* tree-ssa-operands.c (get_call_expr_operands): Add VUSE operands for
[official-gcc.git] / gcc / tree-ssa-dce.c
blob111f5400b9f555ce25838897e3d44e6cb4469e8e
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "errors.h"
51 #include "ggc.h"
53 /* These RTL headers are needed for basic-block.h. */
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "hard-reg-set.h"
57 #include "basic-block.h"
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
68 static struct stmt_stats
70 int total;
71 int total_phis;
72 int removed;
73 int removed_phis;
74 } stats;
76 static varray_type worklist;
78 /* Vector indicating an SSA name has already been processed and marked
79 as necessary. */
80 static sbitmap processed;
82 /* Vector indicating that last_stmt if a basic block has already been
83 marked as necessary. */
84 static sbitmap last_stmt_necessary;
86 /* Before we can determine whether a control branch is dead, we need to
87 compute which blocks are control dependent on which edges.
89 We expect each block to be control dependent on very few edges so we
90 use a bitmap for each block recording its edges. An array holds the
91 bitmap. The Ith bit in the bitmap is set if that block is dependent
92 on the Ith edge. */
93 bitmap *control_dependence_map;
95 /* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
96 for which the block with index N is control dependent. */
97 #define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
98 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, CODE)
100 /* Local function prototypes. */
101 static inline void set_control_dependence_map_bit (basic_block, int);
102 static inline void clear_control_dependence_bitmap (basic_block);
103 static void find_all_control_dependences (struct edge_list *);
104 static void find_control_dependence (struct edge_list *, int);
105 static inline basic_block find_pdom (basic_block);
107 static inline void mark_stmt_necessary (tree, bool);
108 static inline void mark_operand_necessary (tree);
110 static void mark_stmt_if_obviously_necessary (tree, bool);
111 static void find_obviously_necessary_stmts (struct edge_list *);
113 static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
114 static void propagate_necessity (struct edge_list *);
116 static void eliminate_unnecessary_stmts (void);
117 static void remove_dead_phis (basic_block);
118 static void remove_dead_stmt (block_stmt_iterator *, basic_block);
120 static void print_stats (void);
121 static void tree_dce_init (bool);
122 static void tree_dce_done (bool);
124 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
125 static inline void
126 set_control_dependence_map_bit (basic_block bb, int edge_index)
128 if (bb == ENTRY_BLOCK_PTR)
129 return;
130 if (bb == EXIT_BLOCK_PTR)
131 abort ();
132 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
135 /* Clear all control dependences for block BB. */
136 static inline
137 void clear_control_dependence_bitmap (basic_block bb)
139 bitmap_clear (control_dependence_map[bb->index]);
142 /* Record all blocks' control dependences on all edges in the edge
143 list EL, ala Morgan, Section 3.6. */
145 static void
146 find_all_control_dependences (struct edge_list *el)
148 int i;
150 for (i = 0; i < NUM_EDGES (el); ++i)
151 find_control_dependence (el, i);
154 /* Determine all blocks' control dependences on the given edge with edge_list
155 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
157 static void
158 find_control_dependence (struct edge_list *el, int edge_index)
160 basic_block current_block;
161 basic_block ending_block;
163 #ifdef ENABLE_CHECKING
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == EXIT_BLOCK_PTR)
165 abort ();
166 #endif
168 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
169 ending_block = ENTRY_BLOCK_PTR->next_bb;
170 else
171 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
173 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
174 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
175 current_block = find_pdom (current_block))
177 edge e = INDEX_EDGE (el, edge_index);
179 /* For abnormal edges, we don't make current_block control
180 dependent because instructions that throw are always necessary
181 anyway. */
182 if (e->flags & EDGE_ABNORMAL)
183 continue;
185 set_control_dependence_map_bit (current_block, edge_index);
