* tree-ssa-operands.c (get_call_expr_operands): Add VUSE operands for
[official-gcc.git] / gcc / reload.c
blob260e4b7a3aaa7a94b9f25e3196fa7356082103ca
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
113 #endif
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
117 #endif
119 /* True if X is a constant that can be forced into the constant pool. */
120 #define CONST_POOL_OK_P(X) \
121 (CONSTANT_P (X) \
122 && GET_CODE (X) != HIGH \
123 && !targetm.cannot_force_const_mem (X))
125 /* All reloads of the current insn are recorded here. See reload.h for
126 comments. */
127 int n_reloads;
128 struct reload rld[MAX_RELOADS];
130 /* All the "earlyclobber" operands of the current insn
131 are recorded here. */
132 int n_earlyclobbers;
133 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 int reload_n_operands;
137 /* Replacing reloads.
139 If `replace_reloads' is nonzero, then as each reload is recorded
140 an entry is made for it in the table `replacements'.
141 Then later `subst_reloads' can look through that table and
142 perform all the replacements needed. */
144 /* Nonzero means record the places to replace. */
145 static int replace_reloads;
147 /* Each replacement is recorded with a structure like this. */
148 struct replacement
150 rtx *where; /* Location to store in */
151 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
152 a SUBREG; 0 otherwise. */
153 int what; /* which reload this is for */
154 enum machine_mode mode; /* mode it must have */
157 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 /* Number of replacements currently recorded. */
160 static int n_replacements;
162 /* Used to track what is modified by an operand. */
163 struct decomposition
165 int reg_flag; /* Nonzero if referencing a register. */
166 int safe; /* Nonzero if this can't conflict with anything. */
167 rtx base; /* Base address for MEM. */
168 HOST_WIDE_INT start; /* Starting offset or register number. */
169 HOST_WIDE_INT end; /* Ending offset or register number. */
172 #ifdef SECONDARY_MEMORY_NEEDED
174 /* Save MEMs needed to copy from one class of registers to another. One MEM
175 is used per mode, but normally only one or two modes are ever used.
177 We keep two versions, before and after register elimination. The one
178 after register elimination is record separately for each operand. This
179 is done in case the address is not valid to be sure that we separately
180 reload each. */
182 static rtx secondary_memlocs[NUM_MACHINE_MODES];
183 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
184 static int secondary_memlocs_elim_used = 0;
185 #endif
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 #ifdef HAVE_SECONDARY_RELOADS
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *);
250 #endif
251 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
283 #ifdef HAVE_SECONDARY_RELOADS
285 /* Determine if any secondary reloads are needed for loading (if IN_P is
286 nonzero) or storing (if IN_P is zero) X to or from a reload register of
287 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
288 are needed, push them.
290 Return the reload number of the secondary reload we made, or -1 if
291 we didn't need one. *PICODE is set to the insn_code to use if we do
292 need a secondary reload. */
294 static int
295 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
296 enum reg_class reload_class,
297 enum machine_mode reload_mode, enum reload_type type,
298 enum insn_code *picode)
300 enum reg_class class = NO_REGS;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum reg_class t_class = NO_REGS;
304 enum machine_mode t_mode = VOIDmode;
305 enum insn_code t_icode = CODE_FOR_nothing;
306 enum reload_type secondary_type;
307 int s_reload, t_reload = -1;
309 if (type == RELOAD_FOR_INPUT_ADDRESS
310 || type == RELOAD_FOR_OUTPUT_ADDRESS
311 || type == RELOAD_FOR_INPADDR_ADDRESS
312 || type == RELOAD_FOR_OUTADDR_ADDRESS)
313 secondary_type = type;
314 else
315 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
317 *picode = CODE_FOR_nothing;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
325 x = SUBREG_REG (x);
326 reload_mode = GET_MODE (x);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem[REGNO (x)] != 0)
337 x = reg_equiv_mem[REGNO (x)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
340 if (in_p)
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345 if (! in_p)
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347 #endif
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS)
351 return -1;
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
354 use the insn. */
356 icode = (in_p ? reload_in_optab[(int) reload_mode]
357 : reload_out_optab[(int) reload_mode]);
359 if (icode != CODE_FOR_nothing
360 && insn_data[(int) icode].operand[in_p].predicate
361 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362 icode = CODE_FOR_nothing;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
368 register. */
370 if (icode != CODE_FOR_nothing)
372 /* If IN_P is nonzero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
375 skip. */
377 enum reg_class insn_class;
379 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380 insn_class = ALL_REGS;
381 else
383 const char *insn_constraint
384 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
385 char insn_letter = *insn_constraint;
386 insn_class
387 = (insn_letter == 'r' ? GENERAL_REGS
388 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
389 insn_constraint));
391 if (insn_class == NO_REGS)
392 abort ();
393 if (in_p
394 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
395 abort ();
398 /* The scratch register's constraint must start with "=&". */
399 if (insn_data[(int) icode].operand[2].constraint[0] != '='
400 || insn_data[(int) icode].operand[2].constraint[1] != '&')
401 abort ();
403 if (reg_class_subset_p (reload_class, insn_class))
404 mode = insn_data[(int) icode].operand[2].mode;
405 else
407 const char *t_constraint
408 = &insn_data[(int) icode].operand[2].constraint[2];
409 char t_letter = *t_constraint;
410 class = insn_class;
411 t_mode = insn_data[(int) icode].operand[2].mode;
412 t_class = (t_letter == 'r' ? GENERAL_REGS
413 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
414 t_constraint));
415 t_icode = icode;
416 icode = CODE_FOR_nothing;
420 /* This case isn't valid, so fail. Reload is allowed to use the same
421 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
422 in the case of a secondary register, we actually need two different
423 registers for correct code. We fail here to prevent the possibility of
424 silently generating incorrect code later.
426 The convention is that secondary input reloads are valid only if the
427 secondary_class is different from class. If you have such a case, you
428 can not use secondary reloads, you must work around the problem some
429 other way.
431 Allow this when a reload_in/out pattern is being used. I.e. assume
432 that the generated code handles this case. */
434 if (in_p && class == reload_class && icode == CODE_FOR_nothing
435 && t_icode == CODE_FOR_nothing)
436 abort ();
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
670 /* Find the largest class for which every register number plus N is valid in
671 M1 (if in range) and is cheap to move into REGNO.
672 Abort if no such class exists. */
674 static enum reg_class
675 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
676 unsigned int dest_regno ATTRIBUTE_UNUSED)
678 int best_cost = -1;
679 int class;
680 int regno;
681 enum reg_class best_class = NO_REGS;
682 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
683 unsigned int best_size = 0;
684 int cost;
686 for (class = 1; class < N_REG_CLASSES; class++)
688 int bad = 0;
689 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
690 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
691 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
692 && ! HARD_REGNO_MODE_OK (regno + n, m1))
693 bad = 1;
695 if (bad)
696 continue;
697 cost = REGISTER_MOVE_COST (m1, class, dest_class);
699 if ((reg_class_size[class] > best_size
700 && (best_cost < 0 || best_cost >= cost))
701 || best_cost > cost)
703 best_class = class;
704 best_size = reg_class_size[class];
705 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
709 if (best_size == 0)
710 abort ();
712 return best_class;
715 /* Return the number of a previously made reload that can be combined with
716 a new one, or n_reloads if none of the existing reloads can be used.
717 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
718 push_reload, they determine the kind of the new reload that we try to
719 combine. P_IN points to the corresponding value of IN, which can be
720 modified by this function.
721 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
723 static int
724 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
725 enum reload_type type, int opnum, int dont_share)
727 rtx in = *p_in;
728 int i;
729 /* We can't merge two reloads if the output of either one is
730 earlyclobbered. */
732 if (earlyclobber_operand_p (out))
733 return n_reloads;
735 /* We can use an existing reload if the class is right
736 and at least one of IN and OUT is a match
737 and the other is at worst neutral.
738 (A zero compared against anything is neutral.)
740 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
741 for the same thing since that can cause us to need more reload registers
742 than we otherwise would. */
744 for (i = 0; i < n_reloads; i++)
745 if ((reg_class_subset_p (class, rld[i].class)
746 || reg_class_subset_p (rld[i].class, class))
747 /* If the existing reload has a register, it must fit our class. */
748 && (rld[i].reg_rtx == 0
749 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
750 true_regnum (rld[i].reg_rtx)))
751 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
752 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
753 || (out != 0 && MATCHES (rld[i].out, out)
754 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
755 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
756 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
757 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
758 return i;
760 /* Reloading a plain reg for input can match a reload to postincrement
761 that reg, since the postincrement's value is the right value.
762 Likewise, it can match a preincrement reload, since we regard
763 the preincrementation as happening before any ref in this insn
764 to that register. */
765 for (i = 0; i < n_reloads; i++)
766 if ((reg_class_subset_p (class, rld[i].class)
767 || reg_class_subset_p (rld[i].class, class))
768 /* If the existing reload has a register, it must fit our
769 class. */
770 && (rld[i].reg_rtx == 0
771 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
772 true_regnum (rld[i].reg_rtx)))
773 && out == 0 && rld[i].out == 0 && rld[i].in != 0
774 && ((REG_P (in)
775 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
776 && MATCHES (XEXP (rld[i].in, 0), in))
777 || (REG_P (rld[i].in)
778 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
779 && MATCHES (XEXP (in, 0), rld[i].in)))
780 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
781 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
782 && MERGABLE_RELOADS (type, rld[i].when_needed,
783 opnum, rld[i].opnum))
785 /* Make sure reload_in ultimately has the increment,
786 not the plain register. */
787 if (REG_P (in))
788 *p_in = rld[i].in;
789 return i;
791 return n_reloads;
794 /* Return nonzero if X is a SUBREG which will require reloading of its
795 SUBREG_REG expression. */
797 static int
798 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
800 rtx inner;
802 /* Only SUBREGs are problematical. */
803 if (GET_CODE (x) != SUBREG)
804 return 0;
806 inner = SUBREG_REG (x);
808 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
809 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
810 return 1;
812 /* If INNER is not a hard register, then INNER will not need to
813 be reloaded. */
814 if (!REG_P (inner)
815 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
816 return 0;
818 /* If INNER is not ok for MODE, then INNER will need reloading. */
819 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
820 return 1;
822 /* If the outer part is a word or smaller, INNER larger than a
823 word and the number of regs for INNER is not the same as the
824 number of words in INNER, then INNER will need reloading. */
825 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
826 && output
827 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
828 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
829 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
832 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
833 requiring an extra reload register. The caller has already found that
834 IN contains some reference to REGNO, so check that we can produce the
835 new value in a single step. E.g. if we have
836 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
837 instruction that adds one to a register, this should succeed.
838 However, if we have something like
839 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
840 needs to be loaded into a register first, we need a separate reload
841 register.
842 Such PLUS reloads are generated by find_reload_address_part.
843 The out-of-range PLUS expressions are usually introduced in the instruction
844 patterns by register elimination and substituting pseudos without a home
845 by their function-invariant equivalences. */
846 static int
847 can_reload_into (rtx in, int regno, enum machine_mode mode)
849 rtx dst, test_insn;
850 int r = 0;
851 struct recog_data save_recog_data;
853 /* For matching constraints, we often get notional input reloads where
854 we want to use the original register as the reload register. I.e.
855 technically this is a non-optional input-output reload, but IN is
856 already a valid register, and has been chosen as the reload register.
857 Speed this up, since it trivially works. */
858 if (REG_P (in))
859 return 1;
861 /* To test MEMs properly, we'd have to take into account all the reloads
862 that are already scheduled, which can become quite complicated.
863 And since we've already handled address reloads for this MEM, it
864 should always succeed anyway. */
865 if (MEM_P (in))
866 return 1;
868 /* If we can make a simple SET insn that does the job, everything should
869 be fine. */
870 dst = gen_rtx_REG (mode, regno);
871 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
872 save_recog_data = recog_data;
873 if (recog_memoized (test_insn) >= 0)
875 extract_insn (test_insn);
876 r = constrain_operands (1);
878 recog_data = save_recog_data;
879 return r;
882 /* Record one reload that needs to be performed.
883 IN is an rtx saying where the data are to be found before this instruction.
884 OUT says where they must be stored after the instruction.
885 (IN is zero for data not read, and OUT is zero for data not written.)
886 INLOC and OUTLOC point to the places in the instructions where
887 IN and OUT were found.
888 If IN and OUT are both nonzero, it means the same register must be used
889 to reload both IN and OUT.
891 CLASS is a register class required for the reloaded data.
892 INMODE is the machine mode that the instruction requires
893 for the reg that replaces IN and OUTMODE is likewise for OUT.
895 If IN is zero, then OUT's location and mode should be passed as
896 INLOC and INMODE.
898 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
900 OPTIONAL nonzero means this reload does not need to be performed:
901 it can be discarded if that is more convenient.
903 OPNUM and TYPE say what the purpose of this reload is.
905 The return value is the reload-number for this reload.
907 If both IN and OUT are nonzero, in some rare cases we might
908 want to make two separate reloads. (Actually we never do this now.)
909 Therefore, the reload-number for OUT is stored in
910 output_reloadnum when we return; the return value applies to IN.
911 Usually (presently always), when IN and OUT are nonzero,
912 the two reload-numbers are equal, but the caller should be careful to
913 distinguish them. */
916 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
917 enum reg_class class, enum machine_mode inmode,
918 enum machine_mode outmode, int strict_low, int optional,
919 int opnum, enum reload_type type)
921 int i;
922 int dont_share = 0;
923 int dont_remove_subreg = 0;
924 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
925 int secondary_in_reload = -1, secondary_out_reload = -1;
926 enum insn_code secondary_in_icode = CODE_FOR_nothing;
927 enum insn_code secondary_out_icode = CODE_FOR_nothing;
929 /* INMODE and/or OUTMODE could be VOIDmode if no mode
930 has been specified for the operand. In that case,
931 use the operand's mode as the mode to reload. */
932 if (inmode == VOIDmode && in != 0)
933 inmode = GET_MODE (in);
934 if (outmode == VOIDmode && out != 0)
935 outmode = GET_MODE (out);
937 /* If IN is a pseudo register everywhere-equivalent to a constant, and
938 it is not in a hard register, reload straight from the constant,
939 since we want to get rid of such pseudo registers.
940 Often this is done earlier, but not always in find_reloads_address. */
941 if (in != 0 && REG_P (in))
943 int regno = REGNO (in);
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 in = reg_equiv_constant[regno];
950 /* Likewise for OUT. Of course, OUT will never be equivalent to
951 an actual constant, but it might be equivalent to a memory location
952 (in the case of a parameter). */
953 if (out != 0 && REG_P (out))
955 int regno = REGNO (out);
957 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
958 && reg_equiv_constant[regno] != 0)
959 out = reg_equiv_constant[regno];
962 /* If we have a read-write operand with an address side-effect,
963 change either IN or OUT so the side-effect happens only once. */
964 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
965 switch (GET_CODE (XEXP (in, 0)))
967 case POST_INC: case POST_DEC: case POST_MODIFY:
968 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
969 break;
971 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
972 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
973 break;
975 default:
976 break;
979 /* If we are reloading a (SUBREG constant ...), really reload just the
980 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
981 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
982 a pseudo and hence will become a MEM) with M1 wider than M2 and the
983 register is a pseudo, also reload the inside expression.
984 For machines that extend byte loads, do this for any SUBREG of a pseudo
985 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
986 M2 is an integral mode that gets extended when loaded.
987 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
988 either M1 is not valid for R or M2 is wider than a word but we only
989 need one word to store an M2-sized quantity in R.
990 (However, if OUT is nonzero, we need to reload the reg *and*
991 the subreg, so do nothing here, and let following statement handle it.)
993 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
994 we can't handle it here because CONST_INT does not indicate a mode.
996 Similarly, we must reload the inside expression if we have a
997 STRICT_LOW_PART (presumably, in == out in the cas).
999 Also reload the inner expression if it does not require a secondary
1000 reload but the SUBREG does.
1002 Finally, reload the inner expression if it is a register that is in
1003 the class whose registers cannot be referenced in a different size
1004 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1005 cannot reload just the inside since we might end up with the wrong
1006 register class. But if it is inside a STRICT_LOW_PART, we have
1007 no choice, so we hope we do get the right register class there. */
1009 if (in != 0 && GET_CODE (in) == SUBREG
1010 && (subreg_lowpart_p (in) || strict_low)
1011 #ifdef CANNOT_CHANGE_MODE_CLASS
1012 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1013 #endif
1014 && (CONSTANT_P (SUBREG_REG (in))
1015 || GET_CODE (SUBREG_REG (in)) == PLUS
1016 || strict_low
1017 || (((REG_P (SUBREG_REG (in))
1018 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1019 || MEM_P (SUBREG_REG (in)))
1020 && ((GET_MODE_SIZE (inmode)
1021 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 #ifdef LOAD_EXTEND_OP
1023 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1024 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1025 <= UNITS_PER_WORD)
1026 && (GET_MODE_SIZE (inmode)
1027 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1028 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1029 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1030 #endif
1031 #ifdef WORD_REGISTER_OPERATIONS
1032 || ((GET_MODE_SIZE (inmode)
1033 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1034 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1035 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1036 / UNITS_PER_WORD)))
1037 #endif
1039 || (REG_P (SUBREG_REG (in))
1040 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1041 /* The case where out is nonzero
1042 is handled differently in the following statement. */
1043 && (out == 0 || subreg_lowpart_p (in))
1044 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1045 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1046 > UNITS_PER_WORD)
1047 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1048 / UNITS_PER_WORD)
1049 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1050 [GET_MODE (SUBREG_REG (in))]))
1051 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1052 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1053 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1054 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1055 GET_MODE (SUBREG_REG (in)),
1056 SUBREG_REG (in))
1057 == NO_REGS))
1058 #endif
1059 #ifdef CANNOT_CHANGE_MODE_CLASS
1060 || (REG_P (SUBREG_REG (in))
1061 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1062 && REG_CANNOT_CHANGE_MODE_P
1063 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1064 #endif
1067 in_subreg_loc = inloc;
1068 inloc = &SUBREG_REG (in);
1069 in = *inloc;
1070 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1071 if (MEM_P (in))
1072 /* This is supposed to happen only for paradoxical subregs made by
1073 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1074 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1075 abort ();
1076 #endif
1077 inmode = GET_MODE (in);
1080 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1081 either M1 is not valid for R or M2 is wider than a word but we only
1082 need one word to store an M2-sized quantity in R.
1084 However, we must reload the inner reg *as well as* the subreg in
1085 that case. */
1087 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1088 code above. This can happen if SUBREG_BYTE != 0. */
1090 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1092 enum reg_class in_class = class;
1094 if (REG_P (SUBREG_REG (in)))
1095 in_class
1096 = find_valid_class (inmode,
1097 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1098 GET_MODE (SUBREG_REG (in)),
1099 SUBREG_BYTE (in),
1100 GET_MODE (in)),
1101 REGNO (SUBREG_REG (in)));
1103 /* This relies on the fact that emit_reload_insns outputs the
1104 instructions for input reloads of type RELOAD_OTHER in the same
1105 order as the reloads. Thus if the outer reload is also of type
1106 RELOAD_OTHER, we are guaranteed that this inner reload will be
1107 output before the outer reload. */
1108 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1109 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1110 dont_remove_subreg = 1;
1113 /* Similarly for paradoxical and problematical SUBREGs on the output.
1114 Note that there is no reason we need worry about the previous value
1115 of SUBREG_REG (out); even if wider than out,
1116 storing in a subreg is entitled to clobber it all
1117 (except in the case of STRICT_LOW_PART,
1118 and in that case the constraint should label it input-output.) */
1119 if (out != 0 && GET_CODE (out) == SUBREG
1120 && (subreg_lowpart_p (out) || strict_low)
1121 #ifdef CANNOT_CHANGE_MODE_CLASS
1122 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1123 #endif
1124 && (CONSTANT_P (SUBREG_REG (out))
1125 || strict_low
1126 || (((REG_P (SUBREG_REG (out))
1127 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1128 || MEM_P (SUBREG_REG (out)))
1129 && ((GET_MODE_SIZE (outmode)
1130 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1131 #ifdef WORD_REGISTER_OPERATIONS
1132 || ((GET_MODE_SIZE (outmode)
1133 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1134 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1135 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1136 / UNITS_PER_WORD)))
1137 #endif
1139 || (REG_P (SUBREG_REG (out))
1140 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1141 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1142 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1143 > UNITS_PER_WORD)
1144 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1145 / UNITS_PER_WORD)
1146 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1147 [GET_MODE (SUBREG_REG (out))]))
1148 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1149 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1150 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1151 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1152 GET_MODE (SUBREG_REG (out)),
1153 SUBREG_REG (out))
1154 == NO_REGS))
1155 #endif
1156 #ifdef CANNOT_CHANGE_MODE_CLASS
1157 || (REG_P (SUBREG_REG (out))
1158 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1159 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1160 GET_MODE (SUBREG_REG (out)),
1161 outmode))
1162 #endif
1165 out_subreg_loc = outloc;
1166 outloc = &SUBREG_REG (out);
1167 out = *outloc;
1168 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1169 if (MEM_P (out)
1170 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1171 abort ();
1172 #endif
1173 outmode = GET_MODE (out);
1176 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1177 either M1 is not valid for R or M2 is wider than a word but we only
1178 need one word to store an M2-sized quantity in R.
1180 However, we must reload the inner reg *as well as* the subreg in
1181 that case. In this case, the inner reg is an in-out reload. */
1183 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1185 /* This relies on the fact that emit_reload_insns outputs the
1186 instructions for output reloads of type RELOAD_OTHER in reverse
1187 order of the reloads. Thus if the outer reload is also of type
1188 RELOAD_OTHER, we are guaranteed that this inner reload will be
1189 output after the outer reload. */
1190 dont_remove_subreg = 1;
1191 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1192 &SUBREG_REG (out),
1193 find_valid_class (outmode,
1194 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1195 GET_MODE (SUBREG_REG (out)),
1196 SUBREG_BYTE (out),
1197 GET_MODE (out)),
1198 REGNO (SUBREG_REG (out))),
1199 VOIDmode, VOIDmode, 0, 0,
1200 opnum, RELOAD_OTHER);
1203 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1204 if (in != 0 && out != 0 && MEM_P (out)
1205 && (REG_P (in) || MEM_P (in))
1206 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1207 dont_share = 1;
1209 /* If IN is a SUBREG of a hard register, make a new REG. This
1210 simplifies some of the cases below. */
1212 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1213 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1214 && ! dont_remove_subreg)
1215 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1217 /* Similarly for OUT. */
1218 if (out != 0 && GET_CODE (out) == SUBREG
1219 && REG_P (SUBREG_REG (out))
1220 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1221 && ! dont_remove_subreg)
1222 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1224 /* Narrow down the class of register wanted if that is
1225 desirable on this machine for efficiency. */
1226 if (in != 0)
1227 class = PREFERRED_RELOAD_CLASS (in, class);
1229 /* Output reloads may need analogous treatment, different in detail. */
1230 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1231 if (out != 0)
1232 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1233 #endif
1235 /* Make sure we use a class that can handle the actual pseudo
1236 inside any subreg. For example, on the 386, QImode regs
1237 can appear within SImode subregs. Although GENERAL_REGS
1238 can handle SImode, QImode needs a smaller class. */
1239 #ifdef LIMIT_RELOAD_CLASS
1240 if (in_subreg_loc)
1241 class = LIMIT_RELOAD_CLASS (inmode, class);
1242 else if (in != 0 && GET_CODE (in) == SUBREG)
1243 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1245 if (out_subreg_loc)
1246 class = LIMIT_RELOAD_CLASS (outmode, class);
1247 if (out != 0 && GET_CODE (out) == SUBREG)
1248 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1249 #endif
1251 /* Verify that this class is at least possible for the mode that
1252 is specified. */
1253 if (this_insn_is_asm)
1255 enum machine_mode mode;
1256 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1257 mode = inmode;
1258 else
1259 mode = outmode;
1260 if (mode == VOIDmode)
1262 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1263 mode = word_mode;
1264 if (in != 0)
1265 inmode = word_mode;
1266 if (out != 0)
1267 outmode = word_mode;
1269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1270 if (HARD_REGNO_MODE_OK (i, mode)
1271 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1273 int nregs = hard_regno_nregs[i][mode];
1275 int j;
1276 for (j = 1; j < nregs; j++)
1277 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1278 break;
1279 if (j == nregs)
1280 break;
1282 if (i == FIRST_PSEUDO_REGISTER)
1284 error_for_asm (this_insn, "impossible register constraint in `asm'");
1285 class = ALL_REGS;
1289 /* Optional output reloads are always OK even if we have no register class,
1290 since the function of these reloads is only to have spill_reg_store etc.
