocated
)
7685 ranges_by_label_allocated
+= RANGES_TABLE_INCREMENT
;
7687 = ggc_realloc (ranges_by_label
,
7688 (ranges_by_label_allocated
7689 * sizeof (struct dw_ranges_by_label_struct
)));
7690 memset (ranges_by_label
+ ranges_by_label_in_use
, 0,
7691 RANGES_TABLE_INCREMENT
7692 * sizeof (struct dw_ranges_by_label_struct
));
7695 ranges_by_label
[in_use
].begin
= begin
;
7696 ranges_by_label
[in_use
].end
= end
;
7697 ranges_by_label_in_use
= in_use
+ 1;
7699 return add_ranges_num (-(int)in_use
- 1);
7703 output_ranges (void)
7706 static const char *const start_fmt
= "Offset 0x%x";
7707 const char *fmt
= start_fmt
;
7709 for (i
= 0; i
< ranges_table_in_use
; i
++)
7711 int block_num
= ranges_table
[i
].num
;
7715 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7716 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7718 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
7719 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
7721 /* If all code is in the text section, then the compilation
7722 unit base address defaults to DW_AT_low_pc, which is the
7723 base of the text section. */
7724 if (!have_multiple_function_sections
)
7726 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
7728 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7729 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
7730 text_section_label
, NULL
);
7733 /* Otherwise, the compilation unit base address is zero,
7734 which allows us to use absolute addresses, and not worry
7735 about whether the target supports cross-section
7739 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
7740 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7741 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
7747 /* Negative block_num stands for an index into ranges_by_label. */
7748 else if (block_num
< 0)
7750 int lab_idx
= - block_num
- 1;
7752 if (!have_multiple_function_sections
)
7756 /* If we ever use add_ranges_by_labels () for a single
7757 function section, all we have to do is to take out
7759 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
7760 ranges_by_label
[lab_idx
].begin
,
7762 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7763 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
7764 ranges_by_label
[lab_idx
].end
,
7765 text_section_label
, NULL
);
7770 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
7771 ranges_by_label
[lab_idx
].begin
,
7772 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7773 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
7774 ranges_by_label
[lab_idx
].end
,
7780 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7781 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7787 /* Data structure containing information about input files. */
7790 const char *path
; /* Complete file name. */
7791 const char *fname
; /* File name part. */
7792 int length
; /* Length of entire string. */
7793 struct dwarf_file_data
* file_idx
; /* Index in input file table. */
7794 int dir_idx
; /* Index in directory table. */
7797 /* Data structure containing information about directories with source
7801 const char *path
; /* Path including directory name. */
7802 int length
; /* Path length. */
7803 int prefix
; /* Index of directory entry which is a prefix. */
7804 int count
; /* Number of files in this directory. */
7805 int dir_idx
; /* Index of directory used as base. */
7808 /* Callback function for file_info comparison. We sort by looking at
7809 the directories in the path. */
7812 file_info_cmp (const void *p1
, const void *p2
)
7814 const struct file_info
*s1
= p1
;
7815 const struct file_info
*s2
= p2
;
7816 const unsigned char *cp1
;
7817 const unsigned char *cp2
;
7819 /* Take care of file names without directories. We need to make sure that
7820 we return consistent values to qsort since some will get confused if
7821 we return the same value when identical operands are passed in opposite
7822 orders. So if neither has a directory, return 0 and otherwise return
7823 1 or -1 depending on which one has the directory. */
7824 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
7825 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
7827 cp1
= (const unsigned char *) s1
->path
;
7828 cp2
= (const unsigned char *) s2
->path
;
7834 /* Reached the end of the first path? If so, handle like above. */
7835 if ((cp1
== (const unsigned char *) s1
->fname
)
7836 || (cp2
== (const unsigned char *) s2
->fname
))
7837 return ((cp2
== (const unsigned char *) s2
->fname
)
7838 - (cp1
== (const unsigned char *) s1
->fname
));
7840 /* Character of current path component the same? */
7841 else if (*cp1
!= *cp2
)
7846 struct file_name_acquire_data
7848 struct file_info
*files
;
7853 /* Traversal function for the hash table. */
7856 file_name_acquire (void ** slot
, void *data
)
7858 struct file_name_acquire_data
*fnad
= data
;
7859 struct dwarf_file_data
*d
= *slot
;
7860 struct file_info
*fi
;
7863 gcc_assert (fnad
->max_files
>= d
->emitted_number
);
7865 if (! d
->emitted_number
)
7868 gcc_assert (fnad
->max_files
!= fnad
->used_files
);
7870 fi
= fnad
->files
+ fnad
->used_files
++;
7872 /* Skip all leading "./". */
7874 while (f
[0] == '.' && IS_DIR_SEPARATOR (f
[1]))
7877 /* Create a new array entry. */
7879 fi
->length
= strlen (f
);
7882 /* Search for the file name part. */
7883 f
= strrchr (f
, DIR_SEPARATOR
);
7884 #if defined (DIR_SEPARATOR_2)
7886 char *g
= strrchr (fi
->path
, DIR_SEPARATOR_2
);
7890 if (f
== NULL
|| f
< g
)
7896 fi
->fname
= f
== NULL
? fi
->path
: f
+ 1;
7900 /* Output the directory table and the file name table. We try to minimize
7901 the total amount of memory needed. A heuristic is used to avoid large
7902 slowdowns with many input files. */
7905 output_file_names (void)
7907 struct file_name_acquire_data fnad
;
7909 struct file_info
*files
;
7910 struct dir_info
*dirs
;
7919 if (!last_emitted_file
)
7921 dw2_asm_output_data (1, 0, "End directory table");
7922 dw2_asm_output_data (1, 0, "End file name table");
7926 numfiles
= last_emitted_file
->emitted_number
;
7928 /* Allocate the various arrays we need. */
7929 files
= alloca (numfiles
* sizeof (struct file_info
));
7930 dirs
= alloca (numfiles
* sizeof (struct dir_info
));
7933 fnad
.used_files
= 0;
7934 fnad
.max_files
= numfiles
;
7935 htab_traverse (file_table
, file_name_acquire
, &fnad
);
7936 gcc_assert (fnad
.used_files
== fnad
.max_files
);
7938 qsort (files
, numfiles
, sizeof (files
[0]), file_info_cmp
);
7940 /* Find all the different directories used. */
7941 dirs
[0].path
= files
[0].path
;
7942 dirs
[0].length
= files
[0].fname
- files
[0].path
;
7943 dirs
[0].prefix
= -1;
7945 dirs
[0].dir_idx
= 0;
7946 files
[0].dir_idx
= 0;
7949 for (i
= 1; i
< numfiles
; i
++)
7950 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
7951 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
7952 dirs
[ndirs
- 1].length
) == 0)
7954 /* Same directory as last entry. */
7955 files
[i
].dir_idx
= ndirs
- 1;
7956 ++dirs
[ndirs
- 1].count
;
7962 /* This is a new directory. */
7963 dirs
[ndirs
].path
= files
[i
].path
;
7964 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
7965 dirs
[ndirs
].count
= 1;
7966 dirs
[ndirs
].dir_idx
= ndirs
;
7967 files
[i
].dir_idx
= ndirs
;
7969 /* Search for a prefix. */
7970 dirs
[ndirs
].prefix
= -1;
7971 for (j
= 0; j
< ndirs
; j
++)
7972 if (dirs
[j
].length
< dirs
[ndirs
].length
7973 && dirs
[j
].length
> 1
7974 && (dirs
[ndirs
].prefix
== -1
7975 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
7976 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
7977 dirs
[ndirs
].prefix
= j
;
7982 /* Now to the actual work. We have to find a subset of the directories which
7983 allow expressing the file name using references to the directory table
7984 with the least amount of characters. We do not do an exhaustive search
7985 where we would have to check out every combination of every single
7986 possible prefix. Instead we use a heuristic which provides nearly optimal
7987 results in most cases and never is much off. */
7988 saved
= alloca (ndirs
* sizeof (int));
7989 savehere
= alloca (ndirs
* sizeof (int));
7991 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
7992 for (i
= 0; i
< ndirs
; i
++)
7997 /* We can always save some space for the current directory. But this
7998 does not mean it will be enough to justify adding the directory. */
7999 savehere
[i
] = dirs
[i
].length
;
8000 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
8002 for (j
= i
+ 1; j
< ndirs
; j
++)
8005 if (saved
[j
] < dirs
[i
].length
)
8007 /* Determine whether the dirs[i] path is a prefix of the
8012 while (k
!= -1 && k
!= (int) i
)
8017 /* Yes it is. We can possibly save some memory by
8018 writing the filenames in dirs[j] relative to
8020 savehere
[j
] = dirs
[i
].length
;
8021 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
8026 /* Check whether we can save enough to justify adding the dirs[i]
8028 if (total
> dirs
[i
].length
+ 1)
8030 /* It's worthwhile adding. */
8031 for (j
= i
; j
< ndirs
; j
++)
8032 if (savehere
[j
] > 0)
8034 /* Remember how much we saved for this directory so far. */
8035 saved
[j
] = savehere
[j
];
8037 /* Remember the prefix directory. */
8038 dirs
[j
].dir_idx
= i
;
8043 /* Emit the directory name table. */
8045 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
8046 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
8047 dw2_asm_output_nstring (dirs
[i
].path
, dirs
[i
].length
- 1,
8048 "Directory Entry: 0x%x", i
+ idx_offset
);
8050 dw2_asm_output_data (1, 0, "End directory table");
8052 /* We have to emit them in the order of emitted_number since that's
8053 used in the debug info generation. To do this efficiently we
8054 generate a back-mapping of the indices first. */
8055 backmap
= alloca (numfiles
* sizeof (int));
8056 for (i
= 0; i
< numfiles
; i
++)
8057 backmap
[files
[i
].file_idx
->emitted_number
- 1] = i
;
8059 /* Now write all the file names. */
8060 for (i
= 0; i
< numfiles
; i
++)
8062 int file_idx
= backmap
[i
];
8063 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
8065 dw2_asm_output_nstring (files
[file_idx
].path
+ dirs
[dir_idx
].length
, -1,
8066 "File Entry: 0x%x", (unsigned) i
+ 1);
8068 /* Include directory index. */
8069 dw2_asm_output_data_uleb128 (dir_idx
+ idx_offset
, NULL
);
8071 /* Modification time. */
8072 dw2_asm_output_data_uleb128 (0, NULL
);
8074 /* File length in bytes. */
8075 dw2_asm_output_data_uleb128 (0, NULL
);
8078 dw2_asm_output_data (1, 0, "End file name table");
8082 /* Output the source line number correspondence information. This
8083 information goes into the .debug_line section. */
8086 output_line_info (void)
8088 char l1
[20], l2
[20], p1
[20], p2
[20];
8089 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
8090 char prev_line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
8093 unsigned long lt_index
;
8094 unsigned long current_line
;
8097 unsigned long current_file
;
8098 unsigned long function
;
8100 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, 0);
8101 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, 0);
8102 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, 0);
8103 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, 0);
8105 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
8106 dw2_asm_output_data (4, 0xffffffff,
8107 "Initial length escape value indicating 64-bit DWARF extension");
8108 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
8109 "Length of Source Line Info");
8110 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
8112 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
8113 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
8114 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
8116 /* Define the architecture-dependent minimum instruction length (in
8117 bytes). In this implementation of DWARF, this field is used for
8118 information purposes only. Since GCC generates assembly language,
8119 we have no a priori knowledge of how many instruction bytes are
8120 generated for each source line, and therefore can use only the
8121 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
8122 commands. Accordingly, we fix this as `1', which is "correct
8123 enough" for all architectures, and don't let the target override. */
8124 dw2_asm_output_data (1, 1,
8125 "Minimum Instruction Length");
8127 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
8128 "Default is_stmt_start flag");
8129 dw2_asm_output_data (1, DWARF_LINE_BASE
,
8130 "Line Base Value (Special Opcodes)");
8131 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
8132 "Line Range Value (Special Opcodes)");
8133 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
8134 "Special Opcode Base");
8136 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
8140 case DW_LNS_advance_pc
:
8141 case DW_LNS_advance_line
:
8142 case DW_LNS_set_file
:
8143 case DW_LNS_set_column
:
8144 case DW_LNS_fixed_advance_pc
:
8152 dw2_asm_output_data (1, n_op_args
, "opcode: 0x%x has %d args",
8156 /* Write out the information about the files we use. */
8157 output_file_names ();
8158 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
8160 /* We used to set the address register to the first location in the text
8161 section here, but that didn't accomplish anything since we already
8162 have a line note for the opening brace of the first function. */
8164 /* Generate the line number to PC correspondence table, encoded as
8165 a series of state machine operations. */
8169 if (cfun
&& in_cold_section_p
)
8170 strcpy (prev_line_label
, cfun
->cold_section_label
);
8172 strcpy (prev_line_label
, text_section_label
);
8173 for (lt_index
= 1; lt_index
< line_info_table_in_use
; ++lt_index
)
8175 dw_line_info_ref line_info
= &line_info_table
[lt_index
];
8178 /* Disable this optimization for now; GDB wants to see two line notes
8179 at the beginning of a function so it can find the end of the
8182 /* Don't emit anything for redundant notes. Just updating the
8183 address doesn't accomplish anything, because we already assume
8184 that anything after the last address is this line. */
8185 if (line_info
->dw_line_num
== current_line
8186 && line_info
->dw_file_num
== current_file
)
8190 /* Emit debug info for the address of the current line.
8192 Unfortunately, we have little choice here currently, and must always
8193 use the most general form. GCC does not know the address delta
8194 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8195 attributes which will give an upper bound on the address range. We
8196 could perhaps use length attributes to determine when it is safe to
8197 use DW_LNS_fixed_advance_pc. */
8199 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, lt_index
);
8202 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8203 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
8204 "DW_LNS_fixed_advance_pc");
8205 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
8209 /* This can handle any delta. This takes
8210 4+DWARF2_ADDR_SIZE bytes. */
8211 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8212 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8213 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8214 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
8217 strcpy (prev_line_label
, line_label
);
8219 /* Emit debug info for the source file of the current line, if
8220 different from the previous line. */
8221 if (line_info
->dw_file_num
!= current_file
)
8223 current_file
= line_info
->dw_file_num
;
8224 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
8225 dw2_asm_output_data_uleb128 (current_file
, "%lu", current_file
);
8228 /* Emit debug info for the current line number, choosing the encoding
8229 that uses the least amount of space. */
8230 if (line_info
->dw_line_num
!= current_line
)
8232 line_offset
= line_info
->dw_line_num
- current_line
;
8233 line_delta
= line_offset
- DWARF_LINE_BASE
;
8234 current_line
= line_info
->dw_line_num
;
8235 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
8236 /* This can handle deltas from -10 to 234, using the current
8237 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8239 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
8240 "line %lu", current_line
);
8243 /* This can handle any delta. This takes at least 4 bytes,
8244 depending on the value being encoded. */
8245 dw2_asm_output_data (1, DW_LNS_advance_line
,
8246 "advance to line %lu", current_line
);
8247 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
8248 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8252 /* We still need to start a new row, so output a copy insn. */
8253 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8256 /* Emit debug info for the address of the end of the function. */
8259 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
8260 "DW_LNS_fixed_advance_pc");
8261 dw2_asm_output_delta (2, text_end_label
, prev_line_label
, NULL
);
8265 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8266 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8267 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8268 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_end_label
, NULL
);
8271 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8272 dw2_asm_output_data_uleb128 (1, NULL
);
8273 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
8278 for (lt_index
= 0; lt_index
< separate_line_info_table_in_use
;)
8280 dw_separate_line_info_ref line_info
8281 = &separate_line_info_table
[lt_index
];
8284 /* Don't emit anything for redundant notes. */
8285 if (line_info
->dw_line_num
== current_line
8286 && line_info
->dw_file_num
== current_file
8287 && line_info
->function
== function
)
8291 /* Emit debug info for the address of the current line. If this is
8292 a new function, or the first line of a function, then we need
8293 to handle it differently. */
8294 ASM_GENERATE_INTERNAL_LABEL (line_label
, SEPARATE_LINE_CODE_LABEL
,
8296 if (function
!= line_info
->function
)
8298 function
= line_info
->function
;
8300 /* Set the address register to the first line in the function. */
8301 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8302 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8303 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8304 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
8308 /* ??? See the DW_LNS_advance_pc comment above. */
8311 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
8312 "DW_LNS_fixed_advance_pc");
8313 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
8317 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8318 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8319 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8320 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
8324 strcpy (prev_line_label
, line_label
);
8326 /* Emit debug info for the source file of the current line, if
8327 different from the previous line. */
8328 if (line_info
->dw_file_num
!= current_file
)
8330 current_file
= line_info
->dw_file_num
;
8331 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
8332 dw2_asm_output_data_uleb128 (current_file
, "%lu", current_file
);
8335 /* Emit debug info for the current line number, choosing the encoding
8336 that uses the least amount of space. */
8337 if (line_info
->dw_line_num
!= current_line
)
8339 line_offset
= line_info
->dw_line_num
- current_line
;
8340 line_delta
= line_offset
- DWARF_LINE_BASE
;
8341 current_line
= line_info
->dw_line_num
;
8342 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
8343 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
8344 "line %lu", current_line
);
8347 dw2_asm_output_data (1, DW_LNS_advance_line
,
8348 "advance to line %lu", current_line
);
8349 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
8350 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8354 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8362 /* If we're done with a function, end its sequence. */
8363 if (lt_index
== separate_line_info_table_in_use
8364 || separate_line_info_table
[lt_index
].function
!= function
)
8369 /* Emit debug info for the address of the end of the function. */
8370 ASM_GENERATE_INTERNAL_LABEL (line_label
, FUNC_END_LABEL
, function
);
8373 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
8374 "DW_LNS_fixed_advance_pc");
8375 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
8379 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8380 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8381 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8382 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
8385 /* Output the marker for the end of this sequence. */
8386 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8387 dw2_asm_output_data_uleb128 (1, NULL
);
8388 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
8392 /* Output the marker for the end of the line number info. */
8393 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
8396 /* Given a pointer to a tree node for some base type, return a pointer to
8397 a DIE that describes the given type.
8399 This routine must only be called for GCC type nodes that correspond to
8400 Dwarf base (fundamental) types. */
8403 base_type_die (tree type
)
8405 dw_die_ref base_type_result
;
8406 enum dwarf_type encoding
;
8408 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
8411 switch (TREE_CODE (type
))
8414 if (TYPE_STRING_FLAG (type
))
8416 if (TYPE_UNSIGNED (type
))
8417 encoding
= DW_ATE_unsigned_char
;
8419 encoding
= DW_ATE_signed_char
;
8421 else if (TYPE_UNSIGNED (type
))
8422 encoding
= DW_ATE_unsigned
;
8424 encoding
= DW_ATE_signed
;
8428 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type
)))
8429 encoding
= DW_ATE_decimal_float
;
8431 encoding
= DW_ATE_float
;
8434 case FIXED_POINT_TYPE
:
8435 if (TYPE_UNSIGNED (type
))
8436 encoding
= DW_ATE_signed_fixed
;
8438 encoding
= DW_ATE_unsigned_fixed
;
8441 /* Dwarf2 doesn't know anything about complex ints, so use
8442 a user defined type for it. */
8444 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
8445 encoding
= DW_ATE_complex_float
;
8447 encoding
= DW_ATE_lo_user
;
8451 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8452 encoding
= DW_ATE_boolean
;
8456 /* No other TREE_CODEs are Dwarf fundamental types. */
8460 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die
, type
);
8462 /* This probably indicates a bug. */
8463 if (! TYPE_NAME (type
))
8464 add_name_attribute (base_type_result
, "__unknown__");
8466 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
8467 int_size_in_bytes (type
));
8468 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
8470 return base_type_result
;
8473 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8474 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8477 is_base_type (tree type
)
8479 switch (TREE_CODE (type
))
8485 case FIXED_POINT_TYPE
:
8493 case QUAL_UNION_TYPE
:
8498 case REFERENCE_TYPE
:
8511 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8512 node, return the size in bits for the type if it is a constant, or else
8513 return the alignment for the type if the type's size is not constant, or
8514 else return BITS_PER_WORD if the type actually turns out to be an
8517 static inline unsigned HOST_WIDE_INT
8518 simple_type_size_in_bits (const_tree type
)
8520 if (TREE_CODE (type
) == ERROR_MARK
)
8521 return BITS_PER_WORD
;
8522 else if (TYPE_SIZE (type
) == NULL_TREE
)
8524 else if (host_integerp (TYPE_SIZE (type
), 1))
8525 return tree_low_cst (TYPE_SIZE (type
), 1);
8527 return TYPE_ALIGN (type
);
8530 /* Return true if the debug information for the given type should be
8531 emitted as a subrange type. */
8534 is_subrange_type (const_tree type
)
8536 tree subtype
= TREE_TYPE (type
);
8538 /* Subrange types are identified by the fact that they are integer
8539 types, and that they have a subtype which is either an integer type
8540 or an enumeral type. */
8542 if (TREE_CODE (type
) != INTEGER_TYPE
8543 || subtype
== NULL_TREE
)
8546 if (TREE_CODE (subtype
) != INTEGER_TYPE
8547 && TREE_CODE (subtype
) != ENUMERAL_TYPE
)
8550 if (TREE_CODE (type
) == TREE_CODE (subtype
)
8551 && int_size_in_bytes (type
) == int_size_in_bytes (subtype
)
8552 && TYPE_MIN_VALUE (type
) != NULL
8553 && TYPE_MIN_VALUE (subtype
) != NULL
8554 && tree_int_cst_equal (TYPE_MIN_VALUE (type
), TYPE_MIN_VALUE (subtype
))
8555 && TYPE_MAX_VALUE (type
) != NULL
8556 && TYPE_MAX_VALUE (subtype
) != NULL
8557 && tree_int_cst_equal (TYPE_MAX_VALUE (type
), TYPE_MAX_VALUE (subtype
)))
8559 /* The type and its subtype have the same representation. If in
8560 addition the two types also have the same name, then the given
8561 type is not a subrange type, but rather a plain base type. */
8562 /* FIXME: brobecker/2004-03-22:
8563 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8564 therefore be sufficient to check the TYPE_SIZE node pointers
8565 rather than checking the actual size. Unfortunately, we have
8566 found some cases, such as in the Ada "integer" type, where
8567 this is not the case. Until this problem is solved, we need to
8568 keep checking the actual size. */
8569 tree type_name
= TYPE_NAME (type
);
8570 tree subtype_name
= TYPE_NAME (subtype
);
8572 if (type_name
!= NULL
&& TREE_CODE (type_name
) == TYPE_DECL
)
8573 type_name
= DECL_NAME (type_name
);
8575 if (subtype_name
!= NULL
&& TREE_CODE (subtype_name
) == TYPE_DECL
)
8576 subtype_name
= DECL_NAME (subtype_name
);
8578 if (type_name
== subtype_name
)
8585 /* Given a pointer to a tree node for a subrange type, return a pointer
8586 to a DIE that describes the given type. */
8589 subrange_type_die (tree type
, dw_die_ref context_die
)
8591 dw_die_ref subrange_die
;
8592 const HOST_WIDE_INT size_in_bytes
= int_size_in_bytes (type
);
8594 if (context_die
== NULL
)
8595 context_die
= comp_unit_die
;
8597 subrange_die
= new_die (DW_TAG_subrange_type
, context_die
, type
);
8599 if (int_size_in_bytes (TREE_TYPE (type
)) != size_in_bytes
)
8601 /* The size of the subrange type and its base type do not match,
8602 so we need to generate a size attribute for the subrange type. */
8603 add_AT_unsigned (subrange_die
, DW_AT_byte_size
, size_in_bytes
);
8606 if (TYPE_MIN_VALUE (type
) != NULL
)
8607 add_bound_info (subrange_die
, DW_AT_lower_bound
,
8608 TYPE_MIN_VALUE (type
));
8609 if (TYPE_MAX_VALUE (type
) != NULL
)
8610 add_bound_info (subrange_die
, DW_AT_upper_bound
,
8611 TYPE_MAX_VALUE (type
));
8613 return subrange_die
;
8616 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8617 entry that chains various modifiers in front of the given type. */
8620 modified_type_die (tree type
, int is_const_type
, int is_volatile_type
,
8621 dw_die_ref context_die
)
8623 enum tree_code code
= TREE_CODE (type
);
8624 dw_die_ref mod_type_die
;
8625 dw_die_ref sub_die
= NULL
;
8626 tree item_type
= NULL
;
8627 tree qualified_type
;
8630 if (code
== ERROR_MARK
)
8633 /* See if we already have the appropriately qualified variant of
8636 = get_qualified_type (type
,
8637 ((is_const_type
? TYPE_QUAL_CONST
: 0)
8638 | (is_volatile_type
? TYPE_QUAL_VOLATILE
: 0)));
8640 /* If we do, then we can just use its DIE, if it exists. */
8643 mod_type_die
= lookup_type_die (qualified_type
);
8645 return mod_type_die
;
8648 name
= qualified_type
? TYPE_NAME (qualified_type
) : NULL
;
8650 /* Handle C typedef types. */
8651 if (name
&& TREE_CODE (name
) == TYPE_DECL
&& DECL_ORIGINAL_TYPE (name
))
8653 tree dtype
= TREE_TYPE (name
);
8655 if (qualified_type
== dtype
)
8657 /* For a named type, use the typedef. */
8658 gen_type_die (qualified_type
, context_die
);
8659 return lookup_type_die (qualified_type
);
8661 else if (is_const_type
< TYPE_READONLY (dtype
)
8662 || is_volatile_type
< TYPE_VOLATILE (dtype
)
8663 || (is_const_type
<= TYPE_READONLY (dtype
)
8664 && is_volatile_type
<= TYPE_VOLATILE (dtype
)
8665 && DECL_ORIGINAL_TYPE (name
) != type
))
8666 /* cv-unqualified version of named type. Just use the unnamed
8667 type to which it refers. */
8668 return modified_type_die (DECL_ORIGINAL_TYPE (name
),
8669 is_const_type
, is_volatile_type
,
8671 /* Else cv-qualified version of named type; fall through. */
8676 mod_type_die
= new_die (DW_TAG_const_type
, comp_unit_die
, type
);
8677 sub_die
= modified_type_die (type
, 0, is_volatile_type
, context_die
);
8679 else if (is_volatile_type
)
8681 mod_type_die
= new_die (DW_TAG_volatile_type
, comp_unit_die
, type
);
8682 sub_die
= modified_type_die (type
, 0, 0, context_die
);
8684 else if (code
== POINTER_TYPE
)
8686 mod_type_die
= new_die (DW_TAG_pointer_type
, comp_unit_die
, type
);
8687 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8688 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8689 item_type
= TREE_TYPE (type
);
8691 else if (code
== REFERENCE_TYPE
)
8693 mod_type_die
= new_die (DW_TAG_reference_type
, comp_unit_die
, type
);
8694 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8695 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8696 item_type
= TREE_TYPE (type
);
8698 else if (is_subrange_type (type
))
8700 mod_type_die
= subrange_type_die (type
, context_die
);
8701 item_type
= TREE_TYPE (type
);
8703 else if (is_base_type (type
))
8704 mod_type_die
= base_type_die (type
);
8707 gen_type_die (type
, context_die
);
8709 /* We have to get the type_main_variant here (and pass that to the
8710 `lookup_type_die' routine) because the ..._TYPE node we have
8711 might simply be a *copy* of some original type node (where the
8712 copy was created to help us keep track of typedef names) and
8713 that copy might have a different TYPE_UID from the original
8715 if (TREE_CODE (type
) != VECTOR_TYPE
)
8716 return lookup_type_die (type_main_variant (type
));
8718 /* Vectors have the debugging information in the type,
8719 not the main variant. */
8720 return lookup_type_die (type
);
8723 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8724 don't output a DW_TAG_typedef, since there isn't one in the
8725 user's program; just attach a DW_AT_name to the type. */
8727 && (TREE_CODE (name
) != TYPE_DECL
8728 || (TREE_TYPE (name
) == qualified_type
&& DECL_NAME (name
))))
8730 if (TREE_CODE (name
) == TYPE_DECL
)
8731 /* Could just call add_name_and_src_coords_attributes here,
8732 but since this is a builtin type it doesn't have any
8733 useful source coordinates anyway. */
8734 name
= DECL_NAME (name
);
8735 add_name_attribute (mod_type_die
, IDENTIFIER_POINTER (name
));
8739 equate_type_number_to_die (qualified_type
, mod_type_die
);
8742 /* We must do this after the equate_type_number_to_die call, in case
8743 this is a recursive type. This ensures that the modified_type_die
8744 recursion will terminate even if the type is recursive. Recursive
8745 types are possible in Ada. */
8746 sub_die
= modified_type_die (item_type
,
8747 TYPE_READONLY (item_type
),
8748 TYPE_VOLATILE (item_type
),
8751 if (sub_die
!= NULL
)
8752 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
8754 return mod_type_die
;
8757 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8758 an enumerated type. */
8761 type_is_enum (const_tree type
)
8763 return TREE_CODE (type
) == ENUMERAL_TYPE
;
8766 /* Return the DBX register number described by a given RTL node. */
8769 dbx_reg_number (const_rtx rtl
)
8771 unsigned regno
= REGNO (rtl
);
8773 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
8775 #ifdef LEAF_REG_REMAP
8776 if (current_function_uses_only_leaf_regs
)
8778 int leaf_reg
= LEAF_REG_REMAP (regno
);
8780 regno
= (unsigned) leaf_reg
;
8784 return DBX_REGISTER_NUMBER (regno
);
8787 /* Optionally add a DW_OP_piece term to a location description expression.
