1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables.
27 Basic induction variables (BIVs) are a pseudo registers which are set within
28 a loop only by incrementing or decrementing its value. General induction
29 variables (GIVs) are pseudo registers with a value which is a linear function
30 of a basic induction variable. BIVs are recognized by `basic_induction_var';
31 GIVs by `general_induction_var'.
33 Once induction variables are identified, strength reduction is applied to the
34 general induction variables, and induction variable elimination is applied to
35 the basic induction variables.
37 It also finds cases where
38 a register is set within the loop by zero-extending a narrower value
39 and changes these to zero the entire register once before the loop
40 and merely copy the low part within the loop.
42 Most of the complexity is in heuristics to decide when it is worth
43 while to do these things. */
47 #include "coretypes.h"
53 #include "hard-reg-set.h"
54 #include "basic-block.h"
55 #include "insn-config.h"
65 #include "insn-flags.h"
70 /* Not really meaningful values, but at least something. */
71 #ifndef SIMULTANEOUS_PREFETCHES
72 #define SIMULTANEOUS_PREFETCHES 3
74 #ifndef PREFETCH_BLOCK
75 #define PREFETCH_BLOCK 32
78 #define HAVE_prefetch 0
79 #define CODE_FOR_prefetch 0
80 #define gen_prefetch(a,b,c) (abort(), NULL_RTX)
83 /* Give up the prefetch optimizations once we exceed a given threshold.
84 It is unlikely that we would be able to optimize something in a loop
85 with so many detected prefetches. */
86 #define MAX_PREFETCHES 100
87 /* The number of prefetch blocks that are beneficial to fetch at once before
88 a loop with a known (and low) iteration count. */
89 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
90 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
91 since it is likely that the data are already in the cache. */
92 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
94 /* Parameterize some prefetch heuristics so they can be turned on and off
95 easily for performance testing on new architectures. These can be
96 defined in target-dependent files. */
98 /* Prefetch is worthwhile only when loads/stores are dense. */
99 #ifndef PREFETCH_ONLY_DENSE_MEM
100 #define PREFETCH_ONLY_DENSE_MEM 1
103 /* Define what we mean by "dense" loads and stores; This value divided by 256
104 is the minimum percentage of memory references that worth prefetching. */
105 #ifndef PREFETCH_DENSE_MEM
106 #define PREFETCH_DENSE_MEM 220
109 /* Do not prefetch for a loop whose iteration count is known to be low. */
110 #ifndef PREFETCH_NO_LOW_LOOPCNT
111 #define PREFETCH_NO_LOW_LOOPCNT 1
114 /* Define what we mean by a "low" iteration count. */
115 #ifndef PREFETCH_LOW_LOOPCNT
116 #define PREFETCH_LOW_LOOPCNT 32
119 /* Do not prefetch for a loop that contains a function call; such a loop is
120 probably not an internal loop. */
121 #ifndef PREFETCH_NO_CALL
122 #define PREFETCH_NO_CALL 1
125 /* Do not prefetch accesses with an extreme stride. */
126 #ifndef PREFETCH_NO_EXTREME_STRIDE
127 #define PREFETCH_NO_EXTREME_STRIDE 1
130 /* Define what we mean by an "extreme" stride. */
131 #ifndef PREFETCH_EXTREME_STRIDE
132 #define PREFETCH_EXTREME_STRIDE 4096
135 /* Define a limit to how far apart indices can be and still be merged
136 into a single prefetch. */
137 #ifndef PREFETCH_EXTREME_DIFFERENCE
138 #define PREFETCH_EXTREME_DIFFERENCE 4096
141 /* Issue prefetch instructions before the loop to fetch data to be used
142 in the first few loop iterations. */
143 #ifndef PREFETCH_BEFORE_LOOP
144 #define PREFETCH_BEFORE_LOOP 1
147 /* Do not handle reversed order prefetches (negative stride). */
148 #ifndef PREFETCH_NO_REVERSE_ORDER
149 #define PREFETCH_NO_REVERSE_ORDER 1
152 /* Prefetch even if the GIV is in conditional code. */
153 #ifndef PREFETCH_CONDITIONAL
154 #define PREFETCH_CONDITIONAL 1
157 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
158 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
160 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
161 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
162 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
164 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
165 ((REGNO) < FIRST_PSEUDO_REGISTER \
166 ? (int) hard_regno_nregs[(REGNO)][GET_MODE (SET_DEST)] : 1)
169 /* Vector mapping INSN_UIDs to luids.
170 The luids are like uids but increase monotonically always.
171 We use them to see whether a jump comes from outside a given loop. */
175 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
176 number the insn is contained in. */
178 struct loop
**uid_loop
;
180 /* 1 + largest uid of any insn. */
182 int max_uid_for_loop
;
184 /* Number of loops detected in current function. Used as index to the
187 static int max_loop_num
;
189 /* Bound on pseudo register number before loop optimization.
190 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
191 unsigned int max_reg_before_loop
;
193 /* The value to pass to the next call of reg_scan_update. */
194 static int loop_max_reg
;
196 /* During the analysis of a loop, a chain of `struct movable's
197 is made to record all the movable insns found.
198 Then the entire chain can be scanned to decide which to move. */
202 rtx insn
; /* A movable insn */
203 rtx set_src
; /* The expression this reg is set from. */
204 rtx set_dest
; /* The destination of this SET. */
205 rtx dependencies
; /* When INSN is libcall, this is an EXPR_LIST
206 of any registers used within the LIBCALL. */
207 int consec
; /* Number of consecutive following insns
208 that must be moved with this one. */
209 unsigned int regno
; /* The register it sets */
210 short lifetime
; /* lifetime of that register;
211 may be adjusted when matching movables
212 that load the same value are found. */
213 short savings
; /* Number of insns we can move for this reg,
214 including other movables that force this
215 or match this one. */
216 ENUM_BITFIELD(machine_mode
) savemode
: 8; /* Nonzero means it is a mode for
217 a low part that we should avoid changing when
218 clearing the rest of the reg. */
219 unsigned int cond
: 1; /* 1 if only conditionally movable */
220 unsigned int force
: 1; /* 1 means MUST move this insn */
221 unsigned int global
: 1; /* 1 means reg is live outside this loop */
222 /* If PARTIAL is 1, GLOBAL means something different:
223 that the reg is live outside the range from where it is set
224 to the following label. */
225 unsigned int done
: 1; /* 1 inhibits further processing of this */
227 unsigned int partial
: 1; /* 1 means this reg is used for zero-extending.
228 In particular, moving it does not make it
230 unsigned int move_insn
: 1; /* 1 means that we call emit_move_insn to
231 load SRC, rather than copying INSN. */
232 unsigned int move_insn_first
:1;/* Same as above, if this is necessary for the
233 first insn of a consecutive sets group. */
234 unsigned int is_equiv
: 1; /* 1 means a REG_EQUIV is present on INSN. */
235 unsigned int insert_temp
: 1; /* 1 means we copy to a new pseudo and replace
236 the original insn with a copy from that
237 pseudo, rather than deleting it. */
238 struct movable
*match
; /* First entry for same value */
239 struct movable
*forces
; /* An insn that must be moved if this is */
240 struct movable
*next
;
244 FILE *loop_dump_stream
;
246 /* Forward declarations. */
248 static void invalidate_loops_containing_label (rtx
);
249 static void find_and_verify_loops (rtx
, struct loops
*);
250 static void mark_loop_jump (rtx
, struct loop
*);
251 static void prescan_loop (struct loop
*);
252 static int reg_in_basic_block_p (rtx
, rtx
);
253 static int consec_sets_invariant_p (const struct loop
*, rtx
, int, rtx
);
254 static int labels_in_range_p (rtx
, int);
255 static void count_one_set (struct loop_regs
*, rtx
, rtx
, rtx
*);
256 static void note_addr_stored (rtx
, rtx
, void *);
257 static void note_set_pseudo_multiple_uses (rtx
, rtx
, void *);
258 static int loop_reg_used_before_p (const struct loop
*, rtx
, rtx
);
259 static rtx
find_regs_nested (rtx
, rtx
);
260 static void scan_loop (struct loop
*, int);
262 static void replace_call_address (rtx
, rtx
, rtx
);
264 static rtx
skip_consec_insns (rtx
, int);
265 static int libcall_benefit (rtx
);
266 static rtx
libcall_other_reg (rtx
, rtx
);
267 static void record_excess_regs (rtx
, rtx
, rtx
*);
268 static void ignore_some_movables (struct loop_movables
*);
269 static void force_movables (struct loop_movables
*);
270 static void combine_movables (struct loop_movables
*, struct loop_regs
*);
271 static int num_unmoved_movables (const struct loop
*);
272 static int regs_match_p (rtx
, rtx
, struct loop_movables
*);
273 static int rtx_equal_for_loop_p (rtx
, rtx
, struct loop_movables
*,
275 static void add_label_notes (rtx
, rtx
);
276 static void move_movables (struct loop
*loop
, struct loop_movables
*, int,
278 static void loop_movables_add (struct loop_movables
*, struct movable
*);
279 static void loop_movables_free (struct loop_movables
*);
280 static int count_nonfixed_reads (const struct loop
*, rtx
);
281 static void loop_bivs_find (struct loop
*);
282 static void loop_bivs_init_find (struct loop
*);
283 static void loop_bivs_check (struct loop
*);
284 static void loop_givs_find (struct loop
*);
285 static void loop_givs_check (struct loop
*);
286 static int loop_biv_eliminable_p (struct loop
*, struct iv_class
*, int, int);
287 static int loop_giv_reduce_benefit (struct loop
*, struct iv_class
*,
288 struct induction
*, rtx
);
289 static void loop_givs_dead_check (struct loop
*, struct iv_class
*);
290 static void loop_givs_reduce (struct loop
*, struct iv_class
*);
291 static void loop_givs_rescan (struct loop
*, struct iv_class
*, rtx
*);
292 static void loop_ivs_free (struct loop
*);
293 static void strength_reduce (struct loop
*, int);
294 static void find_single_use_in_loop (struct loop_regs
*, rtx
, rtx
);
295 static int valid_initial_value_p (rtx
, rtx
, int, rtx
);
296 static void find_mem_givs (const struct loop
*, rtx
, rtx
, int, int);
297 static void record_biv (struct loop
*, struct induction
*, rtx
, rtx
, rtx
,
298 rtx
, rtx
*, int, int);
299 static void check_final_value (const struct loop
*, struct induction
*);
300 static void loop_ivs_dump (const struct loop
*, FILE *, int);
301 static void loop_iv_class_dump (const struct iv_class
*, FILE *, int);
302 static void loop_biv_dump (const struct induction
*, FILE *, int);
303 static void loop_giv_dump (const struct induction
*, FILE *, int);
304 static void record_giv (const struct loop
*, struct induction
*, rtx
, rtx
,
305 rtx
, rtx
, rtx
, rtx
, int, enum g_types
, int, int,
307 static void update_giv_derive (const struct loop
*, rtx
);
308 static void check_ext_dependent_givs (const struct loop
*, struct iv_class
*);
309 static int basic_induction_var (const struct loop
*, rtx
, enum machine_mode
,
310 rtx
, rtx
, rtx
*, rtx
*, rtx
**);
311 static rtx
simplify_giv_expr (const struct loop
*, rtx
, rtx
*, int *);
312 static int general_induction_var (const struct loop
*loop
, rtx
, rtx
*, rtx
*,
313 rtx
*, rtx
*, int, int *, enum machine_mode
);
314 static int consec_sets_giv (const struct loop
*, int, rtx
, rtx
, rtx
, rtx
*,
315 rtx
*, rtx
*, rtx
*);
316 static int check_dbra_loop (struct loop
*, int);
317 static rtx
express_from_1 (rtx
, rtx
, rtx
);
318 static rtx
combine_givs_p (struct induction
*, struct induction
*);
319 static int cmp_combine_givs_stats (const void *, const void *);
320 static void combine_givs (struct loop_regs
*, struct iv_class
*);
321 static int product_cheap_p (rtx
, rtx
);
322 static int maybe_eliminate_biv (const struct loop
*, struct iv_class
*, int,
324 static int maybe_eliminate_biv_1 (const struct loop
*, rtx
, rtx
,
325 struct iv_class
*, int, basic_block
, rtx
);
326 static int last_use_this_basic_block (rtx
, rtx
);
327 static void record_initial (rtx
, rtx
, void *);
328 static void update_reg_last_use (rtx
, rtx
);
329 static rtx
next_insn_in_loop (const struct loop
*, rtx
);
330 static void loop_regs_scan (const struct loop
*, int);
331 static int count_insns_in_loop (const struct loop
*);
332 static int find_mem_in_note_1 (rtx
*, void *);
333 static rtx
find_mem_in_note (rtx
);
334 static void load_mems (const struct loop
*);
335 static int insert_loop_mem (rtx
*, void *);
336 static int replace_loop_mem (rtx
*, void *);
337 static void replace_loop_mems (rtx
, rtx
, rtx
, int);
338 static int replace_loop_reg (rtx
*, void *);
339 static void replace_loop_regs (rtx insn
, rtx
, rtx
);
340 static void note_reg_stored (rtx
, rtx
, void *);
341 static void try_copy_prop (const struct loop
*, rtx
, unsigned int);
342 static void try_swap_copy_prop (const struct loop
*, rtx
, unsigned int);
343 static rtx
check_insn_for_givs (struct loop
*, rtx
, int, int);
344 static rtx
check_insn_for_bivs (struct loop
*, rtx
, int, int);
345 static rtx
gen_add_mult (rtx
, rtx
, rtx
, rtx
);
346 static void loop_regs_update (const struct loop
*, rtx
);
347 static int iv_add_mult_cost (rtx
, rtx
, rtx
, rtx
);
349 static rtx
loop_insn_emit_after (const struct loop
*, basic_block
, rtx
, rtx
);
350 static rtx
loop_call_insn_emit_before (const struct loop
*, basic_block
,
352 static rtx
loop_call_insn_hoist (const struct loop
*, rtx
);
353 static rtx
loop_insn_sink_or_swim (const struct loop
*, rtx
);
355 static void loop_dump_aux (const struct loop
*, FILE *, int);
356 static void loop_delete_insns (rtx
, rtx
);
357 static HOST_WIDE_INT
remove_constant_addition (rtx
*);
358 static rtx
gen_load_of_final_value (rtx
, rtx
);
359 void debug_ivs (const struct loop
*);
360 void debug_iv_class (const struct iv_class
*);
361 void debug_biv (const struct induction
*);
362 void debug_giv (const struct induction
*);
363 void debug_loop (const struct loop
*);
364 void debug_loops (const struct loops
*);
366 typedef struct loop_replace_args
373 /* Nonzero iff INSN is between START and END, inclusive. */
374 #define INSN_IN_RANGE_P(INSN, START, END) \
375 (INSN_UID (INSN) < max_uid_for_loop \
376 && INSN_LUID (INSN) >= INSN_LUID (START) \
377 && INSN_LUID (INSN) <= INSN_LUID (END))
379 /* Indirect_jump_in_function is computed once per function. */
380 static int indirect_jump_in_function
;
381 static int indirect_jump_in_function_p (rtx
);
383 static int compute_luids (rtx
, rtx
, int);
385 static int biv_elimination_giv_has_0_offset (struct induction
*,
386 struct induction
*, rtx
);
388 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
389 copy the value of the strength reduced giv to its original register. */
390 static int copy_cost
;
392 /* Cost of using a register, to normalize the benefits of a giv. */
393 static int reg_address_cost
;
398 rtx reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
400 reg_address_cost
= address_cost (reg
, SImode
);
402 copy_cost
= COSTS_N_INSNS (1);
405 /* Compute the mapping from uids to luids.
406 LUIDs are numbers assigned to insns, like uids,
407 except that luids increase monotonically through the code.
408 Start at insn START and stop just before END. Assign LUIDs
409 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
411 compute_luids (rtx start
, rtx end
, int prev_luid
)
416 for (insn
= start
, i
= prev_luid
; insn
!= end
; insn
= NEXT_INSN (insn
))
418 if (INSN_UID (insn
) >= max_uid_for_loop
)
420 /* Don't assign luids to line-number NOTEs, so that the distance in
421 luids between two insns is not affected by -g. */
423 || NOTE_LINE_NUMBER (insn
) <= 0)
424 uid_luid
[INSN_UID (insn
)] = ++i
;
426 /* Give a line number note the same luid as preceding insn. */
427 uid_luid
[INSN_UID (insn
)] = i
;
432 /* Entry point of this file. Perform loop optimization
433 on the current function. F is the first insn of the function
434 and DUMPFILE is a stream for output of a trace of actions taken
435 (or 0 if none should be output). */
438 loop_optimize (rtx f
, FILE *dumpfile
, int flags
)
442 struct loops loops_data
;
443 struct loops
*loops
= &loops_data
;
444 struct loop_info
*loops_info
;
446 loop_dump_stream
= dumpfile
;
448 init_recog_no_volatile ();
450 max_reg_before_loop
= max_reg_num ();
451 loop_max_reg
= max_reg_before_loop
;
455 /* Count the number of loops. */
458 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
461 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
465 /* Don't waste time if no loops. */
466 if (max_loop_num
== 0)
469 loops
->num
= max_loop_num
;
471 /* Get size to use for tables indexed by uids.
472 Leave some space for labels allocated by find_and_verify_loops. */
473 max_uid_for_loop
= get_max_uid () + 1 + max_loop_num
* 32;
475 uid_luid
= xcalloc (max_uid_for_loop
, sizeof (int));
476 uid_loop
= xcalloc (max_uid_for_loop
, sizeof (struct loop
*));
478 /* Allocate storage for array of loops. */
479 loops
->array
= xcalloc (loops
->num
, sizeof (struct loop
));
481 /* Find and process each loop.
482 First, find them, and record them in order of their beginnings. */
483 find_and_verify_loops (f
, loops
);
485 /* Allocate and initialize auxiliary loop information. */
486 loops_info
= xcalloc (loops
->num
, sizeof (struct loop_info
));
487 for (i
= 0; i
< (int) loops
->num
; i
++)
488 loops
->array
[i
].aux
= loops_info
+ i
;
490 /* Now find all register lifetimes. This must be done after
491 find_and_verify_loops, because it might reorder the insns in the
493 reg_scan (f
, max_reg_before_loop
, 1);
495 /* This must occur after reg_scan so that registers created by gcse
496 will have entries in the register tables.
498 We could have added a call to reg_scan after gcse_main in toplev.c,
499 but moving this call to init_alias_analysis is more efficient. */
500 init_alias_analysis ();
502 /* See if we went too far. Note that get_max_uid already returns
503 one more that the maximum uid of all insn. */
504 if (get_max_uid () > max_uid_for_loop
)
506 /* Now reset it to the actual size we need. See above. */
507 max_uid_for_loop
= get_max_uid ();
509 /* find_and_verify_loops has already called compute_luids, but it
510 might have rearranged code afterwards, so we need to recompute
512 compute_luids (f
, NULL_RTX
, 0);
514 /* Don't leave gaps in uid_luid for insns that have been
515 deleted. It is possible that the first or last insn
516 using some register has been deleted by cross-jumping.
517 Make sure that uid_luid for that former insn's uid
518 points to the general area where that insn used to be. */
519 for (i
= 0; i
< max_uid_for_loop
; i
++)
521 uid_luid
[0] = uid_luid
[i
];
522 if (uid_luid
[0] != 0)
525 for (i
= 0; i
< max_uid_for_loop
; i
++)
526 if (uid_luid
[i
] == 0)
527 uid_luid
[i
] = uid_luid
[i
- 1];
529 /* Determine if the function has indirect jump. On some systems
530 this prevents low overhead loop instructions from being used. */
531 indirect_jump_in_function
= indirect_jump_in_function_p (f
);
533 /* Now scan the loops, last ones first, since this means inner ones are done
534 before outer ones. */
535 for (i
= max_loop_num
- 1; i
>= 0; i
--)
537 struct loop
*loop
= &loops
->array
[i
];
539 if (! loop
->invalid
&& loop
->end
)
541 scan_loop (loop
, flags
);
546 end_alias_analysis ();
549 for (i
= 0; i
< (int) loops
->num
; i
++)
550 free (loops_info
[i
].mems
);
558 /* Returns the next insn, in execution order, after INSN. START and
559 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
560 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
561 insn-stream; it is used with loops that are entered near the
565 next_insn_in_loop (const struct loop
*loop
, rtx insn
)
567 insn
= NEXT_INSN (insn
);
569 if (insn
== loop
->end
)
572 /* Go to the top of the loop, and continue there. */
579 if (insn
== loop
->scan_start
)
586 /* Find any register references hidden inside X and add them to
587 the dependency list DEPS. This is used to look inside CLOBBER (MEM
588 when checking whether a PARALLEL can be pulled out of a loop. */
591 find_regs_nested (rtx deps
, rtx x
)
593 enum rtx_code code
= GET_CODE (x
);
595 deps
= gen_rtx_EXPR_LIST (VOIDmode
, x
, deps
);
598 const char *fmt
= GET_RTX_FORMAT (code
);
600 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
603 deps
= find_regs_nested (deps
, XEXP (x
, i
));
604 else if (fmt
[i
] == 'E')
605 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
606 deps
= find_regs_nested (deps
, XVECEXP (x
, i
, j
));
612 /* Optimize one loop described by LOOP. */
614 /* ??? Could also move memory writes out of loops if the destination address
615 is invariant, the source is invariant, the memory write is not volatile,
616 and if we can prove that no read inside the loop can read this address
617 before the write occurs. If there is a read of this address after the
618 write, then we can also mark the memory read as invariant. */
621 scan_loop (struct loop
*loop
, int flags
)
623 struct loop_info
*loop_info
= LOOP_INFO (loop
);
624 struct loop_regs
*regs
= LOOP_REGS (loop
);
626 rtx loop_start
= loop
->start
;
627 rtx loop_end
= loop
->end
;
629 /* 1 if we are scanning insns that could be executed zero times. */
631 /* 1 if we are scanning insns that might never be executed
632 due to a subroutine call which might exit before they are reached. */
634 /* Number of insns in the loop. */
637 rtx temp
, update_start
, update_end
;
638 /* The SET from an insn, if it is the only SET in the insn. */
640 /* Chain describing insns movable in current loop. */
641 struct loop_movables
*movables
= LOOP_MOVABLES (loop
);
642 /* Ratio of extra register life span we can justify
643 for saving an instruction. More if loop doesn't call subroutines
644 since in that case saving an insn makes more difference
645 and more registers are available. */
647 /* Nonzero if we are scanning instructions in a sub-loop. */
656 /* Determine whether this loop starts with a jump down to a test at
657 the end. This will occur for a small number of loops with a test
658 that is too complex to duplicate in front of the loop.
660 We search for the first insn or label in the loop, skipping NOTEs.
661 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
662 (because we might have a loop executed only once that contains a
663 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
664 (in case we have a degenerate loop).
666 Note that if we mistakenly think that a loop is entered at the top
667 when, in fact, it is entered at the exit test, the only effect will be
668 slightly poorer optimization. Making the opposite error can generate
669 incorrect code. Since very few loops now start with a jump to the
670 exit test, the code here to detect that case is very conservative. */
672 for (p
= NEXT_INSN (loop_start
);
674 && !LABEL_P (p
) && ! INSN_P (p
)
676 || (NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_BEG
677 && NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_END
));
681 loop
->scan_start
= p
;
683 /* If loop end is the end of the current function, then emit a
684 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
685 note insn. This is the position we use when sinking insns out of
687 if (NEXT_INSN (loop
->end
) != 0)
688 loop
->sink
= NEXT_INSN (loop
->end
);
690 loop
->sink
= emit_note_after (NOTE_INSN_DELETED
, loop
->end
);
692 /* Set up variables describing this loop. */
694 threshold
= (loop_info
->has_call
? 1 : 2) * (1 + n_non_fixed_regs
);
696 /* If loop has a jump before the first label,
697 the true entry is the target of that jump.
698 Start scan from there.
699 But record in LOOP->TOP the place where the end-test jumps
700 back to so we can scan that after the end of the loop. */
702 /* Loop entry must be unconditional jump (and not a RETURN) */
703 && any_uncondjump_p (p
)
704 && JUMP_LABEL (p
) != 0
705 /* Check to see whether the jump actually
706 jumps out of the loop (meaning it's no loop).
707 This case can happen for things like
708 do {..} while (0). If this label was generated previously
709 by loop, we can't tell anything about it and have to reject
711 && INSN_IN_RANGE_P (JUMP_LABEL (p
), loop_start
, loop_end
))
713 loop
->top
= next_label (loop
->scan_start
);
714 loop
->scan_start
= JUMP_LABEL (p
);
717 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
718 as required by loop_reg_used_before_p. So skip such loops. (This
719 test may never be true, but it's best to play it safe.)
721 Also, skip loops where we do not start scanning at a label. This
722 test also rejects loops starting with a JUMP_INSN that failed the
725 if (INSN_UID (loop
->scan_start
) >= max_uid_for_loop
726 || !LABEL_P (loop
->scan_start
))
728 if (loop_dump_stream
)
729 fprintf (loop_dump_stream
, "\nLoop from %d to %d is phony.\n\n",
730 INSN_UID (loop_start
), INSN_UID (loop_end
));
734 /* Allocate extra space for REGs that might be created by load_mems.
735 We allocate a little extra slop as well, in the hopes that we
736 won't have to reallocate the regs array. */
737 loop_regs_scan (loop
, loop_info
->mems_idx
+ 16);
738 insn_count
= count_insns_in_loop (loop
);
740 if (loop_dump_stream
)
742 fprintf (loop_dump_stream
, "\nLoop from %d to %d: %d real insns.\n",
743 INSN_UID (loop_start
), INSN_UID (loop_end
), insn_count
);
745 fprintf (loop_dump_stream
, "Continue at insn %d.\n",
746 INSN_UID (loop
->cont
));
749 /* Scan through the loop finding insns that are safe to move.
750 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
751 this reg will be considered invariant for subsequent insns.
752 We consider whether subsequent insns use the reg
753 in deciding whether it is worth actually moving.
755 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
756 and therefore it is possible that the insns we are scanning
757 would never be executed. At such times, we must make sure
758 that it is safe to execute the insn once instead of zero times.
759 When MAYBE_NEVER is 0, all insns will be executed at least once
760 so that is not a problem. */
762 for (in_libcall
= 0, p
= next_insn_in_loop (loop
, loop
->scan_start
);
764 p
= next_insn_in_loop (loop
, p
))
766 if (in_libcall
&& INSN_P (p
) && find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
768 if (NONJUMP_INSN_P (p
))
770 temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
774 && (set
= single_set (p
))
775 && REG_P (SET_DEST (set
))
776 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
777 && SET_DEST (set
) != pic_offset_table_rtx
779 && ! regs
->array
[REGNO (SET_DEST (set
))].may_not_optimize
)
785 rtx src
= SET_SRC (set
);
786 rtx dependencies
= 0;
788 /* Figure out what to use as a source of this insn. If a
789 REG_EQUIV note is given or if a REG_EQUAL note with a
790 constant operand is specified, use it as the source and
791 mark that we should move this insn by calling
792 emit_move_insn rather that duplicating the insn.
794 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
796 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
798 src
= XEXP (temp
, 0), move_insn
= 1;
801 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
802 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
803 src
= XEXP (temp
, 0), move_insn
= 1;
804 if (temp
&& find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
806 src
= XEXP (temp
, 0);
807 /* A libcall block can use regs that don't appear in
808 the equivalent expression. To move the libcall,
809 we must move those regs too. */
810 dependencies
= libcall_other_reg (p
, src
);
814 /* For parallels, add any possible uses to the dependencies, as
815 we can't move the insn without resolving them first.
816 MEMs inside CLOBBERs may also reference registers; these
817 count as implicit uses. */
818 if (GET_CODE (PATTERN (p
)) == PARALLEL
)
820 for (i
= 0; i
< XVECLEN (PATTERN (p
), 0); i
++)
822 rtx x
= XVECEXP (PATTERN (p
), 0, i
);
823 if (GET_CODE (x
) == USE
)
825 = gen_rtx_EXPR_LIST (VOIDmode
, XEXP (x
, 0),
827 else if (GET_CODE (x
) == CLOBBER
828 && MEM_P (XEXP (x
, 0)))
829 dependencies
= find_regs_nested (dependencies
,
830 XEXP (XEXP (x
, 0), 0));
834 if (/* The register is used in basic blocks other
835 than the one where it is set (meaning that
836 something after this point in the loop might
837 depend on its value before the set). */
838 ! reg_in_basic_block_p (p
, SET_DEST (set
))
839 /* And the set is not guaranteed to be executed once
840 the loop starts, or the value before the set is
841 needed before the set occurs...
843 ??? Note we have quadratic behavior here, mitigated
844 by the fact that the previous test will often fail for
845 large loops. Rather than re-scanning the entire loop
846 each time for register usage, we should build tables
847 of the register usage and use them here instead. */
849 || loop_reg_used_before_p (loop
, set
, p
)))
850 /* It is unsafe to move the set. However, it may be OK to
851 move the source into a new pseudo, and substitute a
852 reg-to-reg copy for the original insn.
854 This code used to consider it OK to move a set of a variable
855 which was not created by the user and not used in an exit
857 That behavior is incorrect and was removed. */
860 /* Don't try to optimize a MODE_CC set with a constant
861 source. It probably will be combined with a conditional
863 if (GET_MODE_CLASS (GET_MODE (SET_DEST (set
))) == MODE_CC
866 /* Don't try to optimize a register that was made
867 by loop-optimization for an inner loop.
868 We don't know its life-span, so we can't compute
870 else if (REGNO (SET_DEST (set
)) >= max_reg_before_loop
)
872 /* Don't move the source and add a reg-to-reg copy:
873 - with -Os (this certainly increases size),
874 - if the mode doesn't support copy operations (obviously),
875 - if the source is already a reg (the motion will gain nothing),
876 - if the source is a legitimate constant (likewise). */
879 || ! can_copy_p (GET_MODE (SET_SRC (set
)))
880 || REG_P (SET_SRC (set
))
881 || (CONSTANT_P (SET_SRC (set
))
882 && LEGITIMATE_CONSTANT_P (SET_SRC (set
)))))
884 else if ((tem
= loop_invariant_p (loop
, src
))
885 && (dependencies
== 0
887 = loop_invariant_p (loop
, dependencies
)) != 0)
888 && (regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
== 1
890 = consec_sets_invariant_p
891 (loop
, SET_DEST (set
),
892 regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
,
894 /* If the insn can cause a trap (such as divide by zero),
895 can't move it unless it's guaranteed to be executed
896 once loop is entered. Even a function call might
897 prevent the trap insn from being reached
898 (since it might exit!) */
899 && ! ((maybe_never
|| call_passed
)
900 && may_trap_p (src
)))
903 int regno
= REGNO (SET_DEST (set
));
905 /* A potential lossage is where we have a case where two insns
906 can be combined as long as they are both in the loop, but
907 we move one of them outside the loop. For large loops,
908 this can lose. The most common case of this is the address
909 of a function being called.
911 Therefore, if this register is marked as being used
912 exactly once if we are in a loop with calls
913 (a "large loop"), see if we can replace the usage of
914 this register with the source of this SET. If we can,
917 Don't do this if P has a REG_RETVAL note or if we have
918 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
920 if (loop_info
->has_call
921 && regs
->array
[regno
].single_usage
!= 0
922 && regs
->array
[regno
].single_usage
!= const0_rtx
923 && REGNO_FIRST_UID (regno
) == INSN_UID (p
)
924 && (REGNO_LAST_UID (regno
)
925 == INSN_UID (regs
->array
[regno
].single_usage
))
926 && regs
->array
[regno
].set_in_loop
== 1
927 && GET_CODE (SET_SRC (set
)) != ASM_OPERANDS
928 && ! side_effects_p (SET_SRC (set
))
929 && ! find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
930 && (! SMALL_REGISTER_CLASSES
931 || (! (REG_P (SET_SRC (set
))
932 && (REGNO (SET_SRC (set
))
933 < FIRST_PSEUDO_REGISTER
))))
934 && regno
>= FIRST_PSEUDO_REGISTER
935 /* This test is not redundant; SET_SRC (set) might be
936 a call-clobbered register and the life of REGNO
937 might span a call. */
938 && ! modified_between_p (SET_SRC (set
), p
,
939 regs
->array
[regno
].single_usage
)
940 && no_labels_between_p (p
,
941 regs
->array
[regno
].single_usage
)
942 && validate_replace_rtx (SET_DEST (set
), SET_SRC (set
),
943 regs
->array
[regno
].single_usage
))
945 /* Replace any usage in a REG_EQUAL note. Must copy
946 the new source, so that we don't get rtx sharing
947 between the SET_SOURCE and REG_NOTES of insn p. */
948 REG_NOTES (regs
->array
[regno
].single_usage
)
950 (REG_NOTES (regs
->array
[regno
].single_usage
),
951 SET_DEST (set
), copy_rtx (SET_SRC (set
))));
954 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
));
956 regs
->array
[regno
+i
].set_in_loop
= 0;
960 m
= xmalloc (sizeof (struct movable
));
964 m
->dependencies
= dependencies
;
965 m
->set_dest
= SET_DEST (set
);
968 = regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
- 1;
972 m
->move_insn
= move_insn
;
973 m
->move_insn_first
= 0;
974 m
->insert_temp
= insert_temp
;
975 m
->is_equiv
= (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
976 m
->savemode
= VOIDmode
;
978 /* Set M->cond if either loop_invariant_p
979 or consec_sets_invariant_p returned 2
980 (only conditionally invariant). */
981 m
->cond
= ((tem
| tem1
| tem2
) > 1);
982 m
->global
= LOOP_REG_GLOBAL_P (loop
, regno
);
984 m
->lifetime
= LOOP_REG_LIFETIME (loop
, regno
);
985 m
->savings
= regs
->array
[regno
].n_times_set
;
986 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
987 m
->savings
+= libcall_benefit (p
);
988 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
)); i
++)
989 regs
->array
[regno
+i
].set_in_loop
= move_insn
? -2 : -1;
990 /* Add M to the end of the chain MOVABLES. */
991 loop_movables_add (movables
, m
);
995 /* It is possible for the first instruction to have a
996 REG_EQUAL note but a non-invariant SET_SRC, so we must
997 remember the status of the first instruction in case
998 the last instruction doesn't have a REG_EQUAL note. */
999 m
->move_insn_first
= m
->move_insn
;
1001 /* Skip this insn, not checking REG_LIBCALL notes. */
1002 p
= next_nonnote_insn (p
);
1003 /* Skip the consecutive insns, if there are any. */
1004 p
= skip_consec_insns (p
, m
->consec
);
1005 /* Back up to the last insn of the consecutive group. */
1006 p
= prev_nonnote_insn (p
);
1008 /* We must now reset m->move_insn, m->is_equiv, and
1009 possibly m->set_src to correspond to the effects of
1011 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
1013 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1016 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1017 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
1018 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1024 = (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
1027 /* If this register is always set within a STRICT_LOW_PART
1028 or set to zero, then its high bytes are constant.
1029 So clear them outside the loop and within the loop
1030 just load the low bytes.
1031 We must check that the machine has an instruction to do so.
1032 Also, if the value loaded into the register
1033 depends on the same register, this cannot be done. */
1034 else if (SET_SRC (set
) == const0_rtx
1035 && NONJUMP_INSN_P (NEXT_INSN (p
))
1036 && (set1
= single_set (NEXT_INSN (p
)))
1037 && GET_CODE (set1
) == SET
1038 && (GET_CODE (SET_DEST (set1
)) == STRICT_LOW_PART
)
1039 && (GET_CODE (XEXP (SET_DEST (set1
), 0)) == SUBREG
)
1040 && (SUBREG_REG (XEXP (SET_DEST (set1
), 0))
1042 && !reg_mentioned_p (SET_DEST (set
), SET_SRC (set1
)))
1044 int regno
= REGNO (SET_DEST (set
));
1045 if (regs
->array
[regno
].set_in_loop
== 2)
1048 m
= xmalloc (sizeof (struct movable
));
1051 m
->set_dest
= SET_DEST (set
);
1052 m
->dependencies
= 0;
1058 m
->move_insn_first
= 0;
1059 m
->insert_temp
= insert_temp
;
1061 /* If the insn may not be executed on some cycles,
1062 we can't clear the whole reg; clear just high part.
1063 Not even if the reg is used only within this loop.
1070 Clearing x before the inner loop could clobber a value
1071 being saved from the last time around the outer loop.
1072 However, if the reg is not used outside this loop
1073 and all uses of the register are in the same
1074 basic block as the store, there is no problem.
1076 If this insn was made by loop, we don't know its
1077 INSN_LUID and hence must make a conservative
1079 m
->global
= (INSN_UID (p
) >= max_uid_for_loop
1080 || LOOP_REG_GLOBAL_P (loop
, regno
)
1081 || (labels_in_range_p
1082 (p
, REGNO_FIRST_LUID (regno
))));
1083 if (maybe_never
&& m
->global
)
1084 m
->savemode
= GET_MODE (SET_SRC (set1
));
1086 m
->savemode
= VOIDmode
;
1090 m
->lifetime
= LOOP_REG_LIFETIME (loop
, regno
);
1093 i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
));
1095 regs
->array
[regno
+i
].set_in_loop
= -1;
1096 /* Add M to the end of the chain MOVABLES. */
1097 loop_movables_add (movables
, m
);
1102 /* Past a call insn, we get to insns which might not be executed
1103 because the call might exit. This matters for insns that trap.
1104 Constant and pure call insns always return, so they don't count. */
1105 else if (CALL_P (p
) && ! CONST_OR_PURE_CALL_P (p
))
1107 /* Past a label or a jump, we get to insns for which we
1108 can't count on whether or how many times they will be
1109 executed during each iteration. Therefore, we can
1110 only move out sets of trivial variables
1111 (those not used after the loop). */
1112 /* Similar code appears twice in strength_reduce. */
1113 else if ((LABEL_P (p
) || JUMP_P (p
))
1114 /* If we enter the loop in the middle, and scan around to the
1115 beginning, don't set maybe_never for that. This must be an
1116 unconditional jump, otherwise the code at the top of the
1117 loop might never be executed. Unconditional jumps are
1118 followed by a barrier then the loop_end. */
1119 && ! (JUMP_P (p
) && JUMP_LABEL (p
) == loop
->top
1120 && NEXT_INSN (NEXT_INSN (p
)) == loop_end
1121 && any_uncondjump_p (p
)))
1123 else if (NOTE_P (p
))
1125 /* At the virtual top of a converted loop, insns are again known to
1126 be executed: logically, the loop begins here even though the exit
1127 code has been duplicated. */
1128 if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
&& loop_depth
== 0)
1129 maybe_never
= call_passed
= 0;
1130 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
1132 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
1137 /* If one movable subsumes another, ignore that other. */
1139 ignore_some_movables (movables
);
1141 /* For each movable insn, see if the reg that it loads
1142 leads when it dies right into another conditionally movable insn.
1143 If so, record that the second insn "forces" the first one,
1144 since the second can be moved only if the first is. */
1146 force_movables (movables
);
1148 /* See if there are multiple movable insns that load the same value.
1149 If there are, make all but the first point at the first one
1150 through the `match' field, and add the priorities of them
1151 all together as the priority of the first. */
1153 combine_movables (movables
, regs
);
1155 /* Now consider each movable insn to decide whether it is worth moving.
