1 /* s_tanl.c -- long double version of s_tan.c.
2 * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
5 /* @(#)s_tan.c 5.1 93/09/24 */
7 * ====================================================
8 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
10 * Developed at SunPro, a Sun Microsystems, Inc. business.
11 * Permission to use, copy, modify, and distribute this
12 * software is freely granted, provided that this notice
14 * ====================================================
18 * Return tangent function of x.
21 * __quadmath_kernel_tanq ... tangent function on [-pi/4,pi/4]
22 * __quadmath_rem_pio2q ... argument reduction routine
25 * Let S,C and T denote the sin, cos and tan respectively on
26 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27 * in [-pi/4 , +pi/4], and let n = k mod 4.
30 * n sin(x) cos(x) tan(x)
31 * ----------------------------------------------------------
36 * ----------------------------------------------------------
39 * Let trig be any of sin, cos, or tan.
40 * trig(+-INF) is NaN, with signals;
41 * trig(NaN) is that NaN;
44 * TRIG(x) returns trig(x) nearly rounded
47 #include "quadmath-imp.h"
49 __float128
tanq(__float128 x
)
55 GET_FLT128_MSW64(ix
,x
);
58 ix
&= 0x7fffffffffffffffLL
;
59 if(ix
<= 0x3ffe921fb54442d1LL
) return __quadmath_kernel_tanq(x
,z
,1);
61 /* tanq(Inf or NaN) is NaN */
62 else if (ix
>=0x7fff000000000000LL
) {
63 if (ix
== 0x7fff000000000000LL
) {
64 GET_FLT128_LSW64(n
,x
);
71 /* argument reduction needed */
73 n
= __quadmath_rem_pio2q(x
,y
);
74 return __quadmath_kernel_tanq(y
[0],y
[1],1-((n
&1)<<1)); /* 1 -- n even