1 /* Target Code for R8C/M16C/M32C
3 Free Software Foundation, Inc.
4 Contributed by Red Hat.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-flags.h"
35 #include "insn-attr.h"
48 #include "target-def.h"
50 #include "langhooks.h"
51 #include "tree-gimple.h"
55 /* Used by m32c_pushm_popm. */
63 static tree
interrupt_handler (tree
*, tree
, tree
, int, bool *);
64 static int interrupt_p (tree node
);
65 static bool m32c_asm_integer (rtx
, unsigned int, int);
66 static int m32c_comp_type_attributes (tree
, tree
);
67 static bool m32c_fixed_condition_code_regs (unsigned int *, unsigned int *);
68 static struct machine_function
*m32c_init_machine_status (void);
69 static void m32c_insert_attributes (tree
, tree
*);
70 static bool m32c_pass_by_reference (CUMULATIVE_ARGS
*, enum machine_mode
,
72 static bool m32c_promote_prototypes (tree
);
73 static int m32c_pushm_popm (Push_Pop_Type
);
74 static bool m32c_strict_argument_naming (CUMULATIVE_ARGS
*);
75 static rtx
m32c_struct_value_rtx (tree
, int);
76 static rtx
m32c_subreg (enum machine_mode
, rtx
, enum machine_mode
, int);
77 static int need_to_save (int);
79 #define streq(a,b) (strcmp ((a), (b)) == 0)
81 /* Internal support routines */
83 /* Debugging statements are tagged with DEBUG0 only so that they can
84 be easily enabled individually, by replacing the '0' with '1' as
90 /* This is needed by some of the commented-out debug statements
92 static char const *class_names
[LIM_REG_CLASSES
] = REG_CLASS_NAMES
;
94 static int class_contents
[LIM_REG_CLASSES
][1] = REG_CLASS_CONTENTS
;
96 /* These are all to support encode_pattern(). */
97 static char pattern
[30], *patternp
;
98 static GTY(()) rtx patternr
[30];
99 #define RTX_IS(x) (streq (pattern, x))
101 /* Some macros to simplify the logic throughout this file. */
102 #define IS_MEM_REGNO(regno) ((regno) >= MEM0_REGNO && (regno) <= MEM7_REGNO)
103 #define IS_MEM_REG(rtx) (GET_CODE (rtx) == REG && IS_MEM_REGNO (REGNO (rtx)))
105 #define IS_CR_REGNO(regno) ((regno) >= SB_REGNO && (regno) <= PC_REGNO)
106 #define IS_CR_REG(rtx) (GET_CODE (rtx) == REG && IS_CR_REGNO (REGNO (rtx)))
108 /* We do most RTX matching by converting the RTX into a string, and
109 using string compares. This vastly simplifies the logic in many of
110 the functions in this file.
112 On exit, pattern[] has the encoded string (use RTX_IS("...") to
113 compare it) and patternr[] has pointers to the nodes in the RTX
114 corresponding to each character in the encoded string. The latter
115 is mostly used by print_operand().
117 Unrecognized patterns have '?' in them; this shows up when the
118 assembler complains about syntax errors.
122 encode_pattern_1 (rtx x
)
126 if (patternp
== pattern
+ sizeof (pattern
) - 2)
132 patternr
[patternp
- pattern
] = x
;
134 switch (GET_CODE (x
))
140 if (GET_MODE_SIZE (GET_MODE (x
)) !=
141 GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
143 encode_pattern_1 (XEXP (x
, 0));
148 encode_pattern_1 (XEXP (x
, 0));
152 encode_pattern_1 (XEXP (x
, 0));
153 encode_pattern_1 (XEXP (x
, 1));
157 encode_pattern_1 (XEXP (x
, 0));
161 encode_pattern_1 (XEXP (x
, 0));
165 encode_pattern_1 (XEXP (x
, 0));
166 encode_pattern_1 (XEXP (x
, 1));
170 encode_pattern_1 (XEXP (x
, 0));
187 *patternp
++ = '0' + XCINT (x
, 1, UNSPEC
);
188 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
189 encode_pattern_1 (XVECEXP (x
, 0, i
));
196 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
197 encode_pattern_1 (XVECEXP (x
, 0, i
));
201 encode_pattern_1 (XEXP (x
, 0));
203 encode_pattern_1 (XEXP (x
, 1));
208 fprintf (stderr
, "can't encode pattern %s\n",
209 GET_RTX_NAME (GET_CODE (x
)));
218 encode_pattern (rtx x
)
221 encode_pattern_1 (x
);
225 /* Since register names indicate the mode they're used in, we need a
226 way to determine which name to refer to the register with. Called
227 by print_operand(). */
230 reg_name_with_mode (int regno
, enum machine_mode mode
)
232 int mlen
= GET_MODE_SIZE (mode
);
233 if (regno
== R0_REGNO
&& mlen
== 1)
235 if (regno
== R0_REGNO
&& (mlen
== 3 || mlen
== 4))
237 if (regno
== R0_REGNO
&& mlen
== 6)
239 if (regno
== R0_REGNO
&& mlen
== 8)
241 if (regno
== R1_REGNO
&& mlen
== 1)
243 if (regno
== R1_REGNO
&& (mlen
== 3 || mlen
== 4))
245 if (regno
== A0_REGNO
&& TARGET_A16
&& (mlen
== 3 || mlen
== 4))
247 return reg_names
[regno
];
250 /* How many bytes a register uses on stack when it's pushed. We need
251 to know this because the push opcode needs to explicitly indicate
252 the size of the register, even though the name of the register
253 already tells it that. Used by m32c_output_reg_{push,pop}, which
254 is only used through calls to ASM_OUTPUT_REG_{PUSH,POP}. */
257 reg_push_size (int regno
)
282 static int *class_sizes
= 0;
284 /* Given two register classes, find the largest intersection between
285 them. If there is no intersection, return RETURNED_IF_EMPTY
288 reduce_class (int original_class
, int limiting_class
, int returned_if_empty
)
290 int cc
= class_contents
[original_class
][0];
291 int i
, best
= NO_REGS
;
294 if (original_class
== limiting_class
)
295 return original_class
;
300 class_sizes
= (int *) xmalloc (LIM_REG_CLASSES
* sizeof (int));
301 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
304 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
305 if (class_contents
[i
][0] & (1 << r
))
310 cc
&= class_contents
[limiting_class
][0];
311 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
313 int ic
= class_contents
[i
][0];
316 if (best_size
< class_sizes
[i
])
319 best_size
= class_sizes
[i
];
324 return returned_if_empty
;
328 /* Returns TRUE If there are any registers that exist in both register
331 classes_intersect (int class1
, int class2
)
333 return class_contents
[class1
][0] & class_contents
[class2
][0];
336 /* Used by m32c_register_move_cost to determine if a move is
337 impossibly expensive. */
339 class_can_hold_mode (int class, enum machine_mode mode
)
341 /* Cache the results: 0=untested 1=no 2=yes */
342 static char results
[LIM_REG_CLASSES
][MAX_MACHINE_MODE
];
343 if (results
[class][mode
] == 0)
346 results
[class][mode
] = 1;
347 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
348 if (class_contents
[class][0] & (1 << r
)
349 && HARD_REGNO_MODE_OK (r
, mode
))
352 n
= HARD_REGNO_NREGS (r
, mode
);
353 for (i
= 1; i
< n
; i
++)
354 if (!(class_contents
[class][0] & (1 << (r
+ i
))))
358 results
[class][mode
] = 2;
364 fprintf (stderr
, "class %s can hold %s? %s\n",
365 class_names
[class], mode_name
[mode
],
366 (results
[class][mode
] == 2) ? "yes" : "no");
368 return results
[class][mode
] == 2;
371 /* Run-time Target Specification. */
373 /* Memregs are memory locations that gcc treats like general
374 registers, as there are a limited number of true registers and the
375 m32c families can use memory in most places that registers can be
378 However, since memory accesses are more expensive than registers,
379 we allow the user to limit the number of memregs available, in
380 order to try to persuade gcc to try harder to use real registers.
382 Memregs are provided by m32c-lib1.S.
385 int target_memregs
= 16;
386 static bool target_memregs_set
= FALSE
;
387 int ok_to_change_target_memregs
= TRUE
;
389 #undef TARGET_HANDLE_OPTION
390 #define TARGET_HANDLE_OPTION m32c_handle_option
392 m32c_handle_option (size_t code
,
393 const char *arg ATTRIBUTE_UNUSED
,
394 int value ATTRIBUTE_UNUSED
)
396 if (code
== OPT_memregs_
)
398 target_memregs_set
= TRUE
;
399 target_memregs
= atoi (arg
);
404 /* Implements OVERRIDE_OPTIONS. We limit memregs to 0..16, and
405 provide a default. */
407 m32c_override_options (void)
409 if (target_memregs_set
)
411 if (target_memregs
< 0 || target_memregs
> 16)
412 error ("invalid target memregs value '%d'", target_memregs
);
415 target_memregs
= "16";
418 /* Defining data structures for per-function information */
420 /* The usual; we set up our machine_function data. */
421 static struct machine_function
*
422 m32c_init_machine_status (void)
424 struct machine_function
*machine
;
426 (machine_function
*) ggc_alloc_cleared (sizeof (machine_function
));
431 /* Implements INIT_EXPANDERS. We just set up to call the above
434 m32c_init_expanders (void)
436 init_machine_status
= m32c_init_machine_status
;
441 #undef TARGET_PROMOTE_FUNCTION_RETURN