8788 DW_OP_piece is only added if the location description expression already
8789 doesn't end with DW_OP_piece. */
8792 add_loc_descr_op_piece (dw_loc_descr_ref
*list_head
, int size
)
8794 dw_loc_descr_ref loc
;
8796 if (*list_head
!= NULL
)
8798 /* Find the end of the chain. */
8799 for (loc
= *list_head
; loc
->dw_loc_next
!= NULL
; loc
= loc
->dw_loc_next
)
8802 if (loc
->dw_loc_opc
!= DW_OP_piece
)
8803 loc
->dw_loc_next
= new_loc_descr (DW_OP_piece
, size
, 0);
8807 /* Return a location descriptor that designates a machine register or
8808 zero if there is none. */
8810 static dw_loc_descr_ref
8811 reg_loc_descriptor (rtx rtl
, enum var_init_status initialized
)
8815 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
8818 regs
= targetm
.dwarf_register_span (rtl
);
8820 if (hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)] > 1 || regs
)
8821 return multiple_reg_loc_descriptor (rtl
, regs
, initialized
);
8823 return one_reg_loc_descriptor (dbx_reg_number (rtl
), initialized
);
8826 /* Return a location descriptor that designates a machine register for
8827 a given hard register number. */
8829 static dw_loc_descr_ref
8830 one_reg_loc_descriptor (unsigned int regno
, enum var_init_status initialized
)
8832 dw_loc_descr_ref reg_loc_descr
;
8834 reg_loc_descr
= new_loc_descr (DW_OP_reg0
+ regno
, 0, 0);
8836 reg_loc_descr
= new_loc_descr (DW_OP_regx
, regno
, 0);
8838 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
8839 add_loc_descr (®_loc_descr
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
8841 return reg_loc_descr
;
8844 /* Given an RTL of a register, return a location descriptor that
8845 designates a value that spans more than one register. */
8847 static dw_loc_descr_ref
8848 multiple_reg_loc_descriptor (rtx rtl
, rtx regs
,
8849 enum var_init_status initialized
)
8853 dw_loc_descr_ref loc_result
= NULL
;
8856 #ifdef LEAF_REG_REMAP
8857 if (current_function_uses_only_leaf_regs
)
8859 int leaf_reg
= LEAF_REG_REMAP (reg
);
8861 reg
= (unsigned) leaf_reg
;
8864 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg
) == dbx_reg_number (rtl
));
8865 nregs
= hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)];
8867 /* Simple, contiguous registers. */
8868 if (regs
== NULL_RTX
)
8870 size
= GET_MODE_SIZE (GET_MODE (rtl
)) / nregs
;
8877 t
= one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg
),
8878 VAR_INIT_STATUS_INITIALIZED
);
8879 add_loc_descr (&loc_result
, t
);
8880 add_loc_descr_op_piece (&loc_result
, size
);
8886 /* Now onto stupid register sets in non contiguous locations. */
8888 gcc_assert (GET_CODE (regs
) == PARALLEL
);
8890 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8893 for (i
= 0; i
< XVECLEN (regs
, 0); ++i
)
8897 t
= one_reg_loc_descriptor (REGNO (XVECEXP (regs
, 0, i
)),
8898 VAR_INIT_STATUS_INITIALIZED
);
8899 add_loc_descr (&loc_result
, t
);
8900 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8901 add_loc_descr_op_piece (&loc_result
, size
);
8904 if (loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
8905 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
8909 /* Return a location descriptor that designates a constant. */
8911 static dw_loc_descr_ref
8912 int_loc_descriptor (HOST_WIDE_INT i
)
8914 enum dwarf_location_atom op
;
8916 /* Pick the smallest representation of a constant, rather than just
8917 defaulting to the LEB encoding. */
8921 op
= DW_OP_lit0
+ i
;
8924 else if (i
<= 0xffff)
8926 else if (HOST_BITS_PER_WIDE_INT
== 32
8936 else if (i
>= -0x8000)
8938 else if (HOST_BITS_PER_WIDE_INT
== 32
8939 || i
>= -0x80000000)
8945 return new_loc_descr (op
, i
, 0);
8948 /* Return a location descriptor that designates a base+offset location. */
8950 static dw_loc_descr_ref
8951 based_loc_descr (rtx reg
, HOST_WIDE_INT offset
,
8952 enum var_init_status initialized
)
8955 dw_loc_descr_ref result
;
8957 /* We only use "frame base" when we're sure we're talking about the
8958 post-prologue local stack frame. We do this by *not* running
8959 register elimination until this point, and recognizing the special
8960 argument pointer and soft frame pointer rtx's. */
8961 if (reg
== arg_pointer_rtx
|| reg
== frame_pointer_rtx
)
8963 rtx elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
8967 if (GET_CODE (elim
) == PLUS
)
8969 offset
+= INTVAL (XEXP (elim
, 1));
8970 elim
= XEXP (elim
, 0);
8972 gcc_assert (elim
== (frame_pointer_needed
? hard_frame_pointer_rtx
8973 : stack_pointer_rtx
));
8974 offset
+= frame_pointer_fb_offset
;
8976 return new_loc_descr (DW_OP_fbreg
, offset
, 0);
8980 regno
= dbx_reg_number (reg
);
8982 result
= new_loc_descr (DW_OP_breg0
+ regno
, offset
, 0);
8984 result
= new_loc_descr (DW_OP_bregx
, regno
, offset
);
8986 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
8987 add_loc_descr (&result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
8992 /* Return true if this RTL expression describes a base+offset calculation. */
8995 is_based_loc (const_rtx rtl
)
8997 return (GET_CODE (rtl
) == PLUS
8998 && ((REG_P (XEXP (rtl
, 0))
8999 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
9000 && GET_CODE (XEXP (rtl
, 1)) == CONST_INT
)));
9003 /* Return a descriptor that describes the concatenation of N locations
9004 used to form the address of a memory location. */
9006 static dw_loc_descr_ref
9007 concatn_mem_loc_descriptor (rtx concatn
, enum machine_mode mode
,
9008 enum var_init_status initialized
)
9011 dw_loc_descr_ref cc_loc_result
= NULL
;
9012 unsigned int n
= XVECLEN (concatn
, 0);
9014 for (i
= 0; i
< n
; ++i
)
9016 dw_loc_descr_ref ref
;
9017 rtx x
= XVECEXP (concatn
, 0, i
);
9019 ref
= mem_loc_descriptor (x
, mode
, VAR_INIT_STATUS_INITIALIZED
);
9023 add_loc_descr (&cc_loc_result
, ref
);
9024 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x
)));
9027 if (cc_loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
9028 add_loc_descr (&cc_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
9030 return cc_loc_result
;
9033 /* The following routine converts the RTL for a variable or parameter
9034 (resident in memory) into an equivalent Dwarf representation of a
9035 mechanism for getting the address of that same variable onto the top of a
9036 hypothetical "address evaluation" stack.
9038 When creating memory location descriptors, we are effectively transforming
9039 the RTL for a memory-resident object into its Dwarf postfix expression
9040 equivalent. This routine recursively descends an RTL tree, turning
9041 it into Dwarf postfix code as it goes.
9043 MODE is the mode of the memory reference, needed to handle some
9044 autoincrement addressing modes.
9046 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
9047 location list for RTL.
9049 Return 0 if we can't represent the location. */
9051 static dw_loc_descr_ref
9052 mem_loc_descriptor (rtx rtl
, enum machine_mode mode
,
9053 enum var_init_status initialized
)
9055 dw_loc_descr_ref mem_loc_result
= NULL
;
9056 enum dwarf_location_atom op
;
9058 /* Note that for a dynamically sized array, the location we will generate a
9059 description of here will be the lowest numbered location which is
9060 actually within the array. That's *not* necessarily the same as the
9061 zeroth element of the array. */
9063 rtl
= targetm
.delegitimize_address (rtl
);
9065 switch (GET_CODE (rtl
))
9070 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
9071 just fall into the SUBREG code. */
9073 /* ... fall through ... */
9076 /* The case of a subreg may arise when we have a local (register)
9077 variable or a formal (register) parameter which doesn't quite fill
9078 up an entire register. For now, just assume that it is
9079 legitimate to make the Dwarf info refer to the whole register which
9080 contains the given subreg. */
9081 rtl
= XEXP (rtl
, 0);
9083 /* ... fall through ... */
9086 /* Whenever a register number forms a part of the description of the
9087 method for calculating the (dynamic) address of a memory resident
9088 object, DWARF rules require the register number be referred to as
9089 a "base register". This distinction is not based in any way upon
9090 what category of register the hardware believes the given register
9091 belongs to. This is strictly DWARF terminology we're dealing with
9092 here. Note that in cases where the location of a memory-resident
9093 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
9094 OP_CONST (0)) the actual DWARF location descriptor that we generate
9095 may just be OP_BASEREG (basereg). This may look deceptively like
9096 the object in question was allocated to a register (rather than in
9097 memory) so DWARF consumers need to be aware of the subtle
9098 distinction between OP_REG and OP_BASEREG. */
9099 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
9100 mem_loc_result
= based_loc_descr (rtl
, 0, VAR_INIT_STATUS_INITIALIZED
);
9104 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
),
9105 VAR_INIT_STATUS_INITIALIZED
);
9106 if (mem_loc_result
!= 0)
9107 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
9111 rtl
= XEXP (rtl
, 1);
9113 /* ... fall through ... */
9116 /* Some ports can transform a symbol ref into a label ref, because
9117 the symbol ref is too far away and has to be dumped into a constant
9121 /* Alternatively, the symbol in the constant pool might be referenced
9122 by a different symbol. */
9123 if (GET_CODE (rtl
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (rtl
))
9126 rtx tmp
= get_pool_constant_mark (rtl
, &marked
);
9128 if (GET_CODE (tmp
) == SYMBOL_REF
)
9131 if (CONSTANT_POOL_ADDRESS_P (tmp
))
9132 get_pool_constant_mark (tmp
, &marked
);
9137 /* If all references to this pool constant were optimized away,
9138 it was not output and thus we can't represent it.
9139 FIXME: might try to use DW_OP_const_value here, though
9140 DW_OP_piece complicates it. */
9145 mem_loc_result
= new_loc_descr (DW_OP_addr
, 0, 0);
9146 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
9147 mem_loc_result
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
9148 VEC_safe_push (rtx
, gc
, used_rtx_array
, rtl
);
9152 /* Extract the PLUS expression nested inside and fall into
9154 rtl
= XEXP (rtl
, 1);
9159 /* Turn these into a PLUS expression and fall into the PLUS code
9161 rtl
= gen_rtx_PLUS (word_mode
, XEXP (rtl
, 0),
9162 GEN_INT (GET_CODE (rtl
) == PRE_INC
9163 ? GET_MODE_UNIT_SIZE (mode
)
9164 : -GET_MODE_UNIT_SIZE (mode
)));
9166 /* ... fall through ... */
9170 if (is_based_loc (rtl
))
9171 mem_loc_result
= based_loc_descr (XEXP (rtl
, 0),
9172 INTVAL (XEXP (rtl
, 1)),
9173 VAR_INIT_STATUS_INITIALIZED
);
9176 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
,
9177 VAR_INIT_STATUS_INITIALIZED
);
9178 if (mem_loc_result
== 0)
9181 if (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
9182 && INTVAL (XEXP (rtl
, 1)) >= 0)
9183 add_loc_descr (&mem_loc_result
,
9184 new_loc_descr (DW_OP_plus_uconst
,
9185 INTVAL (XEXP (rtl
, 1)), 0));
9188 add_loc_descr (&mem_loc_result
,
9189 mem_loc_descriptor (XEXP (rtl
, 1), mode
,
9190 VAR_INIT_STATUS_INITIALIZED
));
9191 add_loc_descr (&mem_loc_result
,
9192 new_loc_descr (DW_OP_plus
, 0, 0));
9197 /* If a pseudo-reg is optimized away, it is possible for it to
9198 be replaced with a MEM containing a multiply or shift. */
9217 dw_loc_descr_ref op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
,
9218 VAR_INIT_STATUS_INITIALIZED
);
9219 dw_loc_descr_ref op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
,
9220 VAR_INIT_STATUS_INITIALIZED
);
9222 if (op0
== 0 || op1
== 0)
9225 mem_loc_result
= op0
;
9226 add_loc_descr (&mem_loc_result
, op1
);
9227 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
9232 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
9236 mem_loc_result
= concatn_mem_loc_descriptor (rtl
, mode
,
9237 VAR_INIT_STATUS_INITIALIZED
);
9244 if (mem_loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
9245 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
9247 return mem_loc_result
;
9250 /* Return a descriptor that describes the concatenation of two locations.
9251 This is typically a complex variable. */
9253 static dw_loc_descr_ref
9254 concat_loc_descriptor (rtx x0
, rtx x1
, enum var_init_status initialized
)
9256 dw_loc_descr_ref cc_loc_result
= NULL
;
9257 dw_loc_descr_ref x0_ref
= loc_descriptor (x0
, VAR_INIT_STATUS_INITIALIZED
);
9258 dw_loc_descr_ref x1_ref
= loc_descriptor (x1
, VAR_INIT_STATUS_INITIALIZED
);
9260 if (x0_ref
== 0 || x1_ref
== 0)
9263 cc_loc_result
= x0_ref
;
9264 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x0
)));
9266 add_loc_descr (&cc_loc_result
, x1_ref
);
9267 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x1
)));
9269 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
9270 add_loc_descr (&cc_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
9272 return cc_loc_result
;
9275 /* Return a descriptor that describes the concatenation of N
9278 static dw_loc_descr_ref
9279 concatn_loc_descriptor (rtx concatn
, enum var_init_status initialized
)
9282 dw_loc_descr_ref cc_loc_result
= NULL
;
9283 unsigned int n
= XVECLEN (concatn
, 0);
9285 for (i
= 0; i
< n
; ++i
)
9287 dw_loc_descr_ref ref
;
9288 rtx x
= XVECEXP (concatn
, 0, i
);
9290 ref
= loc_descriptor (x
, VAR_INIT_STATUS_INITIALIZED
);
9294 add_loc_descr (&cc_loc_result
, ref
);
9295 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x
)));
9298 if (cc_loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
9299 add_loc_descr (&cc_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
9301 return cc_loc_result
;
9304 /* Output a proper Dwarf location descriptor for a variable or parameter
9305 which is either allocated in a register or in a memory location. For a
9306 register, we just generate an OP_REG and the register number. For a
9307 memory location we provide a Dwarf postfix expression describing how to
9308 generate the (dynamic) address of the object onto the address stack.
9310 If we don't know how to describe it, return 0. */
9312 static dw_loc_descr_ref
9313 loc_descriptor (rtx rtl
, enum var_init_status initialized
)
9315 dw_loc_descr_ref loc_result
= NULL
;
9317 switch (GET_CODE (rtl
))
9320 /* The case of a subreg may arise when we have a local (register)
9321 variable or a formal (register) parameter which doesn't quite fill
9322 up an entire register. For now, just assume that it is
9323 legitimate to make the Dwarf info refer to the whole register which
9324 contains the given subreg. */
9325 rtl
= SUBREG_REG (rtl
);
9327 /* ... fall through ... */
9330 loc_result
= reg_loc_descriptor (rtl
, initialized
);
9334 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
),
9339 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1),
9344 loc_result
= concatn_loc_descriptor (rtl
, initialized
);
9349 if (GET_CODE (XEXP (rtl
, 1)) != PARALLEL
)
9351 loc_result
= loc_descriptor (XEXP (XEXP (rtl
, 1), 0), initialized
);
9355 rtl
= XEXP (rtl
, 1);
9360 rtvec par_elems
= XVEC (rtl
, 0);
9361 int num_elem
= GET_NUM_ELEM (par_elems
);
9362 enum machine_mode mode
;
9365 /* Create the first one, so we have something to add to. */
9366 loc_result
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, 0), 0),
9368 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, 0), 0));
9369 add_loc_descr_op_piece (&loc_result
, GET_MODE_SIZE (mode
));
9370 for (i
= 1; i
< num_elem
; i
++)
9372 dw_loc_descr_ref temp
;
9374 temp
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, i
), 0),
9376 add_loc_descr (&loc_result
, temp
);
9377 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, i
), 0));
9378 add_loc_descr_op_piece (&loc_result
, GET_MODE_SIZE (mode
));
9390 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9391 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9392 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9393 top-level invocation, and we require the address of LOC; is 0 if we require
9394 the value of LOC. */
9396 static dw_loc_descr_ref
9397 loc_descriptor_from_tree_1 (tree loc
, int want_address
)
9399 dw_loc_descr_ref ret
, ret1
;
9400 int have_address
= 0;
9401 enum dwarf_location_atom op
;
9403 /* ??? Most of the time we do not take proper care for sign/zero
9404 extending the values properly. Hopefully this won't be a real
9407 switch (TREE_CODE (loc
))
9412 case PLACEHOLDER_EXPR
:
9413 /* This case involves extracting fields from an object to determine the
9414 position of other fields. We don't try to encode this here. The
9415 only user of this is Ada, which encodes the needed information using
9416 the names of types. */
9422 case PREINCREMENT_EXPR
:
9423 case PREDECREMENT_EXPR
:
9424 case POSTINCREMENT_EXPR
:
9425 case POSTDECREMENT_EXPR
:
9426 /* There are no opcodes for these operations. */
9430 /* If we already want an address, there's nothing we can do. */
9434 /* Otherwise, process the argument and look for the address. */
9435 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 1);
9438 if (DECL_THREAD_LOCAL_P (loc
))
9442 /* If this is not defined, we have no way to emit the data. */
9443 if (!targetm
.have_tls
|| !targetm
.asm_out
.output_dwarf_dtprel
)
9446 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9447 look up addresses of objects in the current module. */
9448 if (DECL_EXTERNAL (loc
))
9451 rtl
= rtl_for_decl_location (loc
);
9452 if (rtl
== NULL_RTX
)
9457 rtl
= XEXP (rtl
, 0);
9458 if (! CONSTANT_P (rtl
))
9461 ret
= new_loc_descr (INTERNAL_DW_OP_tls_addr
, 0, 0);
9462 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
9463 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
9465 ret1
= new_loc_descr (DW_OP_GNU_push_tls_address
, 0, 0);
9466 add_loc_descr (&ret
, ret1
);
9474 if (DECL_HAS_VALUE_EXPR_P (loc
))
9475 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc
),
9482 rtx rtl
= rtl_for_decl_location (loc
);
9484 if (rtl
== NULL_RTX
)
9486 else if (GET_CODE (rtl
) == CONST_INT
)
9488 HOST_WIDE_INT val
= INTVAL (rtl
);
9489 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
9490 val
&= GET_MODE_MASK (DECL_MODE (loc
));
9491 ret
= int_loc_descriptor (val
);
9493 else if (GET_CODE (rtl
) == CONST_STRING
)
9495 else if (CONSTANT_P (rtl
))
9497 ret
= new_loc_descr (DW_OP_addr
, 0, 0);
9498 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
9499 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
9503 enum machine_mode mode
;
9505 /* Certain constructs can only be represented at top-level. */
9506 if (want_address
== 2)
9507 return loc_descriptor (rtl
, VAR_INIT_STATUS_INITIALIZED
);
9509 mode
= GET_MODE (rtl
);
9512 rtl
= XEXP (rtl
, 0);
9515 ret
= mem_loc_descriptor (rtl
, mode
, VAR_INIT_STATUS_INITIALIZED
);
9521 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9526 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), want_address
);
9530 case NON_LVALUE_EXPR
:
9531 case VIEW_CONVERT_EXPR
:
9533 case GIMPLE_MODIFY_STMT
:
9534 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc
, 0),
9540 case ARRAY_RANGE_REF
:
9543 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
9544 enum machine_mode mode
;
9546 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (loc
));
9548 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
9549 &unsignedp
, &volatilep
, false);
9554 ret
= loc_descriptor_from_tree_1 (obj
, 1);
9556 || bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
9559 if (offset
!= NULL_TREE
)
9561 /* Variable offset. */
9562 add_loc_descr (&ret
, loc_descriptor_from_tree_1 (offset
, 0));
9563 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
9566 bytepos
= bitpos
/ BITS_PER_UNIT
;
9568 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
9569 else if (bytepos
< 0)
9571 add_loc_descr (&ret
, int_loc_descriptor (bytepos
));
9572 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
9580 if (host_integerp (loc
, 0))
9581 ret
= int_loc_descriptor (tree_low_cst (loc
, 0));
9588 /* Get an RTL for this, if something has been emitted. */
9589 rtx rtl
= lookup_constant_def (loc
);
9590 enum machine_mode mode
;
9592 if (!rtl
|| !MEM_P (rtl
))
9594 mode
= GET_MODE (rtl
);
9595 rtl
= XEXP (rtl
, 0);
9596 ret
= mem_loc_descriptor (rtl
, mode
, VAR_INIT_STATUS_INITIALIZED
);
9601 case TRUTH_AND_EXPR
:
9602 case TRUTH_ANDIF_EXPR
:
9607 case TRUTH_XOR_EXPR
:
9613 case TRUTH_ORIF_EXPR
:
9618 case FLOOR_DIV_EXPR
:
9620 case ROUND_DIV_EXPR
:
9621 case TRUNC_DIV_EXPR
:
9629 case FLOOR_MOD_EXPR
:
9631 case ROUND_MOD_EXPR
:
9632 case TRUNC_MOD_EXPR
:
9645 op
= (TYPE_UNSIGNED (TREE_TYPE (loc
)) ? DW_OP_shr
: DW_OP_shra
);
9648 case POINTER_PLUS_EXPR
:
9650 if (TREE_CODE (TREE_OPERAND (loc
, 1)) == INTEGER_CST
9651 && host_integerp (TREE_OPERAND (loc
, 1), 0))
9653 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9657 add_loc_descr (&ret
,
9658 new_loc_descr (DW_OP_plus_uconst
,
9659 tree_low_cst (TREE_OPERAND (loc
, 1),
9669 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9676 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9683 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9690 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9705 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9706 ret1
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), 0);
9707 if (ret
== 0 || ret1
== 0)
9710 add_loc_descr (&ret
, ret1
);
9711 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9714 case TRUTH_NOT_EXPR
:
9728 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9732 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9738 const enum tree_code code
=
9739 TREE_CODE (loc
) == MIN_EXPR
? GT_EXPR
: LT_EXPR
;
9741 loc
= build3 (COND_EXPR
, TREE_TYPE (loc
),
9742 build2 (code
, integer_type_node
,
9743 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
9744 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
9747 /* ... fall through ... */
9751 dw_loc_descr_ref lhs
9752 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), 0);
9753 dw_loc_descr_ref rhs
9754 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 2), 0);
9755 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
9757 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9758 if (ret
== 0 || lhs
== 0 || rhs
== 0)
9761 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
9762 add_loc_descr (&ret
, bra_node
);
9764 add_loc_descr (&ret
, rhs
);
9765 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
9766 add_loc_descr (&ret
, jump_node
);
9768 add_loc_descr (&ret
, lhs
);
9769 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9770 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
9772 /* ??? Need a node to point the skip at. Use a nop. */
9773 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
9774 add_loc_descr (&ret
, tmp
);
9775 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9776 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
9780 case FIX_TRUNC_EXPR
:
9784 /* Leave front-end specific codes as simply unknown. This comes
9785 up, for instance, with the C STMT_EXPR. */
9786 if ((unsigned int) TREE_CODE (loc
)
9787 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
9790 #ifdef ENABLE_CHECKING
9791 /* Otherwise this is a generic code; we should just lists all of
9792 these explicitly. We forgot one. */
9795 /* In a release build, we want to degrade gracefully: better to
9796 generate incomplete debugging information than to crash. */
9801 /* Show if we can't fill the request for an address. */
9802 if (want_address
&& !have_address
)
9805 /* If we've got an address and don't want one, dereference. */
9806 if (!want_address
&& have_address
&& ret
)
9808 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
9810 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
9812 else if (size
== DWARF2_ADDR_SIZE
)
9815 op
= DW_OP_deref_size
;
9817 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
9823 static inline dw_loc_descr_ref
9824 loc_descriptor_from_tree (tree loc
)
9826 return loc_descriptor_from_tree_1 (loc
, 2);
9829 /* Given a value, round it up to the lowest multiple of `boundary'
9830 which is not less than the value itself. */
9832 static inline HOST_WIDE_INT
9833 ceiling (HOST_WIDE_INT value
, unsigned int boundary
)
9835 return (((value
+ boundary
- 1) / boundary
) * boundary
);
9838 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9839 pointer to the declared type for the relevant field variable, or return
9840 `integer_type_node' if the given node turns out to be an
9844 field_type (const_tree decl
)
9848 if (TREE_CODE (decl
) == ERROR_MARK
)
9849 return integer_type_node
;
9851 type
= DECL_BIT_FIELD_TYPE (decl
);
9852 if (type
== NULL_TREE
)
9853 type
= TREE_TYPE (decl
);
9858 /* Given a pointer to a tree node, return the alignment in bits for
9859 it, or else return BITS_PER_WORD if the node actually turns out to
9860 be an ERROR_MARK node. */
9862 static inline unsigned
9863 simple_type_align_in_bits (const_tree type
)
9865 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
9868 static inline unsigned
9869 simple_decl_align_in_bits (const_tree decl
)
9871 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
9874 /* Return the result of rounding T up to ALIGN. */
9876 static inline HOST_WIDE_INT
9877 round_up_to_align (HOST_WIDE_INT t
, unsigned int align
)
9879 /* We must be careful if T is negative because HOST_WIDE_INT can be
9880 either "above" or "below" unsigned int as per the C promotion
9881 rules, depending on the host, thus making the signedness of the
9882 direct multiplication and division unpredictable. */
9883 unsigned HOST_WIDE_INT u
= (unsigned HOST_WIDE_INT
) t
;
9889 return (HOST_WIDE_INT
) u
;
9892 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9893 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9894 or return 0 if we are unable to determine what that offset is, either
9895 because the argument turns out to be a pointer to an ERROR_MARK node, or
9896 because the offset is actually variable. (We can't handle the latter case
9899 static HOST_WIDE_INT
9900 field_byte_offset (const_tree decl
)
9902 HOST_WIDE_INT object_offset_in_bits
;
9903 HOST_WIDE_INT bitpos_int
;
9905 if (TREE_CODE (decl
) == ERROR_MARK
)
9908 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
);
9910 /* We cannot yet cope with fields whose positions are variable, so
9911 for now, when we see such things, we simply return 0. Someday, we may
9912 be able to handle such cases, but it will be damn difficult. */
9913 if (! host_integerp (bit_position (decl
), 0))
9916 bitpos_int
= int_bit_position (decl
);
9918 #ifdef PCC_BITFIELD_TYPE_MATTERS
9919 if (PCC_BITFIELD_TYPE_MATTERS
)
9922 tree field_size_tree
;
9923 HOST_WIDE_INT deepest_bitpos
;
9924 unsigned HOST_WIDE_INT field_size_in_bits
;
9925 unsigned int type_align_in_bits
;
9926 unsigned int decl_align_in_bits
;
9927 unsigned HOST_WIDE_INT type_size_in_bits
;
9929 type
= field_type (decl
);
9930 field_size_tree
= DECL_SIZE (decl
);
9932 /* The size could be unspecified if there was an error, or for
9933 a flexible array member. */
9934 if (! field_size_tree
)
9935 field_size_tree
= bitsize_zero_node
;
9937 /* If we don't know the size of the field, pretend it's a full word. */
9938 if (host_integerp (field_size_tree
, 1))
9939 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
9941 field_size_in_bits
= BITS_PER_WORD
;
9943 type_size_in_bits
= simple_type_size_in_bits (type
);
9944 type_align_in_bits
= simple_type_align_in_bits (type
);
9945 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
9947 /* The GCC front-end doesn't make any attempt to keep track of the
9948 starting bit offset (relative to the start of the containing
9949 structure type) of the hypothetical "containing object" for a
9950 bit-field. Thus, when computing the byte offset value for the
9951 start of the "containing object" of a bit-field, we must deduce
9952 this information on our own. This can be rather tricky to do in
9953 some cases. For example, handling the following structure type
9954 definition when compiling for an i386/i486 target (which only
9955 aligns long long's to 32-bit boundaries) can be very tricky:
9957 struct S { int field1; long long field2:31; };
9959 Fortunately, there is a simple rule-of-thumb which can be used
9960 in such cases. When compiling for an i386/i486, GCC will
9961 allocate 8 bytes for the structure shown above. It decides to
9962 do this based upon one simple rule for bit-field allocation.