1156 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1158 For machines with few registers this increases code size, so do not
1159 move moveables when optimizing for code size on such machines.
1160 (The 18 below is the value for i386.) */
1163 || (reg_class_size
[GENERAL_REGS
] > 18 && !loop_info
->has_call
))
1165 move_movables (loop
, movables
, threshold
, insn_count
);
1167 /* Recalculate regs->array if move_movables has created new
1169 if (max_reg_num () > regs
->num
)
1171 loop_regs_scan (loop
, 0);
1172 for (update_start
= loop_start
;
1173 PREV_INSN (update_start
)
1174 && !LABEL_P (PREV_INSN (update_start
));
1175 update_start
= PREV_INSN (update_start
))
1177 update_end
= NEXT_INSN (loop_end
);
1179 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1180 loop_max_reg
= max_reg_num ();
1184 /* Now candidates that still are negative are those not moved.
1185 Change regs->array[I].set_in_loop to indicate that those are not actually
1187 for (i
= 0; i
< regs
->num
; i
++)
1188 if (regs
->array
[i
].set_in_loop
< 0)
1189 regs
->array
[i
].set_in_loop
= regs
->array
[i
].n_times_set
;
1191 /* Now that we've moved some things out of the loop, we might be able to
1192 hoist even more memory references. */
1195 /* Recalculate regs->array if load_mems has created new registers. */
1196 if (max_reg_num () > regs
->num
)
1197 loop_regs_scan (loop
, 0);
1199 for (update_start
= loop_start
;
1200 PREV_INSN (update_start
)
1201 && !LABEL_P (PREV_INSN (update_start
));
1202 update_start
= PREV_INSN (update_start
))
1204 update_end
= NEXT_INSN (loop_end
);
1206 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1207 loop_max_reg
= max_reg_num ();
1209 if (flag_strength_reduce
)
1211 if (update_end
&& LABEL_P (update_end
))
1212 /* Ensure our label doesn't go away. */
1213 LABEL_NUSES (update_end
)++;
1215 strength_reduce (loop
, flags
);
1217 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1218 loop_max_reg
= max_reg_num ();
1220 if (update_end
&& LABEL_P (update_end
)
1221 && --LABEL_NUSES (update_end
) == 0)
1222 delete_related_insns (update_end
);
1226 /* The movable information is required for strength reduction. */
1227 loop_movables_free (movables
);
1234 /* Add elements to *OUTPUT to record all the pseudo-regs
1235 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1238 record_excess_regs (rtx in_this
, rtx not_in_this
, rtx
*output
)
1244 code
= GET_CODE (in_this
);
1258 if (REGNO (in_this
) >= FIRST_PSEUDO_REGISTER
1259 && ! reg_mentioned_p (in_this
, not_in_this
))
1260 *output
= gen_rtx_EXPR_LIST (VOIDmode
, in_this
, *output
);
1267 fmt
= GET_RTX_FORMAT (code
);
1268 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1275 for (j
= 0; j
< XVECLEN (in_this
, i
); j
++)
1276 record_excess_regs (XVECEXP (in_this
, i
, j
), not_in_this
, output
);
1280 record_excess_regs (XEXP (in_this
, i
), not_in_this
, output
);
1286 /* Check what regs are referred to in the libcall block ending with INSN,
1287 aside from those mentioned in the equivalent value.
1288 If there are none, return 0.
1289 If there are one or more, return an EXPR_LIST containing all of them. */
1292 libcall_other_reg (rtx insn
, rtx equiv
)
1294 rtx note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1295 rtx p
= XEXP (note
, 0);
1298 /* First, find all the regs used in the libcall block
1299 that are not mentioned as inputs to the result. */
1304 record_excess_regs (PATTERN (p
), equiv
, &output
);
1311 /* Return 1 if all uses of REG
1312 are between INSN and the end of the basic block. */
1315 reg_in_basic_block_p (rtx insn
, rtx reg
)
1317 int regno
= REGNO (reg
);
1320 if (REGNO_FIRST_UID (regno
) != INSN_UID (insn
))
1323 /* Search this basic block for the already recorded last use of the reg. */
1324 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1326 switch (GET_CODE (p
))
1333 /* Ordinary insn: if this is the last use, we win. */
1334 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1339 /* Jump insn: if this is the last use, we win. */
1340 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1342 /* Otherwise, it's the end of the basic block, so we lose. */
1347 /* It's the end of the basic block, so we lose. */
1355 /* The "last use" that was recorded can't be found after the first
1356 use. This can happen when the last use was deleted while
1357 processing an inner loop, this inner loop was then completely
1358 unrolled, and the outer loop is always exited after the inner loop,
1359 so that everything after the first use becomes a single basic block. */
1363 /* Compute the benefit of eliminating the insns in the block whose
1364 last insn is LAST. This may be a group of insns used to compute a
1365 value directly or can contain a library call. */
1368 libcall_benefit (rtx last
)
1373 for (insn
= XEXP (find_reg_note (last
, REG_RETVAL
, NULL_RTX
), 0);
1374 insn
!= last
; insn
= NEXT_INSN (insn
))
1377 benefit
+= 10; /* Assume at least this many insns in a library
1379 else if (NONJUMP_INSN_P (insn
)
1380 && GET_CODE (PATTERN (insn
)) != USE
1381 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
1388 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1391 skip_consec_insns (rtx insn
, int count
)
1393 for (; count
> 0; count
--)
1397 /* If first insn of libcall sequence, skip to end. */
1398 /* Do this at start of loop, since INSN is guaranteed to
1401 && (temp
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)))
1402 insn
= XEXP (temp
, 0);
1405 insn
= NEXT_INSN (insn
);
1406 while (NOTE_P (insn
));
1412 /* Ignore any movable whose insn falls within a libcall
1413 which is part of another movable.
1414 We make use of the fact that the movable for the libcall value
1415 was made later and so appears later on the chain. */
1418 ignore_some_movables (struct loop_movables
*movables
)
1420 struct movable
*m
, *m1
;
1422 for (m
= movables
->head
; m
; m
= m
->next
)
1424 /* Is this a movable for the value of a libcall? */
1425 rtx note
= find_reg_note (m
->insn
, REG_RETVAL
, NULL_RTX
);
1429 /* Check for earlier movables inside that range,
1430 and mark them invalid. We cannot use LUIDs here because
1431 insns created by loop.c for prior loops don't have LUIDs.
1432 Rather than reject all such insns from movables, we just
1433 explicitly check each insn in the libcall (since invariant
1434 libcalls aren't that common). */
1435 for (insn
= XEXP (note
, 0); insn
!= m
->insn
; insn
= NEXT_INSN (insn
))
1436 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1437 if (m1
->insn
== insn
)
1443 /* For each movable insn, see if the reg that it loads
1444 leads when it dies right into another conditionally movable insn.
1445 If so, record that the second insn "forces" the first one,
1446 since the second can be moved only if the first is. */
1449 force_movables (struct loop_movables
*movables
)
1451 struct movable
*m
, *m1
;
1453 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
1454 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1455 if (!m1
->partial
&& !m1
->done
)
1457 int regno
= m1
->regno
;
1458 for (m
= m1
->next
; m
; m
= m
->next
)
1459 /* ??? Could this be a bug? What if CSE caused the
1460 register of M1 to be used after this insn?
1461 Since CSE does not update regno_last_uid,
1462 this insn M->insn might not be where it dies.
1463 But very likely this doesn't matter; what matters is
1464 that M's reg is computed from M1's reg. */
1465 if (INSN_UID (m
->insn
) == REGNO_LAST_UID (regno
)
1468 if (m
!= 0 && m
->set_src
== m1
->set_dest
1469 /* If m->consec, m->set_src isn't valid. */
1473 /* Increase the priority of the moving the first insn
1474 since it permits the second to be moved as well.
1475 Likewise for insns already forced by the first insn. */
1481 for (m2
= m1
; m2
; m2
= m2
->forces
)
1483 m2
->lifetime
+= m
->lifetime
;
1484 m2
->savings
+= m
->savings
;
1490 /* Find invariant expressions that are equal and can be combined into
1494 combine_movables (struct loop_movables
*movables
, struct loop_regs
*regs
)
1497 char *matched_regs
= xmalloc (regs
->num
);
1498 enum machine_mode mode
;
1500 /* Regs that are set more than once are not allowed to match
1501 or be matched. I'm no longer sure why not. */
1502 /* Only pseudo registers are allowed to match or be matched,
1503 since move_movables does not validate the change. */
1504 /* Perhaps testing m->consec_sets would be more appropriate here? */
1506 for (m
= movables
->head
; m
; m
= m
->next
)
1507 if (m
->match
== 0 && regs
->array
[m
->regno
].n_times_set
== 1
1508 && m
->regno
>= FIRST_PSEUDO_REGISTER
1513 int regno
= m
->regno
;
1515 memset (matched_regs
, 0, regs
->num
);
1516 matched_regs
[regno
] = 1;
1518 /* We want later insns to match the first one. Don't make the first
1519 one match any later ones. So start this loop at m->next. */
1520 for (m1
= m
->next
; m1
; m1
= m1
->next
)
1521 if (m
!= m1
&& m1
->match
== 0
1523 && regs
->array
[m1
->regno
].n_times_set
== 1
1524 && m1
->regno
>= FIRST_PSEUDO_REGISTER
1525 /* A reg used outside the loop mustn't be eliminated. */
1527 /* A reg used for zero-extending mustn't be eliminated. */
1529 && (matched_regs
[m1
->regno
]
1532 /* Can combine regs with different modes loaded from the
1533 same constant only if the modes are the same or
1534 if both are integer modes with M wider or the same
1535 width as M1. The check for integer is redundant, but
1536 safe, since the only case of differing destination
1537 modes with equal sources is when both sources are
1538 VOIDmode, i.e., CONST_INT. */
1539 (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
)
1540 || (GET_MODE_CLASS (GET_MODE (m
->set_dest
)) == MODE_INT
1541 && GET_MODE_CLASS (GET_MODE (m1
->set_dest
)) == MODE_INT
1542 && (GET_MODE_BITSIZE (GET_MODE (m
->set_dest
))
1543 >= GET_MODE_BITSIZE (GET_MODE (m1
->set_dest
)))))
1544 /* See if the source of M1 says it matches M. */
1545 && ((REG_P (m1
->set_src
)
1546 && matched_regs
[REGNO (m1
->set_src
)])
1547 || rtx_equal_for_loop_p (m
->set_src
, m1
->set_src
,
1549 && ((m
->dependencies
== m1
->dependencies
)
1550 || rtx_equal_p (m
->dependencies
, m1
->dependencies
)))
1552 m
->lifetime
+= m1
->lifetime
;
1553 m
->savings
+= m1
->savings
;
1556 matched_regs
[m1
->regno
] = 1;
1560 /* Now combine the regs used for zero-extension.
1561 This can be done for those not marked `global'
1562 provided their lives don't overlap. */
1564 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1565 mode
= GET_MODE_WIDER_MODE (mode
))
1567 struct movable
*m0
= 0;
1569 /* Combine all the registers for extension from mode MODE.
1570 Don't combine any that are used outside this loop. */
1571 for (m
= movables
->head
; m
; m
= m
->next
)
1572 if (m
->partial
&& ! m
->global
1573 && mode
== GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m
->insn
)))))
1577 int first
= REGNO_FIRST_LUID (m
->regno
);
1578 int last
= REGNO_LAST_LUID (m
->regno
);
1582 /* First one: don't check for overlap, just record it. */
1587 /* Make sure they extend to the same mode.
1588 (Almost always true.) */
1589 if (GET_MODE (m
->set_dest
) != GET_MODE (m0
->set_dest
))
1592 /* We already have one: check for overlap with those
1593 already combined together. */
1594 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1595 if (m1
== m0
|| (m1
->partial
&& m1
->match
== m0
))
1596 if (! (REGNO_FIRST_LUID (m1
->regno
) > last
1597 || REGNO_LAST_LUID (m1
->regno
) < first
))
1600 /* No overlap: we can combine this with the others. */
1601 m0
->lifetime
+= m
->lifetime
;
1602 m0
->savings
+= m
->savings
;
1612 free (matched_regs
);
1615 /* Returns the number of movable instructions in LOOP that were not
1616 moved outside the loop. */
1619 num_unmoved_movables (const struct loop
*loop
)
1624 for (m
= LOOP_MOVABLES (loop
)->head
; m
; m
= m
->next
)
1632 /* Return 1 if regs X and Y will become the same if moved. */
1635 regs_match_p (rtx x
, rtx y
, struct loop_movables
*movables
)
1637 unsigned int xn
= REGNO (x
);
1638 unsigned int yn
= REGNO (y
);
1639 struct movable
*mx
, *my
;
1641 for (mx
= movables
->head
; mx
; mx
= mx
->next
)
1642 if (mx
->regno
== xn
)
1645 for (my
= movables
->head
; my
; my
= my
->next
)
1646 if (my
->regno
== yn
)
1650 && ((mx
->match
== my
->match
&& mx
->match
!= 0)
1652 || mx
== my
->match
));
1655 /* Return 1 if X and Y are identical-looking rtx's.
1656 This is the Lisp function EQUAL for rtx arguments.
1658 If two registers are matching movables or a movable register and an
1659 equivalent constant, consider them equal. */
1662 rtx_equal_for_loop_p (rtx x
, rtx y
, struct loop_movables
*movables
,
1663 struct loop_regs
*regs
)
1673 if (x
== 0 || y
== 0)
1676 code
= GET_CODE (x
);
1678 /* If we have a register and a constant, they may sometimes be
1680 if (REG_P (x
) && regs
->array
[REGNO (x
)].set_in_loop
== -2
1683 for (m
= movables
->head
; m
; m
= m
->next
)
1684 if (m
->move_insn
&& m
->regno
== REGNO (x
)
1685 && rtx_equal_p (m
->set_src
, y
))
1688 else if (REG_P (y
) && regs
->array
[REGNO (y
)].set_in_loop
== -2
1691 for (m
= movables
->head
; m
; m
= m
->next
)
1692 if (m
->move_insn
&& m
->regno
== REGNO (y
)
1693 && rtx_equal_p (m
->set_src
, x
))
1697 /* Otherwise, rtx's of different codes cannot be equal. */
1698 if (code
!= GET_CODE (y
))
1701 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1702 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1704 if (GET_MODE (x
) != GET_MODE (y
))
1707 /* These three types of rtx's can be compared nonrecursively. */
1709 return (REGNO (x
) == REGNO (y
) || regs_match_p (x
, y
, movables
));
1711 if (code
== LABEL_REF
)
1712 return XEXP (x
, 0) == XEXP (y
, 0);
1713 if (code
== SYMBOL_REF
)
1714 return XSTR (x
, 0) == XSTR (y
, 0);
1716 /* Compare the elements. If any pair of corresponding elements
1717 fail to match, return 0 for the whole things. */
1719 fmt
= GET_RTX_FORMAT (code
);
1720 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1725 if (XWINT (x
, i
) != XWINT (y
, i
))
1730 if (XINT (x
, i
) != XINT (y
, i
))
1735 /* Two vectors must have the same length. */
1736 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1739 /* And the corresponding elements must match. */
1740 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1741 if (rtx_equal_for_loop_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
1742 movables
, regs
) == 0)
1747 if (rtx_equal_for_loop_p (XEXP (x
, i
), XEXP (y
, i
), movables
, regs
)
1753 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1758 /* These are just backpointers, so they don't matter. */
1764 /* It is believed that rtx's at this level will never
1765 contain anything but integers and other rtx's,
1766 except for within LABEL_REFs and SYMBOL_REFs. */
1774 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1775 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1776 references is incremented once for each added note. */
1779 add_label_notes (rtx x
, rtx insns
)
1781 enum rtx_code code
= GET_CODE (x
);
1786 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
1788 /* This code used to ignore labels that referred to dispatch tables to
1789 avoid flow generating (slightly) worse code.
1791 We no longer ignore such label references (see LABEL_REF handling in
1792 mark_jump_label for additional information). */
1793 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
1794 if (reg_mentioned_p (XEXP (x
, 0), insn
))
1796 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
1798 if (LABEL_P (XEXP (x
, 0)))
1799 LABEL_NUSES (XEXP (x
, 0))++;
1803 fmt
= GET_RTX_FORMAT (code
);
1804 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1807 add_label_notes (XEXP (x
, i
), insns
);
1808 else if (fmt
[i
] == 'E')
1809 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1810 add_label_notes (XVECEXP (x
, i
, j
), insns
);
1814 /* Scan MOVABLES, and move the insns that deserve to be moved.
1815 If two matching movables are combined, replace one reg with the
1816 other throughout. */
1819 move_movables (struct loop
*loop
, struct loop_movables
*movables
,
1820 int threshold
, int insn_count
)
1822 struct loop_regs
*regs
= LOOP_REGS (loop
);
1823 int nregs
= regs
->num
;
1827 rtx loop_start
= loop
->start
;
1828 rtx loop_end
= loop
->end
;
1829 /* Map of pseudo-register replacements to handle combining
1830 when we move several insns that load the same value
1831 into different pseudo-registers. */
1832 rtx
*reg_map
= xcalloc (nregs
, sizeof (rtx
));
1833 char *already_moved
= xcalloc (nregs
, sizeof (char));
1835 for (m
= movables
->head
; m
; m
= m
->next
)
1837 /* Describe this movable insn. */
1839 if (loop_dump_stream
)
1841 fprintf (loop_dump_stream
, "Insn %d: regno %d (life %d), ",
1842 INSN_UID (m
->insn
), m
->regno
, m
->lifetime
);
1844 fprintf (loop_dump_stream
, "consec %d, ", m
->consec
);
1846 fprintf (loop_dump_stream
, "cond ");
1848 fprintf (loop_dump_stream
, "force ");
1850 fprintf (loop_dump_stream
, "global ");
1852 fprintf (loop_dump_stream
, "done ");
1854 fprintf (loop_dump_stream
, "move-insn ");
1856 fprintf (loop_dump_stream
, "matches %d ",
1857 INSN_UID (m
->match
->insn
));
1859 fprintf (loop_dump_stream
, "forces %d ",
1860 INSN_UID (m
->forces
->insn
));
1863 /* Ignore the insn if it's already done (it matched something else).
1864 Otherwise, see if it is now safe to move. */
1868 || (1 == loop_invariant_p (loop
, m
->set_src
)
1869 && (m
->dependencies
== 0
1870 || 1 == loop_invariant_p (loop
, m
->dependencies
))
1872 || 1 == consec_sets_invariant_p (loop
, m
->set_dest
,
1875 && (! m
->forces
|| m
->forces
->done
))
1879 int savings
= m
->savings
;
1881 /* We have an insn that is safe to move.
1882 Compute its desirability. */
1887 if (loop_dump_stream
)
1888 fprintf (loop_dump_stream
, "savings %d ", savings
);
1890 if (regs
->array
[regno
].moved_once
&& loop_dump_stream
)
1891 fprintf (loop_dump_stream
, "halved since already moved ");
1893 /* An insn MUST be moved if we already moved something else
1894 which is safe only if this one is moved too: that is,
1895 if already_moved[REGNO] is nonzero. */
1897 /* An insn is desirable to move if the new lifetime of the
1898 register is no more than THRESHOLD times the old lifetime.
1899 If it's not desirable, it means the loop is so big
1900 that moving won't speed things up much,
1901 and it is liable to make register usage worse. */
1903 /* It is also desirable to move if it can be moved at no
1904 extra cost because something else was already moved. */
1906 if (already_moved
[regno
]
1907 || flag_move_all_movables
1908 || (threshold
* savings
* m
->lifetime
) >=
1909 (regs
->array
[regno
].moved_once
? insn_count
* 2 : insn_count
)
1910 || (m
->forces
&& m
->forces
->done
1911 && regs
->array
[m
->forces
->regno
].n_times_set
== 1))
1915 rtx first
= NULL_RTX
;
1916 rtx newreg
= NULL_RTX
;
1919 newreg
= gen_reg_rtx (GET_MODE (m
->set_dest
));
1921 /* Now move the insns that set the reg. */
1923 if (m
->partial
&& m
->match
)
1927 /* Find the end of this chain of matching regs.
1928 Thus, we load each reg in the chain from that one reg.
1929 And that reg is loaded with 0 directly,
1930 since it has ->match == 0. */
1931 for (m1
= m
; m1
->match
; m1
= m1
->match
);
1932 newpat
= gen_move_insn (SET_DEST (PATTERN (m
->insn
)),
1933 SET_DEST (PATTERN (m1
->insn
)));
1934 i1
= loop_insn_hoist (loop
, newpat
);
1936 /* Mark the moved, invariant reg as being allowed to
1937 share a hard reg with the other matching invariant. */
1938 REG_NOTES (i1
) = REG_NOTES (m
->insn
);
1939 r1
= SET_DEST (PATTERN (m
->insn
));
1940 r2
= SET_DEST (PATTERN (m1
->insn
));
1942 = gen_rtx_EXPR_LIST (VOIDmode
, r1
,
1943 gen_rtx_EXPR_LIST (VOIDmode
, r2
,
1945 delete_insn (m
->insn
);
1950 if (loop_dump_stream
)
1951 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
1953 /* If we are to re-generate the item being moved with a
1954 new move insn, first delete what we have and then emit
1955 the move insn before the loop. */
1956 else if (m
->move_insn
)
1960 for (count
= m
->consec
; count
>= 0; count
--)
1962 /* If this is the first insn of a library call sequence,
1963 something is very wrong. */
1965 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
1968 /* If this is the last insn of a libcall sequence, then
1969 delete every insn in the sequence except the last.
1970 The last insn is handled in the normal manner. */
1972 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
1974 temp
= XEXP (temp
, 0);
1976 temp
= delete_insn (temp
);
1980 p
= delete_insn (p
);
1982 /* simplify_giv_expr expects that it can walk the insns
1983 at m->insn forwards and see this old sequence we are
1984 tossing here. delete_insn does preserve the next
1985 pointers, but when we skip over a NOTE we must fix
1986 it up. Otherwise that code walks into the non-deleted
1988 while (p
&& NOTE_P (p
))
1989 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
1993 /* Replace the original insn with a move from
1994 our newly created temp. */
1996 emit_move_insn (m
->set_dest
, newreg
);
1999 emit_insn_before (seq
, p
);
2004 emit_move_insn (m
->insert_temp
? newreg
: m
->set_dest
,
2009 add_label_notes (m
->set_src
, seq
);
2011 i1
= loop_insn_hoist (loop
, seq
);
2012 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2013 set_unique_reg_note (i1
,
2014 m
->is_equiv
? REG_EQUIV
: REG_EQUAL
,
2017 if (loop_dump_stream
)
2018 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
2020 /* The more regs we move, the less we like moving them. */
2025 for (count
= m
->consec
; count
>= 0; count
--)
2029 /* If first insn of libcall sequence, skip to end. */
2030 /* Do this at start of loop, since p is guaranteed to
2033 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
2036 /* If last insn of libcall sequence, move all
2037 insns except the last before the loop. The last
2038 insn is handled in the normal manner. */
2040 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
2044 rtx fn_address_insn
= 0;
2047 for (temp
= XEXP (temp
, 0); temp
!= p
;
2048 temp
= NEXT_INSN (temp
))
2057 body
= PATTERN (temp
);
2059 /* Find the next insn after TEMP,
2060 not counting USE or NOTE insns. */
2061 for (next
= NEXT_INSN (temp
); next
!= p
;
2062 next
= NEXT_INSN (next
))
2063 if (! (NONJUMP_INSN_P (next
)
2064 && GET_CODE (PATTERN (next
)) == USE
)
2068 /* If that is the call, this may be the insn
2069 that loads the function address.
2071 Extract the function address from the insn
2072 that loads it into a register.
2073 If this insn was cse'd, we get incorrect code.
2075 So emit a new move insn that copies the
2076 function address into the register that the
2077 call insn will use. flow.c will delete any
2078 redundant stores that we have created. */
2080 && GET_CODE (body
) == SET
2081 && REG_P (SET_DEST (body
))
2082 && (n
= find_reg_note (temp
, REG_EQUAL
,
2085 fn_reg
= SET_SRC (body
);
2086 if (!REG_P (fn_reg
))
2087 fn_reg
= SET_DEST (body
);
2088 fn_address
= XEXP (n
, 0);
2089 fn_address_insn
= temp
;
2091 /* We have the call insn.
2092 If it uses the register we suspect it might,
2093 load it with the correct address directly. */
2096 && reg_referenced_p (fn_reg
, body
))
2097 loop_insn_emit_after (loop
, 0, fn_address_insn
,
2099 (fn_reg
, fn_address
));
2103 i1
= loop_call_insn_hoist (loop
, body
);
2104 /* Because the USAGE information potentially
2105 contains objects other than hard registers
2106 we need to copy it. */
2107 if (CALL_INSN_FUNCTION_USAGE (temp
))
2108 CALL_INSN_FUNCTION_USAGE (i1
)
2109 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp
));
2112 i1
= loop_insn_hoist (loop
, body
);
2115 if (temp
== fn_address_insn
)
2116 fn_address_insn
= i1
;
2117 REG_NOTES (i1
) = REG_NOTES (temp
);
2118 REG_NOTES (temp
) = NULL
;
2124 if (m
->savemode
!= VOIDmode
)
2126 /* P sets REG to zero; but we should clear only
2127 the bits that are not covered by the mode
2129 rtx reg
= m
->set_dest
;
2134 tem
= expand_simple_binop
2135 (GET_MODE (reg
), AND
, reg
,
2136 GEN_INT ((((HOST_WIDE_INT
) 1
2137 << GET_MODE_BITSIZE (m
->savemode
)))
2139 reg
, 1, OPTAB_LIB_WIDEN
);
2143 emit_move_insn (reg
, tem
);
2144 sequence
= get_insns ();
2146 i1
= loop_insn_hoist (loop
, sequence
);
2148 else if (CALL_P (p
))
2150 i1
= loop_call_insn_hoist (loop
, PATTERN (p
));
2151 /* Because the USAGE information potentially
2152 contains objects other than hard registers
2153 we need to copy it. */
2154 if (CALL_INSN_FUNCTION_USAGE (p
))
2155 CALL_INSN_FUNCTION_USAGE (i1
)
2156 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p
));
2158 else if (count
== m
->consec
&& m
->move_insn_first
)
2161 /* The SET_SRC might not be invariant, so we must
2162 use the REG_EQUAL note. */
2164 emit_move_insn (m
->insert_temp
? newreg
: m
->set_dest
,
2169 add_label_notes (m
->set_src
, seq
);
2171 i1
= loop_insn_hoist (loop
, seq
);
2172 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2173 set_unique_reg_note (i1
, m
->is_equiv
? REG_EQUIV
2174 : REG_EQUAL
, m
->set_src
);
2176 else if (m
->insert_temp
)
2178 rtx
*reg_map2
= xcalloc (REGNO (newreg
),
2180 reg_map2
[m
->regno
] = newreg
;
2182 i1
= loop_insn_hoist (loop
, copy_rtx (PATTERN (p
)));
2183 replace_regs (i1
, reg_map2
, REGNO (newreg
), 1);
2187 i1
= loop_insn_hoist (loop
, PATTERN (p
));
2189 if (REG_NOTES (i1
) == 0)
2191 REG_NOTES (i1
) = REG_NOTES (p
);
2192 REG_NOTES (p
) = NULL
;
2194 /* If there is a REG_EQUAL note present whose value
2195 is not loop invariant, then delete it, since it
2196 may cause problems with later optimization passes.
2197 It is possible for cse to create such notes
2198 like this as a result of record_jump_cond. */
2200 if ((temp
= find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2201 && ! loop_invariant_p (loop
, XEXP (temp
, 0)))
2202 remove_note (i1
, temp
);
2208 if (loop_dump_stream
)
2209 fprintf (loop_dump_stream
, " moved to %d",
2212 /* If library call, now fix the REG_NOTES that contain
2213 insn pointers, namely REG_LIBCALL on FIRST
2214 and REG_RETVAL on I1. */
2215 if ((temp
= find_reg_note (i1
, REG_RETVAL
, NULL_RTX
)))
2217 XEXP (temp
, 0) = first
;
2218 temp
= find_reg_note (first
, REG_LIBCALL
, NULL_RTX
);
2219 XEXP (temp
, 0) = i1
;
2226 /* simplify_giv_expr expects that it can walk the insns
2227 at m->insn forwards and see this old sequence we are
2228 tossing here. delete_insn does preserve the next
2229 pointers, but when we skip over a NOTE we must fix
2230 it up. Otherwise that code walks into the non-deleted
2232 while (p
&& NOTE_P (p
))
2233 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
2238 /* Replace the original insn with a move from
2239 our newly created temp. */
2241 emit_move_insn (m
->set_dest
, newreg
);
2244 emit_insn_before (seq
, p
);
2248 /* The more regs we move, the less we like moving them. */
2254 if (!m
->insert_temp
)
2256 /* Any other movable that loads the same register
2258 already_moved
[regno
] = 1;
2260 /* This reg has been moved out of one loop. */
2261 regs
->array
[regno
].moved_once
= 1;
2263 /* The reg set here is now invariant. */
2267 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, m
->set_dest
); i
++)
2268 regs
->array
[regno
+i
].set_in_loop
= 0;
2271 /* Change the length-of-life info for the register
2272 to say it lives at least the full length of this loop.
2273 This will help guide optimizations in outer loops. */
2275 if (REGNO_FIRST_LUID (regno
) > INSN_LUID (loop_start
))
2276 /* This is the old insn before all the moved insns.
2277 We can't use the moved insn because it is out of range
2278 in uid_luid. Only the old insns have luids. */
2279 REGNO_FIRST_UID (regno
) = INSN_UID (loop_start
);
2280 if (REGNO_LAST_LUID (regno
) < INSN_LUID (loop_end
))
2281 REGNO_LAST_UID (regno
) = INSN_UID (loop_end
);
2284 /* Combine with this moved insn any other matching movables. */
2287 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
2292 /* Schedule the reg loaded by M1
2293 for replacement so that shares the reg of M.
2294 If the modes differ (only possible in restricted
2295 circumstances, make a SUBREG.
2297 Note this assumes that the target dependent files
2298 treat REG and SUBREG equally, including within
2299 GO_IF_LEGITIMATE_ADDRESS and in all the
2300 predicates since we never verify that replacing the
2301 original register with a SUBREG results in a
2302 recognizable insn. */
2303 if (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
))
2304 reg_map
[m1
->regno
] = m
->set_dest
;
2307 = gen_lowpart_common (GET_MODE (m1
->set_dest
),
2310 /* Get rid of the matching insn
2311 and prevent further processing of it. */
2314 /* If library call, delete all insns. */
2315 if ((temp
= find_reg_note (m1
->insn
, REG_RETVAL
,
2317 delete_insn_chain (XEXP (temp
, 0), m1
->insn
);
2319 delete_insn (m1
->insn
);
2321 /* Any other movable that loads the same register
2323 already_moved
[m1
->regno
] = 1;
2325 /* The reg merged here is now invariant,
2326 if the reg it matches is invariant. */
2331 i
< LOOP_REGNO_NREGS (regno
, m1
->set_dest
);
2333 regs
->array
[m1
->regno
+i
].set_in_loop
= 0;
2337 else if (loop_dump_stream
)
2338 fprintf (loop_dump_stream
, "not desirable");
2340 else if (loop_dump_stream
&& !m
->match
)
2341 fprintf (loop_dump_stream
, "not safe");
2343 if (loop_dump_stream
)
2344 fprintf (loop_dump_stream
, "\n");
2348 new_start
= loop_start
;
2350 /* Go through all the instructions in the loop, making
2351 all the register substitutions scheduled in REG_MAP. */
2352 for (p
= new_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
2355 replace_regs (PATTERN (p
), reg_map
, nregs
, 0);
2356 replace_regs (REG_NOTES (p
), reg_map
, nregs
, 0);
2362 free (already_moved
);
2367 loop_movables_add (struct loop_movables
*movables
, struct movable
*m
)
2369 if (movables
->head
== 0)
2372 movables
->last
->next
= m
;
2378 loop_movables_free (struct loop_movables
*movables
)
2381 struct movable
*m_next
;
2383 for (m
= movables
->head
; m
; m
= m_next
)
2391 /* Scan X and replace the address of any MEM in it with ADDR.
2392 REG is the address that MEM should have before the replacement. */
2395 replace_call_address (rtx x
, rtx reg
, rtx addr
)
2403 code
= GET_CODE (x
);
2417 /* Short cut for very common case. */
2418 replace_call_address (XEXP (x
, 1), reg
, addr
);
2422 /* Short cut for very common case. */
2423 replace_call_address (XEXP (x
, 0), reg
, addr
);
2427 /* If this MEM uses a reg other than the one we expected,
2428 something is wrong. */
2429 if (XEXP (x
, 0) != reg
)
2438 fmt
= GET_RTX_FORMAT (code
);
2439 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2442 replace_call_address (XEXP (x
, i
), reg
, addr
);
2443 else if (fmt
[i
] == 'E')
2446 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2447 replace_call_address (XVECEXP (x
, i
, j
), reg
, addr
);
2453 /* Return the number of memory refs to addresses that vary
2457 count_nonfixed_reads (const struct loop
*loop
, rtx x
)
2467 code
= GET_CODE (x
);
2481 return ((loop_invariant_p (loop
, XEXP (x
, 0)) != 1)
2482 + count_nonfixed_reads (loop
, XEXP (x
, 0)));
2489 fmt
= GET_RTX_FORMAT (code
);
2490 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2493 value
+= count_nonfixed_reads (loop
, XEXP (x
, i
));
2497 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2498 value
+= count_nonfixed_reads (loop
, XVECEXP (x
, i
, j
));
2504 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2505 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2506 `unknown_address_altered', `unknown_constant_address_altered', and
2507 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2508 list `store_mems' in LOOP. */
2511 prescan_loop (struct loop
*loop
)
2515 struct loop_info
*loop_info
= LOOP_INFO (loop
);
2516 rtx start
= loop
->start
;
2517 rtx end
= loop
->end
;
2518 /* The label after END. Jumping here is just like falling off the
2519 end of the loop. We use next_nonnote_insn instead of next_label
2520 as a hedge against the (pathological) case where some actual insn
2521 might end up between the two. */
2522 rtx exit_target
= next_nonnote_insn (end
);
2524 loop_info
->has_indirect_jump
= indirect_jump_in_function
;
2525 loop_info
->pre_header_has_call
= 0;
2526 loop_info
->has_call
= 0;
2527 loop_info
->has_nonconst_call
= 0;
2528 loop_info
->has_prefetch
= 0;
2529 loop_info
->has_volatile
= 0;
2530 loop_info
->has_tablejump
= 0;
2531 loop_info
->has_multiple_exit_targets
= 0;
2534 loop_info
->unknown_address_altered
= 0;
2535 loop_info
->unknown_constant_address_altered
= 0;
2536 loop_info
->store_mems
= NULL_RTX
;
2537 loop_info
->first_loop_store_insn
= NULL_RTX
;
2538 loop_info
->mems_idx
= 0;
2539 loop_info
->num_mem_sets
= 0;
2540 /* If loop opts run twice, this was set on 1st pass for 2nd. */
2541 loop_info
->preconditioned
= NOTE_PRECONDITIONED (end
);
2543 for (insn
= start
; insn
&& !LABEL_P (insn
);
2544 insn
= PREV_INSN (insn
))
2548 loop_info
->pre_header_has_call
= 1;
2553 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2554 insn
= NEXT_INSN (insn
))
2556 switch (GET_CODE (insn
))
2559 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
2562 /* Count number of loops contained in this one. */
2565 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
2570 if (! CONST_OR_PURE_CALL_P (insn
))
2572 loop_info
->unknown_address_altered
= 1;
2573 loop_info
->has_nonconst_call
= 1;
2575 else if (pure_call_p (insn
))
2576 loop_info
->has_nonconst_call
= 1;
2577 loop_info
->has_call
= 1;
2578 if (can_throw_internal (insn
))
2579 loop_info
->has_multiple_exit_targets
= 1;
2583 if (! loop_info
->has_multiple_exit_targets
)
2585 rtx set
= pc_set (insn
);
2589 rtx src
= SET_SRC (set
);
2592 if (GET_CODE (src
) == IF_THEN_ELSE
)
2594 label1
= XEXP (src
, 1);
2595 label2
= XEXP (src
, 2);
2605 if (label1
&& label1
!= pc_rtx
)
2607 if (GET_CODE (label1
) != LABEL_REF
)
2609 /* Something tricky. */
2610 loop_info
->has_multiple_exit_targets
= 1;
2613 else if (XEXP (label1
, 0) != exit_target
2614 && LABEL_OUTSIDE_LOOP_P (label1
))
2616 /* A jump outside the current loop. */
2617 loop_info
->has_multiple_exit_targets
= 1;
2629 /* A return, or something tricky. */
2630 loop_info
->has_multiple_exit_targets
= 1;
2636 if (volatile_refs_p (PATTERN (insn
)))
2637 loop_info
->has_volatile
= 1;
2640 && (GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
2641 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
))
2642 loop_info
->has_tablejump
= 1;
2644 note_stores (PATTERN (insn
), note_addr_stored
, loop_info
);
2645 if (! loop_info
->first_loop_store_insn
&& loop_info
->store_mems
)
2646 loop_info
->first_loop_store_insn
= insn
;
2648 if (flag_non_call_exceptions
&& can_throw_internal (insn
))
2649 loop_info
->has_multiple_exit_targets
= 1;
2657 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2658 if (/* An exception thrown by a called function might land us
2660 ! loop_info
->has_nonconst_call
2661 /* We don't want loads for MEMs moved to a location before the
2662 one at which their stack memory becomes allocated. (Note
2663 that this is not a problem for malloc, etc., since those
2664 require actual function calls. */
2665 && ! current_function_calls_alloca
2666 /* There are ways to leave the loop other than falling off the
2668 && ! loop_info
->has_multiple_exit_targets
)
2669 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2670 insn
= NEXT_INSN (insn
))
2671 for_each_rtx (&insn
, insert_loop_mem
, loop_info
);
2673 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2674 that loop_invariant_p and load_mems can use true_dependence
2675 to determine what is really clobbered. */
2676 if (loop_info
->unknown_address_altered
)
2678 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
2680 loop_info
->store_mems
2681 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
2683 if (loop_info
->unknown_constant_address_altered
)
2685 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
2686 MEM_READONLY_P (mem
) = 1;
2687 loop_info
->store_mems
2688 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
2692 /* Invalidate all loops containing LABEL. */
2695 invalidate_loops_containing_label (rtx label
)
2698 for (loop
= uid_loop
[INSN_UID (label
)]; loop
; loop
= loop
->outer
)
2702 /* Scan the function looking for loops. Record the start and end of each loop.
2703 Also mark as invalid loops any loops that contain a setjmp or are branched
2704 to from outside the loop. */
2707 find_and_verify_loops (rtx f
, struct loops
*loops
)
2712 struct loop
*current_loop
;
2713 struct loop
*next_loop
;
2716 num_loops
= loops
->num
;
2718 compute_luids (f
, NULL_RTX
, 0);
2720 /* If there are jumps to undefined labels,
2721 treat them as jumps out of any/all loops.