1291 set, so that the storing insn can be deleted later. */
1292 if (class == NO_REGS
1293 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1294 abort ();
1296 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1298 if (i == n_reloads)
1300 /* See if we need a secondary reload register to move between CLASS
1301 and IN or CLASS and OUT. Get the icode and push any required reloads
1302 needed for each of them if so. */
1304 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1305 if (in != 0)
1306 secondary_in_reload
1307 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1308 &secondary_in_icode);
1309 #endif
1311 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1312 if (out != 0 && GET_CODE (out) != SCRATCH)
1313 secondary_out_reload
1314 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1315 type, &secondary_out_icode);
1316 #endif
1318 /* We found no existing reload suitable for re-use.
1319 So add an additional reload. */
1321 #ifdef SECONDARY_MEMORY_NEEDED
1322 /* If a memory location is needed for the copy, make one. */
1323 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1324 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1325 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1326 class, inmode))
1327 get_secondary_mem (in, inmode, opnum, type);
1328 #endif
1330 i = n_reloads;
1331 rld[i].in = in;
1332 rld[i].out = out;
1333 rld[i].class = class;
1334 rld[i].inmode = inmode;
1335 rld[i].outmode = outmode;
1336 rld[i].reg_rtx = 0;
1337 rld[i].optional = optional;
1338 rld[i].inc = 0;
1339 rld[i].nocombine = 0;
1340 rld[i].in_reg = inloc ? *inloc : 0;
1341 rld[i].out_reg = outloc ? *outloc : 0;
1342 rld[i].opnum = opnum;
1343 rld[i].when_needed = type;
1344 rld[i].secondary_in_reload = secondary_in_reload;
1345 rld[i].secondary_out_reload = secondary_out_reload;
1346 rld[i].secondary_in_icode = secondary_in_icode;
1347 rld[i].secondary_out_icode = secondary_out_icode;
1348 rld[i].secondary_p = 0;
1350 n_reloads++;
1352 #ifdef SECONDARY_MEMORY_NEEDED
1353 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1354 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1355 && SECONDARY_MEMORY_NEEDED (class,
1356 REGNO_REG_CLASS (reg_or_subregno (out)),
1357 outmode))
1358 get_secondary_mem (out, outmode, opnum, type);
1359 #endif
1361 else
1363 /* We are reusing an existing reload,
1364 but we may have additional information for it.
1365 For example, we may now have both IN and OUT
1366 while the old one may have just one of them. */
1368 /* The modes can be different. If they are, we want to reload in
1369 the larger mode, so that the value is valid for both modes. */
1370 if (inmode != VOIDmode
1371 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1372 rld[i].inmode = inmode;
1373 if (outmode != VOIDmode
1374 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1375 rld[i].outmode = outmode;
1376 if (in != 0)
1378 rtx in_reg = inloc ? *inloc : 0;
1379 /* If we merge reloads for two distinct rtl expressions that
1380 are identical in content, there might be duplicate address
1381 reloads. Remove the extra set now, so that if we later find
1382 that we can inherit this reload, we can get rid of the
1383 address reloads altogether.
1385 Do not do this if both reloads are optional since the result
1386 would be an optional reload which could potentially leave
1387 unresolved address replacements.
1389 It is not sufficient to call transfer_replacements since
1390 choose_reload_regs will remove the replacements for address
1391 reloads of inherited reloads which results in the same
1392 problem. */
1393 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1394 && ! (rld[i].optional && optional))
1396 /* We must keep the address reload with the lower operand
1397 number alive. */
1398 if (opnum > rld[i].opnum)
1400 remove_address_replacements (in);
1401 in = rld[i].in;
1402 in_reg = rld[i].in_reg;
1404 else
1405 remove_address_replacements (rld[i].in);
1407 rld[i].in = in;
1408 rld[i].in_reg = in_reg;
1410 if (out != 0)
1412 rld[i].out = out;
1413 rld[i].out_reg = outloc ? *outloc : 0;
1415 if (reg_class_subset_p (class, rld[i].class))
1416 rld[i].class = class;
1417 rld[i].optional &= optional;
1418 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1419 opnum, rld[i].opnum))
1420 rld[i].when_needed = RELOAD_OTHER;
1421 rld[i].opnum = MIN (rld[i].opnum, opnum);
1424 /* If the ostensible rtx being reloaded differs from the rtx found
1425 in the location to substitute, this reload is not safe to combine
1426 because we cannot reliably tell whether it appears in the insn. */
1428 if (in != 0 && in != *inloc)
1429 rld[i].nocombine = 1;
1431 #if 0
1432 /* This was replaced by changes in find_reloads_address_1 and the new
1433 function inc_for_reload, which go with a new meaning of reload_inc. */
1435 /* If this is an IN/OUT reload in an insn that sets the CC,
1436 it must be for an autoincrement. It doesn't work to store
1437 the incremented value after the insn because that would clobber the CC.
1438 So we must do the increment of the value reloaded from,
1439 increment it, store it back, then decrement again. */
1440 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1442 out = 0;
1443 rld[i].out = 0;
1444 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1445 /* If we did not find a nonzero amount-to-increment-by,
1446 that contradicts the belief that IN is being incremented
1447 in an address in this insn. */
1448 if (rld[i].inc == 0)
1449 abort ();
1451 #endif
1453 /* If we will replace IN and OUT with the reload-reg,
1454 record where they are located so that substitution need
1455 not do a tree walk. */
1457 if (replace_reloads)
1459 if (inloc != 0)
1461 struct replacement *r = &replacements[n_replacements++];
1462 r->what = i;
1463 r->subreg_loc = in_subreg_loc;
1464 r->where = inloc;
1465 r->mode = inmode;
1467 if (outloc != 0 && outloc != inloc)
1469 struct replacement *r = &replacements[n_replacements++];
1470 r->what = i;
1471 r->where = outloc;
1472 r->subreg_loc = out_subreg_loc;
1473 r->mode = outmode;
1477 /* If this reload is just being introduced and it has both
1478 an incoming quantity and an outgoing quantity that are
1479 supposed to be made to match, see if either one of the two
1480 can serve as the place to reload into.
1482 If one of them is acceptable, set rld[i].reg_rtx
1483 to that one. */
1485 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1487 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1488 inmode, outmode,
1489 rld[i].class, i,
1490 earlyclobber_operand_p (out));
1492 /* If the outgoing register already contains the same value
1493 as the incoming one, we can dispense with loading it.
1494 The easiest way to tell the caller that is to give a phony
1495 value for the incoming operand (same as outgoing one). */
1496 if (rld[i].reg_rtx == out
1497 && (REG_P (in) || CONSTANT_P (in))
1498 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1499 static_reload_reg_p, i, inmode))
1500 rld[i].in = out;
1503 /* If this is an input reload and the operand contains a register that
1504 dies in this insn and is used nowhere else, see if it is the right class
1505 to be used for this reload. Use it if so. (This occurs most commonly
1506 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1507 this if it is also an output reload that mentions the register unless
1508 the output is a SUBREG that clobbers an entire register.
1510 Note that the operand might be one of the spill regs, if it is a
1511 pseudo reg and we are in a block where spilling has not taken place.
1512 But if there is no spilling in this block, that is OK.
1513 An explicitly used hard reg cannot be a spill reg. */
1515 if (rld[i].reg_rtx == 0 && in != 0)
1517 rtx note;
1518 int regno;
1519 enum machine_mode rel_mode = inmode;
1521 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1522 rel_mode = outmode;
1524 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1525 if (REG_NOTE_KIND (note) == REG_DEAD
1526 && REG_P (XEXP (note, 0))
1527 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1528 && reg_mentioned_p (XEXP (note, 0), in)
1529 && ! refers_to_regno_for_reload_p (regno,
1530 (regno
1531 + hard_regno_nregs[regno]
1532 [rel_mode]),
1533 PATTERN (this_insn), inloc)
1534 /* If this is also an output reload, IN cannot be used as
1535 the reload register if it is set in this insn unless IN
1536 is also OUT. */
1537 && (out == 0 || in == out
1538 || ! hard_reg_set_here_p (regno,
1539 (regno
1540 + hard_regno_nregs[regno]
1541 [rel_mode]),
1542 PATTERN (this_insn)))
1543 /* ??? Why is this code so different from the previous?
1544 Is there any simple coherent way to describe the two together?
1545 What's going on here. */
1546 && (in != out
1547 || (GET_CODE (in) == SUBREG
1548 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1549 / UNITS_PER_WORD)
1550 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1551 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1552 /* Make sure the operand fits in the reg that dies. */
1553 && (GET_MODE_SIZE (rel_mode)
1554 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1555 && HARD_REGNO_MODE_OK (regno, inmode)
1556 && HARD_REGNO_MODE_OK (regno, outmode))
1558 unsigned int offs;
1559 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1560 hard_regno_nregs[regno][outmode]);
1562 for (offs = 0; offs < nregs; offs++)
1563 if (fixed_regs[regno + offs]
1564 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1565 regno + offs))
1566 break;
1568 if (offs == nregs
1569 && (! (refers_to_regno_for_reload_p
1570 (regno, (regno + hard_regno_nregs[regno][inmode]),
1571 in, (rtx *)0))
1572 || can_reload_into (in, regno, inmode)))
1574 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1575 break;
1580 if (out)
1581 output_reloadnum = i;
1583 return i;
1586 /* Record an additional place we must replace a value
1587 for which we have already recorded a reload.
1588 RELOADNUM is the value returned by push_reload
1589 when the reload was recorded.
1590 This is used in insn patterns that use match_dup. */
1592 static void
1593 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1595 if (replace_reloads)
1597 struct replacement *r = &replacements[n_replacements++];
1598 r->what = reloadnum;
1599 r->where = loc;
1600 r->subreg_loc = 0;
1601 r->mode = mode;
1605 /* Duplicate any replacement we have recorded to apply at
1606 location ORIG_LOC to also be performed at DUP_LOC.
1607 This is used in insn patterns that use match_dup. */
1609 static void
1610 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1612 int i, n = n_replacements;
1614 for (i = 0; i < n; i++)
1616 struct replacement *r = &replacements[i];
1617 if (r->where == orig_loc)
1618 push_replacement (dup_loc, r->what, r->mode);
1622 /* Transfer all replacements that used to be in reload FROM to be in
1623 reload TO. */
1625 void
1626 transfer_replacements (int to, int from)
1628 int i;
1630 for (i = 0; i < n_replacements; i++)
1631 if (replacements[i].what == from)
1632 replacements[i].what = to;
1635 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1636 or a subpart of it. If we have any replacements registered for IN_RTX,
1637 cancel the reloads that were supposed to load them.
1638 Return nonzero if we canceled any reloads. */
1640 remove_address_replacements (rtx in_rtx)
1642 int i, j;
1643 char reload_flags[MAX_RELOADS];
1644 int something_changed = 0;
1646 memset (reload_flags, 0, sizeof reload_flags);
1647 for (i = 0, j = 0; i < n_replacements; i++)
1649 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1650 reload_flags[replacements[i].what] |= 1;
1651 else
1653 replacements[j++] = replacements[i];
1654 reload_flags[replacements[i].what] |= 2;
1657 /* Note that the following store must be done before the recursive calls. */
1658 n_replacements = j;
1660 for (i = n_reloads - 1; i >= 0; i--)
1662 if (reload_flags[i] == 1)
1664 deallocate_reload_reg (i);
1665 remove_address_replacements (rld[i].in);
1666 rld[i].in = 0;
1667 something_changed = 1;
1670 return something_changed;
1673 /* If there is only one output reload, and it is not for an earlyclobber
1674 operand, try to combine it with a (logically unrelated) input reload
1675 to reduce the number of reload registers needed.
1677 This is safe if the input reload does not appear in
1678 the value being output-reloaded, because this implies
1679 it is not needed any more once the original insn completes.
1681 If that doesn't work, see we can use any of the registers that
1682 die in this insn as a reload register. We can if it is of the right
1683 class and does not appear in the value being output-reloaded. */
1685 static void
1686 combine_reloads (void)
1688 int i;
1689 int output_reload = -1;
1690 int secondary_out = -1;
1691 rtx note;
1693 /* Find the output reload; return unless there is exactly one
1694 and that one is mandatory. */
1696 for (i = 0; i < n_reloads; i++)
1697 if (rld[i].out != 0)
1699 if (output_reload >= 0)
1700 return;
1701 output_reload = i;
1704 if (output_reload < 0 || rld[output_reload].optional)
1705 return;
1707 /* An input-output reload isn't combinable. */
1709 if (rld[output_reload].in != 0)
1710 return;
1712 /* If this reload is for an earlyclobber operand, we can't do anything. */
1713 if (earlyclobber_operand_p (rld[output_reload].out))
1714 return;
1716 /* If there is a reload for part of the address of this operand, we would
1717 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1718 its life to the point where doing this combine would not lower the
1719 number of spill registers needed. */
1720 for (i = 0; i < n_reloads; i++)
1721 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1722 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1723 && rld[i].opnum == rld[output_reload].opnum)
1724 return;
1726 /* Check each input reload; can we combine it? */
1728 for (i = 0; i < n_reloads; i++)
1729 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1730 /* Life span of this reload must not extend past main insn. */
1731 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1732 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1733 && rld[i].when_needed != RELOAD_OTHER
1734 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1735 == CLASS_MAX_NREGS (rld[output_reload].class,
1736 rld[output_reload].outmode))
1737 && rld[i].inc == 0
1738 && rld[i].reg_rtx == 0
1739 #ifdef SECONDARY_MEMORY_NEEDED
1740 /* Don't combine two reloads with different secondary
1741 memory locations. */
1742 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1743 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1744 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1745 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1746 #endif
1747 && (SMALL_REGISTER_CLASSES
1748 ? (rld[i].class == rld[output_reload].class)
1749 : (reg_class_subset_p (rld[i].class,
1750 rld[output_reload].class)
1751 || reg_class_subset_p (rld[output_reload].class,
1752 rld[i].class)))
1753 && (MATCHES (rld[i].in, rld[output_reload].out)
1754 /* Args reversed because the first arg seems to be
1755 the one that we imagine being modified
1756 while the second is the one that might be affected. */
1757 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1758 rld[i].in)
1759 /* However, if the input is a register that appears inside
1760 the output, then we also can't share.
1761 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1762 If the same reload reg is used for both reg 69 and the
1763 result to be stored in memory, then that result
1764 will clobber the address of the memory ref. */
1765 && ! (REG_P (rld[i].in)
1766 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1767 rld[output_reload].out))))
1768 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1769 rld[i].when_needed != RELOAD_FOR_INPUT)
1770 && (reg_class_size[(int) rld[i].class]
1771 || SMALL_REGISTER_CLASSES)
1772 /* We will allow making things slightly worse by combining an
1773 input and an output, but no worse than that. */
1774 && (rld[i].when_needed == RELOAD_FOR_INPUT
1775 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1777 int j;
1779 /* We have found a reload to combine with! */
1780 rld[i].out = rld[output_reload].out;
1781 rld[i].out_reg = rld[output_reload].out_reg;
1782 rld[i].outmode = rld[output_reload].outmode;
1783 /* Mark the old output reload as inoperative. */
1784 rld[output_reload].out = 0;
1785 /* The combined reload is needed for the entire insn. */
1786 rld[i].when_needed = RELOAD_OTHER;
1787 /* If the output reload had a secondary reload, copy it. */
1788 if (rld[output_reload].secondary_out_reload != -1)
1790 rld[i].secondary_out_reload
1791 = rld[output_reload].secondary_out_reload;
1792 rld[i].secondary_out_icode
1793 = rld[output_reload].secondary_out_icode;
1796 #ifdef SECONDARY_MEMORY_NEEDED
1797 /* Copy any secondary MEM. */
1798 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1799 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1800 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1801 #endif
1802 /* If required, minimize the register class. */
1803 if (reg_class_subset_p (rld[output_reload].class,
1804 rld[i].class))
1805 rld[i].class = rld[output_reload].class;
1807 /* Transfer all replacements from the old reload to the combined. */
1808 for (j = 0; j < n_replacements; j++)
1809 if (replacements[j].what == output_reload)
1810 replacements[j].what = i;
1812 return;
1815 /* If this insn has only one operand that is modified or written (assumed
1816 to be the first), it must be the one corresponding to this reload. It
1817 is safe to use anything that dies in this insn for that output provided
1818 that it does not occur in the output (we already know it isn't an
1819 earlyclobber. If this is an asm insn, give up. */
1821 if (INSN_CODE (this_insn) == -1)
1822 return;
1824 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1825 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1826 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1827 return;
1829 /* See if some hard register that dies in this insn and is not used in
1830 the output is the right class. Only works if the register we pick
1831 up can fully hold our output reload. */
1832 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1833 if (REG_NOTE_KIND (note) == REG_DEAD
1834 && REG_P (XEXP (note, 0))
1835 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1836 rld[output_reload].out)
1837 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1838 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1839 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1840 REGNO (XEXP (note, 0)))
1841 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1842 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1843 /* Ensure that a secondary or tertiary reload for this output
1844 won't want this register. */
1845 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1846 || (! (TEST_HARD_REG_BIT
1847 (reg_class_contents[(int) rld[secondary_out].class],
1848 REGNO (XEXP (note, 0))))
1849 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1850 || ! (TEST_HARD_REG_BIT
1851 (reg_class_contents[(int) rld[secondary_out].class],
1852 REGNO (XEXP (note, 0)))))))
1853 && ! fixed_regs[REGNO (XEXP (note, 0))])
1855 rld[output_reload].reg_rtx
1856 = gen_rtx_REG (rld[output_reload].outmode,
1857 REGNO (XEXP (note, 0)));
1858 return;
1862 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1863 See if one of IN and OUT is a register that may be used;
1864 this is desirable since a spill-register won't be needed.
1865 If so, return the register rtx that proves acceptable.
1867 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1868 CLASS is the register class required for the reload.
1870 If FOR_REAL is >= 0, it is the number of the reload,
1871 and in some cases when it can be discovered that OUT doesn't need
1872 to be computed, clear out rld[FOR_REAL].out.
1874 If FOR_REAL is -1, this should not be done, because this call
1875 is just to see if a register can be found, not to find and install it.
1877 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1878 puts an additional constraint on being able to use IN for OUT since
1879 IN must not appear elsewhere in the insn (it is assumed that IN itself
1880 is safe from the earlyclobber). */
1882 static rtx
1883 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1884 enum machine_mode inmode, enum machine_mode outmode,
1885 enum reg_class class, int for_real, int earlyclobber)
1887 rtx in = real_in;
1888 rtx out = real_out;
1889 int in_offset = 0;
1890 int out_offset = 0;
1891 rtx value = 0;
1893 /* If operands exceed a word, we can't use either of them
1894 unless they have the same size. */
1895 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1896 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1897 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1898 return 0;
1900 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1901 respectively refers to a hard register. */
1903 /* Find the inside of any subregs. */
1904 while (GET_CODE (out) == SUBREG)
1906 if (REG_P (SUBREG_REG (out))
1907 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1908 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1909 GET_MODE (SUBREG_REG (out)),
1910 SUBREG_BYTE (out),
1911 GET_MODE (out));
1912 out = SUBREG_REG (out);
1914 while (GET_CODE (in) == SUBREG)
1916 if (REG_P (SUBREG_REG (in))
1917 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1918 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1919 GET_MODE (SUBREG_REG (in)),
1920 SUBREG_BYTE (in),
1921 GET_MODE (in));
1922 in = SUBREG_REG (in);
1925 /* Narrow down the reg class, the same way push_reload will;
1926 otherwise we might find a dummy now, but push_reload won't. */
1927 class = PREFERRED_RELOAD_CLASS (in, class);
1929 /* See if OUT will do. */
1930 if (REG_P (out)
1931 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1933 unsigned int regno = REGNO (out) + out_offset;
1934 unsigned int nwords = hard_regno_nregs[regno][outmode];
1935 rtx saved_rtx;
1937 /* When we consider whether the insn uses OUT,
1938 ignore references within IN. They don't prevent us
1939 from copying IN into OUT, because those refs would
1940 move into the insn that reloads IN.
1942 However, we only ignore IN in its role as this reload.
1943 If the insn uses IN elsewhere and it contains OUT,
1944 that counts. We can't be sure it's the "same" operand
1945 so it might not go through this reload. */
1946 saved_rtx = *inloc;
1947 *inloc = const0_rtx;
1949 if (regno < FIRST_PSEUDO_REGISTER
1950 && HARD_REGNO_MODE_OK (regno, outmode)
1951 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1952 PATTERN (this_insn), outloc))
1954 unsigned int i;
1956 for (i = 0; i < nwords; i++)
1957 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1958 regno + i))
1959 break;
1961 if (i == nwords)
1963 if (REG_P (real_out))
1964 value = real_out;
1965 else
1966 value = gen_rtx_REG (outmode, regno);
1970 *inloc = saved_rtx;
1973 /* Consider using IN if OUT was not acceptable
1974 or if OUT dies in this insn (like the quotient in a divmod insn).
1975 We can't use IN unless it is dies in this insn,
1976 which means we must know accurately which hard regs are live.
1977 Also, the result can't go in IN if IN is used within OUT,
1978 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1979 if (hard_regs_live_known
1980 && REG_P (in)
1981 && REGNO (in) < FIRST_PSEUDO_REGISTER
1982 && (value == 0
1983 || find_reg_note (this_insn, REG_UNUSED, real_out))
1984 && find_reg_note (this_insn, REG_DEAD, real_in)
1985 && !fixed_regs[REGNO (in)]
1986 && HARD_REGNO_MODE_OK (REGNO (in),
1987 /* The only case where out and real_out might
1988 have different modes is where real_out
1989 is a subreg, and in that case, out
1990 has a real mode. */
1991 (GET_MODE (out) != VOIDmode
1992 ? GET_MODE (out) : outmode)))
1994 unsigned int regno = REGNO (in) + in_offset;
1995 unsigned int nwords = hard_regno_nregs[regno][inmode];
1997 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1998 && ! hard_reg_set_here_p (regno, regno + nwords,
1999 PATTERN (this_insn))
2000 && (! earlyclobber
2001 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2002 PATTERN (this_insn), inloc)))
2004 unsigned int i;
2006 for (i = 0; i < nwords; i++)
2007 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2008 regno + i))
2009 break;
2011 if (i == nwords)
2013 /* If we were going to use OUT as the reload reg
2014 and changed our mind, it means OUT is a dummy that
2015 dies here. So don't bother copying value to it. */
2016 if (for_real >= 0 && value == real_out)
2017 rld[for_real].out = 0;
2018 if (REG_P (real_in))
2019 value = real_in;
2020 else
2021 value = gen_rtx_REG (inmode, regno);
2026 return value;
2029 /* This page contains subroutines used mainly for determining
2030 whether the IN or an OUT of a reload can serve as the
2031 reload register. */
2033 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2036 earlyclobber_operand_p (rtx x)
2038 int i;
2040 for (i = 0; i < n_earlyclobbers; i++)
2041 if (reload_earlyclobbers[i] == x)
2042 return 1;
2044 return 0;
2047 /* Return 1 if expression X alters a hard reg in the range
2048 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2049 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2050 X should be the body of an instruction. */
2052 static int
2053 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2055 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2057 rtx op0 = SET_DEST (x);
2059 while (GET_CODE (op0) == SUBREG)
2060 op0 = SUBREG_REG (op0);
2061 if (REG_P (op0))
2063 unsigned int r = REGNO (op0);
2065 /* See if this reg overlaps range under consideration. */
2066 if (r < end_regno
2067 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2068 return 1;
2071 else if (GET_CODE (x) == PARALLEL)
2073 int i = XVECLEN (x, 0) - 1;
2075 for (; i >= 0; i--)
2076 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2077 return 1;
2080 return 0;
2083 /* Return 1 if ADDR is a valid memory address for mode MODE,
2084 and check that each pseudo reg has the proper kind of
2085 hard reg. */
2088 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2090 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2091 return 0;
2093 win:
2094 return 1;
2097 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2098 if they are the same hard reg, and has special hacks for
2099 autoincrement and autodecrement.
2100 This is specifically intended for find_reloads to use
2101 in determining whether two operands match.