442 #define TARGET_PROMOTE_FUNCTION_RETURN m32c_promote_function_return
444 m32c_promote_function_return (tree fntype ATTRIBUTE_UNUSED
)
449 /* Register Basics */
451 /* Basic Characteristics of Registers */
453 /* Whether a mode fits in a register is complex enough to warrant a
462 } nregs_table
[FIRST_PSEUDO_REGISTER
] =
464 { 1, 1, 2, 2, 4 }, /* r0 */
465 { 0, 1, 0, 0, 0 }, /* r2 */
466 { 1, 1, 2, 2, 0 }, /* r1 */
467 { 0, 1, 0, 0, 0 }, /* r3 */
468 { 0, 1, 1, 0, 0 }, /* a0 */
469 { 0, 1, 1, 0, 0 }, /* a1 */
470 { 0, 1, 1, 0, 0 }, /* sb */
471 { 0, 1, 1, 0, 0 }, /* fb */
472 { 0, 1, 1, 0, 0 }, /* sp */
473 { 1, 1, 1, 0, 0 }, /* pc */
474 { 0, 0, 0, 0, 0 }, /* fl */
475 { 1, 1, 1, 0, 0 }, /* ap */
476 { 1, 1, 2, 2, 4 }, /* mem0 */
477 { 1, 1, 2, 2, 4 }, /* mem1 */
478 { 1, 1, 2, 2, 4 }, /* mem2 */
479 { 1, 1, 2, 2, 4 }, /* mem3 */
480 { 1, 1, 2, 2, 4 }, /* mem4 */
481 { 1, 1, 2, 2, 0 }, /* mem5 */
482 { 1, 1, 2, 2, 0 }, /* mem6 */
483 { 1, 1, 0, 0, 0 }, /* mem7 */
486 /* Implements CONDITIONAL_REGISTER_USAGE. We adjust the number of
487 available memregs, and select which registers need to be preserved
488 across calls based on the chip family. */
491 m32c_conditional_register_usage (void)
496 if (0 <= target_memregs
&& target_memregs
<= 16)
498 /* The command line option is bytes, but our "registers" are
500 for (i
= target_memregs
/2; i
< 8; i
++)
502 fixed_regs
[MEM0_REGNO
+ i
] = 1;
503 CLEAR_HARD_REG_BIT (reg_class_contents
[MEM_REGS
], MEM0_REGNO
+ i
);
507 /* M32CM and M32C preserve more registers across function calls. */
510 call_used_regs
[R1_REGNO
] = 0;
511 call_used_regs
[R2_REGNO
] = 0;
512 call_used_regs
[R3_REGNO
] = 0;
513 call_used_regs
[A0_REGNO
] = 0;
514 call_used_regs
[A1_REGNO
] = 0;
518 /* How Values Fit in Registers */
520 /* Implements HARD_REGNO_NREGS. This is complicated by the fact that
521 different registers are different sizes from each other, *and* may
522 be different sizes in different chip families. */
524 m32c_hard_regno_nregs (int regno
, enum machine_mode mode
)
526 if (regno
== FLG_REGNO
&& mode
== CCmode
)
528 if (regno
>= FIRST_PSEUDO_REGISTER
)
529 return ((GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
);
531 if (regno
>= MEM0_REGNO
&& regno
<= MEM7_REGNO
)
532 return (GET_MODE_SIZE (mode
) + 1) / 2;
534 if (GET_MODE_SIZE (mode
) <= 1)
535 return nregs_table
[regno
].qi_regs
;
536 if (GET_MODE_SIZE (mode
) <= 2)
537 return nregs_table
[regno
].hi_regs
;
538 if (regno
== A0_REGNO
&& mode
== PSImode
&& TARGET_A16
)
540 if ((GET_MODE_SIZE (mode
) <= 3 || mode
== PSImode
) && TARGET_A24
)
541 return nregs_table
[regno
].pi_regs
;
542 if (GET_MODE_SIZE (mode
) <= 4)
543 return nregs_table
[regno
].si_regs
;
544 if (GET_MODE_SIZE (mode
) <= 8)
545 return nregs_table
[regno
].di_regs
;
549 /* Implements HARD_REGNO_MODE_OK. The above function does the work
550 already; just test its return value. */
552 m32c_hard_regno_ok (int regno
, enum machine_mode mode
)
554 return m32c_hard_regno_nregs (regno
, mode
) != 0;
557 /* Implements MODES_TIEABLE_P. In general, modes aren't tieable since
558 registers are all different sizes. However, since most modes are
559 bigger than our registers anyway, it's easier to implement this
560 function that way, leaving QImode as the only unique case. */
562 m32c_modes_tieable_p (enum machine_mode m1
, enum machine_mode m2
)
564 if (GET_MODE_SIZE (m1
) == GET_MODE_SIZE (m2
))
567 if (m1
== QImode
|| m2
== QImode
)
573 /* Register Classes */
575 /* Implements REGNO_REG_CLASS. */
577 m32c_regno_reg_class (int regno
)
601 if (IS_MEM_REGNO (regno
))
607 /* Implements REG_CLASS_FROM_CONSTRAINT. Note that some constraints only match
608 for certain chip families. */
610 m32c_reg_class_from_constraint (char c ATTRIBUTE_UNUSED
, const char *s
)
612 if (memcmp (s
, "Rsp", 3) == 0)
614 if (memcmp (s
, "Rfb", 3) == 0)
616 if (memcmp (s
, "Rsb", 3) == 0)
618 if (memcmp (s
, "Rcr", 3) == 0 && TARGET_A16
)
620 if (memcmp (s
, "Rcl", 3) == 0 && TARGET_A24
)
622 if (memcmp (s
, "R0w", 3) == 0)
624 if (memcmp (s
, "R1w", 3) == 0)
626 if (memcmp (s
, "R2w", 3) == 0)
628 if (memcmp (s
, "R3w", 3) == 0)
630 if (memcmp (s
, "R02", 3) == 0)
632 if (memcmp (s
, "R03", 3) == 0)
634 if (memcmp (s
, "Rdi", 3) == 0)
636 if (memcmp (s
, "Rhl", 3) == 0)
638 if (memcmp (s
, "R23", 3) == 0)
640 if (memcmp (s
, "Raa", 3) == 0)
642 if (memcmp (s
, "Raw", 3) == 0 && TARGET_A16
)
644 if (memcmp (s
, "Ral", 3) == 0 && TARGET_A24
)
646 if (memcmp (s
, "Rqi", 3) == 0)
648 if (memcmp (s
, "Rad", 3) == 0)
650 if (memcmp (s
, "Rsi", 3) == 0)
652 if (memcmp (s
, "Rhi", 3) == 0)
654 if (memcmp (s
, "Rhc", 3) == 0)
656 if (memcmp (s
, "Rra", 3) == 0)
658 if (memcmp (s
, "Rfl", 3) == 0)
660 if (memcmp (s
, "Rmm", 3) == 0)
662 if (fixed_regs
[MEM0_REGNO
])
667 /* PSImode registers - i.e. whatever can hold a pointer. */
668 if (memcmp (s
, "Rpi", 3) == 0)
673 return RA_REGS
; /* r2r0 and r3r1 can hold pointers. */
676 /* We handle this one as an EXTRA_CONSTRAINT. */
677 if (memcmp (s
, "Rpa", 3) == 0)
683 /* Implements REGNO_OK_FOR_BASE_P. */
685 m32c_regno_ok_for_base_p (int regno
)
687 if (regno
== A0_REGNO
688 || regno
== A1_REGNO
|| regno
>= FIRST_PSEUDO_REGISTER
)
693 #define DEBUG_RELOAD 0
695 /* Implements PREFERRED_RELOAD_CLASS. In general, prefer general
696 registers of the appropriate size. */
698 m32c_preferred_reload_class (rtx x
, int rclass
)
700 int newclass
= rclass
;
703 fprintf (stderr
, "\npreferred_reload_class for %s is ",
704 class_names
[rclass
]);
706 if (rclass
== NO_REGS
)
707 rclass
= GET_MODE (x
) == QImode
? HL_REGS
: R03_REGS
;
709 if (classes_intersect (rclass
, CR_REGS
))
711 switch (GET_MODE (x
))
717 /* newclass = HI_REGS; */
722 else if (newclass
== QI_REGS
&& GET_MODE_SIZE (GET_MODE (x
)) > 2)
724 else if (GET_MODE_SIZE (GET_MODE (x
)) > 4
725 && ~class_contents
[rclass
][0] & 0x000f)
728 rclass
= reduce_class (rclass
, newclass
, rclass
);
730 if (GET_MODE (x
) == QImode
)
731 rclass
= reduce_class (rclass
, HL_REGS
, rclass
);
734 fprintf (stderr
, "%s\n", class_names
[rclass
]);
737 if (GET_CODE (x
) == MEM
738 && GET_CODE (XEXP (x
, 0)) == PLUS
739 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
)
740 fprintf (stderr
, "Glorm!\n");
745 /* Implements PREFERRED_OUTPUT_RELOAD_CLASS. */
747 m32c_preferred_output_reload_class (rtx x
, int rclass
)
749 return m32c_preferred_reload_class (x
, rclass
);
752 /* Implements LIMIT_RELOAD_CLASS. We basically want to avoid using
753 address registers for reloads since they're needed for address
756 m32c_limit_reload_class (enum machine_mode mode
, int rclass
)
759 fprintf (stderr
, "limit_reload_class for %s: %s ->",
760 mode_name
[mode
], class_names
[rclass
]);
764 rclass
= reduce_class (rclass
, HL_REGS
, rclass
);
765 else if (mode
== HImode
)
766 rclass
= reduce_class (rclass
, HI_REGS
, rclass
);
767 else if (mode
== SImode
)
768 rclass
= reduce_class (rclass
, SI_REGS
, rclass
);
770 if (rclass
!= A_REGS
)
771 rclass
= reduce_class (rclass
, DI_REGS
, rclass
);
774 fprintf (stderr
, " %s\n", class_names
[rclass
]);
779 /* Implements SECONDARY_RELOAD_CLASS. QImode have to be reloaded in
780 r0 or r1, as those are the only real QImode registers. CR regs get
781 reloaded through appropriately sized general or address
784 m32c_secondary_reload_class (int rclass
, enum machine_mode mode
, rtx x
)
786 int cc
= class_contents
[rclass
][0];
788 fprintf (stderr
, "\nsecondary reload class %s %s\n",
789 class_names
[rclass
], mode_name
[mode
]);
793 && GET_CODE (x
) == MEM
&& (cc
& ~class_contents
[R23_REGS
][0]) == 0)
795 if (classes_intersect (rclass
, CR_REGS
)
796 && GET_CODE (x
) == REG
797 && REGNO (x
) >= SB_REGNO
&& REGNO (x
) <= SP_REGNO
)
798 return TARGET_A16
? HI_REGS
: A_REGS
;
802 /* Implements CLASS_LIKELY_SPILLED_P. A_REGS is needed for address
805 m32c_class_likely_spilled_p (int regclass
)
807 if (regclass
== A_REGS
)
809 return reg_class_size
[regclass
] == 1;
812 /* Implements CLASS_MAX_NREGS. We calculate this according to its
813 documented meaning, to avoid potential inconsistencies with actual
814 class definitions. */
816 m32c_class_max_nregs (int regclass
, enum machine_mode mode
)
820 for (rn
= 0; rn
< FIRST_PSEUDO_REGISTER
; rn
++)
821 if (class_contents
[regclass
][0] & (1 << rn
))
823 int n
= m32c_hard_regno_nregs (rn
, mode
);