2722 This also avoids writing past end of tables when there are no loops. */
2725 /* Find boundaries of loops, mark which loops are contained within
2726 loops, and invalidate loops that have setjmp. */
2729 current_loop
= NULL
;
2730 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2733 switch (NOTE_LINE_NUMBER (insn
))
2735 case NOTE_INSN_LOOP_BEG
:
2736 next_loop
= loops
->array
+ num_loops
;
2737 next_loop
->num
= num_loops
;
2739 next_loop
->start
= insn
;
2740 next_loop
->outer
= current_loop
;
2741 current_loop
= next_loop
;
2744 case NOTE_INSN_LOOP_CONT
:
2745 current_loop
->cont
= insn
;
2748 case NOTE_INSN_LOOP_VTOP
:
2749 current_loop
->vtop
= insn
;
2752 case NOTE_INSN_LOOP_END
:
2756 current_loop
->end
= insn
;
2757 current_loop
= current_loop
->outer
;
2765 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2767 /* In this case, we must invalidate our current loop and any
2769 for (loop
= current_loop
; loop
; loop
= loop
->outer
)
2772 if (loop_dump_stream
)
2773 fprintf (loop_dump_stream
,
2774 "\nLoop at %d ignored due to setjmp.\n",
2775 INSN_UID (loop
->start
));
2779 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2780 enclosing loop, but this doesn't matter. */
2781 uid_loop
[INSN_UID (insn
)] = current_loop
;
2784 /* Any loop containing a label used in an initializer must be invalidated,
2785 because it can be jumped into from anywhere. */
2786 for (label
= forced_labels
; label
; label
= XEXP (label
, 1))
2787 invalidate_loops_containing_label (XEXP (label
, 0));
2789 /* Any loop containing a label used for an exception handler must be
2790 invalidated, because it can be jumped into from anywhere. */
2791 for_each_eh_label (invalidate_loops_containing_label
);
2793 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2794 loop that it is not contained within, that loop is marked invalid.
2795 If any INSN or CALL_INSN uses a label's address, then the loop containing
2796 that label is marked invalid, because it could be jumped into from
2799 Also look for blocks of code ending in an unconditional branch that
2800 exits the loop. If such a block is surrounded by a conditional
2801 branch around the block, move the block elsewhere (see below) and
2802 invert the jump to point to the code block. This may eliminate a
2803 label in our loop and will simplify processing by both us and a
2804 possible second cse pass. */
2806 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2809 struct loop
*this_loop
= uid_loop
[INSN_UID (insn
)];
2811 if (NONJUMP_INSN_P (insn
) || CALL_P (insn
))
2813 rtx note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
2815 invalidate_loops_containing_label (XEXP (note
, 0));
2821 mark_loop_jump (PATTERN (insn
), this_loop
);
2823 /* See if this is an unconditional branch outside the loop. */
2825 && (GET_CODE (PATTERN (insn
)) == RETURN
2826 || (any_uncondjump_p (insn
)
2827 && onlyjump_p (insn
)
2828 && (uid_loop
[INSN_UID (JUMP_LABEL (insn
))]
2830 && get_max_uid () < max_uid_for_loop
)
2833 rtx our_next
= next_real_insn (insn
);
2834 rtx last_insn_to_move
= NEXT_INSN (insn
);
2835 struct loop
*dest_loop
;
2836 struct loop
*outer_loop
= NULL
;
2838 /* Go backwards until we reach the start of the loop, a label,
2840 for (p
= PREV_INSN (insn
);
2843 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
2848 /* Check for the case where we have a jump to an inner nested
2849 loop, and do not perform the optimization in that case. */
2851 if (JUMP_LABEL (insn
))
2853 dest_loop
= uid_loop
[INSN_UID (JUMP_LABEL (insn
))];
2856 for (outer_loop
= dest_loop
; outer_loop
;
2857 outer_loop
= outer_loop
->outer
)
2858 if (outer_loop
== this_loop
)
2863 /* Make sure that the target of P is within the current loop. */
2865 if (JUMP_P (p
) && JUMP_LABEL (p
)
2866 && uid_loop
[INSN_UID (JUMP_LABEL (p
))] != this_loop
)
2867 outer_loop
= this_loop
;
2869 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2870 we have a block of code to try to move.
2872 We look backward and then forward from the target of INSN
2873 to find a BARRIER at the same loop depth as the target.
2874 If we find such a BARRIER, we make a new label for the start
2875 of the block, invert the jump in P and point it to that label,
2876 and move the block of code to the spot we found. */
2880 && JUMP_LABEL (p
) != 0
2881 /* Just ignore jumps to labels that were never emitted.
2882 These always indicate compilation errors. */
2883 && INSN_UID (JUMP_LABEL (p
)) != 0
2884 && any_condjump_p (p
) && onlyjump_p (p
)
2885 && next_real_insn (JUMP_LABEL (p
)) == our_next
2886 /* If it's not safe to move the sequence, then we
2888 && insns_safe_to_move_p (p
, NEXT_INSN (insn
),
2889 &last_insn_to_move
))
2892 = JUMP_LABEL (insn
) ? JUMP_LABEL (insn
) : get_last_insn ();
2893 struct loop
*target_loop
= uid_loop
[INSN_UID (target
)];
2897 /* Search for possible garbage past the conditional jumps
2898 and look for the last barrier. */
2899 for (tmp
= last_insn_to_move
;
2900 tmp
&& !LABEL_P (tmp
); tmp
= NEXT_INSN (tmp
))
2901 if (BARRIER_P (tmp
))
2902 last_insn_to_move
= tmp
;
2904 for (loc
= target
; loc
; loc
= PREV_INSN (loc
))
2906 /* Don't move things inside a tablejump. */
2907 && ((loc2
= next_nonnote_insn (loc
)) == 0
2909 || (loc2
= next_nonnote_insn (loc2
)) == 0
2911 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2912 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2913 && uid_loop
[INSN_UID (loc
)] == target_loop
)
2917 for (loc
= target
; loc
; loc
= NEXT_INSN (loc
))
2919 /* Don't move things inside a tablejump. */
2920 && ((loc2
= next_nonnote_insn (loc
)) == 0
2922 || (loc2
= next_nonnote_insn (loc2
)) == 0
2924 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2925 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2926 && uid_loop
[INSN_UID (loc
)] == target_loop
)
2931 rtx cond_label
= JUMP_LABEL (p
);
2932 rtx new_label
= get_label_after (p
);
2934 /* Ensure our label doesn't go away. */
2935 LABEL_NUSES (cond_label
)++;
2937 /* Verify that uid_loop is large enough and that
2939 if (invert_jump (p
, new_label
, 1))
2943 /* If no suitable BARRIER was found, create a suitable
2944 one before TARGET. Since TARGET is a fall through
2945 path, we'll need to insert a jump around our block
2946 and add a BARRIER before TARGET.
2948 This creates an extra unconditional jump outside
2949 the loop. However, the benefits of removing rarely
2950 executed instructions from inside the loop usually
2951 outweighs the cost of the extra unconditional jump
2952 outside the loop. */
2957 temp
= gen_jump (JUMP_LABEL (insn
));
2958 temp
= emit_jump_insn_before (temp
, target
);
2959 JUMP_LABEL (temp
) = JUMP_LABEL (insn
);
2960 LABEL_NUSES (JUMP_LABEL (insn
))++;
2961 loc
= emit_barrier_before (target
);
2964 /* Include the BARRIER after INSN and copy the
2966 if (squeeze_notes (&new_label
, &last_insn_to_move
))
2968 reorder_insns (new_label
, last_insn_to_move
, loc
);
2970 /* All those insns are now in TARGET_LOOP. */
2972 q
!= NEXT_INSN (last_insn_to_move
);
2974 uid_loop
[INSN_UID (q
)] = target_loop
;
2976 /* The label jumped to by INSN is no longer a loop
2977 exit. Unless INSN does not have a label (e.g.,
2978 it is a RETURN insn), search loop->exit_labels
2979 to find its label_ref, and remove it. Also turn
2980 off LABEL_OUTSIDE_LOOP_P bit. */
2981 if (JUMP_LABEL (insn
))
2983 for (q
= 0, r
= this_loop
->exit_labels
;
2985 q
= r
, r
= LABEL_NEXTREF (r
))
2986 if (XEXP (r
, 0) == JUMP_LABEL (insn
))
2988 LABEL_OUTSIDE_LOOP_P (r
) = 0;
2990 LABEL_NEXTREF (q
) = LABEL_NEXTREF (r
);
2992 this_loop
->exit_labels
= LABEL_NEXTREF (r
);
2996 for (loop
= this_loop
; loop
&& loop
!= target_loop
;
3000 /* If we didn't find it, then something is
3006 /* P is now a jump outside the loop, so it must be put
3007 in loop->exit_labels, and marked as such.
3008 The easiest way to do this is to just call
3009 mark_loop_jump again for P. */
3010 mark_loop_jump (PATTERN (p
), this_loop
);
3012 /* If INSN now jumps to the insn after it,
3014 if (JUMP_LABEL (insn
) != 0
3015 && (next_real_insn (JUMP_LABEL (insn
))
3016 == next_real_insn (insn
)))
3017 delete_related_insns (insn
);
3020 /* Continue the loop after where the conditional
3021 branch used to jump, since the only branch insn
3022 in the block (if it still remains) is an inter-loop
3023 branch and hence needs no processing. */
3024 insn
= NEXT_INSN (cond_label
);
3026 if (--LABEL_NUSES (cond_label
) == 0)
3027 delete_related_insns (cond_label
);
3029 /* This loop will be continued with NEXT_INSN (insn). */
3030 insn
= PREV_INSN (insn
);
3037 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
3038 loops it is contained in, mark the target loop invalid.
3040 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
3043 mark_loop_jump (rtx x
, struct loop
*loop
)
3045 struct loop
*dest_loop
;
3046 struct loop
*outer_loop
;
3049 switch (GET_CODE (x
))
3062 /* There could be a label reference in here. */
3063 mark_loop_jump (XEXP (x
, 0), loop
);
3069 mark_loop_jump (XEXP (x
, 0), loop
);
3070 mark_loop_jump (XEXP (x
, 1), loop
);
3074 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3075 mark_loop_jump (XEXP (x
, 1), loop
);
3080 mark_loop_jump (XEXP (x
, 0), loop
);
3084 dest_loop
= uid_loop
[INSN_UID (XEXP (x
, 0))];
3086 /* Link together all labels that branch outside the loop. This
3087 is used by final_[bg]iv_value and the loop unrolling code. Also
3088 mark this LABEL_REF so we know that this branch should predict
3091 /* A check to make sure the label is not in an inner nested loop,
3092 since this does not count as a loop exit. */
3095 for (outer_loop
= dest_loop
; outer_loop
;
3096 outer_loop
= outer_loop
->outer
)
3097 if (outer_loop
== loop
)
3103 if (loop
&& ! outer_loop
)
3105 LABEL_OUTSIDE_LOOP_P (x
) = 1;
3106 LABEL_NEXTREF (x
) = loop
->exit_labels
;
3107 loop
->exit_labels
= x
;
3109 for (outer_loop
= loop
;
3110 outer_loop
&& outer_loop
!= dest_loop
;
3111 outer_loop
= outer_loop
->outer
)
3112 outer_loop
->exit_count
++;
3115 /* If this is inside a loop, but not in the current loop or one enclosed
3116 by it, it invalidates at least one loop. */
3121 /* We must invalidate every nested loop containing the target of this
3122 label, except those that also contain the jump insn. */
3124 for (; dest_loop
; dest_loop
= dest_loop
->outer
)
3126 /* Stop when we reach a loop that also contains the jump insn. */
3127 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
3128 if (dest_loop
== outer_loop
)
3131 /* If we get here, we know we need to invalidate a loop. */
3132 if (loop_dump_stream
&& ! dest_loop
->invalid
)
3133 fprintf (loop_dump_stream
,
3134 "\nLoop at %d ignored due to multiple entry points.\n",
3135 INSN_UID (dest_loop
->start
));
3137 dest_loop
->invalid
= 1;
3142 /* If this is not setting pc, ignore. */
3143 if (SET_DEST (x
) == pc_rtx
)
3144 mark_loop_jump (SET_SRC (x
), loop
);
3148 mark_loop_jump (XEXP (x
, 1), loop
);
3149 mark_loop_jump (XEXP (x
, 2), loop
);
3154 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
3155 mark_loop_jump (XVECEXP (x
, 0, i
), loop
);
3159 for (i
= 0; i
< XVECLEN (x
, 1); i
++)
3160 mark_loop_jump (XVECEXP (x
, 1, i
), loop
);
3164 /* Strictly speaking this is not a jump into the loop, only a possible
3165 jump out of the loop. However, we have no way to link the destination
3166 of this jump onto the list of exit labels. To be safe we mark this
3167 loop and any containing loops as invalid. */
3170 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
3172 if (loop_dump_stream
&& ! outer_loop
->invalid
)
3173 fprintf (loop_dump_stream
,
3174 "\nLoop at %d ignored due to unknown exit jump.\n",
3175 INSN_UID (outer_loop
->start
));
3176 outer_loop
->invalid
= 1;
3183 /* Return nonzero if there is a label in the range from
3184 insn INSN to and including the insn whose luid is END
3185 INSN must have an assigned luid (i.e., it must not have
3186 been previously created by loop.c). */
3189 labels_in_range_p (rtx insn
, int end
)
3191 while (insn
&& INSN_LUID (insn
) <= end
)
3195 insn
= NEXT_INSN (insn
);
3201 /* Record that a memory reference X is being set. */
3204 note_addr_stored (rtx x
, rtx y ATTRIBUTE_UNUSED
,
3205 void *data ATTRIBUTE_UNUSED
)
3207 struct loop_info
*loop_info
= data
;
3209 if (x
== 0 || !MEM_P (x
))
3212 /* Count number of memory writes.
3213 This affects heuristics in strength_reduce. */
3214 loop_info
->num_mem_sets
++;
3216 /* BLKmode MEM means all memory is clobbered. */
3217 if (GET_MODE (x
) == BLKmode
)
3219 if (MEM_READONLY_P (x
))
3220 loop_info
->unknown_constant_address_altered
= 1;
3222 loop_info
->unknown_address_altered
= 1;
3227 loop_info
->store_mems
= gen_rtx_EXPR_LIST (VOIDmode
, x
,
3228 loop_info
->store_mems
);
3231 /* X is a value modified by an INSN that references a biv inside a loop
3232 exit test (ie, X is somehow related to the value of the biv). If X
3233 is a pseudo that is used more than once, then the biv is (effectively)
3234 used more than once. DATA is a pointer to a loop_regs structure. */
3237 note_set_pseudo_multiple_uses (rtx x
, rtx y ATTRIBUTE_UNUSED
, void *data
)
3239 struct loop_regs
*regs
= (struct loop_regs
*) data
;
3244 while (GET_CODE (x
) == STRICT_LOW_PART
3245 || GET_CODE (x
) == SIGN_EXTRACT
3246 || GET_CODE (x
) == ZERO_EXTRACT
3247 || GET_CODE (x
) == SUBREG
)
3250 if (!REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3253 /* If we do not have usage information, or if we know the register
3254 is used more than once, note that fact for check_dbra_loop. */
3255 if (REGNO (x
) >= max_reg_before_loop
3256 || ! regs
->array
[REGNO (x
)].single_usage
3257 || regs
->array
[REGNO (x
)].single_usage
== const0_rtx
)
3258 regs
->multiple_uses
= 1;
3261 /* Return nonzero if the rtx X is invariant over the current loop.
3263 The value is 2 if we refer to something only conditionally invariant.
3265 A memory ref is invariant if it is not volatile and does not conflict
3266 with anything stored in `loop_info->store_mems'. */
3269 loop_invariant_p (const struct loop
*loop
, rtx x
)
3271 struct loop_info
*loop_info
= LOOP_INFO (loop
);
3272 struct loop_regs
*regs
= LOOP_REGS (loop
);
3276 int conditional
= 0;
3281 code
= GET_CODE (x
);
3291 /* A LABEL_REF is normally invariant, however, if we are unrolling
3292 loops, and this label is inside the loop, then it isn't invariant.
3293 This is because each unrolled copy of the loop body will have
3294 a copy of this label. If this was invariant, then an insn loading
3295 the address of this label into a register might get moved outside
3296 the loop, and then each loop body would end up using the same label.
3298 We don't know the loop bounds here though, so just fail for all
3300 if (flag_old_unroll_loops
)
3307 case UNSPEC_VOLATILE
:
3311 if ((x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
3312 || x
== arg_pointer_rtx
|| x
== pic_offset_table_rtx
)
3313 && ! current_function_has_nonlocal_goto
)
3316 if (LOOP_INFO (loop
)->has_call
3317 && REGNO (x
) < FIRST_PSEUDO_REGISTER
&& call_used_regs
[REGNO (x
)])
3320 /* Out-of-range regs can occur when we are called from unrolling.
3321 These registers created by the unroller are set in the loop,
3322 hence are never invariant.
3323 Other out-of-range regs can be generated by load_mems; those that
3324 are written to in the loop are not invariant, while those that are
3325 not written to are invariant. It would be easy for load_mems
3326 to set n_times_set correctly for these registers, however, there
3327 is no easy way to distinguish them from registers created by the
3330 if (REGNO (x
) >= (unsigned) regs
->num
)
3333 if (regs
->array
[REGNO (x
)].set_in_loop
< 0)
3336 return regs
->array
[REGNO (x
)].set_in_loop
== 0;
3339 /* Volatile memory references must be rejected. Do this before
3340 checking for read-only items, so that volatile read-only items
3341 will be rejected also. */
3342 if (MEM_VOLATILE_P (x
))
3345 /* See if there is any dependence between a store and this load. */
3346 mem_list_entry
= loop_info
->store_mems
;
3347 while (mem_list_entry
)
3349 if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
3353 mem_list_entry
= XEXP (mem_list_entry
, 1);
3356 /* It's not invalidated by a store in memory
3357 but we must still verify the address is invariant. */
3361 /* Don't mess with insns declared volatile. */
3362 if (MEM_VOLATILE_P (x
))
3370 fmt
= GET_RTX_FORMAT (code
);
3371 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3375 int tem
= loop_invariant_p (loop
, XEXP (x
, i
));
3381 else if (fmt
[i
] == 'E')
3384 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3386 int tem
= loop_invariant_p (loop
, XVECEXP (x
, i
, j
));
3396 return 1 + conditional
;
3399 /* Return nonzero if all the insns in the loop that set REG
3400 are INSN and the immediately following insns,
3401 and if each of those insns sets REG in an invariant way
3402 (not counting uses of REG in them).
3404 The value is 2 if some of these insns are only conditionally invariant.
3406 We assume that INSN itself is the first set of REG
3407 and that its source is invariant. */
3410 consec_sets_invariant_p (const struct loop
*loop
, rtx reg
, int n_sets
,
3413 struct loop_regs
*regs
= LOOP_REGS (loop
);
3415 unsigned int regno
= REGNO (reg
);
3417 /* Number of sets we have to insist on finding after INSN. */
3418 int count
= n_sets
- 1;
3419 int old
= regs
->array
[regno
].set_in_loop
;
3423 /* If N_SETS hit the limit, we can't rely on its value. */
3427 regs
->array
[regno
].set_in_loop
= 0;
3435 code
= GET_CODE (p
);
3437 /* If library call, skip to end of it. */
3438 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
3443 && (set
= single_set (p
))
3444 && REG_P (SET_DEST (set
))
3445 && REGNO (SET_DEST (set
)) == regno
)
3447 this = loop_invariant_p (loop
, SET_SRC (set
));
3450 else if ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)))
3452 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3453 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3455 this = (CONSTANT_P (XEXP (temp
, 0))
3456 || (find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
3457 && loop_invariant_p (loop
, XEXP (temp
, 0))));
3464 else if (code
!= NOTE
)
3466 regs
->array
[regno
].set_in_loop
= old
;
3471 regs
->array
[regno
].set_in_loop
= old
;
3472 /* If loop_invariant_p ever returned 2, we return 2. */
3473 return 1 + (value
& 2);
3476 /* Look at all uses (not sets) of registers in X. For each, if it is
3477 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3478 a different insn, set USAGE[REGNO] to const0_rtx. */
3481 find_single_use_in_loop (struct loop_regs
*regs
, rtx insn
, rtx x
)
3483 enum rtx_code code
= GET_CODE (x
);
3484 const char *fmt
= GET_RTX_FORMAT (code
);
3488 regs
->array
[REGNO (x
)].single_usage
3489 = (regs
->array
[REGNO (x
)].single_usage
!= 0
3490 && regs
->array
[REGNO (x
)].single_usage
!= insn
)
3491 ? const0_rtx
: insn
;
3493 else if (code
== SET
)
3495 /* Don't count SET_DEST if it is a REG; otherwise count things
3496 in SET_DEST because if a register is partially modified, it won't
3497 show up as a potential movable so we don't care how USAGE is set
3499 if (!REG_P (SET_DEST (x
)))
3500 find_single_use_in_loop (regs
, insn
, SET_DEST (x
));
3501 find_single_use_in_loop (regs
, insn
, SET_SRC (x
));
3504 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3506 if (fmt
[i
] == 'e' && XEXP (x
, i
) != 0)
3507 find_single_use_in_loop (regs
, insn
, XEXP (x
, i
));
3508 else if (fmt
[i
] == 'E')
3509 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3510 find_single_use_in_loop (regs
, insn
, XVECEXP (x
, i
, j
));
3514 /* Count and record any set in X which is contained in INSN. Update
3515 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3519 count_one_set (struct loop_regs
*regs
, rtx insn
, rtx x
, rtx
*last_set
)
3521 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
3522 /* Don't move a reg that has an explicit clobber.
3523 It's not worth the pain to try to do it correctly. */
3524 regs
->array
[REGNO (XEXP (x
, 0))].may_not_optimize
= 1;
3526 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
3528 rtx dest
= SET_DEST (x
);
3529 while (GET_CODE (dest
) == SUBREG
3530 || GET_CODE (dest
) == ZERO_EXTRACT
3531 || GET_CODE (dest
) == SIGN_EXTRACT
3532 || GET_CODE (dest
) == STRICT_LOW_PART
)
3533 dest
= XEXP (dest
, 0);
3537 int regno
= REGNO (dest
);
3538 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, dest
); i
++)
3540 /* If this is the first setting of this reg
3541 in current basic block, and it was set before,
3542 it must be set in two basic blocks, so it cannot
3543 be moved out of the loop. */
3544 if (regs
->array
[regno
].set_in_loop
> 0
3545 && last_set
[regno
] == 0)
3546 regs
->array
[regno
+i
].may_not_optimize
= 1;
3547 /* If this is not first setting in current basic block,
3548 see if reg was used in between previous one and this.
3549 If so, neither one can be moved. */
3550 if (last_set
[regno
] != 0
3551 && reg_used_between_p (dest
, last_set
[regno
], insn
))
3552 regs
->array
[regno
+i
].may_not_optimize
= 1;
3553 if (regs
->array
[regno
+i
].set_in_loop
< 127)
3554 ++regs
->array
[regno
+i
].set_in_loop
;
3555 last_set
[regno
+i
] = insn
;
3561 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3562 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3563 contained in insn INSN is used by any insn that precedes INSN in
3564 cyclic order starting from the loop entry point.
3566 We don't want to use INSN_LUID here because if we restrict INSN to those
3567 that have a valid INSN_LUID, it means we cannot move an invariant out
3568 from an inner loop past two loops. */
3571 loop_reg_used_before_p (const struct loop
*loop
, rtx set
, rtx insn
)
3573 rtx reg
= SET_DEST (set
);
3576 /* Scan forward checking for register usage. If we hit INSN, we
3577 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3578 for (p
= loop
->scan_start
; p
!= insn
; p
= NEXT_INSN (p
))
3580 if (INSN_P (p
) && reg_overlap_mentioned_p (reg
, PATTERN (p
)))
3591 /* Information we collect about arrays that we might want to prefetch. */
3592 struct prefetch_info
3594 struct iv_class
*class; /* Class this prefetch is based on. */
3595 struct induction
*giv
; /* GIV this prefetch is based on. */
3596 rtx base_address
; /* Start prefetching from this address plus
3598 HOST_WIDE_INT index
;
3599 HOST_WIDE_INT stride
; /* Prefetch stride in bytes in each
3601 unsigned int bytes_accessed
; /* Sum of sizes of all accesses to this
3602 prefetch area in one iteration. */
3603 unsigned int total_bytes
; /* Total bytes loop will access in this block.
3604 This is set only for loops with known
3605 iteration counts and is 0xffffffff
3607 int prefetch_in_loop
; /* Number of prefetch insns in loop. */
3608 int prefetch_before_loop
; /* Number of prefetch insns before loop. */
3609 unsigned int write
: 1; /* 1 for read/write prefetches. */
3612 /* Data used by check_store function. */
3613 struct check_store_data
3619 static void check_store (rtx
, rtx
, void *);
3620 static void emit_prefetch_instructions (struct loop
*);
3621 static int rtx_equal_for_prefetch_p (rtx
, rtx
);
3623 /* Set mem_write when mem_address is found. Used as callback to
3626 check_store (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
3628 struct check_store_data
*d
= (struct check_store_data
*) data
;
3630 if ((MEM_P (x
)) && rtx_equal_p (d
->mem_address
, XEXP (x
, 0)))
3634 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3635 important to get some addresses combined. Later more sophisticated
3636 transformations can be added when necessary.
3638 ??? Same trick with swapping operand is done at several other places.
3639 It can be nice to develop some common way to handle this. */
3642 rtx_equal_for_prefetch_p (rtx x
, rtx y
)
3646 enum rtx_code code
= GET_CODE (x
);
3651 if (code
!= GET_CODE (y
))
3654 if (COMMUTATIVE_ARITH_P (x
))
3656 return ((rtx_equal_for_prefetch_p (XEXP (x
, 0), XEXP (y
, 0))
3657 && rtx_equal_for_prefetch_p (XEXP (x
, 1), XEXP (y
, 1)))
3658 || (rtx_equal_for_prefetch_p (XEXP (x
, 0), XEXP (y
, 1))
3659 && rtx_equal_for_prefetch_p (XEXP (x
, 1), XEXP (y
, 0))));
3662 /* Compare the elements. If any pair of corresponding elements fails to
3663 match, return 0 for the whole thing. */
3665 fmt
= GET_RTX_FORMAT (code
);
3666 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3671 if (XWINT (x
, i
) != XWINT (y
, i
))
3676 if (XINT (x
, i
) != XINT (y
, i
))
3681 /* Two vectors must have the same length. */
3682 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
3685 /* And the corresponding elements must match. */
3686 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3687 if (rtx_equal_for_prefetch_p (XVECEXP (x
, i
, j
),
3688 XVECEXP (y
, i
, j
)) == 0)
3693 if (rtx_equal_for_prefetch_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
3698 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
3703 /* These are just backpointers, so they don't matter. */
3709 /* It is believed that rtx's at this level will never
3710 contain anything but integers and other rtx's,
3711 except for within LABEL_REFs and SYMBOL_REFs. */
3719 /* Remove constant addition value from the expression X (when present)
3722 static HOST_WIDE_INT
3723 remove_constant_addition (rtx
*x
)
3725 HOST_WIDE_INT addval
= 0;
3728 /* Avoid clobbering a shared CONST expression. */
3729 if (GET_CODE (exp
) == CONST
)
3731 if (GET_CODE (XEXP (exp
, 0)) == PLUS
3732 && GET_CODE (XEXP (XEXP (exp
, 0), 0)) == SYMBOL_REF
3733 && GET_CODE (XEXP (XEXP (exp
, 0), 1)) == CONST_INT
)
3735 *x
= XEXP (XEXP (exp
, 0), 0);
3736 return INTVAL (XEXP (XEXP (exp
, 0), 1));
3741 if (GET_CODE (exp
) == CONST_INT
)
3743 addval
= INTVAL (exp
);
3747 /* For plus expression recurse on ourself. */
3748 else if (GET_CODE (exp
) == PLUS
)
3750 addval
+= remove_constant_addition (&XEXP (exp
, 0));
3751 addval
+= remove_constant_addition (&XEXP (exp
, 1));
3753 /* In case our parameter was constant, remove extra zero from the
3755 if (XEXP (exp
, 0) == const0_rtx
)
3757 else if (XEXP (exp
, 1) == const0_rtx
)
3764 /* Attempt to identify accesses to arrays that are most likely to cause cache
3765 misses, and emit prefetch instructions a few prefetch blocks forward.
3767 To detect the arrays we use the GIV information that was collected by the
3768 strength reduction pass.
3770 The prefetch instructions are generated after the GIV information is done
3771 and before the strength reduction process. The new GIVs are injected into
3772 the strength reduction tables, so the prefetch addresses are optimized as
3775 GIVs are split into base address, stride, and constant addition values.
3776 GIVs with the same address, stride and close addition values are combined
3777 into a single prefetch. Also writes to GIVs are detected, so that prefetch
3778 for write instructions can be used for the block we write to, on machines
3779 that support write prefetches.
3781 Several heuristics are used to determine when to prefetch. They are
3782 controlled by defined symbols that can be overridden for each target. */
3785 emit_prefetch_instructions (struct loop
*loop
)
3787 int num_prefetches
= 0;
3788 int num_real_prefetches
= 0;
3789 int num_real_write_prefetches
= 0;
3790 int num_prefetches_before
= 0;
3791 int num_write_prefetches_before
= 0;
3794 struct iv_class
*bl
;
3795 struct induction
*iv
;
3796 struct prefetch_info info
[MAX_PREFETCHES
];
3797 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
3802 /* Consider only loops w/o calls. When a call is done, the loop is probably
3803 slow enough to read the memory. */
3804 if (PREFETCH_NO_CALL
&& LOOP_INFO (loop
)->has_call
)
3806 if (loop_dump_stream
)
3807 fprintf (loop_dump_stream
, "Prefetch: ignoring loop: has call.\n");
3812 /* Don't prefetch in loops known to have few iterations. */
3813 if (PREFETCH_NO_LOW_LOOPCNT
3814 && LOOP_INFO (loop
)->n_iterations
3815 && LOOP_INFO (loop
)->n_iterations
<= PREFETCH_LOW_LOOPCNT
)
3817 if (loop_dump_stream
)
3818 fprintf (loop_dump_stream
,
3819 "Prefetch: ignoring loop: not enough iterations.\n");
3823 /* Search all induction variables and pick those interesting for the prefetch
3825 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
3827 struct induction
*biv
= bl
->biv
, *biv1
;
3832 /* Expect all BIVs to be executed in each iteration. This makes our
3833 analysis more conservative. */
3836 /* Discard non-constant additions that we can't handle well yet, and
3837 BIVs that are executed multiple times; such BIVs ought to be
3838 handled in the nested loop. We accept not_every_iteration BIVs,
3839 since these only result in larger strides and make our
3840 heuristics more conservative. */
3841 if (GET_CODE (biv
->add_val
) != CONST_INT
)
3843 if (loop_dump_stream
)
3845 fprintf (loop_dump_stream
,
3846 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
3847 REGNO (biv
->src_reg
), INSN_UID (biv
->insn
));
3848 print_rtl (loop_dump_stream
, biv
->add_val
);
3849 fprintf (loop_dump_stream
, "\n");
3854 if (biv
->maybe_multiple
)
3856 if (loop_dump_stream
)
3858 fprintf (loop_dump_stream
,
3859 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
3860 REGNO (biv
->src_reg
), INSN_UID (biv
->insn
));
3861 print_rtl (loop_dump_stream
, biv
->add_val
);
3862 fprintf (loop_dump_stream
, "\n");
3867 basestride
+= INTVAL (biv1
->add_val
);
3868 biv1
= biv1
->next_iv
;
3871 if (biv1
|| !basestride
)
3874 for (iv
= bl
->giv
; iv
; iv
= iv
->next_iv
)
3878 HOST_WIDE_INT index
= 0;
3880 HOST_WIDE_INT stride
= 0;
3881 int stride_sign
= 1;
3882 struct check_store_data d
;
3883 const char *ignore_reason
= NULL
;
3884 int size
= GET_MODE_SIZE (GET_MODE (iv
));
3886 /* See whether an induction variable is interesting to us and if
3887 not, report the reason. */
3888 if (iv
->giv_type
!= DEST_ADDR
)
3889 ignore_reason
= "giv is not a destination address";
3891 /* We are interested only in constant stride memory references
3892 in order to be able to compute density easily. */
3893 else if (GET_CODE (iv
->mult_val
) != CONST_INT
)
3894 ignore_reason
= "stride is not constant";
3898 stride
= INTVAL (iv
->mult_val
) * basestride
;
3905 /* On some targets, reversed order prefetches are not
3907 if (PREFETCH_NO_REVERSE_ORDER
&& stride_sign
< 0)
3908 ignore_reason
= "reversed order stride";
3910 /* Prefetch of accesses with an extreme stride might not be
3911 worthwhile, either. */
3912 else if (PREFETCH_NO_EXTREME_STRIDE
3913 && stride
> PREFETCH_EXTREME_STRIDE
)
3914 ignore_reason
= "extreme stride";
3916 /* Ignore GIVs with varying add values; we can't predict the
3917 value for the next iteration. */
3918 else if (!loop_invariant_p (loop
, iv
->add_val
))
3919 ignore_reason
= "giv has varying add value";
3921 /* Ignore GIVs in the nested loops; they ought to have been
3923 else if (iv
->maybe_multiple
)
3924 ignore_reason
= "giv is in nested loop";
3927 if (ignore_reason
!= NULL
)
3929 if (loop_dump_stream
)
3930 fprintf (loop_dump_stream
,
3931 "Prefetch: ignoring giv at %d: %s.\n",
3932 INSN_UID (iv
->insn
), ignore_reason
);
3936 /* Determine the pointer to the basic array we are examining. It is
3937 the sum of the BIV's initial value and the GIV's add_val. */
3938 address
= copy_rtx (iv
->add_val
);
3939 temp
= copy_rtx (bl
->initial_value
);
3941 address
= simplify_gen_binary (PLUS
, Pmode
, temp
, address
);
3942 index
= remove_constant_addition (&address
);
3945 d
.mem_address
= *iv
->location
;
3947 /* When the GIV is not always executed, we might be better off by
3948 not dirtying the cache pages. */
3949 if (PREFETCH_CONDITIONAL
|| iv
->always_executed
)
3950 note_stores (PATTERN (iv
->insn
), check_store
, &d
);
3953 if (loop_dump_stream
)
3954 fprintf (loop_dump_stream
, "Prefetch: Ignoring giv at %d: %s\n",
3955 INSN_UID (iv
->insn
), "in conditional code.");
3959 /* Attempt to find another prefetch to the same array and see if we
3960 can merge this one. */
3961 for (i
= 0; i
< num_prefetches
; i
++)
3962 if (rtx_equal_for_prefetch_p (address
, info
[i
].base_address
)
3963 && stride
== info
[i
].stride
)
3965 /* In case both access same array (same location
3966 just with small difference in constant indexes), merge
3967 the prefetches. Just do the later and the earlier will
3968 get prefetched from previous iteration.