2102 X is the operand whose number is the lower of the two.
2104 The value is 2 if Y contains a pre-increment that matches
2105 a non-incrementing address in X. */
2107 /* ??? To be completely correct, we should arrange to pass
2108 for X the output operand and for Y the input operand.
2109 For now, we assume that the output operand has the lower number
2110 because that is natural in (SET output (... input ...)). */
2113 operands_match_p (rtx x, rtx y)
2115 int i;
2116 RTX_CODE code = GET_CODE (x);
2117 const char *fmt;
2118 int success_2;
2120 if (x == y)
2121 return 1;
2122 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2123 && (REG_P (y) || (GET_CODE (y) == SUBREG
2124 && REG_P (SUBREG_REG (y)))))
2126 int j;
2128 if (code == SUBREG)
2130 i = REGNO (SUBREG_REG (x));
2131 if (i >= FIRST_PSEUDO_REGISTER)
2132 goto slow;
2133 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2134 GET_MODE (SUBREG_REG (x)),
2135 SUBREG_BYTE (x),
2136 GET_MODE (x));
2138 else
2139 i = REGNO (x);
2141 if (GET_CODE (y) == SUBREG)
2143 j = REGNO (SUBREG_REG (y));
2144 if (j >= FIRST_PSEUDO_REGISTER)
2145 goto slow;
2146 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2147 GET_MODE (SUBREG_REG (y)),
2148 SUBREG_BYTE (y),
2149 GET_MODE (y));
2151 else
2152 j = REGNO (y);
2154 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2155 multiple hard register group, so that for example (reg:DI 0) and
2156 (reg:SI 1) will be considered the same register. */
2157 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2158 && i < FIRST_PSEUDO_REGISTER)
2159 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2160 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2161 && j < FIRST_PSEUDO_REGISTER)
2162 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2164 return i == j;
2166 /* If two operands must match, because they are really a single
2167 operand of an assembler insn, then two postincrements are invalid
2168 because the assembler insn would increment only once.
2169 On the other hand, a postincrement matches ordinary indexing
2170 if the postincrement is the output operand. */
2171 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2172 return operands_match_p (XEXP (x, 0), y);
2173 /* Two preincrements are invalid
2174 because the assembler insn would increment only once.
2175 On the other hand, a preincrement matches ordinary indexing
2176 if the preincrement is the input operand.
2177 In this case, return 2, since some callers need to do special
2178 things when this happens. */
2179 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2180 || GET_CODE (y) == PRE_MODIFY)
2181 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2183 slow:
2185 /* Now we have disposed of all the cases
2186 in which different rtx codes can match. */
2187 if (code != GET_CODE (y))
2188 return 0;
2189 if (code == LABEL_REF)
2190 return XEXP (x, 0) == XEXP (y, 0);
2191 if (code == SYMBOL_REF)
2192 return XSTR (x, 0) == XSTR (y, 0);
2194 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2196 if (GET_MODE (x) != GET_MODE (y))
2197 return 0;
2199 /* Compare the elements. If any pair of corresponding elements
2200 fail to match, return 0 for the whole things. */
2202 success_2 = 0;
2203 fmt = GET_RTX_FORMAT (code);
2204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2206 int val, j;
2207 switch (fmt[i])
2209 case 'w':
2210 if (XWINT (x, i) != XWINT (y, i))
2211 return 0;
2212 break;
2214 case 'i':
2215 if (XINT (x, i) != XINT (y, i))
2216 return 0;
2217 break;
2219 case 'e':
2220 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2221 if (val == 0)
2222 return 0;
2223 /* If any subexpression returns 2,
2224 we should return 2 if we are successful. */
2225 if (val == 2)
2226 success_2 = 1;
2227 break;
2229 case '0':
2230 break;
2232 case 'E':
2233 if (XVECLEN (x, i) != XVECLEN (y, i))
2234 return 0;
2235 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2237 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2238 if (val == 0)
2239 return 0;
2240 if (val == 2)
2241 success_2 = 1;
2243 break;
2245 /* It is believed that rtx's at this level will never
2246 contain anything but integers and other rtx's,
2247 except for within LABEL_REFs and SYMBOL_REFs. */
2248 default:
2249 abort ();
2252 return 1 + success_2;
2255 /* Describe the range of registers or memory referenced by X.
2256 If X is a register, set REG_FLAG and put the first register
2257 number into START and the last plus one into END.
2258 If X is a memory reference, put a base address into BASE
2259 and a range of integer offsets into START and END.
2260 If X is pushing on the stack, we can assume it causes no trouble,
2261 so we set the SAFE field. */
2263 static struct decomposition
2264 decompose (rtx x)
2266 struct decomposition val;
2267 int all_const = 0;
2269 memset (&val, 0, sizeof (val));
2271 if (MEM_P (x))
2273 rtx base = NULL_RTX, offset = 0;
2274 rtx addr = XEXP (x, 0);
2276 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2277 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2279 val.base = XEXP (addr, 0);
2280 val.start = -GET_MODE_SIZE (GET_MODE (x));
2281 val.end = GET_MODE_SIZE (GET_MODE (x));
2282 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2283 return val;
2286 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2288 if (GET_CODE (XEXP (addr, 1)) == PLUS
2289 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2290 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2292 val.base = XEXP (addr, 0);
2293 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2294 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2295 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2296 return val;
2300 if (GET_CODE (addr) == CONST)
2302 addr = XEXP (addr, 0);
2303 all_const = 1;
2305 if (GET_CODE (addr) == PLUS)
2307 if (CONSTANT_P (XEXP (addr, 0)))
2309 base = XEXP (addr, 1);
2310 offset = XEXP (addr, 0);
2312 else if (CONSTANT_P (XEXP (addr, 1)))
2314 base = XEXP (addr, 0);
2315 offset = XEXP (addr, 1);
2319 if (offset == 0)
2321 base = addr;
2322 offset = const0_rtx;
2324 if (GET_CODE (offset) == CONST)
2325 offset = XEXP (offset, 0);
2326 if (GET_CODE (offset) == PLUS)
2328 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2330 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2331 offset = XEXP (offset, 0);
2333 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2335 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2336 offset = XEXP (offset, 1);
2338 else
2340 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2341 offset = const0_rtx;
2344 else if (GET_CODE (offset) != CONST_INT)
2346 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2347 offset = const0_rtx;
2350 if (all_const && GET_CODE (base) == PLUS)
2351 base = gen_rtx_CONST (GET_MODE (base), base);
2353 if (GET_CODE (offset) != CONST_INT)
2354 abort ();
2356 val.start = INTVAL (offset);
2357 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2358 val.base = base;
2359 return val;
2361 else if (REG_P (x))
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2367 /* A pseudo with no hard reg. */
2368 val.start = REGNO (x);
2369 val.end = val.start + 1;
2371 else
2372 /* A hard reg. */
2373 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2375 else if (GET_CODE (x) == SUBREG)
2377 if (!REG_P (SUBREG_REG (x)))
2378 /* This could be more precise, but it's good enough. */
2379 return decompose (SUBREG_REG (x));
2380 val.reg_flag = 1;
2381 val.start = true_regnum (x);
2382 if (val.start < 0)
2383 return decompose (SUBREG_REG (x));
2384 else
2385 /* A hard reg. */
2386 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2388 else if (CONSTANT_P (x)
2389 /* This hasn't been assigned yet, so it can't conflict yet. */
2390 || GET_CODE (x) == SCRATCH)
2391 val.safe = 1;
2392 else
2393 abort ();
2394 return val;
2397 /* Return 1 if altering Y will not modify the value of X.
2398 Y is also described by YDATA, which should be decompose (Y). */
2400 static int
2401 immune_p (rtx x, rtx y, struct decomposition ydata)
2403 struct decomposition xdata;
2405 if (ydata.reg_flag)
2406 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2407 if (ydata.safe)
2408 return 1;
2410 if (!MEM_P (y))
2411 abort ();
2412 /* If Y is memory and X is not, Y can't affect X. */
2413 if (!MEM_P (x))
2414 return 1;
2416 xdata = decompose (x);
2418 if (! rtx_equal_p (xdata.base, ydata.base))
2420 /* If bases are distinct symbolic constants, there is no overlap. */
2421 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2422 return 1;
2423 /* Constants and stack slots never overlap. */
2424 if (CONSTANT_P (xdata.base)
2425 && (ydata.base == frame_pointer_rtx
2426 || ydata.base == hard_frame_pointer_rtx
2427 || ydata.base == stack_pointer_rtx))
2428 return 1;
2429 if (CONSTANT_P (ydata.base)
2430 && (xdata.base == frame_pointer_rtx
2431 || xdata.base == hard_frame_pointer_rtx
2432 || xdata.base == stack_pointer_rtx))
2433 return 1;
2434 /* If either base is variable, we don't know anything. */
2435 return 0;
2438 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2441 /* Similar, but calls decompose. */
2444 safe_from_earlyclobber (rtx op, rtx clobber)
2446 struct decomposition early_data;
2448 early_data = decompose (clobber);
2449 return immune_p (op, clobber, early_data);
2452 /* Main entry point of this file: search the body of INSN
2453 for values that need reloading and record them with push_reload.
2454 REPLACE nonzero means record also where the values occur
2455 so that subst_reloads can be used.
2457 IND_LEVELS says how many levels of indirection are supported by this
2458 machine; a value of zero means that a memory reference is not a valid
2459 memory address.
2461 LIVE_KNOWN says we have valid information about which hard
2462 regs are live at each point in the program; this is true when
2463 we are called from global_alloc but false when stupid register
2464 allocation has been done.
2466 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2467 which is nonnegative if the reg has been commandeered for reloading into.
2468 It is copied into STATIC_RELOAD_REG_P and referenced from there
2469 by various subroutines.
2471 Return TRUE if some operands need to be changed, because of swapping
2472 commutative operands, reg_equiv_address substitution, or whatever. */
2475 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2476 short *reload_reg_p)
2478 int insn_code_number;
2479 int i, j;
2480 int noperands;
2481 /* These start out as the constraints for the insn
2482 and they are chewed up as we consider alternatives. */
2483 char *constraints[MAX_RECOG_OPERANDS];
2484 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2485 a register. */
2486 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2487 char pref_or_nothing[MAX_RECOG_OPERANDS];
2488 /* Nonzero for a MEM operand whose entire address needs a reload.
2489 May be -1 to indicate the entire address may or may not need a reload. */
2490 int address_reloaded[MAX_RECOG_OPERANDS];
2491 /* Nonzero for an address operand that needs to be completely reloaded.
2492 May be -1 to indicate the entire operand may or may not need a reload. */
2493 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2494 /* Value of enum reload_type to use for operand. */
2495 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2496 /* Value of enum reload_type to use within address of operand. */
2497 enum reload_type address_type[MAX_RECOG_OPERANDS];
2498 /* Save the usage of each operand. */
2499 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2500 int no_input_reloads = 0, no_output_reloads = 0;
2501 int n_alternatives;
2502 int this_alternative[MAX_RECOG_OPERANDS];
2503 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2504 char this_alternative_win[MAX_RECOG_OPERANDS];
2505 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2506 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2507 int this_alternative_matches[MAX_RECOG_OPERANDS];
2508 int swapped;
2509 int goal_alternative[MAX_RECOG_OPERANDS];
2510 int this_alternative_number;
2511 int goal_alternative_number = 0;
2512 int operand_reloadnum[MAX_RECOG_OPERANDS];
2513 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2514 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2515 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2516 char goal_alternative_win[MAX_RECOG_OPERANDS];
2517 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2518 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2519 int goal_alternative_swapped;
2520 int best;
2521 int commutative;
2522 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2523 rtx substed_operand[MAX_RECOG_OPERANDS];
2524 rtx body = PATTERN (insn);
2525 rtx set = single_set (insn);
2526 int goal_earlyclobber = 0, this_earlyclobber;
2527 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2528 int retval = 0;
2530 this_insn = insn;
2531 n_reloads = 0;
2532 n_replacements = 0;
2533 n_earlyclobbers = 0;
2534 replace_reloads = replace;
2535 hard_regs_live_known = live_known;
2536 static_reload_reg_p = reload_reg_p;
2538 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2539 neither are insns that SET cc0. Insns that use CC0 are not allowed
2540 to have any input reloads. */
2541 if (JUMP_P (insn) || CALL_P (insn))
2542 no_output_reloads = 1;
2544 #ifdef HAVE_cc0
2545 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2546 no_input_reloads = 1;
2547 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2548 no_output_reloads = 1;
2549 #endif
2551 #ifdef SECONDARY_MEMORY_NEEDED
2552 /* The eliminated forms of any secondary memory locations are per-insn, so
2553 clear them out here. */
2555 if (secondary_memlocs_elim_used)
2557 memset (secondary_memlocs_elim, 0,
2558 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2559 secondary_memlocs_elim_used = 0;
2561 #endif
2563 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2564 is cheap to move between them. If it is not, there may not be an insn
2565 to do the copy, so we may need a reload. */
2566 if (GET_CODE (body) == SET
2567 && REG_P (SET_DEST (body))
2568 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2569 && REG_P (SET_SRC (body))
2570 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2571 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2572 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2573 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2574 return 0;
2576 extract_insn (insn);
2578 noperands = reload_n_operands = recog_data.n_operands;
2579 n_alternatives = recog_data.n_alternatives;
2581 /* Just return "no reloads" if insn has no operands with constraints. */
2582 if (noperands == 0 || n_alternatives == 0)
2583 return 0;
2585 insn_code_number = INSN_CODE (insn);
2586 this_insn_is_asm = insn_code_number < 0;
2588 memcpy (operand_mode, recog_data.operand_mode,
2589 noperands * sizeof (enum machine_mode));
2590 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2592 commutative = -1;
2594 /* If we will need to know, later, whether some pair of operands
2595 are the same, we must compare them now and save the result.
2596 Reloading the base and index registers will clobber them
2597 and afterward they will fail to match. */
2599 for (i = 0; i < noperands; i++)
2601 char *p;
2602 int c;
2604 substed_operand[i] = recog_data.operand[i];
2605 p = constraints[i];
2607 modified[i] = RELOAD_READ;
2609 /* Scan this operand's constraint to see if it is an output operand,
2610 an in-out operand, is commutative, or should match another. */
2612 while ((c = *p))
2614 p += CONSTRAINT_LEN (c, p);
2615 switch (c)
2617 case '=':
2618 modified[i] = RELOAD_WRITE;
2619 break;
2620 case '+':
2621 modified[i] = RELOAD_READ_WRITE;
2622 break;
2623 case '%':
2625 /* The last operand should not be marked commutative. */
2626 if (i == noperands - 1)
2627 abort ();
2629 /* We currently only support one commutative pair of
2630 operands. Some existing asm code currently uses more
2631 than one pair. Previously, that would usually work,
2632 but sometimes it would crash the compiler. We
2633 continue supporting that case as well as we can by
2634 silently ignoring all but the first pair. In the
2635 future we may handle it correctly. */
2636 if (commutative < 0)
2637 commutative = i;
2638 else if (!this_insn_is_asm)
2639 abort ();
2641 break;
2642 /* Use of ISDIGIT is tempting here, but it may get expensive because
2643 of locale support we don't want. */
2644 case '0': case '1': case '2': case '3': case '4':
2645 case '5': case '6': case '7': case '8': case '9':
2647 c = strtoul (p - 1, &p, 10);
2649 operands_match[c][i]
2650 = operands_match_p (recog_data.operand[c],
2651 recog_data.operand[i]);
2653 /* An operand may not match itself. */
2654 if (c == i)
2655 abort ();
2657 /* If C can be commuted with C+1, and C might need to match I,
2658 then C+1 might also need to match I. */
2659 if (commutative >= 0)
2661 if (c == commutative || c == commutative + 1)
2663 int other = c + (c == commutative ? 1 : -1);
2664 operands_match[other][i]
2665 = operands_match_p (recog_data.operand[other],
2666 recog_data.operand[i]);
2668 if (i == commutative || i == commutative + 1)
2670 int other = i + (i == commutative ? 1 : -1);
2671 operands_match[c][other]
2672 = operands_match_p (recog_data.operand[c],
2673 recog_data.operand[other]);
2675 /* Note that C is supposed to be less than I.
2676 No need to consider altering both C and I because in
2677 that case we would alter one into the other. */
2684 /* Examine each operand that is a memory reference or memory address
2685 and reload parts of the addresses into index registers.
2686 Also here any references to pseudo regs that didn't get hard regs
2687 but are equivalent to constants get replaced in the insn itself
2688 with those constants. Nobody will ever see them again.
2690 Finally, set up the preferred classes of each operand. */
2692 for (i = 0; i < noperands; i++)
2694 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2696 address_reloaded[i] = 0;
2697 address_operand_reloaded[i] = 0;
2698 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2699 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2700 : RELOAD_OTHER);
2701 address_type[i]
2702 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2703 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2704 : RELOAD_OTHER);
2706 if (*constraints[i] == 0)
2707 /* Ignore things like match_operator operands. */
2709 else if (constraints[i][0] == 'p'
2710 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2712 address_operand_reloaded[i]
2713 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2714 recog_data.operand[i],
2715 recog_data.operand_loc[i],
2716 i, operand_type[i], ind_levels, insn);
2718 /* If we now have a simple operand where we used to have a
2719 PLUS or MULT, re-recognize and try again. */
2720 if ((OBJECT_P (*recog_data.operand_loc[i])
2721 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2722 && (GET_CODE (recog_data.operand[i]) == MULT
2723 || GET_CODE (recog_data.operand[i]) == PLUS))
2725 INSN_CODE (insn) = -1;
2726 retval = find_reloads (insn, replace, ind_levels, live_known,
2727 reload_reg_p);
2728 return retval;
2731 recog_data.operand[i] = *recog_data.operand_loc[i];
2732 substed_operand[i] = recog_data.operand[i];
2734 /* Address operands are reloaded in their existing mode,
2735 no matter what is specified in the machine description. */
2736 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2738 else if (code == MEM)
2740 address_reloaded[i]
2741 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2742 recog_data.operand_loc[i],
2743 XEXP (recog_data.operand[i], 0),
2744 &XEXP (recog_data.operand[i], 0),
2745 i, address_type[i], ind_levels, insn);
2746 recog_data.operand[i] = *recog_data.operand_loc[i];
2747 substed_operand[i] = recog_data.operand[i];
2749 else if (code == SUBREG)
2751 rtx reg = SUBREG_REG (recog_data.operand[i]);
2752 rtx op
2753 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2754 ind_levels,
2755 set != 0
2756 && &SET_DEST (set) == recog_data.operand_loc[i],
2757 insn,
2758 &address_reloaded[i]);
2760 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2761 that didn't get a hard register, emit a USE with a REG_EQUAL
2762 note in front so that we might inherit a previous, possibly
2763 wider reload. */
2765 if (replace
2766 && MEM_P (op)
2767 && REG_P (reg)
2768 && (GET_MODE_SIZE (GET_MODE (reg))
2769 >= GET_MODE_SIZE (GET_MODE (op))))
2770 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2771 insn),
2772 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2774 substed_operand[i] = recog_data.operand[i] = op;
2776 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2777 /* We can get a PLUS as an "operand" as a result of register
2778 elimination. See eliminate_regs and gen_reload. We handle
2779 a unary operator by reloading the operand. */
2780 substed_operand[i] = recog_data.operand[i]
2781 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2782 ind_levels, 0, insn,
2783 &address_reloaded[i]);
2784 else if (code == REG)
2786 /* This is equivalent to calling find_reloads_toplev.
2787 The code is duplicated for speed.
2788 When we find a pseudo always equivalent to a constant,
2789 we replace it by the constant. We must be sure, however,
2790 that we don't try to replace it in the insn in which it
2791 is being set. */
2792 int regno = REGNO (recog_data.operand[i]);
2793 if (reg_equiv_constant[regno] != 0
2794 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2796 /* Record the existing mode so that the check if constants are
2797 allowed will work when operand_mode isn't specified. */
2799 if (operand_mode[i] == VOIDmode)
2800 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2802 substed_operand[i] = recog_data.operand[i]
2803 = reg_equiv_constant[regno];
2805 if (reg_equiv_memory_loc[regno] != 0
2806 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2807 /* We need not give a valid is_set_dest argument since the case
2808 of a constant equivalence was checked above. */
2809 substed_operand[i] = recog_data.operand[i]
2810 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2811 ind_levels, 0, insn,
2812 &address_reloaded[i]);
2814 /* If the operand is still a register (we didn't replace it with an
2815 equivalent), get the preferred class to reload it into. */
2816 code = GET_CODE (recog_data.operand[i]);
2817 preferred_class[i]
2818 = ((code == REG && REGNO (recog_data.operand[i])
2819 >= FIRST_PSEUDO_REGISTER)
2820 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2821 : NO_REGS);
2822 pref_or_nothing[i]
2823 = (code == REG
2824 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2825 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2828 /* If this is simply a copy from operand 1 to operand 0, merge the
2829 preferred classes for the operands. */
2830 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2831 && recog_data.operand[1] == SET_SRC (set))
2833 preferred_class[0] = preferred_class[1]
2834 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2835 pref_or_nothing[0] |= pref_or_nothing[1];
2836 pref_or_nothing[1] |= pref_or_nothing[0];
2839 /* Now see what we need for pseudo-regs that didn't get hard regs
2840 or got the wrong kind of hard reg. For this, we must consider
2841 all the operands together against the register constraints. */
2843 best = MAX_RECOG_OPERANDS * 2 + 600;
2845 swapped = 0;
2846 goal_alternative_swapped = 0;
2847 try_swapped:
2849 /* The constraints are made of several alternatives.
2850 Each operand's constraint looks like foo,bar,... with commas
2851 separating the alternatives. The first alternatives for all
2852 operands go together, the second alternatives go together, etc.
2854 First loop over alternatives. */
2856 for (this_alternative_number = 0;
2857 this_alternative_number < n_alternatives;
2858 this_alternative_number++)
2860 /* Loop over operands for one constraint alternative. */
2861 /* LOSERS counts those that don't fit this alternative
2862 and would require loading. */
2863 int losers = 0;
2864 /* BAD is set to 1 if it some operand can't fit this alternative
2865 even after reloading. */
2866 int bad = 0;
2867 /* REJECT is a count of how undesirable this alternative says it is
2868 if any reloading is required. If the alternative matches exactly
2869 then REJECT is ignored, but otherwise it gets this much
2870 counted against it in addition to the reloading needed. Each
2871 ? counts three times here since we want the disparaging caused by
2872 a bad register class to only count 1/3 as much. */
2873 int reject = 0;
2875 this_earlyclobber = 0;
2877 for (i = 0; i < noperands; i++)
2879 char *p = constraints[i];
2880 char *end;
2881 int len;
2882 int win = 0;
2883 int did_match = 0;
2884 /* 0 => this operand can be reloaded somehow for this alternative. */
2885 int badop = 1;
2886 /* 0 => this operand can be reloaded if the alternative allows regs. */
2887 int winreg = 0;
2888 int c;
2889 int m;
2890 rtx operand = recog_data.operand[i];
2891 int offset = 0;
2892 /* Nonzero means this is a MEM that must be reloaded into a reg
2893 regardless of what the constraint says. */
2894 int force_reload = 0;
2895 int offmemok = 0;
2896 /* Nonzero if a constant forced into memory would be OK for this
2897 operand. */
2898 int constmemok = 0;
2899 int earlyclobber = 0;
2901 /* If the predicate accepts a unary operator, it means that
2902 we need to reload the operand, but do not do this for
2903 match_operator and friends. */
2904 if (UNARY_P (operand) && *p != 0)
2905 operand = XEXP (operand, 0);
2907 /* If the operand is a SUBREG, extract
2908 the REG or MEM (or maybe even a constant) within.
2909 (Constants can occur as a result of reg_equiv_constant.) */
2911 while (GET_CODE (operand) == SUBREG)
2913 /* Offset only matters when operand is a REG and
2914 it is a hard reg. This is because it is passed
2915 to reg_fits_class_p if it is a REG and all pseudos
2916 return 0 from that function. */
2917 if (REG_P (SUBREG_REG (operand))
2918 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2920 if (!subreg_offset_representable_p
2921 (REGNO (SUBREG_REG (operand)),
2922 GET_MODE (SUBREG_REG (operand)),
2923 SUBREG_BYTE (operand),
2924 GET_MODE (operand)))
2925 force_reload = 1;
2926 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2927 GET_MODE (SUBREG_REG (operand)),
2928 SUBREG_BYTE (operand),
2929 GET_MODE (operand));
2931 operand = SUBREG_REG (operand);
2932 /* Force reload if this is a constant or PLUS or if there may
2933 be a problem accessing OPERAND in the outer mode. */
2934 if (CONSTANT_P (operand)
2935 || GET_CODE (operand) == PLUS
2936 /* We must force a reload of paradoxical SUBREGs
2937 of a MEM because the alignment of the inner value
2938 may not be enough to do the outer reference. On
2939 big-endian machines, it may also reference outside
2940 the object.