830 /* Implements CANNOT_CHANGE_MODE_CLASS. Only r0 and r1 can change to
831 QI (r0l, r1l) because the chip doesn't support QI ops on other
832 registers (well, it does on a0/a1 but if we let gcc do that, reload
833 suffers). Otherwise, we allow changes to larger modes. */
835 m32c_cannot_change_mode_class (enum machine_mode from
,
836 enum machine_mode to
, int rclass
)
839 fprintf (stderr
, "cannot change from %s to %s in %s\n",
840 mode_name
[from
], mode_name
[to
], class_names
[rclass
]);
844 return (class_contents
[rclass
][0] & 0x1ffa);
846 if (class_contents
[rclass
][0] & 0x0005 /* r0, r1 */
847 && GET_MODE_SIZE (from
) > 1)
849 if (GET_MODE_SIZE (from
) > 2) /* all other regs */
855 /* Helpers for the rest of the file. */
856 /* TRUE if the rtx is a REG rtx for the given register. */
857 #define IS_REG(rtx,regno) (GET_CODE (rtx) == REG \
858 && REGNO (rtx) == regno)
859 /* TRUE if the rtx is a pseudo - specifically, one we can use as a
860 base register in address calculations (hence the "strict"
862 #define IS_PSEUDO(rtx,strict) (!strict && GET_CODE (rtx) == REG \
863 && (REGNO (rtx) == AP_REGNO \
864 || REGNO (rtx) >= FIRST_PSEUDO_REGISTER))
866 /* Implements CONST_OK_FOR_CONSTRAINT_P. Currently, all constant
867 constraints start with 'I', with the next two characters indicating
868 the type and size of the range allowed. */
870 m32c_const_ok_for_constraint_p (HOST_WIDE_INT value
,
871 char c ATTRIBUTE_UNUSED
, const char *str
)
873 /* s=signed u=unsigned n=nonzero m=minus l=log2able,
874 [sun] bits [SUN] bytes, p=pointer size
875 I[-0-9][0-9] matches that number */
876 if (memcmp (str
, "Is3", 3) == 0)
878 return (-8 <= value
&& value
<= 7);
880 if (memcmp (str
, "IS1", 3) == 0)
882 return (-128 <= value
&& value
<= 127);
884 if (memcmp (str
, "IS2", 3) == 0)
886 return (-32768 <= value
&& value
<= 32767);
888 if (memcmp (str
, "IU2", 3) == 0)
890 return (0 <= value
&& value
<= 65535);
892 if (memcmp (str
, "IU3", 3) == 0)
894 return (0 <= value
&& value
<= 0x00ffffff);
896 if (memcmp (str
, "In4", 3) == 0)
898 return (-8 <= value
&& value
&& value
<= 8);
900 if (memcmp (str
, "In5", 3) == 0)
902 return (-16 <= value
&& value
&& value
<= 16);
904 if (memcmp (str
, "In6", 3) == 0)
906 return (-32 <= value
&& value
&& value
<= 32);
908 if (memcmp (str
, "IM2", 3) == 0)
910 return (-65536 <= value
&& value
&& value
<= -1);
912 if (memcmp (str
, "Ilb", 3) == 0)
914 int b
= exact_log2 (value
);
915 return (b
>= 1 && b
<= 8);
917 if (memcmp (str
, "Ilw", 3) == 0)
919 int b
= exact_log2 (value
);
920 return (b
>= 1 && b
<= 16);
925 /* Implements EXTRA_CONSTRAINT_STR (see next function too). 'S' is
926 for memory constraints, plus "Rpa" for PARALLEL rtx's we use for
927 call return values. */
929 m32c_extra_constraint_p2 (rtx value
, char c ATTRIBUTE_UNUSED
, const char *str
)
931 encode_pattern (value
);
932 if (memcmp (str
, "Sd", 2) == 0)
934 /* This is the common "src/dest" address */
936 if (GET_CODE (value
) == MEM
&& CONSTANT_P (XEXP (value
, 0)))
938 if (RTX_IS ("ms") || RTX_IS ("m+si"))
942 else if (RTX_IS ("m+ri") || RTX_IS ("m+rs") || RTX_IS ("m+r+si"))
946 if (REGNO (r
) == SP_REGNO
)
948 return m32c_legitimate_address_p (GET_MODE (value
), XEXP (value
, 0), 1);
950 else if (memcmp (str
, "Sa", 2) == 0)
955 else if (RTX_IS ("m+ri"))
959 return (IS_REG (r
, A0_REGNO
) || IS_REG (r
, A1_REGNO
));
961 else if (memcmp (str
, "Si", 2) == 0)
963 return (RTX_IS ("mi") || RTX_IS ("ms") || RTX_IS ("m+si"));
965 else if (memcmp (str
, "Ss", 2) == 0)
967 return ((RTX_IS ("mr")
968 && (IS_REG (patternr
[1], SP_REGNO
)))
969 || (RTX_IS ("m+ri") && (IS_REG (patternr
[2], SP_REGNO
))));
971 else if (memcmp (str
, "Sf", 2) == 0)
973 return ((RTX_IS ("mr")
974 && (IS_REG (patternr
[1], FB_REGNO
)))
975 || (RTX_IS ("m+ri") && (IS_REG (patternr
[2], FB_REGNO
))));
977 else if (memcmp (str
, "Sb", 2) == 0)
979 return ((RTX_IS ("mr")
980 && (IS_REG (patternr
[1], SB_REGNO
)))
981 || (RTX_IS ("m+ri") && (IS_REG (patternr
[2], SB_REGNO
))));
983 else if (memcmp (str
, "S1", 2) == 0)
985 return r1h_operand (value
, QImode
);
988 gcc_assert (str
[0] != 'S');
990 if (memcmp (str
, "Rpa", 2) == 0)
991 return GET_CODE (value
) == PARALLEL
;
996 /* This is for when we're debugging the above. */
998 m32c_extra_constraint_p (rtx value
, char c
, const char *str
)
1000 int rv
= m32c_extra_constraint_p2 (value
, c
, str
);
1002 fprintf (stderr
, "\nconstraint %.*s: %d\n", CONSTRAINT_LEN (c
, str
), str
,
1009 /* Implements EXTRA_MEMORY_CONSTRAINT. Currently, we only use strings
1010 starting with 'S'. */
1012 m32c_extra_memory_constraint (char c
, const char *str ATTRIBUTE_UNUSED
)
1017 /* Implements EXTRA_ADDRESS_CONSTRAINT. We reserve 'A' strings for these,
1018 but don't currently define any. */
1020 m32c_extra_address_constraint (char c
, const char *str ATTRIBUTE_UNUSED
)
1025 /* STACK AND CALLING */
1029 /* Implements RETURN_ADDR_RTX. Note that R8C and M16C push 24 bits
1030 (yes, THREE bytes) onto the stack for the return address, but we
1031 don't support pointers bigger than 16 bits on those chips. This
1032 will likely wreak havoc with exception unwinding. FIXME. */
1034 m32c_return_addr_rtx (int count
)
1036 enum machine_mode mode
;
1042 /* we want 2[$fb] */
1051 /* FIXME: it's really 3 bytes */
1057 gen_rtx_MEM (mode
, plus_constant (gen_rtx_REG (Pmode
, FP_REGNO
), offset
));
1058 return copy_to_mode_reg (mode
, ra_mem
);
1061 /* Implements INCOMING_RETURN_ADDR_RTX. See comment above. */
1063 m32c_incoming_return_addr_rtx (void)
1066 return gen_rtx_MEM (PSImode
, gen_rtx_REG (PSImode
, SP_REGNO
));
1069 /* Exception Handling Support */
1071 /* Implements EH_RETURN_DATA_REGNO. Choose registers able to hold
1074 m32c_eh_return_data_regno (int n
)
1083 return INVALID_REGNUM
;
1087 /* Implements EH_RETURN_STACKADJ_RTX. Saved and used later in
1088 m32c_emit_eh_epilogue. */
1090 m32c_eh_return_stackadj_rtx (void)
1092 if (!cfun
->machine
->eh_stack_adjust
)
1096 sa
= gen_reg_rtx (Pmode
);
1097 cfun
->machine
->eh_stack_adjust
= sa
;
1099 return cfun
->machine
->eh_stack_adjust
;
1102 /* Registers That Address the Stack Frame */
1104 /* Implements DWARF_FRAME_REGNUM and DBX_REGISTER_NUMBER. Note that
1105 the original spec called for dwarf numbers to vary with register
1106 width as well, for example, r0l, r0, and r2r0 would each have
1107 different dwarf numbers. GCC doesn't support this, and we don't do
1108 it, and gdb seems to like it this way anyway. */
1110 m32c_dwarf_frame_regnum (int n
)
1136 return DWARF_FRAME_REGISTERS
+ 1;
1140 /* The frame looks like this:
1142 ap -> +------------------------------
1143 | Return address (3 or 4 bytes)
1144 | Saved FB (2 or 4 bytes)
1145 fb -> +------------------------------
1148 | through r0 as needed
1149 sp -> +------------------------------
1152 /* We use this to wrap all emitted insns in the prologue. */
1156 RTX_FRAME_RELATED_P (x
) = 1;
1160 /* This maps register numbers to the PUSHM/POPM bitfield, and tells us
1161 how much the stack pointer moves for each, for each cpu family. */
1170 /* These are in push order. */
1171 { FB_REGNO
, 0x01, 2, 4 },
1172 { SB_REGNO
, 0x02, 2, 4 },
1173 { A1_REGNO
, 0x04, 2, 4 },
1174 { A0_REGNO
, 0x08, 2, 4 },
1175 { R3_REGNO
, 0x10, 2, 2 },
1176 { R2_REGNO
, 0x20, 2, 2 },
1177 { R1_REGNO
, 0x40, 2, 2 },
1178 { R0_REGNO
, 0x80, 2, 2 }
1181 #define PUSHM_N (sizeof(pushm_info)/sizeof(pushm_info[0]))
1183 /* Returns TRUE if we need to save/restore the given register. We
1184 save everything for exception handlers, so that any register can be
1185 unwound. For interrupt handlers, we save everything if the handler
1186 calls something else (because we don't know what *that* function
1187 might do), but try to be a bit smarter if the handler is a leaf
1188 function. We always save $a0, though, because we use that in the
1189 epilog to copy $fb to $sp. */
1191 need_to_save (int regno
)
1193 if (fixed_regs
[regno
])
1195 if (cfun
->calls_eh_return
)
1197 if (regno
== FP_REGNO
)
1199 if (cfun
->machine
->is_interrupt
1200 && (!cfun
->machine
->is_leaf
|| regno
== A0_REGNO
))
1202 if (regs_ever_live
[regno
]
1203 && (!call_used_regs
[regno
] || cfun
->machine
->is_interrupt
))
1208 /* This function contains all the intelligence about saving and
1209 restoring registers. It always figures out the register save set.