3969 The artificial threshold should not be too small,
3970 but also not bigger than small portion of memory usually
3971 traversed by single loop. */
3972 if (index
>= info
[i
].index
3973 && index
- info
[i
].index
< PREFETCH_EXTREME_DIFFERENCE
)
3975 info
[i
].write
|= d
.mem_write
;
3976 info
[i
].bytes_accessed
+= size
;
3977 info
[i
].index
= index
;
3980 info
[num_prefetches
].base_address
= address
;
3985 if (index
< info
[i
].index
3986 && info
[i
].index
- index
< PREFETCH_EXTREME_DIFFERENCE
)
3988 info
[i
].write
|= d
.mem_write
;
3989 info
[i
].bytes_accessed
+= size
;
3995 /* Merging failed. */
3998 info
[num_prefetches
].giv
= iv
;
3999 info
[num_prefetches
].class = bl
;
4000 info
[num_prefetches
].index
= index
;
4001 info
[num_prefetches
].stride
= stride
;
4002 info
[num_prefetches
].base_address
= address
;
4003 info
[num_prefetches
].write
= d
.mem_write
;
4004 info
[num_prefetches
].bytes_accessed
= size
;
4006 if (num_prefetches
>= MAX_PREFETCHES
)
4008 if (loop_dump_stream
)
4009 fprintf (loop_dump_stream
,
4010 "Maximal number of prefetches exceeded.\n");
4017 for (i
= 0; i
< num_prefetches
; i
++)
4021 /* Attempt to calculate the total number of bytes fetched by all
4022 iterations of the loop. Avoid overflow. */
4023 if (LOOP_INFO (loop
)->n_iterations
4024 && ((unsigned HOST_WIDE_INT
) (0xffffffff / info
[i
].stride
)
4025 >= LOOP_INFO (loop
)->n_iterations
))
4026 info
[i
].total_bytes
= info
[i
].stride
* LOOP_INFO (loop
)->n_iterations
;
4028 info
[i
].total_bytes
= 0xffffffff;
4030 density
= info
[i
].bytes_accessed
* 100 / info
[i
].stride
;
4032 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4033 if (PREFETCH_ONLY_DENSE_MEM
)
4034 if (density
* 256 > PREFETCH_DENSE_MEM
* 100
4035 && (info
[i
].total_bytes
/ PREFETCH_BLOCK
4036 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN
))
4038 info
[i
].prefetch_before_loop
= 1;
4039 info
[i
].prefetch_in_loop
4040 = (info
[i
].total_bytes
/ PREFETCH_BLOCK
4041 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX
);
4045 info
[i
].prefetch_in_loop
= 0, info
[i
].prefetch_before_loop
= 0;
4046 if (loop_dump_stream
)
4047 fprintf (loop_dump_stream
,
4048 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4049 INSN_UID (info
[i
].giv
->insn
), density
);
4052 info
[i
].prefetch_in_loop
= 1, info
[i
].prefetch_before_loop
= 1;
4054 /* Find how many prefetch instructions we'll use within the loop. */
4055 if (info
[i
].prefetch_in_loop
!= 0)
4057 info
[i
].prefetch_in_loop
= ((info
[i
].stride
+ PREFETCH_BLOCK
- 1)
4059 num_real_prefetches
+= info
[i
].prefetch_in_loop
;
4061 num_real_write_prefetches
+= info
[i
].prefetch_in_loop
;
4065 /* Determine how many iterations ahead to prefetch within the loop, based
4066 on how many prefetches we currently expect to do within the loop. */
4067 if (num_real_prefetches
!= 0)
4069 if ((ahead
= SIMULTANEOUS_PREFETCHES
/ num_real_prefetches
) == 0)
4071 if (loop_dump_stream
)
4072 fprintf (loop_dump_stream
,
4073 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4074 SIMULTANEOUS_PREFETCHES
, num_real_prefetches
);
4075 num_real_prefetches
= 0, num_real_write_prefetches
= 0;
4078 /* We'll also use AHEAD to determine how many prefetch instructions to
4079 emit before a loop, so don't leave it zero. */
4081 ahead
= PREFETCH_BLOCKS_BEFORE_LOOP_MAX
;
4083 for (i
= 0; i
< num_prefetches
; i
++)
4085 /* Update if we've decided not to prefetch anything within the loop. */
4086 if (num_real_prefetches
== 0)
4087 info
[i
].prefetch_in_loop
= 0;
4089 /* Find how many prefetch instructions we'll use before the loop. */
4090 if (info
[i
].prefetch_before_loop
!= 0)
4092 int n
= info
[i
].total_bytes
/ PREFETCH_BLOCK
;
4095 info
[i
].prefetch_before_loop
= n
;
4096 num_prefetches_before
+= n
;
4098 num_write_prefetches_before
+= n
;
4101 if (loop_dump_stream
)
4103 if (info
[i
].prefetch_in_loop
== 0
4104 && info
[i
].prefetch_before_loop
== 0)
4106 fprintf (loop_dump_stream
, "Prefetch insn: %d",
4107 INSN_UID (info
[i
].giv
->insn
));
4108 fprintf (loop_dump_stream
,
4109 "; in loop: %d; before: %d; %s\n",
4110 info
[i
].prefetch_in_loop
,
4111 info
[i
].prefetch_before_loop
,
4112 info
[i
].write
? "read/write" : "read only");
4113 fprintf (loop_dump_stream
,
4114 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4115 (int) (info
[i
].bytes_accessed
* 100 / info
[i
].stride
),
4116 info
[i
].bytes_accessed
, info
[i
].total_bytes
);
4117 fprintf (loop_dump_stream
, " index: " HOST_WIDE_INT_PRINT_DEC
4118 "; stride: " HOST_WIDE_INT_PRINT_DEC
"; address: ",
4119 info
[i
].index
, info
[i
].stride
);
4120 print_rtl (loop_dump_stream
, info
[i
].base_address
);
4121 fprintf (loop_dump_stream
, "\n");
4125 if (num_real_prefetches
+ num_prefetches_before
> 0)
4127 /* Record that this loop uses prefetch instructions. */
4128 LOOP_INFO (loop
)->has_prefetch
= 1;
4130 if (loop_dump_stream
)
4132 fprintf (loop_dump_stream
, "Real prefetches needed within loop: %d (write: %d)\n",
4133 num_real_prefetches
, num_real_write_prefetches
);
4134 fprintf (loop_dump_stream
, "Real prefetches needed before loop: %d (write: %d)\n",
4135 num_prefetches_before
, num_write_prefetches_before
);
4139 for (i
= 0; i
< num_prefetches
; i
++)
4143 for (y
= 0; y
< info
[i
].prefetch_in_loop
; y
++)
4145 rtx loc
= copy_rtx (*info
[i
].giv
->location
);
4147 int bytes_ahead
= PREFETCH_BLOCK
* (ahead
+ y
);
4148 rtx before_insn
= info
[i
].giv
->insn
;
4149 rtx prev_insn
= PREV_INSN (info
[i
].giv
->insn
);
4152 /* We can save some effort by offsetting the address on
4153 architectures with offsettable memory references. */
4154 if (offsettable_address_p (0, VOIDmode
, loc
))
4155 loc
= plus_constant (loc
, bytes_ahead
);
4158 rtx reg
= gen_reg_rtx (Pmode
);
4159 loop_iv_add_mult_emit_before (loop
, loc
, const1_rtx
,
4160 GEN_INT (bytes_ahead
), reg
,
4166 /* Make sure the address operand is valid for prefetch. */
4167 if (! (*insn_data
[(int)CODE_FOR_prefetch
].operand
[0].predicate
)
4168 (loc
, insn_data
[(int)CODE_FOR_prefetch
].operand
[0].mode
))
4169 loc
= force_reg (Pmode
, loc
);
4170 emit_insn (gen_prefetch (loc
, GEN_INT (info
[i
].write
),
4174 emit_insn_before (seq
, before_insn
);
4176 /* Check all insns emitted and record the new GIV
4178 insn
= NEXT_INSN (prev_insn
);
4179 while (insn
!= before_insn
)
4181 insn
= check_insn_for_givs (loop
, insn
,
4182 info
[i
].giv
->always_executed
,
4183 info
[i
].giv
->maybe_multiple
);
4184 insn
= NEXT_INSN (insn
);
4188 if (PREFETCH_BEFORE_LOOP
)
4190 /* Emit insns before the loop to fetch the first cache lines or,
4191 if we're not prefetching within the loop, everything we expect
4193 for (y
= 0; y
< info
[i
].prefetch_before_loop
; y
++)
4195 rtx reg
= gen_reg_rtx (Pmode
);
4196 rtx loop_start
= loop
->start
;
4197 rtx init_val
= info
[i
].class->initial_value
;
4198 rtx add_val
= simplify_gen_binary (PLUS
, Pmode
,
4199 info
[i
].giv
->add_val
,
4200 GEN_INT (y
* PREFETCH_BLOCK
));
4202 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4203 non-constant INIT_VAL to have the same mode as REG, which
4204 in this case we know to be Pmode. */
4205 if (GET_MODE (init_val
) != Pmode
&& !CONSTANT_P (init_val
))
4210 init_val
= convert_to_mode (Pmode
, init_val
, 0);
4213 loop_insn_emit_before (loop
, 0, loop_start
, seq
);
4215 loop_iv_add_mult_emit_before (loop
, init_val
,
4216 info
[i
].giv
->mult_val
,
4217 add_val
, reg
, 0, loop_start
);
4218 emit_insn_before (gen_prefetch (reg
, GEN_INT (info
[i
].write
),
4228 /* Communication with routines called via `note_stores'. */
4230 static rtx note_insn
;
4232 /* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
4234 static rtx addr_placeholder
;
4236 /* ??? Unfinished optimizations, and possible future optimizations,
4237 for the strength reduction code. */
4239 /* ??? The interaction of biv elimination, and recognition of 'constant'
4240 bivs, may cause problems. */
4242 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4243 performance problems.
4245 Perhaps don't eliminate things that can be combined with an addressing
4246 mode. Find all givs that have the same biv, mult_val, and add_val;
4247 then for each giv, check to see if its only use dies in a following
4248 memory address. If so, generate a new memory address and check to see
4249 if it is valid. If it is valid, then store the modified memory address,
4250 otherwise, mark the giv as not done so that it will get its own iv. */
4252 /* ??? Could try to optimize branches when it is known that a biv is always
4255 /* ??? When replace a biv in a compare insn, we should replace with closest
4256 giv so that an optimized branch can still be recognized by the combiner,
4257 e.g. the VAX acb insn. */
4259 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4260 was rerun in loop_optimize whenever a register was added or moved.
4261 Also, some of the optimizations could be a little less conservative. */
4263 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4264 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4267 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4268 least once for every loop iteration except for the last one.
4270 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4274 for_each_insn_in_loop (struct loop
*loop
, loop_insn_callback fncall
)
4276 int not_every_iteration
= 0;
4277 int maybe_multiple
= 0;
4278 int past_loop_latch
= 0;
4282 /* If loop_scan_start points to the loop exit test, we have to be wary of
4283 subversive use of gotos inside expression statements. */
4284 if (prev_nonnote_insn (loop
->scan_start
) != prev_nonnote_insn (loop
->start
))
4285 maybe_multiple
= back_branch_in_range_p (loop
, loop
->scan_start
);
4287 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4288 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
4290 p
= next_insn_in_loop (loop
, p
))
4292 p
= fncall (loop
, p
, not_every_iteration
, maybe_multiple
);
4294 /* Past CODE_LABEL, we get to insns that may be executed multiple
4295 times. The only way we can be sure that they can't is if every
4296 jump insn between here and the end of the loop either
4297 returns, exits the loop, is a jump to a location that is still
4298 behind the label, or is a jump to the loop start. */
4308 insn
= NEXT_INSN (insn
);
4309 if (insn
== loop
->scan_start
)
4311 if (insn
== loop
->end
)
4317 if (insn
== loop
->scan_start
)
4322 && GET_CODE (PATTERN (insn
)) != RETURN
4323 && (!any_condjump_p (insn
)
4324 || (JUMP_LABEL (insn
) != 0
4325 && JUMP_LABEL (insn
) != loop
->scan_start
4326 && !loop_insn_first_p (p
, JUMP_LABEL (insn
)))))
4334 /* Past a jump, we get to insns for which we can't count
4335 on whether they will be executed during each iteration. */
4336 /* This code appears twice in strength_reduce. There is also similar
4337 code in scan_loop. */
4339 /* If we enter the loop in the middle, and scan around to the
4340 beginning, don't set not_every_iteration for that.
4341 This can be any kind of jump, since we want to know if insns
4342 will be executed if the loop is executed. */
4343 && !(JUMP_LABEL (p
) == loop
->top
4344 && ((NEXT_INSN (NEXT_INSN (p
)) == loop
->end
4345 && any_uncondjump_p (p
))
4346 || (NEXT_INSN (p
) == loop
->end
&& any_condjump_p (p
)))))
4350 /* If this is a jump outside the loop, then it also doesn't
4351 matter. Check to see if the target of this branch is on the
4352 loop->exits_labels list. */
4354 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
4355 if (XEXP (label
, 0) == JUMP_LABEL (p
))
4359 not_every_iteration
= 1;
4362 else if (NOTE_P (p
))
4364 /* At the virtual top of a converted loop, insns are again known to
4365 be executed each iteration: logically, the loop begins here
4366 even though the exit code has been duplicated.
4368 Insns are also again known to be executed each iteration at
4369 the LOOP_CONT note. */
4370 if ((NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
4371 || NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_CONT
)
4373 not_every_iteration
= 0;
4374 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
4376 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
4380 /* Note if we pass a loop latch. If we do, then we can not clear
4381 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4382 a loop since a jump before the last CODE_LABEL may have started
4383 a new loop iteration.
4385 Note that LOOP_TOP is only set for rotated loops and we need
4386 this check for all loops, so compare against the CODE_LABEL
4387 which immediately follows LOOP_START. */
4389 && JUMP_LABEL (p
) == NEXT_INSN (loop
->start
))
4390 past_loop_latch
= 1;
4392 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4393 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4394 or not an insn is known to be executed each iteration of the
4395 loop, whether or not any iterations are known to occur.
4397 Therefore, if we have just passed a label and have no more labels
4398 between here and the test insn of the loop, and we have not passed
4399 a jump to the top of the loop, then we know these insns will be
4400 executed each iteration. */
4402 if (not_every_iteration
4405 && no_labels_between_p (p
, loop
->end
)
4406 && loop_insn_first_p (p
, loop
->cont
))
4407 not_every_iteration
= 0;
4412 loop_bivs_find (struct loop
*loop
)
4414 struct loop_regs
*regs
= LOOP_REGS (loop
);
4415 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4416 /* Temporary list pointers for traversing ivs->list. */
4417 struct iv_class
*bl
, **backbl
;
4421 for_each_insn_in_loop (loop
, check_insn_for_bivs
);
4423 /* Scan ivs->list to remove all regs that proved not to be bivs.
4424 Make a sanity check against regs->n_times_set. */
4425 for (backbl
= &ivs
->list
, bl
= *backbl
; bl
; bl
= bl
->next
)
4427 if (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
4428 /* Above happens if register modified by subreg, etc. */
4429 /* Make sure it is not recognized as a basic induction var: */
4430 || regs
->array
[bl
->regno
].n_times_set
!= bl
->biv_count
4431 /* If never incremented, it is invariant that we decided not to
4432 move. So leave it alone. */
4433 || ! bl
->incremented
)
4435 if (loop_dump_stream
)
4436 fprintf (loop_dump_stream
, "Biv %d: discarded, %s\n",
4438 (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
4439 ? "not induction variable"
4440 : (! bl
->incremented
? "never incremented"
4443 REG_IV_TYPE (ivs
, bl
->regno
) = NOT_BASIC_INDUCT
;
4450 if (loop_dump_stream
)
4451 fprintf (loop_dump_stream
, "Biv %d: verified\n", bl
->regno
);
4457 /* Determine how BIVS are initialized by looking through pre-header
4458 extended basic block. */
4460 loop_bivs_init_find (struct loop
*loop
)
4462 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4463 /* Temporary list pointers for traversing ivs->list. */
4464 struct iv_class
*bl
;
4468 /* Find initial value for each biv by searching backwards from loop_start,
4469 halting at first label. Also record any test condition. */
4472 for (p
= loop
->start
; p
&& !LABEL_P (p
); p
= PREV_INSN (p
))
4482 note_stores (PATTERN (p
), record_initial
, ivs
);
4484 /* Record any test of a biv that branches around the loop if no store
4485 between it and the start of loop. We only care about tests with
4486 constants and registers and only certain of those. */
4488 && JUMP_LABEL (p
) != 0
4489 && next_real_insn (JUMP_LABEL (p
)) == next_real_insn (loop
->end
)
4490 && (test
= get_condition_for_loop (loop
, p
)) != 0
4491 && REG_P (XEXP (test
, 0))
4492 && REGNO (XEXP (test
, 0)) < max_reg_before_loop
4493 && (bl
= REG_IV_CLASS (ivs
, REGNO (XEXP (test
, 0)))) != 0
4494 && valid_initial_value_p (XEXP (test
, 1), p
, call_seen
, loop
->start
)
4495 && bl
->init_insn
== 0)
4497 /* If an NE test, we have an initial value! */
4498 if (GET_CODE (test
) == NE
)
4501 bl
->init_set
= gen_rtx_SET (VOIDmode
,
4502 XEXP (test
, 0), XEXP (test
, 1));
4505 bl
->initial_test
= test
;
4511 /* Look at the each biv and see if we can say anything better about its
4512 initial value from any initializing insns set up above. (This is done
4513 in two passes to avoid missing SETs in a PARALLEL.) */
4515 loop_bivs_check (struct loop
*loop
)
4517 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4518 /* Temporary list pointers for traversing ivs->list. */
4519 struct iv_class
*bl
;
4520 struct iv_class
**backbl
;
4522 for (backbl
= &ivs
->list
; (bl
= *backbl
); backbl
= &bl
->next
)
4527 if (! bl
->init_insn
)
4530 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4531 is a constant, use the value of that. */
4532 if (((note
= find_reg_note (bl
->init_insn
, REG_EQUAL
, 0)) != NULL
4533 && CONSTANT_P (XEXP (note
, 0)))
4534 || ((note
= find_reg_note (bl
->init_insn
, REG_EQUIV
, 0)) != NULL
4535 && CONSTANT_P (XEXP (note
, 0))))
4536 src
= XEXP (note
, 0);
4538 src
= SET_SRC (bl
->init_set
);
4540 if (loop_dump_stream
)
4541 fprintf (loop_dump_stream
,
4542 "Biv %d: initialized at insn %d: initial value ",
4543 bl
->regno
, INSN_UID (bl
->init_insn
));
4545 if ((GET_MODE (src
) == GET_MODE (regno_reg_rtx
[bl
->regno
])
4546 || GET_MODE (src
) == VOIDmode
)
4547 && valid_initial_value_p (src
, bl
->init_insn
,
4548 LOOP_INFO (loop
)->pre_header_has_call
,
4551 bl
->initial_value
= src
;
4553 if (loop_dump_stream
)
4555 print_simple_rtl (loop_dump_stream
, src
);
4556 fputc ('\n', loop_dump_stream
);
4559 /* If we can't make it a giv,
4560 let biv keep initial value of "itself". */
4561 else if (loop_dump_stream
)
4562 fprintf (loop_dump_stream
, "is complex\n");
4567 /* Search the loop for general induction variables. */
4570 loop_givs_find (struct loop
* loop
)
4572 for_each_insn_in_loop (loop
, check_insn_for_givs
);
4576 /* For each giv for which we still don't know whether or not it is
4577 replaceable, check to see if it is replaceable because its final value
4578 can be calculated. */
4581 loop_givs_check (struct loop
*loop
)
4583 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4584 struct iv_class
*bl
;
4586 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
4588 struct induction
*v
;
4590 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4591 if (! v
->replaceable
&& ! v
->not_replaceable
)
4592 check_final_value (loop
, v
);
4597 /* Return nonzero if it is possible to eliminate the biv BL provided
4598 all givs are reduced. This is possible if either the reg is not
4599 used outside the loop, or we can compute what its final value will
4603 loop_biv_eliminable_p (struct loop
*loop
, struct iv_class
*bl
,
4604 int threshold
, int insn_count
)
4606 /* For architectures with a decrement_and_branch_until_zero insn,
4607 don't do this if we put a REG_NONNEG note on the endtest for this
4610 #ifdef HAVE_decrement_and_branch_until_zero
4613 if (loop_dump_stream
)
4614 fprintf (loop_dump_stream
,
4615 "Cannot eliminate nonneg biv %d.\n", bl
->regno
);
4620 /* Check that biv is used outside loop or if it has a final value.
4621 Compare against bl->init_insn rather than loop->start. We aren't
4622 concerned with any uses of the biv between init_insn and
4623 loop->start since these won't be affected by the value of the biv
4624 elsewhere in the function, so long as init_insn doesn't use the
4627 if ((REGNO_LAST_LUID (bl
->regno
) < INSN_LUID (loop
->end
)
4629 && INSN_UID (bl
->init_insn
) < max_uid_for_loop
4630 && REGNO_FIRST_LUID (bl
->regno
) >= INSN_LUID (bl
->init_insn
)
4631 && ! reg_mentioned_p (bl
->biv
->dest_reg
, SET_SRC (bl
->init_set
)))
4632 || (bl
->final_value
= final_biv_value (loop
, bl
)))
4633 return maybe_eliminate_biv (loop
, bl
, 0, threshold
, insn_count
);
4635 if (loop_dump_stream
)
4637 fprintf (loop_dump_stream
,
4638 "Cannot eliminate biv %d.\n",
4640 fprintf (loop_dump_stream
,
4641 "First use: insn %d, last use: insn %d.\n",
4642 REGNO_FIRST_UID (bl
->regno
),
4643 REGNO_LAST_UID (bl
->regno
));
4649 /* Reduce each giv of BL that we have decided to reduce. */
4652 loop_givs_reduce (struct loop
*loop
, struct iv_class
*bl
)
4654 struct induction
*v
;
4656 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4658 struct induction
*tv
;
4659 if (! v
->ignore
&& v
->same
== 0)
4661 int auto_inc_opt
= 0;
4663 /* If the code for derived givs immediately below has already
4664 allocated a new_reg, we must keep it. */
4666 v
->new_reg
= gen_reg_rtx (v
->mode
);
4669 /* If the target has auto-increment addressing modes, and
4670 this is an address giv, then try to put the increment
4671 immediately after its use, so that flow can create an
4672 auto-increment addressing mode. */
4673 /* Don't do this for loops entered at the bottom, to avoid
4674 this invalid transformation:
4683 if (v
->giv_type
== DEST_ADDR
&& bl
->biv_count
== 1
4684 && bl
->biv
->always_executed
&& ! bl
->biv
->maybe_multiple
4685 /* We don't handle reversed biv's because bl->biv->insn
4686 does not have a valid INSN_LUID. */
4688 && v
->always_executed
&& ! v
->maybe_multiple
4689 && INSN_UID (v
->insn
) < max_uid_for_loop
4692 /* If other giv's have been combined with this one, then
4693 this will work only if all uses of the other giv's occur
4694 before this giv's insn. This is difficult to check.
4696 We simplify this by looking for the common case where
4697 there is one DEST_REG giv, and this giv's insn is the
4698 last use of the dest_reg of that DEST_REG giv. If the
4699 increment occurs after the address giv, then we can
4700 perform the optimization. (Otherwise, the increment
4701 would have to go before other_giv, and we would not be
4702 able to combine it with the address giv to get an
4703 auto-inc address.) */
4704 if (v
->combined_with
)
4706 struct induction
*other_giv
= 0;
4708 for (tv
= bl
->giv
; tv
; tv
= tv
->next_iv
)
4716 if (! tv
&& other_giv
4717 && REGNO (other_giv
->dest_reg
) < max_reg_before_loop
4718 && (REGNO_LAST_UID (REGNO (other_giv
->dest_reg
))
4719 == INSN_UID (v
->insn
))
4720 && INSN_LUID (v
->insn
) < INSN_LUID (bl
->biv
->insn
))
4723 /* Check for case where increment is before the address
4724 giv. Do this test in "loop order". */
4725 else if ((INSN_LUID (v
->insn
) > INSN_LUID (bl
->biv
->insn
)
4726 && (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
4727 || (INSN_LUID (bl
->biv
->insn
)
4728 > INSN_LUID (loop
->scan_start
))))
4729 || (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
4730 && (INSN_LUID (loop
->scan_start
)
4731 < INSN_LUID (bl
->biv
->insn
))))
4740 /* We can't put an insn immediately after one setting
4741 cc0, or immediately before one using cc0. */
4742 if ((auto_inc_opt
== 1 && sets_cc0_p (PATTERN (v
->insn
)))
4743 || (auto_inc_opt
== -1
4744 && (prev
= prev_nonnote_insn (v
->insn
)) != 0
4746 && sets_cc0_p (PATTERN (prev
))))
4752 v
->auto_inc_opt
= 1;
4756 /* For each place where the biv is incremented, add an insn
4757 to increment the new, reduced reg for the giv. */
4758 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
4762 /* Skip if location is the same as a previous one. */
4766 insert_before
= NEXT_INSN (tv
->insn
);
4767 else if (auto_inc_opt
== 1)
4768 insert_before
= NEXT_INSN (v
->insn
);
4770 insert_before
= v
->insn
;
4772 if (tv
->mult_val
== const1_rtx
)
4773 loop_iv_add_mult_emit_before (loop
, tv
->add_val
, v
->mult_val
,
4774 v
->new_reg
, v
->new_reg
,
4776 else /* tv->mult_val == const0_rtx */
4777 /* A multiply is acceptable here
4778 since this is presumed to be seldom executed. */
4779 loop_iv_add_mult_emit_before (loop
, tv
->add_val
, v
->mult_val
,
4780 v
->add_val
, v
->new_reg
,
4784 /* Add code at loop start to initialize giv's reduced reg. */
4786 loop_iv_add_mult_hoist (loop
,
4787 extend_value_for_giv (v
, bl
->initial_value
),
4788 v
->mult_val
, v
->add_val
, v
->new_reg
);
4794 /* Check for givs whose first use is their definition and whose
4795 last use is the definition of another giv. If so, it is likely
4796 dead and should not be used to derive another giv nor to
4800 loop_givs_dead_check (struct loop
*loop ATTRIBUTE_UNUSED
, struct iv_class
*bl
)
4802 struct induction
*v
;
4804 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4807 || (v
->same
&& v
->same
->ignore
))
4810 if (v
->giv_type
== DEST_REG
4811 && REGNO_FIRST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v
->insn
))
4813 struct induction
*v1
;
4815 for (v1
= bl
->giv
; v1
; v1
= v1
->next_iv
)
4816 if (REGNO_LAST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v1
->insn
))
4824 loop_givs_rescan (struct loop
*loop
, struct iv_class
*bl
, rtx
*reg_map
)
4826 struct induction
*v
;
4828 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4830 if (v
->same
&& v
->same
->ignore
)
4836 /* Update expression if this was combined, in case other giv was
4839 v
->new_reg
= replace_rtx (v
->new_reg
,
4840 v
->same
->dest_reg
, v
->same
->new_reg
);
4842 /* See if this register is known to be a pointer to something. If
4843 so, see if we can find the alignment. First see if there is a
4844 destination register that is a pointer. If so, this shares the
4845 alignment too. Next see if we can deduce anything from the
4846 computational information. If not, and this is a DEST_ADDR
4847 giv, at least we know that it's a pointer, though we don't know
4849 if (REG_P (v
->new_reg
)
4850 && v
->giv_type
== DEST_REG
4851 && REG_POINTER (v
->dest_reg
))
4852 mark_reg_pointer (v
->new_reg
,
4853 REGNO_POINTER_ALIGN (REGNO (v
->dest_reg
)));
4854 else if (REG_P (v
->new_reg
)
4855 && REG_POINTER (v
->src_reg
))
4857 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->src_reg
));
4860 || GET_CODE (v
->add_val
) != CONST_INT
4861 || INTVAL (v
->add_val
) % (align
/ BITS_PER_UNIT
) != 0)
4864 mark_reg_pointer (v
->new_reg
, align
);
4866 else if (REG_P (v
->new_reg
)
4867 && REG_P (v
->add_val
)
4868 && REG_POINTER (v
->add_val
))
4870 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->add_val
));
4872 if (align
== 0 || GET_CODE (v
->mult_val
) != CONST_INT
4873 || INTVAL (v
->mult_val
) % (align
/ BITS_PER_UNIT
) != 0)
4876 mark_reg_pointer (v
->new_reg
, align
);
4878 else if (REG_P (v
->new_reg
) && v
->giv_type
== DEST_ADDR
)
4879 mark_reg_pointer (v
->new_reg
, 0);
4881 if (v
->giv_type
== DEST_ADDR
)
4882 /* Store reduced reg as the address in the memref where we found
4884 validate_change (v
->insn
, v
->location
, v
->new_reg
, 0);
4885 else if (v
->replaceable
)
4887 reg_map
[REGNO (v
->dest_reg
)] = v
->new_reg
;
4891 rtx original_insn
= v
->insn
;
4894 /* Not replaceable; emit an insn to set the original giv reg from
4895 the reduced giv, same as above. */
4896 v
->insn
= loop_insn_emit_after (loop
, 0, original_insn
,
4897 gen_move_insn (v
->dest_reg
,
4900 /* The original insn may have a REG_EQUAL note. This note is
4901 now incorrect and may result in invalid substitutions later.
4902 The original insn is dead, but may be part of a libcall
4903 sequence, which doesn't seem worth the bother of handling. */
4904 note
= find_reg_note (original_insn
, REG_EQUAL
, NULL_RTX
);
4906 remove_note (original_insn
, note
);
4909 /* When a loop is reversed, givs which depend on the reversed
4910 biv, and which are live outside the loop, must be set to their
4911 correct final value. This insn is only needed if the giv is
4912 not replaceable. The correct final value is the same as the
4913 value that the giv starts the reversed loop with. */
4914 if (bl
->reversed
&& ! v
->replaceable
)
4915 loop_iv_add_mult_sink (loop
,
4916 extend_value_for_giv (v
, bl
->initial_value
),
4917 v
->mult_val
, v
->add_val
, v
->dest_reg
);
4918 else if (v
->final_value
)
4919 loop_insn_sink_or_swim (loop
,
4920 gen_load_of_final_value (v
->dest_reg
,
4923 if (loop_dump_stream
)
4925 fprintf (loop_dump_stream
, "giv at %d reduced to ",
4926 INSN_UID (v
->insn
));
4927 print_simple_rtl (loop_dump_stream
, v
->new_reg
);
4928 fprintf (loop_dump_stream
, "\n");
4935 loop_giv_reduce_benefit (struct loop
*loop ATTRIBUTE_UNUSED
,
4936 struct iv_class
*bl
, struct induction
*v
,
4942 benefit
= v
->benefit
;
4943 PUT_MODE (test_reg
, v
->mode
);
4944 add_cost
= iv_add_mult_cost (bl
->biv
->add_val
, v
->mult_val
,
4945 test_reg
, test_reg
);
4947 /* Reduce benefit if not replaceable, since we will insert a
4948 move-insn to replace the insn that calculates this giv. Don't do
4949 this unless the giv is a user variable, since it will often be
4950 marked non-replaceable because of the duplication of the exit
4951 code outside the loop. In such a case, the copies we insert are
4952 dead and will be deleted. So they don't have a cost. Similar
4953 situations exist. */
4954 /* ??? The new final_[bg]iv_value code does a much better job of
4955 finding replaceable giv's, and hence this code may no longer be
4957 if (! v
->replaceable
&& ! bl
->eliminable
4958 && REG_USERVAR_P (v
->dest_reg
))
4959 benefit
-= copy_cost
;
4961 /* Decrease the benefit to count the add-insns that we will insert
4962 to increment the reduced reg for the giv. ??? This can
4963 overestimate the run-time cost of the additional insns, e.g. if
4964 there are multiple basic blocks that increment the biv, but only
4965 one of these blocks is executed during each iteration. There is
4966 no good way to detect cases like this with the current structure
4967 of the loop optimizer. This code is more accurate for
4968 determining code size than run-time benefits. */
4969 benefit
-= add_cost
* bl
->biv_count
;
4971 /* Decide whether to strength-reduce this giv or to leave the code
4972 unchanged (recompute it from the biv each time it is used). This
4973 decision can be made independently for each giv. */
4976 /* Attempt to guess whether autoincrement will handle some of the
4977 new add insns; if so, increase BENEFIT (undo the subtraction of
4978 add_cost that was done above). */
4979 if (v
->giv_type
== DEST_ADDR
4980 /* Increasing the benefit is risky, since this is only a guess.
4981 Avoid increasing register pressure in cases where there would
4982 be no other benefit from reducing this giv. */
4984 && GET_CODE (v
->mult_val
) == CONST_INT
)
4986 int size
= GET_MODE_SIZE (GET_MODE (v
->mem
));
4988 if (HAVE_POST_INCREMENT
4989 && INTVAL (v
->mult_val
) == size
)
4990 benefit
+= add_cost
* bl
->biv_count
;
4991 else if (HAVE_PRE_INCREMENT
4992 && INTVAL (v
->mult_val
) == size
)
4993 benefit
+= add_cost
* bl
->biv_count
;
4994 else if (HAVE_POST_DECREMENT
4995 && -INTVAL (v
->mult_val
) == size
)
4996 benefit
+= add_cost
* bl
->biv_count
;
4997 else if (HAVE_PRE_DECREMENT
4998 && -INTVAL (v
->mult_val
) == size
)
4999 benefit
+= add_cost
* bl
->biv_count
;
5007 /* Free IV structures for LOOP. */
5010 loop_ivs_free (struct loop
*loop
)
5012 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5013 struct iv_class
*iv
= ivs
->list
;
5019 struct iv_class
*next
= iv
->next
;
5020 struct induction
*induction
;
5021 struct induction
*next_induction
;
5023 for (induction
= iv
->biv
; induction
; induction
= next_induction
)
5025 next_induction
= induction
->next_iv
;
5028 for (induction
= iv
->giv
; induction
; induction
= next_induction
)
5030 next_induction
= induction
->next_iv
;
5040 /* Perform strength reduction and induction variable elimination.
5042 Pseudo registers created during this function will be beyond the
5043 last valid index in several tables including
5044 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
5045 problem here, because the added registers cannot be givs outside of
5046 their loop, and hence will never be reconsidered. But scan_loop
5047 must check regnos to make sure they are in bounds. */
5050 strength_reduce (struct loop
*loop
, int flags
)
5052 struct loop_info
*loop_info
= LOOP_INFO (loop
);
5053 struct loop_regs
*regs
= LOOP_REGS (loop
);
5054 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5056 /* Temporary list pointer for traversing ivs->list. */
5057 struct iv_class
*bl
;
5058 /* Ratio of extra register life span we can justify
5059 for saving an instruction. More if loop doesn't call subroutines
5060 since in that case saving an insn makes more difference
5061 and more registers are available. */
5062 /* ??? could set this to last value of threshold in move_movables */
5063 int threshold
= (loop_info
->has_call
? 1 : 2) * (3 + n_non_fixed_regs
);
5064 /* Map of pseudo-register replacements. */
5065 rtx
*reg_map
= NULL
;
5067 int unrolled_insn_copies
= 0;
5068 rtx test_reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
5069 int insn_count
= count_insns_in_loop (loop
);
5071 addr_placeholder
= gen_reg_rtx (Pmode
);
5073 ivs
->n_regs
= max_reg_before_loop
;
5074 ivs
->regs
= xcalloc (ivs
->n_regs
, sizeof (struct iv
));
5076 /* Find all BIVs in loop. */
5077 loop_bivs_find (loop
);
5079 /* Exit if there are no bivs. */
5082 /* Can still unroll the loop anyways, but indicate that there is no
5083 strength reduction info available. */
5084 if (flags
& LOOP_UNROLL
)
5085 unroll_loop (loop
, insn_count
, 0);
5087 loop_ivs_free (loop
);
5091 /* Determine how BIVS are initialized by looking through pre-header
5092 extended basic block. */
5093 loop_bivs_init_find (loop
);
5095 /* Look at the each biv and see if we can say anything better about its
5096 initial value from any initializing insns set up above. */
5097 loop_bivs_check (loop
);
5099 /* Search the loop for general induction variables. */
5100 loop_givs_find (loop
);
5102 /* Try to calculate and save the number of loop iterations. This is
5103 set to zero if the actual number can not be calculated. This must
5104 be called after all giv's have been identified, since otherwise it may
5105 fail if the iteration variable is a giv. */
5106 loop_iterations (loop
);
5108 #ifdef HAVE_prefetch
5109 if (flags
& LOOP_PREFETCH
)
5110 emit_prefetch_instructions (loop
);
5113 /* Now for each giv for which we still don't know whether or not it is
5114 replaceable, check to see if it is replaceable because its final value
5115 can be calculated. This must be done after loop_iterations is called,
5116 so that final_giv_value will work correctly. */
5117 loop_givs_check (loop
);
5119 /* Try to prove that the loop counter variable (if any) is always
5120 nonnegative; if so, record that fact with a REG_NONNEG note
5121 so that "decrement and branch until zero" insn can be used. */
5122 check_dbra_loop (loop
, insn_count
);
5124 /* Create reg_map to hold substitutions for replaceable giv regs.
5125 Some givs might have been made from biv increments, so look at
5126 ivs->reg_iv_type for a suitable size. */
5127 reg_map_size
= ivs
->n_regs
;
5128 reg_map
= xcalloc (reg_map_size
, sizeof (rtx
));
5130 /* Examine each iv class for feasibility of strength reduction/induction
5131 variable elimination. */
5133 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
5135 struct induction
*v
;
5138 /* Test whether it will be possible to eliminate this biv
5139 provided all givs are reduced. */
5140 bl
->eliminable
= loop_biv_eliminable_p (loop
, bl
, threshold
, insn_count
);
5142 /* This will be true at the end, if all givs which depend on this
5143 biv have been strength reduced.
5144 We can't (currently) eliminate the biv unless this is so. */
5145 bl
->all_reduced
= 1;
5147 /* Check each extension dependent giv in this class to see if its
5148 root biv is safe from wrapping in the interior mode. */
5149 check_ext_dependent_givs (loop
, bl
);
5151 /* Combine all giv's for this iv_class. */
5152 combine_givs (regs
, bl
);
5154 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5156 struct induction
*tv
;
5158 if (v
->ignore
|| v
->same
)
5161 benefit
= loop_giv_reduce_benefit (loop
, bl
, v
, test_reg
);
5163 /* If an insn is not to be strength reduced, then set its ignore
5164 flag, and clear bl->all_reduced. */
5166 /* A giv that depends on a reversed biv must be reduced if it is
5167 used after the loop exit, otherwise, it would have the wrong
5168 value after the loop exit. To make it simple, just reduce all
5169 of such giv's whether or not we know they are used after the loop
5172 if (! flag_reduce_all_givs
5173 && v
->lifetime
* threshold
* benefit
< insn_count
5176 if (loop_dump_stream
)
5177 fprintf (loop_dump_stream
,
5178 "giv of insn %d not worth while, %d vs %d.\n",
5180 v
->lifetime
* threshold
* benefit
, insn_count
);
5182 bl
->all_reduced
= 0;
5186 /* Check that we can increment the reduced giv without a
5187 multiply insn. If not, reject it. */
5189 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
5190 if (tv
->mult_val
== const1_rtx
5191 && ! product_cheap_p (tv
->add_val
, v
->mult_val
))
5193 if (loop_dump_stream
)
5194 fprintf (loop_dump_stream
,
5195 "giv of insn %d: would need a multiply.\n",
5196 INSN_UID (v
->insn
));
5198 bl
->all_reduced
= 0;
5204 /* Check for givs whose first use is their definition and whose
5205 last use is the definition of another giv. If so, it is likely
5206 dead and should not be used to derive another giv nor to
5208 loop_givs_dead_check (loop
, bl
);
5210 /* Reduce each giv that we decided to reduce. */
5211 loop_givs_reduce (loop
, bl
);
5213 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5216 For each giv register that can be reduced now: if replaceable,
5217 substitute reduced reg wherever the old giv occurs;
5218 else add new move insn "giv_reg = reduced_reg". */
5219 loop_givs_rescan (loop
, bl
, reg_map
);
5221 /* All the givs based on the biv bl have been reduced if they
5224 /* For each giv not marked as maybe dead that has been combined with a
5225 second giv, clear any "maybe dead" mark on that second giv.
5226 v->new_reg will either be or refer to the register of the giv it
5229 Doing this clearing avoids problems in biv elimination where
5230 a giv's new_reg is a complex value that can't be put in the
5231 insn but the giv combined with (with a reg as new_reg) is
5232 marked maybe_dead. Since the register will be used in either
5233 case, we'd prefer it be used from the simpler giv. */
5235 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5236 if (! v
->maybe_dead
&& v
->same
)
5237 v
->same
->maybe_dead
= 0;
5239 /* Try to eliminate the biv, if it is a candidate.
5240 This won't work if ! bl->all_reduced,
5241 since the givs we planned to use might not have been reduced.
5243 We have to be careful that we didn't initially think we could
5244 eliminate this biv because of a giv that we now think may be
5245 dead and shouldn't be used as a biv replacement.
5247 Also, there is the possibility that we may have a giv that looks
5248 like it can be used to eliminate a biv, but the resulting insn
5249 isn't valid. This can happen, for example, on the 88k, where a
5250 JUMP_INSN can compare a register only with zero. Attempts to
5251 replace it with a compare with a constant will fail.
5253 Note that in cases where this call fails, we may have replaced some
5254 of the occurrences of the biv with a giv, but no harm was done in
5255 doing so in the rare cases where it can occur. */
5257 if (bl
->all_reduced
== 1 && bl
->eliminable
5258 && maybe_eliminate_biv (loop
, bl
, 1, threshold
, insn_count
))
5260 /* ?? If we created a new test to bypass the loop entirely,
5261 or otherwise drop straight in, based on this test, then
5262 we might want to rewrite it also. This way some later
5263 pass has more hope of removing the initialization of this
5266 /* If final_value != 0, then the biv may be used after loop end
5267 and we must emit an insn to set it just in case.