2942 On machines that extend byte operations and we have a
2943 SUBREG where both the inner and outer modes are no wider
2944 than a word and the inner mode is narrower, is integral,
2945 and gets extended when loaded from memory, combine.c has
2946 made assumptions about the behavior of the machine in such
2947 register access. If the data is, in fact, in memory we
2948 must always load using the size assumed to be in the
2949 register and let the insn do the different-sized
2950 accesses.
2952 This is doubly true if WORD_REGISTER_OPERATIONS. In
2953 this case eliminate_regs has left non-paradoxical
2954 subregs for push_reload to see. Make sure it does
2955 by forcing the reload.
2957 ??? When is it right at this stage to have a subreg
2958 of a mem that is _not_ to be handled specially? IMO
2959 those should have been reduced to just a mem. */
2960 || ((MEM_P (operand)
2961 || (REG_P (operand)
2962 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2963 #ifndef WORD_REGISTER_OPERATIONS
2964 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2965 < BIGGEST_ALIGNMENT)
2966 && (GET_MODE_SIZE (operand_mode[i])
2967 > GET_MODE_SIZE (GET_MODE (operand))))
2968 || BYTES_BIG_ENDIAN
2969 #ifdef LOAD_EXTEND_OP
2970 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2971 && (GET_MODE_SIZE (GET_MODE (operand))
2972 <= UNITS_PER_WORD)
2973 && (GET_MODE_SIZE (operand_mode[i])
2974 > GET_MODE_SIZE (GET_MODE (operand)))
2975 && INTEGRAL_MODE_P (GET_MODE (operand))
2976 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2977 #endif
2979 #endif
2982 force_reload = 1;
2985 this_alternative[i] = (int) NO_REGS;
2986 this_alternative_win[i] = 0;
2987 this_alternative_match_win[i] = 0;
2988 this_alternative_offmemok[i] = 0;
2989 this_alternative_earlyclobber[i] = 0;
2990 this_alternative_matches[i] = -1;
2992 /* An empty constraint or empty alternative
2993 allows anything which matched the pattern. */
2994 if (*p == 0 || *p == ',')
2995 win = 1, badop = 0;
2997 /* Scan this alternative's specs for this operand;
2998 set WIN if the operand fits any letter in this alternative.
2999 Otherwise, clear BADOP if this operand could
3000 fit some letter after reloads,
3001 or set WINREG if this operand could fit after reloads
3002 provided the constraint allows some registers. */
3005 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3007 case '\0':
3008 len = 0;
3009 break;
3010 case ',':
3011 c = '\0';
3012 break;
3014 case '=': case '+': case '*':
3015 break;
3017 case '%':
3018 /* We only support one commutative marker, the first
3019 one. We already set commutative above. */
3020 break;
3022 case '?':
3023 reject += 6;
3024 break;
3026 case '!':
3027 reject = 600;
3028 break;
3030 case '#':
3031 /* Ignore rest of this alternative as far as
3032 reloading is concerned. */
3034 p++;
3035 while (*p && *p != ',');
3036 len = 0;
3037 break;
3039 case '0': case '1': case '2': case '3': case '4':
3040 case '5': case '6': case '7': case '8': case '9':
3041 m = strtoul (p, &end, 10);
3042 p = end;
3043 len = 0;
3045 this_alternative_matches[i] = m;
3046 /* We are supposed to match a previous operand.
3047 If we do, we win if that one did.
3048 If we do not, count both of the operands as losers.
3049 (This is too conservative, since most of the time
3050 only a single reload insn will be needed to make
3051 the two operands win. As a result, this alternative
3052 may be rejected when it is actually desirable.) */
3053 if ((swapped && (m != commutative || i != commutative + 1))
3054 /* If we are matching as if two operands were swapped,
3055 also pretend that operands_match had been computed
3056 with swapped.
3057 But if I is the second of those and C is the first,
3058 don't exchange them, because operands_match is valid
3059 only on one side of its diagonal. */
3060 ? (operands_match
3061 [(m == commutative || m == commutative + 1)
3062 ? 2 * commutative + 1 - m : m]
3063 [(i == commutative || i == commutative + 1)
3064 ? 2 * commutative + 1 - i : i])
3065 : operands_match[m][i])
3067 /* If we are matching a non-offsettable address where an
3068 offsettable address was expected, then we must reject
3069 this combination, because we can't reload it. */
3070 if (this_alternative_offmemok[m]
3071 && MEM_P (recog_data.operand[m])
3072 && this_alternative[m] == (int) NO_REGS
3073 && ! this_alternative_win[m])
3074 bad = 1;
3076 did_match = this_alternative_win[m];
3078 else
3080 /* Operands don't match. */
3081 rtx value;
3082 /* Retroactively mark the operand we had to match
3083 as a loser, if it wasn't already. */
3084 if (this_alternative_win[m])
3085 losers++;
3086 this_alternative_win[m] = 0;
3087 if (this_alternative[m] == (int) NO_REGS)
3088 bad = 1;
3089 /* But count the pair only once in the total badness of
3090 this alternative, if the pair can be a dummy reload. */
3091 value
3092 = find_dummy_reload (recog_data.operand[i],
3093 recog_data.operand[m],
3094 recog_data.operand_loc[i],
3095 recog_data.operand_loc[m],
3096 operand_mode[i], operand_mode[m],
3097 this_alternative[m], -1,
3098 this_alternative_earlyclobber[m]);
3100 if (value != 0)
3101 losers--;
3103 /* This can be fixed with reloads if the operand
3104 we are supposed to match can be fixed with reloads. */
3105 badop = 0;
3106 this_alternative[i] = this_alternative[m];
3108 /* If we have to reload this operand and some previous
3109 operand also had to match the same thing as this
3110 operand, we don't know how to do that. So reject this
3111 alternative. */
3112 if (! did_match || force_reload)
3113 for (j = 0; j < i; j++)
3114 if (this_alternative_matches[j]
3115 == this_alternative_matches[i])
3116 badop = 1;
3117 break;
3119 case 'p':
3120 /* All necessary reloads for an address_operand
3121 were handled in find_reloads_address. */
3122 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3123 win = 1;
3124 badop = 0;
3125 break;
3127 case 'm':
3128 if (force_reload)
3129 break;
3130 if (MEM_P (operand)
3131 || (REG_P (operand)
3132 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3133 && reg_renumber[REGNO (operand)] < 0))
3134 win = 1;
3135 if (CONST_POOL_OK_P (operand))
3136 badop = 0;
3137 constmemok = 1;
3138 break;
3140 case '<':
3141 if (MEM_P (operand)
3142 && ! address_reloaded[i]
3143 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3144 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3145 win = 1;
3146 break;
3148 case '>':
3149 if (MEM_P (operand)
3150 && ! address_reloaded[i]
3151 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3152 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3153 win = 1;
3154 break;
3156 /* Memory operand whose address is not offsettable. */
3157 case 'V':
3158 if (force_reload)
3159 break;
3160 if (MEM_P (operand)
3161 && ! (ind_levels ? offsettable_memref_p (operand)
3162 : offsettable_nonstrict_memref_p (operand))
3163 /* Certain mem addresses will become offsettable
3164 after they themselves are reloaded. This is important;
3165 we don't want our own handling of unoffsettables
3166 to override the handling of reg_equiv_address. */
3167 && !(REG_P (XEXP (operand, 0))
3168 && (ind_levels == 0
3169 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3170 win = 1;
3171 break;
3173 /* Memory operand whose address is offsettable. */
3174 case 'o':
3175 if (force_reload)
3176 break;
3177 if ((MEM_P (operand)
3178 /* If IND_LEVELS, find_reloads_address won't reload a
3179 pseudo that didn't get a hard reg, so we have to
3180 reject that case. */
3181 && ((ind_levels ? offsettable_memref_p (operand)
3182 : offsettable_nonstrict_memref_p (operand))
3183 /* A reloaded address is offsettable because it is now
3184 just a simple register indirect. */
3185 || address_reloaded[i] == 1))
3186 || (REG_P (operand)
3187 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3188 && reg_renumber[REGNO (operand)] < 0
3189 /* If reg_equiv_address is nonzero, we will be
3190 loading it into a register; hence it will be
3191 offsettable, but we cannot say that reg_equiv_mem
3192 is offsettable without checking. */
3193 && ((reg_equiv_mem[REGNO (operand)] != 0
3194 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3195 || (reg_equiv_address[REGNO (operand)] != 0))))
3196 win = 1;
3197 if (CONST_POOL_OK_P (operand)
3198 || MEM_P (operand))
3199 badop = 0;
3200 constmemok = 1;
3201 offmemok = 1;
3202 break;
3204 case '&':
3205 /* Output operand that is stored before the need for the
3206 input operands (and their index registers) is over. */
3207 earlyclobber = 1, this_earlyclobber = 1;
3208 break;
3210 case 'E':
3211 case 'F':
3212 if (GET_CODE (operand) == CONST_DOUBLE
3213 || (GET_CODE (operand) == CONST_VECTOR
3214 && (GET_MODE_CLASS (GET_MODE (operand))
3215 == MODE_VECTOR_FLOAT)))
3216 win = 1;
3217 break;
3219 case 'G':
3220 case 'H':
3221 if (GET_CODE (operand) == CONST_DOUBLE
3222 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3223 win = 1;
3224 break;
3226 case 's':
3227 if (GET_CODE (operand) == CONST_INT
3228 || (GET_CODE (operand) == CONST_DOUBLE
3229 && GET_MODE (operand) == VOIDmode))
3230 break;
3231 case 'i':
3232 if (CONSTANT_P (operand)
3233 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3234 win = 1;
3235 break;
3237 case 'n':
3238 if (GET_CODE (operand) == CONST_INT
3239 || (GET_CODE (operand) == CONST_DOUBLE
3240 && GET_MODE (operand) == VOIDmode))
3241 win = 1;
3242 break;
3244 case 'I':
3245 case 'J':
3246 case 'K':
3247 case 'L':
3248 case 'M':
3249 case 'N':
3250 case 'O':
3251 case 'P':
3252 if (GET_CODE (operand) == CONST_INT
3253 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3254 win = 1;
3255 break;
3257 case 'X':
3258 win = 1;
3259 break;
3261 case 'g':
3262 if (! force_reload
3263 /* A PLUS is never a valid operand, but reload can make
3264 it from a register when eliminating registers. */
3265 && GET_CODE (operand) != PLUS
3266 /* A SCRATCH is not a valid operand. */
3267 && GET_CODE (operand) != SCRATCH
3268 && (! CONSTANT_P (operand)
3269 || ! flag_pic
3270 || LEGITIMATE_PIC_OPERAND_P (operand))
3271 && (GENERAL_REGS == ALL_REGS
3272 || !REG_P (operand)
3273 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3274 && reg_renumber[REGNO (operand)] < 0)))
3275 win = 1;
3276 /* Drop through into 'r' case. */
3278 case 'r':
3279 this_alternative[i]
3280 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3281 goto reg;
3283 default:
3284 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3286 #ifdef EXTRA_CONSTRAINT_STR
3287 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3289 if (force_reload)
3290 break;
3291 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3292 win = 1;
3293 /* If the address was already reloaded,
3294 we win as well. */
3295 else if (MEM_P (operand)
3296 && address_reloaded[i] == 1)
3297 win = 1;
3298 /* Likewise if the address will be reloaded because
3299 reg_equiv_address is nonzero. For reg_equiv_mem
3300 we have to check. */
3301 else if (REG_P (operand)
3302 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3303 && reg_renumber[REGNO (operand)] < 0
3304 && ((reg_equiv_mem[REGNO (operand)] != 0
3305 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3306 || (reg_equiv_address[REGNO (operand)] != 0)))
3307 win = 1;
3309 /* If we didn't already win, we can reload
3310 constants via force_const_mem, and other
3311 MEMs by reloading the address like for 'o'. */
3312 if (CONST_POOL_OK_P (operand)
3313 || MEM_P (operand))
3314 badop = 0;
3315 constmemok = 1;
3316 offmemok = 1;
3317 break;
3319 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3321 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3322 win = 1;
3324 /* If we didn't already win, we can reload
3325 the address into a base register. */
3326 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3327 badop = 0;
3328 break;
3331 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3332 win = 1;
3333 #endif
3334 break;
3337 this_alternative[i]
3338 = (int) (reg_class_subunion
3339 [this_alternative[i]]
3340 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3341 reg:
3342 if (GET_MODE (operand) == BLKmode)
3343 break;
3344 winreg = 1;
3345 if (REG_P (operand)
3346 && reg_fits_class_p (operand, this_alternative[i],
3347 offset, GET_MODE (recog_data.operand[i])))
3348 win = 1;
3349 break;
3351 while ((p += len), c);
3353 constraints[i] = p;
3355 /* If this operand could be handled with a reg,
3356 and some reg is allowed, then this operand can be handled. */
3357 if (winreg && this_alternative[i] != (int) NO_REGS)
3358 badop = 0;
3360 /* Record which operands fit this alternative. */
3361 this_alternative_earlyclobber[i] = earlyclobber;
3362 if (win && ! force_reload)
3363 this_alternative_win[i] = 1;
3364 else if (did_match && ! force_reload)
3365 this_alternative_match_win[i] = 1;
3366 else
3368 int const_to_mem = 0;
3370 this_alternative_offmemok[i] = offmemok;
3371 losers++;
3372 if (badop)
3373 bad = 1;
3374 /* Alternative loses if it has no regs for a reg operand. */
3375 if (REG_P (operand)
3376 && this_alternative[i] == (int) NO_REGS
3377 && this_alternative_matches[i] < 0)
3378 bad = 1;
3380 /* If this is a constant that is reloaded into the desired
3381 class by copying it to memory first, count that as another
3382 reload. This is consistent with other code and is
3383 required to avoid choosing another alternative when
3384 the constant is moved into memory by this function on
3385 an early reload pass. Note that the test here is
3386 precisely the same as in the code below that calls
3387 force_const_mem. */
3388 if (CONST_POOL_OK_P (operand)
3389 && ((PREFERRED_RELOAD_CLASS (operand,
3390 (enum reg_class) this_alternative[i])
3391 == NO_REGS)
3392 || no_input_reloads)
3393 && operand_mode[i] != VOIDmode)
3395 const_to_mem = 1;
3396 if (this_alternative[i] != (int) NO_REGS)
3397 losers++;
3400 /* If we can't reload this value at all, reject this
3401 alternative. Note that we could also lose due to
3402 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3403 here. */
3405 if (! CONSTANT_P (operand)
3406 && (enum reg_class) this_alternative[i] != NO_REGS
3407 && (PREFERRED_RELOAD_CLASS (operand,
3408 (enum reg_class) this_alternative[i])
3409 == NO_REGS))
3410 bad = 1;
3412 /* Alternative loses if it requires a type of reload not
3413 permitted for this insn. We can always reload SCRATCH
3414 and objects with a REG_UNUSED note. */
3415 else if (GET_CODE (operand) != SCRATCH
3416 && modified[i] != RELOAD_READ && no_output_reloads
3417 && ! find_reg_note (insn, REG_UNUSED, operand))
3418 bad = 1;
3419 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3420 && ! const_to_mem)
3421 bad = 1;
3423 /* We prefer to reload pseudos over reloading other things,
3424 since such reloads may be able to be eliminated later.
3425 If we are reloading a SCRATCH, we won't be generating any
3426 insns, just using a register, so it is also preferred.
3427 So bump REJECT in other cases. Don't do this in the
3428 case where we are forcing a constant into memory and
3429 it will then win since we don't want to have a different
3430 alternative match then. */
3431 if (! (REG_P (operand)
3432 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3433 && GET_CODE (operand) != SCRATCH
3434 && ! (const_to_mem && constmemok))
3435 reject += 2;
3437 /* Input reloads can be inherited more often than output
3438 reloads can be removed, so penalize output reloads. */
3439 if (operand_type[i] != RELOAD_FOR_INPUT
3440 && GET_CODE (operand) != SCRATCH)
3441 reject++;
3444 /* If this operand is a pseudo register that didn't get a hard
3445 reg and this alternative accepts some register, see if the
3446 class that we want is a subset of the preferred class for this
3447 register. If not, but it intersects that class, use the
3448 preferred class instead. If it does not intersect the preferred
3449 class, show that usage of this alternative should be discouraged;
3450 it will be discouraged more still if the register is `preferred
3451 or nothing'. We do this because it increases the chance of
3452 reusing our spill register in a later insn and avoiding a pair
3453 of memory stores and loads.
3455 Don't bother with this if this alternative will accept this
3456 operand.
3458 Don't do this for a multiword operand, since it is only a
3459 small win and has the risk of requiring more spill registers,
3460 which could cause a large loss.
3462 Don't do this if the preferred class has only one register
3463 because we might otherwise exhaust the class. */
3465 if (! win && ! did_match
3466 && this_alternative[i] != (int) NO_REGS
3467 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3468 && reg_class_size[(int) preferred_class[i]] > 1)
3470 if (! reg_class_subset_p (this_alternative[i],
3471 preferred_class[i]))
3473 /* Since we don't have a way of forming the intersection,
3474 we just do something special if the preferred class
3475 is a subset of the class we have; that's the most
3476 common case anyway. */
3477 if (reg_class_subset_p (preferred_class[i],
3478 this_alternative[i]))
3479 this_alternative[i] = (int) preferred_class[i];
3480 else
3481 reject += (2 + 2 * pref_or_nothing[i]);
3486 /* Now see if any output operands that are marked "earlyclobber"
3487 in this alternative conflict with any input operands
3488 or any memory addresses. */
3490 for (i = 0; i < noperands; i++)
3491 if (this_alternative_earlyclobber[i]
3492 && (this_alternative_win[i] || this_alternative_match_win[i]))
3494 struct decomposition early_data;
3496 early_data = decompose (recog_data.operand[i]);
3498 if (modified[i] == RELOAD_READ)
3499 abort ();
3501 if (this_alternative[i] == NO_REGS)
3503 this_alternative_earlyclobber[i] = 0;
3504 if (this_insn_is_asm)
3505 error_for_asm (this_insn,
3506 "`&' constraint used with no register class");
3507 else
3508 abort ();
3511 for (j = 0; j < noperands; j++)
3512 /* Is this an input operand or a memory ref? */
3513 if ((MEM_P (recog_data.operand[j])
3514 || modified[j] != RELOAD_WRITE)
3515 && j != i
3516 /* Ignore things like match_operator operands. */
3517 && *recog_data.constraints[j] != 0
3518 /* Don't count an input operand that is constrained to match
3519 the early clobber operand. */
3520 && ! (this_alternative_matches[j] == i
3521 && rtx_equal_p (recog_data.operand[i],
3522 recog_data.operand[j]))
3523 /* Is it altered by storing the earlyclobber operand? */
3524 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3525 early_data))
3527 /* If the output is in a single-reg class,
3528 it's costly to reload it, so reload the input instead. */
3529 if (reg_class_size[this_alternative[i]] == 1
3530 && (REG_P (recog_data.operand[j])
3531 || GET_CODE (recog_data.operand[j]) == SUBREG))
3533 losers++;
3534 this_alternative_win[j] = 0;
3535 this_alternative_match_win[j] = 0;
3537 else
3538 break;
3540 /* If an earlyclobber operand conflicts with something,
3541 it must be reloaded, so request this and count the cost. */
3542 if (j != noperands)
3544 losers++;
3545 this_alternative_win[i] = 0;
3546 this_alternative_match_win[j] = 0;
3547 for (j = 0; j < noperands; j++)
3548 if (this_alternative_matches[j] == i
3549 && this_alternative_match_win[j])
3551 this_alternative_win[j] = 0;
3552 this_alternative_match_win[j] = 0;
3553 losers++;
3558 /* If one alternative accepts all the operands, no reload required,
3559 choose that alternative; don't consider the remaining ones. */
3560 if (losers == 0)
3562 /* Unswap these so that they are never swapped at `finish'. */
3563 if (commutative >= 0)
3565 recog_data.operand[commutative] = substed_operand[commutative];
3566 recog_data.operand[commutative + 1]
3567 = substed_operand[commutative + 1];
3569 for (i = 0; i < noperands; i++)
3571 goal_alternative_win[i] = this_alternative_win[i];
3572 goal_alternative_match_win[i] = this_alternative_match_win[i];
3573 goal_alternative[i] = this_alternative[i];
3574 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3575 goal_alternative_matches[i] = this_alternative_matches[i];
3576 goal_alternative_earlyclobber[i]
3577 = this_alternative_earlyclobber[i];
3579 goal_alternative_number = this_alternative_number;
3580 goal_alternative_swapped = swapped;
3581 goal_earlyclobber = this_earlyclobber;
3582 goto finish;
3585 /* REJECT, set by the ! and ? constraint characters and when a register
3586 would be reloaded into a non-preferred class, discourages the use of
3587 this alternative for a reload goal. REJECT is incremented by six
3588 for each ? and two for each non-preferred class. */
3589 losers = losers * 6 + reject;
3591 /* If this alternative can be made to work by reloading,
3592 and it needs less reloading than the others checked so far,
3593 record it as the chosen goal for reloading. */
3594 if (! bad && best > losers)
3596 for (i = 0; i < noperands; i++)
3598 goal_alternative[i] = this_alternative[i];
3599 goal_alternative_win[i] = this_alternative_win[i];
3600 goal_alternative_match_win[i] = this_alternative_match_win[i];
3601 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3602 goal_alternative_matches[i] = this_alternative_matches[i];
3603 goal_alternative_earlyclobber[i]
3604 = this_alternative_earlyclobber[i];
3606 goal_alternative_swapped = swapped;
3607 best = losers;
3608 goal_alternative_number = this_alternative_number;
3609 goal_earlyclobber = this_earlyclobber;
3613 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3614 then we need to try each alternative twice,
3615 the second time matching those two operands
3616 as if we had exchanged them.
3617 To do this, really exchange them in operands.
3619 If we have just tried the alternatives the second time,
3620 return operands to normal and drop through. */
3622 if (commutative >= 0)
3624 swapped = !swapped;
3625 if (swapped)
3627 enum reg_class tclass;
3628 int t;
3630 recog_data.operand[commutative] = substed_operand[commutative + 1];
3631 recog_data.operand[commutative + 1] = substed_operand[commutative];
3632 /* Swap the duplicates too. */
3633 for (i = 0; i < recog_data.n_dups; i++)
3634 if (recog_data.dup_num[i] == commutative
3635 || recog_data.dup_num[i] == commutative + 1)
3636 *recog_data.dup_loc[i]
3637 = recog_data.operand[(int) recog_data.dup_num[i]];
3639 tclass = preferred_class[commutative];
3640 preferred_class[commutative] = preferred_class[commutative + 1];
3641 preferred_class[commutative + 1] = tclass;
3643 t = pref_or_nothing[commutative];
3644 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3645 pref_or_nothing[commutative + 1] = t;
3647 memcpy (constraints, recog_data.constraints,
3648 noperands * sizeof (char *));
3649 goto try_swapped;
3651 else
3653 recog_data.operand[commutative] = substed_operand[commutative];
3654 recog_data.operand[commutative + 1]
3655 = substed_operand[commutative + 1];
3656 /* Unswap the duplicates too. */
3657 for (i = 0; i < recog_data.n_dups; i++)
3658 if (recog_data.dup_num[i] == commutative
3659 || recog_data.dup_num[i] == commutative + 1)
3660 *recog_data.dup_loc[i]
3661 = recog_data.operand[(int) recog_data.dup_num[i]];
3665 /* The operands don't meet the constraints.
3666 goal_alternative describes the alternative
3667 that we could reach by reloading the fewest operands.
3668 Reload so as to fit it. */
3670 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3672 /* No alternative works with reloads?? */
3673 if (insn_code_number >= 0)
3674 fatal_insn ("unable to generate reloads for:", insn);
3675 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3676 /* Avoid further trouble with this insn. */
3677 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3678 n_reloads = 0;
3679 return 0;
3682 /* Jump to `finish' from above if all operands are valid already.