9963 GCC allocates each "containing object" for each bit-field at
9964 the first (i.e. lowest addressed) legitimate alignment boundary
9965 (based upon the required minimum alignment for the declared
9966 type of the field) which it can possibly use, subject to the
9967 condition that there is still enough available space remaining
9968 in the containing object (when allocated at the selected point)
9969 to fully accommodate all of the bits of the bit-field itself.
9971 This simple rule makes it obvious why GCC allocates 8 bytes for
9972 each object of the structure type shown above. When looking
9973 for a place to allocate the "containing object" for `field2',
9974 the compiler simply tries to allocate a 64-bit "containing
9975 object" at each successive 32-bit boundary (starting at zero)
9976 until it finds a place to allocate that 64- bit field such that
9977 at least 31 contiguous (and previously unallocated) bits remain
9978 within that selected 64 bit field. (As it turns out, for the
9979 example above, the compiler finds it is OK to allocate the
9980 "containing object" 64-bit field at bit-offset zero within the
9983 Here we attempt to work backwards from the limited set of facts
9984 we're given, and we try to deduce from those facts, where GCC
9985 must have believed that the containing object started (within
9986 the structure type). The value we deduce is then used (by the
9987 callers of this routine) to generate DW_AT_location and
9988 DW_AT_bit_offset attributes for fields (both bit-fields and, in
9989 the case of DW_AT_location, regular fields as well). */
9991 /* Figure out the bit-distance from the start of the structure to
9992 the "deepest" bit of the bit-field. */
9993 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
9995 /* This is the tricky part. Use some fancy footwork to deduce
9996 where the lowest addressed bit of the containing object must
9998 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
10000 /* Round up to type_align by default. This works best for
10002 object_offset_in_bits
10003 = round_up_to_align (object_offset_in_bits
, type_align_in_bits
);
10005 if (object_offset_in_bits
> bitpos_int
)
10007 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
10009 /* Round up to decl_align instead. */
10010 object_offset_in_bits
10011 = round_up_to_align (object_offset_in_bits
, decl_align_in_bits
);
10016 object_offset_in_bits
= bitpos_int
;
10018 return object_offset_in_bits
/ BITS_PER_UNIT
;
10021 /* The following routines define various Dwarf attributes and any data
10022 associated with them. */
10024 /* Add a location description attribute value to a DIE.
10026 This emits location attributes suitable for whole variables and
10027 whole parameters. Note that the location attributes for struct fields are
10028 generated by the routine `data_member_location_attribute' below. */
10031 add_AT_location_description (dw_die_ref die
, enum dwarf_attribute attr_kind
,
10032 dw_loc_descr_ref descr
)
10035 add_AT_loc (die
, attr_kind
, descr
);
10038 /* Attach the specialized form of location attribute used for data members of
10039 struct and union types. In the special case of a FIELD_DECL node which
10040 represents a bit-field, the "offset" part of this special location
10041 descriptor must indicate the distance in bytes from the lowest-addressed
10042 byte of the containing struct or union type to the lowest-addressed byte of
10043 the "containing object" for the bit-field. (See the `field_byte_offset'
10046 For any given bit-field, the "containing object" is a hypothetical object
10047 (of some integral or enum type) within which the given bit-field lives. The
10048 type of this hypothetical "containing object" is always the same as the
10049 declared type of the individual bit-field itself (for GCC anyway... the
10050 DWARF spec doesn't actually mandate this). Note that it is the size (in
10051 bytes) of the hypothetical "containing object" which will be given in the
10052 DW_AT_byte_size attribute for this bit-field. (See the
10053 `byte_size_attribute' function below.) It is also used when calculating the
10054 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
10055 function below.) */
10058 add_data_member_location_attribute (dw_die_ref die
, tree decl
)
10060 HOST_WIDE_INT offset
;
10061 dw_loc_descr_ref loc_descr
= 0;
10063 if (TREE_CODE (decl
) == TREE_BINFO
)
10065 /* We're working on the TAG_inheritance for a base class. */
10066 if (BINFO_VIRTUAL_P (decl
) && is_cxx ())
10068 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
10069 aren't at a fixed offset from all (sub)objects of the same
10070 type. We need to extract the appropriate offset from our
10071 vtable. The following dwarf expression means
10073 BaseAddr = ObAddr + *((*ObAddr) - Offset)
10075 This is specific to the V3 ABI, of course. */
10077 dw_loc_descr_ref tmp
;
10079 /* Make a copy of the object address. */
10080 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
10081 add_loc_descr (&loc_descr
, tmp
);
10083 /* Extract the vtable address. */
10084 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
10085 add_loc_descr (&loc_descr
, tmp
);
10087 /* Calculate the address of the offset. */
10088 offset
= tree_low_cst (BINFO_VPTR_FIELD (decl
), 0);
10089 gcc_assert (offset
< 0);
10091 tmp
= int_loc_descriptor (-offset
);
10092 add_loc_descr (&loc_descr
, tmp
);
10093 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
10094 add_loc_descr (&loc_descr
, tmp
);
10096 /* Extract the offset. */
10097 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
10098 add_loc_descr (&loc_descr
, tmp
);
10100 /* Add it to the object address. */
10101 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
10102 add_loc_descr (&loc_descr
, tmp
);
10105 offset
= tree_low_cst (BINFO_OFFSET (decl
), 0);
10108 offset
= field_byte_offset (decl
);
10112 enum dwarf_location_atom op
;
10114 /* The DWARF2 standard says that we should assume that the structure
10115 address is already on the stack, so we can specify a structure field
10116 address by using DW_OP_plus_uconst. */
10118 #ifdef MIPS_DEBUGGING_INFO
10119 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
10120 operator correctly. It works only if we leave the offset on the
10124 op
= DW_OP_plus_uconst
;
10127 loc_descr
= new_loc_descr (op
, offset
, 0);
10130 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
10133 /* Writes integer values to dw_vec_const array. */
10136 insert_int (HOST_WIDE_INT val
, unsigned int size
, unsigned char *dest
)
10140 *dest
++ = val
& 0xff;
10146 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
10148 static HOST_WIDE_INT
10149 extract_int (const unsigned char *src
, unsigned int size
)
10151 HOST_WIDE_INT val
= 0;
10157 val
|= *--src
& 0xff;
10163 /* Writes floating point values to dw_vec_const array. */
10166 insert_float (const_rtx rtl
, unsigned char *array
)
10168 REAL_VALUE_TYPE rv
;
10172 REAL_VALUE_FROM_CONST_DOUBLE (rv
, rtl
);
10173 real_to_target (val
, &rv
, GET_MODE (rtl
));
10175 /* real_to_target puts 32-bit pieces in each long. Pack them. */
10176 for (i
= 0; i
< GET_MODE_SIZE (GET_MODE (rtl
)) / 4; i
++)
10178 insert_int (val
[i
], 4, array
);
10183 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
10184 does not have a "location" either in memory or in a register. These
10185 things can arise in GNU C when a constant is passed as an actual parameter
10186 to an inlined function. They can also arise in C++ where declared
10187 constants do not necessarily get memory "homes". */
10190 add_const_value_attribute (dw_die_ref die
, rtx rtl
)
10192 switch (GET_CODE (rtl
))
10196 HOST_WIDE_INT val
= INTVAL (rtl
);
10199 add_AT_int (die
, DW_AT_const_value
, val
);
10201 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned HOST_WIDE_INT
) val
);
10206 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
10207 floating-point constant. A CONST_DOUBLE is used whenever the
10208 constant requires more than one word in order to be adequately
10209 represented. We output CONST_DOUBLEs as blocks. */
10211 enum machine_mode mode
= GET_MODE (rtl
);
10213 if (SCALAR_FLOAT_MODE_P (mode
))
10215 unsigned int length
= GET_MODE_SIZE (mode
);
10216 unsigned char *array
= ggc_alloc (length
);
10218 insert_float (rtl
, array
);
10219 add_AT_vec (die
, DW_AT_const_value
, length
/ 4, 4, array
);
10223 /* ??? We really should be using HOST_WIDE_INT throughout. */
10224 gcc_assert (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
);
10226 add_AT_long_long (die
, DW_AT_const_value
,
10227 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
10234 enum machine_mode mode
= GET_MODE (rtl
);
10235 unsigned int elt_size
= GET_MODE_UNIT_SIZE (mode
);
10236 unsigned int length
= CONST_VECTOR_NUNITS (rtl
);
10237 unsigned char *array
= ggc_alloc (length
* elt_size
);
10241 switch (GET_MODE_CLASS (mode
))
10243 case MODE_VECTOR_INT
:
10244 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
10246 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
10247 HOST_WIDE_INT lo
, hi
;
10249 switch (GET_CODE (elt
))
10257 lo
= CONST_DOUBLE_LOW (elt
);
10258 hi
= CONST_DOUBLE_HIGH (elt
);
10262 gcc_unreachable ();
10265 if (elt_size
<= sizeof (HOST_WIDE_INT
))
10266 insert_int (lo
, elt_size
, p
);
10269 unsigned char *p0
= p
;
10270 unsigned char *p1
= p
+ sizeof (HOST_WIDE_INT
);
10272 gcc_assert (elt_size
== 2 * sizeof (HOST_WIDE_INT
));
10273 if (WORDS_BIG_ENDIAN
)
10278 insert_int (lo
, sizeof (HOST_WIDE_INT
), p0
);
10279 insert_int (hi
, sizeof (HOST_WIDE_INT
), p1
);
10284 case MODE_VECTOR_FLOAT
:
10285 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
10287 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
10288 insert_float (elt
, p
);
10293 gcc_unreachable ();
10296 add_AT_vec (die
, DW_AT_const_value
, length
, elt_size
, array
);
10301 add_AT_string (die
, DW_AT_const_value
, XSTR (rtl
, 0));
10307 add_AT_addr (die
, DW_AT_const_value
, rtl
);
10308 VEC_safe_push (rtx
, gc
, used_rtx_array
, rtl
);
10312 /* In cases where an inlined instance of an inline function is passed
10313 the address of an `auto' variable (which is local to the caller) we
10314 can get a situation where the DECL_RTL of the artificial local
10315 variable (for the inlining) which acts as a stand-in for the
10316 corresponding formal parameter (of the inline function) will look
10317 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10318 exactly a compile-time constant expression, but it isn't the address
10319 of the (artificial) local variable either. Rather, it represents the
10320 *value* which the artificial local variable always has during its
10321 lifetime. We currently have no way to represent such quasi-constant
10322 values in Dwarf, so for now we just punt and generate nothing. */
10326 /* No other kinds of rtx should be possible here. */
10327 gcc_unreachable ();
10332 /* Determine whether the evaluation of EXPR references any variables
10333 or functions which aren't otherwise used (and therefore may not be
10336 reference_to_unused (tree
* tp
, int * walk_subtrees
,
10337 void * data ATTRIBUTE_UNUSED
)
10339 if (! EXPR_P (*tp
) && ! GIMPLE_STMT_P (*tp
) && ! CONSTANT_CLASS_P (*tp
))
10340 *walk_subtrees
= 0;
10342 if (DECL_P (*tp
) && ! TREE_PUBLIC (*tp
) && ! TREE_USED (*tp
)
10343 && ! TREE_ASM_WRITTEN (*tp
))
10345 else if (!flag_unit_at_a_time
)
10347 else if (!cgraph_global_info_ready
10348 && (TREE_CODE (*tp
) == VAR_DECL
|| TREE_CODE (*tp
) == FUNCTION_DECL
))
10349 gcc_unreachable ();
10350 else if (DECL_P (*tp
) && TREE_CODE (*tp
) == VAR_DECL
)
10352 struct varpool_node
*node
= varpool_node (*tp
);
10356 else if (DECL_P (*tp
) && TREE_CODE (*tp
) == FUNCTION_DECL
10357 && (!DECL_EXTERNAL (*tp
) || DECL_DECLARED_INLINE_P (*tp
)))
10359 struct cgraph_node
*node
= cgraph_node (*tp
);
10367 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10368 for use in a later add_const_value_attribute call. */
10371 rtl_for_decl_init (tree init
, tree type
)
10373 rtx rtl
= NULL_RTX
;
10375 /* If a variable is initialized with a string constant without embedded
10376 zeros, build CONST_STRING. */
10377 if (TREE_CODE (init
) == STRING_CST
&& TREE_CODE (type
) == ARRAY_TYPE
)
10379 tree enttype
= TREE_TYPE (type
);
10380 tree domain
= TYPE_DOMAIN (type
);
10381 enum machine_mode mode
= TYPE_MODE (enttype
);
10383 if (GET_MODE_CLASS (mode
) == MODE_INT
&& GET_MODE_SIZE (mode
) == 1
10385 && integer_zerop (TYPE_MIN_VALUE (domain
))
10386 && compare_tree_int (TYPE_MAX_VALUE (domain
),
10387 TREE_STRING_LENGTH (init
) - 1) == 0
10388 && ((size_t) TREE_STRING_LENGTH (init
)
10389 == strlen (TREE_STRING_POINTER (init
)) + 1))
10390 rtl
= gen_rtx_CONST_STRING (VOIDmode
,
10391 ggc_strdup (TREE_STRING_POINTER (init
)));
10393 /* Other aggregates, and complex values, could be represented using
10395 else if (AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
)
10397 /* Vectors only work if their mode is supported by the target.
10398 FIXME: generic vectors ought to work too. */
10399 else if (TREE_CODE (type
) == VECTOR_TYPE
&& TYPE_MODE (type
) == BLKmode
)
10401 /* If the initializer is something that we know will expand into an
10402 immediate RTL constant, expand it now. We must be careful not to
10403 reference variables which won't be output. */
10404 else if (initializer_constant_valid_p (init
, type
)
10405 && ! walk_tree (&init
, reference_to_unused
, NULL
, NULL
))
10407 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
10409 if (TREE_CODE (type
) == VECTOR_TYPE
)
10410 switch (TREE_CODE (init
))
10415 if (TREE_CONSTANT (init
))
10417 VEC(constructor_elt
,gc
) *elts
= CONSTRUCTOR_ELTS (init
);
10418 bool constant_p
= true;
10420 unsigned HOST_WIDE_INT ix
;
10422 /* Even when ctor is constant, it might contain non-*_CST
10423 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
10424 belong into VECTOR_CST nodes. */
10425 FOR_EACH_CONSTRUCTOR_VALUE (elts
, ix
, value
)
10426 if (!CONSTANT_CLASS_P (value
))
10428 constant_p
= false;
10434 init
= build_vector_from_ctor (type
, elts
);
10444 rtl
= expand_expr (init
, NULL_RTX
, VOIDmode
, EXPAND_INITIALIZER
);
10446 /* If expand_expr returns a MEM, it wasn't immediate. */
10447 gcc_assert (!rtl
|| !MEM_P (rtl
));
10453 /* Generate RTL for the variable DECL to represent its location. */
10456 rtl_for_decl_location (tree decl
)
10460 /* Here we have to decide where we are going to say the parameter "lives"
10461 (as far as the debugger is concerned). We only have a couple of
10462 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10464 DECL_RTL normally indicates where the parameter lives during most of the
10465 activation of the function. If optimization is enabled however, this
10466 could be either NULL or else a pseudo-reg. Both of those cases indicate
10467 that the parameter doesn't really live anywhere (as far as the code
10468 generation parts of GCC are concerned) during most of the function's
10469 activation. That will happen (for example) if the parameter is never
10470 referenced within the function.
10472 We could just generate a location descriptor here for all non-NULL
10473 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10474 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10475 where DECL_RTL is NULL or is a pseudo-reg.
10477 Note however that we can only get away with using DECL_INCOMING_RTL as
10478 a backup substitute for DECL_RTL in certain limited cases. In cases
10479 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10480 we can be sure that the parameter was passed using the same type as it is
10481 declared to have within the function, and that its DECL_INCOMING_RTL
10482 points us to a place where a value of that type is passed.
10484 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10485 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10486 because in these cases DECL_INCOMING_RTL points us to a value of some
10487 type which is *different* from the type of the parameter itself. Thus,
10488 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10489 such cases, the debugger would end up (for example) trying to fetch a
10490 `float' from a place which actually contains the first part of a
10491 `double'. That would lead to really incorrect and confusing
10492 output at debug-time.
10494 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10495 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10496 are a couple of exceptions however. On little-endian machines we can
10497 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10498 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10499 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10500 when (on a little-endian machine) a non-prototyped function has a
10501 parameter declared to be of type `short' or `char'. In such cases,
10502 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10503 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10504 passed `int' value. If the debugger then uses that address to fetch
10505 a `short' or a `char' (on a little-endian machine) the result will be
10506 the correct data, so we allow for such exceptional cases below.
10508 Note that our goal here is to describe the place where the given formal
10509 parameter lives during most of the function's activation (i.e. between the
10510 end of the prologue and the start of the epilogue). We'll do that as best
10511 as we can. Note however that if the given formal parameter is modified
10512 sometime during the execution of the function, then a stack backtrace (at
10513 debug-time) will show the function as having been called with the *new*
10514 value rather than the value which was originally passed in. This happens
10515 rarely enough that it is not a major problem, but it *is* a problem, and
10516 I'd like to fix it.
10518 A future version of dwarf2out.c may generate two additional attributes for
10519 any given DW_TAG_formal_parameter DIE which will describe the "passed
10520 type" and the "passed location" for the given formal parameter in addition
10521 to the attributes we now generate to indicate the "declared type" and the
10522 "active location" for each parameter. This additional set of attributes
10523 could be used by debuggers for stack backtraces. Separately, note that
10524 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10525 This happens (for example) for inlined-instances of inline function formal
10526 parameters which are never referenced. This really shouldn't be
10527 happening. All PARM_DECL nodes should get valid non-NULL
10528 DECL_INCOMING_RTL values. FIXME. */
10530 /* Use DECL_RTL as the "location" unless we find something better. */
10531 rtl
= DECL_RTL_IF_SET (decl
);
10533 /* When generating abstract instances, ignore everything except
10534 constants, symbols living in memory, and symbols living in
10535 fixed registers. */
10536 if (! reload_completed
)
10539 && (CONSTANT_P (rtl
)
10541 && CONSTANT_P (XEXP (rtl
, 0)))
10543 && TREE_CODE (decl
) == VAR_DECL
10544 && TREE_STATIC (decl
))))
10546 rtl
= targetm
.delegitimize_address (rtl
);
10551 else if (TREE_CODE (decl
) == PARM_DECL
)
10553 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
10555 tree declared_type
= TREE_TYPE (decl
);
10556 tree passed_type
= DECL_ARG_TYPE (decl
);
10557 enum machine_mode dmode
= TYPE_MODE (declared_type
);
10558 enum machine_mode pmode
= TYPE_MODE (passed_type
);
10560 /* This decl represents a formal parameter which was optimized out.
10561 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10562 all cases where (rtl == NULL_RTX) just below. */
10563 if (dmode
== pmode
)
10564 rtl
= DECL_INCOMING_RTL (decl
);
10565 else if (SCALAR_INT_MODE_P (dmode
)
10566 && GET_MODE_SIZE (dmode
) <= GET_MODE_SIZE (pmode
)
10567 && DECL_INCOMING_RTL (decl
))
10569 rtx inc
= DECL_INCOMING_RTL (decl
);
10572 else if (MEM_P (inc
))
10574 if (BYTES_BIG_ENDIAN
)
10575 rtl
= adjust_address_nv (inc
, dmode
,
10576 GET_MODE_SIZE (pmode
)
10577 - GET_MODE_SIZE (dmode
));
10584 /* If the parm was passed in registers, but lives on the stack, then
10585 make a big endian correction if the mode of the type of the
10586 parameter is not the same as the mode of the rtl. */
10587 /* ??? This is the same series of checks that are made in dbxout.c before
10588 we reach the big endian correction code there. It isn't clear if all
10589 of these checks are necessary here, but keeping them all is the safe
10591 else if (MEM_P (rtl
)
10592 && XEXP (rtl
, 0) != const0_rtx
10593 && ! CONSTANT_P (XEXP (rtl
, 0))
10594 /* Not passed in memory. */
10595 && !MEM_P (DECL_INCOMING_RTL (decl
))
10596 /* Not passed by invisible reference. */
10597 && (!REG_P (XEXP (rtl
, 0))
10598 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
10599 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
10600 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10601 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
10604 /* Big endian correction check. */
10605 && BYTES_BIG_ENDIAN
10606 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
10607 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
10610 int offset
= (UNITS_PER_WORD
10611 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
10613 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
10614 plus_constant (XEXP (rtl
, 0), offset
));
10617 else if (TREE_CODE (decl
) == VAR_DECL
10620 && GET_MODE (rtl
) != TYPE_MODE (TREE_TYPE (decl
))
10621 && BYTES_BIG_ENDIAN
)
10623 int rsize
= GET_MODE_SIZE (GET_MODE (rtl
));
10624 int dsize
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)));
10626 /* If a variable is declared "register" yet is smaller than
10627 a register, then if we store the variable to memory, it
10628 looks like we're storing a register-sized value, when in
10629 fact we are not. We need to adjust the offset of the
10630 storage location to reflect the actual value's bytes,
10631 else gdb will not be able to display it. */
10633 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
10634 plus_constant (XEXP (rtl
, 0), rsize
-dsize
));
10637 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10638 and will have been substituted directly into all expressions that use it.