1210 When called with PP_justcount, it merely returns the size of the
1211 save set (for eliminating the frame pointer, for example). When
1212 called with PP_pushm or PP_popm, it emits the appropriate
1213 instructions for saving (pushm) or restoring (popm) the
1216 m32c_pushm_popm (Push_Pop_Type ppt
)
1219 int byte_count
= 0, bytes
;
1221 rtx dwarf_set
[PUSHM_N
];
1223 int nosave_mask
= 0;
1225 if (cfun
->return_rtx
1226 && GET_CODE (cfun
->return_rtx
) == PARALLEL
1227 && !(cfun
->calls_eh_return
|| cfun
->machine
->is_interrupt
))
1229 rtx exp
= XVECEXP (cfun
->return_rtx
, 0, 0);
1230 rtx rv
= XEXP (exp
, 0);
1231 int rv_bytes
= GET_MODE_SIZE (GET_MODE (rv
));
1234 nosave_mask
|= 0x20; /* PSI, SI */
1236 nosave_mask
|= 0xf0; /* DF */
1238 nosave_mask
|= 0x50; /* DI */
1241 for (i
= 0; i
< (int) PUSHM_N
; i
++)
1243 /* Skip if neither register needs saving. */
1244 if (!need_to_save (pushm_info
[i
].reg1
))
1247 if (pushm_info
[i
].bit
& nosave_mask
)
1250 reg_mask
|= pushm_info
[i
].bit
;
1251 bytes
= TARGET_A16
? pushm_info
[i
].a16_bytes
: pushm_info
[i
].a24_bytes
;
1253 if (ppt
== PP_pushm
)
1255 enum machine_mode mode
= (bytes
== 2) ? HImode
: SImode
;
1258 /* Always use stack_pointer_rtx instead of calling
1259 rtx_gen_REG ourselves. Code elsewhere in GCC assumes
1260 that there is a single rtx representing the stack pointer,
1261 namely stack_pointer_rtx, and uses == to recognize it. */
1262 addr
= stack_pointer_rtx
;
1264 if (byte_count
!= 0)
1265 addr
= gen_rtx_PLUS (GET_MODE (addr
), addr
, GEN_INT (byte_count
));
1267 dwarf_set
[n_dwarfs
++] =
1268 gen_rtx_SET (VOIDmode
,
1269 gen_rtx_MEM (mode
, addr
),
1270 gen_rtx_REG (mode
, pushm_info
[i
].reg1
));
1271 F (dwarf_set
[n_dwarfs
- 1]);
1274 byte_count
+= bytes
;
1277 if (cfun
->machine
->is_interrupt
)
1279 cfun
->machine
->intr_pushm
= reg_mask
& 0xfe;
1284 if (cfun
->machine
->is_interrupt
)
1285 for (i
= MEM0_REGNO
; i
<= MEM7_REGNO
; i
++)
1286 if (need_to_save (i
))
1289 cfun
->machine
->intr_pushmem
[i
- MEM0_REGNO
] = 1;
1292 if (ppt
== PP_pushm
&& byte_count
)
1294 rtx note
= gen_rtx_SEQUENCE (VOIDmode
, rtvec_alloc (n_dwarfs
+ 1));
1299 XVECEXP (note
, 0, 0)
1300 = gen_rtx_SET (VOIDmode
,
1302 gen_rtx_PLUS (GET_MODE (stack_pointer_rtx
),
1304 GEN_INT (-byte_count
)));
1305 F (XVECEXP (note
, 0, 0));
1307 for (i
= 0; i
< n_dwarfs
; i
++)
1308 XVECEXP (note
, 0, i
+ 1) = dwarf_set
[i
];
1310 pushm
= F (emit_insn (gen_pushm (GEN_INT (reg_mask
))));
1312 REG_NOTES (pushm
) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
, note
,
1316 if (cfun
->machine
->is_interrupt
)
1317 for (i
= MEM0_REGNO
; i
<= MEM7_REGNO
; i
++)
1318 if (cfun
->machine
->intr_pushmem
[i
- MEM0_REGNO
])
1321 pushm
= emit_insn (gen_pushhi_16 (gen_rtx_REG (HImode
, i
)));
1323 pushm
= emit_insn (gen_pushhi_24 (gen_rtx_REG (HImode
, i
)));
1327 if (ppt
== PP_popm
&& byte_count
)
1329 if (cfun
->machine
->is_interrupt
)
1330 for (i
= MEM7_REGNO
; i
>= MEM0_REGNO
; i
--)
1331 if (cfun
->machine
->intr_pushmem
[i
- MEM0_REGNO
])
1334 emit_insn (gen_pophi_16 (gen_rtx_REG (HImode
, i
)));
1336 emit_insn (gen_pophi_24 (gen_rtx_REG (HImode
, i
)));
1339 emit_insn (gen_popm (GEN_INT (reg_mask
)));
1345 /* Implements INITIAL_ELIMINATION_OFFSET. See the comment above that
1346 diagrams our call frame. */
1348 m32c_initial_elimination_offset (int from
, int to
)
1352 if (from
== AP_REGNO
)
1362 ofs
+= m32c_pushm_popm (PP_justcount
);
1363 ofs
+= get_frame_size ();
1366 /* Account for push rounding. */
1368 ofs
= (ofs
+ 1) & ~1;
1370 fprintf (stderr
, "initial_elimination_offset from=%d to=%d, ofs=%d\n", from
,
1376 /* Passing Function Arguments on the Stack */
1378 #undef TARGET_PROMOTE_PROTOTYPES
1379 #define TARGET_PROMOTE_PROTOTYPES m32c_promote_prototypes
1381 m32c_promote_prototypes (tree fntype ATTRIBUTE_UNUSED
)
1386 /* Implements PUSH_ROUNDING. The R8C and M16C have byte stacks, the
1387 M32C has word stacks. */
1389 m32c_push_rounding (int n
)
1391 if (TARGET_R8C
|| TARGET_M16C
)
1393 return (n
+ 1) & ~1;
1396 /* Passing Arguments in Registers */
1398 /* Implements FUNCTION_ARG. Arguments are passed partly in registers,
1399 partly on stack. If our function returns a struct, a pointer to a
1400 buffer for it is at the top of the stack (last thing pushed). The
1401 first few real arguments may be in registers as follows:
1403 R8C/M16C: arg1 in r1 if it's QI or HI (else it's pushed on stack)
1404 arg2 in r2 if it's HI (else pushed on stack)
1406 M32C: arg1 in r0 if it's QI or HI (else it's pushed on stack)
1409 Structs are not passed in registers, even if they fit. Only
1410 integer and pointer types are passed in registers.
1412 Note that when arg1 doesn't fit in r1, arg2 may still be passed in
1415 m32c_function_arg (CUMULATIVE_ARGS
* ca
,
1416 enum machine_mode mode
, tree type
, int named
)
1418 /* Can return a reg, parallel, or 0 for stack */
1421 fprintf (stderr
, "func_arg %d (%s, %d)\n",
1422 ca
->parm_num
, mode_name
[mode
], named
);
1426 if (mode
== VOIDmode
)
1429 if (ca
->force_mem
|| !named
)
1432 fprintf (stderr
, "func arg: force %d named %d, mem\n", ca
->force_mem
,
1438 if (type
&& INTEGRAL_TYPE_P (type
) && POINTER_TYPE_P (type
))
1441 switch (ca
->parm_num
)
1444 if (GET_MODE_SIZE (mode
) == 1 || GET_MODE_SIZE (mode
) == 2)
1445 rv
= gen_rtx_REG (mode
, TARGET_A16
? R1_REGNO
: R0_REGNO
);
1449 if (TARGET_A16
&& GET_MODE_SIZE (mode
) == 2)
1450 rv
= gen_rtx_REG (mode
, R2_REGNO
);
1460 #undef TARGET_PASS_BY_REFERENCE
1461 #define TARGET_PASS_BY_REFERENCE m32c_pass_by_reference
1463 m32c_pass_by_reference (CUMULATIVE_ARGS
* ca ATTRIBUTE_UNUSED
,
1464 enum machine_mode mode ATTRIBUTE_UNUSED
,
1465 tree type ATTRIBUTE_UNUSED
,
1466 bool named ATTRIBUTE_UNUSED
)
1471 /* Implements INIT_CUMULATIVE_ARGS. */
1473 m32c_init_cumulative_args (CUMULATIVE_ARGS
* ca
,
1474 tree fntype ATTRIBUTE_UNUSED
,
1475 rtx libname ATTRIBUTE_UNUSED
,
1476 tree fndecl ATTRIBUTE_UNUSED
,
1477 int n_named_args ATTRIBUTE_UNUSED
)
1483 /* Implements FUNCTION_ARG_ADVANCE. force_mem is set for functions
1484 returning structures, so we always reset that. Otherwise, we only
1485 need to know the sequence number of the argument to know what to do
1488 m32c_function_arg_advance (CUMULATIVE_ARGS
* ca
,
1489 enum machine_mode mode ATTRIBUTE_UNUSED
,
1490 tree type ATTRIBUTE_UNUSED
,
1491 int named ATTRIBUTE_UNUSED
)
1498 /* Implements FUNCTION_ARG_REGNO_P. */
1500 m32c_function_arg_regno_p (int r
)
1503 return (r
== R0_REGNO
);
1504 return (r
== R1_REGNO
|| r
== R2_REGNO
);
1507 /* HImode and PSImode are the two "native" modes as far as GCC is
1508 concerned, but the chips also support a 32 bit mode which is used
1509 for some opcodes in R8C/M16C and for reset vectors and such. */
1510 #undef TARGET_VALID_POINTER_MODE
1511 #define TARGET_VALID_POINTER_MODE m32c_valid_pointer_mode
1513 m32c_valid_pointer_mode (enum machine_mode mode
)
1523 /* How Scalar Function Values Are Returned */
1525 /* Implements LIBCALL_VALUE. Most values are returned in $r0, or some
1526 combination of registers starting there (r2r0 for longs, r3r1r2r0
1527 for long long, r3r2r1r0 for doubles), except that that ABI
1528 currently doesn't work because it ends up using all available
1529 general registers and gcc often can't compile it. So, instead, we
1530 return anything bigger than 16 bits in "mem0" (effectively, a
1531 memory location). */
1533 m32c_libcall_value (enum machine_mode mode
)
1535 /* return reg or parallel */
1537 /* FIXME: GCC has difficulty returning large values in registers,
1538 because that ties up most of the general registers and gives the
1539 register allocator little to work with. Until we can resolve
1540 this, large values are returned in memory. */
1545 rv
= gen_rtx_PARALLEL (mode
, rtvec_alloc (4));
1546 XVECEXP (rv
, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode
,
1547 gen_rtx_REG (HImode
,
1550 XVECEXP (rv
, 0, 1) = gen_rtx_EXPR_LIST (VOIDmode
,
1551 gen_rtx_REG (HImode
,
1554 XVECEXP (rv
, 0, 2) = gen_rtx_EXPR_LIST (VOIDmode
,
1555 gen_rtx_REG (HImode
,
1558 XVECEXP (rv
, 0, 3) = gen_rtx_EXPR_LIST (VOIDmode
,
1559 gen_rtx_REG (HImode
,
1565 if (TARGET_A24
&& GET_MODE_SIZE (mode
) > 2)
1569 rv
= gen_rtx_PARALLEL (mode
, rtvec_alloc (1));
1570 XVECEXP (rv
, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode
,
1578 if (GET_MODE_SIZE (mode
) > 2)
1579 return gen_rtx_REG (mode
, MEM0_REGNO
);
1580 return gen_rtx_REG (mode
, R0_REGNO
);
1583 /* Implements FUNCTION_VALUE. Functions and libcalls have the same
1586 m32c_function_value (tree valtype
, tree func ATTRIBUTE_UNUSED
)
1588 /* return reg or parallel */
1589 enum machine_mode mode
= TYPE_MODE (valtype
);
1590 return m32c_libcall_value (mode
);
1593 /* How Large Values Are Returned */
1595 /* We return structures by pushing the address on the stack, even if
1596 we use registers for the first few "real" arguments. */
1597 #undef TARGET_STRUCT_VALUE_RTX
1598 #define TARGET_STRUCT_VALUE_RTX m32c_struct_value_rtx
1600 m32c_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED
,
1601 int incoming ATTRIBUTE_UNUSED
)
1606 /* Function Entry and Exit */
1608 /* Implements EPILOGUE_USES. Interrupts restore all registers. */
1610 m32c_epilogue_uses (int regno ATTRIBUTE_UNUSED
)
1612 if (cfun
->machine
->is_interrupt
)
1617 /* Implementing the Varargs Macros */
1619 #undef TARGET_STRICT_ARGUMENT_NAMING
1620 #define TARGET_STRICT_ARGUMENT_NAMING m32c_strict_argument_naming
1622 m32c_strict_argument_naming (CUMULATIVE_ARGS
* ca ATTRIBUTE_UNUSED
)
1627 /* Trampolines for Nested Functions */
1631 1 0000 75C43412 mov.w #0x1234,a0
1632 2 0004 FC000000 jmp.a label
1635 1 0000 BC563412 mov.l:s #0x123456,a0
1636 2 0004 CC000000 jmp.a label
1639 /* Implements TRAMPOLINE_SIZE. */
1641 m32c_trampoline_size (void)
1643 /* Allocate extra space so we can avoid the messy shifts when we
1644 initialize the trampoline; we just write past the end of the
1646 return TARGET_A16
? 8 : 10;
1649 /* Implements TRAMPOLINE_ALIGNMENT. */