5269 Reversed bivs already have an insn after the loop setting their
5270 value, so we don't need another one. We can't calculate the
5271 proper final value for such a biv here anyways. */
5272 if (bl
->final_value
&& ! bl
->reversed
)
5273 loop_insn_sink_or_swim (loop
,
5274 gen_load_of_final_value (bl
->biv
->dest_reg
,
5277 if (loop_dump_stream
)
5278 fprintf (loop_dump_stream
, "Reg %d: biv eliminated\n",
5281 /* See above note wrt final_value. But since we couldn't eliminate
5282 the biv, we must set the value after the loop instead of before. */
5283 else if (bl
->final_value
&& ! bl
->reversed
)
5284 loop_insn_sink (loop
, gen_load_of_final_value (bl
->biv
->dest_reg
,
5288 /* Go through all the instructions in the loop, making all the
5289 register substitutions scheduled in REG_MAP. */
5291 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
5294 replace_regs (PATTERN (p
), reg_map
, reg_map_size
, 0);
5295 replace_regs (REG_NOTES (p
), reg_map
, reg_map_size
, 0);
5299 if (loop_info
->n_iterations
> 0)
5301 /* When we completely unroll a loop we will likely not need the increment
5302 of the loop BIV and we will not need the conditional branch at the
5304 unrolled_insn_copies
= insn_count
- 2;
5307 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5308 need the comparison before the conditional branch at the end of the
5310 unrolled_insn_copies
-= 1;
5313 /* We'll need one copy for each loop iteration. */
5314 unrolled_insn_copies
*= loop_info
->n_iterations
;
5316 /* A little slop to account for the ability to remove initialization
5317 code, better CSE, and other secondary benefits of completely
5318 unrolling some loops. */
5319 unrolled_insn_copies
-= 1;
5321 /* Clamp the value. */
5322 if (unrolled_insn_copies
< 0)
5323 unrolled_insn_copies
= 0;
5326 /* Unroll loops from within strength reduction so that we can use the
5327 induction variable information that strength_reduce has already
5328 collected. Always unroll loops that would be as small or smaller
5329 unrolled than when rolled. */
5330 if ((flags
& LOOP_UNROLL
)
5331 || ((flags
& LOOP_AUTO_UNROLL
)
5332 && loop_info
->n_iterations
> 0
5333 && unrolled_insn_copies
<= insn_count
))
5334 unroll_loop (loop
, insn_count
, 1);
5336 if (loop_dump_stream
)
5337 fprintf (loop_dump_stream
, "\n");
5339 loop_ivs_free (loop
);
5344 /*Record all basic induction variables calculated in the insn. */
5346 check_insn_for_bivs (struct loop
*loop
, rtx p
, int not_every_iteration
,
5349 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5356 if (NONJUMP_INSN_P (p
)
5357 && (set
= single_set (p
))
5358 && REG_P (SET_DEST (set
)))
5360 dest_reg
= SET_DEST (set
);
5361 if (REGNO (dest_reg
) < max_reg_before_loop
5362 && REGNO (dest_reg
) >= FIRST_PSEUDO_REGISTER
5363 && REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != NOT_BASIC_INDUCT
)
5365 if (basic_induction_var (loop
, SET_SRC (set
),
5366 GET_MODE (SET_SRC (set
)),
5367 dest_reg
, p
, &inc_val
, &mult_val
,
5370 /* It is a possible basic induction variable.
5371 Create and initialize an induction structure for it. */
5373 struct induction
*v
= xmalloc (sizeof (struct induction
));
5375 record_biv (loop
, v
, p
, dest_reg
, inc_val
, mult_val
, location
,
5376 not_every_iteration
, maybe_multiple
);
5377 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = BASIC_INDUCT
;
5379 else if (REGNO (dest_reg
) < ivs
->n_regs
)
5380 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = NOT_BASIC_INDUCT
;
5386 /* Record all givs calculated in the insn.
5387 A register is a giv if: it is only set once, it is a function of a
5388 biv and a constant (or invariant), and it is not a biv. */
5390 check_insn_for_givs (struct loop
*loop
, rtx p
, int not_every_iteration
,
5393 struct loop_regs
*regs
= LOOP_REGS (loop
);
5396 /* Look for a general induction variable in a register. */
5397 if (NONJUMP_INSN_P (p
)
5398 && (set
= single_set (p
))
5399 && REG_P (SET_DEST (set
))
5400 && ! regs
->array
[REGNO (SET_DEST (set
))].may_not_optimize
)
5409 rtx last_consec_insn
;
5411 dest_reg
= SET_DEST (set
);
5412 if (REGNO (dest_reg
) < FIRST_PSEUDO_REGISTER
)
5415 if (/* SET_SRC is a giv. */
5416 (general_induction_var (loop
, SET_SRC (set
), &src_reg
, &add_val
,
5417 &mult_val
, &ext_val
, 0, &benefit
, VOIDmode
)
5418 /* Equivalent expression is a giv. */
5419 || ((regnote
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
5420 && general_induction_var (loop
, XEXP (regnote
, 0), &src_reg
,
5421 &add_val
, &mult_val
, &ext_val
, 0,
5422 &benefit
, VOIDmode
)))
5423 /* Don't try to handle any regs made by loop optimization.
5424 We have nothing on them in regno_first_uid, etc. */
5425 && REGNO (dest_reg
) < max_reg_before_loop
5426 /* Don't recognize a BASIC_INDUCT_VAR here. */
5427 && dest_reg
!= src_reg
5428 /* This must be the only place where the register is set. */
5429 && (regs
->array
[REGNO (dest_reg
)].n_times_set
== 1
5430 /* or all sets must be consecutive and make a giv. */
5431 || (benefit
= consec_sets_giv (loop
, benefit
, p
,
5433 &add_val
, &mult_val
, &ext_val
,
5434 &last_consec_insn
))))
5436 struct induction
*v
= xmalloc (sizeof (struct induction
));
5438 /* If this is a library call, increase benefit. */
5439 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
5440 benefit
+= libcall_benefit (p
);
5442 /* Skip the consecutive insns, if there are any. */
5443 if (regs
->array
[REGNO (dest_reg
)].n_times_set
!= 1)
5444 p
= last_consec_insn
;
5446 record_giv (loop
, v
, p
, src_reg
, dest_reg
, mult_val
, add_val
,
5447 ext_val
, benefit
, DEST_REG
, not_every_iteration
,
5448 maybe_multiple
, (rtx
*) 0);
5453 /* Look for givs which are memory addresses. */
5454 if (NONJUMP_INSN_P (p
))
5455 find_mem_givs (loop
, PATTERN (p
), p
, not_every_iteration
,
5458 /* Update the status of whether giv can derive other givs. This can
5459 change when we pass a label or an insn that updates a biv. */
5460 if (INSN_P (p
) || LABEL_P (p
))
5461 update_giv_derive (loop
, p
);
5465 /* Return 1 if X is a valid source for an initial value (or as value being
5466 compared against in an initial test).
5468 X must be either a register or constant and must not be clobbered between
5469 the current insn and the start of the loop.
5471 INSN is the insn containing X. */
5474 valid_initial_value_p (rtx x
, rtx insn
, int call_seen
, rtx loop_start
)
5479 /* Only consider pseudos we know about initialized in insns whose luids
5482 || REGNO (x
) >= max_reg_before_loop
)
5485 /* Don't use call-clobbered registers across a call which clobbers it. On
5486 some machines, don't use any hard registers at all. */
5487 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
5488 && (SMALL_REGISTER_CLASSES
5489 || (call_used_regs
[REGNO (x
)] && call_seen
)))
5492 /* Don't use registers that have been clobbered before the start of the
5494 if (reg_set_between_p (x
, insn
, loop_start
))
5500 /* Scan X for memory refs and check each memory address
5501 as a possible giv. INSN is the insn whose pattern X comes from.
5502 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5503 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5504 more than once in each loop iteration. */
5507 find_mem_givs (const struct loop
*loop
, rtx x
, rtx insn
,
5508 int not_every_iteration
, int maybe_multiple
)
5517 code
= GET_CODE (x
);
5542 /* This code used to disable creating GIVs with mult_val == 1 and
5543 add_val == 0. However, this leads to lost optimizations when
5544 it comes time to combine a set of related DEST_ADDR GIVs, since
5545 this one would not be seen. */
5547 if (general_induction_var (loop
, XEXP (x
, 0), &src_reg
, &add_val
,
5548 &mult_val
, &ext_val
, 1, &benefit
,
5551 /* Found one; record it. */
5552 struct induction
*v
= xmalloc (sizeof (struct induction
));
5554 record_giv (loop
, v
, insn
, src_reg
, addr_placeholder
, mult_val
,
5555 add_val
, ext_val
, benefit
, DEST_ADDR
,
5556 not_every_iteration
, maybe_multiple
, &XEXP (x
, 0));
5567 /* Recursively scan the subexpressions for other mem refs. */
5569 fmt
= GET_RTX_FORMAT (code
);
5570 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5572 find_mem_givs (loop
, XEXP (x
, i
), insn
, not_every_iteration
,
5574 else if (fmt
[i
] == 'E')
5575 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5576 find_mem_givs (loop
, XVECEXP (x
, i
, j
), insn
, not_every_iteration
,
5580 /* Fill in the data about one biv update.
5581 V is the `struct induction' in which we record the biv. (It is
5582 allocated by the caller, with alloca.)
5583 INSN is the insn that sets it.
5584 DEST_REG is the biv's reg.
5586 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5587 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5588 being set to INC_VAL.
5590 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5591 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5592 can be executed more than once per iteration. If MAYBE_MULTIPLE
5593 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5594 executed exactly once per iteration. */
5597 record_biv (struct loop
*loop
, struct induction
*v
, rtx insn
, rtx dest_reg
,
5598 rtx inc_val
, rtx mult_val
, rtx
*location
,
5599 int not_every_iteration
, int maybe_multiple
)
5601 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5602 struct iv_class
*bl
;
5605 v
->src_reg
= dest_reg
;
5606 v
->dest_reg
= dest_reg
;
5607 v
->mult_val
= mult_val
;
5608 v
->add_val
= inc_val
;
5609 v
->ext_dependent
= NULL_RTX
;
5610 v
->location
= location
;
5611 v
->mode
= GET_MODE (dest_reg
);
5612 v
->always_computable
= ! not_every_iteration
;
5613 v
->always_executed
= ! not_every_iteration
;
5614 v
->maybe_multiple
= maybe_multiple
;
5617 /* Add this to the reg's iv_class, creating a class
5618 if this is the first incrementation of the reg. */
5620 bl
= REG_IV_CLASS (ivs
, REGNO (dest_reg
));
5623 /* Create and initialize new iv_class. */
5625 bl
= xmalloc (sizeof (struct iv_class
));
5627 bl
->regno
= REGNO (dest_reg
);
5633 /* Set initial value to the reg itself. */
5634 bl
->initial_value
= dest_reg
;
5635 bl
->final_value
= 0;
5636 /* We haven't seen the initializing insn yet. */
5639 bl
->initial_test
= 0;
5640 bl
->incremented
= 0;
5644 bl
->total_benefit
= 0;
5646 /* Add this class to ivs->list. */
5647 bl
->next
= ivs
->list
;
5650 /* Put it in the array of biv register classes. */
5651 REG_IV_CLASS (ivs
, REGNO (dest_reg
)) = bl
;
5655 /* Check if location is the same as a previous one. */
5656 struct induction
*induction
;
5657 for (induction
= bl
->biv
; induction
; induction
= induction
->next_iv
)
5658 if (location
== induction
->location
)
5660 v
->same
= induction
;
5665 /* Update IV_CLASS entry for this biv. */
5666 v
->next_iv
= bl
->biv
;
5669 if (mult_val
== const1_rtx
)
5670 bl
->incremented
= 1;
5672 if (loop_dump_stream
)
5673 loop_biv_dump (v
, loop_dump_stream
, 0);
5676 /* Fill in the data about one giv.
5677 V is the `struct induction' in which we record the giv. (It is
5678 allocated by the caller, with alloca.)
5679 INSN is the insn that sets it.
5680 BENEFIT estimates the savings from deleting this insn.
5681 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5682 into a register or is used as a memory address.
5684 SRC_REG is the biv reg which the giv is computed from.
5685 DEST_REG is the giv's reg (if the giv is stored in a reg).
5686 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5687 LOCATION points to the place where this giv's value appears in INSN. */
5690 record_giv (const struct loop
*loop
, struct induction
*v
, rtx insn
,
5691 rtx src_reg
, rtx dest_reg
, rtx mult_val
, rtx add_val
,
5692 rtx ext_val
, int benefit
, enum g_types type
,
5693 int not_every_iteration
, int maybe_multiple
, rtx
*location
)
5695 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5696 struct induction
*b
;
5697 struct iv_class
*bl
;
5698 rtx set
= single_set (insn
);
5701 /* Attempt to prove constantness of the values. Don't let simplify_rtx
5702 undo the MULT canonicalization that we performed earlier. */
5703 temp
= simplify_rtx (add_val
);
5705 && ! (GET_CODE (add_val
) == MULT
5706 && GET_CODE (temp
) == ASHIFT
))
5710 v
->src_reg
= src_reg
;
5712 v
->dest_reg
= dest_reg
;
5713 v
->mult_val
= mult_val
;
5714 v
->add_val
= add_val
;
5715 v
->ext_dependent
= ext_val
;
5716 v
->benefit
= benefit
;
5717 v
->location
= location
;
5719 v
->combined_with
= 0;
5720 v
->maybe_multiple
= maybe_multiple
;
5722 v
->derive_adjustment
= 0;
5728 v
->auto_inc_opt
= 0;
5732 /* The v->always_computable field is used in update_giv_derive, to
5733 determine whether a giv can be used to derive another giv. For a
5734 DEST_REG giv, INSN computes a new value for the giv, so its value
5735 isn't computable if INSN insn't executed every iteration.
5736 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5737 it does not compute a new value. Hence the value is always computable
5738 regardless of whether INSN is executed each iteration. */
5740 if (type
== DEST_ADDR
)
5741 v
->always_computable
= 1;
5743 v
->always_computable
= ! not_every_iteration
;
5745 v
->always_executed
= ! not_every_iteration
;
5747 if (type
== DEST_ADDR
)
5749 v
->mode
= GET_MODE (*location
);
5752 else /* type == DEST_REG */
5754 v
->mode
= GET_MODE (SET_DEST (set
));
5756 v
->lifetime
= LOOP_REG_LIFETIME (loop
, REGNO (dest_reg
));
5758 /* If the lifetime is zero, it means that this register is
5759 really a dead store. So mark this as a giv that can be
5760 ignored. This will not prevent the biv from being eliminated. */
5761 if (v
->lifetime
== 0)
5764 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
5765 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
5768 /* Add the giv to the class of givs computed from one biv. */
5770 bl
= REG_IV_CLASS (ivs
, REGNO (src_reg
));
5773 v
->next_iv
= bl
->giv
;
5775 /* Don't count DEST_ADDR. This is supposed to count the number of
5776 insns that calculate givs. */
5777 if (type
== DEST_REG
)
5779 bl
->total_benefit
+= benefit
;
5782 /* Fatal error, biv missing for this giv? */
5785 if (type
== DEST_ADDR
)
5788 v
->not_replaceable
= 0;
5792 /* The giv can be replaced outright by the reduced register only if all
5793 of the following conditions are true:
5794 - the insn that sets the giv is always executed on any iteration
5795 on which the giv is used at all
5796 (there are two ways to deduce this:
5797 either the insn is executed on every iteration,
5798 or all uses follow that insn in the same basic block),
5799 - the giv is not used outside the loop
5800 - no assignments to the biv occur during the giv's lifetime. */
5802 if (REGNO_FIRST_UID (REGNO (dest_reg
)) == INSN_UID (insn
)
5803 /* Previous line always fails if INSN was moved by loop opt. */
5804 && REGNO_LAST_LUID (REGNO (dest_reg
))
5805 < INSN_LUID (loop
->end
)
5806 && (! not_every_iteration
5807 || last_use_this_basic_block (dest_reg
, insn
)))
5809 /* Now check that there are no assignments to the biv within the
5810 giv's lifetime. This requires two separate checks. */
5812 /* Check each biv update, and fail if any are between the first
5813 and last use of the giv.
5815 If this loop contains an inner loop that was unrolled, then
5816 the insn modifying the biv may have been emitted by the loop
5817 unrolling code, and hence does not have a valid luid. Just
5818 mark the biv as not replaceable in this case. It is not very
5819 useful as a biv, because it is used in two different loops.
5820 It is very unlikely that we would be able to optimize the giv
5821 using this biv anyways. */
5824 v
->not_replaceable
= 0;
5825 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
5827 if (INSN_UID (b
->insn
) >= max_uid_for_loop
5828 || ((INSN_LUID (b
->insn
)
5829 >= REGNO_FIRST_LUID (REGNO (dest_reg
)))
5830 && (INSN_LUID (b
->insn
)
5831 <= REGNO_LAST_LUID (REGNO (dest_reg
)))))
5834 v
->not_replaceable
= 1;
5839 /* If there are any backwards branches that go from after the
5840 biv update to before it, then this giv is not replaceable. */
5842 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
5843 if (back_branch_in_range_p (loop
, b
->insn
))
5846 v
->not_replaceable
= 1;
5852 /* May still be replaceable, we don't have enough info here to
5855 v
->not_replaceable
= 0;
5859 /* Record whether the add_val contains a const_int, for later use by
5864 v
->no_const_addval
= 1;
5865 if (tem
== const0_rtx
)
5867 else if (CONSTANT_P (add_val
))
5868 v
->no_const_addval
= 0;
5869 if (GET_CODE (tem
) == PLUS
)
5873 if (GET_CODE (XEXP (tem
, 0)) == PLUS
)
5874 tem
= XEXP (tem
, 0);
5875 else if (GET_CODE (XEXP (tem
, 1)) == PLUS
)
5876 tem
= XEXP (tem
, 1);
5880 if (CONSTANT_P (XEXP (tem
, 1)))
5881 v
->no_const_addval
= 0;
5885 if (loop_dump_stream
)
5886 loop_giv_dump (v
, loop_dump_stream
, 0);
5889 /* All this does is determine whether a giv can be made replaceable because
5890 its final value can be calculated. This code can not be part of record_giv
5891 above, because final_giv_value requires that the number of loop iterations
5892 be known, and that can not be accurately calculated until after all givs
5893 have been identified. */
5896 check_final_value (const struct loop
*loop
, struct induction
*v
)
5898 rtx final_value
= 0;
5900 /* DEST_ADDR givs will never reach here, because they are always marked
5901 replaceable above in record_giv. */
5903 /* The giv can be replaced outright by the reduced register only if all
5904 of the following conditions are true:
5905 - the insn that sets the giv is always executed on any iteration
5906 on which the giv is used at all
5907 (there are two ways to deduce this:
5908 either the insn is executed on every iteration,
5909 or all uses follow that insn in the same basic block),
5910 - its final value can be calculated (this condition is different
5911 than the one above in record_giv)
5912 - it's not used before the it's set
5913 - no assignments to the biv occur during the giv's lifetime. */
5916 /* This is only called now when replaceable is known to be false. */
5917 /* Clear replaceable, so that it won't confuse final_giv_value. */
5921 if ((final_value
= final_giv_value (loop
, v
))
5922 && (v
->always_executed
5923 || last_use_this_basic_block (v
->dest_reg
, v
->insn
)))
5925 int biv_increment_seen
= 0, before_giv_insn
= 0;
5930 v
->not_replaceable
= 0;
5932 /* When trying to determine whether or not a biv increment occurs
5933 during the lifetime of the giv, we can ignore uses of the variable
5934 outside the loop because final_value is true. Hence we can not
5935 use regno_last_uid and regno_first_uid as above in record_giv. */
5937 /* Search the loop to determine whether any assignments to the
5938 biv occur during the giv's lifetime. Start with the insn
5939 that sets the giv, and search around the loop until we come
5940 back to that insn again.
5942 Also fail if there is a jump within the giv's lifetime that jumps
5943 to somewhere outside the lifetime but still within the loop. This
5944 catches spaghetti code where the execution order is not linear, and
5945 hence the above test fails. Here we assume that the giv lifetime
5946 does not extend from one iteration of the loop to the next, so as
5947 to make the test easier. Since the lifetime isn't known yet,
5948 this requires two loops. See also record_giv above. */
5950 last_giv_use
= v
->insn
;
5957 before_giv_insn
= 1;
5958 p
= NEXT_INSN (loop
->start
);
5965 /* It is possible for the BIV increment to use the GIV if we
5966 have a cycle. Thus we must be sure to check each insn for
5967 both BIV and GIV uses, and we must check for BIV uses
5970 if (! biv_increment_seen
5971 && reg_set_p (v
->src_reg
, PATTERN (p
)))
5972 biv_increment_seen
= 1;
5974 if (reg_mentioned_p (v
->dest_reg
, PATTERN (p
)))
5976 if (biv_increment_seen
|| before_giv_insn
)
5979 v
->not_replaceable
= 1;
5987 /* Now that the lifetime of the giv is known, check for branches
5988 from within the lifetime to outside the lifetime if it is still
5998 p
= NEXT_INSN (loop
->start
);
5999 if (p
== last_giv_use
)
6002 if (JUMP_P (p
) && JUMP_LABEL (p
)
6003 && LABEL_NAME (JUMP_LABEL (p
))
6004 && ((loop_insn_first_p (JUMP_LABEL (p
), v
->insn
)
6005 && loop_insn_first_p (loop
->start
, JUMP_LABEL (p
)))
6006 || (loop_insn_first_p (last_giv_use
, JUMP_LABEL (p
))
6007 && loop_insn_first_p (JUMP_LABEL (p
), loop
->end
))))
6010 v
->not_replaceable
= 1;
6012 if (loop_dump_stream
)
6013 fprintf (loop_dump_stream
,
6014 "Found branch outside giv lifetime.\n");
6021 /* If it is replaceable, then save the final value. */
6023 v
->final_value
= final_value
;
6026 if (loop_dump_stream
&& v
->replaceable
)
6027 fprintf (loop_dump_stream
, "Insn %d: giv reg %d final_value replaceable\n",
6028 INSN_UID (v
->insn
), REGNO (v
->dest_reg
));
6031 /* Update the status of whether a giv can derive other givs.
6033 We need to do something special if there is or may be an update to the biv
6034 between the time the giv is defined and the time it is used to derive
6037 In addition, a giv that is only conditionally set is not allowed to
6038 derive another giv once a label has been passed.
6040 The cases we look at are when a label or an update to a biv is passed. */
6043 update_giv_derive (const struct loop
*loop
, rtx p
)
6045 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6046 struct iv_class
*bl
;
6047 struct induction
*biv
, *giv
;
6051 /* Search all IV classes, then all bivs, and finally all givs.
6053 There are three cases we are concerned with. First we have the situation
6054 of a giv that is only updated conditionally. In that case, it may not
6055 derive any givs after a label is passed.
6057 The second case is when a biv update occurs, or may occur, after the
6058 definition of a giv. For certain biv updates (see below) that are
6059 known to occur between the giv definition and use, we can adjust the
6060 giv definition. For others, or when the biv update is conditional,
6061 we must prevent the giv from deriving any other givs. There are two
6062 sub-cases within this case.
6064 If this is a label, we are concerned with any biv update that is done
6065 conditionally, since it may be done after the giv is defined followed by
6066 a branch here (actually, we need to pass both a jump and a label, but
6067 this extra tracking doesn't seem worth it).
6069 If this is a jump, we are concerned about any biv update that may be
6070 executed multiple times. We are actually only concerned about
6071 backward jumps, but it is probably not worth performing the test
6072 on the jump again here.
6074 If this is a biv update, we must adjust the giv status to show that a
6075 subsequent biv update was performed. If this adjustment cannot be done,
6076 the giv cannot derive further givs. */
6078 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
6079 for (biv
= bl
->biv
; biv
; biv
= biv
->next_iv
)
6080 if (LABEL_P (p
) || JUMP_P (p
)
6083 /* Skip if location is the same as a previous one. */
6087 for (giv
= bl
->giv
; giv
; giv
= giv
->next_iv
)
6089 /* If cant_derive is already true, there is no point in
6090 checking all of these conditions again. */
6091 if (giv
->cant_derive
)
6094 /* If this giv is conditionally set and we have passed a label,
6095 it cannot derive anything. */
6096 if (LABEL_P (p
) && ! giv
->always_computable
)
6097 giv
->cant_derive
= 1;
6099 /* Skip givs that have mult_val == 0, since
6100 they are really invariants. Also skip those that are
6101 replaceable, since we know their lifetime doesn't contain
6103 else if (giv
->mult_val
== const0_rtx
|| giv
->replaceable
)
6106 /* The only way we can allow this giv to derive another
6107 is if this is a biv increment and we can form the product
6108 of biv->add_val and giv->mult_val. In this case, we will
6109 be able to compute a compensation. */
6110 else if (biv
->insn
== p
)
6115 if (biv
->mult_val
== const1_rtx
)
6116 tem
= simplify_giv_expr (loop
,
6117 gen_rtx_MULT (giv
->mode
,
6120 &ext_val_dummy
, &dummy
);
6122 if (tem
&& giv
->derive_adjustment
)
6123 tem
= simplify_giv_expr
6125 gen_rtx_PLUS (giv
->mode
, tem
, giv
->derive_adjustment
),
6126 &ext_val_dummy
, &dummy
);
6129 giv
->derive_adjustment
= tem
;
6131 giv
->cant_derive
= 1;
6133 else if ((LABEL_P (p
) && ! biv
->always_computable
)
6134 || (JUMP_P (p
) && biv
->maybe_multiple
))
6135 giv
->cant_derive
= 1;
6140 /* Check whether an insn is an increment legitimate for a basic induction var.
6141 X is the source of insn P, or a part of it.
6142 MODE is the mode in which X should be interpreted.
6144 DEST_REG is the putative biv, also the destination of the insn.
6145 We accept patterns of these forms:
6146 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6147 REG = INVARIANT + REG
6149 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6150 store the additive term into *INC_VAL, and store the place where
6151 we found the additive term into *LOCATION.
6153 If X is an assignment of an invariant into DEST_REG, we set
6154 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6156 We also want to detect a BIV when it corresponds to a variable
6157 whose mode was promoted. In that case, an increment
6158 of the variable may be a PLUS that adds a SUBREG of that variable to
6159 an invariant and then sign- or zero-extends the result of the PLUS
6162 Most GIVs in such cases will be in the promoted mode, since that is the
6163 probably the natural computation mode (and almost certainly the mode
6164 used for addresses) on the machine. So we view the pseudo-reg containing
6165 the variable as the BIV, as if it were simply incremented.
6167 Note that treating the entire pseudo as a BIV will result in making
6168 simple increments to any GIVs based on it. However, if the variable
6169 overflows in its declared mode but not its promoted mode, the result will
6170 be incorrect. This is acceptable if the variable is signed, since
6171 overflows in such cases are undefined, but not if it is unsigned, since
6172 those overflows are defined. So we only check for SIGN_EXTEND and
6175 If we cannot find a biv, we return 0. */
6178 basic_induction_var (const struct loop
*loop
, rtx x
, enum machine_mode mode
,
6179 rtx dest_reg
, rtx p
, rtx
*inc_val
, rtx
*mult_val
,
6184 rtx insn
, set
= 0, last
, inc
;
6186 code
= GET_CODE (x
);
6191 if (rtx_equal_p (XEXP (x
, 0), dest_reg
)
6192 || (GET_CODE (XEXP (x
, 0)) == SUBREG
6193 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 0))
6194 && SUBREG_REG (XEXP (x
, 0)) == dest_reg
))
6196 argp
= &XEXP (x
, 1);
6198 else if (rtx_equal_p (XEXP (x
, 1), dest_reg
)
6199 || (GET_CODE (XEXP (x
, 1)) == SUBREG
6200 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 1))
6201 && SUBREG_REG (XEXP (x
, 1)) == dest_reg
))
6203 argp
= &XEXP (x
, 0);
6209 if (loop_invariant_p (loop
, arg
) != 1)
6212 /* convert_modes can emit new instructions, e.g. when arg is a loop
6213 invariant MEM and dest_reg has a different mode.
6214 These instructions would be emitted after the end of the function
6215 and then *inc_val would be an uninitialized pseudo.
6216 Detect this and bail in this case.
6217 Other alternatives to solve this can be introducing a convert_modes
6218 variant which is allowed to fail but not allowed to emit new
6219 instructions, emit these instructions before loop start and let
6220 it be garbage collected if *inc_val is never used or saving the
6221 *inc_val initialization sequence generated here and when *inc_val
6222 is going to be actually used, emit it at some suitable place. */
6223 last
= get_last_insn ();
6224 inc
= convert_modes (GET_MODE (dest_reg
), GET_MODE (x
), arg
, 0);
6225 if (get_last_insn () != last
)
6227 delete_insns_since (last
);
6232 *mult_val
= const1_rtx
;
6237 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
6238 handle addition of promoted variables.
6239 ??? The comment at the start of this function is wrong: promoted
6240 variable increments don't look like it says they do. */
6241 return basic_induction_var (loop
, SUBREG_REG (x
),
6242 GET_MODE (SUBREG_REG (x
)),
6243 dest_reg
, p
, inc_val
, mult_val
, location
);
6246 /* If this register is assigned in a previous insn, look at its
6247 source, but don't go outside the loop or past a label. */
6249 /* If this sets a register to itself, we would repeat any previous
6250 biv increment if we applied this strategy blindly. */
6251 if (rtx_equal_p (dest_reg
, x
))
6260 insn
= PREV_INSN (insn
);
6262 while (insn
&& NOTE_P (insn
)
6263 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
6267 set
= single_set (insn
);
6270 dest
= SET_DEST (set
);
6272 || (GET_CODE (dest
) == SUBREG
6273 && (GET_MODE_SIZE (GET_MODE (dest
)) <= UNITS_PER_WORD
)
6274 && (GET_MODE_CLASS (GET_MODE (dest
)) == MODE_INT
)
6275 && SUBREG_REG (dest
) == x
))
6276 return basic_induction_var (loop
, SET_SRC (set
),
6277 (GET_MODE (SET_SRC (set
)) == VOIDmode
6279 : GET_MODE (SET_SRC (set
))),
6281 inc_val
, mult_val
, location
);
6283 while (GET_CODE (dest
) == SIGN_EXTRACT
6284 || GET_CODE (dest
) == ZERO_EXTRACT
6285 || GET_CODE (dest
) == SUBREG
6286 || GET_CODE (dest
) == STRICT_LOW_PART
)
6287 dest
= XEXP (dest
, 0);
6293 /* Can accept constant setting of biv only when inside inner most loop.
6294 Otherwise, a biv of an inner loop may be incorrectly recognized
6295 as a biv of the outer loop,
6296 causing code to be moved INTO the inner loop. */
6298 if (loop_invariant_p (loop
, x
) != 1)
6303 /* convert_modes aborts if we try to convert to or from CCmode, so just
6304 exclude that case. It is very unlikely that a condition code value
6305 would be a useful iterator anyways. convert_modes aborts if we try to
6306 convert a float mode to non-float or vice versa too. */
6307 if (loop
->level
== 1
6308 && GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (dest_reg
))
6309 && GET_MODE_CLASS (mode
) != MODE_CC
)
6311 /* Possible bug here? Perhaps we don't know the mode of X. */
6312 last
= get_last_insn ();
6313 inc
= convert_modes (GET_MODE (dest_reg
), mode
, x
, 0);
6314 if (get_last_insn () != last
)
6316 delete_insns_since (last
);
6321 *mult_val
= const0_rtx
;
6328 /* Ignore this BIV if signed arithmetic overflow is defined. */
6331 return basic_induction_var (loop
, XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
6332 dest_reg
, p
, inc_val
, mult_val
, location
);
6335 /* Similar, since this can be a sign extension. */
6336 for (insn
= PREV_INSN (p
);
6337 (insn
&& NOTE_P (insn
)
6338 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
6339 insn
= PREV_INSN (insn
))
6343 set
= single_set (insn
);
6345 if (! rtx_equal_p (dest_reg
, XEXP (x
, 0))
6346 && set
&& SET_DEST (set
) == XEXP (x
, 0)
6347 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6348 && INTVAL (XEXP (x
, 1)) >= 0
6349 && GET_CODE (SET_SRC (set
)) == ASHIFT
6350 && XEXP (x
, 1) == XEXP (SET_SRC (set
), 1))
6351 return basic_induction_var (loop
, XEXP (SET_SRC (set
), 0),
6352 GET_MODE (XEXP (x
, 0)),
6353 dest_reg
, insn
, inc_val
, mult_val
,
6362 /* A general induction variable (giv) is any quantity that is a linear
6363 function of a basic induction variable,
6364 i.e. giv = biv * mult_val + add_val.
6365 The coefficients can be any loop invariant quantity.
6366 A giv need not be computed directly from the biv;
6367 it can be computed by way of other givs. */
6369 /* Determine whether X computes a giv.
6370 If it does, return a nonzero value
6371 which is the benefit from eliminating the computation of X;
6372 set *SRC_REG to the register of the biv that it is computed from;
6373 set *ADD_VAL and *MULT_VAL to the coefficients,
6374 such that the value of X is biv * mult + add; */
6377 general_induction_var (const struct loop
*loop
, rtx x
, rtx
*src_reg
,
6378 rtx
*add_val
, rtx
*mult_val
, rtx
*ext_val
,
6379 int is_addr
, int *pbenefit
,
6380 enum machine_mode addr_mode
)
6382 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6385 /* If this is an invariant, forget it, it isn't a giv. */
6386 if (loop_invariant_p (loop
, x
) == 1)
6390 *ext_val
= NULL_RTX
;
6391 x
= simplify_giv_expr (loop
, x
, ext_val
, pbenefit
);
6395 switch (GET_CODE (x
))
6399 /* Since this is now an invariant and wasn't before, it must be a giv
6400 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6402 *src_reg
= ivs
->list
->biv
->dest_reg
;
6403 *mult_val
= const0_rtx
;
6408 /* This is equivalent to a BIV. */
6410 *mult_val
= const1_rtx
;
6411 *add_val
= const0_rtx
;
6415 /* Either (plus (biv) (invar)) or
6416 (plus (mult (biv) (invar_1)) (invar_2)). */
6417 if (GET_CODE (XEXP (x
, 0)) == MULT
)
6419 *src_reg
= XEXP (XEXP (x
, 0), 0);
6420 *mult_val
= XEXP (XEXP (x
, 0), 1);
6424 *src_reg
= XEXP (x
, 0);
6425 *mult_val
= const1_rtx
;
6427 *add_val
= XEXP (x
, 1);
6431 /* ADD_VAL is zero. */
6432 *src_reg
= XEXP (x
, 0);
6433 *mult_val
= XEXP (x
, 1);
6434 *add_val
= const0_rtx
;
6441 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6442 unless they are CONST_INT). */
6443 if (GET_CODE (*add_val
) == USE
)
6444 *add_val
= XEXP (*add_val
, 0);
6445 if (GET_CODE (*mult_val
) == USE
)
6446 *mult_val
= XEXP (*mult_val
, 0);
6449 *pbenefit
+= address_cost (orig_x
, addr_mode
) - reg_address_cost
;
6451 *pbenefit
+= rtx_cost (orig_x
, SET
);
6453 /* Always return true if this is a giv so it will be detected as such,
6454 even if the benefit is zero or negative. This allows elimination
6455 of bivs that might otherwise not be eliminated. */
6459 /* Given an expression, X, try to form it as a linear function of a biv.
6460 We will canonicalize it to be of the form
6461 (plus (mult (BIV) (invar_1))
6463 with possible degeneracies.
6465 The invariant expressions must each be of a form that can be used as a
6466 machine operand. We surround then with a USE rtx (a hack, but localized
6467 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6468 routine; it is the caller's responsibility to strip them.