189 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
190 This function is necessary because some blocks have negative numbers. */
192 static inline basic_block
193 find_pdom (basic_block block)
195 if (block == ENTRY_BLOCK_PTR)
196 abort ();
197 else if (block == EXIT_BLOCK_PTR)
198 return EXIT_BLOCK_PTR;
199 else
201 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
202 if (! bb)
203 return EXIT_BLOCK_PTR;
204 return bb;
208 #define NECESSARY(stmt) stmt->common.asm_written_flag
210 /* If STMT is not already marked necessary, mark it, and add it to the
211 worklist if ADD_TO_WORKLIST is true. */
212 static inline void
213 mark_stmt_necessary (tree stmt, bool add_to_worklist)
215 #ifdef ENABLE_CHECKING
216 if (stmt == NULL
217 || stmt == error_mark_node
218 || (stmt && DECL_P (stmt)))
219 abort ();
220 #endif
222 if (NECESSARY (stmt))
223 return;
225 if (dump_file && (dump_flags & TDF_DETAILS))
227 fprintf (dump_file, "Marking useful stmt: ");
228 print_generic_stmt (dump_file, stmt, TDF_SLIM);
229 fprintf (dump_file, "\n");
232 NECESSARY (stmt) = 1;
233 if (add_to_worklist)
234 VARRAY_PUSH_TREE (worklist, stmt);
237 /* Mark the statement defining operand OP as necessary. */
239 static inline void
240 mark_operand_necessary (tree op)
242 tree stmt;
243 int ver;
245 #ifdef ENABLE_CHECKING
246 if (op == NULL)
247 abort ();
248 #endif
250 ver = SSA_NAME_VERSION (op);
251 if (TEST_BIT (processed, ver))
252 return;
253 SET_BIT (processed, ver);
255 stmt = SSA_NAME_DEF_STMT (op);
256 #ifdef ENABLE_CHECKING
257 if (stmt == NULL)
258 abort ();
259 #endif
261 if (NECESSARY (stmt)
262 || IS_EMPTY_STMT (stmt))
263 return;
265 NECESSARY (stmt) = 1;
266 VARRAY_PUSH_TREE (worklist, stmt);
270 /* Mark STMT as necessary if it is obviously is. Add it to the worklist if
271 it can make other statements necessary.
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
276 static void
277 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
279 def_optype defs;
280 v_may_def_optype v_may_defs;
281 v_must_def_optype v_must_defs;
282 stmt_ann_t ann;
283 size_t i;
284 tree op;
286 /* Statements that are implicitly live. Most function calls, asm and return
287 statements are required. Labels and BIND_EXPR nodes are kept because
288 they are control flow, and we have no way of knowing whether they can be
289 removed. DCE can eliminate all the other statements in a block, and CFG
290 can then remove the block and labels. */
291 switch (TREE_CODE (stmt))
293 case BIND_EXPR:
294 case LABEL_EXPR:
295 case CASE_LABEL_EXPR:
296 mark_stmt_necessary (stmt, false);
297 return;
299 case ASM_EXPR:
300 case RESX_EXPR:
301 case RETURN_EXPR:
302 mark_stmt_necessary (stmt, true);
303 return;
305 case CALL_EXPR:
306 /* Most, but not all function calls are required. Function calls that
307 produce no result and have no side effects (i.e. const pure
308 functions) are unnecessary. */
309 if (TREE_SIDE_EFFECTS (stmt))
310 mark_stmt_necessary (stmt, true);
311 return;
313 case MODIFY_EXPR:
314 op = get_call_expr_in (stmt);
315 if (op && TREE_SIDE_EFFECTS (op))
317 mark_stmt_necessary (stmt, true);
318 return;
321 /* These values are mildly magic bits of the EH runtime. We can't
322 see the entire lifetime of these values until landing pads are
323 generated. */
324 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
325 || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
327 mark_stmt_necessary (stmt, true);
328 return;
330 break;
332 case GOTO_EXPR:
333 if (! simple_goto_p (stmt))
334 mark_stmt_necessary (stmt, true);
335 return;
337 case COND_EXPR:
338 if (GOTO_DESTINATION (COND_EXPR_THEN (stmt))
339 == GOTO_DESTINATION (COND_EXPR_ELSE (stmt)))
341 /* A COND_EXPR is obviously dead if the target labels are the same.
342 We cannot kill the statement at this point, so to prevent the
343 statement from being marked necessary, we replace the condition
344 with a constant. The stmt is killed later on in cfg_cleanup. */
345 COND_EXPR_COND (stmt) = integer_zero_node;
346 modify_stmt (stmt);
347 return;
349 /* Fall through. */
351 case SWITCH_EXPR:
352 if (! aggressive)
353 mark_stmt_necessary (stmt, true);
354 break;
356 default:
357 break;
360 ann = stmt_ann (stmt);
362 /* If the statement has volatile operands, it needs to be preserved.