1651 m32c_trampoline_alignment (void)
1656 /* Implements INITIALIZE_TRAMPOLINE. */
1658 m32c_initialize_trampoline (rtx tramp
, rtx function
, rtx chainval
)
1660 #define A0(m,i) gen_rtx_MEM (m, plus_constant (tramp, i))
1663 /* Note: we subtract a "word" because the moves want signed
1664 constants, not unsigned constants. */
1665 emit_move_insn (A0 (HImode
, 0), GEN_INT (0xc475 - 0x10000));
1666 emit_move_insn (A0 (HImode
, 2), chainval
);
1667 emit_move_insn (A0 (QImode
, 4), GEN_INT (0xfc - 0x100));
1668 /* We use 16 bit addresses here, but store the zero to turn it
1669 into a 24 bit offset. */
1670 emit_move_insn (A0 (HImode
, 5), function
);
1671 emit_move_insn (A0 (QImode
, 7), GEN_INT (0x00));
1675 /* Note that the PSI moves actually write 4 bytes. Make sure we
1676 write stuff out in the right order, and leave room for the
1677 extra byte at the end. */
1678 emit_move_insn (A0 (QImode
, 0), GEN_INT (0xbc - 0x100));
1679 emit_move_insn (A0 (PSImode
, 1), chainval
);
1680 emit_move_insn (A0 (QImode
, 4), GEN_INT (0xcc - 0x100));
1681 emit_move_insn (A0 (PSImode
, 5), function
);
1686 /* Addressing Modes */
1688 /* Used by GO_IF_LEGITIMATE_ADDRESS. The r8c/m32c family supports a
1689 wide range of non-orthogonal addressing modes, including the
1690 ability to double-indirect on *some* of them. Not all insns
1691 support all modes, either, but we rely on predicates and
1692 constraints to deal with that. */
1694 m32c_legitimate_address_p (enum machine_mode mode
, rtx x
, int strict
)
1700 /* Wide references to memory will be split after reload, so we must
1701 ensure that all parts of such splits remain legitimate
1703 mode_adjust
= GET_MODE_SIZE (mode
) - 1;
1705 /* allowing PLUS yields mem:HI(plus:SI(mem:SI(plus:SI in m32c_split_move */
1706 if (GET_CODE (x
) == PRE_DEC
1707 || GET_CODE (x
) == POST_INC
|| GET_CODE (x
) == PRE_MODIFY
)
1709 return (GET_CODE (XEXP (x
, 0)) == REG
1710 && REGNO (XEXP (x
, 0)) == SP_REGNO
);
1714 /* This is the double indirection detection, but it currently
1715 doesn't work as cleanly as this code implies, so until we've had
1716 a chance to debug it, leave it disabled. */
1717 if (TARGET_A24
&& GET_CODE (x
) == MEM
&& GET_CODE (XEXP (x
, 0)) != PLUS
)
1720 fprintf (stderr
, "double indirect\n");
1729 /* Most indexable registers can be used without displacements,
1730 although some of them will be emitted with an explicit zero
1731 to please the assembler. */
1732 switch (REGNO (patternr
[0]))
1742 if (IS_PSEUDO (patternr
[0], strict
))
1749 /* This is more interesting, because different base registers
1750 allow for different displacements - both range and signedness
1751 - and it differs from chip series to chip series too. */
1752 int rn
= REGNO (patternr
[1]);
1753 HOST_WIDE_INT offs
= INTVAL (patternr
[2]);
1759 /* The syntax only allows positive offsets, but when the
1760 offsets span the entire memory range, we can simulate
1761 negative offsets by wrapping. */
1763 return (offs
>= -65536 && offs
<= 65535 - mode_adjust
);
1765 return (offs
>= 0 && offs
<= 65535 - mode_adjust
);
1767 return (offs
>= -16777216 && offs
<= 16777215);
1771 return (offs
>= -128 && offs
<= 127 - mode_adjust
);
1772 return (offs
>= -65536 && offs
<= 65535 - mode_adjust
);
1775 return (offs
>= -128 && offs
<= 127 - mode_adjust
);
1778 if (IS_PSEUDO (patternr
[1], strict
))
1783 if (RTX_IS ("+rs") || RTX_IS ("+r+si"))
1785 rtx reg
= patternr
[1];
1787 /* We don't know where the symbol is, so only allow base
1788 registers which support displacements spanning the whole
1790 switch (REGNO (reg
))
1794 /* $sb needs a secondary reload, but since it's involved in
1795 memory address reloads too, we don't deal with it very
1797 /* case SB_REGNO: */
1800 if (IS_PSEUDO (reg
, strict
))
1808 /* Implements REG_OK_FOR_BASE_P. */
1810 m32c_reg_ok_for_base_p (rtx x
, int strict
)
1812 if (GET_CODE (x
) != REG
)
1823 if (IS_PSEUDO (x
, strict
))
1829 /* We have three choices for choosing fb->aN offsets. If we choose -128,
1830 we need one MOVA -128[fb],aN opcode and 16 bit aN displacements,
1832 EB 4B FF mova -128[$fb],$a0
1833 D8 0C FF FF mov.w:Q #0,-1[$a0]
1835 Alternately, we subtract the frame size, and hopefully use 8 bit aN
1838 77 54 00 01 sub #256,$a0
1839 D8 08 01 mov.w:Q #0,1[$a0]
1841 If we don't offset (i.e. offset by zero), we end up with:
1843 D8 0C 00 FF mov.w:Q #0,-256[$a0]
1845 We have to subtract *something* so that we have a PLUS rtx to mark
1846 that we've done this reload. The -128 offset will never result in
1847 an 8 bit aN offset, and the payoff for the second case is five
1848 loads *if* those loads are within 256 bytes of the other end of the
1849 frame, so the third case seems best. Note that we subtract the
1850 zero, but detect that in the addhi3 pattern. */
1852 #define BIG_FB_ADJ 0
1854 /* Implements LEGITIMIZE_ADDRESS. The only address we really have to
1855 worry about is frame base offsets, as $fb has a limited
1856 displacement range. We deal with this by attempting to reload $fb
1857 itself into an address register; that seems to result in the best
1860 m32c_legitimize_address (rtx
* x ATTRIBUTE_UNUSED
,
1861 rtx oldx ATTRIBUTE_UNUSED
,
1862 enum machine_mode mode ATTRIBUTE_UNUSED
)
1865 fprintf (stderr
, "m32c_legitimize_address for mode %s\n", mode_name
[mode
]);
1867 fprintf (stderr
, "\n");
1870 if (GET_CODE (*x
) == PLUS
1871 && GET_CODE (XEXP (*x
, 0)) == REG
1872 && REGNO (XEXP (*x
, 0)) == FB_REGNO
1873 && GET_CODE (XEXP (*x
, 1)) == CONST_INT
1874 && (INTVAL (XEXP (*x
, 1)) < -128
1875 || INTVAL (XEXP (*x
, 1)) > (128 - GET_MODE_SIZE (mode
))))
1877 /* reload FB to A_REGS */
1878 rtx temp
= gen_reg_rtx (Pmode
);
1880 emit_insn (gen_rtx_SET (VOIDmode
, temp
, XEXP (*x
, 0)));
1881 XEXP (*x
, 0) = temp
;
1888 /* Implements LEGITIMIZE_RELOAD_ADDRESS. See comment above. */
1890 m32c_legitimize_reload_address (rtx
* x
,
1891 enum machine_mode mode
,
1893 int type
, int ind_levels ATTRIBUTE_UNUSED
)
1896 fprintf (stderr
, "\nm32c_legitimize_reload_address for mode %s\n",
1901 /* At one point, this function tried to get $fb copied to an address
1902 register, which in theory would maximize sharing, but gcc was
1903 *also* still trying to reload the whole address, and we'd run out
1904 of address registers. So we let gcc do the naive (but safe)
1905 reload instead, when the above function doesn't handle it for
1908 The code below is a second attempt at the above. */
1910 if (GET_CODE (*x
) == PLUS
1911 && GET_CODE (XEXP (*x
, 0)) == REG
1912 && REGNO (XEXP (*x
, 0)) == FB_REGNO
1913 && GET_CODE (XEXP (*x
, 1)) == CONST_INT
1914 && (INTVAL (XEXP (*x
, 1)) < -128
1915 || INTVAL (XEXP (*x
, 1)) > (128 - GET_MODE_SIZE (mode
))))
1918 int offset
= INTVAL (XEXP (*x
, 1));
1919 int adjustment
= -BIG_FB_ADJ
;
1921 sum
= gen_rtx_PLUS (Pmode
, XEXP (*x
, 0),
1922 GEN_INT (adjustment
));
1923 *x
= gen_rtx_PLUS (Pmode
, sum
, GEN_INT (offset
- adjustment
));
1924 if (type
== RELOAD_OTHER
)
1925 type
= RELOAD_FOR_OTHER_ADDRESS
;
1926 push_reload (sum
, NULL_RTX
, &XEXP (*x
, 0), NULL
,
1927 A_REGS
, Pmode
, VOIDmode
, 0, 0, opnum
,
1932 if (GET_CODE (*x
) == PLUS
1933 && GET_CODE (XEXP (*x
, 0)) == PLUS
1934 && GET_CODE (XEXP (XEXP (*x
, 0), 0)) == REG
1935 && REGNO (XEXP (XEXP (*x
, 0), 0)) == FB_REGNO
1936 && GET_CODE (XEXP (XEXP (*x
, 0), 1)) == CONST_INT
1937 && GET_CODE (XEXP (*x
, 1)) == CONST_INT
1940 if (type
== RELOAD_OTHER
)
1941 type
= RELOAD_FOR_OTHER_ADDRESS
;
1942 push_reload (XEXP (*x
, 0), NULL_RTX
, &XEXP (*x
, 0), NULL
,
1943 A_REGS
, Pmode
, VOIDmode
, 0, 0, opnum
,
1951 /* Used in GO_IF_MODE_DEPENDENT_ADDRESS. */
1953 m32c_mode_dependent_address (rtx addr
)
1955 if (GET_CODE (addr
) == POST_INC
|| GET_CODE (addr
) == PRE_DEC
)
1960 /* Implements LEGITIMATE_CONSTANT_P. We split large constants anyway,
1961 so we can allow anything. */
1963 m32c_legitimate_constant_p (rtx x ATTRIBUTE_UNUSED
)
1969 /* Condition Code Status */
1971 #undef TARGET_FIXED_CONDITION_CODE_REGS
1972 #define TARGET_FIXED_CONDITION_CODE_REGS m32c_fixed_condition_code_regs
1974 m32c_fixed_condition_code_regs (unsigned int *p1
, unsigned int *p2
)
1977 *p2
= INVALID_REGNUM
;
1981 /* Describing Relative Costs of Operations */
1983 /* Implements REGISTER_MOVE_COST. We make impossible moves
1984 prohibitively expensive, like trying to put QIs in r2/r3 (there are
1985 no opcodes to do that). We also discourage use of mem* registers
1986 since they're really memory. */
1988 m32c_register_move_cost (enum machine_mode mode
, int from
, int to
)
1990 int cost
= COSTS_N_INSNS (3);
1991 int cc
= class_contents
[from
][0] | class_contents
[to
][0];
1992 /* FIXME: pick real values, but not 2 for now. */
1993 if (mode
== QImode
&& (cc
& class_contents
[R23_REGS
][0]))
1995 if (!(cc
& ~class_contents
[R23_REGS
][0]))
1996 cost
= COSTS_N_INSNS (1000);
1998 cost
= COSTS_N_INSNS (80);
2001 if (!class_can_hold_mode (from
, mode
) || !class_can_hold_mode (to
, mode
))
2002 cost
= COSTS_N_INSNS (1000);
2004 if (classes_intersect (from
, CR_REGS
))
2005 cost
+= COSTS_N_INSNS (5);
2007 if (classes_intersect (to
, CR_REGS
))
2008 cost
+= COSTS_N_INSNS (5);
2010 if (from
== MEM_REGS
|| to
== MEM_REGS
)
2011 cost
+= COSTS_N_INSNS (50);
2012 else if (classes_intersect (from
, MEM_REGS
)
2013 || classes_intersect (to
, MEM_REGS
))
2014 cost
+= COSTS_N_INSNS (10);
2017 fprintf (stderr
, "register_move_cost %s from %s to %s = %d\n",
2018 mode_name
[mode
], class_names
[from
], class_names
[to
], cost
);
2023 /* Implements MEMORY_MOVE_COST. */
2025 m32c_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED
,
2026 int reg_class ATTRIBUTE_UNUSED
,
2027 int in ATTRIBUTE_UNUSED
)
2029 /* FIXME: pick real values. */
2030 return COSTS_N_INSNS (10);
2033 /* Defining the Output Assembler Language */
2035 /* The Overall Framework of an Assembler File */
2037 #undef TARGET_HAVE_NAMED_SECTIONS
2038 #define TARGET_HAVE_NAMED_SECTIONS true
2040 /* Output of Data */
2042 /* We may have 24 bit sizes, which is the native address size.