10639 C does not have such a concept, but C++ and other languages do. */
10640 if (!rtl
&& TREE_CODE (decl
) == VAR_DECL
&& DECL_INITIAL (decl
))
10641 rtl
= rtl_for_decl_init (DECL_INITIAL (decl
), TREE_TYPE (decl
));
10644 rtl
= targetm
.delegitimize_address (rtl
);
10646 /* If we don't look past the constant pool, we risk emitting a
10647 reference to a constant pool entry that isn't referenced from
10648 code, and thus is not emitted. */
10650 rtl
= avoid_constant_pool_reference (rtl
);
10655 /* We need to figure out what section we should use as the base for the
10656 address ranges where a given location is valid.
10657 1. If this particular DECL has a section associated with it, use that.
10658 2. If this function has a section associated with it, use that.
10659 3. Otherwise, use the text section.
10660 XXX: If you split a variable across multiple sections, we won't notice. */
10662 static const char *
10663 secname_for_decl (const_tree decl
)
10665 const char *secname
;
10667 if (VAR_OR_FUNCTION_DECL_P (decl
) && DECL_SECTION_NAME (decl
))
10669 tree sectree
= DECL_SECTION_NAME (decl
);
10670 secname
= TREE_STRING_POINTER (sectree
);
10672 else if (current_function_decl
&& DECL_SECTION_NAME (current_function_decl
))
10674 tree sectree
= DECL_SECTION_NAME (current_function_decl
);
10675 secname
= TREE_STRING_POINTER (sectree
);
10677 else if (cfun
&& in_cold_section_p
)
10678 secname
= cfun
->cold_section_label
;
10680 secname
= text_section_label
;
10685 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10686 data attribute for a variable or a parameter. We generate the
10687 DW_AT_const_value attribute only in those cases where the given variable
10688 or parameter does not have a true "location" either in memory or in a
10689 register. This can happen (for example) when a constant is passed as an
10690 actual argument in a call to an inline function. (It's possible that
10691 these things can crop up in other ways also.) Note that one type of
10692 constant value which can be passed into an inlined function is a constant
10693 pointer. This can happen for example if an actual argument in an inlined
10694 function call evaluates to a compile-time constant address. */
10697 add_location_or_const_value_attribute (dw_die_ref die
, tree decl
,
10698 enum dwarf_attribute attr
)
10701 dw_loc_descr_ref descr
;
10702 var_loc_list
*loc_list
;
10703 struct var_loc_node
*node
;
10704 if (TREE_CODE (decl
) == ERROR_MARK
)
10707 gcc_assert (TREE_CODE (decl
) == VAR_DECL
|| TREE_CODE (decl
) == PARM_DECL
10708 || TREE_CODE (decl
) == RESULT_DECL
);
10710 /* See if we possibly have multiple locations for this variable. */
10711 loc_list
= lookup_decl_loc (decl
);
10713 /* If it truly has multiple locations, the first and last node will
10715 if (loc_list
&& loc_list
->first
!= loc_list
->last
)
10717 const char *endname
, *secname
;
10718 dw_loc_list_ref list
;
10720 enum var_init_status initialized
;
10722 /* Now that we know what section we are using for a base,
10723 actually construct the list of locations.
10724 The first location information is what is passed to the
10725 function that creates the location list, and the remaining
10726 locations just get added on to that list.
10727 Note that we only know the start address for a location
10728 (IE location changes), so to build the range, we use
10729 the range [current location start, next location start].
10730 This means we have to special case the last node, and generate
10731 a range of [last location start, end of function label]. */
10733 node
= loc_list
->first
;
10734 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10735 secname
= secname_for_decl (decl
);
10737 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
))
10738 initialized
= NOTE_VAR_LOCATION_STATUS (node
->var_loc_note
);
10740 initialized
= VAR_INIT_STATUS_INITIALIZED
;
10742 list
= new_loc_list (loc_descriptor (varloc
, initialized
),
10743 node
->label
, node
->next
->label
, secname
, 1);
10746 for (; node
->next
; node
= node
->next
)
10747 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
10749 /* The variable has a location between NODE->LABEL and
10750 NODE->NEXT->LABEL. */
10751 enum var_init_status initialized
=
10752 NOTE_VAR_LOCATION_STATUS (node
->var_loc_note
);
10753 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10754 add_loc_descr_to_loc_list (&list
,
10755 loc_descriptor (varloc
, initialized
),
10756 node
->label
, node
->next
->label
, secname
);
10759 /* If the variable has a location at the last label
10760 it keeps its location until the end of function. */
10761 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
10763 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
10764 enum var_init_status initialized
=
10765 NOTE_VAR_LOCATION_STATUS (node
->var_loc_note
);
10767 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10768 if (!current_function_decl
)
10769 endname
= text_end_label
;
10772 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
10773 current_function_funcdef_no
);
10774 endname
= ggc_strdup (label_id
);
10776 add_loc_descr_to_loc_list (&list
,
10777 loc_descriptor (varloc
, initialized
),
10778 node
->label
, endname
, secname
);
10781 /* Finally, add the location list to the DIE, and we are done. */
10782 add_AT_loc_list (die
, attr
, list
);
10786 /* Try to get some constant RTL for this decl, and use that as the value of
10789 rtl
= rtl_for_decl_location (decl
);
10790 if (rtl
&& (CONSTANT_P (rtl
) || GET_CODE (rtl
) == CONST_STRING
))
10792 add_const_value_attribute (die
, rtl
);
10796 /* If we have tried to generate the location otherwise, and it
10797 didn't work out (we wouldn't be here if we did), and we have a one entry
10798 location list, try generating a location from that. */
10799 if (loc_list
&& loc_list
->first
)
10801 enum var_init_status status
;
10802 node
= loc_list
->first
;
10803 status
= NOTE_VAR_LOCATION_STATUS (node
->var_loc_note
);
10804 descr
= loc_descriptor (NOTE_VAR_LOCATION (node
->var_loc_note
), status
);
10807 add_AT_location_description (die
, attr
, descr
);
10812 /* We couldn't get any rtl, so try directly generating the location
10813 description from the tree. */
10814 descr
= loc_descriptor_from_tree (decl
);
10817 add_AT_location_description (die
, attr
, descr
);
10820 /* None of that worked, so it must not really have a location;
10821 try adding a constant value attribute from the DECL_INITIAL. */
10822 tree_add_const_value_attribute (die
, decl
);
10825 /* If we don't have a copy of this variable in memory for some reason (such
10826 as a C++ member constant that doesn't have an out-of-line definition),
10827 we should tell the debugger about the constant value. */
10830 tree_add_const_value_attribute (dw_die_ref var_die
, tree decl
)
10832 tree init
= DECL_INITIAL (decl
);
10833 tree type
= TREE_TYPE (decl
);
10836 if (TREE_READONLY (decl
) && ! TREE_THIS_VOLATILE (decl
) && init
)
10841 rtl
= rtl_for_decl_init (init
, type
);
10843 add_const_value_attribute (var_die
, rtl
);
10846 /* Convert the CFI instructions for the current function into a
10847 location list. This is used for DW_AT_frame_base when we targeting
10848 a dwarf2 consumer that does not support the dwarf3
10849 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10852 static dw_loc_list_ref
10853 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset
)
10856 dw_loc_list_ref list
, *list_tail
;
10858 dw_cfa_location last_cfa
, next_cfa
;
10859 const char *start_label
, *last_label
, *section
;
10861 fde
= &fde_table
[fde_table_in_use
- 1];
10863 section
= secname_for_decl (current_function_decl
);
10867 next_cfa
.reg
= INVALID_REGNUM
;
10868 next_cfa
.offset
= 0;
10869 next_cfa
.indirect
= 0;
10870 next_cfa
.base_offset
= 0;
10872 start_label
= fde
->dw_fde_begin
;
10874 /* ??? Bald assumption that the CIE opcode list does not contain
10875 advance opcodes. */
10876 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
10877 lookup_cfa_1 (cfi
, &next_cfa
);
10879 last_cfa
= next_cfa
;
10880 last_label
= start_label
;
10882 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
10883 switch (cfi
->dw_cfi_opc
)
10885 case DW_CFA_set_loc
:
10886 case DW_CFA_advance_loc1
:
10887 case DW_CFA_advance_loc2
:
10888 case DW_CFA_advance_loc4
:
10889 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
10891 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
10892 start_label
, last_label
, section
,
10895 list_tail
= &(*list_tail
)->dw_loc_next
;
10896 last_cfa
= next_cfa
;
10897 start_label
= last_label
;
10899 last_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
10902 case DW_CFA_advance_loc
:
10903 /* The encoding is complex enough that we should never emit this. */
10904 case DW_CFA_remember_state
:
10905 case DW_CFA_restore_state
:
10906 /* We don't handle these two in this function. It would be possible
10907 if it were to be required. */
10908 gcc_unreachable ();
10911 lookup_cfa_1 (cfi
, &next_cfa
);
10915 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
10917 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
10918 start_label
, last_label
, section
,
10920 list_tail
= &(*list_tail
)->dw_loc_next
;
10921 start_label
= last_label
;
10923 *list_tail
= new_loc_list (build_cfa_loc (&next_cfa
, offset
),
10924 start_label
, fde
->dw_fde_end
, section
,
10930 /* Compute a displacement from the "steady-state frame pointer" to the
10931 frame base (often the same as the CFA), and store it in
10932 frame_pointer_fb_offset. OFFSET is added to the displacement
10933 before the latter is negated. */
10936 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset
)
10940 #ifdef FRAME_POINTER_CFA_OFFSET
10941 reg
= frame_pointer_rtx
;
10942 offset
+= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10944 reg
= arg_pointer_rtx
;
10945 offset
+= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10948 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10949 if (GET_CODE (elim
) == PLUS
)
10951 offset
+= INTVAL (XEXP (elim
, 1));
10952 elim
= XEXP (elim
, 0);
10954 gcc_assert (elim
== (frame_pointer_needed
? hard_frame_pointer_rtx
10955 : stack_pointer_rtx
));
10957 frame_pointer_fb_offset
= -offset
;
10960 /* Generate a DW_AT_name attribute given some string value to be included as
10961 the value of the attribute. */
10964 add_name_attribute (dw_die_ref die
, const char *name_string
)
10966 if (name_string
!= NULL
&& *name_string
!= 0)
10968 if (demangle_name_func
)
10969 name_string
= (*demangle_name_func
) (name_string
);
10971 add_AT_string (die
, DW_AT_name
, name_string
);
10975 /* Generate a DW_AT_comp_dir attribute for DIE. */
10978 add_comp_dir_attribute (dw_die_ref die
)
10980 const char *wd
= get_src_pwd ();
10982 add_AT_string (die
, DW_AT_comp_dir
, remap_debug_filename (wd
));
10985 /* Given a tree node describing an array bound (either lower or upper) output
10986 a representation for that bound. */
10989 add_bound_info (dw_die_ref subrange_die
, enum dwarf_attribute bound_attr
, tree bound
)
10991 switch (TREE_CODE (bound
))
10996 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10998 if (! host_integerp (bound
, 0)
10999 || (bound_attr
== DW_AT_lower_bound
11000 && (((is_c_family () || is_java ()) && integer_zerop (bound
))
11001 || (is_fortran () && integer_onep (bound
)))))
11002 /* Use the default. */
11005 add_AT_unsigned (subrange_die
, bound_attr
, tree_low_cst (bound
, 0));
11010 case NON_LVALUE_EXPR
:
11011 case VIEW_CONVERT_EXPR
:
11012 add_bound_info (subrange_die
, bound_attr
, TREE_OPERAND (bound
, 0));
11022 dw_die_ref decl_die
= lookup_decl_die (bound
);
11024 /* ??? Can this happen, or should the variable have been bound
11025 first? Probably it can, since I imagine that we try to create
11026 the types of parameters in the order in which they exist in
11027 the list, and won't have created a forward reference to a
11028 later parameter. */
11029 if (decl_die
!= NULL
)
11030 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
11036 /* Otherwise try to create a stack operation procedure to
11037 evaluate the value of the array bound. */
11039 dw_die_ref ctx
, decl_die
;
11040 dw_loc_descr_ref loc
;
11042 loc
= loc_descriptor_from_tree (bound
);
11046 if (current_function_decl
== 0)
11047 ctx
= comp_unit_die
;
11049 ctx
= lookup_decl_die (current_function_decl
);
11051 decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
11052 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
11053 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
11054 add_AT_loc (decl_die
, DW_AT_location
, loc
);
11056 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
11062 /* Note that the block of subscript information for an array type also
11063 includes information about the element type of type given array type. */
11066 add_subscript_info (dw_die_ref type_die
, tree type
)
11068 #ifndef MIPS_DEBUGGING_INFO
11069 unsigned dimension_number
;
11072 dw_die_ref subrange_die
;
11074 /* The GNU compilers represent multidimensional array types as sequences of
11075 one dimensional array types whose element types are themselves array
11076 types. Here we squish that down, so that each multidimensional array
11077 type gets only one array_type DIE in the Dwarf debugging info. The draft
11078 Dwarf specification say that we are allowed to do this kind of
11079 compression in C (because there is no difference between an array or
11080 arrays and a multidimensional array in C) but for other source languages
11081 (e.g. Ada) we probably shouldn't do this. */
11083 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11084 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11085 We work around this by disabling this feature. See also
11086 gen_array_type_die. */
11087 #ifndef MIPS_DEBUGGING_INFO
11088 for (dimension_number
= 0;
11089 TREE_CODE (type
) == ARRAY_TYPE
;
11090 type
= TREE_TYPE (type
), dimension_number
++)
11093 tree domain
= TYPE_DOMAIN (type
);
11095 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
11096 and (in GNU C only) variable bounds. Handle all three forms
11098 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
11101 /* We have an array type with specified bounds. */
11102 lower
= TYPE_MIN_VALUE (domain
);
11103 upper
= TYPE_MAX_VALUE (domain
);
11105 /* Define the index type. */
11106 if (TREE_TYPE (domain
))
11108 /* ??? This is probably an Ada unnamed subrange type. Ignore the
11109 TREE_TYPE field. We can't emit debug info for this
11110 because it is an unnamed integral type. */
11111 if (TREE_CODE (domain
) == INTEGER_TYPE
11112 && TYPE_NAME (domain
) == NULL_TREE
11113 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
11114 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
11117 add_type_attribute (subrange_die
, TREE_TYPE (domain
), 0, 0,
11121 /* ??? If upper is NULL, the array has unspecified length,
11122 but it does have a lower bound. This happens with Fortran
11124 Since the debugger is definitely going to need to know N
11125 to produce useful results, go ahead and output the lower
11126 bound solo, and hope the debugger can cope. */
11128 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
);
11130 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
);
11133 /* Otherwise we have an array type with an unspecified length. The
11134 DWARF-2 spec does not say how to handle this; let's just leave out the
11140 add_byte_size_attribute (dw_die_ref die
, tree tree_node
)
11144 switch (TREE_CODE (tree_node
))
11149 case ENUMERAL_TYPE
:
11152 case QUAL_UNION_TYPE
:
11153 size
= int_size_in_bytes (tree_node
);
11156 /* For a data member of a struct or union, the DW_AT_byte_size is
11157 generally given as the number of bytes normally allocated for an
11158 object of the *declared* type of the member itself. This is true
11159 even for bit-fields. */
11160 size
= simple_type_size_in_bits (field_type (tree_node
)) / BITS_PER_UNIT
;
11163 gcc_unreachable ();
11166 /* Note that `size' might be -1 when we get to this point. If it is, that
11167 indicates that the byte size of the entity in question is variable. We
11168 have no good way of expressing this fact in Dwarf at the present time,
11169 so just let the -1 pass on through. */
11170 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
11173 /* For a FIELD_DECL node which represents a bit-field, output an attribute
11174 which specifies the distance in bits from the highest order bit of the
11175 "containing object" for the bit-field to the highest order bit of the
11178 For any given bit-field, the "containing object" is a hypothetical object
11179 (of some integral or enum type) within which the given bit-field lives. The
11180 type of this hypothetical "containing object" is always the same as the
11181 declared type of the individual bit-field itself. The determination of the
11182 exact location of the "containing object" for a bit-field is rather
11183 complicated. It's handled by the `field_byte_offset' function (above).
11185 Note that it is the size (in bytes) of the hypothetical "containing object"
11186 which will be given in the DW_AT_byte_size attribute for this bit-field.
11187 (See `byte_size_attribute' above). */
11190 add_bit_offset_attribute (dw_die_ref die
, tree decl
)
11192 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
11193 tree type
= DECL_BIT_FIELD_TYPE (decl
);
11194 HOST_WIDE_INT bitpos_int
;
11195 HOST_WIDE_INT highest_order_object_bit_offset
;
11196 HOST_WIDE_INT highest_order_field_bit_offset
;
11197 HOST_WIDE_INT
unsigned bit_offset
;
11199 /* Must be a field and a bit field. */
11200 gcc_assert (type
&& TREE_CODE (decl
) == FIELD_DECL
);
11202 /* We can't yet handle bit-fields whose offsets are variable, so if we
11203 encounter such things, just return without generating any attribute
11204 whatsoever. Likewise for variable or too large size. */
11205 if (! host_integerp (bit_position (decl
), 0)
11206 || ! host_integerp (DECL_SIZE (decl
), 1))
11209 bitpos_int
= int_bit_position (decl
);
11211 /* Note that the bit offset is always the distance (in bits) from the
11212 highest-order bit of the "containing object" to the highest-order bit of
11213 the bit-field itself. Since the "high-order end" of any object or field
11214 is different on big-endian and little-endian machines, the computation
11215 below must take account of these differences. */
11216 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
11217 highest_order_field_bit_offset
= bitpos_int
;
11219 if (! BYTES_BIG_ENDIAN
)
11221 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 0);
11222 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
11226 = (! BYTES_BIG_ENDIAN
11227 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
11228 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
11230 add_AT_unsigned (die
, DW_AT_bit_offset
, bit_offset
);
11233 /* For a FIELD_DECL node which represents a bit field, output an attribute
11234 which specifies the length in bits of the given field. */
11237 add_bit_size_attribute (dw_die_ref die
, tree decl
)
11239 /* Must be a field and a bit field. */
11240 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
11241 && DECL_BIT_FIELD_TYPE (decl
));
11243 if (host_integerp (DECL_SIZE (decl
), 1))
11244 add_AT_unsigned (die
, DW_AT_bit_size
, tree_low_cst (DECL_SIZE (decl
), 1));
11247 /* If the compiled language is ANSI C, then add a 'prototyped'
11248 attribute, if arg types are given for the parameters of a function. */
11251 add_prototyped_attribute (dw_die_ref die
, tree func_type
)
11253 if (get_AT_unsigned (comp_unit_die
, DW_AT_language
) == DW_LANG_C89
11254 && TYPE_ARG_TYPES (func_type
) != NULL
)
11255 add_AT_flag (die
, DW_AT_prototyped
, 1);
11258 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
11259 by looking in either the type declaration or object declaration
11263 add_abstract_origin_attribute (dw_die_ref die
, tree origin
)
11265 dw_die_ref origin_die
= NULL
;
11267 if (TREE_CODE (origin
) != FUNCTION_DECL
)
11269 /* We may have gotten separated from the block for the inlined
11270 function, if we're in an exception handler or some such; make
11271 sure that the abstract function has been written out.
11273 Doing this for nested functions is wrong, however; functions are
11274 distinct units, and our context might not even be inline. */
11278 fn
= TYPE_STUB_DECL (fn
);
11280 fn
= decl_function_context (fn
);
11282 dwarf2out_abstract_function (fn
);
11285 if (DECL_P (origin
))
11286 origin_die
= lookup_decl_die (origin
);
11287 else if (TYPE_P (origin
))
11288 origin_die
= lookup_type_die (origin
);
11290 /* XXX: Functions that are never lowered don't always have correct block
11291 trees (in the case of java, they simply have no block tree, in some other
11292 languages). For these functions, there is nothing we can really do to
11293 output correct debug info for inlined functions in all cases. Rather
11294 than die, we'll just produce deficient debug info now, in that we will
11295 have variables without a proper abstract origin. In the future, when all
11296 functions are lowered, we should re-add a gcc_assert (origin_die)
11300 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
11303 /* We do not currently support the pure_virtual attribute. */
11306 add_pure_or_virtual_attribute (dw_die_ref die
, tree func_decl
)
11308 if (DECL_VINDEX (func_decl
))
11310 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
11312 if (host_integerp (DECL_VINDEX (func_decl
), 0))
11313 add_AT_loc (die
, DW_AT_vtable_elem_location
,
11314 new_loc_descr (DW_OP_constu
,
11315 tree_low_cst (DECL_VINDEX (func_decl
), 0),
11318 /* GNU extension: Record what type this method came from originally. */
11319 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11320 add_AT_die_ref (die
, DW_AT_containing_type
,
11321 lookup_type_die (DECL_CONTEXT (func_decl
)));
11325 /* Add source coordinate attributes for the given decl. */
11328 add_src_coords_attributes (dw_die_ref die
, tree decl
)
11330 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
11332 add_AT_file (die
, DW_AT_decl_file
, lookup_filename (s
.file
));
11333 add_AT_unsigned (die
, DW_AT_decl_line
, s
.line
);
11336 /* Add a DW_AT_name attribute and source coordinate attribute for the
11337 given decl, but only if it actually has a name. */
11340 add_name_and_src_coords_attributes (dw_die_ref die
, tree decl
)
11344 decl_name
= DECL_NAME (decl
);
11345 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
11347 add_name_attribute (die
, dwarf2_name (decl
, 0));
11348 if (! DECL_ARTIFICIAL (decl
))
11349 add_src_coords_attributes (die
, decl
);
11351 if ((TREE_CODE (decl
) == FUNCTION_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
11352 && TREE_PUBLIC (decl
)
11353 && DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
11354 && !DECL_ABSTRACT (decl
)
11355 && !(TREE_CODE (decl
) == VAR_DECL
&& DECL_REGISTER (decl
)))
11356 add_AT_string (die
, DW_AT_MIPS_linkage_name
,
11357 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
11360 #ifdef VMS_DEBUGGING_INFO
11361 /* Get the function's name, as described by its RTL. This may be different
11362 from the DECL_NAME name used in the source file. */
11363 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
11365 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
11366 XEXP (DECL_RTL (decl
), 0));
11367 VEC_safe_push (tree
, gc
, used_rtx_array
, XEXP (DECL_RTL (decl
), 0));
11372 /* Push a new declaration scope. */
11375 push_decl_scope (tree scope
)
11377 VEC_safe_push (tree
, gc
, decl_scope_table
, scope
);
11380 /* Pop a declaration scope. */
11383 pop_decl_scope (void)
11385 VEC_pop (tree
, decl_scope_table
);
11388 /* Return the DIE for the scope that immediately contains this type.