363 Same for statements that can alter control flow in unpredictable
364 ways. */
365 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
367 mark_stmt_necessary (stmt, true);
368 return;
371 get_stmt_operands (stmt);
373 defs = DEF_OPS (ann);
374 for (i = 0; i < NUM_DEFS (defs); i++)
376 tree def = DEF_OP (defs, i);
377 if (is_global_var (SSA_NAME_VAR (def)))
379 mark_stmt_necessary (stmt, true);
380 return;
384 /* Check virtual definitions. If we get here, the only virtual
385 definitions we should see are those generated by assignment
386 statements. */
387 v_may_defs = V_MAY_DEF_OPS (ann);
388 v_must_defs = V_MUST_DEF_OPS (ann);
389 if (NUM_V_MAY_DEFS (v_may_defs) > 0 || NUM_V_MUST_DEFS (v_must_defs) > 0)
391 tree lhs;
393 #if defined ENABLE_CHECKING
394 if (TREE_CODE (stmt) != MODIFY_EXPR)
395 abort ();
396 #endif
398 /* Note that we must not check the individual virtual operands
399 here. In particular, if this is an aliased store, we could
400 end up with something like the following (SSA notation
401 redacted for brevity):
403 foo (int *p, int i)
405 int x;
406 p_1 = (i_2 > 3) ? &x : p_1;
408 # x_4 = V_MAY_DEF <x_3>
409 *p_1 = 5;
411 return 2;
414 Notice that the store to '*p_1' should be preserved, if we
415 were to check the virtual definitions in that store, we would
416 not mark it needed. This is because 'x' is not a global
417 variable.
419 Therefore, we check the base address of the LHS. If the
420 address is a pointer, we check if its name tag or type tag is
421 a global variable. Otherwise, we check if the base variable
422 is a global. */
423 lhs = TREE_OPERAND (stmt, 0);
424 if (TREE_CODE_CLASS (TREE_CODE (lhs)) == 'r')
425 lhs = get_base_address (lhs);
427 if (lhs == NULL_TREE)
429 /* If LHS is NULL, it means that we couldn't get the base
430 address of the reference. In which case, we should not
431 remove this store. */
432 mark_stmt_necessary (stmt, true);
434 else if (DECL_P (lhs))
436 /* If the store is to a global symbol, we need to keep it. */
437 if (is_global_var (lhs))
438 mark_stmt_necessary (stmt, true);
440 else if (TREE_CODE (lhs) == INDIRECT_REF)
442 tree ptr = TREE_OPERAND (lhs, 0);
443 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
444 tree nmt = (pi) ? pi->name_mem_tag : NULL_TREE;
445 tree tmt = var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
447 /* If either the name tag or the type tag for PTR is a
448 global variable, then the store is necessary. */
449 if ((nmt && is_global_var (nmt))
450 || (tmt && is_global_var (tmt)))
452 mark_stmt_necessary (stmt, true);
453 return;
456 else
457 abort ();
460 return;
463 /* Find obviously necessary statements. These are things like most function
464 calls, and stores to file level variables.
466 If EL is NULL, control statements are conservatively marked as
467 necessary. Otherwise it contains the list of edges used by control
468 dependence analysis. */
470 static void
471 find_obviously_necessary_stmts (struct edge_list *el)
473 basic_block bb;
474 block_stmt_iterator i;
475 edge e;
477 FOR_EACH_BB (bb)
479 tree phi;
481 /* Check any PHI nodes in the block. */
482 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
484 NECESSARY (phi) = 0;
486 /* PHIs for virtual variables do not directly affect code
487 generation and need not be considered inherently necessary
488 regardless of the bits set in their decl.