3683 In that case, goal_alternative_win is all 1. */
3684 finish:
3686 /* Right now, for any pair of operands I and J that are required to match,
3687 with I < J,
3688 goal_alternative_matches[J] is I.
3689 Set up goal_alternative_matched as the inverse function:
3690 goal_alternative_matched[I] = J. */
3692 for (i = 0; i < noperands; i++)
3693 goal_alternative_matched[i] = -1;
3695 for (i = 0; i < noperands; i++)
3696 if (! goal_alternative_win[i]
3697 && goal_alternative_matches[i] >= 0)
3698 goal_alternative_matched[goal_alternative_matches[i]] = i;
3700 for (i = 0; i < noperands; i++)
3701 goal_alternative_win[i] |= goal_alternative_match_win[i];
3703 /* If the best alternative is with operands 1 and 2 swapped,
3704 consider them swapped before reporting the reloads. Update the
3705 operand numbers of any reloads already pushed. */
3707 if (goal_alternative_swapped)
3709 rtx tem;
3711 tem = substed_operand[commutative];
3712 substed_operand[commutative] = substed_operand[commutative + 1];
3713 substed_operand[commutative + 1] = tem;
3714 tem = recog_data.operand[commutative];
3715 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3716 recog_data.operand[commutative + 1] = tem;
3717 tem = *recog_data.operand_loc[commutative];
3718 *recog_data.operand_loc[commutative]
3719 = *recog_data.operand_loc[commutative + 1];
3720 *recog_data.operand_loc[commutative + 1] = tem;
3722 for (i = 0; i < n_reloads; i++)
3724 if (rld[i].opnum == commutative)
3725 rld[i].opnum = commutative + 1;
3726 else if (rld[i].opnum == commutative + 1)
3727 rld[i].opnum = commutative;
3731 for (i = 0; i < noperands; i++)
3733 operand_reloadnum[i] = -1;
3735 /* If this is an earlyclobber operand, we need to widen the scope.
3736 The reload must remain valid from the start of the insn being
3737 reloaded until after the operand is stored into its destination.
3738 We approximate this with RELOAD_OTHER even though we know that we
3739 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3741 One special case that is worth checking is when we have an
3742 output that is earlyclobber but isn't used past the insn (typically
3743 a SCRATCH). In this case, we only need have the reload live
3744 through the insn itself, but not for any of our input or output
3745 reloads.
3746 But we must not accidentally narrow the scope of an existing
3747 RELOAD_OTHER reload - leave these alone.
3749 In any case, anything needed to address this operand can remain
3750 however they were previously categorized. */
3752 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3753 operand_type[i]
3754 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3755 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3758 /* Any constants that aren't allowed and can't be reloaded
3759 into registers are here changed into memory references. */
3760 for (i = 0; i < noperands; i++)
3761 if (! goal_alternative_win[i]
3762 && CONST_POOL_OK_P (recog_data.operand[i])
3763 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3764 (enum reg_class) goal_alternative[i])
3765 == NO_REGS)
3766 || no_input_reloads)
3767 && operand_mode[i] != VOIDmode)
3769 substed_operand[i] = recog_data.operand[i]
3770 = find_reloads_toplev (force_const_mem (operand_mode[i],
3771 recog_data.operand[i]),
3772 i, address_type[i], ind_levels, 0, insn,
3773 NULL);
3774 if (alternative_allows_memconst (recog_data.constraints[i],
3775 goal_alternative_number))
3776 goal_alternative_win[i] = 1;
3779 /* Record the values of the earlyclobber operands for the caller. */
3780 if (goal_earlyclobber)
3781 for (i = 0; i < noperands; i++)
3782 if (goal_alternative_earlyclobber[i])
3783 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3785 /* Now record reloads for all the operands that need them. */
3786 for (i = 0; i < noperands; i++)
3787 if (! goal_alternative_win[i])
3789 /* Operands that match previous ones have already been handled. */
3790 if (goal_alternative_matches[i] >= 0)
3792 /* Handle an operand with a nonoffsettable address
3793 appearing where an offsettable address will do
3794 by reloading the address into a base register.
3796 ??? We can also do this when the operand is a register and
3797 reg_equiv_mem is not offsettable, but this is a bit tricky,
3798 so we don't bother with it. It may not be worth doing. */
3799 else if (goal_alternative_matched[i] == -1
3800 && goal_alternative_offmemok[i]
3801 && MEM_P (recog_data.operand[i]))
3803 operand_reloadnum[i]
3804 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3805 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3806 MODE_BASE_REG_CLASS (VOIDmode),
3807 GET_MODE (XEXP (recog_data.operand[i], 0)),
3808 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3809 rld[operand_reloadnum[i]].inc
3810 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3812 /* If this operand is an output, we will have made any
3813 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3814 now we are treating part of the operand as an input, so
3815 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3817 if (modified[i] == RELOAD_WRITE)
3819 for (j = 0; j < n_reloads; j++)
3821 if (rld[j].opnum == i)
3823 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3824 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3825 else if (rld[j].when_needed
3826 == RELOAD_FOR_OUTADDR_ADDRESS)
3827 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3832 else if (goal_alternative_matched[i] == -1)
3834 operand_reloadnum[i]
3835 = push_reload ((modified[i] != RELOAD_WRITE
3836 ? recog_data.operand[i] : 0),
3837 (modified[i] != RELOAD_READ
3838 ? recog_data.operand[i] : 0),
3839 (modified[i] != RELOAD_WRITE
3840 ? recog_data.operand_loc[i] : 0),
3841 (modified[i] != RELOAD_READ
3842 ? recog_data.operand_loc[i] : 0),
3843 (enum reg_class) goal_alternative[i],
3844 (modified[i] == RELOAD_WRITE
3845 ? VOIDmode : operand_mode[i]),
3846 (modified[i] == RELOAD_READ
3847 ? VOIDmode : operand_mode[i]),
3848 (insn_code_number < 0 ? 0
3849 : insn_data[insn_code_number].operand[i].strict_low),
3850 0, i, operand_type[i]);
3852 /* In a matching pair of operands, one must be input only
3853 and the other must be output only.
3854 Pass the input operand as IN and the other as OUT. */
3855 else if (modified[i] == RELOAD_READ
3856 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3858 operand_reloadnum[i]
3859 = push_reload (recog_data.operand[i],
3860 recog_data.operand[goal_alternative_matched[i]],
3861 recog_data.operand_loc[i],
3862 recog_data.operand_loc[goal_alternative_matched[i]],
3863 (enum reg_class) goal_alternative[i],
3864 operand_mode[i],
3865 operand_mode[goal_alternative_matched[i]],
3866 0, 0, i, RELOAD_OTHER);
3867 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3869 else if (modified[i] == RELOAD_WRITE
3870 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3872 operand_reloadnum[goal_alternative_matched[i]]
3873 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3874 recog_data.operand[i],
3875 recog_data.operand_loc[goal_alternative_matched[i]],
3876 recog_data.operand_loc[i],
3877 (enum reg_class) goal_alternative[i],
3878 operand_mode[goal_alternative_matched[i]],
3879 operand_mode[i],
3880 0, 0, i, RELOAD_OTHER);
3881 operand_reloadnum[i] = output_reloadnum;
3883 else if (insn_code_number >= 0)
3884 abort ();
3885 else
3887 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3888 /* Avoid further trouble with this insn. */
3889 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3890 n_reloads = 0;
3891 return 0;
3894 else if (goal_alternative_matched[i] < 0
3895 && goal_alternative_matches[i] < 0
3896 && address_operand_reloaded[i] != 1
3897 && optimize)
3899 /* For each non-matching operand that's a MEM or a pseudo-register
3900 that didn't get a hard register, make an optional reload.
3901 This may get done even if the insn needs no reloads otherwise. */
3903 rtx operand = recog_data.operand[i];
3905 while (GET_CODE (operand) == SUBREG)
3906 operand = SUBREG_REG (operand);
3907 if ((MEM_P (operand)
3908 || (REG_P (operand)
3909 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3910 /* If this is only for an output, the optional reload would not
3911 actually cause us to use a register now, just note that
3912 something is stored here. */
3913 && ((enum reg_class) goal_alternative[i] != NO_REGS
3914 || modified[i] == RELOAD_WRITE)
3915 && ! no_input_reloads
3916 /* An optional output reload might allow to delete INSN later.
3917 We mustn't make in-out reloads on insns that are not permitted
3918 output reloads.
3919 If this is an asm, we can't delete it; we must not even call
3920 push_reload for an optional output reload in this case,
3921 because we can't be sure that the constraint allows a register,
3922 and push_reload verifies the constraints for asms. */
3923 && (modified[i] == RELOAD_READ
3924 || (! no_output_reloads && ! this_insn_is_asm)))
3925 operand_reloadnum[i]
3926 = push_reload ((modified[i] != RELOAD_WRITE
3927 ? recog_data.operand[i] : 0),
3928 (modified[i] != RELOAD_READ
3929 ? recog_data.operand[i] : 0),
3930 (modified[i] != RELOAD_WRITE
3931 ? recog_data.operand_loc[i] : 0),
3932 (modified[i] != RELOAD_READ
3933 ? recog_data.operand_loc[i] : 0),
3934 (enum reg_class) goal_alternative[i],
3935 (modified[i] == RELOAD_WRITE
3936 ? VOIDmode : operand_mode[i]),
3937 (modified[i] == RELOAD_READ
3938 ? VOIDmode : operand_mode[i]),
3939 (insn_code_number < 0 ? 0
3940 : insn_data[insn_code_number].operand[i].strict_low),
3941 1, i, operand_type[i]);
3942 /* If a memory reference remains (either as a MEM or a pseudo that
3943 did not get a hard register), yet we can't make an optional
3944 reload, check if this is actually a pseudo register reference;
3945 we then need to emit a USE and/or a CLOBBER so that reload
3946 inheritance will do the right thing. */
3947 else if (replace
3948 && (MEM_P (operand)
3949 || (REG_P (operand)
3950 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3951 && reg_renumber [REGNO (operand)] < 0)))
3953 operand = *recog_data.operand_loc[i];
3955 while (GET_CODE (operand) == SUBREG)
3956 operand = SUBREG_REG (operand);
3957 if (REG_P (operand))
3959 if (modified[i] != RELOAD_WRITE)
3960 /* We mark the USE with QImode so that we recognize
3961 it as one that can be safely deleted at the end
3962 of reload. */
3963 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3964 insn), QImode);
3965 if (modified[i] != RELOAD_READ)
3966 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3970 else if (goal_alternative_matches[i] >= 0
3971 && goal_alternative_win[goal_alternative_matches[i]]
3972 && modified[i] == RELOAD_READ
3973 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3974 && ! no_input_reloads && ! no_output_reloads
3975 && optimize)
3977 /* Similarly, make an optional reload for a pair of matching
3978 objects that are in MEM or a pseudo that didn't get a hard reg. */
3980 rtx operand = recog_data.operand[i];
3982 while (GET_CODE (operand) == SUBREG)
3983 operand = SUBREG_REG (operand);
3984 if ((MEM_P (operand)
3985 || (REG_P (operand)
3986 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3987 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3988 != NO_REGS))
3989 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3990 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3991 recog_data.operand[i],
3992 recog_data.operand_loc[goal_alternative_matches[i]],
3993 recog_data.operand_loc[i],
3994 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3995 operand_mode[goal_alternative_matches[i]],
3996 operand_mode[i],
3997 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4000 /* Perform whatever substitutions on the operands we are supposed
4001 to make due to commutativity or replacement of registers
4002 with equivalent constants or memory slots. */
4004 for (i = 0; i < noperands; i++)
4006 /* We only do this on the last pass through reload, because it is
4007 possible for some data (like reg_equiv_address) to be changed during
4008 later passes. Moreover, we loose the opportunity to get a useful
4009 reload_{in,out}_reg when we do these replacements. */
4011 if (replace)
4013 rtx substitution = substed_operand[i];
4015 *recog_data.operand_loc[i] = substitution;
4017 /* If we're replacing an operand with a LABEL_REF, we need
4018 to make sure that there's a REG_LABEL note attached to
4019 this instruction. */
4020 if (!JUMP_P (insn)
4021 && GET_CODE (substitution) == LABEL_REF
4022 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4023 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4024 XEXP (substitution, 0),
4025 REG_NOTES (insn));
4027 else
4028 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4031 /* If this insn pattern contains any MATCH_DUP's, make sure that
4032 they will be substituted if the operands they match are substituted.
4033 Also do now any substitutions we already did on the operands.
4035 Don't do this if we aren't making replacements because we might be
4036 propagating things allocated by frame pointer elimination into places
4037 it doesn't expect. */
4039 if (insn_code_number >= 0 && replace)
4040 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4042 int opno = recog_data.dup_num[i];
4043 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4044 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4047 #if 0
4048 /* This loses because reloading of prior insns can invalidate the equivalence
4049 (or at least find_equiv_reg isn't smart enough to find it any more),
4050 causing this insn to need more reload regs than it needed before.
4051 It may be too late to make the reload regs available.
4052 Now this optimization is done safely in choose_reload_regs. */
4054 /* For each reload of a reg into some other class of reg,
4055 search for an existing equivalent reg (same value now) in the right class.
4056 We can use it as long as we don't need to change its contents. */
4057 for (i = 0; i < n_reloads; i++)
4058 if (rld[i].reg_rtx == 0
4059 && rld[i].in != 0
4060 && REG_P (rld[i].in)
4061 && rld[i].out == 0)
4063 rld[i].reg_rtx
4064 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4065 static_reload_reg_p, 0, rld[i].inmode);
4066 /* Prevent generation of insn to load the value
4067 because the one we found already has the value. */
4068 if (rld[i].reg_rtx)
4069 rld[i].in = rld[i].reg_rtx;
4071 #endif
4073 /* Perhaps an output reload can be combined with another
4074 to reduce needs by one. */
4075 if (!goal_earlyclobber)
4076 combine_reloads ();
4078 /* If we have a pair of reloads for parts of an address, they are reloading
4079 the same object, the operands themselves were not reloaded, and they
4080 are for two operands that are supposed to match, merge the reloads and
4081 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4083 for (i = 0; i < n_reloads; i++)
4085 int k;
4087 for (j = i + 1; j < n_reloads; j++)
4088 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4089 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4090 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4091 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4092 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4093 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4094 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4095 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4096 && rtx_equal_p (rld[i].in, rld[j].in)
4097 && (operand_reloadnum[rld[i].opnum] < 0
4098 || rld[operand_reloadnum[rld[i].opnum]].optional)
4099 && (operand_reloadnum[rld[j].opnum] < 0
4100 || rld[operand_reloadnum[rld[j].opnum]].optional)
4101 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4102 || (goal_alternative_matches[rld[j].opnum]
4103 == rld[i].opnum)))
4105 for (k = 0; k < n_replacements; k++)
4106 if (replacements[k].what == j)
4107 replacements[k].what = i;
4109 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4110 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4111 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4112 else
4113 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4114 rld[j].in = 0;
4118 /* Scan all the reloads and update their type.
4119 If a reload is for the address of an operand and we didn't reload
4120 that operand, change the type. Similarly, change the operand number
4121 of a reload when two operands match. If a reload is optional, treat it
4122 as though the operand isn't reloaded.
4124 ??? This latter case is somewhat odd because if we do the optional
4125 reload, it means the object is hanging around. Thus we need only
4126 do the address reload if the optional reload was NOT done.
4128 Change secondary reloads to be the address type of their operand, not
4129 the normal type.
4131 If an operand's reload is now RELOAD_OTHER, change any
4132 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4133 RELOAD_FOR_OTHER_ADDRESS. */
4135 for (i = 0; i < n_reloads; i++)
4137 if (rld[i].secondary_p
4138 && rld[i].when_needed == operand_type[rld[i].opnum])
4139 rld[i].when_needed = address_type[rld[i].opnum];
4141 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4142 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4143 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4144 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4145 && (operand_reloadnum[rld[i].opnum] < 0
4146 || rld[operand_reloadnum[rld[i].opnum]].optional))
4148 /* If we have a secondary reload to go along with this reload,
4149 change its type to RELOAD_FOR_OPADDR_ADDR. */
4151 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4152 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4153 && rld[i].secondary_in_reload != -1)
4155 int secondary_in_reload = rld[i].secondary_in_reload;
4157 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4159 /* If there's a tertiary reload we have to change it also. */
4160 if (secondary_in_reload > 0
4161 && rld[secondary_in_reload].secondary_in_reload != -1)
4162 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4163 = RELOAD_FOR_OPADDR_ADDR;
4166 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4167 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4168 && rld[i].secondary_out_reload != -1)
4170 int secondary_out_reload = rld[i].secondary_out_reload;
4172 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4174 /* If there's a tertiary reload we have to change it also. */
4175 if (secondary_out_reload
4176 && rld[secondary_out_reload].secondary_out_reload != -1)
4177 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4178 = RELOAD_FOR_OPADDR_ADDR;
4181 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4182 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4183 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4184 else
4185 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4188 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4189 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4190 && operand_reloadnum[rld[i].opnum] >= 0
4191 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4192 == RELOAD_OTHER))
4193 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4195 if (goal_alternative_matches[rld[i].opnum] >= 0)
4196 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4199 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4200 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4201 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4203 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4204 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4205 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4206 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4207 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4208 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4209 This is complicated by the fact that a single operand can have more
4210 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4211 choose_reload_regs without affecting code quality, and cases that
4212 actually fail are extremely rare, so it turns out to be better to fix
4213 the problem here by not generating cases that choose_reload_regs will
4214 fail for. */
4215 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4216 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4217 a single operand.
4218 We can reduce the register pressure by exploiting that a
4219 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4220 does not conflict with any of them, if it is only used for the first of
4221 the RELOAD_FOR_X_ADDRESS reloads. */
4223 int first_op_addr_num = -2;
4224 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4225 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4226 int need_change = 0;
4227 /* We use last_op_addr_reload and the contents of the above arrays
4228 first as flags - -2 means no instance encountered, -1 means exactly
4229 one instance encountered.
4230 If more than one instance has been encountered, we store the reload
4231 number of the first reload of the kind in question; reload numbers
4232 are known to be non-negative. */
4233 for (i = 0; i < noperands; i++)
4234 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4235 for (i = n_reloads - 1; i >= 0; i--)
4237 switch (rld[i].when_needed)
4239 case RELOAD_FOR_OPERAND_ADDRESS:
4240 if (++first_op_addr_num >= 0)
4242 first_op_addr_num = i;
4243 need_change = 1;
4245 break;
4246 case RELOAD_FOR_INPUT_ADDRESS:
4247 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4249 first_inpaddr_num[rld[i].opnum] = i;
4250 need_change = 1;
4252 break;
4253 case RELOAD_FOR_OUTPUT_ADDRESS:
4254 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4256 first_outpaddr_num[rld[i].opnum] = i;
4257 need_change = 1;
4259 break;
4260 default:
4261 break;
4265 if (need_change)
4267 for (i = 0; i < n_reloads; i++)
4269 int first_num;
4270 enum reload_type type;
4272 switch (rld[i].when_needed)
4274 case RELOAD_FOR_OPADDR_ADDR:
4275 first_num = first_op_addr_num;
4276 type = RELOAD_FOR_OPERAND_ADDRESS;
4277 break;
4278 case RELOAD_FOR_INPADDR_ADDRESS:
4279 first_num = first_inpaddr_num[rld[i].opnum];
4280 type = RELOAD_FOR_INPUT_ADDRESS;
4281 break;
4282 case RELOAD_FOR_OUTADDR_ADDRESS:
4283 first_num = first_outpaddr_num[rld[i].opnum];
4284 type = RELOAD_FOR_OUTPUT_ADDRESS;
4285 break;
4286 default:
4287 continue;
4289 if (first_num < 0)
4290 continue;
4291 else if (i > first_num)
4292 rld[i].when_needed = type;
4293 else
4295 /* Check if the only TYPE reload that uses reload I is
4296 reload FIRST_NUM. */
4297 for (j = n_reloads - 1; j > first_num; j--)
4299 if (rld[j].when_needed == type
4300 && (rld[i].secondary_p
4301 ? rld[j].secondary_in_reload == i
4302 : reg_mentioned_p (rld[i].in, rld[j].in)))
4304 rld[i].when_needed = type;
4305 break;
4313 /* See if we have any reloads that are now allowed to be merged
4314 because we've changed when the reload is needed to
4315 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4316 check for the most common cases. */
4318 for (i = 0; i < n_reloads; i++)
4319 if (rld[i].in != 0 && rld[i].out == 0
4320 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4321 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4322 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4323 for (j = 0; j < n_reloads; j++)
4324 if (i != j && rld[j].in != 0 && rld[j].out == 0
4325 && rld[j].when_needed == rld[i].when_needed
4326 && MATCHES (rld[i].in, rld[j].in)
4327 && rld[i].class == rld[j].class
4328 && !rld[i].nocombine && !rld[j].nocombine
4329 && rld[i].reg_rtx == rld[j].reg_rtx)
4331 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4332 transfer_replacements (i, j);
4333 rld[j].in = 0;
4336 #ifdef HAVE_cc0
4337 /* If we made any reloads for addresses, see if they violate a
4338 "no input reloads" requirement for this insn. But loads that we
4339 do after the insn (such as for output addresses) are fine. */
4340 if (no_input_reloads)
4341 for (i = 0; i < n_reloads; i++)
4342 if (rld[i].in != 0
4343 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4344 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4345 abort ();
4346 #endif
4348 /* Compute reload_mode and reload_nregs. */
4349 for (i = 0; i < n_reloads; i++)
4351 rld[i].mode
4352 = (rld[i].inmode == VOIDmode
4353 || (GET_MODE_SIZE (rld[i].outmode)
4354 > GET_MODE_SIZE (rld[i].inmode)))
4355 ? rld[i].outmode : rld[i].inmode;
4357 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4360 /* Special case a simple move with an input reload and a
4361 destination of a hard reg, if the hard reg is ok, use it. */
4362 for (i = 0; i < n_reloads; i++)
4363 if (rld[i].when_needed == RELOAD_FOR_INPUT
4364 && GET_CODE (PATTERN (insn)) == SET
4365 && REG_P (SET_DEST (PATTERN (insn)))
4366 && SET_SRC (PATTERN (insn)) == rld[i].in)
4368 rtx dest = SET_DEST (PATTERN (insn));
4369 unsigned int regno = REGNO (dest);
4371 if (regno < FIRST_PSEUDO_REGISTER
4372 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4373 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4375 int nr = hard_regno_nregs[regno][rld[i].mode];
4376 int ok = 1, nri;
4378 for (nri = 1; nri < nr; nri ++)
4379 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4380 ok = 0;
4382 if (ok)
4383 rld[i].reg_rtx = dest;
4387 return retval;
4390 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4391 accepts a memory operand with constant address. */
4393 static int
4394 alternative_allows_memconst (const char *constraint, int altnum)
4396 int c;
4397 /* Skip alternatives before the one requested. */
4398 while (altnum > 0)
4400 while (*constraint++ != ',');
4401 altnum--;
4403 /* Scan the requested alternative for 'm' or 'o'.
4404 If one of them is present, this alternative accepts memory constants. */
4405 for (; (c = *constraint) && c != ',' && c != '#';
4406 constraint += CONSTRAINT_LEN (c, constraint))
4407 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4408 return 1;
4409 return 0;
4412 /* Scan X for memory references and scan the addresses for reloading.
4413 Also checks for references to "constant" regs that we want to eliminate
4414 and replaces them with the values they stand for.
4415 We may alter X destructively if it contains a reference to such.
4416 If X is just a constant reg, we return the equivalent value
4417 instead of X.
4419 IND_LEVELS says how many levels of indirect addressing this machine
4420 supports.
4422 OPNUM and TYPE identify the purpose of the reload.
4424 IS_SET_DEST is true if X is the destination of a SET, which is not
4425 appropriate to be replaced by a constant.
4427 INSN, if nonzero, is the insn in which we do the reload. It is used
4428 to determine if we may generate output reloads, and where to put USEs
4429 for pseudos that we have to replace with stack slots.