2043 Currently unused, but provided for completeness. */
2044 #undef TARGET_ASM_INTEGER
2045 #define TARGET_ASM_INTEGER m32c_asm_integer
2047 m32c_asm_integer (rtx x
, unsigned int size
, int aligned_p
)
2052 fprintf (asm_out_file
, "\t.3byte\t");
2053 output_addr_const (asm_out_file
, x
);
2054 fputc ('\n', asm_out_file
);
2057 if (GET_CODE (x
) == SYMBOL_REF
)
2059 fprintf (asm_out_file
, "\t.long\t");
2060 output_addr_const (asm_out_file
, x
);
2061 fputc ('\n', asm_out_file
);
2066 return default_assemble_integer (x
, size
, aligned_p
);
2069 /* Output of Assembler Instructions */
2071 /* We use a lookup table because the addressing modes are non-orthogonal. */
2076 char const *pattern
;
2079 const conversions
[] = {
2082 { 0, "mr", "z[1]" },
2083 { 0, "m+ri", "3[2]" },
2084 { 0, "m+rs", "3[2]" },
2085 { 0, "m+r+si", "4+5[2]" },
2088 { 0, "m+si", "2+3" },
2090 { 0, "mmr", "[z[2]]" },
2091 { 0, "mm+ri", "[4[3]]" },
2092 { 0, "mm+rs", "[4[3]]" },
2093 { 0, "mm+r+si", "[5+6[3]]" },
2094 { 0, "mms", "[[2]]" },
2095 { 0, "mmi", "[[2]]" },
2096 { 0, "mm+si", "[4[3]]" },
2100 { 0, "+si", "#1+2" },
2106 { 'd', "+si", "1+2" },
2109 { 'D', "+si", "1+2" },
2119 /* This is in order according to the bitfield that pushm/popm use. */
2120 static char const *pushm_regs
[] = {
2121 "fb", "sb", "a1", "a0", "r3", "r2", "r1", "r0"
2124 /* Implements PRINT_OPERAND. */
2126 m32c_print_operand (FILE * file
, rtx x
, int code
)
2131 int unsigned_const
= 0;
2133 /* Multiplies; constants are converted to sign-extended format but
2134 we need unsigned, so 'u' and 'U' tell us what size unsigned we
2146 /* This one is only for debugging; you can put it in a pattern to
2147 force this error. */
2150 fprintf (stderr
, "dj: unreviewed pattern:");
2151 if (current_output_insn
)
2152 debug_rtx (current_output_insn
);
2155 /* PSImode operations are either .w or .l depending on the target. */
2159 fprintf (file
, "w");
2161 fprintf (file
, "l");
2164 /* Inverted conditionals. */
2167 switch (GET_CODE (x
))
2173 fputs ("gtu", file
);
2179 fputs ("geu", file
);
2185 fputs ("leu", file
);
2191 fputs ("ltu", file
);
2204 /* Regular conditionals. */
2207 switch (GET_CODE (x
))
2213 fputs ("leu", file
);
2219 fputs ("ltu", file
);
2225 fputs ("gtu", file
);
2231 fputs ("geu", file
);
2244 /* Used in negsi2 to do HImode ops on the two parts of an SImode
2246 if (code
== 'h' && GET_MODE (x
) == SImode
)
2248 x
= m32c_subreg (HImode
, x
, SImode
, 0);
2251 if (code
== 'H' && GET_MODE (x
) == SImode
)
2253 x
= m32c_subreg (HImode
, x
, SImode
, 2);
2256 /* 'x' and 'X' need to be ignored for non-immediates. */
2257 if ((code
== 'x' || code
== 'X') && GET_CODE (x
) != CONST_INT
)
2261 for (i
= 0; conversions
[i
].pattern
; i
++)
2262 if (conversions
[i
].code
== code
2263 && streq (conversions
[i
].pattern
, pattern
))
2265 for (j
= 0; conversions
[i
].format
[j
]; j
++)
2266 /* backslash quotes the next character in the output pattern. */
2267 if (conversions
[i
].format
[j
] == '\\')
2269 fputc (conversions
[i
].format
[j
+ 1], file
);
2272 /* Digits in the output pattern indicate that the
2273 corresponding RTX is to be output at that point. */
2274 else if (ISDIGIT (conversions
[i
].format
[j
]))
2276 rtx r
= patternr
[conversions
[i
].format
[j
] - '0'];
2277 switch (GET_CODE (r
))
2280 fprintf (file
, "%s",
2281 reg_name_with_mode (REGNO (r
), GET_MODE (r
)));
2288 fprintf (file
, "%d", (int) exact_log2 (INTVAL (r
)));
2291 /* Unsigned byte. */
2292 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
2296 /* Unsigned word. */
2297 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
2298 INTVAL (r
) & 0xffff);
2301 /* pushm and popm encode a register set into a single byte. */
2303 for (b
= 7; b
>= 0; b
--)
2304 if (INTVAL (r
) & (1 << b
))
2306 fprintf (file
, "%s%s", comma
, pushm_regs
[b
]);
2311 /* "Minus". Output -X */
2312 ival
= (-INTVAL (r
) & 0xffff);
2314 ival
= ival
- 0x10000;
2315 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, ival
);
2319 if (conversions
[i
].format
[j
+ 1] == '[' && ival
< 0)
2321 /* We can simulate negative displacements by
2322 taking advantage of address space
2323 wrapping when the offset can span the
2324 entire address range. */
2326 patternr
[conversions
[i
].format
[j
+ 2] - '0'];
2327 if (GET_CODE (base
) == REG
)
2328 switch (REGNO (base
))
2333 ival
= 0x1000000 + ival
;
2335 ival
= 0x10000 + ival
;
2339 ival
= 0x10000 + ival
;
2343 else if (code
== 'd' && ival
< 0 && j
== 0)
2344 /* The "mova" opcode is used to do addition by
2345 computing displacements, but again, we need
2346 displacements to be unsigned *if* they're
2347 the only component of the displacement
2348 (i.e. no "symbol-4" type displacement). */
2349 ival
= (TARGET_A24
? 0x1000000 : 0x10000) + ival
;
2351 if (conversions
[i
].format
[j
] == '0')
2353 /* More conversions to unsigned. */
2354 if (unsigned_const
== 2)
2356 if (unsigned_const
== 1)
2359 if (streq (conversions
[i
].pattern
, "mi")
2360 || streq (conversions
[i
].pattern
, "mmi"))
2362 /* Integers used as addresses are unsigned. */
2363 ival
&= (TARGET_A24
? 0xffffff : 0xffff);
2365 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, ival
);
2370 /* We don't have const_double constants. If it
2371 happens, make it obvious. */
2372 fprintf (file
, "[const_double 0x%lx]",
2373 (unsigned long) CONST_DOUBLE_HIGH (r
));
2376 assemble_name (file
, XSTR (r
, 0));
2379 output_asm_label (r
);
2382 fprintf (stderr
, "don't know how to print this operand:");
2389 if (conversions
[i
].format
[j
] == 'z')
2391 /* Some addressing modes *must* have a displacement,
2392 so insert a zero here if needed. */
2394 for (k
= j
+ 1; conversions
[i
].format
[k
]; k
++)
2395 if (ISDIGIT (conversions
[i
].format
[k
]))
2397 rtx reg
= patternr
[conversions
[i
].format
[k
] - '0'];
2398 if (GET_CODE (reg
) == REG
2399 && (REGNO (reg
) == SB_REGNO
2400 || REGNO (reg
) == FB_REGNO
2401 || REGNO (reg
) == SP_REGNO
))
2406 /* Signed displacements off symbols need to have signs
2408 if (conversions
[i
].format
[j
] == '+'
2409 && (!code
|| code
== 'I')
2410 && ISDIGIT (conversions
[i
].format
[j
+ 1])
2411 && GET_CODE (patternr
[conversions
[i
].format
[j
+ 1] - '0'])
2413 && INTVAL (patternr
[conversions
[i
].format
[j
+ 1] - '0']) <
2416 fputc (conversions
[i
].format
[j
], file
);
2420 if (!conversions
[i
].pattern
)
2422 fprintf (stderr
, "unconvertible operand %c `%s'", code
? code
: '-',
2425 fprintf (file
, "[%c.%s]", code
? code
: '-', pattern
);
2431 /* Implements PRINT_OPERAND_PUNCT_VALID_P. See m32c_print_operand
2432 above for descriptions of what these do. */
2434 m32c_print_operand_punct_valid_p (int c
)
2436 if (c
== '&' || c
== '!')
2441 /* Implements PRINT_OPERAND_ADDRESS. Nothing unusual here. */
2443 m32c_print_operand_address (FILE * stream
, rtx address
)
2445 gcc_assert (GET_CODE (address
) == MEM
);
2446 m32c_print_operand (stream
, XEXP (address
, 0), 0);
2449 /* Implements ASM_OUTPUT_REG_PUSH. Control registers are pushed
2450 differently than general registers. */
2452 m32c_output_reg_push (FILE * s
, int regno
)
2454 if (regno
== FLG_REGNO
)
2455 fprintf (s
, "\tpushc\tflg\n");
2457 fprintf (s
, "\tpush.%c\t%s\n",
2458 " bwll"[reg_push_size (regno
)], reg_names
[regno
]);
2461 /* Likewise for ASM_OUTPUT_REG_POP. */
2463 m32c_output_reg_pop (FILE * s
, int regno
)
2465 if (regno
== FLG_REGNO
)
2466 fprintf (s
, "\tpopc\tflg\n");
2468 fprintf (s
, "\tpop.%c\t%s\n",
2469 " bwll"[reg_push_size (regno
)], reg_names
[regno
]);
2472 /* Defining target-specific uses of `__attribute__' */
2474 /* Used to simplify the logic below. Find the attributes wherever
2476 #define M32C_ATTRIBUTES(decl) \
2477 (TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
2478 : DECL_ATTRIBUTES (decl) \
2479 ? (DECL_ATTRIBUTES (decl)) \
2480 : TYPE_ATTRIBUTES (TREE_TYPE (decl))
2482 /* Returns TRUE if the given tree has the "interrupt" attribute. */
2484 interrupt_p (tree node ATTRIBUTE_UNUSED
)
2486 tree list
= M32C_ATTRIBUTES (node
);
2489 if (is_attribute_p ("interrupt", TREE_PURPOSE (list
)))
2491 list
= TREE_CHAIN (list
);
2497 interrupt_handler (tree
* node ATTRIBUTE_UNUSED
,
2498 tree name ATTRIBUTE_UNUSED
,
2499 tree args ATTRIBUTE_UNUSED
,
2500 int flags ATTRIBUTE_UNUSED
,
2501 bool * no_add_attrs ATTRIBUTE_UNUSED
)
2506 #undef TARGET_ATTRIBUTE_TABLE
2507 #define TARGET_ATTRIBUTE_TABLE m32c_attribute_table
2508 static const struct attribute_spec m32c_attribute_table
[] = {
2509 {"interrupt", 0, 0, false, false, false, interrupt_handler
},
2510 {0, 0, 0, 0, 0, 0, 0}
2513 #undef TARGET_COMP_TYPE_ATTRIBUTES
2514 #define TARGET_COMP_TYPE_ATTRIBUTES m32c_comp_type_attributes
2516 m32c_comp_type_attributes (tree type1 ATTRIBUTE_UNUSED
,
2517 tree type2 ATTRIBUTE_UNUSED
)
2519 /* 0=incompatible 1=compatible 2=warning */
2523 #undef TARGET_INSERT_ATTRIBUTES
2524 #define TARGET_INSERT_ATTRIBUTES m32c_insert_attributes
2526 m32c_insert_attributes (tree node ATTRIBUTE_UNUSED
,
2527 tree
* attr_ptr ATTRIBUTE_UNUSED
)
2529 /* Nothing to do here. */
2534 /* Returns TRUE if we support a move between the first two operands.