490 Thus, we only need to mark PHIs for real variables which
491 need their result preserved as being inherently necessary. */
492 if (is_gimple_reg (PHI_RESULT (phi))
493 && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
494 mark_stmt_necessary (phi, true);
497 /* Check all statements in the block. */
498 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
500 tree stmt = bsi_stmt (i);
501 NECESSARY (stmt) = 0;
502 mark_stmt_if_obviously_necessary (stmt, el != NULL);
505 /* Mark this basic block as `not visited'. A block will be marked
506 visited when the edges that it is control dependent on have been
507 marked. */
508 bb->flags &= ~BB_VISITED;
511 if (el)
513 /* Prevent the loops from being removed. We must keep the infinite loops,
514 and we currently do not have a means to recognize the finite ones. */
515 FOR_EACH_BB (bb)
517 for (e = bb->succ; e; e = e->succ_next)
518 if (e->flags & EDGE_DFS_BACK)
519 mark_control_dependent_edges_necessary (e->dest, el);
524 /* Make corresponding control dependent edges necessary. We only
525 have to do this once for each basic block, so we clear the bitmap
526 after we're done. */
527 static void
528 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
530 int edge_number;
532 #ifdef ENABLE_CHECKING
533 if (bb == EXIT_BLOCK_PTR)
534 abort ();
535 #endif
537 if (bb == ENTRY_BLOCK_PTR)
538 return;
540 EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
542 tree t;
543 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
545 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
546 continue;
547 SET_BIT (last_stmt_necessary, cd_bb->index);
549 t = last_stmt (cd_bb);
550 if (t && is_ctrl_stmt (t))
551 mark_stmt_necessary (t, true);
555 /* Propagate necessity using the operands of necessary statements. Process
556 the uses on each statement in the worklist, and add all feeding statements
557 which contribute to the calculation of this value to the worklist.
559 In conservative mode, EL is NULL. */
561 static void
562 propagate_necessity (struct edge_list *el)
564 tree i;
565 bool aggressive = (el ? true : false);
567 if (dump_file && (dump_flags & TDF_DETAILS))
568 fprintf (dump_file, "\nProcessing worklist:\n");
570 while (VARRAY_ACTIVE_SIZE (worklist) > 0)
572 /* Take `i' from worklist. */
573 i = VARRAY_TOP_TREE (worklist);
574 VARRAY_POP (worklist);
576 if (dump_file && (dump_flags & TDF_DETAILS))
578 fprintf (dump_file, "processing: ");
579 print_generic_stmt (dump_file, i, TDF_SLIM);
580 fprintf (dump_file, "\n");
583 if (aggressive)
585 /* Mark the last statements of the basic blocks that the block
586 containing `i' is control dependent on, but only if we haven't
587 already done so. */
588 basic_block bb = bb_for_stmt (i);
589 if (! (bb->flags & BB_VISITED))
591 bb->flags |= BB_VISITED;
592 mark_control_dependent_edges_necessary (bb, el);
596 if (TREE_CODE (i) == PHI_NODE)
598 /* PHI nodes are somewhat special in that each PHI alternative has
599 data and control dependencies. All the statements feeding the
600 PHI node's arguments are always necessary. In aggressive mode,
601 we also consider the control dependent edges leading to the
602 predecessor block associated with each PHI alternative as
603 necessary. */
604 int k;
605 for (k = 0; k < PHI_NUM_ARGS (i); k++)
607 tree arg = PHI_ARG_DEF (i, k);
608 if (TREE_CODE (arg) == SSA_NAME)
609 mark_operand_necessary (arg);
612 if (aggressive)
614 for (k = 0; k < PHI_NUM_ARGS (i); k++)
616 basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
617 if (! (arg_bb->flags & BB_VISITED))
619 arg_bb->flags |= BB_VISITED;
620 mark_control_dependent_edges_necessary (arg_bb, el);
625 else
627 /* Propagate through the operands. Examine all the USE, VUSE and
628 V_MAY_DEF operands in this statement. Mark all the statements
629 which feed this statement's uses as necessary. */
630 vuse_optype vuses;
631 v_may_def_optype v_may_defs;
632 use_optype uses;
633 stmt_ann_t ann;
634 size_t k;
636 get_stmt_operands (i);
637 ann = stmt_ann (i);
639 uses = USE_OPS (ann);
640 for (k = 0; k < NUM_USES (uses); k++)
641 mark_operand_necessary (USE_OP (uses, k));