4431 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4432 result of find_reloads_address. */
4434 static rtx
4435 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4436 int ind_levels, int is_set_dest, rtx insn,
4437 int *address_reloaded)
4439 RTX_CODE code = GET_CODE (x);
4441 const char *fmt = GET_RTX_FORMAT (code);
4442 int i;
4443 int copied;
4445 if (code == REG)
4447 /* This code is duplicated for speed in find_reloads. */
4448 int regno = REGNO (x);
4449 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4450 x = reg_equiv_constant[regno];
4451 #if 0
4452 /* This creates (subreg (mem...)) which would cause an unnecessary
4453 reload of the mem. */
4454 else if (reg_equiv_mem[regno] != 0)
4455 x = reg_equiv_mem[regno];
4456 #endif
4457 else if (reg_equiv_memory_loc[regno]
4458 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4460 rtx mem = make_memloc (x, regno);
4461 if (reg_equiv_address[regno]
4462 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4464 /* If this is not a toplevel operand, find_reloads doesn't see
4465 this substitution. We have to emit a USE of the pseudo so
4466 that delete_output_reload can see it. */
4467 if (replace_reloads && recog_data.operand[opnum] != x)
4468 /* We mark the USE with QImode so that we recognize it
4469 as one that can be safely deleted at the end of
4470 reload. */
4471 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4472 QImode);
4473 x = mem;
4474 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4475 opnum, type, ind_levels, insn);
4476 if (address_reloaded)
4477 *address_reloaded = i;
4480 return x;
4482 if (code == MEM)
4484 rtx tem = x;
4486 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4487 opnum, type, ind_levels, insn);
4488 if (address_reloaded)
4489 *address_reloaded = i;
4491 return tem;
4494 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4496 /* Check for SUBREG containing a REG that's equivalent to a constant.
4497 If the constant has a known value, truncate it right now.
4498 Similarly if we are extracting a single-word of a multi-word
4499 constant. If the constant is symbolic, allow it to be substituted
4500 normally. push_reload will strip the subreg later. If the
4501 constant is VOIDmode, abort because we will lose the mode of
4502 the register (this should never happen because one of the cases
4503 above should handle it). */
4505 int regno = REGNO (SUBREG_REG (x));
4506 rtx tem;
4508 if (subreg_lowpart_p (x)
4509 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4510 && reg_equiv_constant[regno] != 0
4511 && (tem = gen_lowpart_common (GET_MODE (x),
4512 reg_equiv_constant[regno])) != 0)
4513 return tem;
4515 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4516 && reg_equiv_constant[regno] != 0)
4518 tem =
4519 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4520 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4521 if (!tem)
4522 abort ();
4523 return tem;
4526 /* If the subreg contains a reg that will be converted to a mem,
4527 convert the subreg to a narrower memref now.
4528 Otherwise, we would get (subreg (mem ...) ...),
4529 which would force reload of the mem.
4531 We also need to do this if there is an equivalent MEM that is
4532 not offsettable. In that case, alter_subreg would produce an
4533 invalid address on big-endian machines.
4535 For machines that extend byte loads, we must not reload using
4536 a wider mode if we have a paradoxical SUBREG. find_reloads will
4537 force a reload in that case. So we should not do anything here. */
4539 else if (regno >= FIRST_PSEUDO_REGISTER
4540 #ifdef LOAD_EXTEND_OP
4541 && (GET_MODE_SIZE (GET_MODE (x))
4542 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4543 #endif
4544 && (reg_equiv_address[regno] != 0
4545 || (reg_equiv_mem[regno] != 0
4546 && (! strict_memory_address_p (GET_MODE (x),
4547 XEXP (reg_equiv_mem[regno], 0))
4548 || ! offsettable_memref_p (reg_equiv_mem[regno])
4549 || num_not_at_initial_offset))))
4550 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4551 insn);
4554 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4556 if (fmt[i] == 'e')
4558 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4559 ind_levels, is_set_dest, insn,
4560 address_reloaded);
4561 /* If we have replaced a reg with it's equivalent memory loc -
4562 that can still be handled here e.g. if it's in a paradoxical
4563 subreg - we must make the change in a copy, rather than using
4564 a destructive change. This way, find_reloads can still elect
4565 not to do the change. */
4566 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4568 x = shallow_copy_rtx (x);
4569 copied = 1;
4571 XEXP (x, i) = new_part;
4574 return x;
4577 /* Return a mem ref for the memory equivalent of reg REGNO.
4578 This mem ref is not shared with anything. */
4580 static rtx
4581 make_memloc (rtx ad, int regno)
4583 /* We must rerun eliminate_regs, in case the elimination
4584 offsets have changed. */
4585 rtx tem
4586 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4588 /* If TEM might contain a pseudo, we must copy it to avoid
4589 modifying it when we do the substitution for the reload. */
4590 if (rtx_varies_p (tem, 0))
4591 tem = copy_rtx (tem);
4593 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4594 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4596 /* Copy the result if it's still the same as the equivalence, to avoid
4597 modifying it when we do the substitution for the reload. */
4598 if (tem == reg_equiv_memory_loc[regno])
4599 tem = copy_rtx (tem);
4600 return tem;
4603 /* Returns true if AD could be turned into a valid memory reference
4604 to mode MODE by reloading the part pointed to by PART into a
4605 register. */
4607 static int
4608 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4610 int retv;
4611 rtx tem = *part;
4612 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4614 *part = reg;
4615 retv = memory_address_p (mode, ad);
4616 *part = tem;
4618 return retv;
4621 /* Record all reloads needed for handling memory address AD
4622 which appears in *LOC in a memory reference to mode MODE
4623 which itself is found in location *MEMREFLOC.
4624 Note that we take shortcuts assuming that no multi-reg machine mode
4625 occurs as part of an address.
4627 OPNUM and TYPE specify the purpose of this reload.
4629 IND_LEVELS says how many levels of indirect addressing this machine
4630 supports.
4632 INSN, if nonzero, is the insn in which we do the reload. It is used
4633 to determine if we may generate output reloads, and where to put USEs
4634 for pseudos that we have to replace with stack slots.
4636 Value is one if this address is reloaded or replaced as a whole; it is
4637 zero if the top level of this address was not reloaded or replaced, and
4638 it is -1 if it may or may not have been reloaded or replaced.
4640 Note that there is no verification that the address will be valid after
4641 this routine does its work. Instead, we rely on the fact that the address
4642 was valid when reload started. So we need only undo things that reload
4643 could have broken. These are wrong register types, pseudos not allocated
4644 to a hard register, and frame pointer elimination. */
4646 static int
4647 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4648 rtx *loc, int opnum, enum reload_type type,
4649 int ind_levels, rtx insn)
4651 int regno;
4652 int removed_and = 0;
4653 int op_index;
4654 rtx tem;
4656 /* If the address is a register, see if it is a legitimate address and
4657 reload if not. We first handle the cases where we need not reload
4658 or where we must reload in a non-standard way. */
4660 if (REG_P (ad))
4662 regno = REGNO (ad);
4664 /* If the register is equivalent to an invariant expression, substitute
4665 the invariant, and eliminate any eliminable register references. */
4666 tem = reg_equiv_constant[regno];
4667 if (tem != 0
4668 && (tem = eliminate_regs (tem, mode, insn))
4669 && strict_memory_address_p (mode, tem))
4671 *loc = ad = tem;
4672 return 0;
4675 tem = reg_equiv_memory_loc[regno];
4676 if (tem != 0)
4678 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4680 tem = make_memloc (ad, regno);
4681 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4683 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4684 &XEXP (tem, 0), opnum,
4685 ADDR_TYPE (type), ind_levels, insn);
4687 /* We can avoid a reload if the register's equivalent memory
4688 expression is valid as an indirect memory address.
4689 But not all addresses are valid in a mem used as an indirect
4690 address: only reg or reg+constant. */
4692 if (ind_levels > 0
4693 && strict_memory_address_p (mode, tem)
4694 && (REG_P (XEXP (tem, 0))
4695 || (GET_CODE (XEXP (tem, 0)) == PLUS
4696 && REG_P (XEXP (XEXP (tem, 0), 0))
4697 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4699 /* TEM is not the same as what we'll be replacing the
4700 pseudo with after reload, put a USE in front of INSN
4701 in the final reload pass. */
4702 if (replace_reloads
4703 && num_not_at_initial_offset
4704 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4706 *loc = tem;
4707 /* We mark the USE with QImode so that we
4708 recognize it as one that can be safely
4709 deleted at the end of reload. */
4710 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4711 insn), QImode);
4713 /* This doesn't really count as replacing the address
4714 as a whole, since it is still a memory access. */
4716 return 0;
4718 ad = tem;
4722 /* The only remaining case where we can avoid a reload is if this is a
4723 hard register that is valid as a base register and which is not the
4724 subject of a CLOBBER in this insn. */
4726 else if (regno < FIRST_PSEUDO_REGISTER
4727 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4728 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4729 return 0;
4731 /* If we do not have one of the cases above, we must do the reload. */
4732 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4733 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4734 return 1;
4737 if (strict_memory_address_p (mode, ad))
4739 /* The address appears valid, so reloads are not needed.
4740 But the address may contain an eliminable register.
4741 This can happen because a machine with indirect addressing
4742 may consider a pseudo register by itself a valid address even when
4743 it has failed to get a hard reg.
4744 So do a tree-walk to find and eliminate all such regs. */
4746 /* But first quickly dispose of a common case. */
4747 if (GET_CODE (ad) == PLUS
4748 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4749 && REG_P (XEXP (ad, 0))
4750 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4751 return 0;
4753 subst_reg_equivs_changed = 0;
4754 *loc = subst_reg_equivs (ad, insn);
4756 if (! subst_reg_equivs_changed)
4757 return 0;
4759 /* Check result for validity after substitution. */
4760 if (strict_memory_address_p (mode, ad))
4761 return 0;
4764 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4767 if (memrefloc)
4769 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4770 ind_levels, win);
4772 break;
4773 win:
4774 *memrefloc = copy_rtx (*memrefloc);
4775 XEXP (*memrefloc, 0) = ad;
4776 move_replacements (&ad, &XEXP (*memrefloc, 0));
4777 return -1;
4779 while (0);
4780 #endif
4782 /* The address is not valid. We have to figure out why. First see if
4783 we have an outer AND and remove it if so. Then analyze what's inside. */
4785 if (GET_CODE (ad) == AND)
4787 removed_and = 1;
4788 loc = &XEXP (ad, 0);
4789 ad = *loc;
4792 /* One possibility for why the address is invalid is that it is itself
4793 a MEM. This can happen when the frame pointer is being eliminated, a
4794 pseudo is not allocated to a hard register, and the offset between the
4795 frame and stack pointers is not its initial value. In that case the
4796 pseudo will have been replaced by a MEM referring to the
4797 stack pointer. */
4798 if (MEM_P (ad))
4800 /* First ensure that the address in this MEM is valid. Then, unless
4801 indirect addresses are valid, reload the MEM into a register. */
4802 tem = ad;
4803 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4804 opnum, ADDR_TYPE (type),
4805 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4807 /* If tem was changed, then we must create a new memory reference to
4808 hold it and store it back into memrefloc. */
4809 if (tem != ad && memrefloc)
4811 *memrefloc = copy_rtx (*memrefloc);
4812 copy_replacements (tem, XEXP (*memrefloc, 0));
4813 loc = &XEXP (*memrefloc, 0);
4814 if (removed_and)
4815 loc = &XEXP (*loc, 0);
4818 /* Check similar cases as for indirect addresses as above except
4819 that we can allow pseudos and a MEM since they should have been
4820 taken care of above. */
4822 if (ind_levels == 0
4823 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4824 || MEM_P (XEXP (tem, 0))
4825 || ! (REG_P (XEXP (tem, 0))
4826 || (GET_CODE (XEXP (tem, 0)) == PLUS
4827 && REG_P (XEXP (XEXP (tem, 0), 0))
4828 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4830 /* Must use TEM here, not AD, since it is the one that will
4831 have any subexpressions reloaded, if needed. */
4832 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4833 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4834 VOIDmode, 0,
4835 0, opnum, type);
4836 return ! removed_and;
4838 else
4839 return 0;
4842 /* If we have address of a stack slot but it's not valid because the
4843 displacement is too large, compute the sum in a register.
4844 Handle all base registers here, not just fp/ap/sp, because on some
4845 targets (namely SH) we can also get too large displacements from
4846 big-endian corrections. */
4847 else if (GET_CODE (ad) == PLUS
4848 && REG_P (XEXP (ad, 0))
4849 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4850 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4851 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4853 /* Unshare the MEM rtx so we can safely alter it. */
4854 if (memrefloc)
4856 *memrefloc = copy_rtx (*memrefloc);
4857 loc = &XEXP (*memrefloc, 0);
4858 if (removed_and)
4859 loc = &XEXP (*loc, 0);
4862 if (double_reg_address_ok)
4864 /* Unshare the sum as well. */
4865 *loc = ad = copy_rtx (ad);
4867 /* Reload the displacement into an index reg.
4868 We assume the frame pointer or arg pointer is a base reg. */
4869 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4870 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4871 type, ind_levels);
4872 return 0;
4874 else
4876 /* If the sum of two regs is not necessarily valid,
4877 reload the sum into a base reg.
4878 That will at least work. */
4879 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4880 Pmode, opnum, type, ind_levels);
4882 return ! removed_and;
4885 /* If we have an indexed stack slot, there are three possible reasons why
4886 it might be invalid: The index might need to be reloaded, the address
4887 might have been made by frame pointer elimination and hence have a
4888 constant out of range, or both reasons might apply.
4890 We can easily check for an index needing reload, but even if that is the
4891 case, we might also have an invalid constant. To avoid making the
4892 conservative assumption and requiring two reloads, we see if this address
4893 is valid when not interpreted strictly. If it is, the only problem is
4894 that the index needs a reload and find_reloads_address_1 will take care
4895 of it.
4897 Handle all base registers here, not just fp/ap/sp, because on some
4898 targets (namely SPARC) we can also get invalid addresses from preventive
4899 subreg big-endian corrections made by find_reloads_toplev. We
4900 can also get expressions involving LO_SUM (rather than PLUS) from
4901 find_reloads_subreg_address.
4903 If we decide to do something, it must be that `double_reg_address_ok'
4904 is true. We generate a reload of the base register + constant and
4905 rework the sum so that the reload register will be added to the index.
4906 This is safe because we know the address isn't shared.
4908 We check for the base register as both the first and second operand of
4909 the innermost PLUS and/or LO_SUM. */
4911 for (op_index = 0; op_index < 2; ++op_index)
4913 rtx operand;
4915 if (!(GET_CODE (ad) == PLUS
4916 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4917 && (GET_CODE (XEXP (ad, 0)) == PLUS
4918 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4919 continue;
4921 operand = XEXP (XEXP (ad, 0), op_index);
4922 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4923 continue;
4925 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4926 || operand == frame_pointer_rtx
4927 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4928 || operand == hard_frame_pointer_rtx
4929 #endif
4930 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4931 || operand == arg_pointer_rtx
4932 #endif
4933 || operand == stack_pointer_rtx)
4934 && ! maybe_memory_address_p (mode, ad,
4935 &XEXP (XEXP (ad, 0), op_index)))
4937 rtx offset_reg;
4938 rtx addend;
4940 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4941 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4943 /* Form the adjusted address. */
4944 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4945 ad = gen_rtx_PLUS (GET_MODE (ad),
4946 op_index == 0 ? offset_reg : addend,
4947 op_index == 0 ? addend : offset_reg);
4948 else
4949 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4950 op_index == 0 ? offset_reg : addend,
4951 op_index == 0 ? addend : offset_reg);
4952 *loc = ad;
4954 find_reloads_address_part (XEXP (ad, op_index),
4955 &XEXP (ad, op_index),
4956 MODE_BASE_REG_CLASS (mode),
4957 GET_MODE (ad), opnum, type, ind_levels);
4958 find_reloads_address_1 (mode,
4959 XEXP (ad, 1 - op_index), 1,
4960 &XEXP (ad, 1 - op_index), opnum,
4961 type, 0, insn);
4963 return 0;
4967 /* See if address becomes valid when an eliminable register
4968 in a sum is replaced. */
4970 tem = ad;
4971 if (GET_CODE (ad) == PLUS)
4972 tem = subst_indexed_address (ad);
4973 if (tem != ad && strict_memory_address_p (mode, tem))
4975 /* Ok, we win that way. Replace any additional eliminable
4976 registers. */
4978 subst_reg_equivs_changed = 0;
4979 tem = subst_reg_equivs (tem, insn);
4981 /* Make sure that didn't make the address invalid again. */
4983 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4985 *loc = tem;
4986 return 0;
4990 /* If constants aren't valid addresses, reload the constant address
4991 into a register. */
4992 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4994 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4995 Unshare it so we can safely alter it. */
4996 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4997 && CONSTANT_POOL_ADDRESS_P (ad))
4999 *memrefloc = copy_rtx (*memrefloc);
5000 loc = &XEXP (*memrefloc, 0);
5001 if (removed_and)
5002 loc = &XEXP (*loc, 0);
5005 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5006 Pmode, opnum, type, ind_levels);
5007 return ! removed_and;
5010 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5011 insn);
5014 /* Find all pseudo regs appearing in AD
5015 that are eliminable in favor of equivalent values
5016 and do not have hard regs; replace them by their equivalents.
5017 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5018 front of it for pseudos that we have to replace with stack slots. */
5020 static rtx
5021 subst_reg_equivs (rtx ad, rtx insn)
5023 RTX_CODE code = GET_CODE (ad);
5024 int i;
5025 const char *fmt;
5027 switch (code)
5029 case HIGH:
5030 case CONST_INT:
5031 case CONST:
5032 case CONST_DOUBLE:
5033 case CONST_VECTOR:
5034 case SYMBOL_REF:
5035 case LABEL_REF:
5036 case PC:
5037 case CC0:
5038 return ad;
5040 case REG:
5042 int regno = REGNO (ad);
5044 if (reg_equiv_constant[regno] != 0)
5046 subst_reg_equivs_changed = 1;
5047 return reg_equiv_constant[regno];
5049 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5051 rtx mem = make_memloc (ad, regno);
5052 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5054 subst_reg_equivs_changed = 1;
5055 /* We mark the USE with QImode so that we recognize it
5056 as one that can be safely deleted at the end of
5057 reload. */
5058 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5059 QImode);
5060 return mem;
5064 return ad;
5066 case PLUS:
5067 /* Quickly dispose of a common case. */
5068 if (XEXP (ad, 0) == frame_pointer_rtx
5069 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5070 return ad;
5071 break;
5073 default:
5074 break;
5077 fmt = GET_RTX_FORMAT (code);
5078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5079 if (fmt[i] == 'e')
5080 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5081 return ad;
5084 /* Compute the sum of X and Y, making canonicalizations assumed in an
5085 address, namely: sum constant integers, surround the sum of two
5086 constants with a CONST, put the constant as the second operand, and
5087 group the constant on the outermost sum.
5089 This routine assumes both inputs are already in canonical form. */
5092 form_sum (rtx x, rtx y)
5094 rtx tem;
5095 enum machine_mode mode = GET_MODE (x);
5097 if (mode == VOIDmode)
5098 mode = GET_MODE (y);
5100 if (mode == VOIDmode)
5101 mode = Pmode;
5103 if (GET_CODE (x) == CONST_INT)
5104 return plus_constant (y, INTVAL (x));
5105 else if (GET_CODE (y) == CONST_INT)
5106 return plus_constant (x, INTVAL (y));
5107 else if (CONSTANT_P (x))
5108 tem = x, x = y, y = tem;
5110 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5111 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5113 /* Note that if the operands of Y are specified in the opposite
5114 order in the recursive calls below, infinite recursion will occur. */
5115 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5116 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5118 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5119 constant will have been placed second. */
5120 if (CONSTANT_P (x) && CONSTANT_P (y))
5122 if (GET_CODE (x) == CONST)
5123 x = XEXP (x, 0);
5124 if (GET_CODE (y) == CONST)
5125 y = XEXP (y, 0);
5127 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5130 return gen_rtx_PLUS (mode, x, y);
5133 /* If ADDR is a sum containing a pseudo register that should be
5134 replaced with a constant (from reg_equiv_constant),
5135 return the result of doing so, and also apply the associative
5136 law so that the result is more likely to be a valid address.
5137 (But it is not guaranteed to be one.)
5139 Note that at most one register is replaced, even if more are
5140 replaceable. Also, we try to put the result into a canonical form
5141 so it is more likely to be a valid address.
5143 In all other cases, return ADDR. */
5145 static rtx
5146 subst_indexed_address (rtx addr)
5148 rtx op0 = 0, op1 = 0, op2 = 0;
5149 rtx tem;
5150 int regno;
5152 if (GET_CODE (addr) == PLUS)
5154 /* Try to find a register to replace. */
5155 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5156 if (REG_P (op0)
5157 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5158 && reg_renumber[regno] < 0
5159 && reg_equiv_constant[regno] != 0)
5160 op0 = reg_equiv_constant[regno];
5161 else if (REG_P (op1)
5162 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5163 && reg_renumber[regno] < 0
5164 && reg_equiv_constant[regno] != 0)
5165 op1 = reg_equiv_constant[regno];
5166 else if (GET_CODE (op0) == PLUS
5167 && (tem = subst_indexed_address (op0)) != op0)
5168 op0 = tem;
5169 else if (GET_CODE (op1) == PLUS
5170 && (tem = subst_indexed_address (op1)) != op1)
5171 op1 = tem;
5172 else
5173 return addr;
5175 /* Pick out up to three things to add. */
5176 if (GET_CODE (op1) == PLUS)
5177 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5178 else if (GET_CODE (op0) == PLUS)
5179 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5181 /* Compute the sum. */
5182 if (op2 != 0)
5183 op1 = form_sum (op1, op2);
5184 if (op1 != 0)
5185 op0 = form_sum (op0, op1);
5187 return op0;
5189 return addr;
5192 /* Update the REG_INC notes for an insn. It updates all REG_INC
5193 notes for the instruction which refer to REGNO the to refer
5194 to the reload number.
5196 INSN is the insn for which any REG_INC notes need updating.
5198 REGNO is the register number which has been reloaded.
5200 RELOADNUM is the reload number. */
5202 static void
5203 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5204 int reloadnum ATTRIBUTE_UNUSED)
5206 #ifdef AUTO_INC_DEC
5207 rtx link;
5209 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5210 if (REG_NOTE_KIND (link) == REG_INC
5211 && (int) REGNO (XEXP (link, 0)) == regno)
5212 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5213 #endif
5216 /* Record the pseudo registers we must reload into hard registers in a
5217 subexpression of a would-be memory address, X referring to a value
5218 in mode MODE. (This function is not called if the address we find
5219 is strictly valid.)
5221 CONTEXT = 1 means we are considering regs as index regs,
5222 = 0 means we are considering them as base regs.
5224 OPNUM and TYPE specify the purpose of any reloads made.
5226 IND_LEVELS says how many levels of indirect addressing are
5227 supported at this point in the address.
5229 INSN, if nonzero, is the insn in which we do the reload. It is used
5230 to determine if we may generate output reloads.
5232 We return nonzero if X, as a whole, is reloaded or replaced. */
5234 /* Note that we take shortcuts assuming that no multi-reg machine mode
5235 occurs as part of an address.
5236 Also, this is not fully machine-customizable; it works for machines
5237 such as VAXen and 68000's and 32000's, but other possible machines
5238 could have addressing modes that this does not handle right. */
5240 static int
5241 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5242 rtx *loc, int opnum, enum reload_type type,
5243 int ind_levels, rtx insn)
5245 RTX_CODE code = GET_CODE (x);
5247 switch (code)
5249 case PLUS:
5251 rtx orig_op0 = XEXP (x, 0);
5252 rtx orig_op1 = XEXP (x, 1);
5253 RTX_CODE code0 = GET_CODE (orig_op0);
5254 RTX_CODE code1 = GET_CODE (orig_op1);
5255 rtx op0 = orig_op0;
5256 rtx op1 = orig_op1;
5258 if (GET_CODE (op0) == SUBREG)
5260 op0 = SUBREG_REG (op0);
5261 code0 = GET_CODE (op0);
5262 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5263 op0 = gen_rtx_REG (word_mode,
5264 (REGNO (op0) +
5265 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5266 GET_MODE (SUBREG_REG (orig_op0)),
5267 SUBREG_BYTE (orig_op0),
5268 GET_MODE (orig_op0))));
5271 if (GET_CODE (op1) == SUBREG)
5273 op1 = SUBREG_REG (op1);
5274 code1 = GET_CODE (op1);
5275 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5276 /* ??? Why is this given op1's mode and above for
5277 ??? op0 SUBREGs we use word_mode? */
5278 op1 = gen_rtx_REG (GET_MODE (op1),
5279 (REGNO (op1) +
5280 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5281 GET_MODE (SUBREG_REG (orig_op1)),
5282 SUBREG_BYTE (orig_op1),
5283 GET_MODE (orig_op1))));
5285 /* Plus in the index register may be created only as a result of
5286 register remateralization for expression like &localvar*4. Reload it.