2535 At the moment, we just want to discourage mem to mem moves until
2536 after reload, because reload has a hard time with our limited
2537 number of address registers, and we can get into a situation where
2538 we need three of them when we only have two. */
2540 m32c_mov_ok (rtx
* operands
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2542 rtx op0
= operands
[0];
2543 rtx op1
= operands
[1];
2548 #define DEBUG_MOV_OK 0
2550 fprintf (stderr
, "m32c_mov_ok %s\n", mode_name
[mode
]);
2555 if (GET_CODE (op0
) == SUBREG
)
2556 op0
= XEXP (op0
, 0);
2557 if (GET_CODE (op1
) == SUBREG
)
2558 op1
= XEXP (op1
, 0);
2560 if (GET_CODE (op0
) == MEM
2561 && GET_CODE (op1
) == MEM
2562 && ! reload_completed
)
2565 fprintf (stderr
, " - no, mem to mem\n");
2571 fprintf (stderr
, " - ok\n");
2578 /* Subregs are non-orthogonal for us, because our registers are all
2581 m32c_subreg (enum machine_mode outer
,
2582 rtx x
, enum machine_mode inner
, int byte
)
2586 /* Converting MEMs to different types that are the same size, we
2587 just rewrite them. */
2588 if (GET_CODE (x
) == SUBREG
2589 && SUBREG_BYTE (x
) == 0
2590 && GET_CODE (SUBREG_REG (x
)) == MEM
2591 && (GET_MODE_SIZE (GET_MODE (x
))
2592 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
2595 x
= gen_rtx_MEM (GET_MODE (x
), XEXP (SUBREG_REG (x
), 0));
2596 MEM_COPY_ATTRIBUTES (x
, SUBREG_REG (oldx
));
2599 /* Push/pop get done as smaller push/pops. */
2600 if (GET_CODE (x
) == MEM
2601 && (GET_CODE (XEXP (x
, 0)) == PRE_DEC
2602 || GET_CODE (XEXP (x
, 0)) == POST_INC
))
2603 return gen_rtx_MEM (outer
, XEXP (x
, 0));
2604 if (GET_CODE (x
) == SUBREG
2605 && GET_CODE (XEXP (x
, 0)) == MEM
2606 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PRE_DEC
2607 || GET_CODE (XEXP (XEXP (x
, 0), 0)) == POST_INC
))
2608 return gen_rtx_MEM (outer
, XEXP (XEXP (x
, 0), 0));
2610 if (GET_CODE (x
) != REG
)
2611 return simplify_gen_subreg (outer
, x
, inner
, byte
);
2614 if (r
>= FIRST_PSEUDO_REGISTER
|| r
== AP_REGNO
)
2615 return simplify_gen_subreg (outer
, x
, inner
, byte
);
2617 if (IS_MEM_REGNO (r
))
2618 return simplify_gen_subreg (outer
, x
, inner
, byte
);
2620 /* This is where the complexities of our register layout are
2624 else if (outer
== HImode
)
2626 if (r
== R0_REGNO
&& byte
== 2)
2628 else if (r
== R0_REGNO
&& byte
== 4)
2630 else if (r
== R0_REGNO
&& byte
== 6)
2632 else if (r
== R1_REGNO
&& byte
== 2)
2634 else if (r
== A0_REGNO
&& byte
== 2)
2637 else if (outer
== SImode
)
2639 if (r
== R0_REGNO
&& byte
== 0)
2641 else if (r
== R0_REGNO
&& byte
== 4)
2646 fprintf (stderr
, "m32c_subreg %s %s %d\n",
2647 mode_name
[outer
], mode_name
[inner
], byte
);
2651 return gen_rtx_REG (outer
, nr
);
2654 /* Used to emit move instructions. We split some moves,
2655 and avoid mem-mem moves. */
2657 m32c_prepare_move (rtx
* operands
, enum machine_mode mode
)
2659 if (TARGET_A16
&& mode
== PSImode
)
2660 return m32c_split_move (operands
, mode
, 1);
2661 if ((GET_CODE (operands
[0]) == MEM
)
2662 && (GET_CODE (XEXP (operands
[0], 0)) == PRE_MODIFY
))
2664 rtx pmv
= XEXP (operands
[0], 0);
2665 rtx dest_reg
= XEXP (pmv
, 0);
2666 rtx dest_mod
= XEXP (pmv
, 1);
2668 emit_insn (gen_rtx_SET (Pmode
, dest_reg
, dest_mod
));
2669 operands
[0] = gen_rtx_MEM (mode
, dest_reg
);
2671 if (!no_new_pseudos
&& MEM_P (operands
[0]) && MEM_P (operands
[1]))
2672 operands
[1] = copy_to_mode_reg (mode
, operands
[1]);
2676 #define DEBUG_SPLIT 0
2678 /* Returns TRUE if the given PSImode move should be split. We split
2679 for all r8c/m16c moves, since it doesn't support them, and for
2680 POP.L as we can only *push* SImode. */
2682 m32c_split_psi_p (rtx
* operands
)
2685 fprintf (stderr
, "\nm32c_split_psi_p\n");
2686 debug_rtx (operands
[0]);
2687 debug_rtx (operands
[1]);
2692 fprintf (stderr
, "yes, A16\n");
2696 if (GET_CODE (operands
[1]) == MEM
2697 && GET_CODE (XEXP (operands
[1], 0)) == POST_INC
)
2700 fprintf (stderr
, "yes, pop.l\n");
2705 fprintf (stderr
, "no, default\n");
2710 /* Split the given move. SPLIT_ALL is 0 if splitting is optional
2711 (define_expand), 1 if it is not optional (define_insn_and_split),
2712 and 3 for define_split (alternate api). */
2714 m32c_split_move (rtx
* operands
, enum machine_mode mode
, int split_all
)
2717 int parts
, si
, di
, rev
= 0;
2718 int rv
= 0, opi
= 2;
2719 enum machine_mode submode
= HImode
;
2720 rtx
*ops
, local_ops
[10];
2722 /* define_split modifies the existing operands, but the other two
2723 emit new insns. OPS is where we store the operand pairs, which
2734 /* Before splitting mem-mem moves, force one operand into a
2736 if (!no_new_pseudos
&& MEM_P (operands
[0]) && MEM_P (operands
[1]))
2739 fprintf (stderr
, "force_reg...\n");
2740 debug_rtx (operands
[1]);
2742 operands
[1] = force_reg (mode
, operands
[1]);
2744 debug_rtx (operands
[1]);
2751 fprintf (stderr
, "\nsplit_move %d all=%d\n", no_new_pseudos
, split_all
);
2752 debug_rtx (operands
[0]);
2753 debug_rtx (operands
[1]);
2756 /* Note that split_all is not used to select the api after this
2757 point, so it's safe to set it to 3 even with define_insn. */
2758 /* None of the chips can move SI operands to sp-relative addresses,
2759 so we always split those. */
2760 if (m32c_extra_constraint_p (operands
[0], 'S', "Ss"))
2763 /* We don't need to split these. */
2766 && (mode
== SImode
|| mode
== PSImode
)
2767 && !(GET_CODE (operands
[1]) == MEM
2768 && GET_CODE (XEXP (operands
[1], 0)) == POST_INC
))
2771 /* First, enumerate the subregs we'll be dealing with. */
2772 for (si
= 0; si
< parts
; si
++)
2775 m32c_subreg (submode
, operands
[0], mode
,
2776 si
* GET_MODE_SIZE (submode
));
2778 m32c_subreg (submode
, operands
[1], mode
,
2779 si
* GET_MODE_SIZE (submode
));
2782 /* Split pushes by emitting a sequence of smaller pushes. */
2783 if (GET_CODE (d
[0]) == MEM
&& GET_CODE (XEXP (d
[0], 0)) == PRE_DEC
)
2785 for (si
= parts
- 1; si
>= 0; si
--)
2787 ops
[opi
++] = gen_rtx_MEM (submode
,
2788 gen_rtx_PRE_DEC (Pmode
,
2796 /* Likewise for pops. */
2797 else if (GET_CODE (s
[0]) == MEM
&& GET_CODE (XEXP (s
[0], 0)) == POST_INC
)
2799 for (di
= 0; di
< parts
; di
++)
2802 ops
[opi
++] = gen_rtx_MEM (submode
,
2803 gen_rtx_POST_INC (Pmode
,
2811 /* if d[di] == s[si] for any di < si, we'll early clobber. */
2812 for (di
= 0; di
< parts
- 1; di
++)
2813 for (si
= di
+ 1; si
< parts
; si
++)
2814 if (reg_mentioned_p (d
[di
], s
[si
]))
2818 for (si
= 0; si
< parts
; si
++)
2824 for (si
= parts
- 1; si
>= 0; si
--)
2831 /* Now emit any moves we may have accumulated. */
2832 if (rv
&& split_all
!= 3)
2835 for (i
= 2; i
< opi
; i
+= 2)
2836 emit_move_insn (ops
[i
], ops
[i
+ 1]);
2841 typedef rtx (*shift_gen_func
)(rtx
, rtx
, rtx
);
2843 static shift_gen_func
2844 shift_gen_func_for (int mode
, int code
)
2846 #define GFF(m,c,f) if (mode == m && code == c) return f
2847 GFF(QImode
, ASHIFT
, gen_ashlqi3_i
);
2848 GFF(QImode
, ASHIFTRT
, gen_ashrqi3_i
);
2849 GFF(QImode
, LSHIFTRT
, gen_lshrqi3_i
);
2850 GFF(HImode
, ASHIFT
, gen_ashlhi3_i
);
2851 GFF(HImode
, ASHIFTRT
, gen_ashrhi3_i
);
2852 GFF(HImode
, LSHIFTRT
, gen_lshrhi3_i
);
2853 GFF(PSImode
, ASHIFT
, gen_ashlpsi3_i
);
2854 GFF(PSImode
, ASHIFTRT
, gen_ashrpsi3_i
);
2855 GFF(PSImode
, LSHIFTRT
, gen_lshrpsi3_i
);
2856 GFF(SImode
, ASHIFT
, TARGET_A16
? gen_ashlsi3_16
: gen_ashlsi3_24
);
2857 GFF(SImode
, ASHIFTRT
, TARGET_A16
? gen_ashrsi3_16
: gen_ashrsi3_24
);
2858 GFF(SImode
, LSHIFTRT
, TARGET_A16
? gen_lshrsi3_16
: gen_lshrsi3_24
);
2862 /* The m32c only has one shift, but it takes a signed count. GCC
2863 doesn't want this, so we fake it by negating any shift count when
2864 we're pretending to shift the other way. */
2866 m32c_prepare_shift (rtx
* operands
, int scale
, int shift_code
)
2868 enum machine_mode mode
= GET_MODE (operands
[0]);
2869 shift_gen_func func
= shift_gen_func_for (mode
, shift_code
);
2872 if (GET_CODE (operands
[2]) == CONST_INT
)
2874 int maxc
= TARGET_A24
&& (mode
== PSImode
|| mode
== SImode
) ? 32 : 8;
2875 int count
= INTVAL (operands
[2]) * scale
;
2877 while (count
> maxc
)
2879 temp
= gen_reg_rtx (mode
);
2880 emit_insn (func (temp
, operands
[1], GEN_INT (maxc
)));
2884 while (count
< -maxc
)
2886 temp
= gen_reg_rtx (mode
);
2887 emit_insn (func (temp
, operands
[1], GEN_INT (-maxc
)));
2891 emit_insn (func (operands
[0], operands
[1], GEN_INT (count
)));
2895 temp
= gen_reg_rtx (QImode
);
2897 /* The pattern has a NEG that corresponds to this. */
2898 emit_move_insn (temp
, gen_rtx_NEG (QImode
, operands
[2]));
2899 else if (TARGET_A16
&& mode
== SImode
)
2900 /* We do this because the code below may modify this, we don't
2901 want to modify the origin of this value. */
2902 emit_move_insn (temp
, operands
[2]);
2904 /* We'll only use it for the shift, no point emitting a move. */
2908 if (TARGET_A16
&& mode
== SImode
)
2910 /* The m16c has a limit of -16..16 for SI shifts, even when the
2911 shift count is in a register. Since there are so many targets
2912 of these shifts, it's better to expand the RTL here than to
2913 call a helper function.