643 vuses = VUSE_OPS (ann);
644 for (k = 0; k < NUM_VUSES (vuses); k++)
645 mark_operand_necessary (VUSE_OP (vuses, k));
647 /* The operands of V_MAY_DEF expressions are also needed as they
648 represent potential definitions that may reach this
649 statement (V_MAY_DEF operands allow us to follow def-def
650 links). */
651 v_may_defs = V_MAY_DEF_OPS (ann);
652 for (k = 0; k < NUM_V_MAY_DEFS (v_may_defs); k++)
653 mark_operand_necessary (V_MAY_DEF_OP (v_may_defs, k));
658 /* Eliminate unnecessary statements. Any instruction not marked as necessary
659 contributes nothing to the program, and can be deleted. */
661 static void
662 eliminate_unnecessary_stmts (void)
664 basic_block bb;
665 block_stmt_iterator i;
667 if (dump_file && (dump_flags & TDF_DETAILS))
668 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
670 clear_special_calls ();
671 FOR_EACH_BB (bb)
673 /* Remove dead PHI nodes. */
674 remove_dead_phis (bb);
676 /* Remove dead statements. */
677 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
679 tree t = bsi_stmt (i);
681 stats.total++;
683 /* If `i' is not necessary then remove it. */
684 if (! NECESSARY (t))
685 remove_dead_stmt (&i, bb);
686 else
688 tree call = get_call_expr_in (t);
689 if (call)
690 notice_special_calls (call);
691 bsi_next (&i);
697 /* Remove dead PHI nodes from block BB. */
699 static void
700 remove_dead_phis (basic_block bb)
702 tree prev, phi;
704 prev = NULL_TREE;
705 phi = phi_nodes (bb);
706 while (phi)
708 stats.total_phis++;
710 if (! NECESSARY (phi))
712 tree next = PHI_CHAIN (phi);
714 if (dump_file && (dump_flags & TDF_DETAILS))
716 fprintf (dump_file, "Deleting : ");
717 print_generic_stmt (dump_file, phi, TDF_SLIM);
718 fprintf (dump_file, "\n");
721 remove_phi_node (phi, prev, bb);
722 stats.removed_phis++;
723 phi = next;
725 else
727 prev = phi;
728 phi = PHI_CHAIN (phi);
733 /* Remove dead statement pointed by iterator I. Receives the basic block BB
734 containing I so that we don't have to look it up. */
736 static void
737 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
739 tree t = bsi_stmt (*i);
741 if (dump_file && (dump_flags & TDF_DETAILS))
743 fprintf (dump_file, "Deleting : ");
744 print_generic_stmt (dump_file, t, TDF_SLIM);
745 fprintf (dump_file, "\n");
748 stats.removed++;
750 /* If we have determined that a conditional branch statement contributes
751 nothing to the program, then we not only remove it, but we also change
752 the flow graph so that the current block will simply fall-thru to its
753 immediate post-dominator. The blocks we are circumventing will be
754 removed by cleaup_cfg if this change in the flow graph makes them
755 unreachable. */
756 if (is_ctrl_stmt (t))
758 basic_block post_dom_bb;
759 edge e;
760 #ifdef ENABLE_CHECKING
761 /* The post dominance info has to be up-to-date. */
762 if (dom_computed[CDI_POST_DOMINATORS] != DOM_OK)
763 abort ();
764 #endif
765 /* Get the immediate post dominator of bb. */
766 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
767 /* Some blocks don't have an immediate post dominator. This can happen
768 for example with infinite loops. Removing an infinite loop is an
769 inappropriate transformation anyway... */
770 if (! post_dom_bb)
772 bsi_next (i);
773 return;
776 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
777 redirect_edge_and_branch (bb->succ, post_dom_bb);
778 PENDING_STMT (bb->succ) = NULL;
780 /* The edge is no longer associated with a conditional, so it does
781 not have TRUE/FALSE flags. */
782 bb->succ->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
784 /* If the edge reaches any block other than the exit, then it is a
785 fallthru edge; if it reaches the exit, then it is not a fallthru
786 edge. */
787 if (post_dom_bb != EXIT_BLOCK_PTR)
788 bb->succ->flags |= EDGE_FALLTHRU;
789 else
790 bb->succ->flags &= ~EDGE_FALLTHRU;
792 /* Remove the remaining the outgoing edges. */
793 for (e = bb->succ->succ_next; e != NULL;)
795 edge tmp = e;
796 e = e->succ_next;
797 remove_edge (tmp);
801 bsi_remove (i);
802 release_defs (t);
805 /* Print out removed statement statistics. */
807 static void