5287 It may be possible to combine the displacement on the outer level,
5288 but it is probably not worthwhile to do so. */
5289 if (context)
5291 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5292 opnum, ADDR_TYPE (type), ind_levels, insn);
5293 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5294 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5295 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5296 return 1;
5299 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5300 || code0 == ZERO_EXTEND || code1 == MEM)
5302 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5303 type, ind_levels, insn);
5304 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5305 type, ind_levels, insn);
5308 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5309 || code1 == ZERO_EXTEND || code0 == MEM)
5311 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5312 type, ind_levels, insn);
5313 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5314 type, ind_levels, insn);
5317 else if (code0 == CONST_INT || code0 == CONST
5318 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5319 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5320 type, ind_levels, insn);
5322 else if (code1 == CONST_INT || code1 == CONST
5323 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5324 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5325 type, ind_levels, insn);
5327 else if (code0 == REG && code1 == REG)
5329 if (REG_OK_FOR_INDEX_P (op0)
5330 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5331 return 0;
5332 else if (REG_OK_FOR_INDEX_P (op1)
5333 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5334 return 0;
5335 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5336 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5337 type, ind_levels, insn);
5338 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5339 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5340 type, ind_levels, insn);
5341 else if (REG_OK_FOR_INDEX_P (op1))
5342 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5343 type, ind_levels, insn);
5344 else if (REG_OK_FOR_INDEX_P (op0))
5345 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5346 type, ind_levels, insn);
5347 else
5349 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5350 type, ind_levels, insn);
5351 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5352 type, ind_levels, insn);
5356 else if (code0 == REG)
5358 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5359 type, ind_levels, insn);
5360 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5361 type, ind_levels, insn);
5364 else if (code1 == REG)
5366 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5367 type, ind_levels, insn);
5368 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5369 type, ind_levels, insn);
5373 return 0;
5375 case POST_MODIFY:
5376 case PRE_MODIFY:
5378 rtx op0 = XEXP (x, 0);
5379 rtx op1 = XEXP (x, 1);
5381 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5382 return 0;
5384 /* Currently, we only support {PRE,POST}_MODIFY constructs
5385 where a base register is {inc,dec}remented by the contents
5386 of another register or by a constant value. Thus, these
5387 operands must match. */
5388 if (op0 != XEXP (op1, 0))
5389 abort ();
5391 /* Require index register (or constant). Let's just handle the
5392 register case in the meantime... If the target allows
5393 auto-modify by a constant then we could try replacing a pseudo
5394 register with its equivalent constant where applicable. */
5395 if (REG_P (XEXP (op1, 1)))
5396 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5397 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5398 opnum, type, ind_levels, insn);
5400 if (REG_P (XEXP (op1, 0)))
5402 int regno = REGNO (XEXP (op1, 0));
5403 int reloadnum;
5405 /* A register that is incremented cannot be constant! */
5406 if (regno >= FIRST_PSEUDO_REGISTER
5407 && reg_equiv_constant[regno] != 0)
5408 abort ();
5410 /* Handle a register that is equivalent to a memory location
5411 which cannot be addressed directly. */
5412 if (reg_equiv_memory_loc[regno] != 0
5413 && (reg_equiv_address[regno] != 0
5414 || num_not_at_initial_offset))
5416 rtx tem = make_memloc (XEXP (x, 0), regno);
5418 if (reg_equiv_address[regno]
5419 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5421 /* First reload the memory location's address.
5422 We can't use ADDR_TYPE (type) here, because we need to
5423 write back the value after reading it, hence we actually
5424 need two registers. */
5425 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5426 &XEXP (tem, 0), opnum,
5427 RELOAD_OTHER,
5428 ind_levels, insn);
5430 /* Then reload the memory location into a base
5431 register. */
5432 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5433 &XEXP (op1, 0),
5434 MODE_BASE_REG_CLASS (mode),
5435 GET_MODE (x), GET_MODE (x), 0,
5436 0, opnum, RELOAD_OTHER);
5438 update_auto_inc_notes (this_insn, regno, reloadnum);
5439 return 0;
5443 if (reg_renumber[regno] >= 0)
5444 regno = reg_renumber[regno];
5446 /* We require a base register here... */
5447 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5449 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5450 &XEXP (op1, 0), &XEXP (x, 0),
5451 MODE_BASE_REG_CLASS (mode),
5452 GET_MODE (x), GET_MODE (x), 0, 0,
5453 opnum, RELOAD_OTHER);
5455 update_auto_inc_notes (this_insn, regno, reloadnum);
5456 return 0;
5459 else
5460 abort ();
5462 return 0;
5464 case POST_INC:
5465 case POST_DEC:
5466 case PRE_INC:
5467 case PRE_DEC:
5468 if (REG_P (XEXP (x, 0)))
5470 int regno = REGNO (XEXP (x, 0));
5471 int value = 0;
5472 rtx x_orig = x;
5474 /* A register that is incremented cannot be constant! */
5475 if (regno >= FIRST_PSEUDO_REGISTER
5476 && reg_equiv_constant[regno] != 0)
5477 abort ();
5479 /* Handle a register that is equivalent to a memory location
5480 which cannot be addressed directly. */
5481 if (reg_equiv_memory_loc[regno] != 0
5482 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5484 rtx tem = make_memloc (XEXP (x, 0), regno);
5485 if (reg_equiv_address[regno]
5486 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5488 /* First reload the memory location's address.
5489 We can't use ADDR_TYPE (type) here, because we need to
5490 write back the value after reading it, hence we actually
5491 need two registers. */
5492 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5493 &XEXP (tem, 0), opnum, type,
5494 ind_levels, insn);
5495 /* Put this inside a new increment-expression. */
5496 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5497 /* Proceed to reload that, as if it contained a register. */
5501 /* If we have a hard register that is ok as an index,
5502 don't make a reload. If an autoincrement of a nice register
5503 isn't "valid", it must be that no autoincrement is "valid".
5504 If that is true and something made an autoincrement anyway,
5505 this must be a special context where one is allowed.
5506 (For example, a "push" instruction.)
5507 We can't improve this address, so leave it alone. */
5509 /* Otherwise, reload the autoincrement into a suitable hard reg
5510 and record how much to increment by. */
5512 if (reg_renumber[regno] >= 0)
5513 regno = reg_renumber[regno];
5514 if ((regno >= FIRST_PSEUDO_REGISTER
5515 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5516 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5518 int reloadnum;
5520 /* If we can output the register afterwards, do so, this
5521 saves the extra update.
5522 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5523 CALL_INSN - and it does not set CC0.
5524 But don't do this if we cannot directly address the
5525 memory location, since this will make it harder to
5526 reuse address reloads, and increases register pressure.
5527 Also don't do this if we can probably update x directly. */
5528 rtx equiv = (MEM_P (XEXP (x, 0))
5529 ? XEXP (x, 0)
5530 : reg_equiv_mem[regno]);
5531 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5532 if (insn && NONJUMP_INSN_P (insn) && equiv
5533 && memory_operand (equiv, GET_MODE (equiv))
5534 #ifdef HAVE_cc0
5535 && ! sets_cc0_p (PATTERN (insn))
5536 #endif
5537 && ! (icode != CODE_FOR_nothing
5538 && ((*insn_data[icode].operand[0].predicate)
5539 (equiv, Pmode))
5540 && ((*insn_data[icode].operand[1].predicate)
5541 (equiv, Pmode))))
5543 /* We use the original pseudo for loc, so that
5544 emit_reload_insns() knows which pseudo this
5545 reload refers to and updates the pseudo rtx, not
5546 its equivalent memory location, as well as the
5547 corresponding entry in reg_last_reload_reg. */
5548 loc = &XEXP (x_orig, 0);
5549 x = XEXP (x, 0);
5550 reloadnum
5551 = push_reload (x, x, loc, loc,
5552 (context ? INDEX_REG_CLASS :
5553 MODE_BASE_REG_CLASS (mode)),
5554 GET_MODE (x), GET_MODE (x), 0, 0,
5555 opnum, RELOAD_OTHER);
5557 else
5559 reloadnum
5560 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5561 (context ? INDEX_REG_CLASS :
5562 MODE_BASE_REG_CLASS (mode)),
5563 GET_MODE (x), GET_MODE (x), 0, 0,
5564 opnum, type);
5565 rld[reloadnum].inc
5566 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5568 value = 1;
5571 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5572 reloadnum);
5574 return value;
5577 else if (MEM_P (XEXP (x, 0)))
5579 /* This is probably the result of a substitution, by eliminate_regs,
5580 of an equivalent address for a pseudo that was not allocated to a
5581 hard register. Verify that the specified address is valid and
5582 reload it into a register. */
5583 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5584 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5585 rtx link;
5586 int reloadnum;
5588 /* Since we know we are going to reload this item, don't decrement
5589 for the indirection level.
5591 Note that this is actually conservative: it would be slightly
5592 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5593 reload1.c here. */
5594 /* We can't use ADDR_TYPE (type) here, because we need to
5595 write back the value after reading it, hence we actually
5596 need two registers. */
5597 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5598 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5599 opnum, type, ind_levels, insn);
5601 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5602 (context ? INDEX_REG_CLASS :
5603 MODE_BASE_REG_CLASS (mode)),
5604 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5605 rld[reloadnum].inc
5606 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5608 link = FIND_REG_INC_NOTE (this_insn, tem);
5609 if (link != 0)
5610 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5612 return 1;
5614 return 0;
5616 case MEM:
5617 /* This is probably the result of a substitution, by eliminate_regs, of
5618 an equivalent address for a pseudo that was not allocated to a hard
5619 register. Verify that the specified address is valid and reload it
5620 into a register.
5622 Since we know we are going to reload this item, don't decrement for
5623 the indirection level.
5625 Note that this is actually conservative: it would be slightly more
5626 efficient to use the value of SPILL_INDIRECT_LEVELS from
5627 reload1.c here. */
5629 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5630 opnum, ADDR_TYPE (type), ind_levels, insn);
5631 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5632 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5633 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5634 return 1;
5636 case REG:
5638 int regno = REGNO (x);
5640 if (reg_equiv_constant[regno] != 0)
5642 find_reloads_address_part (reg_equiv_constant[regno], loc,
5643 (context ? INDEX_REG_CLASS :
5644 MODE_BASE_REG_CLASS (mode)),
5645 GET_MODE (x), opnum, type, ind_levels);
5646 return 1;
5649 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5650 that feeds this insn. */
5651 if (reg_equiv_mem[regno] != 0)
5653 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5654 (context ? INDEX_REG_CLASS :
5655 MODE_BASE_REG_CLASS (mode)),
5656 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5657 return 1;
5659 #endif
5661 if (reg_equiv_memory_loc[regno]
5662 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5664 rtx tem = make_memloc (x, regno);
5665 if (reg_equiv_address[regno] != 0
5666 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5668 x = tem;
5669 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5670 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5671 ind_levels, insn);
5675 if (reg_renumber[regno] >= 0)
5676 regno = reg_renumber[regno];
5678 if ((regno >= FIRST_PSEUDO_REGISTER
5679 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5680 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5682 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5683 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5684 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5685 return 1;
5688 /* If a register appearing in an address is the subject of a CLOBBER
5689 in this insn, reload it into some other register to be safe.
5690 The CLOBBER is supposed to make the register unavailable
5691 from before this insn to after it. */
5692 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5694 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5695 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5696 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5697 return 1;
5700 return 0;
5702 case SUBREG:
5703 if (REG_P (SUBREG_REG (x)))
5705 /* If this is a SUBREG of a hard register and the resulting register
5706 is of the wrong class, reload the whole SUBREG. This avoids
5707 needless copies if SUBREG_REG is multi-word. */
5708 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5710 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5712 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5713 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5715 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5716 (context ? INDEX_REG_CLASS :
5717 MODE_BASE_REG_CLASS (mode)),
5718 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5719 return 1;
5722 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5723 is larger than the class size, then reload the whole SUBREG. */
5724 else
5726 enum reg_class class = (context ? INDEX_REG_CLASS
5727 : MODE_BASE_REG_CLASS (mode));
5728 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5729 > reg_class_size[class])
5731 x = find_reloads_subreg_address (x, 0, opnum, type,
5732 ind_levels, insn);
5733 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5734 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5735 return 1;
5739 break;
5741 default:
5742 break;
5746 const char *fmt = GET_RTX_FORMAT (code);
5747 int i;
5749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5751 if (fmt[i] == 'e')
5752 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5753 opnum, type, ind_levels, insn);
5757 return 0;
5760 /* X, which is found at *LOC, is a part of an address that needs to be
5761 reloaded into a register of class CLASS. If X is a constant, or if
5762 X is a PLUS that contains a constant, check that the constant is a
5763 legitimate operand and that we are supposed to be able to load
5764 it into the register.
5766 If not, force the constant into memory and reload the MEM instead.
5768 MODE is the mode to use, in case X is an integer constant.
5770 OPNUM and TYPE describe the purpose of any reloads made.
5772 IND_LEVELS says how many levels of indirect addressing this machine
5773 supports. */
5775 static void
5776 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5777 enum machine_mode mode, int opnum,
5778 enum reload_type type, int ind_levels)
5780 if (CONSTANT_P (x)
5781 && (! LEGITIMATE_CONSTANT_P (x)
5782 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5784 rtx tem;
5786 tem = x = force_const_mem (mode, x);
5787 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5788 opnum, type, ind_levels, 0);
5791 else if (GET_CODE (x) == PLUS
5792 && CONSTANT_P (XEXP (x, 1))
5793 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5794 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5796 rtx tem;
5798 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5799 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5800 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5801 opnum, type, ind_levels, 0);
5804 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5805 mode, VOIDmode, 0, 0, opnum, type);
5808 /* X, a subreg of a pseudo, is a part of an address that needs to be
5809 reloaded.
5811 If the pseudo is equivalent to a memory location that cannot be directly
5812 addressed, make the necessary address reloads.
5814 If address reloads have been necessary, or if the address is changed
5815 by register elimination, return the rtx of the memory location;
5816 otherwise, return X.
5818 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5819 memory location.
5821 OPNUM and TYPE identify the purpose of the reload.
5823 IND_LEVELS says how many levels of indirect addressing are
5824 supported at this point in the address.
5826 INSN, if nonzero, is the insn in which we do the reload. It is used
5827 to determine where to put USEs for pseudos that we have to replace with
5828 stack slots. */
5830 static rtx
5831 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5832 enum reload_type type, int ind_levels, rtx insn)
5834 int regno = REGNO (SUBREG_REG (x));
5836 if (reg_equiv_memory_loc[regno])
5838 /* If the address is not directly addressable, or if the address is not
5839 offsettable, then it must be replaced. */
5840 if (! force_replace
5841 && (reg_equiv_address[regno]
5842 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5843 force_replace = 1;
5845 if (force_replace || num_not_at_initial_offset)
5847 rtx tem = make_memloc (SUBREG_REG (x), regno);
5849 /* If the address changes because of register elimination, then
5850 it must be replaced. */
5851 if (force_replace
5852 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5854 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5855 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5856 int offset;
5858 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5859 hold the correct (negative) byte offset. */
5860 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5861 offset = inner_size - outer_size;
5862 else
5863 offset = SUBREG_BYTE (x);
5865 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5866 PUT_MODE (tem, GET_MODE (x));
5868 /* If this was a paradoxical subreg that we replaced, the
5869 resulting memory must be sufficiently aligned to allow
5870 us to widen the mode of the memory. */
5871 if (outer_size > inner_size && STRICT_ALIGNMENT)
5873 rtx base;
5875 base = XEXP (tem, 0);
5876 if (GET_CODE (base) == PLUS)
5878 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5879 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5880 return x;
5881 base = XEXP (base, 0);
5883 if (!REG_P (base)
5884 || (REGNO_POINTER_ALIGN (REGNO (base))
5885 < outer_size * BITS_PER_UNIT))
5886 return x;
5889 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5890 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5891 ind_levels, insn);
5893 /* If this is not a toplevel operand, find_reloads doesn't see
5894 this substitution. We have to emit a USE of the pseudo so
5895 that delete_output_reload can see it. */
5896 if (replace_reloads && recog_data.operand[opnum] != x)
5897 /* We mark the USE with QImode so that we recognize it
5898 as one that can be safely deleted at the end of
5899 reload. */
5900 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5901 SUBREG_REG (x)),
5902 insn), QImode);
5903 x = tem;
5907 return x;
5910 /* Substitute into the current INSN the registers into which we have reloaded
5911 the things that need reloading. The array `replacements'
5912 contains the locations of all pointers that must be changed
5913 and says what to replace them with.
5915 Return the rtx that X translates into; usually X, but modified. */
5917 void
5918 subst_reloads (rtx insn)
5920 int i;
5922 for (i = 0; i < n_replacements; i++)
5924 struct replacement *r = &replacements[i];
5925 rtx reloadreg = rld[r->what].reg_rtx;
5926 if (reloadreg)
5928 #ifdef ENABLE_CHECKING
5929 /* Internal consistency test. Check that we don't modify
5930 anything in the equivalence arrays. Whenever something from
5931 those arrays needs to be reloaded, it must be unshared before
5932 being substituted into; the equivalence must not be modified.
5933 Otherwise, if the equivalence is used after that, it will
5934 have been modified, and the thing substituted (probably a
5935 register) is likely overwritten and not a usable equivalence. */
5936 int check_regno;
5938 for (check_regno = 0; check_regno < max_regno; check_regno++)
5940 #define CHECK_MODF(ARRAY) \
5941 if (ARRAY[check_regno] \
5942 && loc_mentioned_in_p (r->where, \
5943 ARRAY[check_regno])) \
5944 abort ()
5946 CHECK_MODF (reg_equiv_constant);
5947 CHECK_MODF (reg_equiv_memory_loc);
5948 CHECK_MODF (reg_equiv_address);
5949 CHECK_MODF (reg_equiv_mem);
5950 #undef CHECK_MODF
5952 #endif /* ENABLE_CHECKING */
5954 /* If we're replacing a LABEL_REF with a register, add a
5955 REG_LABEL note to indicate to flow which label this
5956 register refers to. */
5957 if (GET_CODE (*r->where) == LABEL_REF
5958 && JUMP_P (insn))
5959 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5960 XEXP (*r->where, 0),
5961 REG_NOTES (insn));
5963 /* Encapsulate RELOADREG so its machine mode matches what
5964 used to be there. Note that gen_lowpart_common will
5965 do the wrong thing if RELOADREG is multi-word. RELOADREG
5966 will always be a REG here. */
5967 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5968 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5970 /* If we are putting this into a SUBREG and RELOADREG is a
5971 SUBREG, we would be making nested SUBREGs, so we have to fix
5972 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5974 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5976 if (GET_MODE (*r->subreg_loc)
5977 == GET_MODE (SUBREG_REG (reloadreg)))
5978 *r->subreg_loc = SUBREG_REG (reloadreg);
5979 else
5981 int final_offset =
5982 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5984 /* When working with SUBREGs the rule is that the byte
5985 offset must be a multiple of the SUBREG's mode. */
5986 final_offset = (final_offset /
5987 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5988 final_offset = (final_offset *
5989 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5991 *r->where = SUBREG_REG (reloadreg);
5992 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5995 else
5996 *r->where = reloadreg;
5998 /* If reload got no reg and isn't optional, something's wrong. */
5999 else if (! rld[r->what].optional)
6000 abort ();
6004 /* Make a copy of any replacements being done into X and move those
6005 copies to locations in Y, a copy of X. */
6007 void
6008 copy_replacements (rtx x, rtx y)
6010 /* We can't support X being a SUBREG because we might then need to know its
6011 location if something inside it was replaced. */
6012 if (GET_CODE (x) == SUBREG)
6013 abort ();
6015 copy_replacements_1 (&x, &y, n_replacements);
6018 static void
6019 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6021 int i, j;
6022 rtx x, y;
6023 struct replacement *r;
6024 enum rtx_code code;
6025 const char *fmt;
6027 for (j = 0; j < orig_replacements; j++)
6029 if (replacements[j].subreg_loc == px)
6031 r = &replacements[n_replacements++];
6032 r->where = replacements[j].where;
6033 r->subreg_loc = py;
6034 r->what = replacements[j].what;
6035 r->mode = replacements[j].mode;
6037 else if (replacements[j].where == px)
6039 r = &replacements[n_replacements++];
6040 r->where = py;
6041 r->subreg_loc = 0;
6042 r->what = replacements[j].what;
6043 r->mode = replacements[j].mode;
6047 x = *px;
6048 y = *py;
6049 code = GET_CODE (x);
6050 fmt = GET_RTX_FORMAT (code);
6052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6054 if (fmt[i] == 'e')
6055 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6056 else if (fmt[i] == 'E')
6057 for (j = XVECLEN (x, i); --j >= 0; )
6058 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6059 orig_replacements);
6063 /* Change any replacements being done to *X to be done to *Y. */
6065 void
6066 move_replacements (rtx *x, rtx *y)
6068 int i;
6070 for (i = 0; i < n_replacements; i++)
6071 if (replacements[i].subreg_loc == x)
6072 replacements[i].subreg_loc = y;
6073 else if (replacements[i].where == x)
6075 replacements[i].where = y;
6076 replacements[i].subreg_loc = 0;
6080 /* If LOC was scheduled to be replaced by something, return the replacement.
6081 Otherwise, return *LOC. */
6084 find_replacement (rtx *loc)
6086 struct replacement *r;
6088 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6090 rtx reloadreg = rld[r->what].reg_rtx;
6092 if (reloadreg && r->where == loc)
6094 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6095 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6097 return reloadreg;
6099 else if (reloadreg && r->subreg_loc == loc)
6101 /* RELOADREG must be either a REG or a SUBREG.
6103 ??? Is it actually still ever a SUBREG? If so, why? */
6105 if (REG_P (reloadreg))
6106 return gen_rtx_REG (GET_MODE (*loc),
6107 (REGNO (reloadreg) +
6108 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6109 GET_MODE (SUBREG_REG (*loc)),
6110 SUBREG_BYTE (*loc),
6111 GET_MODE (*loc))));
6112 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6113 return reloadreg;
6114 else
6116 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6118 /* When working with SUBREGs the rule is that the byte
6119 offset must be a multiple of the SUBREG's mode. */
6120 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6121 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6122 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6123 final_offset);
6128 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6129 what's inside and make a new rtl if so. */
6130 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6131 || GET_CODE (*loc) == MULT)
6133 rtx x = find_replacement (&XEXP (*loc, 0));
6134 rtx y = find_replacement (&XEXP (*loc, 1));
6136 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6137 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6140 return *loc;
6143 /* Return nonzero if register in range [REGNO, ENDREGNO)
6144 appears either explicitly or implicitly in X
6145 other than being stored into (except for earlyclobber operands).
6147 References contained within the substructure at LOC do not count.
6148 LOC may be zero, meaning don't ignore anything.
6150 This is similar to refers_to_regno_p in rtlanal.c except that we
6151 look at equivalences for pseudos that didn't get hard registers. */
6154 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6155 rtx x, rtx *loc)
6157 int i;
6158 unsigned int r;
6159 RTX_CODE code;
6160 const char *fmt;
6162 if (x == 0)
6163 return 0;
6165 repeat:
6166 code = GET_CODE (x);
6168 switch (code)
6170 case REG:
6171 r = REGNO (x);
6173 /* If this is a pseudo, a hard register must not have been allocated.