11389 Non-named types get global scope. Named types nested in other
11390 types get their containing scope if it's open, or global scope
11391 otherwise. All other types (i.e. function-local named types) get
11392 the current active scope. */
11395 scope_die_for (tree t
, dw_die_ref context_die
)
11397 dw_die_ref scope_die
= NULL
;
11398 tree containing_scope
;
11401 /* Non-types always go in the current scope. */
11402 gcc_assert (TYPE_P (t
));
11404 containing_scope
= TYPE_CONTEXT (t
);
11406 /* Use the containing namespace if it was passed in (for a declaration). */
11407 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
11409 if (context_die
== lookup_decl_die (containing_scope
))
11412 containing_scope
= NULL_TREE
;
11415 /* Ignore function type "scopes" from the C frontend. They mean that
11416 a tagged type is local to a parmlist of a function declarator, but
11417 that isn't useful to DWARF. */
11418 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
11419 containing_scope
= NULL_TREE
;
11421 if (containing_scope
== NULL_TREE
)
11422 scope_die
= comp_unit_die
;
11423 else if (TYPE_P (containing_scope
))
11425 /* For types, we can just look up the appropriate DIE. But
11426 first we check to see if we're in the middle of emitting it
11427 so we know where the new DIE should go. */
11428 for (i
= VEC_length (tree
, decl_scope_table
) - 1; i
>= 0; --i
)
11429 if (VEC_index (tree
, decl_scope_table
, i
) == containing_scope
)
11434 gcc_assert (debug_info_level
<= DINFO_LEVEL_TERSE
11435 || TREE_ASM_WRITTEN (containing_scope
));
11437 /* If none of the current dies are suitable, we get file scope. */
11438 scope_die
= comp_unit_die
;
11441 scope_die
= lookup_type_die (containing_scope
);
11444 scope_die
= context_die
;
11449 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11452 local_scope_p (dw_die_ref context_die
)
11454 for (; context_die
; context_die
= context_die
->die_parent
)
11455 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
11456 || context_die
->die_tag
== DW_TAG_subprogram
)
11462 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11463 whether or not to treat a DIE in this context as a declaration. */
11466 class_or_namespace_scope_p (dw_die_ref context_die
)
11468 return (context_die
11469 && (context_die
->die_tag
== DW_TAG_structure_type
11470 || context_die
->die_tag
== DW_TAG_union_type
11471 || context_die
->die_tag
== DW_TAG_namespace
));
11474 /* Many forms of DIEs require a "type description" attribute. This
11475 routine locates the proper "type descriptor" die for the type given
11476 by 'type', and adds a DW_AT_type attribute below the given die. */
11479 add_type_attribute (dw_die_ref object_die
, tree type
, int decl_const
,
11480 int decl_volatile
, dw_die_ref context_die
)
11482 enum tree_code code
= TREE_CODE (type
);
11483 dw_die_ref type_die
= NULL
;
11485 /* ??? If this type is an unnamed subrange type of an integral, floating-point
11486 or fixed-point type, use the inner type. This is because we have no
11487 support for unnamed types in base_type_die. This can happen if this is
11488 an Ada subrange type. Correct solution is emit a subrange type die. */
11489 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
|| code
== FIXED_POINT_TYPE
)
11490 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
11491 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
11493 if (code
== ERROR_MARK
11494 /* Handle a special case. For functions whose return type is void, we
11495 generate *no* type attribute. (Note that no object may have type
11496 `void', so this only applies to function return types). */
11497 || code
== VOID_TYPE
)
11500 type_die
= modified_type_die (type
,
11501 decl_const
|| TYPE_READONLY (type
),
11502 decl_volatile
|| TYPE_VOLATILE (type
),
11505 if (type_die
!= NULL
)
11506 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
11509 /* Given an object die, add the calling convention attribute for the
11510 function call type. */
11512 add_calling_convention_attribute (dw_die_ref subr_die
, tree type
)
11514 enum dwarf_calling_convention value
= DW_CC_normal
;
11516 value
= targetm
.dwarf_calling_convention (type
);
11518 /* Only add the attribute if the backend requests it, and
11519 is not DW_CC_normal. */
11520 if (value
&& (value
!= DW_CC_normal
))
11521 add_AT_unsigned (subr_die
, DW_AT_calling_convention
, value
);
11524 /* Given a tree pointer to a struct, class, union, or enum type node, return
11525 a pointer to the (string) tag name for the given type, or zero if the type
11526 was declared without a tag. */
11528 static const char *
11529 type_tag (const_tree type
)
11531 const char *name
= 0;
11533 if (TYPE_NAME (type
) != 0)
11537 /* Find the IDENTIFIER_NODE for the type name. */
11538 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
11539 t
= TYPE_NAME (type
);
11541 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11542 a TYPE_DECL node, regardless of whether or not a `typedef' was
11544 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
11545 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
11547 /* We want to be extra verbose. Don't call dwarf_name if
11548 DECL_NAME isn't set. The default hook for decl_printable_name
11549 doesn't like that, and in this context it's correct to return
11550 0, instead of "<anonymous>" or the like. */
11551 if (DECL_NAME (TYPE_NAME (type
)))
11552 name
= lang_hooks
.dwarf_name (TYPE_NAME (type
), 2);
11555 /* Now get the name as a string, or invent one. */
11556 if (!name
&& t
!= 0)
11557 name
= IDENTIFIER_POINTER (t
);
11560 return (name
== 0 || *name
== '\0') ? 0 : name
;
11563 /* Return the type associated with a data member, make a special check
11564 for bit field types. */
11567 member_declared_type (const_tree member
)
11569 return (DECL_BIT_FIELD_TYPE (member
)
11570 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
11573 /* Get the decl's label, as described by its RTL. This may be different
11574 from the DECL_NAME name used in the source file. */
11577 static const char *
11578 decl_start_label (tree decl
)
11581 const char *fnname
;
11583 x
= DECL_RTL (decl
);
11584 gcc_assert (MEM_P (x
));
11587 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
11589 fnname
= XSTR (x
, 0);
11594 /* These routines generate the internal representation of the DIE's for
11595 the compilation unit. Debugging information is collected by walking
11596 the declaration trees passed in from dwarf2out_decl(). */
11599 gen_array_type_die (tree type
, dw_die_ref context_die
)
11601 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
11602 dw_die_ref array_die
;
11605 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11606 the inner array type comes before the outer array type. Thus we must
11607 call gen_type_die before we call new_die. See below also. */
11608 #ifdef MIPS_DEBUGGING_INFO
11609 gen_type_die (TREE_TYPE (type
), context_die
);
11612 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
11613 add_name_attribute (array_die
, type_tag (type
));
11614 equate_type_number_to_die (type
, array_die
);
11616 if (TREE_CODE (type
) == VECTOR_TYPE
)
11618 /* The frontend feeds us a representation for the vector as a struct
11619 containing an array. Pull out the array type. */
11620 type
= TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type
)));
11621 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
11625 /* We default the array ordering. SDB will probably do
11626 the right things even if DW_AT_ordering is not present. It's not even
11627 an issue until we start to get into multidimensional arrays anyway. If
11628 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11629 then we'll have to put the DW_AT_ordering attribute back in. (But if
11630 and when we find out that we need to put these in, we will only do so
11631 for multidimensional arrays. */
11632 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
11635 #ifdef MIPS_DEBUGGING_INFO
11636 /* The SGI compilers handle arrays of unknown bound by setting
11637 AT_declaration and not emitting any subrange DIEs. */
11638 if (! TYPE_DOMAIN (type
))
11639 add_AT_flag (array_die
, DW_AT_declaration
, 1);
11642 add_subscript_info (array_die
, type
);
11644 /* Add representation of the type of the elements of this array type. */
11645 element_type
= TREE_TYPE (type
);
11647 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11648 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11649 We work around this by disabling this feature. See also
11650 add_subscript_info. */
11651 #ifndef MIPS_DEBUGGING_INFO
11652 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
11653 element_type
= TREE_TYPE (element_type
);
11655 gen_type_die (element_type
, context_die
);
11658 add_type_attribute (array_die
, element_type
, 0, 0, context_die
);
11660 if (get_AT (array_die
, DW_AT_name
))
11661 add_pubtype (type
, array_die
);
11666 gen_entry_point_die (tree decl
, dw_die_ref context_die
)
11668 tree origin
= decl_ultimate_origin (decl
);
11669 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
11671 if (origin
!= NULL
)
11672 add_abstract_origin_attribute (decl_die
, origin
);
11675 add_name_and_src_coords_attributes (decl_die
, decl
);
11676 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
11677 0, 0, context_die
);
11680 if (DECL_ABSTRACT (decl
))
11681 equate_decl_number_to_die (decl
, decl_die
);
11683 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
11687 /* Walk through the list of incomplete types again, trying once more to
11688 emit full debugging info for them. */
11691 retry_incomplete_types (void)
11695 for (i
= VEC_length (tree
, incomplete_types
) - 1; i
>= 0; i
--)
11696 gen_type_die (VEC_index (tree
, incomplete_types
, i
), comp_unit_die
);
11699 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11702 gen_inlined_enumeration_type_die (tree type
, dw_die_ref context_die
)
11704 dw_die_ref type_die
= new_die (DW_TAG_enumeration_type
, context_die
, type
);
11706 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11707 be incomplete and such types are not marked. */
11708 add_abstract_origin_attribute (type_die
, type
);
11711 /* Generate a DIE to represent an inlined instance of a structure type. */
11714 gen_inlined_structure_type_die (tree type
, dw_die_ref context_die
)
11716 dw_die_ref type_die
= new_die (DW_TAG_structure_type
, context_die
, type
);
11718 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11719 be incomplete and such types are not marked. */
11720 add_abstract_origin_attribute (type_die
, type
);
11723 /* Generate a DIE to represent an inlined instance of a union type. */
11726 gen_inlined_union_type_die (tree type
, dw_die_ref context_die
)
11728 dw_die_ref type_die
= new_die (DW_TAG_union_type
, context_die
, type
);
11730 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11731 be incomplete and such types are not marked. */
11732 add_abstract_origin_attribute (type_die
, type
);
11735 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11736 include all of the information about the enumeration values also. Each
11737 enumerated type name/value is listed as a child of the enumerated type
11741 gen_enumeration_type_die (tree type
, dw_die_ref context_die
)
11743 dw_die_ref type_die
= lookup_type_die (type
);
11745 if (type_die
== NULL
)
11747 type_die
= new_die (DW_TAG_enumeration_type
,
11748 scope_die_for (type
, context_die
), type
);
11749 equate_type_number_to_die (type
, type_die
);
11750 add_name_attribute (type_die
, type_tag (type
));
11752 else if (! TYPE_SIZE (type
))
11755 remove_AT (type_die
, DW_AT_declaration
);
11757 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11758 given enum type is incomplete, do not generate the DW_AT_byte_size
11759 attribute or the DW_AT_element_list attribute. */
11760 if (TYPE_SIZE (type
))
11764 TREE_ASM_WRITTEN (type
) = 1;
11765 add_byte_size_attribute (type_die
, type
);
11766 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
11767 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
11769 /* If the first reference to this type was as the return type of an
11770 inline function, then it may not have a parent. Fix this now. */
11771 if (type_die
->die_parent
== NULL
)
11772 add_child_die (scope_die_for (type
, context_die
), type_die
);
11774 for (link
= TYPE_VALUES (type
);
11775 link
!= NULL
; link
= TREE_CHAIN (link
))
11777 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
11778 tree value
= TREE_VALUE (link
);
11780 add_name_attribute (enum_die
,
11781 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
11783 if (host_integerp (value
, TYPE_UNSIGNED (TREE_TYPE (value
))))
11784 /* DWARF2 does not provide a way of indicating whether or
11785 not enumeration constants are signed or unsigned. GDB
11786 always assumes the values are signed, so we output all
11787 values as if they were signed. That means that
11788 enumeration constants with very large unsigned values
11789 will appear to have negative values in the debugger. */
11790 add_AT_int (enum_die
, DW_AT_const_value
,
11791 tree_low_cst (value
, tree_int_cst_sgn (value
) > 0));
11795 add_AT_flag (type_die
, DW_AT_declaration
, 1);
11797 if (get_AT (type_die
, DW_AT_name
))
11798 add_pubtype (type
, type_die
);
11803 /* Generate a DIE to represent either a real live formal parameter decl or to
11804 represent just the type of some formal parameter position in some function
11807 Note that this routine is a bit unusual because its argument may be a
11808 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11809 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11810 node. If it's the former then this function is being called to output a
11811 DIE to represent a formal parameter object (or some inlining thereof). If
11812 it's the latter, then this function is only being called to output a
11813 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11814 argument type of some subprogram type. */
11817 gen_formal_parameter_die (tree node
, dw_die_ref context_die
)
11819 dw_die_ref parm_die
11820 = new_die (DW_TAG_formal_parameter
, context_die
, node
);
11823 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
11825 case tcc_declaration
:
11826 origin
= decl_ultimate_origin (node
);
11827 if (origin
!= NULL
)
11828 add_abstract_origin_attribute (parm_die
, origin
);
11831 add_name_and_src_coords_attributes (parm_die
, node
);
11832 add_type_attribute (parm_die
, TREE_TYPE (node
),
11833 TREE_READONLY (node
),
11834 TREE_THIS_VOLATILE (node
),
11836 if (DECL_ARTIFICIAL (node
))
11837 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
11840 equate_decl_number_to_die (node
, parm_die
);
11841 if (! DECL_ABSTRACT (node
))
11842 add_location_or_const_value_attribute (parm_die
, node
, DW_AT_location
);
11847 /* We were called with some kind of a ..._TYPE node. */
11848 add_type_attribute (parm_die
, node
, 0, 0, context_die
);
11852 gcc_unreachable ();
11858 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11859 at the end of an (ANSI prototyped) formal parameters list. */
11862 gen_unspecified_parameters_die (tree decl_or_type
, dw_die_ref context_die
)
11864 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
11867 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11868 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11869 parameters as specified in some function type specification (except for
11870 those which appear as part of a function *definition*). */
11873 gen_formal_types_die (tree function_or_method_type
, dw_die_ref context_die
)
11876 tree formal_type
= NULL
;
11877 tree first_parm_type
;
11880 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
11882 arg
= DECL_ARGUMENTS (function_or_method_type
);
11883 function_or_method_type
= TREE_TYPE (function_or_method_type
);
11888 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
11890 /* Make our first pass over the list of formal parameter types and output a
11891 DW_TAG_formal_parameter DIE for each one. */
11892 for (link
= first_parm_type
; link
; )
11894 dw_die_ref parm_die
;
11896 formal_type
= TREE_VALUE (link
);
11897 if (formal_type
== void_type_node
)
11900 /* Output a (nameless) DIE to represent the formal parameter itself. */
11901 parm_die
= gen_formal_parameter_die (formal_type
, context_die
);
11902 if ((TREE_CODE (function_or_method_type
) == METHOD_TYPE
11903 && link
== first_parm_type
)
11904 || (arg
&& DECL_ARTIFICIAL (arg
)))
11905 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
11907 link
= TREE_CHAIN (link
);
11909 arg
= TREE_CHAIN (arg
);
11912 /* If this function type has an ellipsis, add a
11913 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11914 if (formal_type
!= void_type_node
)
11915 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
11917 /* Make our second (and final) pass over the list of formal parameter types
11918 and output DIEs to represent those types (as necessary). */
11919 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
11920 link
&& TREE_VALUE (link
);
11921 link
= TREE_CHAIN (link
))
11922 gen_type_die (TREE_VALUE (link
), context_die
);
11925 /* We want to generate the DIE for TYPE so that we can generate the
11926 die for MEMBER, which has been defined; we will need to refer back
11927 to the member declaration nested within TYPE. If we're trying to
11928 generate minimal debug info for TYPE, processing TYPE won't do the
11929 trick; we need to attach the member declaration by hand. */
11932 gen_type_die_for_member (tree type
, tree member
, dw_die_ref context_die
)
11934 gen_type_die (type
, context_die
);
11936 /* If we're trying to avoid duplicate debug info, we may not have
11937 emitted the member decl for this function. Emit it now. */
11938 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
11939 && ! lookup_decl_die (member
))
11941 dw_die_ref type_die
;
11942 gcc_assert (!decl_ultimate_origin (member
));
11944 push_decl_scope (type
);
11945 type_die
= lookup_type_die (type
);
11946 if (TREE_CODE (member
) == FUNCTION_DECL
)
11947 gen_subprogram_die (member
, type_die
);
11948 else if (TREE_CODE (member
) == FIELD_DECL
)
11950 /* Ignore the nameless fields that are used to skip bits but handle
11951 C++ anonymous unions and structs. */
11952 if (DECL_NAME (member
) != NULL_TREE
11953 || TREE_CODE (TREE_TYPE (member
)) == UNION_TYPE
11954 || TREE_CODE (TREE_TYPE (member
)) == RECORD_TYPE
)
11956 gen_type_die (member_declared_type (member
), type_die
);
11957 gen_field_die (member
, type_die
);
11961 gen_variable_die (member
, type_die
);
11967 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11968 may later generate inlined and/or out-of-line instances of. */
11971 dwarf2out_abstract_function (tree decl
)
11973 dw_die_ref old_die
;
11976 int was_abstract
= DECL_ABSTRACT (decl
);
11978 /* Make sure we have the actual abstract inline, not a clone. */
11979 decl
= DECL_ORIGIN (decl
);
11981 old_die
= lookup_decl_die (decl
);
11982 if (old_die
&& get_AT (old_die
, DW_AT_inline
))
11983 /* We've already generated the abstract instance. */
11986 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11987 we don't get confused by DECL_ABSTRACT. */
11988 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11990 context
= decl_class_context (decl
);
11992 gen_type_die_for_member
11993 (context
, decl
, decl_function_context (decl
) ? NULL
: comp_unit_die
);
11996 /* Pretend we've just finished compiling this function. */
11997 save_fn
= current_function_decl
;
11998 current_function_decl
= decl
;
11999 push_cfun (DECL_STRUCT_FUNCTION (decl
));
12001 set_decl_abstract_flags (decl
, 1);
12002 dwarf2out_decl (decl
);
12003 if (! was_abstract
)
12004 set_decl_abstract_flags (decl
, 0);
12006 current_function_decl
= save_fn
;
12010 /* Helper function of premark_used_types() which gets called through
12011 htab_traverse_resize().
12013 Marks the DIE of a given type in *SLOT as perennial, so it never gets
12014 marked as unused by prune_unused_types. */
12016 premark_used_types_helper (void **slot
, void *data ATTRIBUTE_UNUSED
)
12022 die
= lookup_type_die (type
);
12024 die
->die_perennial_p
= 1;
12028 /* Mark all members of used_types_hash as perennial. */
12030 premark_used_types (void)
12032 if (cfun
&& cfun
->used_types_hash
)
12033 htab_traverse (cfun
->used_types_hash
, premark_used_types_helper
, NULL
);
12036 /* Generate a DIE to represent a declared function (either file-scope or
12040 gen_subprogram_die (tree decl
, dw_die_ref context_die
)
12042 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
12043 tree origin
= decl_ultimate_origin (decl
);
12044 dw_die_ref subr_die
;
12047 dw_die_ref old_die
= lookup_decl_die (decl
);
12048 int declaration
= (current_function_decl
!= decl
12049 || class_or_namespace_scope_p (context_die
));
12051 premark_used_types ();
12053 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
12054 started to generate the abstract instance of an inline, decided to output
12055 its containing class, and proceeded to emit the declaration of the inline
12056 from the member list for the class. If so, DECLARATION takes priority;
12057 we'll get back to the abstract instance when done with the class. */
12059 /* The class-scope declaration DIE must be the primary DIE. */
12060 if (origin
&& declaration
&& class_or_namespace_scope_p (context_die
))
12063 gcc_assert (!old_die
);
12066 /* Now that the C++ front end lazily declares artificial member fns, we
12067 might need to retrofit the declaration into its class. */
12068 if (!declaration
&& !origin
&& !old_die
12069 && DECL_CONTEXT (decl
) && TYPE_P (DECL_CONTEXT (decl
))
12070 && !class_or_namespace_scope_p (context_die
)
12071 && debug_info_level
> DINFO_LEVEL_TERSE
)
12072 old_die
= force_decl_die (decl
);
12074 if (origin
!= NULL
)
12076 gcc_assert (!declaration
|| local_scope_p (context_die
));
12078 /* Fixup die_parent for the abstract instance of a nested
12079 inline function. */
12080 if (old_die
&& old_die
->die_parent
== NULL
)
12081 add_child_die (context_die
, old_die
);
12083 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
12084 add_abstract_origin_attribute (subr_die
, origin
);
12088 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
12089 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
12091 if (!get_AT_flag (old_die
, DW_AT_declaration
)
12092 /* We can have a normal definition following an inline one in the
12093 case of redefinition of GNU C extern inlines.
12094 It seems reasonable to use AT_specification in this case. */
12095 && !get_AT (old_die
, DW_AT_inline
))
12097 /* Detect and ignore this case, where we are trying to output
12098 something we have already output. */
12102 /* If the definition comes from the same place as the declaration,
12103 maybe use the old DIE. We always want the DIE for this function
12104 that has the *_pc attributes to be under comp_unit_die so the
12105 debugger can find it. We also need to do this for abstract
12106 instances of inlines, since the spec requires the out-of-line copy
12107 to have the same parent. For local class methods, this doesn't
12108 apply; we just use the old DIE. */
12109 if ((old_die
->die_parent
== comp_unit_die
|| context_die
== NULL
)
12110 && (DECL_ARTIFICIAL (decl
)
12111 || (get_AT_file (old_die
, DW_AT_decl_file
) == file_index
12112 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
12113 == (unsigned) s
.line
))))
12115 subr_die
= old_die
;
12117 /* Clear out the declaration attribute and the formal parameters.
12118 Do not remove all children, because it is possible that this
12119 declaration die was forced using force_decl_die(). In such
12120 cases die that forced declaration die (e.g. TAG_imported_module)
12121 is one of the children that we do not want to remove. */
12122 remove_AT (subr_die
, DW_AT_declaration
);
12123 remove_child_TAG (subr_die
, DW_TAG_formal_parameter
);
12127 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
12128 add_AT_specification (subr_die
, old_die
);
12129 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
12130 add_AT_file (subr_die
, DW_AT_decl_file
, file_index
);
12131 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
12132 add_AT_unsigned (subr_die
, DW_AT_decl_line
, s
.line
);
12137 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
12139 if (TREE_PUBLIC (decl
))
12140 add_AT_flag (subr_die
, DW_AT_external
, 1);
12142 add_name_and_src_coords_attributes (subr_die
, decl
);
12143 if (debug_info_level
> DINFO_LEVEL_TERSE
)
12145 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
12146 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
12147 0, 0, context_die
);
12150 add_pure_or_virtual_attribute (subr_die
, decl
);
12151 if (DECL_ARTIFICIAL (decl
))
12152 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
12154 if (TREE_PROTECTED (decl
))
12155 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
12156 else if (TREE_PRIVATE (decl
))
12157 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_private
);
12162 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
12164 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
12166 /* The first time we see a member function, it is in the context of
12167 the class to which it belongs. We make sure of this by emitting
12168 the class first. The next time is the definition, which is
12169 handled above. The two may come from the same source text.
12171 Note that force_decl_die() forces function declaration die. It is
12172 later reused to represent definition. */
12173 equate_decl_number_to_die (decl
, subr_die
);
12176 else if (DECL_ABSTRACT (decl
))
12178 if (DECL_DECLARED_INLINE_P (decl
))
12180 if (cgraph_function_possibly_inlined_p (decl
))
12181 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_inlined
);
12183 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
12187 if (cgraph_function_possibly_inlined_p (decl
))
12188 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_inlined
);
12190 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_not_inlined
);
12193 if (DECL_DECLARED_INLINE_P (decl
)
12194 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl
)))
12195 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
12197 equate_decl_number_to_die (decl
, subr_die
);
12199 else if (!DECL_EXTERNAL (decl
))
12201 HOST_WIDE_INT cfa_fb_offset
;
12203 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
12204 equate_decl_number_to_die (decl
, subr_die
);
12206 if (!flag_reorder_blocks_and_partition
)
12208 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_BEGIN_LABEL
,
12209 current_function_funcdef_no
);
12210 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label_id
);
12211 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
12212 current_function_funcdef_no
);
12213 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label_id
);
12215 add_pubname (decl
, subr_die
);
12216 add_arange (decl
, subr_die
);
12219 { /* Do nothing for now; maybe need to duplicate die, one for
12220 hot section and ond for cold section, then use the hot/cold
12221 section begin/end labels to generate the aranges... */
12223 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
12224 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
12225 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
12226 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
12228 add_pubname (decl, subr_die);
12229 add_arange (decl, subr_die);
12230 add_arange (decl, subr_die);
12234 #ifdef MIPS_DEBUGGING_INFO
12235 /* Add a reference to the FDE for this routine. */
12236 add_AT_fde_ref (subr_die
, DW_AT_MIPS_fde
, current_funcdef_fde
);
12239 cfa_fb_offset
= CFA_FRAME_BASE_OFFSET (decl
);
12241 /* We define the "frame base" as the function's CFA. This is more
12242 convenient for several reasons: (1) It's stable across the prologue
12243 and epilogue, which makes it better than just a frame pointer,
12244 (2) With dwarf3, there exists a one-byte encoding that allows us
12245 to reference the .debug_frame data by proxy, but failing that,
12246 (3) We can at least reuse the code inspection and interpretation
12247 code that determines the CFA position at various points in the
12249 /* ??? Use some command-line or configury switch to enable the use
12250 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
12251 consumers that understand it; fall back to "pure" dwarf2 and
12252 convert the CFA data into a location list. */
12254 dw_loc_list_ref list
= convert_cfa_to_fb_loc_list (cfa_fb_offset
);
12255 if (list
->dw_loc_next
)
12256 add_AT_loc_list (subr_die
, DW_AT_frame_base
, list
);
12258 add_AT_loc (subr_die
, DW_AT_frame_base
, list
->expr
);
12261 /* Compute a displacement from the "steady-state frame pointer" to
12262 the CFA. The former is what all stack slots and argument slots
12263 will reference in the rtl; the later is what we've told the
12264 debugger about. We'll need to adjust all frame_base references
12265 by this displacement. */
12266 compute_frame_pointer_to_fb_displacement (cfa_fb_offset
);
12268 if (cfun
->static_chain_decl
)
12269 add_AT_location_description (subr_die
, DW_AT_static_link
,
12270 loc_descriptor_from_tree (cfun
->static_chain_decl
));
12273 /* Now output descriptions of the arguments for this function. This gets
12274 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
12275 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
12276 `...' at the end of the formal parameter list. In order to find out if
12277 there was a trailing ellipsis or not, we must instead look at the type
12278 associated with the FUNCTION_DECL. This will be a node of type
12279 FUNCTION_TYPE. If the chain of type nodes hanging off of this
12280 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
12281 an ellipsis at the end. */
12283 /* In the case where we are describing a mere function declaration, all we
12284 need to do here (and all we *can* do here) is to describe the *types* of
12285 its formal parameters. */
12286 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12288 else if (declaration
)
12289 gen_formal_types_die (decl
, subr_die
);
12292 /* Generate DIEs to represent all known formal parameters. */
12293 tree arg_decls
= DECL_ARGUMENTS (decl
);
12296 /* When generating DIEs, generate the unspecified_parameters DIE
12297 instead if we come across the arg "__builtin_va_alist" */
12298 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
12299 if (TREE_CODE (parm
) == PARM_DECL
)
12301 if (DECL_NAME (parm
)
12302 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
12303 "__builtin_va_alist"))
12304 gen_unspecified_parameters_die (parm
, subr_die
);
12306 gen_decl_die (parm
, subr_die
);
12309 /* Decide whether we need an unspecified_parameters DIE at the end.