808 print_stats (void)
810 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
812 float percg;
814 percg = ((float) stats.removed / (float) stats.total) * 100;
815 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
816 stats.removed, stats.total, (int) percg);
818 if (stats.total_phis == 0)
819 percg = 0;
820 else
821 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
823 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
824 stats.removed_phis, stats.total_phis, (int) percg);
828 /* Initialization for this pass. Set up the used data structures. */
830 static void
831 tree_dce_init (bool aggressive)
833 memset ((void *) &stats, 0, sizeof (stats));
835 if (aggressive)
837 int i;
839 control_dependence_map
840 = xmalloc (last_basic_block * sizeof (bitmap));
841 for (i = 0; i < last_basic_block; ++i)
842 control_dependence_map[i] = BITMAP_XMALLOC ();
844 last_stmt_necessary = sbitmap_alloc (last_basic_block);
845 sbitmap_zero (last_stmt_necessary);
848 processed = sbitmap_alloc (num_ssa_names + 1);
849 sbitmap_zero (processed);
851 VARRAY_TREE_INIT (worklist, 64, "work list");
854 /* Cleanup after this pass. */
856 static void
857 tree_dce_done (bool aggressive)
859 if (aggressive)
861 int i;
863 for (i = 0; i < last_basic_block; ++i)
864 BITMAP_XFREE (control_dependence_map[i]);
865 free (control_dependence_map);
867 sbitmap_free (last_stmt_necessary);
870 sbitmap_free (processed);
873 /* Main routine to eliminate dead code.
875 AGGRESSIVE controls the aggressiveness of the algorithm.
876 In conservative mode, we ignore control dependence and simply declare
877 all but the most trivially dead branches necessary. This mode is fast.
878 In aggressive mode, control dependences are taken into account, which
879 results in more dead code elimination, but at the cost of some time.
881 FIXME: Aggressive mode before PRE doesn't work currently because
882 the dominance info is not invalidated after DCE1. This is
883 not an issue right now because we only run aggressive DCE
884 as the last tree SSA pass, but keep this in mind when you
885 start experimenting with pass ordering. */
887 static void
888 perform_tree_ssa_dce (bool aggressive)
890 struct edge_list *el = NULL;
892 tree_dce_init (aggressive);
894 if (aggressive)
896 /* Compute control dependence. */
897 timevar_push (TV_CONTROL_DEPENDENCES);
898 calculate_dominance_info (CDI_POST_DOMINATORS);
899 el = create_edge_list ();
900 find_all_control_dependences (el);
901 timevar_pop (TV_CONTROL_DEPENDENCES);
903 mark_dfs_back_edges ();
906 find_obviously_necessary_stmts (el);
908 propagate_necessity (el);
910 eliminate_unnecessary_stmts ();
912 if (aggressive)
913 free_dominance_info (CDI_POST_DOMINATORS);
915 cleanup_tree_cfg ();
917 /* Debugging dumps. */
918 if (dump_file)
920 dump_function_to_file (current_function_decl, dump_file, dump_flags);
921 print_stats ();
924 tree_dce_done (aggressive);
926 free_edge_list (el);
929 /* Pass entry points. */
930 static void
931 tree_ssa_dce (void)
933 perform_tree_ssa_dce (/*aggressive=*/false);
936 static void
937 tree_ssa_cd_dce (void)
939 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
942 static bool
943 gate_dce (void)
945 return flag_tree_dce != 0;
948 struct tree_opt_pass pass_dce =
950 "dce", /* name */
951 gate_dce, /* gate */
952 tree_ssa_dce, /* execute */
953 NULL, /* sub */
954 NULL, /* next */
955 0, /* static_pass_number */
956 TV_TREE_DCE, /* tv_id */
957 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
958 0, /* properties_provided */
959 0, /* properties_destroyed */
960 0, /* todo_flags_start */
961 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
964 struct tree_opt_pass pass_cd_dce =
966 "cddce", /* name */
967 gate_dce, /* gate */
968 tree_ssa_cd_dce, /* execute */
969 NULL, /* sub */
970 NULL, /* next */
971 0, /* static_pass_number */
972 TV_TREE_CD_DCE, /* tv_id */
973 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
974 0, /* properties_provided */
975 0, /* properties_destroyed */
976 0, /* todo_flags_start */
977 TODO_ggc_collect | TODO_verify_ssa | TODO_verify_flow
978 /* todo_flags_finish */