6470 If no such canonicalization is possible (i.e., two biv's are used or an
6471 expression that is neither invariant nor a biv or giv), this routine
6474 For a nonzero return, the result will have a code of CONST_INT, USE,
6475 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6477 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6479 static rtx
sge_plus (enum machine_mode
, rtx
, rtx
);
6480 static rtx
sge_plus_constant (rtx
, rtx
);
6483 simplify_giv_expr (const struct loop
*loop
, rtx x
, rtx
*ext_val
, int *benefit
)
6485 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6486 struct loop_regs
*regs
= LOOP_REGS (loop
);
6487 enum machine_mode mode
= GET_MODE (x
);
6491 /* If this is not an integer mode, or if we cannot do arithmetic in this
6492 mode, this can't be a giv. */
6493 if (mode
!= VOIDmode
6494 && (GET_MODE_CLASS (mode
) != MODE_INT
6495 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
))
6498 switch (GET_CODE (x
))
6501 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
6502 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
6503 if (arg0
== 0 || arg1
== 0)
6506 /* Put constant last, CONST_INT last if both constant. */
6507 if ((GET_CODE (arg0
) == USE
6508 || GET_CODE (arg0
) == CONST_INT
)
6509 && ! ((GET_CODE (arg0
) == USE
6510 && GET_CODE (arg1
) == USE
)
6511 || GET_CODE (arg1
) == CONST_INT
))
6512 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6514 /* Handle addition of zero, then addition of an invariant. */
6515 if (arg1
== const0_rtx
)
6517 else if (GET_CODE (arg1
) == CONST_INT
|| GET_CODE (arg1
) == USE
)
6518 switch (GET_CODE (arg0
))
6522 /* Adding two invariants must result in an invariant, so enclose
6523 addition operation inside a USE and return it. */
6524 if (GET_CODE (arg0
) == USE
)
6525 arg0
= XEXP (arg0
, 0);
6526 if (GET_CODE (arg1
) == USE
)
6527 arg1
= XEXP (arg1
, 0);
6529 if (GET_CODE (arg0
) == CONST_INT
)
6530 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6531 if (GET_CODE (arg1
) == CONST_INT
)
6532 tem
= sge_plus_constant (arg0
, arg1
);
6534 tem
= sge_plus (mode
, arg0
, arg1
);
6536 if (GET_CODE (tem
) != CONST_INT
)
6537 tem
= gen_rtx_USE (mode
, tem
);
6542 /* biv + invar or mult + invar. Return sum. */
6543 return gen_rtx_PLUS (mode
, arg0
, arg1
);
6546 /* (a + invar_1) + invar_2. Associate. */
6548 simplify_giv_expr (loop
,
6560 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6561 MULT to reduce cases. */
6563 arg0
= gen_rtx_MULT (mode
, arg0
, const1_rtx
);
6565 arg1
= gen_rtx_MULT (mode
, arg1
, const1_rtx
);
6567 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6568 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6569 Recurse to associate the second PLUS. */
6570 if (GET_CODE (arg1
) == MULT
)
6571 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6573 if (GET_CODE (arg1
) == PLUS
)
6575 simplify_giv_expr (loop
,
6577 gen_rtx_PLUS (mode
, arg0
,
6582 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6583 if (GET_CODE (arg0
) != MULT
|| GET_CODE (arg1
) != MULT
)
6586 if (!rtx_equal_p (arg0
, arg1
))
6589 return simplify_giv_expr (loop
,
6598 /* Handle "a - b" as "a + b * (-1)". */
6599 return simplify_giv_expr (loop
,
6608 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
6609 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
6610 if (arg0
== 0 || arg1
== 0)
6613 /* Put constant last, CONST_INT last if both constant. */
6614 if ((GET_CODE (arg0
) == USE
|| GET_CODE (arg0
) == CONST_INT
)
6615 && GET_CODE (arg1
) != CONST_INT
)
6616 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6618 /* If second argument is not now constant, not giv. */
6619 if (GET_CODE (arg1
) != USE
&& GET_CODE (arg1
) != CONST_INT
)
6622 /* Handle multiply by 0 or 1. */
6623 if (arg1
== const0_rtx
)
6626 else if (arg1
== const1_rtx
)
6629 switch (GET_CODE (arg0
))
6632 /* biv * invar. Done. */
6633 return gen_rtx_MULT (mode
, arg0
, arg1
);
6636 /* Product of two constants. */
6637 return GEN_INT (INTVAL (arg0
) * INTVAL (arg1
));
6640 /* invar * invar is a giv, but attempt to simplify it somehow. */
6641 if (GET_CODE (arg1
) != CONST_INT
)
6644 arg0
= XEXP (arg0
, 0);
6645 if (GET_CODE (arg0
) == MULT
)
6647 /* (invar_0 * invar_1) * invar_2. Associate. */
6648 return simplify_giv_expr (loop
,
6657 /* Propagate the MULT expressions to the innermost nodes. */
6658 else if (GET_CODE (arg0
) == PLUS
)
6660 /* (invar_0 + invar_1) * invar_2. Distribute. */
6661 return simplify_giv_expr (loop
,
6673 return gen_rtx_USE (mode
, gen_rtx_MULT (mode
, arg0
, arg1
));
6676 /* (a * invar_1) * invar_2. Associate. */
6677 return simplify_giv_expr (loop
,
6686 /* (a + invar_1) * invar_2. Distribute. */
6687 return simplify_giv_expr (loop
,
6702 /* Shift by constant is multiply by power of two. */
6703 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6707 simplify_giv_expr (loop
,
6710 GEN_INT ((HOST_WIDE_INT
) 1
6711 << INTVAL (XEXP (x
, 1)))),
6715 /* "-a" is "a * (-1)" */
6716 return simplify_giv_expr (loop
,
6717 gen_rtx_MULT (mode
, XEXP (x
, 0), constm1_rtx
),
6721 /* "~a" is "-a - 1". Silly, but easy. */
6722 return simplify_giv_expr (loop
,
6723 gen_rtx_MINUS (mode
,
6724 gen_rtx_NEG (mode
, XEXP (x
, 0)),
6729 /* Already in proper form for invariant. */
6735 /* Conditionally recognize extensions of simple IVs. After we've
6736 computed loop traversal counts and verified the range of the
6737 source IV, we'll reevaluate this as a GIV. */
6738 if (*ext_val
== NULL_RTX
)
6740 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
6741 if (arg0
&& *ext_val
== NULL_RTX
&& REG_P (arg0
))
6743 *ext_val
= gen_rtx_fmt_e (GET_CODE (x
), mode
, arg0
);
6750 /* If this is a new register, we can't deal with it. */
6751 if (REGNO (x
) >= max_reg_before_loop
)
6754 /* Check for biv or giv. */
6755 switch (REG_IV_TYPE (ivs
, REGNO (x
)))
6759 case GENERAL_INDUCT
:
6761 struct induction
*v
= REG_IV_INFO (ivs
, REGNO (x
));
6763 /* Form expression from giv and add benefit. Ensure this giv
6764 can derive another and subtract any needed adjustment if so. */
6766 /* Increasing the benefit here is risky. The only case in which it
6767 is arguably correct is if this is the only use of V. In other
6768 cases, this will artificially inflate the benefit of the current
6769 giv, and lead to suboptimal code. Thus, it is disabled, since
6770 potentially not reducing an only marginally beneficial giv is
6771 less harmful than reducing many givs that are not really
6774 rtx single_use
= regs
->array
[REGNO (x
)].single_usage
;
6775 if (single_use
&& single_use
!= const0_rtx
)
6776 *benefit
+= v
->benefit
;
6782 tem
= gen_rtx_PLUS (mode
, gen_rtx_MULT (mode
,
6783 v
->src_reg
, v
->mult_val
),
6786 if (v
->derive_adjustment
)
6787 tem
= gen_rtx_MINUS (mode
, tem
, v
->derive_adjustment
);
6788 arg0
= simplify_giv_expr (loop
, tem
, ext_val
, benefit
);
6791 if (!v
->ext_dependent
)
6796 *ext_val
= v
->ext_dependent
;
6804 /* If it isn't an induction variable, and it is invariant, we
6805 may be able to simplify things further by looking through
6806 the bits we just moved outside the loop. */
6807 if (loop_invariant_p (loop
, x
) == 1)
6810 struct loop_movables
*movables
= LOOP_MOVABLES (loop
);
6812 for (m
= movables
->head
; m
; m
= m
->next
)
6813 if (rtx_equal_p (x
, m
->set_dest
))
6815 /* Ok, we found a match. Substitute and simplify. */
6817 /* If we match another movable, we must use that, as
6818 this one is going away. */
6820 return simplify_giv_expr (loop
, m
->match
->set_dest
,
6823 /* If consec is nonzero, this is a member of a group of
6824 instructions that were moved together. We handle this
6825 case only to the point of seeking to the last insn and
6826 looking for a REG_EQUAL. Fail if we don't find one. */
6833 tem
= NEXT_INSN (tem
);
6837 tem
= find_reg_note (tem
, REG_EQUAL
, NULL_RTX
);
6839 tem
= XEXP (tem
, 0);
6843 tem
= single_set (m
->insn
);
6845 tem
= SET_SRC (tem
);
6850 /* What we are most interested in is pointer
6851 arithmetic on invariants -- only take
6852 patterns we may be able to do something with. */
6853 if (GET_CODE (tem
) == PLUS
6854 || GET_CODE (tem
) == MULT
6855 || GET_CODE (tem
) == ASHIFT
6856 || GET_CODE (tem
) == CONST_INT
6857 || GET_CODE (tem
) == SYMBOL_REF
)
6859 tem
= simplify_giv_expr (loop
, tem
, ext_val
,
6864 else if (GET_CODE (tem
) == CONST
6865 && GET_CODE (XEXP (tem
, 0)) == PLUS
6866 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == SYMBOL_REF
6867 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)
6869 tem
= simplify_giv_expr (loop
, XEXP (tem
, 0),
6881 /* Fall through to general case. */
6883 /* If invariant, return as USE (unless CONST_INT).
6884 Otherwise, not giv. */
6885 if (GET_CODE (x
) == USE
)
6888 if (loop_invariant_p (loop
, x
) == 1)
6890 if (GET_CODE (x
) == CONST_INT
)
6892 if (GET_CODE (x
) == CONST
6893 && GET_CODE (XEXP (x
, 0)) == PLUS
6894 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
6895 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
6897 return gen_rtx_USE (mode
, x
);
6904 /* This routine folds invariants such that there is only ever one
6905 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6908 sge_plus_constant (rtx x
, rtx c
)
6910 if (GET_CODE (x
) == CONST_INT
)
6911 return GEN_INT (INTVAL (x
) + INTVAL (c
));
6912 else if (GET_CODE (x
) != PLUS
)
6913 return gen_rtx_PLUS (GET_MODE (x
), x
, c
);
6914 else if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6916 return gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0),
6917 GEN_INT (INTVAL (XEXP (x
, 1)) + INTVAL (c
)));
6919 else if (GET_CODE (XEXP (x
, 0)) == PLUS
6920 || GET_CODE (XEXP (x
, 1)) != PLUS
)
6922 return gen_rtx_PLUS (GET_MODE (x
),
6923 sge_plus_constant (XEXP (x
, 0), c
), XEXP (x
, 1));
6927 return gen_rtx_PLUS (GET_MODE (x
),
6928 sge_plus_constant (XEXP (x
, 1), c
), XEXP (x
, 0));
6933 sge_plus (enum machine_mode mode
, rtx x
, rtx y
)
6935 while (GET_CODE (y
) == PLUS
)
6937 rtx a
= XEXP (y
, 0);
6938 if (GET_CODE (a
) == CONST_INT
)
6939 x
= sge_plus_constant (x
, a
);
6941 x
= gen_rtx_PLUS (mode
, x
, a
);
6944 if (GET_CODE (y
) == CONST_INT
)
6945 x
= sge_plus_constant (x
, y
);
6947 x
= gen_rtx_PLUS (mode
, x
, y
);
6951 /* Help detect a giv that is calculated by several consecutive insns;
6955 The caller has already identified the first insn P as having a giv as dest;
6956 we check that all other insns that set the same register follow
6957 immediately after P, that they alter nothing else,
6958 and that the result of the last is still a giv.
6960 The value is 0 if the reg set in P is not really a giv.
6961 Otherwise, the value is the amount gained by eliminating
6962 all the consecutive insns that compute the value.
6964 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6965 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6967 The coefficients of the ultimate giv value are stored in
6968 *MULT_VAL and *ADD_VAL. */
6971 consec_sets_giv (const struct loop
*loop
, int first_benefit
, rtx p
,
6972 rtx src_reg
, rtx dest_reg
, rtx
*add_val
, rtx
*mult_val
,
6973 rtx
*ext_val
, rtx
*last_consec_insn
)
6975 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6976 struct loop_regs
*regs
= LOOP_REGS (loop
);
6983 /* Indicate that this is a giv so that we can update the value produced in
6984 each insn of the multi-insn sequence.
6986 This induction structure will be used only by the call to
6987 general_induction_var below, so we can allocate it on our stack.
6988 If this is a giv, our caller will replace the induct var entry with
6989 a new induction structure. */
6990 struct induction
*v
;
6992 if (REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != UNKNOWN_INDUCT
)
6995 v
= alloca (sizeof (struct induction
));
6996 v
->src_reg
= src_reg
;
6997 v
->mult_val
= *mult_val
;
6998 v
->add_val
= *add_val
;
6999 v
->benefit
= first_benefit
;
7001 v
->derive_adjustment
= 0;
7002 v
->ext_dependent
= NULL_RTX
;
7004 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
7005 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
7007 count
= regs
->array
[REGNO (dest_reg
)].n_times_set
- 1;
7012 code
= GET_CODE (p
);
7014 /* If libcall, skip to end of call sequence. */
7015 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
7019 && (set
= single_set (p
))
7020 && REG_P (SET_DEST (set
))
7021 && SET_DEST (set
) == dest_reg
7022 && (general_induction_var (loop
, SET_SRC (set
), &src_reg
,
7023 add_val
, mult_val
, ext_val
, 0,
7025 /* Giv created by equivalent expression. */
7026 || ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
7027 && general_induction_var (loop
, XEXP (temp
, 0), &src_reg
,
7028 add_val
, mult_val
, ext_val
, 0,
7029 &benefit
, VOIDmode
)))
7030 && src_reg
== v
->src_reg
)
7032 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
7033 benefit
+= libcall_benefit (p
);
7036 v
->mult_val
= *mult_val
;
7037 v
->add_val
= *add_val
;
7038 v
->benefit
+= benefit
;
7040 else if (code
!= NOTE
)
7042 /* Allow insns that set something other than this giv to a
7043 constant. Such insns are needed on machines which cannot
7044 include long constants and should not disqualify a giv. */
7046 && (set
= single_set (p
))
7047 && SET_DEST (set
) != dest_reg
7048 && CONSTANT_P (SET_SRC (set
)))
7051 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
7056 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
7057 *last_consec_insn
= p
;
7061 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7062 represented by G1. If no such expression can be found, or it is clear that
7063 it cannot possibly be a valid address, 0 is returned.
7065 To perform the computation, we note that
7068 where `v' is the biv.
7070 So G2 = (y/b) * G1 + (b - a*y/x).
7072 Note that MULT = y/x.
7074 Update: A and B are now allowed to be additive expressions such that
7075 B contains all variables in A. That is, computing B-A will not require
7076 subtracting variables. */
7079 express_from_1 (rtx a
, rtx b
, rtx mult
)
7081 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
7083 if (mult
== const0_rtx
)
7086 /* If MULT is not 1, we cannot handle A with non-constants, since we
7087 would then be required to subtract multiples of the registers in A.
7088 This is theoretically possible, and may even apply to some Fortran
7089 constructs, but it is a lot of work and we do not attempt it here. */
7091 if (mult
!= const1_rtx
&& GET_CODE (a
) != CONST_INT
)
7094 /* In general these structures are sorted top to bottom (down the PLUS
7095 chain), but not left to right across the PLUS. If B is a higher
7096 order giv than A, we can strip one level and recurse. If A is higher
7097 order, we'll eventually bail out, but won't know that until the end.
7098 If they are the same, we'll strip one level around this loop. */
7100 while (GET_CODE (a
) == PLUS
&& GET_CODE (b
) == PLUS
)
7102 rtx ra
, rb
, oa
, ob
, tmp
;
7104 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
7105 if (GET_CODE (ra
) == PLUS
)
7106 tmp
= ra
, ra
= oa
, oa
= tmp
;
7108 rb
= XEXP (b
, 0), ob
= XEXP (b
, 1);
7109 if (GET_CODE (rb
) == PLUS
)
7110 tmp
= rb
, rb
= ob
, ob
= tmp
;
7112 if (rtx_equal_p (ra
, rb
))
7113 /* We matched: remove one reg completely. */
7115 else if (GET_CODE (ob
) != PLUS
&& rtx_equal_p (ra
, ob
))
7116 /* An alternate match. */
7118 else if (GET_CODE (oa
) != PLUS
&& rtx_equal_p (oa
, rb
))
7119 /* An alternate match. */
7123 /* Indicates an extra register in B. Strip one level from B and
7124 recurse, hoping B was the higher order expression. */
7125 ob
= express_from_1 (a
, ob
, mult
);
7128 return gen_rtx_PLUS (GET_MODE (b
), rb
, ob
);
7132 /* Here we are at the last level of A, go through the cases hoping to
7133 get rid of everything but a constant. */
7135 if (GET_CODE (a
) == PLUS
)
7139 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
7140 if (rtx_equal_p (oa
, b
))
7142 else if (!rtx_equal_p (ra
, b
))
7145 if (GET_CODE (oa
) != CONST_INT
)
7148 return GEN_INT (-INTVAL (oa
) * INTVAL (mult
));
7150 else if (GET_CODE (a
) == CONST_INT
)
7152 return plus_constant (b
, -INTVAL (a
) * INTVAL (mult
));
7154 else if (CONSTANT_P (a
))
7156 enum machine_mode mode_a
= GET_MODE (a
);
7157 enum machine_mode mode_b
= GET_MODE (b
);
7158 enum machine_mode mode
= mode_b
== VOIDmode
? mode_a
: mode_b
;
7159 return simplify_gen_binary (MINUS
, mode
, b
, a
);
7161 else if (GET_CODE (b
) == PLUS
)
7163 if (rtx_equal_p (a
, XEXP (b
, 0)))
7165 else if (rtx_equal_p (a
, XEXP (b
, 1)))
7170 else if (rtx_equal_p (a
, b
))
7177 express_from (struct induction
*g1
, struct induction
*g2
)
7181 /* The value that G1 will be multiplied by must be a constant integer. Also,
7182 the only chance we have of getting a valid address is if b*c/a (see above
7183 for notation) is also an integer. */
7184 if (GET_CODE (g1
->mult_val
) == CONST_INT
7185 && GET_CODE (g2
->mult_val
) == CONST_INT
)
7187 if (g1
->mult_val
== const0_rtx
7188 || (g1
->mult_val
== constm1_rtx
7189 && INTVAL (g2
->mult_val
)
7190 == (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1))
7191 || INTVAL (g2
->mult_val
) % INTVAL (g1
->mult_val
) != 0)
7193 mult
= GEN_INT (INTVAL (g2
->mult_val
) / INTVAL (g1
->mult_val
));
7195 else if (rtx_equal_p (g1
->mult_val
, g2
->mult_val
))
7199 /* ??? Find out if the one is a multiple of the other? */
7203 add
= express_from_1 (g1
->add_val
, g2
->add_val
, mult
);
7204 if (add
== NULL_RTX
)
7206 /* Failed. If we've got a multiplication factor between G1 and G2,
7207 scale G1's addend and try again. */
7208 if (INTVAL (mult
) > 1)
7210 rtx g1_add_val
= g1
->add_val
;
7211 if (GET_CODE (g1_add_val
) == MULT
7212 && GET_CODE (XEXP (g1_add_val
, 1)) == CONST_INT
)
7215 m
= INTVAL (mult
) * INTVAL (XEXP (g1_add_val
, 1));
7216 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
),
7217 XEXP (g1_add_val
, 0), GEN_INT (m
));
7221 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
), g1_add_val
,
7225 add
= express_from_1 (g1_add_val
, g2
->add_val
, const1_rtx
);
7228 if (add
== NULL_RTX
)
7231 /* Form simplified final result. */
7232 if (mult
== const0_rtx
)
7234 else if (mult
== const1_rtx
)
7235 mult
= g1
->dest_reg
;
7237 mult
= gen_rtx_MULT (g2
->mode
, g1
->dest_reg
, mult
);
7239 if (add
== const0_rtx
)
7243 if (GET_CODE (add
) == PLUS
7244 && CONSTANT_P (XEXP (add
, 1)))
7246 rtx tem
= XEXP (add
, 1);
7247 mult
= gen_rtx_PLUS (g2
->mode
, mult
, XEXP (add
, 0));
7251 return gen_rtx_PLUS (g2
->mode
, mult
, add
);
7255 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7256 represented by G1. This indicates that G2 should be combined with G1 and
7257 that G2 can use (either directly or via an address expression) a register
7258 used to represent G1. */
7261 combine_givs_p (struct induction
*g1
, struct induction
*g2
)
7265 /* With the introduction of ext dependent givs, we must care for modes.
7266 G2 must not use a wider mode than G1. */
7267 if (GET_MODE_SIZE (g1
->mode
) < GET_MODE_SIZE (g2
->mode
))
7270 ret
= comb
= express_from (g1
, g2
);
7271 if (comb
== NULL_RTX
)
7273 if (g1
->mode
!= g2
->mode
)
7274 ret
= gen_lowpart (g2
->mode
, comb
);
7276 /* If these givs are identical, they can be combined. We use the results
7277 of express_from because the addends are not in a canonical form, so
7278 rtx_equal_p is a weaker test. */
7279 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7280 combination to be the other way round. */
7281 if (comb
== g1
->dest_reg
7282 && (g1
->giv_type
== DEST_REG
|| g2
->giv_type
== DEST_ADDR
))
7287 /* If G2 can be expressed as a function of G1 and that function is valid
7288 as an address and no more expensive than using a register for G2,
7289 the expression of G2 in terms of G1 can be used. */
7291 && g2
->giv_type
== DEST_ADDR
7292 && memory_address_p (GET_MODE (g2
->mem
), ret
))
7298 /* Check each extension dependent giv in this class to see if its
7299 root biv is safe from wrapping in the interior mode, which would
7300 make the giv illegal. */
7303 check_ext_dependent_givs (const struct loop
*loop
, struct iv_class
*bl
)
7305 struct loop_info
*loop_info
= LOOP_INFO (loop
);
7306 int ze_ok
= 0, se_ok
= 0, info_ok
= 0;
7307 enum machine_mode biv_mode
= GET_MODE (bl
->biv
->src_reg
);
7308 HOST_WIDE_INT start_val
;
7309 unsigned HOST_WIDE_INT u_end_val
= 0;
7310 unsigned HOST_WIDE_INT u_start_val
= 0;
7312 struct induction
*v
;
7314 /* Make sure the iteration data is available. We must have
7315 constants in order to be certain of no overflow. */
7316 if (loop_info
->n_iterations
> 0
7317 && bl
->initial_value
7318 && GET_CODE (bl
->initial_value
) == CONST_INT
7319 && (incr
= biv_total_increment (bl
))
7320 && GET_CODE (incr
) == CONST_INT
7321 /* Make sure the host can represent the arithmetic. */
7322 && HOST_BITS_PER_WIDE_INT
>= GET_MODE_BITSIZE (biv_mode
))
7324 unsigned HOST_WIDE_INT abs_incr
, total_incr
;
7325 HOST_WIDE_INT s_end_val
;
7329 start_val
= INTVAL (bl
->initial_value
);
7330 u_start_val
= start_val
;
7332 neg_incr
= 0, abs_incr
= INTVAL (incr
);
7333 if (INTVAL (incr
) < 0)
7334 neg_incr
= 1, abs_incr
= -abs_incr
;
7335 total_incr
= abs_incr
* loop_info
->n_iterations
;
7337 /* Check for host arithmetic overflow. */
7338 if (total_incr
/ loop_info
->n_iterations
== abs_incr
)
7340 unsigned HOST_WIDE_INT u_max
;
7341 HOST_WIDE_INT s_max
;
7343 u_end_val
= start_val
+ (neg_incr
? -total_incr
: total_incr
);
7344 s_end_val
= u_end_val
;
7345 u_max
= GET_MODE_MASK (biv_mode
);
7348 /* Check zero extension of biv ok. */
7350 /* Check for host arithmetic overflow. */
7352 ? u_end_val
< u_start_val
7353 : u_end_val
> u_start_val
)
7354 /* Check for target arithmetic overflow. */
7356 ? 1 /* taken care of with host overflow */
7357 : u_end_val
<= u_max
))
7362 /* Check sign extension of biv ok. */
7363 /* ??? While it is true that overflow with signed and pointer
7364 arithmetic is undefined, I fear too many programmers don't
7365 keep this fact in mind -- myself included on occasion.
7366 So leave alone with the signed overflow optimizations. */
7367 if (start_val
>= -s_max
- 1
7368 /* Check for host arithmetic overflow. */
7370 ? s_end_val
< start_val
7371 : s_end_val
> start_val
)
7372 /* Check for target arithmetic overflow. */
7374 ? s_end_val
>= -s_max
- 1
7375 : s_end_val
<= s_max
))
7382 /* If we know the BIV is compared at run-time against an
7383 invariant value, and the increment is +/- 1, we may also
7384 be able to prove that the BIV cannot overflow. */
7385 else if (bl
->biv
->src_reg
== loop_info
->iteration_var
7386 && loop_info
->comparison_value
7387 && loop_invariant_p (loop
, loop_info
->comparison_value
)
7388 && (incr
= biv_total_increment (bl
))
7389 && GET_CODE (incr
) == CONST_INT
)
7391 /* If the increment is +1, and the exit test is a <,
7392 the BIV cannot overflow. (For <=, we have the
7393 problematic case that the comparison value might
7394 be the maximum value of the range.) */
7395 if (INTVAL (incr
) == 1)
7397 if (loop_info
->comparison_code
== LT
)
7399 else if (loop_info
->comparison_code
== LTU
)
7403 /* Likewise for increment -1 and exit test >. */
7404 if (INTVAL (incr
) == -1)
7406 if (loop_info
->comparison_code
== GT
)
7408 else if (loop_info
->comparison_code
== GTU
)
7413 /* Invalidate givs that fail the tests. */
7414 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
7415 if (v
->ext_dependent
)
7417 enum rtx_code code
= GET_CODE (v
->ext_dependent
);
7430 /* We don't know whether this value is being used as either
7431 signed or unsigned, so to safely truncate we must satisfy
7432 both. The initial check here verifies the BIV itself;
7433 once that is successful we may check its range wrt the
7434 derived GIV. This works only if we were able to determine
7435 constant start and end values above. */
7436 if (se_ok
&& ze_ok
&& info_ok
)
7438 enum machine_mode outer_mode
= GET_MODE (v
->ext_dependent
);
7439 unsigned HOST_WIDE_INT max
= GET_MODE_MASK (outer_mode
) >> 1;
7441 /* We know from the above that both endpoints are nonnegative,
7442 and that there is no wrapping. Verify that both endpoints
7443 are within the (signed) range of the outer mode. */
7444 if (u_start_val
<= max
&& u_end_val
<= max
)
7455 if (loop_dump_stream
)
7457 fprintf (loop_dump_stream
,
7458 "Verified ext dependent giv at %d of reg %d\n",
7459 INSN_UID (v
->insn
), bl
->regno
);
7464 if (loop_dump_stream
)
7469 why
= "biv iteration values overflowed";
7473 incr
= biv_total_increment (bl
);
7474 if (incr
== const1_rtx
)
7475 why
= "biv iteration info incomplete; incr by 1";
7477 why
= "biv iteration info incomplete";
7480 fprintf (loop_dump_stream
,
7481 "Failed ext dependent giv at %d, %s\n",
7482 INSN_UID (v
->insn
), why
);
7485 bl
->all_reduced
= 0;
7490 /* Generate a version of VALUE in a mode appropriate for initializing V. */
7493 extend_value_for_giv (struct induction
*v
, rtx value
)
7495 rtx ext_dep
= v
->ext_dependent
;
7500 /* Recall that check_ext_dependent_givs verified that the known bounds
7501 of a biv did not overflow or wrap with respect to the extension for
7502 the giv. Therefore, constants need no additional adjustment. */
7503 if (CONSTANT_P (value
) && GET_MODE (value
) == VOIDmode
)
7506 /* Otherwise, we must adjust the value to compensate for the
7507 differing modes of the biv and the giv. */
7508 return gen_rtx_fmt_e (GET_CODE (ext_dep
), GET_MODE (ext_dep
), value
);
7511 struct combine_givs_stats
7518 cmp_combine_givs_stats (const void *xp
, const void *yp
)
7520 const struct combine_givs_stats
* const x
=
7521 (const struct combine_givs_stats
*) xp
;
7522 const struct combine_givs_stats
* const y
=
7523 (const struct combine_givs_stats
*) yp
;
7525 d
= y
->total_benefit
- x
->total_benefit
;
7526 /* Stabilize the sort. */
7528 d
= x
->giv_number
- y
->giv_number
;
7532 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7533 any other. If so, point SAME to the giv combined with and set NEW_REG to
7534 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7535 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7538 combine_givs (struct loop_regs
*regs
, struct iv_class
*bl
)
7540 /* Additional benefit to add for being combined multiple times. */
7541 const int extra_benefit
= 3;
7543 struct induction
*g1
, *g2
, **giv_array
;
7544 int i
, j
, k
, giv_count
;
7545 struct combine_givs_stats
*stats
;
7548 /* Count givs, because bl->giv_count is incorrect here. */
7550 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
7554 giv_array
= alloca (giv_count
* sizeof (struct induction
*));
7556 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
7558 giv_array
[i
++] = g1
;
7560 stats
= xcalloc (giv_count
, sizeof (*stats
));
7561 can_combine
= xcalloc (giv_count
, giv_count
* sizeof (rtx
));
7563 for (i
= 0; i
< giv_count
; i
++)
7569 stats
[i
].giv_number
= i
;
7571 /* If a DEST_REG GIV is used only once, do not allow it to combine
7572 with anything, for in doing so we will gain nothing that cannot
7573 be had by simply letting the GIV with which we would have combined
7574 to be reduced on its own. The losage shows up in particular with
7575 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7576 be seen elsewhere as well. */
7577 if (g1
->giv_type
== DEST_REG
7578 && (single_use
= regs
->array
[REGNO (g1
->dest_reg
)].single_usage
)
7579 && single_use
!= const0_rtx
)
7582 this_benefit
= g1
->benefit
;
7583 /* Add an additional weight for zero addends. */
7584 if (g1
->no_const_addval
)
7587 for (j
= 0; j
< giv_count
; j
++)
7593 && (this_combine
= combine_givs_p (g1
, g2
)) != NULL_RTX
)
7595 can_combine
[i
* giv_count
+ j
] = this_combine
;
7596 this_benefit
+= g2
->benefit
+ extra_benefit
;
7599 stats
[i
].total_benefit
= this_benefit
;
7602 /* Iterate, combining until we can't. */
7604 qsort (stats
, giv_count
, sizeof (*stats
), cmp_combine_givs_stats
);
7606 if (loop_dump_stream
)
7608 fprintf (loop_dump_stream
, "Sorted combine statistics:\n");
7609 for (k
= 0; k
< giv_count
; k
++)
7611 g1
= giv_array
[stats
[k
].giv_number
];
7612 if (!g1
->combined_with
&& !g1
->same
)
7613 fprintf (loop_dump_stream
, " {%d, %d}",
7614 INSN_UID (giv_array
[stats
[k
].giv_number
]->insn
),
7615 stats
[k
].total_benefit
);
7617 putc ('\n', loop_dump_stream
);
7620 for (k
= 0; k
< giv_count
; k
++)
7622 int g1_add_benefit
= 0;
7624 i
= stats
[k
].giv_number
;
7627 /* If it has already been combined, skip. */
7628 if (g1
->combined_with
|| g1
->same
)
7631 for (j
= 0; j
< giv_count
; j
++)
7634 if (g1
!= g2
&& can_combine
[i
* giv_count
+ j
]
7635 /* If it has already been combined, skip. */
7636 && ! g2
->same
&& ! g2
->combined_with
)
7640 g2
->new_reg
= can_combine
[i
* giv_count
+ j
];
7642 /* For destination, we now may replace by mem expression instead
7643 of register. This changes the costs considerably, so add the
7645 if (g2
->giv_type
== DEST_ADDR
)
7646 g2
->benefit
= (g2
->benefit
+ reg_address_cost
7647 - address_cost (g2
->new_reg
,
7648 GET_MODE (g2
->mem
)));
7649 g1
->combined_with
++;
7650 g1
->lifetime
+= g2
->lifetime
;
7652 g1_add_benefit
+= g2
->benefit
;
7654 /* ??? The new final_[bg]iv_value code does a much better job
7655 of finding replaceable giv's, and hence this code may no
7656 longer be necessary. */
7657 if (! g2
->replaceable
&& REG_USERVAR_P (g2
->dest_reg
))
7658 g1_add_benefit
-= copy_cost
;
7660 /* To help optimize the next set of combinations, remove
7661 this giv from the benefits of other potential mates. */
7662 for (l
= 0; l
< giv_count
; ++l
)
7664 int m
= stats
[l
].giv_number
;
7665 if (can_combine
[m
* giv_count
+ j
])
7666 stats
[l
].total_benefit
-= g2
->benefit
+ extra_benefit
;
7669 if (loop_dump_stream
)
7670 fprintf (loop_dump_stream
,
7671 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
7672 INSN_UID (g2
->insn
), INSN_UID (g1
->insn
),
7673 g1
->benefit
, g1_add_benefit
, g1
->lifetime
);
7677 /* To help optimize the next set of combinations, remove
7678 this giv from the benefits of other potential mates. */
7679 if (g1
->combined_with
)
7681 for (j
= 0; j
< giv_count
; ++j
)
7683 int m
= stats
[j
].giv_number
;
7684 if (can_combine
[m
* giv_count
+ i
])
7685 stats
[j
].total_benefit
-= g1
->benefit
+ extra_benefit
;
7688 g1
->benefit
+= g1_add_benefit
;
7690 /* We've finished with this giv, and everything it touched.
7691 Restart the combination so that proper weights for the
7692 rest of the givs are properly taken into account. */
7693 /* ??? Ideally we would compact the arrays at this point, so
7694 as to not cover old ground. But sanely compacting
7695 can_combine is tricky. */
7705 /* Generate sequence for REG = B * M + A. B is the initial value of
7706 the basic induction variable, M a multiplicative constant, A an
7707 additive constant and REG the destination register. */
7710 gen_add_mult (rtx b
, rtx m
, rtx a
, rtx reg
)
7716 /* Use unsigned arithmetic. */
7717 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 1);
7719 emit_move_insn (reg
, result
);
7727 /* Update registers created in insn sequence SEQ. */
7730 loop_regs_update (const struct loop
*loop ATTRIBUTE_UNUSED
, rtx seq
)
7734 /* Update register info for alias analysis. */
7737 while (insn
!= NULL_RTX
)
7739 rtx set
= single_set (insn
);
7741 if (set
&& REG_P (SET_DEST (set
)))
7742 record_base_value (REGNO (SET_DEST (set
)), SET_SRC (set
), 0);
7744 insn
= NEXT_INSN (insn
);
7749 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. B
7750 is the initial value of the basic induction variable, M a
7751 multiplicative constant, A an additive constant and REG the
7752 destination register. */
7755 loop_iv_add_mult_emit_before (const struct loop
*loop
, rtx b
, rtx m
, rtx a
,
7756 rtx reg
, basic_block before_bb
, rtx before_insn
)
7762 loop_iv_add_mult_hoist (loop
, b
, m
, a
, reg
);
7766 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7767 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
7769 /* Increase the lifetime of any invariants moved further in code. */
7770 update_reg_last_use (a
, before_insn
);
7771 update_reg_last_use (b
, before_insn
);
7772 update_reg_last_use (m
, before_insn
);
7774 /* It is possible that the expansion created lots of new registers.
7775 Iterate over the sequence we just created and record them all. We
7776 must do this before inserting the sequence. */
7777 loop_regs_update (loop
, seq
);
7779 loop_insn_emit_before (loop
, before_bb
, before_insn
, seq
);
7783 /* Emit insns in loop pre-header to set REG = B * M + A. B is the
7784 initial value of the basic induction variable, M a multiplicative
7785 constant, A an additive constant and REG the destination
7789 loop_iv_add_mult_sink (const struct loop
*loop
, rtx b
, rtx m
, rtx a
, rtx reg
)
7793 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7794 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
7796 /* Increase the lifetime of any invariants moved further in code.
7797 ???? Is this really necessary? */
7798 update_reg_last_use (a
, loop
->sink
);
7799 update_reg_last_use (b
, loop
->sink
);
7800 update_reg_last_use (m
, loop
->sink
);
7802 /* It is possible that the expansion created lots of new registers.
7803 Iterate over the sequence we just created and record them all. We
7804 must do this before inserting the sequence. */
7805 loop_regs_update (loop
, seq
);
7807 loop_insn_sink (loop
, seq
);
7811 /* Emit insns after loop to set REG = B * M + A. B is the initial
7812 value of the basic induction variable, M a multiplicative constant,
7813 A an additive constant and REG the destination register. */
7816 loop_iv_add_mult_hoist (const struct loop
*loop
, rtx b
, rtx m
, rtx a
, rtx reg
)
7820 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7821 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
7823 /* It is possible that the expansion created lots of new registers.
7824 Iterate over the sequence we just created and record them all. We
7825 must do this before inserting the sequence. */
7826 loop_regs_update (loop
, seq
);
7828 loop_insn_hoist (loop
, seq
);
7833 /* Similar to gen_add_mult, but compute cost rather than generating
7837 iv_add_mult_cost (rtx b
, rtx m
, rtx a
, rtx reg
)
7843 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 1);
7845 emit_move_insn (reg
, result
);
7846 last
= get_last_insn ();
7849 rtx t
= single_set (last
);
7851 cost
+= rtx_cost (SET_SRC (t
), SET
);
7852 last
= PREV_INSN (last
);
7858 /* Test whether A * B can be computed without
7859 an actual multiply insn. Value is 1 if so.
7861 ??? This function stinks because it generates a ton of wasted RTL
7862 ??? and as a result fragments GC memory to no end. There are other
7863 ??? places in the compiler which are invoked a lot and do the same
7864 ??? thing, generate wasted RTL just to see if something is possible. */
7867 product_cheap_p (rtx a
, rtx b
)
7872 /* If only one is constant, make it B. */
7873 if (GET_CODE (a
) == CONST_INT
)
7874 tmp
= a
, a
= b
, b
= tmp
;
7876 /* If first constant, both constant, so don't need multiply. */
7877 if (GET_CODE (a
) == CONST_INT
)
7880 /* If second not constant, neither is constant, so would need multiply. */
7881 if (GET_CODE (b
) != CONST_INT
)
7884 /* One operand is constant, so might not need multiply insn. Generate the
7885 code for the multiply and see if a call or multiply, or long sequence
7886 of insns is generated. */
7889 expand_mult (GET_MODE (a
), a
, b
, NULL_RTX
, 1);
7897 while (tmp
!= NULL_RTX
)
7899 rtx next
= NEXT_INSN (tmp
);
7902 || !NONJUMP_INSN_P (tmp
)
7903 || (GET_CODE (PATTERN (tmp
)) == SET
7904 && GET_CODE (SET_SRC (PATTERN (tmp
))) == MULT
)
7905 || (GET_CODE (PATTERN (tmp
)) == PARALLEL
7906 && GET_CODE (XVECEXP (PATTERN (tmp
), 0, 0)) == SET
7907 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp
), 0, 0))) == MULT
))
7916 else if (GET_CODE (tmp
) == SET
7917 && GET_CODE (SET_SRC (tmp
)) == MULT
)
7919 else if (GET_CODE (tmp
) == PARALLEL
7920 && GET_CODE (XVECEXP (tmp
, 0, 0)) == SET
7921 && GET_CODE (SET_SRC (XVECEXP (tmp
, 0, 0))) == MULT
)
7927 /* Check to see if loop can be terminated by a "decrement and branch until
7928 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7929 Also try reversing an increment loop to a decrement loop
7930 to see if the optimization can be performed.
7931 Value is nonzero if optimization was performed. */
7933 /* This is useful even if the architecture doesn't have such an insn,
7934 because it might change a loops which increments from 0 to n to a loop
7935 which decrements from n to 0. A loop that decrements to zero is usually
7936 faster than one that increments from zero. */
7938 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7939 such as approx_final_value, biv_total_increment, loop_iterations, and
7940 final_[bg]iv_value. */
7943 check_dbra_loop (struct loop
*loop
, int insn_count
)
7945 struct loop_info
*loop_info
= LOOP_INFO (loop
);
7946 struct loop_regs
*regs
= LOOP_REGS (loop
);
7947 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7948 struct iv_class
*bl
;
7950 enum machine_mode mode
;
7956 rtx before_comparison
;
7960 int compare_and_branch
;
7961 rtx loop_start
= loop
->start
;
7962 rtx loop_end
= loop
->end
;
7964 /* If last insn is a conditional branch, and the insn before tests a
7965 register value, try to optimize it. Otherwise, we can't do anything. */
7967 jump
= PREV_INSN (loop_end
);
7968 comparison
= get_condition_for_loop (loop
, jump
);
7969 if (comparison
== 0)
7971 if (!onlyjump_p (jump
))
7974 /* Try to compute whether the compare/branch at the loop end is one or
7975 two instructions. */
7976 get_condition (jump
, &first_compare
, false, true);
7977 if (first_compare
== jump
)
7978 compare_and_branch
= 1;
7979 else if (first_compare
== prev_nonnote_insn (jump
))
7980 compare_and_branch
= 2;
7985 /* If more than one condition is present to control the loop, then
7986 do not proceed, as this function does not know how to rewrite
7987 loop tests with more than one condition.
7989 Look backwards from the first insn in the last comparison
7990 sequence and see if we've got another comparison sequence. */
7993 if ((jump1
= prev_nonnote_insn (first_compare
)) != loop
->cont
)
7998 /* Check all of the bivs to see if the compare uses one of them.
7999 Skip biv's set more than once because we can't guarantee that
8000 it will be zero on the last iteration. Also skip if the biv is
8001 used between its update and the test insn. */
8003 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
8005 if (bl
->biv_count
== 1
8006 && ! bl
->biv
->maybe_multiple
8007 && bl
->biv
->dest_reg
== XEXP (comparison
, 0)
8008 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
8013 /* Try swapping the comparison to identify a suitable biv. */
8015 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
8016 if (bl
->biv_count
== 1
8017 && ! bl
->biv
->maybe_multiple
8018 && bl
->biv
->dest_reg
== XEXP (comparison
, 1)
8019 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
8022 comparison
= gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)),
8024 XEXP (comparison
, 1),
8025 XEXP (comparison
, 0));
8032 /* Look for the case where the basic induction variable is always
8033 nonnegative, and equals zero on the last iteration.