6174 X must therefore either be a constant or be in memory. */
6175 if (r >= FIRST_PSEUDO_REGISTER)
6177 if (reg_equiv_memory_loc[r])
6178 return refers_to_regno_for_reload_p (regno, endregno,
6179 reg_equiv_memory_loc[r],
6180 (rtx*) 0);
6182 if (reg_equiv_constant[r])
6183 return 0;
6185 abort ();
6188 return (endregno > r
6189 && regno < r + (r < FIRST_PSEUDO_REGISTER
6190 ? hard_regno_nregs[r][GET_MODE (x)]
6191 : 1));
6193 case SUBREG:
6194 /* If this is a SUBREG of a hard reg, we can see exactly which
6195 registers are being modified. Otherwise, handle normally. */
6196 if (REG_P (SUBREG_REG (x))
6197 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6199 unsigned int inner_regno = subreg_regno (x);
6200 unsigned int inner_endregno
6201 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6202 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6204 return endregno > inner_regno && regno < inner_endregno;
6206 break;
6208 case CLOBBER:
6209 case SET:
6210 if (&SET_DEST (x) != loc
6211 /* Note setting a SUBREG counts as referring to the REG it is in for
6212 a pseudo but not for hard registers since we can
6213 treat each word individually. */
6214 && ((GET_CODE (SET_DEST (x)) == SUBREG
6215 && loc != &SUBREG_REG (SET_DEST (x))
6216 && REG_P (SUBREG_REG (SET_DEST (x)))
6217 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6218 && refers_to_regno_for_reload_p (regno, endregno,
6219 SUBREG_REG (SET_DEST (x)),
6220 loc))
6221 /* If the output is an earlyclobber operand, this is
6222 a conflict. */
6223 || ((!REG_P (SET_DEST (x))
6224 || earlyclobber_operand_p (SET_DEST (x)))
6225 && refers_to_regno_for_reload_p (regno, endregno,
6226 SET_DEST (x), loc))))
6227 return 1;
6229 if (code == CLOBBER || loc == &SET_SRC (x))
6230 return 0;
6231 x = SET_SRC (x);
6232 goto repeat;
6234 default:
6235 break;
6238 /* X does not match, so try its subexpressions. */
6240 fmt = GET_RTX_FORMAT (code);
6241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6243 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6245 if (i == 0)
6247 x = XEXP (x, 0);
6248 goto repeat;
6250 else
6251 if (refers_to_regno_for_reload_p (regno, endregno,
6252 XEXP (x, i), loc))
6253 return 1;
6255 else if (fmt[i] == 'E')
6257 int j;
6258 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6259 if (loc != &XVECEXP (x, i, j)
6260 && refers_to_regno_for_reload_p (regno, endregno,
6261 XVECEXP (x, i, j), loc))
6262 return 1;
6265 return 0;
6268 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6269 we check if any register number in X conflicts with the relevant register
6270 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6271 contains a MEM (we don't bother checking for memory addresses that can't
6272 conflict because we expect this to be a rare case.
6274 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6275 that we look at equivalences for pseudos that didn't get hard registers. */
6278 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6280 int regno, endregno;
6282 /* Overly conservative. */
6283 if (GET_CODE (x) == STRICT_LOW_PART
6284 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6285 x = XEXP (x, 0);
6287 /* If either argument is a constant, then modifying X can not affect IN. */
6288 if (CONSTANT_P (x) || CONSTANT_P (in))
6289 return 0;
6290 else if (GET_CODE (x) == SUBREG)
6292 regno = REGNO (SUBREG_REG (x));
6293 if (regno < FIRST_PSEUDO_REGISTER)
6294 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6295 GET_MODE (SUBREG_REG (x)),
6296 SUBREG_BYTE (x),
6297 GET_MODE (x));
6299 else if (REG_P (x))
6301 regno = REGNO (x);
6303 /* If this is a pseudo, it must not have been assigned a hard register.
6304 Therefore, it must either be in memory or be a constant. */
6306 if (regno >= FIRST_PSEUDO_REGISTER)
6308 if (reg_equiv_memory_loc[regno])
6309 return refers_to_mem_for_reload_p (in);
6310 else if (reg_equiv_constant[regno])
6311 return 0;
6312 abort ();
6315 else if (MEM_P (x))
6316 return refers_to_mem_for_reload_p (in);
6317 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6318 || GET_CODE (x) == CC0)
6319 return reg_mentioned_p (x, in);
6320 else if (GET_CODE (x) == PLUS)
6322 /* We actually want to know if X is mentioned somewhere inside IN.
6323 We must not say that (plus (sp) (const_int 124)) is in
6324 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6325 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6326 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6327 while (MEM_P (in))
6328 in = XEXP (in, 0);
6329 if (REG_P (in))
6330 return 0;
6331 else if (GET_CODE (in) == PLUS)
6332 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6333 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6334 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6335 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6337 else
6338 abort ();
6340 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6341 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6343 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6346 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6347 registers. */
6350 refers_to_mem_for_reload_p (rtx x)
6352 const char *fmt;
6353 int i;
6355 if (MEM_P (x))
6356 return 1;
6358 if (REG_P (x))
6359 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6360 && reg_equiv_memory_loc[REGNO (x)]);
6362 fmt = GET_RTX_FORMAT (GET_CODE (x));
6363 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6364 if (fmt[i] == 'e'
6365 && (MEM_P (XEXP (x, i))
6366 || refers_to_mem_for_reload_p (XEXP (x, i))))
6367 return 1;
6369 return 0;
6372 /* Check the insns before INSN to see if there is a suitable register
6373 containing the same value as GOAL.
6374 If OTHER is -1, look for a register in class CLASS.
6375 Otherwise, just see if register number OTHER shares GOAL's value.
6377 Return an rtx for the register found, or zero if none is found.
6379 If RELOAD_REG_P is (short *)1,
6380 we reject any hard reg that appears in reload_reg_rtx
6381 because such a hard reg is also needed coming into this insn.
6383 If RELOAD_REG_P is any other nonzero value,
6384 it is a vector indexed by hard reg number
6385 and we reject any hard reg whose element in the vector is nonnegative
6386 as well as any that appears in reload_reg_rtx.
6388 If GOAL is zero, then GOALREG is a register number; we look
6389 for an equivalent for that register.
6391 MODE is the machine mode of the value we want an equivalence for.
6392 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6394 This function is used by jump.c as well as in the reload pass.
6396 If GOAL is the sum of the stack pointer and a constant, we treat it
6397 as if it were a constant except that sp is required to be unchanging. */
6400 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6401 short *reload_reg_p, int goalreg, enum machine_mode mode)
6403 rtx p = insn;
6404 rtx goaltry, valtry, value, where;
6405 rtx pat;
6406 int regno = -1;
6407 int valueno;
6408 int goal_mem = 0;
6409 int goal_const = 0;
6410 int goal_mem_addr_varies = 0;
6411 int need_stable_sp = 0;
6412 int nregs;
6413 int valuenregs;
6414 int num = 0;
6416 if (goal == 0)
6417 regno = goalreg;
6418 else if (REG_P (goal))
6419 regno = REGNO (goal);
6420 else if (MEM_P (goal))
6422 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6423 if (MEM_VOLATILE_P (goal))
6424 return 0;
6425 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6426 return 0;
6427 /* An address with side effects must be reexecuted. */
6428 switch (code)
6430 case POST_INC:
6431 case PRE_INC:
6432 case POST_DEC:
6433 case PRE_DEC:
6434 case POST_MODIFY:
6435 case PRE_MODIFY:
6436 return 0;
6437 default:
6438 break;
6440 goal_mem = 1;
6442 else if (CONSTANT_P (goal))
6443 goal_const = 1;
6444 else if (GET_CODE (goal) == PLUS
6445 && XEXP (goal, 0) == stack_pointer_rtx
6446 && CONSTANT_P (XEXP (goal, 1)))
6447 goal_const = need_stable_sp = 1;
6448 else if (GET_CODE (goal) == PLUS
6449 && XEXP (goal, 0) == frame_pointer_rtx
6450 && CONSTANT_P (XEXP (goal, 1)))
6451 goal_const = 1;
6452 else
6453 return 0;
6455 num = 0;
6456 /* Scan insns back from INSN, looking for one that copies
6457 a value into or out of GOAL.
6458 Stop and give up if we reach a label. */
6460 while (1)
6462 p = PREV_INSN (p);
6463 num++;
6464 if (p == 0 || LABEL_P (p)
6465 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6466 return 0;
6468 if (NONJUMP_INSN_P (p)
6469 /* If we don't want spill regs ... */
6470 && (! (reload_reg_p != 0
6471 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6472 /* ... then ignore insns introduced by reload; they aren't
6473 useful and can cause results in reload_as_needed to be
6474 different from what they were when calculating the need for
6475 spills. If we notice an input-reload insn here, we will
6476 reject it below, but it might hide a usable equivalent.
6477 That makes bad code. It may even abort: perhaps no reg was
6478 spilled for this insn because it was assumed we would find
6479 that equivalent. */
6480 || INSN_UID (p) < reload_first_uid))
6482 rtx tem;
6483 pat = single_set (p);
6485 /* First check for something that sets some reg equal to GOAL. */
6486 if (pat != 0
6487 && ((regno >= 0
6488 && true_regnum (SET_SRC (pat)) == regno
6489 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6491 (regno >= 0
6492 && true_regnum (SET_DEST (pat)) == regno
6493 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6495 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6496 /* When looking for stack pointer + const,
6497 make sure we don't use a stack adjust. */
6498 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6499 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6500 || (goal_mem
6501 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6502 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6503 || (goal_mem
6504 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6505 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6506 /* If we are looking for a constant,
6507 and something equivalent to that constant was copied
6508 into a reg, we can use that reg. */
6509 || (goal_const && REG_NOTES (p) != 0
6510 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6511 && ((rtx_equal_p (XEXP (tem, 0), goal)
6512 && (valueno
6513 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6514 || (REG_P (SET_DEST (pat))
6515 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6516 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6517 == MODE_FLOAT)
6518 && GET_CODE (goal) == CONST_INT
6519 && 0 != (goaltry
6520 = operand_subword (XEXP (tem, 0), 0, 0,
6521 VOIDmode))
6522 && rtx_equal_p (goal, goaltry)
6523 && (valtry
6524 = operand_subword (SET_DEST (pat), 0, 0,
6525 VOIDmode))
6526 && (valueno = true_regnum (valtry)) >= 0)))
6527 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6528 NULL_RTX))
6529 && REG_P (SET_DEST (pat))
6530 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6531 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6532 == MODE_FLOAT)
6533 && GET_CODE (goal) == CONST_INT
6534 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6535 VOIDmode))
6536 && rtx_equal_p (goal, goaltry)
6537 && (valtry
6538 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6539 && (valueno = true_regnum (valtry)) >= 0)))
6541 if (other >= 0)
6543 if (valueno != other)
6544 continue;
6546 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6547 continue;
6548 else
6550 int i;
6552 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6553 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6554 valueno + i))
6555 break;
6556 if (i >= 0)
6557 continue;
6559 value = valtry;
6560 where = p;
6561 break;
6566 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6567 (or copying VALUE into GOAL, if GOAL is also a register).
6568 Now verify that VALUE is really valid. */
6570 /* VALUENO is the register number of VALUE; a hard register. */
6572 /* Don't try to re-use something that is killed in this insn. We want
6573 to be able to trust REG_UNUSED notes. */
6574 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6575 return 0;
6577 /* If we propose to get the value from the stack pointer or if GOAL is
6578 a MEM based on the stack pointer, we need a stable SP. */
6579 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6580 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6581 goal)))
6582 need_stable_sp = 1;
6584 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6585 if (GET_MODE (value) != mode)
6586 return 0;
6588 /* Reject VALUE if it was loaded from GOAL
6589 and is also a register that appears in the address of GOAL. */
6591 if (goal_mem && value == SET_DEST (single_set (where))
6592 && refers_to_regno_for_reload_p (valueno,
6593 (valueno
6594 + hard_regno_nregs[valueno][mode]),
6595 goal, (rtx*) 0))
6596 return 0;
6598 /* Reject registers that overlap GOAL. */
6600 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6601 nregs = hard_regno_nregs[regno][mode];
6602 else
6603 nregs = 1;
6604 valuenregs = hard_regno_nregs[valueno][mode];
6606 if (!goal_mem && !goal_const
6607 && regno + nregs > valueno && regno < valueno + valuenregs)
6608 return 0;
6610 /* Reject VALUE if it is one of the regs reserved for reloads.
6611 Reload1 knows how to reuse them anyway, and it would get
6612 confused if we allocated one without its knowledge.
6613 (Now that insns introduced by reload are ignored above,
6614 this case shouldn't happen, but I'm not positive.) */
6616 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6618 int i;
6619 for (i = 0; i < valuenregs; ++i)
6620 if (reload_reg_p[valueno + i] >= 0)
6621 return 0;
6624 /* Reject VALUE if it is a register being used for an input reload
6625 even if it is not one of those reserved. */
6627 if (reload_reg_p != 0)
6629 int i;
6630 for (i = 0; i < n_reloads; i++)
6631 if (rld[i].reg_rtx != 0 && rld[i].in)
6633 int regno1 = REGNO (rld[i].reg_rtx);
6634 int nregs1 = hard_regno_nregs[regno1]
6635 [GET_MODE (rld[i].reg_rtx)];
6636 if (regno1 < valueno + valuenregs
6637 && regno1 + nregs1 > valueno)
6638 return 0;
6642 if (goal_mem)
6643 /* We must treat frame pointer as varying here,
6644 since it can vary--in a nonlocal goto as generated by expand_goto. */
6645 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6647 /* Now verify that the values of GOAL and VALUE remain unaltered
6648 until INSN is reached. */
6650 p = insn;
6651 while (1)
6653 p = PREV_INSN (p);
6654 if (p == where)
6655 return value;
6657 /* Don't trust the conversion past a function call
6658 if either of the two is in a call-clobbered register, or memory. */
6659 if (CALL_P (p))
6661 int i;
6663 if (goal_mem || need_stable_sp)
6664 return 0;
6666 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6667 for (i = 0; i < nregs; ++i)
6668 if (call_used_regs[regno + i])
6669 return 0;
6671 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6672 for (i = 0; i < valuenregs; ++i)
6673 if (call_used_regs[valueno + i])
6674 return 0;
6675 #ifdef NON_SAVING_SETJMP
6676 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6677 return 0;
6678 #endif
6681 if (INSN_P (p))
6683 pat = PATTERN (p);
6685 /* Watch out for unspec_volatile, and volatile asms. */
6686 if (volatile_insn_p (pat))
6687 return 0;
6689 /* If this insn P stores in either GOAL or VALUE, return 0.
6690 If GOAL is a memory ref and this insn writes memory, return 0.
6691 If GOAL is a memory ref and its address is not constant,
6692 and this insn P changes a register used in GOAL, return 0. */
6694 if (GET_CODE (pat) == COND_EXEC)
6695 pat = COND_EXEC_CODE (pat);
6696 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6698 rtx dest = SET_DEST (pat);
6699 while (GET_CODE (dest) == SUBREG
6700 || GET_CODE (dest) == ZERO_EXTRACT
6701 || GET_CODE (dest) == SIGN_EXTRACT
6702 || GET_CODE (dest) == STRICT_LOW_PART)
6703 dest = XEXP (dest, 0);
6704 if (REG_P (dest))
6706 int xregno = REGNO (dest);
6707 int xnregs;
6708 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6709 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6710 else
6711 xnregs = 1;
6712 if (xregno < regno + nregs && xregno + xnregs > regno)
6713 return 0;
6714 if (xregno < valueno + valuenregs
6715 && xregno + xnregs > valueno)
6716 return 0;
6717 if (goal_mem_addr_varies
6718 && reg_overlap_mentioned_for_reload_p (dest, goal))
6719 return 0;
6720 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6721 return 0;
6723 else if (goal_mem && MEM_P (dest)
6724 && ! push_operand (dest, GET_MODE (dest)))
6725 return 0;
6726 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6727 && reg_equiv_memory_loc[regno] != 0)
6728 return 0;
6729 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6730 return 0;
6732 else if (GET_CODE (pat) == PARALLEL)
6734 int i;
6735 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6737 rtx v1 = XVECEXP (pat, 0, i);
6738 if (GET_CODE (v1) == COND_EXEC)
6739 v1 = COND_EXEC_CODE (v1);
6740 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6742 rtx dest = SET_DEST (v1);
6743 while (GET_CODE (dest) == SUBREG
6744 || GET_CODE (dest) == ZERO_EXTRACT
6745 || GET_CODE (dest) == SIGN_EXTRACT
6746 || GET_CODE (dest) == STRICT_LOW_PART)
6747 dest = XEXP (dest, 0);
6748 if (REG_P (dest))
6750 int xregno = REGNO (dest);
6751 int xnregs;
6752 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6753 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6754 else
6755 xnregs = 1;
6756 if (xregno < regno + nregs
6757 && xregno + xnregs > regno)
6758 return 0;
6759 if (xregno < valueno + valuenregs
6760 && xregno + xnregs > valueno)
6761 return 0;
6762 if (goal_mem_addr_varies
6763 && reg_overlap_mentioned_for_reload_p (dest,
6764 goal))
6765 return 0;
6766 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6767 return 0;
6769 else if (goal_mem && MEM_P (dest)
6770 && ! push_operand (dest, GET_MODE (dest)))
6771 return 0;
6772 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6773 && reg_equiv_memory_loc[regno] != 0)
6774 return 0;
6775 else if (need_stable_sp
6776 && push_operand (dest, GET_MODE (dest)))
6777 return 0;
6782 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6784 rtx link;
6786 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6787 link = XEXP (link, 1))
6789 pat = XEXP (link, 0);
6790 if (GET_CODE (pat) == CLOBBER)
6792 rtx dest = SET_DEST (pat);
6794 if (REG_P (dest))
6796 int xregno = REGNO (dest);
6797 int xnregs
6798 = hard_regno_nregs[xregno][GET_MODE (dest)];
6800 if (xregno < regno + nregs
6801 && xregno + xnregs > regno)
6802 return 0;
6803 else if (xregno < valueno + valuenregs
6804 && xregno + xnregs > valueno)
6805 return 0;
6806 else if (goal_mem_addr_varies
6807 && reg_overlap_mentioned_for_reload_p (dest,
6808 goal))
6809 return 0;
6812 else if (goal_mem && MEM_P (dest)
6813 && ! push_operand (dest, GET_MODE (dest)))
6814 return 0;
6815 else if (need_stable_sp
6816 && push_operand (dest, GET_MODE (dest)))
6817 return 0;
6822 #ifdef AUTO_INC_DEC
6823 /* If this insn auto-increments or auto-decrements
6824 either regno or valueno, return 0 now.
6825 If GOAL is a memory ref and its address is not constant,
6826 and this insn P increments a register used in GOAL, return 0. */
6828 rtx link;
6830 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6831 if (REG_NOTE_KIND (link) == REG_INC
6832 && REG_P (XEXP (link, 0)))
6834 int incno = REGNO (XEXP (link, 0));
6835 if (incno < regno + nregs && incno >= regno)
6836 return 0;
6837 if (incno < valueno + valuenregs && incno >= valueno)
6838 return 0;
6839 if (goal_mem_addr_varies
6840 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6841 goal))
6842 return 0;
6845 #endif
6850 /* Find a place where INCED appears in an increment or decrement operator
6851 within X, and return the amount INCED is incremented or decremented by.
6852 The value is always positive. */
6854 static int
6855 find_inc_amount (rtx x, rtx inced)
6857 enum rtx_code code = GET_CODE (x);
6858 const char *fmt;
6859 int i;
6861 if (code == MEM)
6863 rtx addr = XEXP (x, 0);
6864 if ((GET_CODE (addr) == PRE_DEC
6865 || GET_CODE (addr) == POST_DEC
6866 || GET_CODE (addr) == PRE_INC
6867 || GET_CODE (addr) == POST_INC)
6868 && XEXP (addr, 0) == inced)
6869 return GET_MODE_SIZE (GET_MODE (x));
6870 else if ((GET_CODE (addr) == PRE_MODIFY
6871 || GET_CODE (addr) == POST_MODIFY)
6872 && GET_CODE (XEXP (addr, 1)) == PLUS
6873 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6874 && XEXP (addr, 0) == inced
6875 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6877 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6878 return i < 0 ? -i : i;
6882 fmt = GET_RTX_FORMAT (code);
6883 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6885 if (fmt[i] == 'e')
6887 int tem = find_inc_amount (XEXP (x, i), inced);
6888 if (tem != 0)
6889 return tem;
6891 if (fmt[i] == 'E')
6893 int j;
6894 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6896 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6897 if (tem != 0)
6898 return tem;
6903 return 0;
6906 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6907 If SETS is nonzero, also consider SETs. */
6910 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6911 int sets)
6913 unsigned int nregs = hard_regno_nregs[regno][mode];
6914 unsigned int endregno = regno + nregs;
6916 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6917 || (sets && GET_CODE (PATTERN (insn)) == SET))
6918 && REG_P (XEXP (PATTERN (insn), 0)))
6920 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6922 return test >= regno && test < endregno;
6925 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6927 int i = XVECLEN (PATTERN (insn), 0) - 1;
6929 for (; i >= 0; i--)
6931 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6932 if ((GET_CODE (elt) == CLOBBER
6933 || (sets && GET_CODE (PATTERN (insn)) == SET))
6934 && REG_P (XEXP (elt, 0)))
6936 unsigned int test = REGNO (XEXP (elt, 0));
6938 if (test >= regno && test < endregno)
6939 return 1;
6944 return 0;
6947 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6949 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6951 int regno;
6953 if (GET_MODE (reloadreg) == mode)
6954 return reloadreg;
6956 regno = REGNO (reloadreg);
6958 if (WORDS_BIG_ENDIAN)
6959 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6960 - (int) hard_regno_nregs[regno][mode];
6962 return gen_rtx_REG (mode, regno);
6965 static const char *const reload_when_needed_name[] =
6967 "RELOAD_FOR_INPUT",
6968 "RELOAD_FOR_OUTPUT",
6969 "RELOAD_FOR_INSN",
6970 "RELOAD_FOR_INPUT_ADDRESS",
6971 "RELOAD_FOR_INPADDR_ADDRESS",
6972 "RELOAD_FOR_OUTPUT_ADDRESS",
6973 "RELOAD_FOR_OUTADDR_ADDRESS",
6974 "RELOAD_FOR_OPERAND_ADDRESS",
6975 "RELOAD_FOR_OPADDR_ADDR",
6976 "RELOAD_OTHER",
6977 "RELOAD_FOR_OTHER_ADDRESS"
6980 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6982 /* These functions are used to print the variables set by 'find_reloads' */
6984 void
6985 debug_reload_to_stream (FILE *f)
6987 int r;
6988 const char *prefix;
6990 if (! f)
6991 f = stderr;
6992 for (r = 0; r < n_reloads; r++)
6994 fprintf (f, "Reload %d: ", r);
6996 if (rld[r].in != 0)
6998 fprintf (f, "reload_in (%s) = ",
6999 GET_MODE_NAME (rld[r].inmode));
7000 print_inline_rtx (f, rld[r].in, 24);
7001 fprintf (f, "\n\t");
7004 if (rld[r].out != 0)
7006 fprintf (f, "reload_out (%s) = ",
7007 GET_MODE_NAME (rld[r].outmode));
7008 print_inline_rtx (f, rld[r].out, 24);
7009 fprintf (f, "\n\t");
7012 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7014 fprintf (f, "%s (opnum = %d)",
7015 reload_when_needed_name[(int) rld[r].when_needed],
7016 rld[r].opnum);
7018 if (rld[r].optional)
7019 fprintf (f, ", optional");
7021 if (rld[r].nongroup)
7022 fprintf (f, ", nongroup");
7024 if (rld[r].inc != 0)
7025 fprintf (f, ", inc by %d", rld[r].inc);
7027 if (rld[r].nocombine)
7028 fprintf (f, ", can't combine");
7030 if (rld[r].secondary_p)
7031 fprintf (f, ", secondary_reload_p");
7033 if (rld[r].in_reg != 0)
7035 fprintf (f, "\n\treload_in_reg: ");
7036 print_inline_rtx (f, rld[r].in_reg, 24);
7039 if (rld[r].out_reg != 0)
7041 fprintf (f, "\n\treload_out_reg: ");
7042 print_inline_rtx (f, rld[r].out_reg, 24);
7045 if (rld[r].reg_rtx != 0)
7047 fprintf (f, "\n\treload_reg_rtx: ");
7048 print_inline_rtx (f, rld[r].reg_rtx, 24);
7051 prefix = "\n\t";
7052 if (rld[r].secondary_in_reload != -1)
7054 fprintf (f, "%ssecondary_in_reload = %d",
7055 prefix, rld[r].secondary_in_reload);
7056 prefix = ", ";
7059 if (rld[r].secondary_out_reload != -1)
7060 fprintf (f, "%ssecondary_out_reload = %d\n",
7061 prefix, rld[r].secondary_out_reload);
7063 prefix = "\n\t";
7064 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7066 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7067 insn_data[rld[r].secondary_in_icode].name);
7068 prefix = ", ";
7071 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7072 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7073 insn_data[rld[r].secondary_out_icode].name);
7075 fprintf (f, "\n");
7079 void
7080 debug_reload (void)
7082 debug_reload_to_stream (stderr);