12310 There are 2 more cases to do this for: 1) the ansi ... declaration -
12311 this is detectable when the end of the arg list is not a
12312 void_type_node 2) an unprototyped function declaration (not a
12313 definition). This just means that we have no info about the
12314 parameters at all. */
12315 fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
12316 if (fn_arg_types
!= NULL
)
12318 /* This is the prototyped case, check for.... */
12319 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
12320 gen_unspecified_parameters_die (decl
, subr_die
);
12322 else if (DECL_INITIAL (decl
) == NULL_TREE
)
12323 gen_unspecified_parameters_die (decl
, subr_die
);
12326 /* Output Dwarf info for all of the stuff within the body of the function
12327 (if it has one - it may be just a declaration). */
12328 outer_scope
= DECL_INITIAL (decl
);
12330 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
12331 a function. This BLOCK actually represents the outermost binding contour
12332 for the function, i.e. the contour in which the function's formal
12333 parameters and labels get declared. Curiously, it appears that the front
12334 end doesn't actually put the PARM_DECL nodes for the current function onto
12335 the BLOCK_VARS list for this outer scope, but are strung off of the
12336 DECL_ARGUMENTS list for the function instead.
12338 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
12339 the LABEL_DECL nodes for the function however, and we output DWARF info
12340 for those in decls_for_scope. Just within the `outer_scope' there will be
12341 a BLOCK node representing the function's outermost pair of curly braces,
12342 and any blocks used for the base and member initializers of a C++
12343 constructor function. */
12344 if (! declaration
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
12346 /* Emit a DW_TAG_variable DIE for a named return value. */
12347 if (DECL_NAME (DECL_RESULT (decl
)))
12348 gen_decl_die (DECL_RESULT (decl
), subr_die
);
12350 current_function_has_inlines
= 0;
12351 decls_for_scope (outer_scope
, subr_die
, 0);
12353 #if 0 && defined (MIPS_DEBUGGING_INFO)
12354 if (current_function_has_inlines
)
12356 add_AT_flag (subr_die
, DW_AT_MIPS_has_inlines
, 1);
12357 if (! comp_unit_has_inlines
)
12359 add_AT_flag (comp_unit_die
, DW_AT_MIPS_has_inlines
, 1);
12360 comp_unit_has_inlines
= 1;
12365 /* Add the calling convention attribute if requested. */
12366 add_calling_convention_attribute (subr_die
, TREE_TYPE (decl
));
12370 /* Generate a DIE to represent a declared data object. */
12373 gen_variable_die (tree decl
, dw_die_ref context_die
)
12375 tree origin
= decl_ultimate_origin (decl
);
12376 dw_die_ref var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
12378 dw_die_ref old_die
= lookup_decl_die (decl
);
12379 int declaration
= (DECL_EXTERNAL (decl
)
12380 /* If DECL is COMDAT and has not actually been
12381 emitted, we cannot take its address; there
12382 might end up being no definition anywhere in
12383 the program. For example, consider the C++
12387 struct S { static const int i = 7; };
12392 int f() { return S<int>::i; }
12394 Here, S<int>::i is not DECL_EXTERNAL, but no
12395 definition is required, so the compiler will
12396 not emit a definition. */
12397 || (TREE_CODE (decl
) == VAR_DECL
12398 && DECL_COMDAT (decl
) && !TREE_ASM_WRITTEN (decl
))
12399 || class_or_namespace_scope_p (context_die
));
12401 if (origin
!= NULL
)
12402 add_abstract_origin_attribute (var_die
, origin
);
12404 /* Loop unrolling can create multiple blocks that refer to the same
12405 static variable, so we must test for the DW_AT_declaration flag.
12407 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12408 copy decls and set the DECL_ABSTRACT flag on them instead of
12411 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12413 ??? The declare_in_namespace support causes us to get two DIEs for one
12414 variable, both of which are declarations. We want to avoid considering
12415 one to be a specification, so we must test that this DIE is not a
12417 else if (old_die
&& TREE_STATIC (decl
) && ! declaration
12418 && get_AT_flag (old_die
, DW_AT_declaration
) == 1)
12420 /* This is a definition of a C++ class level static. */
12421 add_AT_specification (var_die
, old_die
);
12422 if (DECL_NAME (decl
))
12424 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
12425 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
12427 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
12428 add_AT_file (var_die
, DW_AT_decl_file
, file_index
);
12430 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
12431 add_AT_unsigned (var_die
, DW_AT_decl_line
, s
.line
);
12436 add_name_and_src_coords_attributes (var_die
, decl
);
12437 add_type_attribute (var_die
, TREE_TYPE (decl
), TREE_READONLY (decl
),
12438 TREE_THIS_VOLATILE (decl
), context_die
);
12440 if (TREE_PUBLIC (decl
))
12441 add_AT_flag (var_die
, DW_AT_external
, 1);
12443 if (DECL_ARTIFICIAL (decl
))
12444 add_AT_flag (var_die
, DW_AT_artificial
, 1);
12446 if (TREE_PROTECTED (decl
))
12447 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
12448 else if (TREE_PRIVATE (decl
))
12449 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_private
);
12453 add_AT_flag (var_die
, DW_AT_declaration
, 1);
12455 if (DECL_ABSTRACT (decl
) || declaration
)
12456 equate_decl_number_to_die (decl
, var_die
);
12458 if (! declaration
&& ! DECL_ABSTRACT (decl
))
12460 add_location_or_const_value_attribute (var_die
, decl
, DW_AT_location
);
12461 add_pubname (decl
, var_die
);
12464 tree_add_const_value_attribute (var_die
, decl
);
12467 /* Generate a DIE to represent a label identifier. */
12470 gen_label_die (tree decl
, dw_die_ref context_die
)
12472 tree origin
= decl_ultimate_origin (decl
);
12473 dw_die_ref lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
12475 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
12477 if (origin
!= NULL
)
12478 add_abstract_origin_attribute (lbl_die
, origin
);
12480 add_name_and_src_coords_attributes (lbl_die
, decl
);
12482 if (DECL_ABSTRACT (decl
))
12483 equate_decl_number_to_die (decl
, lbl_die
);
12486 insn
= DECL_RTL_IF_SET (decl
);
12488 /* Deleted labels are programmer specified labels which have been
12489 eliminated because of various optimizations. We still emit them
12490 here so that it is possible to put breakpoints on them. */
12494 && NOTE_KIND (insn
) == NOTE_INSN_DELETED_LABEL
))))
12496 /* When optimization is enabled (via -O) some parts of the compiler
12497 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12498 represent source-level labels which were explicitly declared by
12499 the user. This really shouldn't be happening though, so catch
12500 it if it ever does happen. */
12501 gcc_assert (!INSN_DELETED_P (insn
));
12503 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
12504 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
12509 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12510 attributes to the DIE for a block STMT, to describe where the inlined
12511 function was called from. This is similar to add_src_coords_attributes. */
12514 add_call_src_coords_attributes (tree stmt
, dw_die_ref die
)
12516 expanded_location s
= expand_location (BLOCK_SOURCE_LOCATION (stmt
));
12518 add_AT_file (die
, DW_AT_call_file
, lookup_filename (s
.file
));
12519 add_AT_unsigned (die
, DW_AT_call_line
, s
.line
);
12523 /* If STMT's abstract origin is a function declaration and STMT's
12524 first subblock's abstract origin is the function's outermost block,
12525 then we're looking at the main entry point. */
12527 is_inlined_entry_point (const_tree stmt
)
12531 if (!stmt
|| TREE_CODE (stmt
) != BLOCK
)
12534 decl
= block_ultimate_origin (stmt
);
12536 if (!decl
|| TREE_CODE (decl
) != FUNCTION_DECL
)
12539 block
= BLOCK_SUBBLOCKS (stmt
);
12543 if (TREE_CODE (block
) != BLOCK
)
12546 block
= block_ultimate_origin (block
);
12549 return block
== DECL_INITIAL (decl
);
12552 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12553 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12556 add_high_low_attributes (tree stmt
, dw_die_ref die
)
12558 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
12560 if (BLOCK_FRAGMENT_CHAIN (stmt
))
12564 if (is_inlined_entry_point (stmt
))
12566 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
12567 BLOCK_NUMBER (stmt
));
12568 add_AT_lbl_id (die
, DW_AT_entry_pc
, label
);
12571 add_AT_range_list (die
, DW_AT_ranges
, add_ranges (stmt
));
12573 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
12576 add_ranges (chain
);
12577 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
12584 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
12585 BLOCK_NUMBER (stmt
));
12586 add_AT_lbl_id (die
, DW_AT_low_pc
, label
);
12587 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
12588 BLOCK_NUMBER (stmt
));
12589 add_AT_lbl_id (die
, DW_AT_high_pc
, label
);
12593 /* Generate a DIE for a lexical block. */
12596 gen_lexical_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
12598 dw_die_ref stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
12600 if (! BLOCK_ABSTRACT (stmt
))
12601 add_high_low_attributes (stmt
, stmt_die
);
12603 decls_for_scope (stmt
, stmt_die
, depth
);
12606 /* Generate a DIE for an inlined subprogram. */
12609 gen_inlined_subroutine_die (tree stmt
, dw_die_ref context_die
, int depth
)
12611 tree decl
= block_ultimate_origin (stmt
);
12613 /* Emit info for the abstract instance first, if we haven't yet. We
12614 must emit this even if the block is abstract, otherwise when we
12615 emit the block below (or elsewhere), we may end up trying to emit
12616 a die whose origin die hasn't been emitted, and crashing. */
12617 dwarf2out_abstract_function (decl
);
12619 if (! BLOCK_ABSTRACT (stmt
))
12621 dw_die_ref subr_die
12622 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
12624 add_abstract_origin_attribute (subr_die
, decl
);
12625 add_high_low_attributes (stmt
, subr_die
);
12626 add_call_src_coords_attributes (stmt
, subr_die
);
12628 decls_for_scope (stmt
, subr_die
, depth
);
12629 current_function_has_inlines
= 1;
12632 /* We may get here if we're the outer block of function A that was
12633 inlined into function B that was inlined into function C. When
12634 generating debugging info for C, dwarf2out_abstract_function(B)
12635 would mark all inlined blocks as abstract, including this one.
12636 So, we wouldn't (and shouldn't) expect labels to be generated
12637 for this one. Instead, just emit debugging info for
12638 declarations within the block. This is particularly important
12639 in the case of initializers of arguments passed from B to us:
12640 if they're statement expressions containing declarations, we
12641 wouldn't generate dies for their abstract variables, and then,
12642 when generating dies for the real variables, we'd die (pun
12644 gen_lexical_block_die (stmt
, context_die
, depth
);
12647 /* Generate a DIE for a field in a record, or structure. */
12650 gen_field_die (tree decl
, dw_die_ref context_die
)
12652 dw_die_ref decl_die
;
12654 if (TREE_TYPE (decl
) == error_mark_node
)
12657 decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
12658 add_name_and_src_coords_attributes (decl_die
, decl
);
12659 add_type_attribute (decl_die
, member_declared_type (decl
),
12660 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
),
12663 if (DECL_BIT_FIELD_TYPE (decl
))
12665 add_byte_size_attribute (decl_die
, decl
);
12666 add_bit_size_attribute (decl_die
, decl
);
12667 add_bit_offset_attribute (decl_die
, decl
);
12670 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
12671 add_data_member_location_attribute (decl_die
, decl
);
12673 if (DECL_ARTIFICIAL (decl
))
12674 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
12676 if (TREE_PROTECTED (decl
))
12677 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
12678 else if (TREE_PRIVATE (decl
))
12679 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_private
);
12681 /* Equate decl number to die, so that we can look up this decl later on. */
12682 equate_decl_number_to_die (decl
, decl_die
);
12686 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12687 Use modified_type_die instead.
12688 We keep this code here just in case these types of DIEs may be needed to
12689 represent certain things in other languages (e.g. Pascal) someday. */
12692 gen_pointer_type_die (tree type
, dw_die_ref context_die
)
12695 = new_die (DW_TAG_pointer_type
, scope_die_for (type
, context_die
), type
);
12697 equate_type_number_to_die (type
, ptr_die
);
12698 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
12699 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
12702 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12703 Use modified_type_die instead.
12704 We keep this code here just in case these types of DIEs may be needed to
12705 represent certain things in other languages (e.g. Pascal) someday. */
12708 gen_reference_type_die (tree type
, dw_die_ref context_die
)
12711 = new_die (DW_TAG_reference_type
, scope_die_for (type
, context_die
), type
);
12713 equate_type_number_to_die (type
, ref_die
);
12714 add_type_attribute (ref_die
, TREE_TYPE (type
), 0, 0, context_die
);
12715 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
12719 /* Generate a DIE for a pointer to a member type. */
12722 gen_ptr_to_mbr_type_die (tree type
, dw_die_ref context_die
)
12725 = new_die (DW_TAG_ptr_to_member_type
,
12726 scope_die_for (type
, context_die
), type
);
12728 equate_type_number_to_die (type
, ptr_die
);
12729 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
12730 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
12731 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
12734 /* Generate the DIE for the compilation unit. */
12737 gen_compile_unit_die (const char *filename
)
12740 char producer
[250];
12741 const char *language_string
= lang_hooks
.name
;
12744 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
12748 add_name_attribute (die
, filename
);
12749 /* Don't add cwd for <built-in>. */
12750 if (!IS_ABSOLUTE_PATH (filename
) && filename
[0] != '<')
12751 add_comp_dir_attribute (die
);
12754 sprintf (producer
, "%s %s", language_string
, version_string
);
12756 #ifdef MIPS_DEBUGGING_INFO
12757 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12758 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12759 not appear in the producer string, the debugger reaches the conclusion
12760 that the object file is stripped and has no debugging information.
12761 To get the MIPS/SGI debugger to believe that there is debugging
12762 information in the object file, we add a -g to the producer string. */
12763 if (debug_info_level
> DINFO_LEVEL_TERSE
)
12764 strcat (producer
, " -g");
12767 add_AT_string (die
, DW_AT_producer
, producer
);
12769 if (strcmp (language_string
, "GNU C++") == 0)
12770 language
= DW_LANG_C_plus_plus
;
12771 else if (strcmp (language_string
, "GNU Ada") == 0)
12772 language
= DW_LANG_Ada95
;
12773 else if (strcmp (language_string
, "GNU F77") == 0)
12774 language
= DW_LANG_Fortran77
;
12775 else if (strcmp (language_string
, "GNU F95") == 0)
12776 language
= DW_LANG_Fortran95
;
12777 else if (strcmp (language_string
, "GNU Pascal") == 0)
12778 language
= DW_LANG_Pascal83
;
12779 else if (strcmp (language_string
, "GNU Java") == 0)
12780 language
= DW_LANG_Java
;
12781 else if (strcmp (language_string
, "GNU Objective-C") == 0)
12782 language
= DW_LANG_ObjC
;
12783 else if (strcmp (language_string
, "GNU Objective-C++") == 0)
12784 language
= DW_LANG_ObjC_plus_plus
;
12786 language
= DW_LANG_C89
;
12788 add_AT_unsigned (die
, DW_AT_language
, language
);
12792 /* Generate the DIE for a base class. */
12795 gen_inheritance_die (tree binfo
, tree access
, dw_die_ref context_die
)
12797 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
12799 add_type_attribute (die
, BINFO_TYPE (binfo
), 0, 0, context_die
);
12800 add_data_member_location_attribute (die
, binfo
);
12802 if (BINFO_VIRTUAL_P (binfo
))
12803 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
12805 if (access
== access_public_node
)
12806 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
12807 else if (access
== access_protected_node
)
12808 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
12811 /* Generate a DIE for a class member. */
12814 gen_member_die (tree type
, dw_die_ref context_die
)
12817 tree binfo
= TYPE_BINFO (type
);
12820 /* If this is not an incomplete type, output descriptions of each of its
12821 members. Note that as we output the DIEs necessary to represent the
12822 members of this record or union type, we will also be trying to output
12823 DIEs to represent the *types* of those members. However the `type'
12824 function (above) will specifically avoid generating type DIEs for member
12825 types *within* the list of member DIEs for this (containing) type except
12826 for those types (of members) which are explicitly marked as also being
12827 members of this (containing) type themselves. The g++ front- end can
12828 force any given type to be treated as a member of some other (containing)
12829 type by setting the TYPE_CONTEXT of the given (member) type to point to
12830 the TREE node representing the appropriate (containing) type. */
12832 /* First output info about the base classes. */
12835 VEC(tree
,gc
) *accesses
= BINFO_BASE_ACCESSES (binfo
);
12839 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base
); i
++)
12840 gen_inheritance_die (base
,
12841 (accesses
? VEC_index (tree
, accesses
, i
)
12842 : access_public_node
), context_die
);
12845 /* Now output info about the data members and type members. */
12846 for (member
= TYPE_FIELDS (type
); member
; member
= TREE_CHAIN (member
))
12848 /* If we thought we were generating minimal debug info for TYPE
12849 and then changed our minds, some of the member declarations
12850 may have already been defined. Don't define them again, but
12851 do put them in the right order. */
12853 child
= lookup_decl_die (member
);
12855 splice_child_die (context_die
, child
);
12857 gen_decl_die (member
, context_die
);
12860 /* Now output info about the function members (if any). */
12861 for (member
= TYPE_METHODS (type
); member
; member
= TREE_CHAIN (member
))
12863 /* Don't include clones in the member list. */
12864 if (DECL_ABSTRACT_ORIGIN (member
))
12867 child
= lookup_decl_die (member
);
12869 splice_child_die (context_die
, child
);
12871 gen_decl_die (member
, context_die
);
12875 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12876 is set, we pretend that the type was never defined, so we only get the
12877 member DIEs needed by later specification DIEs. */
12880 gen_struct_or_union_type_die (tree type
, dw_die_ref context_die
,
12881 enum debug_info_usage usage
)
12883 dw_die_ref type_die
= lookup_type_die (type
);
12884 dw_die_ref scope_die
= 0;
12886 int complete
= (TYPE_SIZE (type
)
12887 && (! TYPE_STUB_DECL (type
)
12888 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
12889 int ns_decl
= (context_die
&& context_die
->die_tag
== DW_TAG_namespace
);
12890 complete
= complete
&& should_emit_struct_debug (type
, usage
);
12892 if (type_die
&& ! complete
)
12895 if (TYPE_CONTEXT (type
) != NULL_TREE
12896 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
12897 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
))
12900 scope_die
= scope_die_for (type
, context_die
);
12902 if (! type_die
|| (nested
&& scope_die
== comp_unit_die
))
12903 /* First occurrence of type or toplevel definition of nested class. */
12905 dw_die_ref old_die
= type_die
;
12907 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
12908 ? DW_TAG_structure_type
: DW_TAG_union_type
,
12910 equate_type_number_to_die (type
, type_die
);
12912 add_AT_specification (type_die
, old_die
);
12914 add_name_attribute (type_die
, type_tag (type
));
12917 remove_AT (type_die
, DW_AT_declaration
);
12919 /* If this type has been completed, then give it a byte_size attribute and
12920 then give a list of members. */
12921 if (complete
&& !ns_decl
)
12923 /* Prevent infinite recursion in cases where the type of some member of
12924 this type is expressed in terms of this type itself. */
12925 TREE_ASM_WRITTEN (type
) = 1;
12926 add_byte_size_attribute (type_die
, type
);
12927 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
12928 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
12930 /* If the first reference to this type was as the return type of an
12931 inline function, then it may not have a parent. Fix this now. */
12932 if (type_die
->die_parent
== NULL
)
12933 add_child_die (scope_die
, type_die
);
12935 push_decl_scope (type
);
12936 gen_member_die (type
, type_die
);
12939 /* GNU extension: Record what type our vtable lives in. */
12940 if (TYPE_VFIELD (type
))
12942 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
12944 gen_type_die (vtype
, context_die
);
12945 add_AT_die_ref (type_die
, DW_AT_containing_type
,
12946 lookup_type_die (vtype
));
12951 add_AT_flag (type_die
, DW_AT_declaration
, 1);
12953 /* We don't need to do this for function-local types. */
12954 if (TYPE_STUB_DECL (type
)
12955 && ! decl_function_context (TYPE_STUB_DECL (type
)))
12956 VEC_safe_push (tree
, gc
, incomplete_types
, type
);
12959 if (get_AT (type_die
, DW_AT_name
))
12960 add_pubtype (type
, type_die
);
12963 /* Generate a DIE for a subroutine _type_. */
12966 gen_subroutine_type_die (tree type
, dw_die_ref context_die
)
12968 tree return_type
= TREE_TYPE (type
);
12969 dw_die_ref subr_die
12970 = new_die (DW_TAG_subroutine_type
,
12971 scope_die_for (type
, context_die
), type
);
12973 equate_type_number_to_die (type
, subr_die
);
12974 add_prototyped_attribute (subr_die
, type
);
12975 add_type_attribute (subr_die
, return_type
, 0, 0, context_die
);
12976 gen_formal_types_die (type
, subr_die
);
12978 if (get_AT (subr_die
, DW_AT_name
))
12979 add_pubtype (type
, subr_die
);
12982 /* Generate a DIE for a type definition. */
12985 gen_typedef_die (tree decl
, dw_die_ref context_die
)
12987 dw_die_ref type_die
;
12990 if (TREE_ASM_WRITTEN (decl
))
12993 TREE_ASM_WRITTEN (decl
) = 1;
12994 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
12995 origin
= decl_ultimate_origin (decl
);
12996 if (origin
!= NULL
)
12997 add_abstract_origin_attribute (type_die
, origin
);
13002 add_name_and_src_coords_attributes (type_die
, decl
);
13003 if (DECL_ORIGINAL_TYPE (decl
))
13005 type
= DECL_ORIGINAL_TYPE (decl
);
13007 gcc_assert (type
!= TREE_TYPE (decl
));
13008 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
13011 type
= TREE_TYPE (decl
);
13013 add_type_attribute (type_die
, type
, TREE_READONLY (decl
),
13014 TREE_THIS_VOLATILE (decl
), context_die
);
13017 if (DECL_ABSTRACT (decl
))
13018 equate_decl_number_to_die (decl
, type_die
);
13020 if (get_AT (type_die
, DW_AT_name
))
13021 add_pubtype (decl
, type_die
);
13024 /* Generate a type description DIE. */
13027 gen_type_die_with_usage (tree type
, dw_die_ref context_die
,
13028 enum debug_info_usage usage
)
13032 if (type
== NULL_TREE
|| type
== error_mark_node
)
13035 if (TYPE_NAME (type
) && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
13036 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
13038 if (TREE_ASM_WRITTEN (type
))
13041 /* Prevent broken recursion; we can't hand off to the same type. */
13042 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type
)) != type
);
13044 TREE_ASM_WRITTEN (type
) = 1;
13045 gen_decl_die (TYPE_NAME (type
), context_die
);
13049 /* We are going to output a DIE to represent the unqualified version
13050 of this type (i.e. without any const or volatile qualifiers) so
13051 get the main variant (i.e. the unqualified version) of this type
13052 now. (Vectors are special because the debugging info is in the
13053 cloned type itself). */
13054 if (TREE_CODE (type
) != VECTOR_TYPE
)
13055 type
= type_main_variant (type
);
13057 if (TREE_ASM_WRITTEN (type
))
13060 switch (TREE_CODE (type
))
13066 case REFERENCE_TYPE
:
13067 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
13068 ensures that the gen_type_die recursion will terminate even if the
13069 type is recursive. Recursive types are possible in Ada. */
13070 /* ??? We could perhaps do this for all types before the switch
13072 TREE_ASM_WRITTEN (type
) = 1;
13074 /* For these types, all that is required is that we output a DIE (or a
13075 set of DIEs) to represent the "basis" type. */
13076 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
13077 DINFO_USAGE_IND_USE
);
13081 /* This code is used for C++ pointer-to-data-member types.