8034 In this case, add a reg_note REG_NONNEG, which allows the
8035 m68k DBRA instruction to be used. */
8037 if (((GET_CODE (comparison
) == GT
&& XEXP (comparison
, 1) == constm1_rtx
)
8038 || (GET_CODE (comparison
) == NE
&& XEXP (comparison
, 1) == const0_rtx
))
8039 && GET_CODE (bl
->biv
->add_val
) == CONST_INT
8040 && INTVAL (bl
->biv
->add_val
) < 0)
8042 /* Initial value must be greater than 0,
8043 init_val % -dec_value == 0 to ensure that it equals zero on
8044 the last iteration */
8046 if (GET_CODE (bl
->initial_value
) == CONST_INT
8047 && INTVAL (bl
->initial_value
) > 0
8048 && (INTVAL (bl
->initial_value
)
8049 % (-INTVAL (bl
->biv
->add_val
))) == 0)
8051 /* Register always nonnegative, add REG_NOTE to branch. */
8052 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
8054 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
8061 /* If the decrement is 1 and the value was tested as >= 0 before
8062 the loop, then we can safely optimize. */
8063 for (p
= loop_start
; p
; p
= PREV_INSN (p
))
8070 before_comparison
= get_condition_for_loop (loop
, p
);
8071 if (before_comparison
8072 && XEXP (before_comparison
, 0) == bl
->biv
->dest_reg
8073 && (GET_CODE (before_comparison
) == LT
8074 || GET_CODE (before_comparison
) == LTU
)
8075 && XEXP (before_comparison
, 1) == const0_rtx
8076 && ! reg_set_between_p (bl
->biv
->dest_reg
, p
, loop_start
)
8077 && INTVAL (bl
->biv
->add_val
) == -1)
8079 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
8081 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
8089 else if (GET_CODE (bl
->biv
->add_val
) == CONST_INT
8090 && INTVAL (bl
->biv
->add_val
) > 0)
8092 /* Try to change inc to dec, so can apply above optimization. */
8094 all registers modified are induction variables or invariant,
8095 all memory references have non-overlapping addresses
8096 (obviously true if only one write)
8097 allow 2 insns for the compare/jump at the end of the loop. */
8098 /* Also, we must avoid any instructions which use both the reversed
8099 biv and another biv. Such instructions will fail if the loop is
8100 reversed. We meet this condition by requiring that either
8101 no_use_except_counting is true, or else that there is only
8103 int num_nonfixed_reads
= 0;
8104 /* 1 if the iteration var is used only to count iterations. */
8105 int no_use_except_counting
= 0;
8106 /* 1 if the loop has no memory store, or it has a single memory store
8107 which is reversible. */
8108 int reversible_mem_store
= 1;
8110 if (bl
->giv_count
== 0
8111 && !loop
->exit_count
8112 && !loop_info
->has_multiple_exit_targets
)
8114 rtx bivreg
= regno_reg_rtx
[bl
->regno
];
8115 struct iv_class
*blt
;
8117 /* If there are no givs for this biv, and the only exit is the
8118 fall through at the end of the loop, then
8119 see if perhaps there are no uses except to count. */
8120 no_use_except_counting
= 1;
8121 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8124 rtx set
= single_set (p
);
8126 if (set
&& REG_P (SET_DEST (set
))
8127 && REGNO (SET_DEST (set
)) == bl
->regno
)
8128 /* An insn that sets the biv is okay. */
8130 else if (!reg_mentioned_p (bivreg
, PATTERN (p
)))
8131 /* An insn that doesn't mention the biv is okay. */
8133 else if (p
== prev_nonnote_insn (prev_nonnote_insn (loop_end
))
8134 || p
== prev_nonnote_insn (loop_end
))
8136 /* If either of these insns uses the biv and sets a pseudo
8137 that has more than one usage, then the biv has uses
8138 other than counting since it's used to derive a value
8139 that is used more than one time. */
8140 note_stores (PATTERN (p
), note_set_pseudo_multiple_uses
,
8142 if (regs
->multiple_uses
)
8144 no_use_except_counting
= 0;
8150 no_use_except_counting
= 0;
8155 /* A biv has uses besides counting if it is used to set
8157 for (blt
= ivs
->list
; blt
; blt
= blt
->next
)
8159 && reg_mentioned_p (bivreg
, SET_SRC (blt
->init_set
)))
8161 no_use_except_counting
= 0;
8166 if (no_use_except_counting
)
8167 /* No need to worry about MEMs. */
8169 else if (loop_info
->num_mem_sets
<= 1)
8171 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8173 num_nonfixed_reads
+= count_nonfixed_reads (loop
, PATTERN (p
));
8175 /* If the loop has a single store, and the destination address is
8176 invariant, then we can't reverse the loop, because this address
8177 might then have the wrong value at loop exit.
8178 This would work if the source was invariant also, however, in that
8179 case, the insn should have been moved out of the loop. */
8181 if (loop_info
->num_mem_sets
== 1)
8183 struct induction
*v
;
8185 /* If we could prove that each of the memory locations
8186 written to was different, then we could reverse the
8187 store -- but we don't presently have any way of
8189 reversible_mem_store
= 0;
8191 /* If the store depends on a register that is set after the
8192 store, it depends on the initial value, and is thus not
8194 for (v
= bl
->giv
; reversible_mem_store
&& v
; v
= v
->next_iv
)
8196 if (v
->giv_type
== DEST_REG
8197 && reg_mentioned_p (v
->dest_reg
,
8198 PATTERN (loop_info
->first_loop_store_insn
))
8199 && loop_insn_first_p (loop_info
->first_loop_store_insn
,
8201 reversible_mem_store
= 0;
8208 /* This code only acts for innermost loops. Also it simplifies
8209 the memory address check by only reversing loops with
8210 zero or one memory access.
8211 Two memory accesses could involve parts of the same array,
8212 and that can't be reversed.
8213 If the biv is used only for counting, than we don't need to worry
8214 about all these things. */
8216 if ((num_nonfixed_reads
<= 1
8217 && ! loop_info
->has_nonconst_call
8218 && ! loop_info
->has_prefetch
8219 && ! loop_info
->has_volatile
8220 && reversible_mem_store
8221 && (bl
->giv_count
+ bl
->biv_count
+ loop_info
->num_mem_sets
8222 + num_unmoved_movables (loop
) + compare_and_branch
== insn_count
)
8223 && (bl
== ivs
->list
&& bl
->next
== 0))
8224 || (no_use_except_counting
&& ! loop_info
->has_prefetch
))
8228 /* Loop can be reversed. */
8229 if (loop_dump_stream
)
8230 fprintf (loop_dump_stream
, "Can reverse loop\n");
8232 /* Now check other conditions:
8234 The increment must be a constant, as must the initial value,
8235 and the comparison code must be LT.
8237 This test can probably be improved since +/- 1 in the constant
8238 can be obtained by changing LT to LE and vice versa; this is
8242 /* for constants, LE gets turned into LT */
8243 && (GET_CODE (comparison
) == LT
8244 || (GET_CODE (comparison
) == LE
8245 && no_use_except_counting
)
8246 || GET_CODE (comparison
) == LTU
))
8248 HOST_WIDE_INT add_val
, add_adjust
, comparison_val
= 0;
8249 rtx initial_value
, comparison_value
;
8251 enum rtx_code cmp_code
;
8252 int comparison_const_width
;
8253 unsigned HOST_WIDE_INT comparison_sign_mask
;
8254 bool keep_first_compare
;
8256 add_val
= INTVAL (bl
->biv
->add_val
);
8257 comparison_value
= XEXP (comparison
, 1);
8258 if (GET_MODE (comparison_value
) == VOIDmode
)
8259 comparison_const_width
8260 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison
, 0)));
8262 comparison_const_width
8263 = GET_MODE_BITSIZE (GET_MODE (comparison_value
));
8264 if (comparison_const_width
> HOST_BITS_PER_WIDE_INT
)
8265 comparison_const_width
= HOST_BITS_PER_WIDE_INT
;
8266 comparison_sign_mask
8267 = (unsigned HOST_WIDE_INT
) 1 << (comparison_const_width
- 1);
8269 /* If the comparison value is not a loop invariant, then we
8270 can not reverse this loop.
8272 ??? If the insns which initialize the comparison value as
8273 a whole compute an invariant result, then we could move
8274 them out of the loop and proceed with loop reversal. */
8275 if (! loop_invariant_p (loop
, comparison_value
))
8278 if (GET_CODE (comparison_value
) == CONST_INT
)
8279 comparison_val
= INTVAL (comparison_value
);
8280 initial_value
= bl
->initial_value
;
8282 /* Normalize the initial value if it is an integer and
8283 has no other use except as a counter. This will allow
8284 a few more loops to be reversed. */
8285 if (no_use_except_counting
8286 && GET_CODE (comparison_value
) == CONST_INT
8287 && GET_CODE (initial_value
) == CONST_INT
)
8289 comparison_val
= comparison_val
- INTVAL (bl
->initial_value
);
8290 /* The code below requires comparison_val to be a multiple
8291 of add_val in order to do the loop reversal, so
8292 round up comparison_val to a multiple of add_val.
8293 Since comparison_value is constant, we know that the
8294 current comparison code is LT. */
8295 comparison_val
= comparison_val
+ add_val
- 1;
8297 -= (unsigned HOST_WIDE_INT
) comparison_val
% add_val
;
8298 /* We postpone overflow checks for COMPARISON_VAL here;
8299 even if there is an overflow, we might still be able to
8300 reverse the loop, if converting the loop exit test to
8302 initial_value
= const0_rtx
;
8305 /* First check if we can do a vanilla loop reversal. */
8306 if (initial_value
== const0_rtx
8307 /* If we have a decrement_and_branch_on_count,
8308 prefer the NE test, since this will allow that
8309 instruction to be generated. Note that we must
8310 use a vanilla loop reversal if the biv is used to
8311 calculate a giv or has a non-counting use. */
8312 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8313 && defined (HAVE_decrement_and_branch_on_count)
8314 && (! (add_val
== 1 && loop
->vtop
8315 && (bl
->biv_count
== 0
8316 || no_use_except_counting
)))
8318 && GET_CODE (comparison_value
) == CONST_INT
8319 /* Now do postponed overflow checks on COMPARISON_VAL. */
8320 && ! (((comparison_val
- add_val
) ^ INTVAL (comparison_value
))
8321 & comparison_sign_mask
))
8323 /* Register will always be nonnegative, with value
8324 0 on last iteration */
8325 add_adjust
= add_val
;
8329 else if (add_val
== 1 && loop
->vtop
8330 && (bl
->biv_count
== 0
8331 || no_use_except_counting
))
8339 if (GET_CODE (comparison
) == LE
)
8340 add_adjust
-= add_val
;
8342 /* If the initial value is not zero, or if the comparison
8343 value is not an exact multiple of the increment, then we
8344 can not reverse this loop. */
8345 if (initial_value
== const0_rtx
8346 && GET_CODE (comparison_value
) == CONST_INT
)
8348 if (((unsigned HOST_WIDE_INT
) comparison_val
% add_val
) != 0)
8353 if (! no_use_except_counting
|| add_val
!= 1)
8357 final_value
= comparison_value
;
8359 /* Reset these in case we normalized the initial value
8360 and comparison value above. */
8361 if (GET_CODE (comparison_value
) == CONST_INT
8362 && GET_CODE (initial_value
) == CONST_INT
)
8364 comparison_value
= GEN_INT (comparison_val
);
8366 = GEN_INT (comparison_val
+ INTVAL (bl
->initial_value
));
8368 bl
->initial_value
= initial_value
;
8370 /* Save some info needed to produce the new insns. */
8371 reg
= bl
->biv
->dest_reg
;
8372 mode
= GET_MODE (reg
);
8373 jump_label
= condjump_label (PREV_INSN (loop_end
));
8374 new_add_val
= GEN_INT (-INTVAL (bl
->biv
->add_val
));
8376 /* Set start_value; if this is not a CONST_INT, we need
8378 Initialize biv to start_value before loop start.
8379 The old initializing insn will be deleted as a
8380 dead store by flow.c. */
8381 if (initial_value
== const0_rtx
8382 && GET_CODE (comparison_value
) == CONST_INT
)
8385 = gen_int_mode (comparison_val
- add_adjust
, mode
);
8386 loop_insn_hoist (loop
, gen_move_insn (reg
, start_value
));
8388 else if (GET_CODE (initial_value
) == CONST_INT
)
8390 rtx offset
= GEN_INT (-INTVAL (initial_value
) - add_adjust
);
8391 rtx add_insn
= gen_add3_insn (reg
, comparison_value
, offset
);
8397 = gen_rtx_PLUS (mode
, comparison_value
, offset
);
8398 loop_insn_hoist (loop
, add_insn
);
8399 if (GET_CODE (comparison
) == LE
)
8400 final_value
= gen_rtx_PLUS (mode
, comparison_value
,
8403 else if (! add_adjust
)
8405 rtx sub_insn
= gen_sub3_insn (reg
, comparison_value
,
8411 = gen_rtx_MINUS (mode
, comparison_value
, initial_value
);
8412 loop_insn_hoist (loop
, sub_insn
);
8415 /* We could handle the other cases too, but it'll be
8416 better to have a testcase first. */
8419 /* We may not have a single insn which can increment a reg, so
8420 create a sequence to hold all the insns from expand_inc. */
8422 expand_inc (reg
, new_add_val
);
8426 p
= loop_insn_emit_before (loop
, 0, bl
->biv
->insn
, tem
);
8427 delete_insn (bl
->biv
->insn
);
8429 /* Update biv info to reflect its new status. */
8431 bl
->initial_value
= start_value
;
8432 bl
->biv
->add_val
= new_add_val
;
8434 /* Update loop info. */
8435 loop_info
->initial_value
= reg
;
8436 loop_info
->initial_equiv_value
= reg
;
8437 loop_info
->final_value
= const0_rtx
;
8438 loop_info
->final_equiv_value
= const0_rtx
;
8439 loop_info
->comparison_value
= const0_rtx
;
8440 loop_info
->comparison_code
= cmp_code
;
8441 loop_info
->increment
= new_add_val
;
8443 /* Inc LABEL_NUSES so that delete_insn will
8444 not delete the label. */
8445 LABEL_NUSES (XEXP (jump_label
, 0))++;
8447 /* If we have a separate comparison insn that does more
8448 than just set cc0, the result of the comparison might
8449 be used outside the loop. */
8450 keep_first_compare
= (compare_and_branch
== 2
8452 && sets_cc0_p (first_compare
) <= 0
8456 /* Emit an insn after the end of the loop to set the biv's
8457 proper exit value if it is used anywhere outside the loop. */
8458 if (keep_first_compare
8459 || (REGNO_LAST_UID (bl
->regno
) != INSN_UID (first_compare
))
8461 || REGNO_FIRST_UID (bl
->regno
) != INSN_UID (bl
->init_insn
))
8462 loop_insn_sink (loop
, gen_load_of_final_value (reg
, final_value
));
8464 if (keep_first_compare
)
8465 loop_insn_sink (loop
, PATTERN (first_compare
));
8467 /* Delete compare/branch at end of loop. */
8468 delete_related_insns (PREV_INSN (loop_end
));
8469 if (compare_and_branch
== 2)
8470 delete_related_insns (first_compare
);
8472 /* Add new compare/branch insn at end of loop. */
8474 emit_cmp_and_jump_insns (reg
, const0_rtx
, cmp_code
, NULL_RTX
,
8476 XEXP (jump_label
, 0));
8479 emit_jump_insn_before (tem
, loop_end
);
8481 for (tem
= PREV_INSN (loop_end
);
8482 tem
&& !JUMP_P (tem
);
8483 tem
= PREV_INSN (tem
))
8487 JUMP_LABEL (tem
) = XEXP (jump_label
, 0);
8493 /* Increment of LABEL_NUSES done above. */
8494 /* Register is now always nonnegative,
8495 so add REG_NONNEG note to the branch. */
8496 REG_NOTES (tem
) = gen_rtx_EXPR_LIST (REG_NONNEG
, reg
,
8502 /* No insn may reference both the reversed and another biv or it
8503 will fail (see comment near the top of the loop reversal
8505 Earlier on, we have verified that the biv has no use except
8506 counting, or it is the only biv in this function.
8507 However, the code that computes no_use_except_counting does
8508 not verify reg notes. It's possible to have an insn that
8509 references another biv, and has a REG_EQUAL note with an
8510 expression based on the reversed biv. To avoid this case,
8511 remove all REG_EQUAL notes based on the reversed biv
8513 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8517 rtx set
= single_set (p
);
8518 /* If this is a set of a GIV based on the reversed biv, any
8519 REG_EQUAL notes should still be correct. */
8521 || !REG_P (SET_DEST (set
))
8522 || (size_t) REGNO (SET_DEST (set
)) >= ivs
->n_regs
8523 || REG_IV_TYPE (ivs
, REGNO (SET_DEST (set
))) != GENERAL_INDUCT
8524 || REG_IV_INFO (ivs
, REGNO (SET_DEST (set
)))->src_reg
!= bl
->biv
->src_reg
)
8525 for (pnote
= ®_NOTES (p
); *pnote
;)
8527 if (REG_NOTE_KIND (*pnote
) == REG_EQUAL
8528 && reg_mentioned_p (regno_reg_rtx
[bl
->regno
],
8530 *pnote
= XEXP (*pnote
, 1);
8532 pnote
= &XEXP (*pnote
, 1);
8536 /* Mark that this biv has been reversed. Each giv which depends
8537 on this biv, and which is also live past the end of the loop
8538 will have to be fixed up. */
8542 if (loop_dump_stream
)
8544 fprintf (loop_dump_stream
, "Reversed loop");
8546 fprintf (loop_dump_stream
, " and added reg_nonneg\n");
8548 fprintf (loop_dump_stream
, "\n");
8559 /* Verify whether the biv BL appears to be eliminable,
8560 based on the insns in the loop that refer to it.
8562 If ELIMINATE_P is nonzero, actually do the elimination.
8564 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8565 determine whether invariant insns should be placed inside or at the
8566 start of the loop. */
8569 maybe_eliminate_biv (const struct loop
*loop
, struct iv_class
*bl
,
8570 int eliminate_p
, int threshold
, int insn_count
)
8572 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
8573 rtx reg
= bl
->biv
->dest_reg
;
8576 /* Scan all insns in the loop, stopping if we find one that uses the
8577 biv in a way that we cannot eliminate. */
8579 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
8581 enum rtx_code code
= GET_CODE (p
);
8582 basic_block where_bb
= 0;
8583 rtx where_insn
= threshold
>= insn_count
? 0 : p
;
8586 /* If this is a libcall that sets a giv, skip ahead to its end. */
8589 note
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
8593 rtx last
= XEXP (note
, 0);
8594 rtx set
= single_set (last
);
8596 if (set
&& REG_P (SET_DEST (set
)))
8598 unsigned int regno
= REGNO (SET_DEST (set
));
8600 if (regno
< ivs
->n_regs
8601 && REG_IV_TYPE (ivs
, regno
) == GENERAL_INDUCT
8602 && REG_IV_INFO (ivs
, regno
)->src_reg
== bl
->biv
->src_reg
)
8608 /* Closely examine the insn if the biv is mentioned. */
8609 if ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
8610 && reg_mentioned_p (reg
, PATTERN (p
))
8611 && ! maybe_eliminate_biv_1 (loop
, PATTERN (p
), p
, bl
,
8612 eliminate_p
, where_bb
, where_insn
))
8614 if (loop_dump_stream
)
8615 fprintf (loop_dump_stream
,
8616 "Cannot eliminate biv %d: biv used in insn %d.\n",
8617 bl
->regno
, INSN_UID (p
));
8621 /* If we are eliminating, kill REG_EQUAL notes mentioning the biv. */
8623 && (note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
8624 && reg_mentioned_p (reg
, XEXP (note
, 0)))
8625 remove_note (p
, note
);
8630 if (loop_dump_stream
)
8631 fprintf (loop_dump_stream
, "biv %d %s eliminated.\n",
8632 bl
->regno
, eliminate_p
? "was" : "can be");
8639 /* INSN and REFERENCE are instructions in the same insn chain.
8640 Return nonzero if INSN is first. */
8643 loop_insn_first_p (rtx insn
, rtx reference
)
8647 for (p
= insn
, q
= reference
;;)
8649 /* Start with test for not first so that INSN == REFERENCE yields not
8651 if (q
== insn
|| ! p
)
8653 if (p
== reference
|| ! q
)
8656 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8657 previous insn, hence the <= comparison below does not work if
8659 if (INSN_UID (p
) < max_uid_for_loop
8660 && INSN_UID (q
) < max_uid_for_loop
8662 return INSN_LUID (p
) <= INSN_LUID (q
);
8664 if (INSN_UID (p
) >= max_uid_for_loop
8667 if (INSN_UID (q
) >= max_uid_for_loop
)
8672 /* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
8673 the offset that we have to take into account due to auto-increment /
8674 div derivation is zero. */
8676 biv_elimination_giv_has_0_offset (struct induction
*biv
,
8677 struct induction
*giv
, rtx insn
)
8679 /* If the giv V had the auto-inc address optimization applied
8680 to it, and INSN occurs between the giv insn and the biv
8681 insn, then we'd have to adjust the value used here.
8682 This is rare, so we don't bother to make this possible. */
8683 if (giv
->auto_inc_opt
8684 && ((loop_insn_first_p (giv
->insn
, insn
)
8685 && loop_insn_first_p (insn
, biv
->insn
))
8686 || (loop_insn_first_p (biv
->insn
, insn
)
8687 && loop_insn_first_p (insn
, giv
->insn
))))
8693 /* If BL appears in X (part of the pattern of INSN), see if we can
8694 eliminate its use. If so, return 1. If not, return 0.
8696 If BIV does not appear in X, return 1.
8698 If ELIMINATE_P is nonzero, actually do the elimination.
8699 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
8700 Depending on how many items have been moved out of the loop, it
8701 will either be before INSN (when WHERE_INSN is nonzero) or at the
8702 start of the loop (when WHERE_INSN is zero). */
8705 maybe_eliminate_biv_1 (const struct loop
*loop
, rtx x
, rtx insn
,
8706 struct iv_class
*bl
, int eliminate_p
,
8707 basic_block where_bb
, rtx where_insn
)
8709 enum rtx_code code
= GET_CODE (x
);
8710 rtx reg
= bl
->biv
->dest_reg
;
8711 enum machine_mode mode
= GET_MODE (reg
);
8712 struct induction
*v
;
8724 /* If we haven't already been able to do something with this BIV,
8725 we can't eliminate it. */
8731 /* If this sets the BIV, it is not a problem. */
8732 if (SET_DEST (x
) == reg
)
8735 /* If this is an insn that defines a giv, it is also ok because
8736 it will go away when the giv is reduced. */
8737 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8738 if (v
->giv_type
== DEST_REG
&& SET_DEST (x
) == v
->dest_reg
)
8742 if (SET_DEST (x
) == cc0_rtx
&& SET_SRC (x
) == reg
)
8744 /* Can replace with any giv that was reduced and
8745 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8746 Require a constant for MULT_VAL, so we know it's nonzero.
8747 ??? We disable this optimization to avoid potential
8750 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8751 if (GET_CODE (v
->mult_val
) == CONST_INT
&& v
->mult_val
!= const0_rtx
8752 && v
->add_val
== const0_rtx
8753 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8757 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8763 /* If the giv has the opposite direction of change,
8764 then reverse the comparison. */
8765 if (INTVAL (v
->mult_val
) < 0)
8766 new = gen_rtx_COMPARE (GET_MODE (v
->new_reg
),
8767 const0_rtx
, v
->new_reg
);
8771 /* We can probably test that giv's reduced reg. */
8772 if (validate_change (insn
, &SET_SRC (x
), new, 0))
8776 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8777 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8778 Require a constant for MULT_VAL, so we know it's nonzero.
8779 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8780 overflow problem. */
8782 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8783 if (GET_CODE (v
->mult_val
) == CONST_INT
8784 && v
->mult_val
!= const0_rtx
8785 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8787 && (GET_CODE (v
->add_val
) == SYMBOL_REF
8788 || GET_CODE (v
->add_val
) == LABEL_REF
8789 || GET_CODE (v
->add_val
) == CONST
8790 || (REG_P (v
->add_val
)
8791 && REG_POINTER (v
->add_val
))))
8793 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8799 /* If the giv has the opposite direction of change,
8800 then reverse the comparison. */
8801 if (INTVAL (v
->mult_val
) < 0)
8802 new = gen_rtx_COMPARE (VOIDmode
, copy_rtx (v
->add_val
),
8805 new = gen_rtx_COMPARE (VOIDmode
, v
->new_reg
,
8806 copy_rtx (v
->add_val
));
8808 /* Replace biv with the giv's reduced register. */
8809 update_reg_last_use (v
->add_val
, insn
);
8810 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
8813 /* Insn doesn't support that constant or invariant. Copy it
8814 into a register (it will be a loop invariant.) */
8815 tem
= gen_reg_rtx (GET_MODE (v
->new_reg
));
8817 loop_insn_emit_before (loop
, 0, where_insn
,
8819 copy_rtx (v
->add_val
)));
8821 /* Substitute the new register for its invariant value in
8822 the compare expression. */
8823 XEXP (new, (INTVAL (v
->mult_val
) < 0) ? 0 : 1) = tem
;
8824 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
8833 case GT
: case GE
: case GTU
: case GEU
:
8834 case LT
: case LE
: case LTU
: case LEU
:
8835 /* See if either argument is the biv. */
8836 if (XEXP (x
, 0) == reg
)
8837 arg
= XEXP (x
, 1), arg_operand
= 1;
8838 else if (XEXP (x
, 1) == reg
)
8839 arg
= XEXP (x
, 0), arg_operand
= 0;
8843 if (CONSTANT_P (arg
))
8845 /* First try to replace with any giv that has constant positive
8846 mult_val and constant add_val. We might be able to support
8847 negative mult_val, but it seems complex to do it in general. */
8849 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8850 if (GET_CODE (v
->mult_val
) == CONST_INT
8851 && INTVAL (v
->mult_val
) > 0
8852 && (GET_CODE (v
->add_val
) == SYMBOL_REF
8853 || GET_CODE (v
->add_val
) == LABEL_REF
8854 || GET_CODE (v
->add_val
) == CONST
8855 || (REG_P (v
->add_val
)
8856 && REG_POINTER (v
->add_val
)))
8857 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8860 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8863 /* Don't eliminate if the linear combination that makes up
8864 the giv overflows when it is applied to ARG. */
8865 if (GET_CODE (arg
) == CONST_INT
)
8869 if (GET_CODE (v
->add_val
) == CONST_INT
)
8870 add_val
= v
->add_val
;
8872 add_val
= const0_rtx
;
8874 if (const_mult_add_overflow_p (arg
, v
->mult_val
,
8882 /* Replace biv with the giv's reduced reg. */
8883 validate_change (insn
, &XEXP (x
, 1 - arg_operand
), v
->new_reg
, 1);
8885 /* If all constants are actually constant integers and
8886 the derived constant can be directly placed in the COMPARE,
8888 if (GET_CODE (arg
) == CONST_INT
8889 && GET_CODE (v
->add_val
) == CONST_INT
)
8891 tem
= expand_mult_add (arg
, NULL_RTX
, v
->mult_val
,
8892 v
->add_val
, mode
, 1);
8896 /* Otherwise, load it into a register. */
8897 tem
= gen_reg_rtx (mode
);
8898 loop_iv_add_mult_emit_before (loop
, arg
,
8899 v
->mult_val
, v
->add_val
,
8900 tem
, where_bb
, where_insn
);
8903 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8905 if (apply_change_group ())
8909 /* Look for giv with positive constant mult_val and nonconst add_val.
8910 Insert insns to calculate new compare value.
8911 ??? Turn this off due to possible overflow. */
8913 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8914 if (GET_CODE (v
->mult_val
) == CONST_INT
8915 && INTVAL (v
->mult_val
) > 0
8916 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8922 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8928 tem
= gen_reg_rtx (mode
);
8930 /* Replace biv with giv's reduced register. */
8931 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8934 /* Compute value to compare against. */
8935 loop_iv_add_mult_emit_before (loop
, arg
,
8936 v
->mult_val
, v
->add_val
,
8937 tem
, where_bb
, where_insn
);
8938 /* Use it in this insn. */
8939 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8940 if (apply_change_group ())
8944 else if (REG_P (arg
) || MEM_P (arg
))
8946 if (loop_invariant_p (loop
, arg
) == 1)
8948 /* Look for giv with constant positive mult_val and nonconst
8949 add_val. Insert insns to compute new compare value.
8950 ??? Turn this off due to possible overflow. */
8952 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8953 if (GET_CODE (v
->mult_val
) == CONST_INT
&& INTVAL (v
->mult_val
) > 0
8954 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8960 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8966 tem
= gen_reg_rtx (mode
);
8968 /* Replace biv with giv's reduced register. */
8969 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8972 /* Compute value to compare against. */
8973 loop_iv_add_mult_emit_before (loop
, arg
,
8974 v
->mult_val
, v
->add_val
,
8975 tem
, where_bb
, where_insn
);
8976 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8977 if (apply_change_group ())
8982 /* This code has problems. Basically, you can't know when
8983 seeing if we will eliminate BL, whether a particular giv
8984 of ARG will be reduced. If it isn't going to be reduced,
8985 we can't eliminate BL. We can try forcing it to be reduced,
8986 but that can generate poor code.
8988 The problem is that the benefit of reducing TV, below should
8989 be increased if BL can actually be eliminated, but this means
8990 we might have to do a topological sort of the order in which
8991 we try to process biv. It doesn't seem worthwhile to do
8992 this sort of thing now. */
8995 /* Otherwise the reg compared with had better be a biv. */
8997 || REG_IV_TYPE (ivs
, REGNO (arg
)) != BASIC_INDUCT
)
9000 /* Look for a pair of givs, one for each biv,
9001 with identical coefficients. */
9002 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
9004 struct induction
*tv
;
9006 if (v
->ignore
|| v
->maybe_dead
|| v
->mode
!= mode
)
9009 for (tv
= REG_IV_CLASS (ivs
, REGNO (arg
))->giv
; tv
;
9011 if (! tv
->ignore
&& ! tv
->maybe_dead
9012 && rtx_equal_p (tv
->mult_val
, v
->mult_val
)
9013 && rtx_equal_p (tv
->add_val
, v
->add_val
)
9014 && tv
->mode
== mode
)
9016 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
9022 /* Replace biv with its giv's reduced reg. */
9023 XEXP (x
, 1 - arg_operand
) = v
->new_reg
;
9024 /* Replace other operand with the other giv's
9026 XEXP (x
, arg_operand
) = tv
->new_reg
;
9033 /* If we get here, the biv can't be eliminated. */
9037 /* If this address is a DEST_ADDR giv, it doesn't matter if the
9038 biv is used in it, since it will be replaced. */
9039 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
9040 if (v
->giv_type
== DEST_ADDR
&& v
->location
== &XEXP (x
, 0))
9048 /* See if any subexpression fails elimination. */
9049 fmt
= GET_RTX_FORMAT (code
);
9050 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9055 if (! maybe_eliminate_biv_1 (loop
, XEXP (x
, i
), insn
, bl
,
9056 eliminate_p
, where_bb
, where_insn
))
9061 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9062 if (! maybe_eliminate_biv_1 (loop
, XVECEXP (x
, i
, j
), insn
, bl
,
9063 eliminate_p
, where_bb
, where_insn
))
9072 /* Return nonzero if the last use of REG
9073 is in an insn following INSN in the same basic block. */
9076 last_use_this_basic_block (rtx reg
, rtx insn
)
9080 n
&& !LABEL_P (n
) && !JUMP_P (n
);
9083 if (REGNO_LAST_UID (REGNO (reg
)) == INSN_UID (n
))
9089 /* Called via `note_stores' to record the initial value of a biv. Here we
9090 just record the location of the set and process it later. */
9093 record_initial (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
9095 struct loop_ivs
*ivs
= (struct loop_ivs
*) data
;
9096 struct iv_class
*bl
;
9099 || REGNO (dest
) >= ivs
->n_regs
9100 || REG_IV_TYPE (ivs
, REGNO (dest
)) != BASIC_INDUCT
)
9103 bl
= REG_IV_CLASS (ivs
, REGNO (dest
));
9105 /* If this is the first set found, record it. */
9106 if (bl
->init_insn
== 0)
9108 bl
->init_insn
= note_insn
;
9113 /* If any of the registers in X are "old" and currently have a last use earlier
9114 than INSN, update them to have a last use of INSN. Their actual last use
9115 will be the previous insn but it will not have a valid uid_luid so we can't
9116 use it. X must be a source expression only. */
9119 update_reg_last_use (rtx x
, rtx insn
)
9121 /* Check for the case where INSN does not have a valid luid. In this case,
9122 there is no need to modify the regno_last_uid, as this can only happen
9123 when code is inserted after the loop_end to set a pseudo's final value,
9124 and hence this insn will never be the last use of x.
9125 ???? This comment is not correct. See for example loop_givs_reduce.
9126 This may insert an insn before another new insn. */
9127 if (REG_P (x
) && REGNO (x
) < max_reg_before_loop
9128 && INSN_UID (insn
) < max_uid_for_loop
9129 && REGNO_LAST_LUID (REGNO (x
)) < INSN_LUID (insn
))
9131 REGNO_LAST_UID (REGNO (x
)) = INSN_UID (insn
);
9136 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
9137 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
9140 update_reg_last_use (XEXP (x
, i
), insn
);
9141 else if (fmt
[i
] == 'E')
9142 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9143 update_reg_last_use (XVECEXP (x
, i
, j
), insn
);
9148 /* Given an insn INSN and condition COND, return the condition in a
9149 canonical form to simplify testing by callers. Specifically:
9151 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9152 (2) Both operands will be machine operands; (cc0) will have been replaced.
9153 (3) If an operand is a constant, it will be the second operand.
9154 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9155 for GE, GEU, and LEU.
9157 If the condition cannot be understood, or is an inequality floating-point
9158 comparison which needs to be reversed, 0 will be returned.
9160 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
9162 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9163 insn used in locating the condition was found. If a replacement test
9164 of the condition is desired, it should be placed in front of that
9165 insn and we will be sure that the inputs are still valid.
9167 If WANT_REG is nonzero, we wish the condition to be relative to that
9168 register, if possible. Therefore, do not canonicalize the condition
9169 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
9170 to be a compare to a CC mode register.
9172 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
9176 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
9177 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
9184 int reverse_code
= 0;
9185 enum machine_mode mode
;
9187 code
= GET_CODE (cond
);
9188 mode
= GET_MODE (cond
);
9189 op0
= XEXP (cond
, 0);
9190 op1
= XEXP (cond
, 1);
9193 code
= reversed_comparison_code (cond
, insn
);
9194 if (code
== UNKNOWN
)
9200 /* If we are comparing a register with zero, see if the register is set
9201 in the previous insn to a COMPARE or a comparison operation. Perform
9202 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9205 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
9206 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
9207 && op1
== CONST0_RTX (GET_MODE (op0
))
9210 /* Set nonzero when we find something of interest. */
9214 /* If comparison with cc0, import actual comparison from compare
9218 if ((prev
= prev_nonnote_insn (prev
)) == 0
9219 || !NONJUMP_INSN_P (prev
)
9220 || (set
= single_set (prev
)) == 0
9221 || SET_DEST (set
) != cc0_rtx
)
9224 op0
= SET_SRC (set
);
9225 op1
= CONST0_RTX (GET_MODE (op0
));
9231 /* If this is a COMPARE, pick up the two things being compared. */
9232 if (GET_CODE (op0
) == COMPARE
)
9234 op1
= XEXP (op0
, 1);
9235 op0
= XEXP (op0
, 0);
9238 else if (!REG_P (op0
))
9241 /* Go back to the previous insn. Stop if it is not an INSN. We also
9242 stop if it isn't a single set or if it has a REG_INC note because
9243 we don't want to bother dealing with it. */
9245 if ((prev
= prev_nonnote_insn (prev
)) == 0
9246 || !NONJUMP_INSN_P (prev
)
9247 || FIND_REG_INC_NOTE (prev
, NULL_RTX
))
9250 set
= set_of (op0
, prev
);
9253 && (GET_CODE (set
) != SET
9254 || !rtx_equal_p (SET_DEST (set
), op0
)))
9257 /* If this is setting OP0, get what it sets it to if it looks
9261 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
9262 #ifdef FLOAT_STORE_FLAG_VALUE
9263 REAL_VALUE_TYPE fsfv
;
9266 /* ??? We may not combine comparisons done in a CCmode with
9267 comparisons not done in a CCmode. This is to aid targets
9268 like Alpha that have an IEEE compliant EQ instruction, and
9269 a non-IEEE compliant BEQ instruction. The use of CCmode is
9270 actually artificial, simply to prevent the combination, but
9271 should not affect other platforms.
9273 However, we must allow VOIDmode comparisons to match either
9274 CCmode or non-CCmode comparison, because some ports have
9275 modeless comparisons inside branch patterns.
9277 ??? This mode check should perhaps look more like the mode check
9278 in simplify_comparison in combine. */
9280 if ((GET_CODE (SET_SRC (set
)) == COMPARE
9283 && GET_MODE_CLASS (inner_mode
) == MODE_INT
9284 && (GET_MODE_BITSIZE (inner_mode
)
9285 <= HOST_BITS_PER_WIDE_INT
)
9286 && (STORE_FLAG_VALUE
9287 & ((HOST_WIDE_INT
) 1
9288 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
9289 #ifdef FLOAT_STORE_FLAG_VALUE
9291 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
9292 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
9293 REAL_VALUE_NEGATIVE (fsfv
)))
9296 && COMPARISON_P (SET_SRC (set
))))
9297 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
9298 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
9299 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
9301 else if (((code
== EQ
9303 && (GET_MODE_BITSIZE (inner_mode
)
9304 <= HOST_BITS_PER_WIDE_INT
)
9305 && GET_MODE_CLASS (inner_mode
) == MODE_INT
9306 && (STORE_FLAG_VALUE
9307 & ((HOST_WIDE_INT
) 1
9308 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
9309 #ifdef FLOAT_STORE_FLAG_VALUE
9311 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
9312 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
9313 REAL_VALUE_NEGATIVE (fsfv
)))
9316 && COMPARISON_P (SET_SRC (set
))
9317 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
9318 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
9319 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
9329 else if (reg_set_p (op0
, prev
))
9330 /* If this sets OP0, but not directly, we have to give up. */
9335 /* If the caller is expecting the condition to be valid at INSN,
9336 make sure X doesn't change before INSN. */
9337 if (valid_at_insn_p
)
9338 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
9340 if (COMPARISON_P (x
))
9341 code
= GET_CODE (x
);
9344 code
= reversed_comparison_code (x
, prev
);
9345 if (code
== UNKNOWN
)
9350 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
9356 /* If constant is first, put it last. */
9357 if (CONSTANT_P (op0
))
9358 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
9360 /* If OP0 is the result of a comparison, we weren't able to find what
9361 was really being compared, so fail. */
9363 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
9366 /* Canonicalize any ordered comparison with integers involving equality
9367 if we can do computations in the relevant mode and we do not
9370 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
9371 && GET_CODE (op1
) == CONST_INT
9372 && GET_MODE (op0
) != VOIDmode
9373 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
9375 HOST_WIDE_INT const_val
= INTVAL (op1
);
9376 unsigned HOST_WIDE_INT uconst_val
= const_val
;
9377 unsigned HOST_WIDE_INT max_val
9378 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
9383 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
9384 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
9387 /* When cross-compiling, const_val might be sign-extended from
9388 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9390 if ((HOST_WIDE_INT
) (const_val
& max_val
)
9391 != (((HOST_WIDE_INT
) 1
9392 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
9393 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
9397 if (uconst_val
< max_val
)
9398 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
9402 if (uconst_val
!= 0)
9403 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
9411 /* Never return CC0; return zero instead. */
9415 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
9418 /* Given a jump insn JUMP, return the condition that will cause it to branch
9419 to its JUMP_LABEL. If the condition cannot be understood, or is an
9420 inequality floating-point comparison which needs to be reversed, 0 will
9423 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9424 insn used in locating the condition was found. If a replacement test
9425 of the condition is desired, it should be placed in front of that
9426 insn and we will be sure that the inputs are still valid. If EARLIEST
9427 is null, the returned condition will be valid at INSN.