2915 The resulting code looks something like this:
2927 We take advantage of the fact that "negative" shifts are
2928 undefined to skip one of the comparisons. */
2931 rtx label
, lref
, insn
;
2934 label
= gen_label_rtx ();
2935 lref
= gen_rtx_LABEL_REF (VOIDmode
, label
);
2936 LABEL_NUSES (label
) ++;
2938 if (shift_code
== ASHIFT
)
2940 /* This is a left shift. We only need check positive counts. */
2941 emit_jump_insn (gen_cbranchqi4 (gen_rtx_LE (VOIDmode
, 0, 0),
2942 count
, GEN_INT (16), label
));
2943 emit_insn (func (operands
[1], operands
[1], GEN_INT (8)));
2944 emit_insn (func (operands
[1], operands
[1], GEN_INT (8)));
2945 insn
= emit_insn (gen_addqi3 (count
, count
, GEN_INT (-16)));
2946 emit_label_after (label
, insn
);
2950 /* This is a right shift. We only need check negative counts. */
2951 emit_jump_insn (gen_cbranchqi4 (gen_rtx_GE (VOIDmode
, 0, 0),
2952 count
, GEN_INT (-16), label
));
2953 emit_insn (func (operands
[1], operands
[1], GEN_INT (-8)));
2954 emit_insn (func (operands
[1], operands
[1], GEN_INT (-8)));
2955 insn
= emit_insn (gen_addqi3 (count
, count
, GEN_INT (16)));
2956 emit_label_after (label
, insn
);
2965 /* The m32c has a limited range of operations that work on PSImode
2966 values; we have to expand to SI, do the math, and truncate back to
2967 PSI. Yes, this is expensive, but hopefully gcc will learn to avoid
2970 m32c_expand_neg_mulpsi3 (rtx
* operands
)
2972 /* operands: a = b * i */
2973 rtx temp1
; /* b as SI */
2974 rtx temp2
; /* -b as SI */
2975 rtx temp3
; /* -b as PSI */
2978 temp1
= gen_reg_rtx (SImode
);
2979 temp2
= gen_reg_rtx (SImode
);
2980 temp3
= gen_reg_rtx (PSImode
);
2981 scale
= GEN_INT (- INTVAL (operands
[2]));
2983 emit_insn (gen_zero_extendpsisi2 (temp1
, operands
[1]));
2984 emit_insn (gen_negsi2 (temp2
, temp1
));
2985 emit_insn (gen_truncsipsi2 (temp3
, temp2
));
2986 emit_insn (gen_mulpsi3 (operands
[0], temp3
, scale
));
2989 /* Pattern Output Functions */
2991 /* Returns TRUE if the current function is a leaf, and thus we can
2992 determine which registers an interrupt function really needs to
2993 save. The logic below is mostly about finding the insn sequence
2994 that's the function, versus any sequence that might be open for the
2997 m32c_leaf_function_p (void)
2999 rtx saved_first
, saved_last
;
3000 struct sequence_stack
*seq
;
3003 saved_first
= cfun
->emit
->x_first_insn
;
3004 saved_last
= cfun
->emit
->x_last_insn
;
3005 for (seq
= cfun
->emit
->sequence_stack
; seq
&& seq
->next
; seq
= seq
->next
)
3009 cfun
->emit
->x_first_insn
= seq
->first
;
3010 cfun
->emit
->x_last_insn
= seq
->last
;
3013 rv
= leaf_function_p ();
3015 cfun
->emit
->x_first_insn
= saved_first
;
3016 cfun
->emit
->x_last_insn
= saved_last
;
3020 /* Returns TRUE if the current function needs to use the ENTER/EXIT
3021 opcodes. If the function doesn't need the frame base or stack
3022 pointer, it can use the simpler RTS opcode. */
3024 m32c_function_needs_enter (void)
3027 struct sequence_stack
*seq
;
3028 rtx sp
= gen_rtx_REG (Pmode
, SP_REGNO
);
3029 rtx fb
= gen_rtx_REG (Pmode
, FB_REGNO
);
3031 insn
= get_insns ();
3032 for (seq
= cfun
->emit
->sequence_stack
;
3034 insn
= seq
->first
, seq
= seq
->next
);
3038 if (reg_mentioned_p (sp
, insn
))
3040 if (reg_mentioned_p (fb
, insn
))
3042 insn
= NEXT_INSN (insn
);
3047 /* Mark all the subexpressions of the PARALLEL rtx PAR as
3048 frame-related. Return PAR.
3050 dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
3051 PARALLEL rtx other than the first if they do not have the
3052 FRAME_RELATED flag set on them. So this function is handy for
3053 marking up 'enter' instructions. */
3055 m32c_all_frame_related (rtx par
)
3057 int len
= XVECLEN (par
, 0);
3060 for (i
= 0; i
< len
; i
++)
3061 F (XVECEXP (par
, 0, i
));
3066 /* Emits the prologue. See the frame layout comment earlier in this
3067 file. We can reserve up to 256 bytes with the ENTER opcode, beyond
3068 that we manually update sp. */
3070 m32c_emit_prologue (void)
3072 int frame_size
, extra_frame_size
= 0, reg_save_size
;
3073 int complex_prologue
= 0;
3075 cfun
->machine
->is_leaf
= m32c_leaf_function_p ();
3076 if (interrupt_p (cfun
->decl
))
3078 cfun
->machine
->is_interrupt
= 1;
3079 complex_prologue
= 1;
3082 reg_save_size
= m32c_pushm_popm (PP_justcount
);
3084 if (interrupt_p (cfun
->decl
))
3085 emit_insn (gen_pushm (GEN_INT (cfun
->machine
->intr_pushm
)));
3088 m32c_initial_elimination_offset (FB_REGNO
, SP_REGNO
) - reg_save_size
;
3090 && !cfun
->machine
->is_interrupt
3091 && !m32c_function_needs_enter ())
3092 cfun
->machine
->use_rts
= 1;
3094 if (frame_size
> 254)
3096 extra_frame_size
= frame_size
- 254;
3099 if (cfun
->machine
->use_rts
== 0)
3100 F (emit_insn (m32c_all_frame_related
3102 ? gen_prologue_enter_16 (GEN_INT (frame_size
))
3103 : gen_prologue_enter_24 (GEN_INT (frame_size
)))));
3105 if (extra_frame_size
)
3107 complex_prologue
= 1;
3109 F (emit_insn (gen_addhi3 (gen_rtx_REG (HImode
, SP_REGNO
),
3110 gen_rtx_REG (HImode
, SP_REGNO
),
3111 GEN_INT (-extra_frame_size
))));
3113 F (emit_insn (gen_addpsi3 (gen_rtx_REG (PSImode
, SP_REGNO
),
3114 gen_rtx_REG (PSImode
, SP_REGNO
),
3115 GEN_INT (-extra_frame_size
))));
3118 complex_prologue
+= m32c_pushm_popm (PP_pushm
);
3120 /* This just emits a comment into the .s file for debugging. */
3121 if (complex_prologue
)
3122 emit_insn (gen_prologue_end ());
3125 /* Likewise, for the epilogue. The only exception is that, for
3126 interrupts, we must manually unwind the frame as the REIT opcode
3129 m32c_emit_epilogue (void)
3131 /* This just emits a comment into the .s file for debugging. */
3132 if (m32c_pushm_popm (PP_justcount
) > 0 || cfun
->machine
->is_interrupt
)
3133 emit_insn (gen_epilogue_start ());
3135 m32c_pushm_popm (PP_popm
);
3137 if (cfun
->machine
->is_interrupt
)
3139 enum machine_mode spmode
= TARGET_A16
? HImode
: PSImode
;
3141 emit_move_insn (gen_rtx_REG (spmode
, A0_REGNO
),
3142 gen_rtx_REG (spmode
, FP_REGNO
));
3143 emit_move_insn (gen_rtx_REG (spmode
, SP_REGNO
),
3144 gen_rtx_REG (spmode
, A0_REGNO
));
3146 emit_insn (gen_pophi_16 (gen_rtx_REG (HImode
, FP_REGNO
)));
3148 emit_insn (gen_poppsi (gen_rtx_REG (PSImode
, FP_REGNO
)));
3149 emit_insn (gen_popm (GEN_INT (cfun
->machine
->intr_pushm
)));
3150 emit_jump_insn (gen_epilogue_reit (GEN_INT (TARGET_A16
? 4 : 6)));
3152 else if (cfun
->machine
->use_rts
)
3153 emit_jump_insn (gen_epilogue_rts ());
3155 emit_jump_insn (gen_epilogue_exitd (GEN_INT (TARGET_A16
? 2 : 4)));
3160 m32c_emit_eh_epilogue (rtx ret_addr
)
3162 /* R0[R2] has the stack adjustment. R1[R3] has the address to
3163 return to. We have to fudge the stack, pop everything, pop SP
3164 (fudged), and return (fudged). This is actually easier to do in
3165 assembler, so punt to libgcc. */
3166 emit_jump_insn (gen_eh_epilogue (ret_addr
, cfun
->machine
->eh_stack_adjust
));
3167 /* emit_insn (gen_rtx_CLOBBER (HImode, gen_rtx_REG (HImode, R0L_REGNO))); */
3171 /* The Global `targetm' Variable. */
3173 struct gcc_target targetm
= TARGET_INITIALIZER
;
3175 #include "gt-m32c.h"