13082 Output a description of the relevant class type. */
13083 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type
), context_die
,
13084 DINFO_USAGE_IND_USE
);
13086 /* Output a description of the type of the object pointed to. */
13087 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
13088 DINFO_USAGE_IND_USE
);
13090 /* Now output a DIE to represent this pointer-to-data-member type
13092 gen_ptr_to_mbr_type_die (type
, context_die
);
13095 case FUNCTION_TYPE
:
13096 /* Force out return type (in case it wasn't forced out already). */
13097 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
13098 DINFO_USAGE_DIR_USE
);
13099 gen_subroutine_type_die (type
, context_die
);
13103 /* Force out return type (in case it wasn't forced out already). */
13104 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
13105 DINFO_USAGE_DIR_USE
);
13106 gen_subroutine_type_die (type
, context_die
);
13110 gen_array_type_die (type
, context_die
);
13114 gen_array_type_die (type
, context_die
);
13117 case ENUMERAL_TYPE
:
13120 case QUAL_UNION_TYPE
:
13121 /* If this is a nested type whose containing class hasn't been written
13122 out yet, writing it out will cover this one, too. This does not apply
13123 to instantiations of member class templates; they need to be added to
13124 the containing class as they are generated. FIXME: This hurts the
13125 idea of combining type decls from multiple TUs, since we can't predict
13126 what set of template instantiations we'll get. */
13127 if (TYPE_CONTEXT (type
)
13128 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
13129 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
13131 gen_type_die_with_usage (TYPE_CONTEXT (type
), context_die
, usage
);
13133 if (TREE_ASM_WRITTEN (type
))
13136 /* If that failed, attach ourselves to the stub. */
13137 push_decl_scope (TYPE_CONTEXT (type
));
13138 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
13143 declare_in_namespace (type
, context_die
);
13147 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
13149 /* This might have been written out by the call to
13150 declare_in_namespace. */
13151 if (!TREE_ASM_WRITTEN (type
))
13152 gen_enumeration_type_die (type
, context_die
);
13155 gen_struct_or_union_type_die (type
, context_die
, usage
);
13160 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
13161 it up if it is ever completed. gen_*_type_die will set it for us
13162 when appropriate. */
13168 case FIXED_POINT_TYPE
:
13171 /* No DIEs needed for fundamental types. */
13175 /* No Dwarf representation currently defined. */
13179 gcc_unreachable ();
13182 TREE_ASM_WRITTEN (type
) = 1;
13186 gen_type_die (tree type
, dw_die_ref context_die
)
13188 gen_type_die_with_usage (type
, context_die
, DINFO_USAGE_DIR_USE
);
13191 /* Generate a DIE for a tagged type instantiation. */
13194 gen_tagged_type_instantiation_die (tree type
, dw_die_ref context_die
)
13196 if (type
== NULL_TREE
|| type
== error_mark_node
)
13199 /* We are going to output a DIE to represent the unqualified version of
13200 this type (i.e. without any const or volatile qualifiers) so make sure
13201 that we have the main variant (i.e. the unqualified version) of this
13203 gcc_assert (type
== type_main_variant (type
));
13205 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
13206 an instance of an unresolved type. */
13208 switch (TREE_CODE (type
))
13213 case ENUMERAL_TYPE
:
13214 gen_inlined_enumeration_type_die (type
, context_die
);
13218 gen_inlined_structure_type_die (type
, context_die
);
13222 case QUAL_UNION_TYPE
:
13223 gen_inlined_union_type_die (type
, context_die
);
13227 gcc_unreachable ();
13231 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
13232 things which are local to the given block. */
13235 gen_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
13237 int must_output_die
= 0;
13240 enum tree_code origin_code
;
13242 /* Ignore blocks that are NULL. */
13243 if (stmt
== NULL_TREE
)
13246 /* If the block is one fragment of a non-contiguous block, do not
13247 process the variables, since they will have been done by the
13248 origin block. Do process subblocks. */
13249 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
13253 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
13254 gen_block_die (sub
, context_die
, depth
+ 1);
13259 /* Determine the "ultimate origin" of this block. This block may be an
13260 inlined instance of an inlined instance of inline function, so we have
13261 to trace all of the way back through the origin chain to find out what
13262 sort of node actually served as the original seed for the creation of
13263 the current block. */
13264 origin
= block_ultimate_origin (stmt
);
13265 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
13267 /* Determine if we need to output any Dwarf DIEs at all to represent this
13269 if (origin_code
== FUNCTION_DECL
)
13270 /* The outer scopes for inlinings *must* always be represented. We
13271 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
13272 must_output_die
= 1;
13275 /* In the case where the current block represents an inlining of the
13276 "body block" of an inline function, we must *NOT* output any DIE for
13277 this block because we have already output a DIE to represent the whole
13278 inlined function scope and the "body block" of any function doesn't
13279 really represent a different scope according to ANSI C rules. So we
13280 check here to make sure that this block does not represent a "body
13281 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
13282 if (! is_body_block (origin
? origin
: stmt
))
13284 /* Determine if this block directly contains any "significant"
13285 local declarations which we will need to output DIEs for. */
13286 if (debug_info_level
> DINFO_LEVEL_TERSE
)
13287 /* We are not in terse mode so *any* local declaration counts
13288 as being a "significant" one. */
13289 must_output_die
= (BLOCK_VARS (stmt
) != NULL
13290 && (TREE_USED (stmt
)
13291 || TREE_ASM_WRITTEN (stmt
)
13292 || BLOCK_ABSTRACT (stmt
)));
13294 /* We are in terse mode, so only local (nested) function
13295 definitions count as "significant" local declarations. */
13296 for (decl
= BLOCK_VARS (stmt
);
13297 decl
!= NULL
; decl
= TREE_CHAIN (decl
))
13298 if (TREE_CODE (decl
) == FUNCTION_DECL
13299 && DECL_INITIAL (decl
))
13301 must_output_die
= 1;
13307 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
13308 DIE for any block which contains no significant local declarations at
13309 all. Rather, in such cases we just call `decls_for_scope' so that any
13310 needed Dwarf info for any sub-blocks will get properly generated. Note
13311 that in terse mode, our definition of what constitutes a "significant"
13312 local declaration gets restricted to include only inlined function
13313 instances and local (nested) function definitions. */
13314 if (must_output_die
)
13316 if (origin_code
== FUNCTION_DECL
)
13317 gen_inlined_subroutine_die (stmt
, context_die
, depth
);
13319 gen_lexical_block_die (stmt
, context_die
, depth
);
13322 decls_for_scope (stmt
, context_die
, depth
);
13325 /* Generate all of the decls declared within a given scope and (recursively)
13326 all of its sub-blocks. */
13329 decls_for_scope (tree stmt
, dw_die_ref context_die
, int depth
)
13334 /* Ignore NULL blocks. */
13335 if (stmt
== NULL_TREE
)
13338 if (TREE_USED (stmt
))
13340 /* Output the DIEs to represent all of the data objects and typedefs
13341 declared directly within this block but not within any nested
13342 sub-blocks. Also, nested function and tag DIEs have been
13343 generated with a parent of NULL; fix that up now. */
13344 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= TREE_CHAIN (decl
))
13348 if (TREE_CODE (decl
) == FUNCTION_DECL
)
13349 die
= lookup_decl_die (decl
);
13350 else if (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
))
13351 die
= lookup_type_die (TREE_TYPE (decl
));
13355 if (die
!= NULL
&& die
->die_parent
== NULL
)
13356 add_child_die (context_die
, die
);
13357 /* Do not produce debug information for static variables since
13358 these might be optimized out. We are called for these later
13359 in varpool_analyze_pending_decls. */
13360 if (TREE_CODE (decl
) == VAR_DECL
&& TREE_STATIC (decl
))
13363 gen_decl_die (decl
, context_die
);
13367 /* If we're at -g1, we're not interested in subblocks. */
13368 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13371 /* Output the DIEs to represent all sub-blocks (and the items declared
13372 therein) of this block. */
13373 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
13375 subblocks
= BLOCK_CHAIN (subblocks
))
13376 gen_block_die (subblocks
, context_die
, depth
+ 1);
13379 /* Is this a typedef we can avoid emitting? */
13382 is_redundant_typedef (const_tree decl
)
13384 if (TYPE_DECL_IS_STUB (decl
))
13387 if (DECL_ARTIFICIAL (decl
)
13388 && DECL_CONTEXT (decl
)
13389 && is_tagged_type (DECL_CONTEXT (decl
))
13390 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
13391 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
13392 /* Also ignore the artificial member typedef for the class name. */
13398 /* Returns the DIE for decl. A DIE will always be returned. */
13401 force_decl_die (tree decl
)
13403 dw_die_ref decl_die
;
13404 unsigned saved_external_flag
;
13405 tree save_fn
= NULL_TREE
;
13406 decl_die
= lookup_decl_die (decl
);
13409 dw_die_ref context_die
;
13410 tree decl_context
= DECL_CONTEXT (decl
);
13413 /* Find die that represents this context. */
13414 if (TYPE_P (decl_context
))
13415 context_die
= force_type_die (decl_context
);
13417 context_die
= force_decl_die (decl_context
);
13420 context_die
= comp_unit_die
;
13422 decl_die
= lookup_decl_die (decl
);
13426 switch (TREE_CODE (decl
))
13428 case FUNCTION_DECL
:
13429 /* Clear current_function_decl, so that gen_subprogram_die thinks
13430 that this is a declaration. At this point, we just want to force
13431 declaration die. */
13432 save_fn
= current_function_decl
;
13433 current_function_decl
= NULL_TREE
;
13434 gen_subprogram_die (decl
, context_die
);
13435 current_function_decl
= save_fn
;
13439 /* Set external flag to force declaration die. Restore it after
13440 gen_decl_die() call. */
13441 saved_external_flag
= DECL_EXTERNAL (decl
);
13442 DECL_EXTERNAL (decl
) = 1;
13443 gen_decl_die (decl
, context_die
);
13444 DECL_EXTERNAL (decl
) = saved_external_flag
;
13447 case NAMESPACE_DECL
:
13448 dwarf2out_decl (decl
);
13452 gcc_unreachable ();
13455 /* We should be able to find the DIE now. */
13457 decl_die
= lookup_decl_die (decl
);
13458 gcc_assert (decl_die
);
13464 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
13465 always returned. */
13468 force_type_die (tree type
)
13470 dw_die_ref type_die
;
13472 type_die
= lookup_type_die (type
);
13475 dw_die_ref context_die
;
13476 if (TYPE_CONTEXT (type
))
13478 if (TYPE_P (TYPE_CONTEXT (type
)))
13479 context_die
= force_type_die (TYPE_CONTEXT (type
));
13481 context_die
= force_decl_die (TYPE_CONTEXT (type
));
13484 context_die
= comp_unit_die
;
13486 type_die
= lookup_type_die (type
);
13489 gen_type_die (type
, context_die
);
13490 type_die
= lookup_type_die (type
);
13491 gcc_assert (type_die
);
13496 /* Force out any required namespaces to be able to output DECL,
13497 and return the new context_die for it, if it's changed. */
13500 setup_namespace_context (tree thing
, dw_die_ref context_die
)
13502 tree context
= (DECL_P (thing
)
13503 ? DECL_CONTEXT (thing
) : TYPE_CONTEXT (thing
));
13504 if (context
&& TREE_CODE (context
) == NAMESPACE_DECL
)
13505 /* Force out the namespace. */
13506 context_die
= force_decl_die (context
);
13508 return context_die
;
13511 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13512 type) within its namespace, if appropriate.
13514 For compatibility with older debuggers, namespace DIEs only contain
13515 declarations; all definitions are emitted at CU scope. */
13518 declare_in_namespace (tree thing
, dw_die_ref context_die
)
13520 dw_die_ref ns_context
;
13522 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13525 /* If this decl is from an inlined function, then don't try to emit it in its
13526 namespace, as we will get confused. It would have already been emitted
13527 when the abstract instance of the inline function was emitted anyways. */
13528 if (DECL_P (thing
) && DECL_ABSTRACT_ORIGIN (thing
))
13531 ns_context
= setup_namespace_context (thing
, context_die
);
13533 if (ns_context
!= context_die
)
13535 if (DECL_P (thing
))
13536 gen_decl_die (thing
, ns_context
);
13538 gen_type_die (thing
, ns_context
);
13542 /* Generate a DIE for a namespace or namespace alias. */
13545 gen_namespace_die (tree decl
)
13547 dw_die_ref context_die
= setup_namespace_context (decl
, comp_unit_die
);
13549 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13550 they are an alias of. */
13551 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL
)
13553 /* Output a real namespace. */
13554 dw_die_ref namespace_die
13555 = new_die (DW_TAG_namespace
, context_die
, decl
);
13556 add_name_and_src_coords_attributes (namespace_die
, decl
);
13557 equate_decl_number_to_die (decl
, namespace_die
);
13561 /* Output a namespace alias. */
13563 /* Force out the namespace we are an alias of, if necessary. */
13564 dw_die_ref origin_die
13565 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl
));
13567 /* Now create the namespace alias DIE. */
13568 dw_die_ref namespace_die
13569 = new_die (DW_TAG_imported_declaration
, context_die
, decl
);
13570 add_name_and_src_coords_attributes (namespace_die
, decl
);
13571 add_AT_die_ref (namespace_die
, DW_AT_import
, origin_die
);
13572 equate_decl_number_to_die (decl
, namespace_die
);
13576 /* Generate Dwarf debug information for a decl described by DECL. */
13579 gen_decl_die (tree decl
, dw_die_ref context_die
)
13583 if (DECL_P (decl
) && DECL_IGNORED_P (decl
))
13586 switch (TREE_CODE (decl
))
13592 /* The individual enumerators of an enum type get output when we output
13593 the Dwarf representation of the relevant enum type itself. */
13596 case FUNCTION_DECL
:
13597 /* Don't output any DIEs to represent mere function declarations,
13598 unless they are class members or explicit block externs. */
13599 if (DECL_INITIAL (decl
) == NULL_TREE
&& DECL_CONTEXT (decl
) == NULL_TREE
13600 && (current_function_decl
== NULL_TREE
|| DECL_ARTIFICIAL (decl
)))
13605 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13606 on local redeclarations of global functions. That seems broken. */
13607 if (current_function_decl
!= decl
)
13608 /* This is only a declaration. */;
13611 /* If we're emitting a clone, emit info for the abstract instance. */
13612 if (DECL_ORIGIN (decl
) != decl
)
13613 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl
));
13615 /* If we're emitting an out-of-line copy of an inline function,
13616 emit info for the abstract instance and set up to refer to it. */
13617 else if (cgraph_function_possibly_inlined_p (decl
)
13618 && ! DECL_ABSTRACT (decl
)
13619 && ! class_or_namespace_scope_p (context_die
)
13620 /* dwarf2out_abstract_function won't emit a die if this is just
13621 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13622 that case, because that works only if we have a die. */
13623 && DECL_INITIAL (decl
) != NULL_TREE
)
13625 dwarf2out_abstract_function (decl
);
13626 set_decl_origin_self (decl
);
13629 /* Otherwise we're emitting the primary DIE for this decl. */
13630 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
13632 /* Before we describe the FUNCTION_DECL itself, make sure that we
13633 have described its return type. */
13634 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
13636 /* And its virtual context. */
13637 if (DECL_VINDEX (decl
) != NULL_TREE
)
13638 gen_type_die (DECL_CONTEXT (decl
), context_die
);
13640 /* And its containing type. */
13641 origin
= decl_class_context (decl
);
13642 if (origin
!= NULL_TREE
)
13643 gen_type_die_for_member (origin
, decl
, context_die
);
13645 /* And its containing namespace. */
13646 declare_in_namespace (decl
, context_die
);
13649 /* Now output a DIE to represent the function itself. */
13650 gen_subprogram_die (decl
, context_die
);
13654 /* If we are in terse mode, don't generate any DIEs to represent any
13655 actual typedefs. */
13656 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13659 /* In the special case of a TYPE_DECL node representing the declaration
13660 of some type tag, if the given TYPE_DECL is marked as having been
13661 instantiated from some other (original) TYPE_DECL node (e.g. one which
13662 was generated within the original definition of an inline function) we
13663 have to generate a special (abbreviated) DW_TAG_structure_type,
13664 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13665 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
13666 && is_tagged_type (TREE_TYPE (decl
)))
13668 gen_tagged_type_instantiation_die (TREE_TYPE (decl
), context_die
);
13672 if (is_redundant_typedef (decl
))
13673 gen_type_die (TREE_TYPE (decl
), context_die
);
13675 /* Output a DIE to represent the typedef itself. */
13676 gen_typedef_die (decl
, context_die
);
13680 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
13681 gen_label_die (decl
, context_die
);
13686 /* If we are in terse mode, don't generate any DIEs to represent any
13687 variable declarations or definitions. */
13688 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13691 /* Output any DIEs that are needed to specify the type of this data
13693 gen_type_die (TREE_TYPE (decl
), context_die
);
13695 /* And its containing type. */
13696 origin
= decl_class_context (decl
);
13697 if (origin
!= NULL_TREE
)
13698 gen_type_die_for_member (origin
, decl
, context_die
);
13700 /* And its containing namespace. */
13701 declare_in_namespace (decl
, context_die
);
13703 /* Now output the DIE to represent the data object itself. This gets
13704 complicated because of the possibility that the VAR_DECL really
13705 represents an inlined instance of a formal parameter for an inline
13707 origin
= decl_ultimate_origin (decl
);
13708 if (origin
!= NULL_TREE
&& TREE_CODE (origin
) == PARM_DECL
)
13709 gen_formal_parameter_die (decl
, context_die
);
13711 gen_variable_die (decl
, context_die
);
13715 /* Ignore the nameless fields that are used to skip bits but handle C++
13716 anonymous unions and structs. */
13717 if (DECL_NAME (decl
) != NULL_TREE
13718 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
13719 || TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
)
13721 gen_type_die (member_declared_type (decl
), context_die
);
13722 gen_field_die (decl
, context_die
);
13727 gen_type_die (TREE_TYPE (decl
), context_die
);
13728 gen_formal_parameter_die (decl
, context_die
);
13731 case NAMESPACE_DECL
:
13732 gen_namespace_die (decl
);
13736 /* Probably some frontend-internal decl. Assume we don't care. */
13737 gcc_assert ((int)TREE_CODE (decl
) > NUM_TREE_CODES
);
13742 /* Output debug information for global decl DECL. Called from toplev.c after
13743 compilation proper has finished. */
13746 dwarf2out_global_decl (tree decl
)
13748 /* Output DWARF2 information for file-scope tentative data object
13749 declarations, file-scope (extern) function declarations (which had no
13750 corresponding body) and file-scope tagged type declarations and
13751 definitions which have not yet been forced out. */
13752 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
13753 dwarf2out_decl (decl
);
13756 /* Output debug information for type decl DECL. Called from toplev.c
13757 and from language front ends (to record built-in types). */
13759 dwarf2out_type_decl (tree decl
, int local
)
13762 dwarf2out_decl (decl
);
13765 /* Output debug information for imported module or decl. */
13768 dwarf2out_imported_module_or_decl (tree decl
, tree context
)
13770 dw_die_ref imported_die
, at_import_die
;
13771 dw_die_ref scope_die
;
13772 expanded_location xloc
;
13774 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13779 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13780 We need decl DIE for reference and scope die. First, get DIE for the decl
13783 /* Get the scope die for decl context. Use comp_unit_die for global module
13784 or decl. If die is not found for non globals, force new die. */
13786 scope_die
= comp_unit_die
;
13787 else if (TYPE_P (context
))
13789 if (!should_emit_struct_debug (context
, DINFO_USAGE_DIR_USE
))
13791 scope_die
= force_type_die (context
);
13794 scope_die
= force_decl_die (context
);
13796 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13797 if (TREE_CODE (decl
) == TYPE_DECL
|| TREE_CODE (decl
) == CONST_DECL
)
13799 if (is_base_type (TREE_TYPE (decl
)))
13800 at_import_die
= base_type_die (TREE_TYPE (decl
));
13802 at_import_die
= force_type_die (TREE_TYPE (decl
));
13806 at_import_die
= lookup_decl_die (decl
);
13807 if (!at_import_die
)
13809 /* If we're trying to avoid duplicate debug info, we may not have
13810 emitted the member decl for this field. Emit it now. */
13811 if (TREE_CODE (decl
) == FIELD_DECL
)
13813 tree type
= DECL_CONTEXT (decl
);
13814 dw_die_ref type_context_die
;
13816 if (TYPE_CONTEXT (type
))
13817 if (TYPE_P (TYPE_CONTEXT (type
)))
13819 if (!should_emit_struct_debug (TYPE_CONTEXT (type
),
13820 DINFO_USAGE_DIR_USE
))
13822 type_context_die
= force_type_die (TYPE_CONTEXT (type
));
13825 type_context_die
= force_decl_die (TYPE_CONTEXT (type
));
13827 type_context_die
= comp_unit_die
;
13828 gen_type_die_for_member (type
, decl
, type_context_die
);
13830 at_import_die
= force_decl_die (decl
);
13834 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13835 if (TREE_CODE (decl
) == NAMESPACE_DECL
)
13836 imported_die
= new_die (DW_TAG_imported_module
, scope_die
, context
);
13838 imported_die
= new_die (DW_TAG_imported_declaration
, scope_die
, context
);
13840 xloc
= expand_location (input_location
);
13841 add_AT_file (imported_die
, DW_AT_decl_file
, lookup_filename (xloc
.file
));
13842 add_AT_unsigned (imported_die
, DW_AT_decl_line
, xloc
.line
);
13843 add_AT_die_ref (imported_die
, DW_AT_import
, at_import_die
);
13846 /* Write the debugging output for DECL. */
13849 dwarf2out_decl (tree decl
)
13851 dw_die_ref context_die
= comp_unit_die
;
13853 switch (TREE_CODE (decl
))
13858 case FUNCTION_DECL
:
13859 /* What we would really like to do here is to filter out all mere
13860 file-scope declarations of file-scope functions which are never
13861 referenced later within this translation unit (and keep all of ones
13862 that *are* referenced later on) but we aren't clairvoyant, so we have
13863 no idea which functions will be referenced in the future (i.e. later
13864 on within the current translation unit). So here we just ignore all
13865 file-scope function declarations which are not also definitions. If
13866 and when the debugger needs to know something about these functions,
13867 it will have to hunt around and find the DWARF information associated
13868 with the definition of the function.
13870 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13871 nodes represent definitions and which ones represent mere
13872 declarations. We have to check DECL_INITIAL instead. That's because
13873 the C front-end supports some weird semantics for "extern inline"
13874 function definitions. These can get inlined within the current
13875 translation unit (and thus, we need to generate Dwarf info for their
13876 abstract instances so that the Dwarf info for the concrete inlined
13877 instances can have something to refer to) but the compiler never
13878 generates any out-of-lines instances of such things (despite the fact
13879 that they *are* definitions).
13881 The important point is that the C front-end marks these "extern
13882 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13883 them anyway. Note that the C++ front-end also plays some similar games
13884 for inline function definitions appearing within include files which
13885 also contain `#pragma interface' pragmas. */
13886 if (DECL_INITIAL (decl
) == NULL_TREE
)
13889 /* If we're a nested function, initially use a parent of NULL; if we're
13890 a plain function, this will be fixed up in decls_for_scope. If
13891 we're a method, it will be ignored, since we already have a DIE. */
13892 if (decl_function_context (decl
)
13893 /* But if we're in terse mode, we don't care about scope. */
13894 && debug_info_level
> DINFO_LEVEL_TERSE
)
13895 context_die
= NULL
;
13899 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13900 declaration and if the declaration was never even referenced from
13901 within this entire compilation unit. We suppress these DIEs in
13902 order to save space in the .debug section (by eliminating entries
13903 which are probably useless). Note that we must not suppress
13904 block-local extern declarations (whether used or not) because that
13905 would screw-up the debugger's name lookup mechanism and cause it to
13906 miss things which really ought to be in scope at a given point. */
13907 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
13910 /* For local statics lookup proper context die. */
13911 if (TREE_STATIC (decl
) && decl_function_context (decl
))
13912 context_die
= lookup_decl_die (DECL_CONTEXT (decl
));
13914 /* If we are in terse mode, don't generate any DIEs to represent any
13915 variable declarations or definitions. */
13916 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13920 case NAMESPACE_DECL
:
13921 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13923 if (lookup_decl_die (decl
) != NULL
)
13928 /* Don't emit stubs for types unless they are needed by other DIEs. */
13929 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
13932 /* Don't bother trying to generate any DIEs to represent any of the
13933 normal built-in types for the language we are compiling. */
13934 if (DECL_IS_BUILTIN (decl
))
13936 /* OK, we need to generate one for `bool' so GDB knows what type
13937 comparisons have. */
13939 && TREE_CODE (TREE_TYPE (decl
)) == BOOLEAN_TYPE
13940 && ! DECL_IGNORED_P (decl
))
13941 modified_type_die (TREE_TYPE (decl
), 0, 0, NULL
);
13946 /* If we are in terse mode, don't generate any DIEs for types. */
13947 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13950 /* If we're a function-scope tag, initially use a parent of NULL;
13951 this will be fixed up in decls_for_scope. */
13952 if (decl_function_context (decl
))
13953 context_die
= NULL
;
13961 gen_decl_die (decl
, context_die
);
13964 /* Output a marker (i.e. a label) for the beginning of the generated code for
13965 a lexical block. */
13968 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED
,
13969 unsigned int blocknum
)
13971 switch_to_section (current_function_section ());
13972 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
13975 /* Output a marker (i.e. a label) for the end of the generated code for a
13979 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED
, unsigned int blocknum
)
13981 switch_to_section (current_function_section ());
13982 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
13985 /* Returns nonzero if it is appropriate not to emit any debugging
13986 information for BLOCK, because it doesn't contain any instructions.