9429 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
9430 compare CC mode register.
9432 VALID_AT_INSN_P is the same as for canonicalize_condition. */
9435 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
9441 /* If this is not a standard conditional jump, we can't parse it. */
9443 || ! any_condjump_p (jump
))
9445 set
= pc_set (jump
);
9447 cond
= XEXP (SET_SRC (set
), 0);
9449 /* If this branches to JUMP_LABEL when the condition is false, reverse
9452 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
9453 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
9455 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
9456 allow_cc_mode
, valid_at_insn_p
);
9459 /* Similar to above routine, except that we also put an invariant last
9460 unless both operands are invariants. */
9463 get_condition_for_loop (const struct loop
*loop
, rtx x
)
9465 rtx comparison
= get_condition (x
, (rtx
*) 0, false, true);
9468 || ! loop_invariant_p (loop
, XEXP (comparison
, 0))
9469 || loop_invariant_p (loop
, XEXP (comparison
, 1)))
9472 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)), VOIDmode
,
9473 XEXP (comparison
, 1), XEXP (comparison
, 0));
9476 /* Scan the function and determine whether it has indirect (computed) jumps.
9478 This is taken mostly from flow.c; similar code exists elsewhere
9479 in the compiler. It may be useful to put this into rtlanal.c. */
9481 indirect_jump_in_function_p (rtx start
)
9485 for (insn
= start
; insn
; insn
= NEXT_INSN (insn
))
9486 if (computed_jump_p (insn
))
9492 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9493 documentation for LOOP_MEMS for the definition of `appropriate'.
9494 This function is called from prescan_loop via for_each_rtx. */
9497 insert_loop_mem (rtx
*mem
, void *data ATTRIBUTE_UNUSED
)
9499 struct loop_info
*loop_info
= data
;
9506 switch (GET_CODE (m
))
9512 /* We're not interested in MEMs that are only clobbered. */
9516 /* We're not interested in the MEM associated with a
9517 CONST_DOUBLE, so there's no need to traverse into this. */
9521 /* We're not interested in any MEMs that only appear in notes. */
9525 /* This is not a MEM. */
9529 /* See if we've already seen this MEM. */
9530 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
9531 if (rtx_equal_p (m
, loop_info
->mems
[i
].mem
))
9533 if (MEM_VOLATILE_P (m
) && !MEM_VOLATILE_P (loop_info
->mems
[i
].mem
))
9534 loop_info
->mems
[i
].mem
= m
;
9535 if (GET_MODE (m
) != GET_MODE (loop_info
->mems
[i
].mem
))
9536 /* The modes of the two memory accesses are different. If
9537 this happens, something tricky is going on, and we just
9538 don't optimize accesses to this MEM. */
9539 loop_info
->mems
[i
].optimize
= 0;
9544 /* Resize the array, if necessary. */
9545 if (loop_info
->mems_idx
== loop_info
->mems_allocated
)
9547 if (loop_info
->mems_allocated
!= 0)
9548 loop_info
->mems_allocated
*= 2;
9550 loop_info
->mems_allocated
= 32;
9552 loop_info
->mems
= xrealloc (loop_info
->mems
,
9553 loop_info
->mems_allocated
* sizeof (loop_mem_info
));
9556 /* Actually insert the MEM. */
9557 loop_info
->mems
[loop_info
->mems_idx
].mem
= m
;
9558 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9559 because we can't put it in a register. We still store it in the
9560 table, though, so that if we see the same address later, but in a
9561 non-BLK mode, we'll not think we can optimize it at that point. */
9562 loop_info
->mems
[loop_info
->mems_idx
].optimize
= (GET_MODE (m
) != BLKmode
);
9563 loop_info
->mems
[loop_info
->mems_idx
].reg
= NULL_RTX
;
9564 ++loop_info
->mems_idx
;
9570 /* Allocate REGS->ARRAY or reallocate it if it is too small.
9572 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
9573 register that is modified by an insn between FROM and TO. If the
9574 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
9575 more, stop incrementing it, to avoid overflow.
9577 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
9578 register I is used, if it is only used once. Otherwise, it is set
9579 to 0 (for no uses) or const0_rtx for more than one use. This
9580 parameter may be zero, in which case this processing is not done.
9582 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
9583 optimize register I. */
9586 loop_regs_scan (const struct loop
*loop
, int extra_size
)
9588 struct loop_regs
*regs
= LOOP_REGS (loop
);
9590 /* last_set[n] is nonzero iff reg n has been set in the current
9591 basic block. In that case, it is the insn that last set reg n. */
9596 old_nregs
= regs
->num
;
9597 regs
->num
= max_reg_num ();
9599 /* Grow the regs array if not allocated or too small. */
9600 if (regs
->num
>= regs
->size
)
9602 regs
->size
= regs
->num
+ extra_size
;
9604 regs
->array
= xrealloc (regs
->array
, regs
->size
* sizeof (*regs
->array
));
9606 /* Zero the new elements. */
9607 memset (regs
->array
+ old_nregs
, 0,
9608 (regs
->size
- old_nregs
) * sizeof (*regs
->array
));
9611 /* Clear previously scanned fields but do not clear n_times_set. */
9612 for (i
= 0; i
< old_nregs
; i
++)
9614 regs
->array
[i
].set_in_loop
= 0;
9615 regs
->array
[i
].may_not_optimize
= 0;
9616 regs
->array
[i
].single_usage
= NULL_RTX
;
9619 last_set
= xcalloc (regs
->num
, sizeof (rtx
));
9621 /* Scan the loop, recording register usage. */
9622 for (insn
= loop
->top
? loop
->top
: loop
->start
; insn
!= loop
->end
;
9623 insn
= NEXT_INSN (insn
))
9627 /* Record registers that have exactly one use. */
9628 find_single_use_in_loop (regs
, insn
, PATTERN (insn
));
9630 /* Include uses in REG_EQUAL notes. */
9631 if (REG_NOTES (insn
))
9632 find_single_use_in_loop (regs
, insn
, REG_NOTES (insn
));
9634 if (GET_CODE (PATTERN (insn
)) == SET
9635 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
9636 count_one_set (regs
, insn
, PATTERN (insn
), last_set
);
9637 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
9640 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
9641 count_one_set (regs
, insn
, XVECEXP (PATTERN (insn
), 0, i
),
9646 if (LABEL_P (insn
) || JUMP_P (insn
))
9647 memset (last_set
, 0, regs
->num
* sizeof (rtx
));
9649 /* Invalidate all registers used for function argument passing.
9650 We check rtx_varies_p for the same reason as below, to allow
9651 optimizing PIC calculations. */
9655 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
9657 link
= XEXP (link
, 1))
9661 if (GET_CODE (op
= XEXP (link
, 0)) == USE
9662 && REG_P (reg
= XEXP (op
, 0))
9663 && rtx_varies_p (reg
, 1))
9664 regs
->array
[REGNO (reg
)].may_not_optimize
= 1;
9669 /* Invalidate all hard registers clobbered by calls. With one exception:
9670 a call-clobbered PIC register is still function-invariant for our
9671 purposes, since we can hoist any PIC calculations out of the loop.
9672 Thus the call to rtx_varies_p. */
9673 if (LOOP_INFO (loop
)->has_call
)
9674 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
9675 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
)
9676 && rtx_varies_p (regno_reg_rtx
[i
], 1))
9678 regs
->array
[i
].may_not_optimize
= 1;
9679 regs
->array
[i
].set_in_loop
= 1;
9682 #ifdef AVOID_CCMODE_COPIES
9683 /* Don't try to move insns which set CC registers if we should not
9684 create CCmode register copies. */
9685 for (i
= regs
->num
- 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
9686 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx
[i
])) == MODE_CC
)
9687 regs
->array
[i
].may_not_optimize
= 1;
9690 /* Set regs->array[I].n_times_set for the new registers. */
9691 for (i
= old_nregs
; i
< regs
->num
; i
++)
9692 regs
->array
[i
].n_times_set
= regs
->array
[i
].set_in_loop
;
9697 /* Returns the number of real INSNs in the LOOP. */
9700 count_insns_in_loop (const struct loop
*loop
)
9705 for (insn
= loop
->top
? loop
->top
: loop
->start
; insn
!= loop
->end
;
9706 insn
= NEXT_INSN (insn
))
9713 /* Move MEMs into registers for the duration of the loop. */
9716 load_mems (const struct loop
*loop
)
9718 struct loop_info
*loop_info
= LOOP_INFO (loop
);
9719 struct loop_regs
*regs
= LOOP_REGS (loop
);
9720 int maybe_never
= 0;
9722 rtx p
, prev_ebb_head
;
9723 rtx label
= NULL_RTX
;
9725 /* Nonzero if the next instruction may never be executed. */
9726 int next_maybe_never
= 0;
9727 unsigned int last_max_reg
= max_reg_num ();
9729 if (loop_info
->mems_idx
== 0)
9732 /* We cannot use next_label here because it skips over normal insns. */
9733 end_label
= next_nonnote_insn (loop
->end
);
9734 if (end_label
&& !LABEL_P (end_label
))
9735 end_label
= NULL_RTX
;
9737 /* Check to see if it's possible that some instructions in the loop are
9738 never executed. Also check if there is a goto out of the loop other
9739 than right after the end of the loop. */
9740 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
9742 p
= next_insn_in_loop (loop
, p
))
9747 /* If we enter the loop in the middle, and scan
9748 around to the beginning, don't set maybe_never
9749 for that. This must be an unconditional jump,
9750 otherwise the code at the top of the loop might
9751 never be executed. Unconditional jumps are
9752 followed a by barrier then loop end. */
9754 && JUMP_LABEL (p
) == loop
->top
9755 && NEXT_INSN (NEXT_INSN (p
)) == loop
->end
9756 && any_uncondjump_p (p
)))
9758 /* If this is a jump outside of the loop but not right
9759 after the end of the loop, we would have to emit new fixup
9760 sequences for each such label. */
9761 if (/* If we can't tell where control might go when this
9762 JUMP_INSN is executed, we must be conservative. */
9764 || (JUMP_LABEL (p
) != end_label
9765 && (INSN_UID (JUMP_LABEL (p
)) >= max_uid_for_loop
9766 || INSN_LUID (JUMP_LABEL (p
)) < INSN_LUID (loop
->start
)
9767 || INSN_LUID (JUMP_LABEL (p
)) > INSN_LUID (loop
->end
))))
9770 if (!any_condjump_p (p
))
9771 /* Something complicated. */
9774 /* If there are any more instructions in the loop, they
9775 might not be reached. */
9776 next_maybe_never
= 1;
9778 else if (next_maybe_never
)
9782 /* Find start of the extended basic block that enters the loop. */
9783 for (p
= loop
->start
;
9784 PREV_INSN (p
) && !LABEL_P (p
);
9791 /* Build table of mems that get set to constant values before the
9793 for (; p
!= loop
->start
; p
= NEXT_INSN (p
))
9794 cselib_process_insn (p
);
9796 /* Actually move the MEMs. */
9797 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
9799 regset_head load_copies
;
9800 regset_head store_copies
;
9803 rtx mem
= loop_info
->mems
[i
].mem
;
9806 if (MEM_VOLATILE_P (mem
)
9807 || loop_invariant_p (loop
, XEXP (mem
, 0)) != 1)
9808 /* There's no telling whether or not MEM is modified. */
9809 loop_info
->mems
[i
].optimize
= 0;
9811 /* Go through the MEMs written to in the loop to see if this
9812 one is aliased by one of them. */
9813 mem_list_entry
= loop_info
->store_mems
;
9814 while (mem_list_entry
)
9816 if (rtx_equal_p (mem
, XEXP (mem_list_entry
, 0)))
9818 else if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
9821 /* MEM is indeed aliased by this store. */
9822 loop_info
->mems
[i
].optimize
= 0;
9825 mem_list_entry
= XEXP (mem_list_entry
, 1);
9828 if (flag_float_store
&& written
9829 && GET_MODE_CLASS (GET_MODE (mem
)) == MODE_FLOAT
)
9830 loop_info
->mems
[i
].optimize
= 0;
9832 /* If this MEM is written to, we must be sure that there
9833 are no reads from another MEM that aliases this one. */
9834 if (loop_info
->mems
[i
].optimize
&& written
)
9838 for (j
= 0; j
< loop_info
->mems_idx
; ++j
)
9842 else if (true_dependence (mem
,
9844 loop_info
->mems
[j
].mem
,
9847 /* It's not safe to hoist loop_info->mems[i] out of
9848 the loop because writes to it might not be
9849 seen by reads from loop_info->mems[j]. */
9850 loop_info
->mems
[i
].optimize
= 0;
9856 if (maybe_never
&& may_trap_p (mem
))
9857 /* We can't access the MEM outside the loop; it might
9858 cause a trap that wouldn't have happened otherwise. */
9859 loop_info
->mems
[i
].optimize
= 0;
9861 if (!loop_info
->mems
[i
].optimize
)
9862 /* We thought we were going to lift this MEM out of the
9863 loop, but later discovered that we could not. */
9866 INIT_REG_SET (&load_copies
);
9867 INIT_REG_SET (&store_copies
);
9869 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9870 order to keep scan_loop from moving stores to this MEM
9871 out of the loop just because this REG is neither a
9872 user-variable nor used in the loop test. */
9873 reg
= gen_reg_rtx (GET_MODE (mem
));
9874 REG_USERVAR_P (reg
) = 1;
9875 loop_info
->mems
[i
].reg
= reg
;
9877 /* Now, replace all references to the MEM with the
9878 corresponding pseudos. */
9880 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
9882 p
= next_insn_in_loop (loop
, p
))
9888 set
= single_set (p
);
9890 /* See if this copies the mem into a register that isn't
9891 modified afterwards. We'll try to do copy propagation
9892 a little further on. */
9894 /* @@@ This test is _way_ too conservative. */
9896 && REG_P (SET_DEST (set
))
9897 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
9898 && REGNO (SET_DEST (set
)) < last_max_reg
9899 && regs
->array
[REGNO (SET_DEST (set
))].n_times_set
== 1
9900 && rtx_equal_p (SET_SRC (set
), mem
))
9901 SET_REGNO_REG_SET (&load_copies
, REGNO (SET_DEST (set
)));
9903 /* See if this copies the mem from a register that isn't
9904 modified afterwards. We'll try to remove the
9905 redundant copy later on by doing a little register
9906 renaming and copy propagation. This will help
9907 to untangle things for the BIV detection code. */
9910 && REG_P (SET_SRC (set
))
9911 && REGNO (SET_SRC (set
)) >= FIRST_PSEUDO_REGISTER
9912 && REGNO (SET_SRC (set
)) < last_max_reg
9913 && regs
->array
[REGNO (SET_SRC (set
))].n_times_set
== 1
9914 && rtx_equal_p (SET_DEST (set
), mem
))
9915 SET_REGNO_REG_SET (&store_copies
, REGNO (SET_SRC (set
)));
9917 /* If this is a call which uses / clobbers this memory
9918 location, we must not change the interface here. */
9920 && reg_mentioned_p (loop_info
->mems
[i
].mem
,
9921 CALL_INSN_FUNCTION_USAGE (p
)))
9924 loop_info
->mems
[i
].optimize
= 0;
9928 /* Replace the memory reference with the shadow register. */
9929 replace_loop_mems (p
, loop_info
->mems
[i
].mem
,
9930 loop_info
->mems
[i
].reg
, written
);
9938 if (! loop_info
->mems
[i
].optimize
)
9939 ; /* We found we couldn't do the replacement, so do nothing. */
9940 else if (! apply_change_group ())
9941 /* We couldn't replace all occurrences of the MEM. */
9942 loop_info
->mems
[i
].optimize
= 0;
9945 /* Load the memory immediately before LOOP->START, which is
9946 the NOTE_LOOP_BEG. */
9947 cselib_val
*e
= cselib_lookup (mem
, VOIDmode
, 0);
9951 struct elt_loc_list
*const_equiv
= 0;
9955 struct elt_loc_list
*equiv
;
9956 struct elt_loc_list
*best_equiv
= 0;
9957 for (equiv
= e
->locs
; equiv
; equiv
= equiv
->next
)
9959 if (CONSTANT_P (equiv
->loc
))
9960 const_equiv
= equiv
;
9961 else if (REG_P (equiv
->loc
)
9962 /* Extending hard register lifetimes causes crash
9963 on SRC targets. Doing so on non-SRC is
9964 probably also not good idea, since we most
9965 probably have pseudoregister equivalence as
9967 && REGNO (equiv
->loc
) >= FIRST_PSEUDO_REGISTER
)
9970 /* Use the constant equivalence if that is cheap enough. */
9972 best_equiv
= const_equiv
;
9973 else if (const_equiv
9974 && (rtx_cost (const_equiv
->loc
, SET
)
9975 <= rtx_cost (best_equiv
->loc
, SET
)))
9977 best_equiv
= const_equiv
;
9981 /* If best_equiv is nonzero, we know that MEM is set to a
9982 constant or register before the loop. We will use this
9983 knowledge to initialize the shadow register with that
9984 constant or reg rather than by loading from MEM. */
9986 best
= copy_rtx (best_equiv
->loc
);
9989 set
= gen_move_insn (reg
, best
);
9990 set
= loop_insn_hoist (loop
, set
);
9993 for (p
= prev_ebb_head
; p
!= loop
->start
; p
= NEXT_INSN (p
))
9994 if (REGNO_LAST_UID (REGNO (best
)) == INSN_UID (p
))
9996 REGNO_LAST_UID (REGNO (best
)) = INSN_UID (set
);
10002 set_unique_reg_note (set
, REG_EQUAL
, copy_rtx (const_equiv
->loc
));
10006 if (label
== NULL_RTX
)
10008 label
= gen_label_rtx ();
10009 emit_label_after (label
, loop
->end
);
10012 /* Store the memory immediately after END, which is
10013 the NOTE_LOOP_END. */
10014 set
= gen_move_insn (copy_rtx (mem
), reg
);
10015 loop_insn_emit_after (loop
, 0, label
, set
);
10018 if (loop_dump_stream
)
10020 fprintf (loop_dump_stream
, "Hoisted regno %d %s from ",
10021 REGNO (reg
), (written
? "r/w" : "r/o"));
10022 print_rtl (loop_dump_stream
, mem
);
10023 fputc ('\n', loop_dump_stream
);
10026 /* Attempt a bit of copy propagation. This helps untangle the
10027 data flow, and enables {basic,general}_induction_var to find
10029 EXECUTE_IF_SET_IN_REG_SET
10030 (&load_copies
, FIRST_PSEUDO_REGISTER
, j
,
10032 try_copy_prop (loop
, reg
, j
);
10034 CLEAR_REG_SET (&load_copies
);
10036 EXECUTE_IF_SET_IN_REG_SET
10037 (&store_copies
, FIRST_PSEUDO_REGISTER
, j
,
10039 try_swap_copy_prop (loop
, reg
, j
);
10041 CLEAR_REG_SET (&store_copies
);
10045 /* Now, we need to replace all references to the previous exit
10046 label with the new one. */
10047 if (label
!= NULL_RTX
&& end_label
!= NULL_RTX
)
10048 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
10049 if (JUMP_P (p
) && JUMP_LABEL (p
) == end_label
)
10050 redirect_jump (p
, label
, false);
10055 /* For communication between note_reg_stored and its caller. */
10056 struct note_reg_stored_arg
10062 /* Called via note_stores, record in SET_SEEN whether X, which is written,
10063 is equal to ARG. */
10065 note_reg_stored (rtx x
, rtx setter ATTRIBUTE_UNUSED
, void *arg
)
10067 struct note_reg_stored_arg
*t
= (struct note_reg_stored_arg
*) arg
;
10072 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
10073 There must be exactly one insn that sets this pseudo; it will be
10074 deleted if all replacements succeed and we can prove that the register
10075 is not used after the loop. */
10078 try_copy_prop (const struct loop
*loop
, rtx replacement
, unsigned int regno
)
10080 /* This is the reg that we are copying from. */
10081 rtx reg_rtx
= regno_reg_rtx
[regno
];
10084 /* These help keep track of whether we replaced all uses of the reg. */
10085 int replaced_last
= 0;
10086 int store_is_first
= 0;
10088 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
10090 insn
= next_insn_in_loop (loop
, insn
))
10094 /* Only substitute within one extended basic block from the initializing
10096 if (LABEL_P (insn
) && init_insn
)
10099 if (! INSN_P (insn
))
10102 /* Is this the initializing insn? */
10103 set
= single_set (insn
);
10105 && REG_P (SET_DEST (set
))
10106 && REGNO (SET_DEST (set
)) == regno
)
10112 if (REGNO_FIRST_UID (regno
) == INSN_UID (insn
))
10113 store_is_first
= 1;
10116 /* Only substitute after seeing the initializing insn. */
10117 if (init_insn
&& insn
!= init_insn
)
10119 struct note_reg_stored_arg arg
;
10121 replace_loop_regs (insn
, reg_rtx
, replacement
);
10122 if (REGNO_LAST_UID (regno
) == INSN_UID (insn
))
10125 /* Stop replacing when REPLACEMENT is modified. */
10126 arg
.reg
= replacement
;
10128 note_stores (PATTERN (insn
), note_reg_stored
, &arg
);
10131 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL
);
10133 /* It is possible that we've turned previously valid REG_EQUAL to
10134 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
10135 REPLACEMENT is modified, we get different meaning. */
10136 if (note
&& reg_mentioned_p (replacement
, XEXP (note
, 0)))
10137 remove_note (insn
, note
);
10144 if (apply_change_group ())
10146 if (loop_dump_stream
)
10147 fprintf (loop_dump_stream
, " Replaced reg %d", regno
);
10148 if (store_is_first
&& replaced_last
)
10153 /* Assume we're just deleting INIT_INSN. */
10155 /* Look for REG_RETVAL note. If we're deleting the end of
10156 the libcall sequence, the whole sequence can go. */
10157 retval_note
= find_reg_note (init_insn
, REG_RETVAL
, NULL_RTX
);
10158 /* If we found a REG_RETVAL note, find the first instruction
10159 in the sequence. */
10161 first
= XEXP (retval_note
, 0);
10163 /* Delete the instructions. */
10164 loop_delete_insns (first
, init_insn
);
10166 if (loop_dump_stream
)
10167 fprintf (loop_dump_stream
, ".\n");
10171 /* Replace all the instructions from FIRST up to and including LAST
10172 with NOTE_INSN_DELETED notes. */
10175 loop_delete_insns (rtx first
, rtx last
)
10179 if (loop_dump_stream
)
10180 fprintf (loop_dump_stream
, ", deleting init_insn (%d)",
10182 delete_insn (first
);
10184 /* If this was the LAST instructions we're supposed to delete,
10189 first
= NEXT_INSN (first
);
10193 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
10194 loop LOOP if the order of the sets of these registers can be
10195 swapped. There must be exactly one insn within the loop that sets
10196 this pseudo followed immediately by a move insn that sets
10197 REPLACEMENT with REGNO. */
10199 try_swap_copy_prop (const struct loop
*loop
, rtx replacement
,
10200 unsigned int regno
)
10203 rtx set
= NULL_RTX
;
10204 unsigned int new_regno
;
10206 new_regno
= REGNO (replacement
);
10208 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
10210 insn
= next_insn_in_loop (loop
, insn
))
10212 /* Search for the insn that copies REGNO to NEW_REGNO? */
10214 && (set
= single_set (insn
))
10215 && REG_P (SET_DEST (set
))
10216 && REGNO (SET_DEST (set
)) == new_regno
10217 && REG_P (SET_SRC (set
))
10218 && REGNO (SET_SRC (set
)) == regno
)
10222 if (insn
!= NULL_RTX
)
10227 /* Some DEF-USE info would come in handy here to make this
10228 function more general. For now, just check the previous insn
10229 which is the most likely candidate for setting REGNO. */
10231 prev_insn
= PREV_INSN (insn
);
10234 && (prev_set
= single_set (prev_insn
))
10235 && REG_P (SET_DEST (prev_set
))
10236 && REGNO (SET_DEST (prev_set
)) == regno
)
10239 (set (reg regno) (expr))
10240 (set (reg new_regno) (reg regno))
10242 so try converting this to:
10243 (set (reg new_regno) (expr))
10244 (set (reg regno) (reg new_regno))
10246 The former construct is often generated when a global
10247 variable used for an induction variable is shadowed by a
10248 register (NEW_REGNO). The latter construct improves the
10249 chances of GIV replacement and BIV elimination. */
10251 validate_change (prev_insn
, &SET_DEST (prev_set
),
10253 validate_change (insn
, &SET_DEST (set
),
10255 validate_change (insn
, &SET_SRC (set
),
10258 if (apply_change_group ())
10260 if (loop_dump_stream
)
10261 fprintf (loop_dump_stream
,
10262 " Swapped set of reg %d at %d with reg %d at %d.\n",
10263 regno
, INSN_UID (insn
),
10264 new_regno
, INSN_UID (prev_insn
));
10266 /* Update first use of REGNO. */
10267 if (REGNO_FIRST_UID (regno
) == INSN_UID (prev_insn
))
10268 REGNO_FIRST_UID (regno
) = INSN_UID (insn
);
10270 /* Now perform copy propagation to hopefully
10271 remove all uses of REGNO within the loop. */
10272 try_copy_prop (loop
, replacement
, regno
);
10278 /* Worker function for find_mem_in_note, called via for_each_rtx. */
10281 find_mem_in_note_1 (rtx
*x
, void *data
)
10283 if (*x
!= NULL_RTX
&& MEM_P (*x
))
10285 rtx
*res
= (rtx
*) data
;
10292 /* Returns the first MEM found in NOTE by depth-first search. */
10295 find_mem_in_note (rtx note
)
10297 if (note
&& for_each_rtx (¬e
, find_mem_in_note_1
, ¬e
))
10302 /* Replace MEM with its associated pseudo register. This function is
10303 called from load_mems via for_each_rtx. DATA is actually a pointer
10304 to a structure describing the instruction currently being scanned
10305 and the MEM we are currently replacing. */
10308 replace_loop_mem (rtx
*mem
, void *data
)
10310 loop_replace_args
*args
= (loop_replace_args
*) data
;
10316 switch (GET_CODE (m
))
10322 /* We're not interested in the MEM associated with a
10323 CONST_DOUBLE, so there's no need to traverse into one. */
10327 /* This is not a MEM. */
10331 if (!rtx_equal_p (args
->match
, m
))
10332 /* This is not the MEM we are currently replacing. */
10335 /* Actually replace the MEM. */
10336 validate_change (args
->insn
, mem
, args
->replacement
, 1);
10342 replace_loop_mems (rtx insn
, rtx mem
, rtx reg
, int written
)
10344 loop_replace_args args
;
10348 args
.replacement
= reg
;
10350 for_each_rtx (&insn
, replace_loop_mem
, &args
);
10352 /* If we hoist a mem write out of the loop, then REG_EQUAL
10353 notes referring to the mem are no longer valid. */
10359 for (link
= ®_NOTES (insn
); (note
= *link
); link
= &XEXP (note
, 1))
10361 if (REG_NOTE_KIND (note
) == REG_EQUAL
10362 && (sub
= find_mem_in_note (note
))
10363 && true_dependence (mem
, VOIDmode
, sub
, rtx_varies_p
))
10365 /* Remove the note. */
10366 validate_change (NULL_RTX
, link
, XEXP (note
, 1), 1);
10373 /* Replace one register with another. Called through for_each_rtx; PX points
10374 to the rtx being scanned. DATA is actually a pointer to
10375 a structure of arguments. */
10378 replace_loop_reg (rtx
*px
, void *data
)
10381 loop_replace_args
*args
= (loop_replace_args
*) data
;
10386 if (x
== args
->match
)
10387 validate_change (args
->insn
, px
, args
->replacement
, 1);
10393 replace_loop_regs (rtx insn
, rtx reg
, rtx replacement
)
10395 loop_replace_args args
;
10399 args
.replacement
= replacement
;
10401 for_each_rtx (&insn
, replace_loop_reg
, &args
);
10404 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
10405 (ignored in the interim). */
10408 loop_insn_emit_after (const struct loop
*loop ATTRIBUTE_UNUSED
,
10409 basic_block where_bb ATTRIBUTE_UNUSED
, rtx where_insn
,
10412 return emit_insn_after (pattern
, where_insn
);
10416 /* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
10417 in basic block WHERE_BB (ignored in the interim) within the loop
10418 otherwise hoist PATTERN into the loop pre-header. */
10421 loop_insn_emit_before (const struct loop
*loop
,
10422 basic_block where_bb ATTRIBUTE_UNUSED
,
10423 rtx where_insn
, rtx pattern
)
10426 return loop_insn_hoist (loop
, pattern
);
10427 return emit_insn_before (pattern
, where_insn
);
10431 /* Emit call insn for PATTERN before WHERE_INSN in basic block
10432 WHERE_BB (ignored in the interim) within the loop. */
10435 loop_call_insn_emit_before (const struct loop
*loop ATTRIBUTE_UNUSED
,
10436 basic_block where_bb ATTRIBUTE_UNUSED
,
10437 rtx where_insn
, rtx pattern
)
10439 return emit_call_insn_before (pattern
, where_insn
);
10443 /* Hoist insn for PATTERN into the loop pre-header. */
10446 loop_insn_hoist (const struct loop
*loop
, rtx pattern
)
10448 return loop_insn_emit_before (loop
, 0, loop
->start
, pattern
);
10452 /* Hoist call insn for PATTERN into the loop pre-header. */
10455 loop_call_insn_hoist (const struct loop
*loop
, rtx pattern
)
10457 return loop_call_insn_emit_before (loop
, 0, loop
->start
, pattern
);
10461 /* Sink insn for PATTERN after the loop end. */
10464 loop_insn_sink (const struct loop
*loop
, rtx pattern
)
10466 return loop_insn_emit_before (loop
, 0, loop
->sink
, pattern
);
10469 /* bl->final_value can be either general_operand or PLUS of general_operand
10470 and constant. Emit sequence of instructions to load it into REG. */
10472 gen_load_of_final_value (rtx reg
, rtx final_value
)
10476 final_value
= force_operand (final_value
, reg
);
10477 if (final_value
!= reg
)
10478 emit_move_insn (reg
, final_value
);
10479 seq
= get_insns ();
10484 /* If the loop has multiple exits, emit insn for PATTERN before the
10485 loop to ensure that it will always be executed no matter how the
10486 loop exits. Otherwise, emit the insn for PATTERN after the loop,
10487 since this is slightly more efficient. */
10490 loop_insn_sink_or_swim (const struct loop
*loop
, rtx pattern
)
10492 if (loop
->exit_count
)
10493 return loop_insn_hoist (loop
, pattern
);
10495 return loop_insn_sink (loop
, pattern
);
10499 loop_ivs_dump (const struct loop
*loop
, FILE *file
, int verbose
)
10501 struct iv_class
*bl
;
10504 if (! loop
|| ! file
)
10507 for (bl
= LOOP_IVS (loop
)->list
; bl
; bl
= bl
->next
)
10510 fprintf (file
, "Loop %d: %d IV classes\n", loop
->num
, iv_num
);
10512 for (bl
= LOOP_IVS (loop
)->list
; bl
; bl
= bl
->next
)
10514 loop_iv_class_dump (bl
, file
, verbose
);
10515 fputc ('\n', file
);
10521 loop_iv_class_dump (const struct iv_class
*bl
, FILE *file
,
10522 int verbose ATTRIBUTE_UNUSED
)
10524 struct induction
*v
;
10528 if (! bl
|| ! file
)
10531 fprintf (file
, "IV class for reg %d, benefit %d\n",
10532 bl
->regno
, bl
->total_benefit
);
10534 fprintf (file
, " Init insn %d", INSN_UID (bl
->init_insn
));
10535 if (bl
->initial_value
)
10537 fprintf (file
, ", init val: ");
10538 print_simple_rtl (file
, bl
->initial_value
);
10540 if (bl
->initial_test
)
10542 fprintf (file
, ", init test: ");
10543 print_simple_rtl (file
, bl
->initial_test
);
10545 fputc ('\n', file
);
10547 if (bl
->final_value
)
10549 fprintf (file
, " Final val: ");
10550 print_simple_rtl (file
, bl
->final_value
);
10551 fputc ('\n', file
);
10554 if ((incr
= biv_total_increment (bl
)))
10556 fprintf (file
, " Total increment: ");
10557 print_simple_rtl (file
, incr
);
10558 fputc ('\n', file
);
10561 /* List the increments. */
10562 for (i
= 0, v
= bl
->biv
; v
; v
= v
->next_iv
, i
++)
10564 fprintf (file
, " Inc%d: insn %d, incr: ", i
, INSN_UID (v
->insn
));
10565 print_simple_rtl (file
, v
->add_val
);
10566 fputc ('\n', file
);
10569 /* List the givs. */
10570 for (i
= 0, v
= bl
->giv
; v
; v
= v
->next_iv
, i
++)
10572 fprintf (file
, " Giv%d: insn %d, benefit %d, ",
10573 i
, INSN_UID (v
->insn
), v
->benefit
);
10574 if (v
->giv_type
== DEST_ADDR
)
10575 print_simple_rtl (file
, v
->mem
);
10577 print_simple_rtl (file
, single_set (v
->insn
));
10578 fputc ('\n', file
);
10584 loop_biv_dump (const struct induction
*v
, FILE *file
, int verbose
)
10591 REGNO (v
->dest_reg
), INSN_UID (v
->insn
));
10592 fprintf (file
, " const ");
10593 print_simple_rtl (file
, v
->add_val
);
10595 if (verbose
&& v
->final_value
)
10597 fputc ('\n', file
);
10598 fprintf (file
, " final ");
10599 print_simple_rtl (file
, v
->final_value
);
10602 fputc ('\n', file
);
10607 loop_giv_dump (const struct induction
*v
, FILE *file
, int verbose
)
10612 if (v
->giv_type
== DEST_REG
)
10613 fprintf (file
, "Giv %d: insn %d",
10614 REGNO (v
->dest_reg
), INSN_UID (v
->insn
));
10616 fprintf (file
, "Dest address: insn %d",
10617 INSN_UID (v
->insn
));
10619 fprintf (file
, " src reg %d benefit %d",
10620 REGNO (v
->src_reg
), v
->benefit
);
10621 fprintf (file
, " lifetime %d",
10624 if (v
->replaceable
)
10625 fprintf (file
, " replaceable");
10627 if (v
->no_const_addval
)
10628 fprintf (file
, " ncav");
10630 if (v
->ext_dependent
)
10632 switch (GET_CODE (v
->ext_dependent
))
10635 fprintf (file
, " ext se");
10638 fprintf (file
, " ext ze");
10641 fprintf (file
, " ext tr");
10648 fputc ('\n', file
);
10649 fprintf (file
, " mult ");
10650 print_simple_rtl (file
, v
->mult_val
);
10652 fputc ('\n', file
);
10653 fprintf (file
, " add ");
10654 print_simple_rtl (file
, v
->add_val
);
10656 if (verbose
&& v
->final_value
)
10658 fputc ('\n', file
);
10659 fprintf (file
, " final ");
10660 print_simple_rtl (file
, v
->final_value
);
10663 fputc ('\n', file
);
10668 debug_ivs (const struct loop
*loop
)
10670 loop_ivs_dump (loop
, stderr
, 1);
10675 debug_iv_class (const struct iv_class
*bl
)
10677 loop_iv_class_dump (bl
, stderr
, 1);
10682 debug_biv (const struct induction
*v
)
10684 loop_biv_dump (v
, stderr
, 1);
10689 debug_giv (const struct induction
*v
)
10691 loop_giv_dump (v
, stderr
, 1);
10695 #define LOOP_BLOCK_NUM_1(INSN) \
10696 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
10698 /* The notes do not have an assigned block, so look at the next insn. */
10699 #define LOOP_BLOCK_NUM(INSN) \
10700 ((INSN) ? (NOTE_P (INSN) \
10701 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
10702 : LOOP_BLOCK_NUM_1 (INSN)) \
10705 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
10708 loop_dump_aux (const struct loop
*loop
, FILE *file
,
10709 int verbose ATTRIBUTE_UNUSED
)
10713 if (! loop
|| ! file
)
10716 /* Print diagnostics to compare our concept of a loop with
10717 what the loop notes say. */
10718 if (! PREV_INSN (BB_HEAD (loop
->first
))
10719 || !NOTE_P (PREV_INSN (BB_HEAD (loop
->first
)))
10720 || NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (loop
->first
)))
10721 != NOTE_INSN_LOOP_BEG
)
10722 fprintf (file
, ";; No NOTE_INSN_LOOP_BEG at %d\n",
10723 INSN_UID (PREV_INSN (BB_HEAD (loop
->first
))));
10724 if (! NEXT_INSN (BB_END (loop
->last
))
10725 || !NOTE_P (NEXT_INSN (BB_END (loop
->last
)))
10726 || NOTE_LINE_NUMBER (NEXT_INSN (BB_END (loop
->last
)))
10727 != NOTE_INSN_LOOP_END
)
10728 fprintf (file
, ";; No NOTE_INSN_LOOP_END at %d\n",
10729 INSN_UID (NEXT_INSN (BB_END (loop
->last
))));
10734 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
10735 LOOP_BLOCK_NUM (loop
->start
),
10736 LOOP_INSN_UID (loop
->start
),
10737 LOOP_BLOCK_NUM (loop
->cont
),
10738 LOOP_INSN_UID (loop
->cont
),
10739 LOOP_BLOCK_NUM (loop
->cont
),
10740 LOOP_INSN_UID (loop
->cont
),
10741 LOOP_BLOCK_NUM (loop
->vtop
),
10742 LOOP_INSN_UID (loop
->vtop
),
10743 LOOP_BLOCK_NUM (loop
->end
),
10744 LOOP_INSN_UID (loop
->end
));
10745 fprintf (file
, ";; top %d (%d), scan start %d (%d)\n",
10746 LOOP_BLOCK_NUM (loop
->top
),
10747 LOOP_INSN_UID (loop
->top
),
10748 LOOP_BLOCK_NUM (loop
->scan_start
),
10749 LOOP_INSN_UID (loop
->scan_start
));
10750 fprintf (file
, ";; exit_count %d", loop
->exit_count
);
10751 if (loop
->exit_count
)
10753 fputs (", labels:", file
);
10754 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
10756 fprintf (file
, " %d ",
10757 LOOP_INSN_UID (XEXP (label
, 0)));
10760 fputs ("\n", file
);
10762 /* This can happen when a marked loop appears as two nested loops,
10763 say from while (a || b) {}. The inner loop won't match
10764 the loop markers but the outer one will. */
10765 if (LOOP_BLOCK_NUM (loop
->cont
) != loop
->latch
->index
)
10766 fprintf (file
, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
10770 /* Call this function from the debugger to dump LOOP. */
10773 debug_loop (const struct loop
*loop
)
10775 flow_loop_dump (loop
, stderr
, loop_dump_aux
, 1);
10778 /* Call this function from the debugger to dump LOOPS. */
10781 debug_loops (const struct loops
*loops
)
10783 flow_loops_dump (loops
, stderr
, loop_dump_aux
, 1);