13988 Don't allow this for blocks with nested functions or local classes
13989 as we would end up with orphans, and in the presence of scheduling
13990 we may end up calling them anyway. */
13993 dwarf2out_ignore_block (const_tree block
)
13997 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
13998 if (TREE_CODE (decl
) == FUNCTION_DECL
13999 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
14005 /* Hash table routines for file_hash. */
14008 file_table_eq (const void *p1_p
, const void *p2_p
)
14010 const struct dwarf_file_data
* p1
= p1_p
;
14011 const char * p2
= p2_p
;
14012 return strcmp (p1
->filename
, p2
) == 0;
14016 file_table_hash (const void *p_p
)
14018 const struct dwarf_file_data
* p
= p_p
;
14019 return htab_hash_string (p
->filename
);
14022 /* Lookup FILE_NAME (in the list of filenames that we know about here in
14023 dwarf2out.c) and return its "index". The index of each (known) filename is
14024 just a unique number which is associated with only that one filename. We
14025 need such numbers for the sake of generating labels (in the .debug_sfnames
14026 section) and references to those files numbers (in the .debug_srcinfo
14027 and.debug_macinfo sections). If the filename given as an argument is not
14028 found in our current list, add it to the list and assign it the next
14029 available unique index number. In order to speed up searches, we remember
14030 the index of the filename was looked up last. This handles the majority of
14033 static struct dwarf_file_data
*
14034 lookup_filename (const char *file_name
)
14037 struct dwarf_file_data
* created
;
14039 /* Check to see if the file name that was searched on the previous
14040 call matches this file name. If so, return the index. */
14041 if (file_table_last_lookup
14042 && (file_name
== file_table_last_lookup
->filename
14043 || strcmp (file_table_last_lookup
->filename
, file_name
) == 0))
14044 return file_table_last_lookup
;
14046 /* Didn't match the previous lookup, search the table. */
14047 slot
= htab_find_slot_with_hash (file_table
, file_name
,
14048 htab_hash_string (file_name
), INSERT
);
14052 created
= ggc_alloc (sizeof (struct dwarf_file_data
));
14053 created
->filename
= file_name
;
14054 created
->emitted_number
= 0;
14059 /* If the assembler will construct the file table, then translate the compiler
14060 internal file table number into the assembler file table number, and emit
14061 a .file directive if we haven't already emitted one yet. The file table
14062 numbers are different because we prune debug info for unused variables and
14063 types, which may include filenames. */
14066 maybe_emit_file (struct dwarf_file_data
* fd
)
14068 if (! fd
->emitted_number
)
14070 if (last_emitted_file
)
14071 fd
->emitted_number
= last_emitted_file
->emitted_number
+ 1;
14073 fd
->emitted_number
= 1;
14074 last_emitted_file
= fd
;
14076 if (DWARF2_ASM_LINE_DEBUG_INFO
)
14078 fprintf (asm_out_file
, "\t.file %u ", fd
->emitted_number
);
14079 output_quoted_string (asm_out_file
,
14080 remap_debug_filename (fd
->filename
));
14081 fputc ('\n', asm_out_file
);
14085 return fd
->emitted_number
;
14088 /* Called by the final INSN scan whenever we see a var location. We
14089 use it to drop labels in the right places, and throw the location in
14090 our lookup table. */
14093 dwarf2out_var_location (rtx loc_note
)
14095 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
14096 struct var_loc_node
*newloc
;
14098 static rtx last_insn
;
14099 static const char *last_label
;
14102 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note
)))
14104 prev_insn
= PREV_INSN (loc_note
);
14106 newloc
= ggc_alloc_cleared (sizeof (struct var_loc_node
));
14107 /* If the insn we processed last time is the previous insn
14108 and it is also a var location note, use the label we emitted
14110 if (last_insn
!= NULL_RTX
14111 && last_insn
== prev_insn
14112 && NOTE_P (prev_insn
)
14113 && NOTE_KIND (prev_insn
) == NOTE_INSN_VAR_LOCATION
)
14115 newloc
->label
= last_label
;
14119 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", loclabel_num
);
14120 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LVL", loclabel_num
);
14122 newloc
->label
= ggc_strdup (loclabel
);
14124 newloc
->var_loc_note
= loc_note
;
14125 newloc
->next
= NULL
;
14127 if (cfun
&& in_cold_section_p
)
14128 newloc
->section_label
= cfun
->cold_section_label
;
14130 newloc
->section_label
= text_section_label
;
14132 last_insn
= loc_note
;
14133 last_label
= newloc
->label
;
14134 decl
= NOTE_VAR_LOCATION_DECL (loc_note
);
14135 add_var_loc_to_decl (decl
, newloc
);
14138 /* We need to reset the locations at the beginning of each
14139 function. We can't do this in the end_function hook, because the
14140 declarations that use the locations won't have been output when
14141 that hook is called. Also compute have_multiple_function_sections here. */
14144 dwarf2out_begin_function (tree fun
)
14146 htab_empty (decl_loc_table
);
14148 if (function_section (fun
) != text_section
)
14149 have_multiple_function_sections
= true;
14151 dwarf2out_note_section_used ();
14154 /* Output a label to mark the beginning of a source code line entry
14155 and record information relating to this source line, in
14156 'line_info_table' for later output of the .debug_line section. */
14159 dwarf2out_source_line (unsigned int line
, const char *filename
)
14161 if (debug_info_level
>= DINFO_LEVEL_NORMAL
14164 int file_num
= maybe_emit_file (lookup_filename (filename
));
14166 switch_to_section (current_function_section ());
14168 /* If requested, emit something human-readable. */
14169 if (flag_debug_asm
)
14170 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
14173 if (DWARF2_ASM_LINE_DEBUG_INFO
)
14175 /* Emit the .loc directive understood by GNU as. */
14176 fprintf (asm_out_file
, "\t.loc %d %d 0\n", file_num
, line
);
14178 /* Indicate that line number info exists. */
14179 line_info_table_in_use
++;
14181 else if (function_section (current_function_decl
) != text_section
)
14183 dw_separate_line_info_ref line_info
;
14184 targetm
.asm_out
.internal_label (asm_out_file
,
14185 SEPARATE_LINE_CODE_LABEL
,
14186 separate_line_info_table_in_use
);
14188 /* Expand the line info table if necessary. */
14189 if (separate_line_info_table_in_use
14190 == separate_line_info_table_allocated
)
14192 separate_line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
14193 separate_line_info_table
14194 = ggc_realloc (separate_line_info_table
,
14195 separate_line_info_table_allocated
14196 * sizeof (dw_separate_line_info_entry
));
14197 memset (separate_line_info_table
14198 + separate_line_info_table_in_use
,
14200 (LINE_INFO_TABLE_INCREMENT
14201 * sizeof (dw_separate_line_info_entry
)));
14204 /* Add the new entry at the end of the line_info_table. */
14206 = &separate_line_info_table
[separate_line_info_table_in_use
++];
14207 line_info
->dw_file_num
= file_num
;
14208 line_info
->dw_line_num
= line
;
14209 line_info
->function
= current_function_funcdef_no
;
14213 dw_line_info_ref line_info
;
14215 targetm
.asm_out
.internal_label (asm_out_file
, LINE_CODE_LABEL
,
14216 line_info_table_in_use
);
14218 /* Expand the line info table if necessary. */
14219 if (line_info_table_in_use
== line_info_table_allocated
)
14221 line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
14223 = ggc_realloc (line_info_table
,
14224 (line_info_table_allocated
14225 * sizeof (dw_line_info_entry
)));
14226 memset (line_info_table
+ line_info_table_in_use
, 0,
14227 LINE_INFO_TABLE_INCREMENT
* sizeof (dw_line_info_entry
));
14230 /* Add the new entry at the end of the line_info_table. */
14231 line_info
= &line_info_table
[line_info_table_in_use
++];
14232 line_info
->dw_file_num
= file_num
;
14233 line_info
->dw_line_num
= line
;
14238 /* Record the beginning of a new source file. */
14241 dwarf2out_start_source_file (unsigned int lineno
, const char *filename
)
14243 if (flag_eliminate_dwarf2_dups
)
14245 /* Record the beginning of the file for break_out_includes. */
14246 dw_die_ref bincl_die
;
14248 bincl_die
= new_die (DW_TAG_GNU_BINCL
, comp_unit_die
, NULL
);
14249 add_AT_string (bincl_die
, DW_AT_name
, remap_debug_filename (filename
));
14252 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14254 int file_num
= maybe_emit_file (lookup_filename (filename
));
14256 switch_to_section (debug_macinfo_section
);
14257 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
14258 dw2_asm_output_data_uleb128 (lineno
, "Included from line number %d",
14261 dw2_asm_output_data_uleb128 (file_num
, "file %s", filename
);
14265 /* Record the end of a source file. */
14268 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED
)
14270 if (flag_eliminate_dwarf2_dups
)
14271 /* Record the end of the file for break_out_includes. */
14272 new_die (DW_TAG_GNU_EINCL
, comp_unit_die
, NULL
);
14274 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14276 switch_to_section (debug_macinfo_section
);
14277 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
14281 /* Called from debug_define in toplev.c. The `buffer' parameter contains
14282 the tail part of the directive line, i.e. the part which is past the
14283 initial whitespace, #, whitespace, directive-name, whitespace part. */
14286 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED
,
14287 const char *buffer ATTRIBUTE_UNUSED
)
14289 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14291 switch_to_section (debug_macinfo_section
);
14292 dw2_asm_output_data (1, DW_MACINFO_define
, "Define macro");
14293 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
14294 dw2_asm_output_nstring (buffer
, -1, "The macro");
14298 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
14299 the tail part of the directive line, i.e. the part which is past the
14300 initial whitespace, #, whitespace, directive-name, whitespace part. */
14303 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED
,
14304 const char *buffer ATTRIBUTE_UNUSED
)
14306 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14308 switch_to_section (debug_macinfo_section
);
14309 dw2_asm_output_data (1, DW_MACINFO_undef
, "Undefine macro");
14310 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
14311 dw2_asm_output_nstring (buffer
, -1, "The macro");
14315 /* Set up for Dwarf output at the start of compilation. */
14318 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED
)
14320 /* Allocate the file_table. */
14321 file_table
= htab_create_ggc (50, file_table_hash
,
14322 file_table_eq
, NULL
);
14324 /* Allocate the decl_die_table. */
14325 decl_die_table
= htab_create_ggc (10, decl_die_table_hash
,
14326 decl_die_table_eq
, NULL
);
14328 /* Allocate the decl_loc_table. */
14329 decl_loc_table
= htab_create_ggc (10, decl_loc_table_hash
,
14330 decl_loc_table_eq
, NULL
);
14332 /* Allocate the initial hunk of the decl_scope_table. */
14333 decl_scope_table
= VEC_alloc (tree
, gc
, 256);
14335 /* Allocate the initial hunk of the abbrev_die_table. */
14336 abbrev_die_table
= ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
14337 * sizeof (dw_die_ref
));
14338 abbrev_die_table_allocated
= ABBREV_DIE_TABLE_INCREMENT
;
14339 /* Zero-th entry is allocated, but unused. */
14340 abbrev_die_table_in_use
= 1;
14342 /* Allocate the initial hunk of the line_info_table. */
14343 line_info_table
= ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
14344 * sizeof (dw_line_info_entry
));
14345 line_info_table_allocated
= LINE_INFO_TABLE_INCREMENT
;
14347 /* Zero-th entry is allocated, but unused. */
14348 line_info_table_in_use
= 1;
14350 /* Allocate the pubtypes and pubnames vectors. */
14351 pubname_table
= VEC_alloc (pubname_entry
, gc
, 32);
14352 pubtype_table
= VEC_alloc (pubname_entry
, gc
, 32);
14354 /* Generate the initial DIE for the .debug section. Note that the (string)
14355 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
14356 will (typically) be a relative pathname and that this pathname should be
14357 taken as being relative to the directory from which the compiler was
14358 invoked when the given (base) source file was compiled. We will fill
14359 in this value in dwarf2out_finish. */
14360 comp_unit_die
= gen_compile_unit_die (NULL
);
14362 incomplete_types
= VEC_alloc (tree
, gc
, 64);
14364 used_rtx_array
= VEC_alloc (rtx
, gc
, 32);
14366 debug_info_section
= get_section (DEBUG_INFO_SECTION
,
14367 SECTION_DEBUG
, NULL
);
14368 debug_abbrev_section
= get_section (DEBUG_ABBREV_SECTION
,
14369 SECTION_DEBUG
, NULL
);
14370 debug_aranges_section
= get_section (DEBUG_ARANGES_SECTION
,
14371 SECTION_DEBUG
, NULL
);
14372 debug_macinfo_section
= get_section (DEBUG_MACINFO_SECTION
,
14373 SECTION_DEBUG
, NULL
);
14374 debug_line_section
= get_section (DEBUG_LINE_SECTION
,
14375 SECTION_DEBUG
, NULL
);
14376 debug_loc_section
= get_section (DEBUG_LOC_SECTION
,
14377 SECTION_DEBUG
, NULL
);
14378 debug_pubnames_section
= get_section (DEBUG_PUBNAMES_SECTION
,
14379 SECTION_DEBUG
, NULL
);
14380 #ifdef DEBUG_PUBTYPES_SECTION
14381 debug_pubtypes_section
= get_section (DEBUG_PUBTYPES_SECTION
,
14382 SECTION_DEBUG
, NULL
);
14384 debug_str_section
= get_section (DEBUG_STR_SECTION
,
14385 DEBUG_STR_SECTION_FLAGS
, NULL
);
14386 debug_ranges_section
= get_section (DEBUG_RANGES_SECTION
,
14387 SECTION_DEBUG
, NULL
);
14388 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
14389 SECTION_DEBUG
, NULL
);
14391 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
14392 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
14393 DEBUG_ABBREV_SECTION_LABEL
, 0);
14394 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
14395 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label
,
14396 COLD_TEXT_SECTION_LABEL
, 0);
14397 ASM_GENERATE_INTERNAL_LABEL (cold_end_label
, COLD_END_LABEL
, 0);
14399 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
14400 DEBUG_INFO_SECTION_LABEL
, 0);
14401 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
14402 DEBUG_LINE_SECTION_LABEL
, 0);
14403 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
14404 DEBUG_RANGES_SECTION_LABEL
, 0);
14405 switch_to_section (debug_abbrev_section
);
14406 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
14407 switch_to_section (debug_info_section
);
14408 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
14409 switch_to_section (debug_line_section
);
14410 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
14412 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14414 switch_to_section (debug_macinfo_section
);
14415 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
14416 DEBUG_MACINFO_SECTION_LABEL
, 0);
14417 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
14420 switch_to_section (text_section
);
14421 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
14422 if (flag_reorder_blocks_and_partition
)
14424 cold_text_section
= unlikely_text_section ();
14425 switch_to_section (cold_text_section
);
14426 ASM_OUTPUT_LABEL (asm_out_file
, cold_text_section_label
);
14430 /* A helper function for dwarf2out_finish called through
14431 ht_forall. Emit one queued .debug_str string. */
14434 output_indirect_string (void **h
, void *v ATTRIBUTE_UNUSED
)
14436 struct indirect_string_node
*node
= (struct indirect_string_node
*) *h
;
14438 if (node
->form
== DW_FORM_strp
)
14440 switch_to_section (debug_str_section
);
14441 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
14442 assemble_string (node
->str
, strlen (node
->str
) + 1);
14448 #if ENABLE_ASSERT_CHECKING
14449 /* Verify that all marks are clear. */
14452 verify_marks_clear (dw_die_ref die
)
14456 gcc_assert (! die
->die_mark
);
14457 FOR_EACH_CHILD (die
, c
, verify_marks_clear (c
));
14459 #endif /* ENABLE_ASSERT_CHECKING */
14461 /* Clear the marks for a die and its children.
14462 Be cool if the mark isn't set. */
14465 prune_unmark_dies (dw_die_ref die
)
14471 FOR_EACH_CHILD (die
, c
, prune_unmark_dies (c
));
14474 /* Given DIE that we're marking as used, find any other dies
14475 it references as attributes and mark them as used. */
14478 prune_unused_types_walk_attribs (dw_die_ref die
)
14483 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
14485 if (a
->dw_attr_val
.val_class
== dw_val_class_die_ref
)
14487 /* A reference to another DIE.
14488 Make sure that it will get emitted. */
14489 prune_unused_types_mark (a
->dw_attr_val
.v
.val_die_ref
.die
, 1);
14491 /* Set the string's refcount to 0 so that prune_unused_types_mark
14492 accounts properly for it. */
14493 if (AT_class (a
) == dw_val_class_str
)
14494 a
->dw_attr_val
.v
.val_str
->refcount
= 0;
14499 /* Mark DIE as being used. If DOKIDS is true, then walk down
14500 to DIE's children. */
14503 prune_unused_types_mark (dw_die_ref die
, int dokids
)
14507 if (die
->die_mark
== 0)
14509 /* We haven't done this node yet. Mark it as used. */
14512 /* We also have to mark its parents as used.
14513 (But we don't want to mark our parents' kids due to this.) */
14514 if (die
->die_parent
)
14515 prune_unused_types_mark (die
->die_parent
, 0);
14517 /* Mark any referenced nodes. */
14518 prune_unused_types_walk_attribs (die
);
14520 /* If this node is a specification,
14521 also mark the definition, if it exists. */
14522 if (get_AT_flag (die
, DW_AT_declaration
) && die
->die_definition
)
14523 prune_unused_types_mark (die
->die_definition
, 1);
14526 if (dokids
&& die
->die_mark
!= 2)
14528 /* We need to walk the children, but haven't done so yet.
14529 Remember that we've walked the kids. */
14532 /* If this is an array type, we need to make sure our
14533 kids get marked, even if they're types. */
14534 if (die
->die_tag
== DW_TAG_array_type
)
14535 FOR_EACH_CHILD (die
, c
, prune_unused_types_mark (c
, 1));
14537 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
14542 /* Walk the tree DIE and mark types that we actually use. */
14545 prune_unused_types_walk (dw_die_ref die
)
14549 /* Don't do anything if this node is already marked. */
14553 switch (die
->die_tag
)
14555 case DW_TAG_const_type
:
14556 case DW_TAG_packed_type
:
14557 case DW_TAG_pointer_type
:
14558 case DW_TAG_reference_type
:
14559 case DW_TAG_volatile_type
:
14560 case DW_TAG_typedef
:
14561 case DW_TAG_array_type
:
14562 case DW_TAG_structure_type
:
14563 case DW_TAG_union_type
:
14564 case DW_TAG_class_type
:
14565 case DW_TAG_friend
:
14566 case DW_TAG_variant_part
:
14567 case DW_TAG_enumeration_type
:
14568 case DW_TAG_subroutine_type
:
14569 case DW_TAG_string_type
:
14570 case DW_TAG_set_type
:
14571 case DW_TAG_subrange_type
:
14572 case DW_TAG_ptr_to_member_type
:
14573 case DW_TAG_file_type
:
14574 if (die
->die_perennial_p
)
14577 /* It's a type node --- don't mark it. */
14581 /* Mark everything else. */
14587 /* Now, mark any dies referenced from here. */
14588 prune_unused_types_walk_attribs (die
);
14590 /* Mark children. */
14591 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
14594 /* Increment the string counts on strings referred to from DIE's
14598 prune_unused_types_update_strings (dw_die_ref die
)
14603 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
14604 if (AT_class (a
) == dw_val_class_str
)
14606 struct indirect_string_node
*s
= a
->dw_attr_val
.v
.val_str
;
14608 /* Avoid unnecessarily putting strings that are used less than
14609 twice in the hash table. */
14611 == ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) ? 1 : 2))
14614 slot
= htab_find_slot_with_hash (debug_str_hash
, s
->str
,
14615 htab_hash_string (s
->str
),
14617 gcc_assert (*slot
== NULL
);
14623 /* Remove from the tree DIE any dies that aren't marked. */
14626 prune_unused_types_prune (dw_die_ref die
)
14630 gcc_assert (die
->die_mark
);
14631 prune_unused_types_update_strings (die
);
14633 if (! die
->die_child
)
14636 c
= die
->die_child
;
14638 dw_die_ref prev
= c
;
14639 for (c
= c
->die_sib
; ! c
->die_mark
; c
= c
->die_sib
)
14640 if (c
== die
->die_child
)
14642 /* No marked children between 'prev' and the end of the list. */
14644 /* No marked children at all. */
14645 die
->die_child
= NULL
;
14648 prev
->die_sib
= c
->die_sib
;
14649 die
->die_child
= prev
;
14654 if (c
!= prev
->die_sib
)
14656 prune_unused_types_prune (c
);
14657 } while (c
!= die
->die_child
);
14661 /* Remove dies representing declarations that we never use. */
14664 prune_unused_types (void)
14667 limbo_die_node
*node
;
14670 #if ENABLE_ASSERT_CHECKING
14671 /* All the marks should already be clear. */
14672 verify_marks_clear (comp_unit_die
);
14673 for (node
= limbo_die_list
; node
; node
= node
->next
)
14674 verify_marks_clear (node
->die
);
14675 #endif /* ENABLE_ASSERT_CHECKING */
14677 /* Set the mark on nodes that are actually used. */
14678 prune_unused_types_walk (comp_unit_die
);
14679 for (node
= limbo_die_list
; node
; node
= node
->next
)
14680 prune_unused_types_walk (node
->die
);
14682 /* Also set the mark on nodes referenced from the
14683 pubname_table or arange_table. */
14684 for (i
= 0; VEC_iterate (pubname_entry
, pubname_table
, i
, pub
); i
++)
14685 prune_unused_types_mark (pub
->die
, 1);
14686 for (i
= 0; i
< arange_table_in_use
; i
++)
14687 prune_unused_types_mark (arange_table
[i
], 1);
14689 /* Get rid of nodes that aren't marked; and update the string counts. */
14690 if (debug_str_hash
)
14691 htab_empty (debug_str_hash
);
14692 prune_unused_types_prune (comp_unit_die
);
14693 for (node
= limbo_die_list
; node
; node
= node
->next
)
14694 prune_unused_types_prune (node
->die
);
14696 /* Leave the marks clear. */
14697 prune_unmark_dies (comp_unit_die
);
14698 for (node
= limbo_die_list
; node
; node
= node
->next
)
14699 prune_unmark_dies (node
->die
);
14702 /* Set the parameter to true if there are any relative pathnames in
14705 file_table_relative_p (void ** slot
, void *param
)
14708 struct dwarf_file_data
*d
= *slot
;
14709 if (!IS_ABSOLUTE_PATH (d
->filename
))
14717 /* Output stuff that dwarf requires at the end of every file,
14718 and generate the DWARF-2 debugging info. */
14721 dwarf2out_finish (const char *filename
)
14723 limbo_die_node
*node
, *next_node
;
14724 dw_die_ref die
= 0;
14726 /* Add the name for the main input file now. We delayed this from
14727 dwarf2out_init to avoid complications with PCH. */
14728 add_name_attribute (comp_unit_die
, remap_debug_filename (filename
));
14729 if (!IS_ABSOLUTE_PATH (filename
))
14730 add_comp_dir_attribute (comp_unit_die
);
14731 else if (get_AT (comp_unit_die
, DW_AT_comp_dir
) == NULL
)
14734 htab_traverse (file_table
, file_table_relative_p
, &p
);
14736 add_comp_dir_attribute (comp_unit_die
);
14739 /* Traverse the limbo die list, and add parent/child links. The only
14740 dies without parents that should be here are concrete instances of
14741 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14742 For concrete instances, we can get the parent die from the abstract
14744 for (node
= limbo_die_list
; node
; node
= next_node
)
14746 next_node
= node
->next
;
14749 if (die
->die_parent
== NULL
)
14751 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
14754 add_child_die (origin
->die_parent
, die
);
14755 else if (die
== comp_unit_die
)
14757 else if (errorcount
> 0 || sorrycount
> 0)
14758 /* It's OK to be confused by errors in the input. */
14759 add_child_die (comp_unit_die
, die
);
14762 /* In certain situations, the lexical block containing a
14763 nested function can be optimized away, which results
14764 in the nested function die being orphaned. Likewise
14765 with the return type of that nested function. Force
14766 this to be a child of the containing function.
14768 It may happen that even the containing function got fully
14769 inlined and optimized out. In that case we are lost and
14770 assign the empty child. This should not be big issue as
14771 the function is likely unreachable too. */
14772 tree context
= NULL_TREE
;
14774 gcc_assert (node
->created_for
);
14776 if (DECL_P (node
->created_for
))
14777 context
= DECL_CONTEXT (node
->created_for
);
14778 else if (TYPE_P (node
->created_for
))
14779 context
= TYPE_CONTEXT (node
->created_for
);
14781 gcc_assert (context
14782 && (TREE_CODE (context
) == FUNCTION_DECL
14783 || TREE_CODE (context
) == NAMESPACE_DECL
));
14785 origin
= lookup_decl_die (context
);
14787 add_child_die (origin
, die
);
14789 add_child_die (comp_unit_die
, die
);
14794 limbo_die_list
= NULL
;
14796 /* Walk through the list of incomplete types again, trying once more to
14797 emit full debugging info for them. */
14798 retry_incomplete_types ();
14800 if (flag_eliminate_unused_debug_types
)
14801 prune_unused_types ();
14803 /* Generate separate CUs for each of the include files we've seen.
14804 They will go into limbo_die_list. */
14805 if (flag_eliminate_dwarf2_dups
)
14806 break_out_includes (comp_unit_die
);
14808 /* Traverse the DIE's and add add sibling attributes to those DIE's
14809 that have children. */
14810 add_sibling_attributes (comp_unit_die
);
14811 for (node
= limbo_die_list
; node
; node
= node
->next
)
14812 add_sibling_attributes (node
->die
);
14814 /* Output a terminator label for the .text section. */
14815 switch_to_section (text_section
);
14816 targetm
.asm_out
.internal_label (asm_out_file
, TEXT_END_LABEL
, 0);
14817 if (flag_reorder_blocks_and_partition
)
14819 switch_to_section (unlikely_text_section ());
14820 targetm
.asm_out
.internal_label (asm_out_file
, COLD_END_LABEL
, 0);
14823 /* We can only use the low/high_pc attributes if all of the code was
14825 if (!have_multiple_function_sections
)
14827 add_AT_lbl_id (comp_unit_die
, DW_AT_low_pc
, text_section_label
);
14828 add_AT_lbl_id (comp_unit_die
, DW_AT_high_pc
, text_end_label
);
14833 unsigned fde_idx
= 0;
14835 /* We need to give .debug_loc and .debug_ranges an appropriate
14836 "base address". Use zero so that these addresses become
14837 absolute. Historically, we've emitted the unexpected
14838 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
14839 Emit both to give time for other tools to adapt. */
14840 add_AT_addr (comp_unit_die
, DW_AT_low_pc
, const0_rtx
);
14841 add_AT_addr (comp_unit_die
, DW_AT_entry_pc
, const0_rtx
);
14843 add_AT_range_list (comp_unit_die
, DW_AT_ranges
,
14844 add_ranges_by_labels (text_section_label
,
14846 if (flag_reorder_blocks_and_partition
)
14847 add_ranges_by_labels (cold_text_section_label
,
14850 for (fde_idx
= 0; fde_idx
< fde_table_in_use
; fde_idx
++)
14852 dw_fde_ref fde
= &fde_table
[fde_idx
];
14854 if (fde
->dw_fde_switched_sections
)
14856 add_ranges_by_labels (fde
->dw_fde_hot_section_label
,
14857 fde
->dw_fde_hot_section_end_label
);
14858 add_ranges_by_labels (fde
->dw_fde_unlikely_section_label
,
14859 fde
->dw_fde_unlikely_section_end_label
);
14862 add_ranges_by_labels (fde
->dw_fde_begin
,
14869 /* Output location list section if necessary. */
14870 if (have_location_lists
)
14872 /* Output the location lists info. */
14873 switch_to_section (debug_loc_section
);
14874 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
,
14875 DEBUG_LOC_SECTION_LABEL
, 0);
14876 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
14877 output_location_lists (die
);
14880 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
14881 add_AT_lineptr (comp_unit_die
, DW_AT_stmt_list
,
14882 debug_line_section_label
);
14884 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14885 add_AT_macptr (comp_unit_die
, DW_AT_macro_info
, macinfo_section_label
);
14887 /* Output all of the compilation units. We put the main one last so that
14888 the offsets are available to output_pubnames. */
14889 for (node
= limbo_die_list
; node
; node
= node
->next
)
14890 output_comp_unit (node
->die
, 0);
14892 output_comp_unit (comp_unit_die
, 0);
14894 /* Output the abbreviation table. */
14895 switch_to_section (debug_abbrev_section
);
14896 output_abbrev_section ();
14898 /* Output public names table if necessary. */
14899 if (!VEC_empty (pubname_entry
, pubname_table
))
14901 switch_to_section (debug_pubnames_section
);
14902 output_pubnames (pubname_table
);
14905 #ifdef DEBUG_PUBTYPES_SECTION
14906 /* Output public types table if necessary. */
14907 if (!VEC_empty (pubname_entry
, pubtype_table
))
14909 switch_to_section (debug_pubtypes_section
);
14910 output_pubnames (pubtype_table
);
14914 /* Output the address range information. We only put functions in the arange
14915 table, so don't write it out if we don't have any. */
14916 if (fde_table_in_use
)
14918 switch_to_section (debug_aranges_section
);
14922 /* Output ranges section if necessary. */
14923 if (ranges_table_in_use
)
14925 switch_to_section (debug_ranges_section
);
14926 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
14930 /* Output the source line correspondence table. We must do this
14931 even if there is no line information. Otherwise, on an empty
14932 translation unit, we will generate a present, but empty,
14933 .debug_info section. IRIX 6.5 `nm' will then complain when
14934 examining the file. This is done late so that any filenames
14935 used by the debug_info section are marked as 'used'. */
14936 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
14938 switch_to_section (debug_line_section
);
14939 output_line_info ();
14942 /* Have to end the macro section. */
14943 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14945 switch_to_section (debug_macinfo_section
);
14946 dw2_asm_output_data (1, 0, "End compilation unit");
14949 /* If we emitted any DW_FORM_strp form attribute, output the string
14951 if (debug_str_hash
)
14952 htab_traverse (debug_str_hash
, output_indirect_string
, NULL
);
14956 /* This should never be used, but its address is needed for comparisons. */
14957 const struct gcc_debug_hooks dwarf2_debug_hooks
;
14959 #endif /* DWARF2_DEBUGGING_INFO */
14961 #include "gt-dwarf2out.h"